NUREG-0800

BRANCH TECHNICAL POSITION 6-1

pH FOR EMERGENCY COOLANT WATER FOR PRESSURIZED WATER REACTORS

I. <u>BACKGROUND</u>

To establish the minimum value of pH in postaccident containment sprays in pressurized water reactors (PWRs), the NRC staff has reviewed the available information and recommended the criteria listed in the branch technical position below.

The minimum pH value of 7.0 follows from the Westinghouse report (Reference 1) conclusion that, in ECCS solutions adjusted with NaOH to pH 7.0 or greater, no cracking should be observed at chloride concentrations up to 1000 ppm during the time of interest. Figure 7 of the Westinghouse report shows that the time for initiation of cracking of sensitized and nonsensitized U-bend specimens of Type 304 austenitic stainless steel in solutions of 7.0 pH having 100 ppm chloride was 7-1/2 months and 10 months, respectively.

The great majority of tests reported in the Oak Ridge report (Reference 2) were performed with pH of 4.5, and only two tests were conducted with pH values other than 4.5. Some cracking was observed at pH 7.5 in the sensitized 304 stainless steel U-bend specimens after 2 months exposure to pH 7.5 and chloride concentration of 200 ppm. All of the 316 stainless steel specimens showed no evidence of cracking. Considering the fact that in U-bend specimens the material was sensitized, stressed beyond yield, and plastically deformed, we conclude that the

^{*}All pH values are at 25°C.

Rev. 0 - xxx 2006

USNRC STANDARD REVIEW PLAN

This Standard Review Plan (SRP), NUREG-0800, has been prepared to establish criteria that the Office of Nuclear Reactor Regulation staff responsible for the review of applications to construct and operate nuclear power plants intends to use in evaluating whether an applicant/licensee meets the NRC's regulations. The Standard Review Plan is not a substitute for the NRC's regulations, and compliance with them is not required. However, applicants are required to identify differences between the design features, analytical techniques, and procedural measures proposed for their facility and the SRP acceptance criteria and evaluate how the proposed alternatives to the SRP acceptance criteria provide an acceptable method of complying with the NRC regulations.

The standard review plan sections are numbered in accordance with corresponding sections in the Regulatory Guide 1.70, "Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants (LWR Edition)," Not all sections of the standard format have a corresponding review plan section. The SRP sections applicable to a combined license application for a new light-water reactor (LWR) will be based on Regulatory Guide DG-1145, "Combined License Applications for Nuclear Power Plants (LWR Edition)," as superceded by the final guide, until the SRP itself is updated.

These documents are made available to the public as part of the NRC's policy to inform the nuclear industry and the general public of regulatory procedures and policies. Individual sections of NUREG-0800 will be revised periodically, as appropriate, to accommodate comments and to reflect new information and experience. Comments may be submitted electronically by email to NRR_SRP@nrc.gov.

Requests for single copies of draft or active SRP sections (which may be reproduced) should be made to the U.S. Nuclear Regulatory Commission, Washington, DC 20555, Attention: Reproduction and Distribution Services Section, or by fax to (301) 415-2289; or by email to DISTRIBUTION@nrc.gov. Electronic copies of this section are available through the NRC's public Web site at http://www.nrc.gov/reading-mr/doc-collections/nureg/staff/sr0800/, or in the NRC's Agencywide Documents Access and Management System (ADAMS), at http://www.nrc.gov/reading-mr/adams.html, under Accession # MIxxxxxxxx.

reported test conditions were much more severe than the stress conditions likely to exist in the postaccident emergency coolant systems.

We agree with the Oak Ridge conclusion that absolute freedom from failure of any complex system such as a spray system can never be guaranteed, but, by proper design, fabrication, and control of the corrosive environment, the probability of failure can be significantly reduced. Our recommended minimum pH is somewhat higher than the Oak Ridge recommendation of a minimum of 6.5.

II. BRANCH TECHNICAL POSITION

The criteria for pH level of postaccident emergency coolant water to reduce the probability of stress-corrosion cracking of austenitic stainless steel components, nonsensitized or sensitized, nonstressed or stressed, are as follows:

- 1. Minimum pH should be 7.0.
- For the spray water recirculated from the containment sump, the higher the pH in the 7.0 to 9.5 range, the greater the assurance that no stress corrosion cracking will occur. See SRP Section 6.5.2 for additional water chemistry requirements related to fission product removal.
- 3. If a pH greater than 7.5 is used, consideration should be given to the hydrogen generation problem from corrosion of aluminum in the containment.

III. EVALUATION FINDINGS

The controls on the pH and chemistry of the reactor containment sprays and ECCS solutions meet the staff positions on postaccident chemistry requirements for PWR emergency coolant water. It also meets the requirements of GDC 14 for assuring the low probability of abnormal leakage or failure of the reactor coolant pressure boundary and safety-related structures. We conclude that the proposed pH for emergency coolant water is acceptable.

IV. <u>REFERENCES</u>

- 1. D.D. Whyte and L.F. Picone, "Behavior of Austenitic Stainless Steel in Post Hypothetical Loss of Coolant Environment," WCAP-7798-L, Westinghouse Nuclear Energy Systems, November 1971 (NES Proprietary Class 2).
- 2. J.C. Griess and E. E. Creek, "Design Considerations of Reactor Containment Spray Systems - Part X, The Stress Corrosion Cracking of Types 304 and 316 Stainless Steel in Boric Acid Solutions," ORNL-TM-2412, Part X, Oak Ridge National Laboratory, May 1971.

PAPERWORK REDUCTION ACT STATEMENT

The information collections contained in the draft Standard Review Plan are covered by the requirements of 10 CFR Part 50.54, which were approved by the Office of Management and Budget, approval number 3150 - 0011.

Public Protection Notification

The NRC may not conduct or sponsor, and a person is not required to respond to, a request for information or an information collection requirement unless the requesting document displays a currently valid OMB control number.

BTP 6-1

Description of Changes

BRANCH TECHNICAL POSITION - Extracted BTP from SRP to create separate document, "Branch Technical Paper 6-1, pH for Emergency Coolant Water for Pressurized Water Reactors." Added footnotes, Paperwork Reduction Act Statement, and Public Protection Notification as required for stand-alone documents. Renumbered BTP to eliminate reference to primary review branch. Reformatted subsection headers to agree with SRP format. This Branch Technical Paper was extracted from Standard Review Plan 6.1.1, "Engineered Safety Features."

The following summarizes the changes in the current revision to BTP 6-1:

- 1. Renumbered BTP to eliminate reference to primary review branch.
- 2. Reformatted subsection headers to agree with SRP format.
 - 3. Added footnotes on the first page. The footnote is identical to that on the first page of revised SRP sections. It addresses the intent of the SRPs and the process for providing comments to the NRC staff.
 - 4. Added Paperwork Reduction Act Statement and Public Protection Notification to the last page of the Branch Technical Paper, as required for stand-alone documents.

BTP 6-1

Description of Changes

BRANCH TECHNICAL POSITION - Extracted BTP from SRP to create separate document, "Branch Technical Paper 6-1, pH for Emergency Coolant Water for Pressurized Water Reactors." Added footnotes, Paperwork Reduction Act Statement, and Public Protection Notification as required for stand-alone documents. Renumbered BTP to eliminate reference to primary review branch. Reformatted subsection headers to agree with SRP format. This Branch Technical Paper was extracted from Standard Review Plan 6.1.1, "Engineered Safety Features."

The following summarizes the changes in the current revision to BTP 6-1:

- 1. Renumbered BTP to eliminate reference to primary review branch.
- 2. Reformatted subsection headers to agree with SRP format.
- 3. Added footnotes on the first page. The footnote is identical to that on the first page of revised SRP sections. It addresses the intent of the SRPs and the process for providing comments to the NRC staff.
- 4. Added Paperwork Reduction Act Statement and Public Protection Notification to the last page of the Branch Technical Paper, as required for stand-alone documents.

ADAMS Accession No.: ML061370413

OFFICE	DCI:CPNB	DNRL:NGBD	DCI:CPNB	OGC:NLO	D:DCI:NRR
NAME	AKeim	SKoenick	TChan	APH	JGrobe
DATE	06/14/2006	06/14/2006	06/14/2006	07/20/2006	07/26/2006

OFFICIAL RECORD COPY