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Abstract. A stochastic model for transport and retention in fractured rock is 

proposed a,s an alternative to more elaborate numerical sirnulations. Contaminants arc 

transported by advection through a series of n rock fractures. The microscopic processes 

of matrix diffusion and sorptiori act together to retain contaminants in the host rock. 

The transport pathway is characterized by large-scale fluctuations in the advection 

velocity caused by spatial variability in the fracture attributes along the pathway. The 

moments of the time-of-arrival of an initial solute pulse are related in a generic way to 

the joint distribution of fracture aperture and length. These moments are controlled 

primarily by a dimensionless retention parameter that  incorporates all the deterministic 

model parameters and by correlation between fracture length and aperture. The results 

show that a systematic bias in the predicted contaminant transport can be introduced 

by neglecting spatial variability in fracture attributes. The relative contributions of 

fracture-to-fracture variability and withimfracture variability are also explored. The 

proposed stochastic methodology can incorporate empirical data  directly or can be 

merged with relatively simple numerical simulations to  broaden the applicability. 
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Introduction 

Geological isolation of radioactive waste relies on stable, low-permeabilit,y rock 

as an important barrier t o  the release of radionuclides to  the biosphere. Transport in 

these low-permeability rock barriers occurs mainly by advection through interconnecttd 

networks of fractures but is slowed by microscopic processes that  act to  retain particlcs 

in the surrounding rock. As  particles are swept along by water flowing in the rock 

fractures, they can diffuse into the stagnant (or relatively slowly moving) water in 

the pore space of surrounding rocks where they may sorb onto mineral grains. These 

microscopic retention mechanisms act together to retard the downstreani riiovement in 

a nonlinear fashion. As part of ongoing safety assessments of proposed waste isolation 

facilities, it is necessary to  have quantitative predictions for the time required for 

radionuclides to migrate through the rock barriers, taking into account advection antl 

retention processes. 

Transport in fractured rock is further complicated by uncertainty in the transport 

pathways, as it is usually not possible to have direct observations of subsurface features. 

The best t,hat could be hoped for in a typical application is to  know the statistics 

of fracture attributes, such as aperture antl length. This uncertainty requires that, 

radionuclide migration, and the related issue of waste repository performance assessment, 

be addressed in a probabilistic framework. In a previous paper [Painter et al., 19981, 

we outlined in general terms such a frame\vork, taking into account advective transport 

through a series of connected fractures combined with matrix diffusion and sorption 

in the host rock. 111 this paper, we develop the methodology further, focusing on the 

arrival time t6 of a specified mass fraction d. This fractional arrival time is a iiscfiil 

measure of the effectiveness of the natural barrier. Of particular interest is t ,  for early 

arrivals (e.g. 4 = 1% or 5%), which rcprescnts the leading edge of the plume. 

Most modeling studies of transport in fractured rock use continuum models in 

which the rietwork of rock fractures is replaced by an equivalent porous mediurn. In 



V w 
4 / 3  7 

such niodels, retention in the rock matrix is accounted for by defining two intcractirig 

continua, one for the fractures and a second for the rock matrix. The rock niatrix is 

modeled as either a second flow system [Pruess and Narasimkan, 1985; Berkowitz et al., 

1988; Birkholzer et al., 19931 or as a nonflowing reservoir accessible through diffusive 

mass exchange [Foster, 1975; Grisak and Pickens, 1980; Neretnieks, 1980; BibDy, 19811. 

Prediction uncertainty can be addressed in continuum models by making the effective 

medium properties a random space function. In this stochastic-continuum approach, 

geostatistical methods can be used to generate effective properties in unobserved regions. 

Continuum models are appropriate when the fracture density is much greater 

than the threshold for percolation and the scale-of-support for the continuurn-level 

properties is much larger than the largest fractures. Discrete-fracture models provide 

alternatives when these two conditions are not met. The discrete-fracture approach is 

based on networks of idealized fracture elements in two [Long et al., 1982; Schwartz 

et al., 1983; Smith and Schwartz, 19841 or three spatial dimensions [Long et ul., 1985; 

Shapiro and Andersso7i7 1985; Andersson and Dverstorp, 1987; Cacas et al., 19901. More 

realistic models also take into account spatial variability within the individual fractures 

[Nordqvist et (11.; 19921 or niass exchange with the host rock [Moreno and Neretnieks, 

1993; Kupper et a/., 1995; Bnrten, 19961. 

Our approach is of the discrete-fracture variety but avoids the Monte Carlo fracture 

network simulation characteristic of that  approach. Instead, we derive moments of 

the flux and related quantities analytically. This approach is made possible by a 

simplifying assumption, justified by field observations and previous network similations, 

which allows us to replace a complex interconnectcd fracture network with an idealized 

migration pathway formed by 71 fractures connected in series. Specifically, we noglect 

dispersion caused by fracture intersections arid also within single fractures and focus 

on the dominant pathway through the network. Transport and mass exchange within 

t,his transport, pathway arc) modeled in a manner similar to  Cvetkovic et (11. [1999] 
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who applied the Lagrangian framework for transport in aquifers [ C‘vetlcovic and Dagnn, 

1994. 1996; Dagao and Cvetlcovic, 19961 to  single fractures with variable aperture. The 

focus here is on a transport pathway consisting of multiple fractures and characterized 

by large-scale fluctuations in the advective velocity. 

The approach taken here has some similarities to  tha t  of Moreno and Neretneiks 

[1993]. They conceptualize the transport as occurring in a cubic network of rando~nly 

varying “channels” and use an approach similar to ours for the transport in each channel. 

Nevertheless, the two approaches are fundamentally different in that we employ a new 

conceptual model appropriate for the limiting situation of negligible dispersion. This 

approach allows prediction uncertainty to  be addressed analytically instead of through 

Monte Carlo simulations. 

Conceptual model of a migration pathway 

We consider water flowing through a three-dimensional fractured medium. The 

flow takes place predominantly through conductive fractures. If the entire geometry of 

the system was specified arid all the relevant parameters known, the flow field could, in 

principle, be solved for given boundary conditions. The result would yield the watcr 

velocity field, v(x), applicable a t  a given scale. In practice, the required information 

is not available and we employ various approximations and a stochastic framework to  

solve the flow and transport problem. 

We consider tracers released into a fracture over a small area AAo located a t  xo. 

Water flows through the release area AAo with constant, voliirrietric rate Q [L3T-’]. 

The cross-sectional area A& defines the “streamtiibe” (or a flowpath) from the source 

point to a specified “compliance boundary” located downstrearri from xg along the mean 

flow direction. An example would be an injection point x g  from a single failed canister 

in a repository, with the biosphere as the compliance boundary. Note that  the scale 

of the cross-sectional area AAo defines the relevant scale of the flow problem. In the 



general case, the injected tracer is advected by the velocity v, is dispersed by sinall-scale 

fluctuations, and is subject to  mass transfer reactions such as sorption and/or diffusion 

into the immobile water of the rock matrix. 

Flow and advective transport 

We make the following simplifying assumptions regarding flow and advoctive 

transport, : 

0 Advection along an indivisible streamtube is the dominant physical transport 

mechanism; dispersion within fractures is neglected, as is branching of the 

streamtube at fracture intersections. 

e The tracer is advected by a constant water volumetric flow rate Q. 

0 The streamtubelflowpath for the advecting solute is through intersecting fractures, 

whereby flowpath segments are planar fractures with variable aperture. b(x); a 

sequence of n connected fractures forms a transport pathway through an ot,herwise 

impernieable medium (Figure 1). 

0 The cross-sectional area of the strearntube/flowpath at any given point is 

rectangular, with b ( x )  << w(x),  where w(x) is the width of the streamtube a t  x. 

The neglect of dispersion within individual fractures is appropriate in the present 

context, since our focus is on global quantities such as the arrival time at, a receptor 

group. Global quantities are known to be little affected by local dispersion [Dugan, 

19891, in contrast, to  spatial moments of local quantities such as solute concentration, 

which can be sensitive to local dispersion (e. g., Dagan and Fiori [1997]). 

Our main simplification is to  neglect downstrearn branching in the flowpat,li. In the 

general situation, networks of interconnected fractures contain multiple paths for tracers 

to traversc the network. This multiply-connected nature of networks is the principal 



barrier to  analysis in the general situation, and the reason previous transport iiiodeling 

studies relied heavily on Monte Carlo network simulations. We do not attempt, to model 

the most general situation, but focus instead on a limiting situation with practical arid 

theoretical significance. Specifically, we ignore multiple pathways througli the ncttmork 

and consider networks characterized by a dominant pathway for tracer migration. 

This focus on a single dominant transport pathway is consistent with a barely 

connected network near the percolation threshold. More importantly, it is supported 

by numerical arid field evidence. Monte Carlo network simulat,ions using fieltl-derived 

fracture attr ibute distributions reveal that  a small number of transport pathways is 

often responsible for the majority of the mass flux [Dverstorp et ul., 19921, particularly 

when the particle source is spatially localized. Such large-scale channelization of flow 

and transport is observed frequently in field experiments [Neretnieb, 1993). 

Besides being supported by numerical and field evidence, the neglect of downstreani 

branching in the transport pathway is also of interest as a limiting situatioii tha t  

provides a conservative bound for the effect of interest in many applications. Wtien 

viewed a t  the macroscopic scale, downstream bifurcations in the flowpath act to  

spread the migrating contaminants in both longitudinal and transverse directions. 

This macroscopic dispersion acts to dilute the migrating plume. Thus, our simplifying 

assumption about the flowpath will lead t o  an underestimate of the dilution and an 

overestimate of peak dose a t  a receptor group or the compliance boundary. 

S treamtube characterization 

The streamtube, or flowpath, is determined by two streamlines bounding thc initial 

release, and its width is set, by the width w o  of the initial release. If the aperture a t  the 

release point is b(xo) ,  then the source cross-sectional area is Ailo = bo wo. Fluid passes 

through the streamtube a t  a constant flowrate, Q, and the rnagnitute of the initial 

velocity is Iv(x0) 1 = &/bo ' tug.  
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Local variations in  the fracture aperture will cause the stxearntiibe widtli to  

fluctuate about wo. Aperture variations will also cause the flowpath trajectory to 

meander through the individual fractures. This meandering is irrelevant in the present 

context. The relevant cross-sectional area for the streamtube is the one orthogonal to 

the mean flow direction, as this determines the fluid residence time. We thus define a 

kinematic prototype of a flowpath in one dimension, with varying aperture b ( s )  and 

width w ( x )  where :c is the distance along the flowpath trajectory (i.e., an intrinsic 

coordinate). 

We use a shifting-mean model t o  generalize this model to  a multiple-fracture 

situation (Figure 2). Here the local spatial average aperture is piecewise constant. 

It undergoes stepwise changes as the flowpath passes from fracture to  fracture. The 

notation introduced in Figure 2 is as follows: b i (x i )  is the fracture aperture in the ,i-th 

segment, wi(xi) is the fracture width, xi is the distance along the trajectory starting 

a t  the beginning of the i-th segment, bi is the spatially averaged aperture of the i-th 

segment, and li is the length of the i-th segment. 

If the fracture attributes, length li and aperture bi(xi), are known for each segment 

in the chain, the t,ime-dependent solute concentration or flux a t  the output of the 72-th 

fracture could be calculated deterministically. In practice, however, the fracture lengths 

and apertures are known only statistically. That  is to  say, the fracture attributes are 

unobserved but have a specified joint probability density function that can be estimated 

from site characterization studies. In this case, the solute flux and related quantities 

become probabilistic quanti ties, which we relate t80 thc rantlom variables describing bi 
and 1 2 .  

The local fluctuations around the mean values wo arid 6, are an atlclitional source of 

prediction uncertaint,y. This iincertainty can be addressed by making wi (xi) and bi ( x i )  

random space functions (RSF). Although internal variability within a single fracture 

is clearly important in s o ~ ~ i e  situations, fracture- to-fracture variability is often much 



larger and is expected to dominate. Therefore, we concentrate on the situation with 

no internal variability and set b,(z,) = b, and w,(z) = wo. However we return to  the 

more general situation in section 8 and demonstrate how the internal variability can bc 

included in the analysis. 

Mass transfer processes 

The downstream movement of the solutes is slowed by matrix diffusion, the process 

by which the solute diffuses into and out  of the stagnant fluid in the pore space of the 

surrounding medium, and by equilibrium sorption on the contact surfaces. 

We consider diffusion into the rock matrix, sorption in the matrix, and sorption 

on the fracture surfaces as key mass transfer reactions in a fractured forination. 

To formulate and solve the transport problem, we adopt the following simplifying 

assumptions: 

0 All mass transfer reactions are linear. 

0 The movement of tracers in the rock rriatrix is assumed to be due to molecular 

diffusion only, i.e., advection in tlie matrix is neglected. 

0 Diffusion is one-dimensional from the fracture into the rock matrix, where 

transverse fluxes (i.e., diffusive fluxes parallel t o  the fracture plane) are neglected. 

0 The mass flux in tlie fracture is due to  advection only. 

0 Fully mixed conditions prevail in the streamtube in the direction orthogonal to 

the fracture plane. 

The above assumptions are similar to those used in previous transport models 

[Foster, 1975; Grisak and Pickens, 1980: Neretnzeks, 1980; Moreno et al., 1985; 

Cvetkovic et al., 19991. 
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Cumulative arrival time for reacting tracers 

Under the assumptions given in section 2.3, the time-dependent, concentration ill 

the fracture and the related tracer flux in the flow direction have closed-forni solutions. 

For example, the flux response function, defined as the tracer flux at the fractnrc outlet, 

due to  a unit impulse (&function) injection of mass at t = 0, is [Cvetkovic et al.: 1,9991 

Here n = 6 d m ,  6 is the matrix porosity, R, = 1 + IC?, K r  (I<:) is the distribution 

coefficient for sorption in the matrix (surface), D is the matrix diffiisiori coefficient, and 

H the unit step function. The fluid residence time in the pathway is 

and the specific contact surface is 

If internal variability is neglected, 
71 

WO r = Err = - libi 
i= 1 6 2 1  

The time of arrival t4 for the cumulative mass fraction 4 is another effect of interest 

that  is corivenient in some applications. This is easily derived from equation 1 and 

provides a more condensed summary of the retention properties of the fractured rock 

mass. After integrating ( l) ,  we find 

K2 

4 F 2  
t6 = r + -P 2 

where F ( $ )  is the inverse of the complerricritary error function, defined i~riplicitly as 

< = F ( $ )  with 
2 $=-Irn exp [-t2] (it. 

f i c  



Equations (4) to  (6) form the basis of our analysis. We are interested in  the 

expected value and uncertainty in t+ in the situation in which the aperture and length 

are unobserved but have known joint density function. 

Stochastic analysis of a multiple-fracture pathway 

The flux response function (equation (1)) and related quantities such as t4  depend 

on the pathway 7 and P, which are random variables due to  their dependence on the 

random variables, Li and Bi, representing the unobserved lengths anti apertures. In 

[Painter et al., 19981 we outlined a procedure for calculating the statistics of 7 and 

given the statistics of the length and aperture. 

This procedure relates the individual fracture attributes, T ~ ,  PI, to  those for the 

entire pathway, 7, p, through an  n-fold convolution, 

Here 70,~ is the characteristic function (Fourier transform of the density function) of 

p ,  7, and v, w are the corresponding foiirier variables. Recall that  we have assumed inde- 

pendent and identically distributed segments so that fpr,Tz((3z, T ~ )  = fp,,T,(/jJl 7j) V i , j ;  

we use the subscript 1 t o  denote single fracture properties. 

Equation (8) is a general result tha t  does not depend 0x1 specific assumptions about 

the 7l1 ,#, distribution or even the existence of moments of the distribution. The only 

restriction is that  the aperture/length pairs for individual segments are independent of 

other segments and identically distributed. If the full probability density function (pdf) 

is needed, it can be further related to  the pdf for length and aperture [Painter et al., 

19981. In the following discussion, we require only the moments of the 7, ,f? distril>iition, 

not the full pdf. These moments can be related to length/aperture nioments without 

knowing the details of the density function (see the Appendix ) .  This presumes that the 

moments are finite, which excludes the situation of a power-law length distribution. The 
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co~iseque~ices of a power-law length distribution are addressed in  Painter et al. [ lO8]. 

Moments of the cumulative arrival time 

The expected value of the cumulative arrival time (equation (6)) can be related to 

the moments of ,ll, T without reference to the full pdf f ~ , ~ ( p ,  T ) .  The expected value of 

t4 is 
K L  

( t d  = (4 + &P2) 

arid the variance is 

The moments for the arrival time can further be related to the moments for 

individual fracture aperture and length by using the relationships given in the Appendix. 

It is convenient to consider these moments in Iiondiniensional form normalized by the 

deterministic norireacting travel time 

where q = Q / w u .  This deterministic travel time is obtained by rieglecting aperture arid 

length variability and considering the multiple-fracture pathway to  be a single fracture 

with length n(ll) and aperture (&). Using this normalization, we obtain for n >> 1 

The dimensionless parameter 

micasurcs the importarice of mass exchange processes relative to  advection for the 

rriult,iple-fractiire pathway. Large values of 7 imply that  the combined effects of 

diffusion and sorption dominate over advection, while the opposite is true for 71 << 1 
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The parameter 77 is proportional to total length of the pathway n(l1) and iIivc?rsel?; 

proportional to the flow rate q. 

The parameter q also depends nonlinearly on the cumulative mass fraction 4 

through the inverse complementary error function F ( 4 ) .  q is larger and the retention 

processes more important for the trailing edge of the plume (4 near 1) as conipared to 

the leading edge or bulk #J N 1/2. The importance of retention processes for tlit tmlk 

of the plume is quantified by 778, which is approximately 71(+=1,2. By varying 4 and 

calculating the cumulative arrival time, it is possible to map out the expected value 

for the entire arrival time curve (arrival time t+ a t  the outlet versus cumulative inass 

fraction 4). This is shown in Figure 3. The expected arrival time curve depends only 

. ' on three parameters: T d ,  which serves as a normalization for time, ( l l b l ) / ( l l ) ( & l ) ,  and 

778. This family of curves is particularly sensitive to  7 1 8 .  The purely advective situation 

78 = 0 results in an expected arrival time curve independent of 4 with magnitude 

( I lb l ) / ( l l ) (b l ) .  For larger values of 78, downstream particle movement is slowed by thct 

retention processes, and the expected arrival time increases in magnitude. 

Equations (12) and (13) are two of the key resiilts of this paper. They show 

how the expected arrival time is enhanced over the deterministic nonreacting arrival 

time by retention processes, quantified through the dimensionless parameter q, and 

by length-aperture correlation, quantified by the first term in equation (12). The 

normalized moment in the first term is unity in the situation of no correlation between 

length and aperture. It is less than one when negative correlations exist. However, 

positive correlation between fracture lengths and apertures is the general rule, and 

this term is greater than 1, indicating an enhancement in the expected arrival time 

relative to the deterministic value. This generic result has some immediate conseqnences 

for analysis of transport in fractured rock. Simplified analyses that neglect spatial 

variability in fracture attributes may result in a systematic bias in the predicted result. 

Although length and aperture variability around the expected values have no effect 



on ( t4)  when the length and apertures are uncorrelatcd. the same is not true for t,lw 

variance in the arrival time. Using equation (10) and the results in the Appendix, 

Here, as in equation (12), terms of order 1/n have been neglected relative to  unity. This 

approximation is appropriate as typical applications would have ri >> 1.  The variance in 

the predicted arrival time decreases as l /n,  increases nonlinearly with increasing 71, and 

also depends on three sets of normalized moments that quantify length variability arid 

length-aperture correlation. 

Results using a log-normal distribution 

The log-normal distribution is probably the most frequently used distribution for 

modeling fracture apertures and lengths. Usually, correlation between aperture and 

length is ignored, even though it is well established from laboratory arid field studies 

(see e.g. Burton and Zobuck [1996]) that  aperture and length have a strong positive 

correlation. In this section, the formalism outlined in the previous sections is applied to  

the log-normal situation. In addition, we retain the correlation between aperture and 

length to assess its effect. 

Consider a bivariate log-normal distribution for aperture 6, and length l1 for 

individual fractures: 

where b, and 1, are georrietric means for aperture and length and C is the co-variance 

matrix for In& and 111 I I .  Correlation between aperture and length is iricluded in this 

model through the off-diagonal term C12. 



Using the bivariate log-normal model for i 1  and 6, and standard results 011 the 

moments for log-normal variables, the expected value of the cumulative arrival time is 

calculated from equation (12) as 

where p is the correlation coefficient between In 1, and In b L .  Taking qn = gin ai = 1 as 

typical values, the first term on the right varies from 0.37 for p = -1 to 0 for p = 0 to 

2.72 for p = 1. This demonstrates the potentially large error that  can be incurred by 

neglecting correlation between length and aperture. This error is less important when 

retention dominates 7 > 1. 

The variance in the arrival time is obtained in a similar manner as 

Examples of arrival time curves with uncertainty are shown in  Figure 4. In each 

plot, the three ciirves represent the expected value of the arrival time curve plus/minus 

one standard deviation. The parameters used here are q n l l  = uinbl = 1, 70 = 1, and 

n = 50. Figure 4a has p = 0, while Figures 411 and 4c have p = -3/4 and p = 3/4, 

respectively. Positive correlations shift the arrival time curves to longer times but, also 

dramatically increase the uncertainty in the arrival time curve, once again demonstrating 

the need to  include correlations hetween the fracture apertures and lengths. The 

asymmetry in the sensitivity to p is a result of the right-skewed nature of tht: log-riormal 

distribution. 

Similar comparisons can be used to study the relative sensitivity to  length and 

aperture variability. Using the same set of parameters as in Figure 4a and fixing C$ = 0.5, 
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( t + ) / ~ ~  = 2.10 and 

variability in  this case bccausc p = 0, but ~ ; J T ;  depends on both. Decreasing olnl, to 

0.5 while holding clnb, = 1 decreases o;~/.," to  0.10. Switching the values for O I ~ ~ ~ ,  and 

olnbl resiilts in O;+/T: = 0.36. This comparison demonstrates that  aperture variability is 

less important than length variability in determining the uncertainty in the arrival time 

c'nrves. This may seem counterintuitive because the transmissivity of fractures and thus 

the flow are known to  be sensitive to  the fracture aperture. The reason for the reduced 

sensitivit,y t o  aperture is tha t  we have fixed the volumetric flow rate Q instead of thv 

applied macroscopic gradient. More complicated situations with a fixed macroscopic 

gradient and a resulting uncertain flow rate have been analyzed. These situations will 

be summarized in a future paper. 

/T: = 0.44. The expected value is independent of length/apertiirc 
Q 

Effect of Uncertainty in the Volumetric Flow Rate 

One important paramet,er appearing in the analysis is Q, the volumetric discharge 

through the strearntube. This quantity is constant through the streamtube atid appears 

in the bulk retention parameter T ~ B  and the grountlwater travel time TD. The voliimet,ric 

flowrate Q was treated as a deterministic quantity in  the prcceding analysis. However, 

the analysis can be extended to  allow for uncertainty in &. Whether it is more 

appropriate to treat Q deterministically or statistically depends on the situation being 

analyzed. If the most likely pathway from the repository engineered system is known 

a priori from site investigations, then it is appropriate to treat Q deterministically. If 

not, t,hen it is appropriate to treat it  stochastically. In this case, the Q statistics may 

be determined from network sirnulatioris or froni boreholc packer tests during the site 

investigation stage. 

Equations (12) and (14) are easily extended to treat, the situation of an uncertain 

Q. In this case the deterministic Q appearing in the bulk retention pararnetcr q f j  and 

groundwater travel titne T D  is replaced by the expected flow rate (Q). The expectcd 
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arrival time becomes 

Note that quantity [(Q-’)(Q)] can be larger or small than unity, depending on the Q 

distribution. If Q has a uniform distribution, the quantity is less than one. If Q has a 

log-nornial distribution, the quantity is greater than one. Thus, deterministic estimates 

of arrival time obtained by replacing Q with expected volumetric flow rate (Q)  niay 

contain a systematic bias compared to  the  properly averaged arrival time. I t  should 

be noted that this reduction in the effective retention is not due to  spatial variability; 

Q is still constant along the flowpath. I t  is due instead to the nonlinear nature of the 

retention process which causes the small Q part of the distribution to contribute more 

to the expected arrival time. The effect of Q uncertainty on the arrival time variance 

can be quantified in an analogous way. 

Effects of Internal Variability in Fracture Aperture 

The results in the previous sections neglected withiri-fracture aperture variability 

and focused on the effects of fracture-to-fracture variability. In this section, the 

framework is extended to  include both fracture-to-fracture and within-fracture 

variability. 

A variety of models for flow and transport in individual fractures has been 

developed. The earliest approaches [Snow, 19651 used a spatially constant parallel plate 

model with laminar flow in which the resistance to flow is inversely proportional to 

the aperture cubed (cubic law). At the next level of complexity, a fracturc is modeled 

as a bond (channel) network [Neuzil and Tracy, 1981; Neretnieks, 19831 with fracture 

aperture (or velocity) varying randomly from channel to chanriel. This model niirnics 

the tendency toward “channelization” of flow in spatially variable fractures. As a further 

refinement of single-fracture rriodels, the aperture may be considered a random space 



function (RSF) with the cubic law applicable locally [illoreno et al., 1988; Tsiin!l and 

Tsang, 19891. Analytical results for tracer arrival time have also been obtained using 

this variable aperture model [ Cvetkovic, 19911, the most recent of which [ Cvetkovic 

et al., 19991 utilizes the Lagrangian framework for transport in aquifers [Cvetkovic a n d  

Dagan, 1994; Dagan and Cvetkovic, 1996; Cvetkovic and Dagan, 19961 to account for 

matrix diffusion and rate-limited sorption in addition to advection. 

Local variability in the fracture apertures causes the flowpath to  meander through 

the fracture plane and the flowpath width w to  fluctuate along the flowpath trajectory. 

Cvetkovic et al. [1999] employed a lognormal RSF model for streamtube widtti/aperture 

variability in a single fracture. We merge this model with our shifting-mean model 

(Figure 2) and use the following model for width and aperture in fracture i: 

where Y ,  and Zi are independent, normally distributed RSFs with zero mean arid given 

covariance, 

where T = [xi - and C ( T ; U )  is a valid covariance function characterized by the 

correlation length u y .  The parameter A in equation (19) accounts for correlation 

between the local width and aperture. Positive A iniplies positive correlation, A = 0 

implies no correlation, and negative A implies negative correlation. The corrclatiori 

coefficient, between tu anti b depends on A and also on 01, and 02. Wc niakc thc 

correlation length a fixed fraction of thr  segrnent length 1, so that 

where < = r/1, and 0;. = a y / l ,  is the same for all i. We also assurrie that  v:. = C,z(O) is 

the same for all fractures. 
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The geometric mean b,, appearing in equation (19) can be different for eacli fracturc 

in the fracture chain. Moreover, these moments are only known statistically. Using 

standard relationships for the means of log-normal variables, the geometric nieari b,, 

and effective aperture bi are related 

6, = b,i exp [$] 
wo = w,exp A -+ - [ 2: $1 

As before, we model the length Zi and average aperture bi as random variables. 

Moments of ,Oi,.ri within a single fracture were derived by Cvetkovic et al. [1999]. 

These can be regarded as conditional moments ( ~ T T ;  I l i ,  &). The first few moments for 

use in ( t 4 )  are 

Within the present shifting-mean model, moments of pl, T~ are obtained from these 

conditional moments as 

The moments appearing in the expression for ( t @ )  are 



Thus, the internal variability acts to enhance the moments of ~ ~ , [ j ~  relative to  the 

situation without internal variability. 

Combining these moments, equation (9), and the results in the Appendix, we 

obtain the following result for the expected value for arrival time including internal arid 

fracture-to-fracture variabilities 

The only difference between this and the corresponding result without internal aperture 

variability is the t,erm exp [Aa;]. Thus, internal aperture variability decreases the 

expected arrival time when A < 1 and increases it when A > 1, where A is the 

parameter quantifying local correlation in width and aperture of the local flowpath (see 

the discussion following equation (19)). 

The corresponding result for the variance in arrival time is 

where 

Note that ot6 depends strongly on A and a)/ ,  is less sensitive to the Iiorrrializetl 

correlation functions ant1 Cz ,  and is completely independent of the parameter U Z .  

In our parameterization of the strearntube fluctuations inside individual fractures, 

we treated the quantities A,  cy, crz, Cz,  and Cy as independent parameters. In reality, 

these quantities are not independent since width and aperture fluctuations are linked 



through the equations describing flow in the fractures. Ultimately, all these quantities 

are controlled by the aperture variations. Cvetkovic et al. [1999] addressed this issue 

through numerical simulation of flow in individual fractures with variable apertures. 

Analysis of these simulations suggests A M -1.4. This result is independent of 01, and 

Cy and is believed to be a consequence of the cubic law for fracture flow.' Analysis of 

the single-fracture simulations also reveals a strong relationship between oy and 02, 

which is immaterial in the present context since equations (32) and (33) are independent 

of oz. 

Using ..I = -1.4, it  is seen that internal variability in fracture apertures decreases 

the expected arrival time. The magnitude of this decrease depends on the value of 71: and 

0;. In the advection-dominated case ( q ~  << 1) or when focusing on the early arrivals 

(q5 << l),  this factor is approximately 0.70 when of, = 0.25. That  is, the expected 

arrival time is reduced by about 30 percent by internal variability. This modest bias 

introduced by neglecting internal variability is significantly smaller in relative terms if 

the focus is on the bulk arrival time q5 x 1/2 or if retention processes arc significant 

718 2 1 .  This is illustrated in Figure 5 using the log-normal example of Figure 4c. The 

solid curves are the expected arrival time plus or minus one standard deviat,ion for the 

situation without internal Variability. The dashed curves are the same including internal 

variability with o$ = 0.25. For this example, internal variability reduces ( t , p ) / ~ ~  from 

3.22 to  2.59. Uncertainty in the arrival time is also reduced, but in relative terms tjhe 

effect is small. These examples illustrate that  the neglect of internal variability is an 

acceptable approximation in most applications, with the possible exception of advection 

dominated situations (71 << 1). 

'Different values of A may result if the local cubic law for fracture flow does riot hold, 

as has been discussed by Oron and Berkowitz [1998]. 
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Requirements for site-specific applications 

Although this paper is concerned mainly with methodology and broad-scope generic. 

analysis, the pathway model and analysis method also have potential for site-specific- 

quantitative applications. However, some auxiliary simulations are necessarv to relate 

some of the key quantities required in the analysis to  those that  are more readily 

nieasiiretl in a site investigation. The required auxiliary calculations take the form of 

Monte Carlo simulations of discrete-fracture networks coupled with niimerical solutions 

for hydraulic head and nonreacting tracer transport. These simulations may be done 

on a scale much smaller than the repository geosphere, and do not involve the mass 

exchange processes, which are more difficult to  simulate in a discrete fracture model. The 

proposed approach, then, allows for systematic upscaling from modest fracture-network 

simulations to large-scale transport predictions involving significant mass retention. 

Consider, for example, n, the number of fracture segments along the pathway. In 

general, this is not available directly in an application. The distance A from the release 

point to  the compliance boundary is typically available instead. In this case, R = $$, 
where X 2 1 is a tortuosity factor for the network. This factor is riot greatly different 

from unity for a well-connected network, but may be so for networks near the percolation 

threshold. The tortuosity factor may be determined, if it  is needed precisely, through a 

set of fracture network simulations. Note that  fixing n in this way does not fix precisely 

the total length traveled by the contaminants, as 1 = xy li  remains a random variable. 

A similar situation exists for the Zi, bi statistics. These are not the fracture length 

and aperture statistics measured in the field: but the length and aperture for scgrnents 

along the pathway. The distinction is similar to  the distinction between Lagrangian ant1 

Eulerian velocities in a continuiim-level stochastic model. Again these li, bi statistsics 

can be related to  field-measured fracture arid apcrt,iire statistics through network 

simulations, as just described. 
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Conclusions 

In summary, we analyzed transport of reactive tracers in  a set of fractures connected 

in series to form a pathway through otherwise impermeable rock. This idealized scenario 

is important in several contexts in subsurface environmental physics, with particular 

significance for studies of geological isolation of high-level nuclear waste. The novel 

features of this work are the coupling of mass exchange processes such as matrix diffusion 

and equilibrium sorption with large-scale fluctuations in advective velocities. Although 

the emphasis in this paper is on the general methodology and not applications, it is 

possible to  draw some generic conclusions. 

Perhaps the most useful result is the identification of the dimensionless retention 

parameter 7 defined in equation (13). This parameter quantifies the importance of 

advection relative to the combined effects of matrix diffusion and sorption, which act to 

retain particles in the host rock. This retention parameter combines expected values for 

the fracture attributes with the specific discharge rate and the sorption and diffusion 

properties of the host rock. The retention parameter is easily calculated from these 

quantities, which can be measured or estimated in site characterization studies, thus 

providing a simple global measure of likely retention in the host rock. 

The main conclusion concerns the potential error that  could be incurred by ignoring 

spatial variability in fracture attributes along a pathway. The results for the expected 

flux and expected arrival time clearly show that the prediction will contain a systematic 

bias if this variability is ignored. The only situation in which this bias is not present 

is when the fracture lengths and apertures are completely uncorrelated. Positive 

correlation between fracture lengths and apertures, the usual situation. results in later 

arrival times compared with the deterministic estimate obtained by ignoring variability. 

However, that  is not to say that the deterministic estimate is conservative. Indeed, 

the standard deviation in the flux or travel time estimates can be quite large, even for 

modest values for n, the total number of fracture segments. Thus, the true arrival time 



may be larger or smaller than the deterministic estimate. 

Our results also provide some understanding of the relative sensitivities that  can 

be used to guide site characterization studies. If 71 is large compared to  unity. the 

expected arrival time depends on the correlation between length and aperture and on 

the retention parameter. Details of the length-aperture distribution beyond the lower 

monients are unimportant. The variance in the arrival time depends more strongly on 

the retention parameter and also on the other lower moments of the length-aperture 

distribution. Moreover, the variance depends more strongly on length distribution as 

opposed to the aperture distribution. Thus, site characterization should concentrate on 

the parameters entering the retention parameter and on the lower moments of fracture 

length and aperture. 

These sensitivities depend on a spatially constant matrix diffusion and sorpt,iori 

parameters and finite second moment for the length distribution. If any one of these 

assumptions are violated, the sensitivities may be different. The situation of a power-law 

distribution for fracture lengths has already been studied [Painter et al., 19981. 

The final conclusion concerns the use of analytical methods for predictive studies 

of transport away from a geological waste repository. Clearly, methods such as those 

developed here do not provide the level of detail and the fidelity to  the physical processes 

that complex numerical models can provide. They are intended to provide simple, 

transparent, and reproducible complements to  numerical models, thereby guiding the 

application and Understanding of computational studies. A major advantage of our 

analytical approach is that  it treats uncertainty in an explicit manner without, requiring 

Monte Carlo simulations. Some of the simplifying assimptioris niay be removed by 

coupling to relatively simple network simiilations. This hybrid approach is particularly 

appealing. It may provide a practical, yet accurate, method for risk-based assessment of 

repository geosphere performance. 



Appendix A: Moments of T and ,L? 

The arrival time moments depend 011 the moments of r and 0, which depend in 

turn on length and aperture moments. From the definition of the r, and pz, the ~ i io~nen t s  

of the single-fracture attributes are 

(W 
1 -  

(I 
(7,) = - ( l l b i )  

and 

(A2) 
1 

Q 
(P i )  = -(id. 

Note that (PI) = ( P I )  Vz since each length/aperture pair is identically distributed. 

The next step is to  relate the pathway T, ,i3 to  the individual fracture attributes 

rl ,  io,. This is accomplished using equation (8) and staiidard relationships between t,lie 

moments arid characteristic function. In general, the finite moments of the raridorn 

vector (X,Y) are related to  its characteristic function via 

Applying this relationship between moments and characteristic function to  equation 

Arbitrary moments of p, r can be generated in this way by repeated application of the 

differentiation operator and by using 

which is the Fourier-domain equivalent to the usual riornialization condition for 

probability density functions. 

The first few non-centered moments obtained in  this way are 



w w 

while the centered moments appearing in equation (10) are 

(a'.) - (P ' )  (.> = 

71 [(/3:.1) - (p:)  (TI)] + 2n(n - 1) [(a,) (P1.1) - (PI)' (TI)] 

I t  is easily shown that the asymmetry parameter defined as the ratio of third 

centered nionient to a3/* decreases as 1 / f i  for large n. This relationship is consistent 

with the ccntral lirnit theorem, which requires the distribution of ~ , / 3  to k n d  to a 

bi-variatc Normal distribution as n beconies large. 
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Not at ion 

Integral scale for Cy. 

Aperture variations in the i th  fracture segment. 

Spatial mean aperture in the i th  fracture segment. 

Covariance function for Y .  

Covariance function for 2. 

Diffusion coefficient for solutes in the host rock. 

Joint probability density function for p, T .  

Joint probability density function for pi, T ~ .  

Joint probability density function for length and aperture. 

Inverse of the complementary error function. 

Equilibrium distribution coefficient for sorption in the host rock. 

Equilibrium distribution coefficient for sorption on the fracture surface. 

Length of the i th  fracture segment. 

Log-normal probability density fuxiction. 

Number of fractures in the multiple-fracture pathway. 

Qlw 
Volumetric flow rate. 

Flux response function; flux at outlet of nth fracture due to  &function 

input a t  t = 0. 

Retardation coefficient 1 + Kr. 

Time-of-arrival for the mass fractiori 4. 

Streamtube width variations in the ith fracture segment. 

Streamtube width at the initial release point. 

Random space function used to describe aperture variability inside 

individual fractures (eq (18)). 

Random space function used to describe flowpath width variability inside 
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individual fractures (eq (19)). 

Specific reactive surface area in the multiple-fracture pathway (eq (5)). [j = pi 
[jj 

71 Retention parameter (eq (13)). 

6 OD/R,. 

p 

Specific reactive surface area in the it11 fracture. 

Correlation coefficient between In 11 and In bi appearing in the log-Iiornial 

model. 

Standard deviation of Inl l ,  where l1 is the length of individual segments. 

Standard deviation of In b l ,  where bl is the individual segment appertnre. 

ulnl, 

ulnb, 

u;, Variance of Y .  

u i  Variance of Z. 

T = ri 

rd 

7i 

8 Matrix porosity. 

Non-reacting travel time in the multiple-fracture pathway (eq (4)). 

Deterministic non-reacting travel time (eq (11)). 

Non-reacting travel time in the i th  fracture. 
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Figure Captions W 

Figure 1. Transport pathway formed by multiple connected fractures in an otherwise 

impermeable medi om. Fluid flowing at a constant volumetric rate through the fractures 

transports rlissolvd material by advection. The solute also diffuses into the stagnant 

pore fluid in the medium surrounding the fractures. Fracture lengths and apertures are 

unobserved with predefined joint probability density functions. 
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Figure 2. Shifting-mean model for aperture variation along a multiple fracture path- 

way. As the streamtube in Figure 1 passes from fracture to  fracture, the local niean in 

the aperture undergoes stepwise changes. The segment means and segment lengths are 

modeled as random variables. In addition, the aperture may undergo local fluctuations 

within each segment. These are modeled as random space functions with specified spatial 

correlation structure. 
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Figure 3. Expected values of normalized cumulative arrival time - &$$ versus 

mass fraction 4 for different values of the dimensionless bulk retention parameter q B .  In 

the shifted and normalized form of the expected arrival time used here, all parametric 

dependences are contained in the parameter grouping 1 7 ~  (see equation (13)). 
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Figure 4. Expected arrival time curve with uncertainty a t  the outlet of the 50th fracture. 

Arrival times are normalized by the deterministic arrival time T d .  The model pararritcrs 

here are 738 = 1 and ai, = gf, = 1. The length/aperture correlation is different for t,Iic> 

three plots. In (a) p = 0, while p = -3/4 in (b) and p = 3/4 in (c). 
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Figure 5. Expected value of the cumulative arrival time curve plus or minus one standard 

deviation. The solid curves have no internal fracture variability, while the daslied curves 

have internal variability in addition to fracture-to-fracture variability. Ot>her parameters 

are the same as in Figure 4c. 




