
NETWORK DESIGN AND ACCURATE PREDICTION OF INFILTRATION 
AT THE LAS CRUCES TRENCH Sl”E 

by 
Gordon W. Wittmeyer (CNWRA), Budhi Sagar (CNWRA), 

and Michael Cruse (Computation Research Professionals) 

Abstract 

Soil hydraulic data from the Las Cruces trench experiment are used to define material zone 
properties for a unsaturated flow model using several sampling contigurations. Predictions of water 
content obtained from the flow model are compared to in sinr water content measurements from a 310 day 
infiltration experiment. A single conceptual model of the flow system is selected and material properties 
are assigned to each zone using both purely random, and stratified-random sampling configurations. For 
each sampling configuration, 10 infiltration simulations are performed to obtain estimates of the mean 
prediction error. Two measures are used to compare the predicted and observed water contents: (i) the 
s u m  of squared errors of the predicted water contents, and (ii) the first and second moments of the 
infiltrated moisture plume. Both measures indicate that there is a generai improvement in the accuracy 
of the model predictions as the number of samples is increased, although the marginal increase in 
accuracy decreases rapidly as more samples are taken. Based on the mean sum of squared errors measure, 
the purely random sampling configuration produces the most accurate predictions. However, comparison 
of the moisture plume moments lead to equivocal results. The generally superior accuracy of the purely 
random sampling configurations suggests that spatial correlation of the most important soil hydraulic 
parameters is rather weak within each material zone. Semivariogram analyses or the soil hydraulic data 
used in model construction indicates that both the saturated hydraulic conductivity and the pore size 
distribution parameter are spatially unwrrelated. Because the soils at the trench exhibit definite lateral 
structure based on color and texture, it is suggested that site characterization measurements should have 
a support size sufficient to conform to the observed stratigraphy. 

Introduction 

Regulatory agencies responsible for radiological safety require that site charactertzau . ‘onefforts 
at a proposed high-level or low-level radioactive waste repository be sufficient to support a demonstration 
of its capability to safely isolate waste. However, both budget considerations and concerns regarding 
disturbance of the site require that drilling boreholes, taking samples, and conducting laboratory and field 
tests be minimized. Thus, constructors of disposal facilities are eventually confronted with the question 
of how much site characterization data is enough. Whenever possible, this question is posed quantitatively 
in terms of an error tolerance or an acceptable risk of failure to reject the site when the site is unable to 
meet the required performance criteria. The specified error tolerance or acceptable probability of failure 
is typically very small in the case where the site is investigated for disposal of hazardous chemical waste, 
low-level radioactive waste, or highly radioactive spent fuel. 

Prior to site characterization, quantitative measures of the natural variability of the geology, 
hydrology and climatology of the site are unknown. However, reconnaissance level studies at the 
proposed site often provide data that may be used to produce a qualitative description of the sites’s natural 
heterogeneity. Based on such preliminary data, decisions are made to drill boreholes and take 
observations at a few locations. With the additional quantitative data obtained from these boreholes, 
further locations for sampling are selected, and the process is repeated until it becomes apparent that 
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enough data is available to make the requisite site decisions. A great amount of subjective judgment is 
involved at each step of this iterative process. For that reason, Hudak and Loaiciga (1993) refer to this 
iterative process, in which formal decision theory is not used, as the qualitative approach. In the 
qualitative approach the sampling configuration is selected based on the investigator's: (i) conceptual 
model of the hydrostratigraphy, (ii) interpretation of how the spatial variability of its hydraulic properties 
influence the subsurface flow regime, and (iii) intuition as to what may constitute an optimal sampling 
network. 

More quantitative methods, referred to as the simulation approach by Hudak and Loaiciga 
(1993), have also been developed. In the quantitative approach, one must first develop a premise about 
the worth of data in order to decide whether sufficient data have been gathered. Generally speaking, the 
marginal utility of data decreases as the size of database increases. According to James and Freeze 
(1993)' hydrogeologic data have worth only if they can aid in making decisions between alternative 
courses of action. Early studies pertaining to design of sampling networks and data worth paecher, 
(1972); Maddock, (1973); and Gates and Kisiel, (197411 ignored the spatial correlation that usually exists 
in natural geologic media at one or more scales. If the data are spatially correlated, gathering additional 
data from locations near existing measurement locations provides less information than gathering data that 
are located farther away. Of course an implicit assumption in this discussion is that the correlation 
structure is somehow known before the sampling plan is implemented which is not always the case. 
Recent studies [James and Freeze, (1993); McKinny and Loucks, (1992); Feinerman et al., (1985); 
Rouhani, (1985); Grosser and Goodman, (1985); Marin et al., (1989); and Graham and McLaughlin, 
(1989)J incorporate the effects of spatial correlation through the use of kriging. When estimation 
procedures which account for spatial correlation are coupled with formal decision theories that are based 
on well-defined loss/gain functions, formal mathematical procedures for determining optimal sampling 
networks can be developed Pogardi et al., (1985); Massman et al., (1991).] 

In this paper, a numerical investigation is presented which examines the worth of additional data 
and the design of sampling patterns using data from a field experiment. The data are from a carefully 
planned field experiment funded by the Nuclear Regulatory Commission (NRC) for the express putpose 
of validating mathematical models of flow and transport in partially saturated porous media [Wierenga 
et al. (1986), Wierenga et al. (1989), Nicholson et al. (1989), Nicholson et al. (1994).] The NRC's 
interest in such experiments is to develop a knowledge base so that technically sound decisions regarding 
the appropriateness of models used by constructors of disposal facilities for nuclear waste could be 
formed. Similarly, the NRC is also interested in determining adequacy of site characterization data which 
provides the motivation for this study. Because the original objective of this field experiment was to 
validate models, measurements of flow and transport properties were collected on a dense sampling 
network. The iterative characterization method described above was not followed in characterizing this 
experimental site; instead, the dense sampling network was implemented to ensure that no important site 
characteristic was overlooked. Such dense measurement networks are impractical at any real disposal site 
of any appreciable extent for two reasons: (i) the excessive cost associated with the dense network, and 
(ii) the possibility that an excessive number of boreholes and shafts may reduce the site's ability to isolate 
waste. Nevertheless, this experiment presents an excellent data set to investigate the issue of data 
sufficiency since the ultimate 'true" characteristics of the site are known u priori. A variety of data 
sampling patterns are employed to determine how the number and location of sample points affect the 
accuracy of predictions obtained from mathematical models. Although generally applicable methods 
cannot be derived from this study, these analyses nevertheless provide useful insight into the issue of data 
sufficiency. 
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Quantitative Network Design Methods 

Much of the literature on sampling network design is devoted to developing formal mathematical 
procedures for selecting additional measurement locations so as to the error in estimating a 
spatially distributed variable over its entire domain using limited measurements. For example, given an 
array of existing boreholes at which the transmissivity of the aquifer has been estimated, a hydrogeologist 
may need to determine where additional boreholes should be drilled in order to minimize the error 
associated with estimating the transmissivity of the entire aquifer without exceeding a fixed budget. 
Typically, the transmissivity of the aquifer between borehole locations is estimated using statistically 
based interpolation procedures such as kriging, or, purely deterministic methods lie inverse distance 
weighting. If kriging or a similar technique such as Gaussian conditional mean estimation is used, the 
estimation or kriging variance can be used as a surrogate measure for the error of estimation. One may 
then arrive at the optimum sampling plan by configuring the network of boreholes so that, for a given 
number of boreholes, the mean estimation variance is minimized. However, as noted by Christakos 
(1992), optimal sampling plans for a fixed sample size, even when they exist, are, in practice, quite 
difficult to determine because the optimization problems are computationally untenable. 

Christakos (1992) addresses the problem of sampling or network design using concepts from 
the theory of spatial random fields. For the case where the primary concern is the mean areal 
performance of the sampling network, relatively straightforward measures of the average areal efficiency 
can be formulated. Christakos (1992) suggests minimizing the average estimation error 

where 1 is the number of points at which Y, the logarithm of transmissivity, is estimated, and thea2r,) 
are the point estimation errors at the additional sample locations I, - For a linear estimator, like ordinary 
kriging, the point estimation errors are given by 

where rn is the number of existing sample locations, p is a Lagrange multiplier, CAR) is the spatial 
covariance of the log-transmissivity for two locations separated by li , and C, are the kriging weights. If 
the covariance of the spatial random function is known a priori, an optimal sampling network may be 
constructed in the absence of observations by using Eqs. (1) and (2). 

Since the number of possible sampling patterns is large, even for a moderate sample size or 
sampling density, one usually selects the pattern from a collection of basic sampling plans. The primary 
sampling patterns can be divided into three groups: (i) systematic or regular sampling patterns, 
(ii) stratified sampling patterns, and (iii) random sampling pattern (Christakos, 1992). With systematic 
sampling plans, like those shown in Figures la and lb, the sampling points are located at the centroids 
of regular polygons used to tessellate the 2D domain. In stratified sampling patterns, such as shown in 
Figures IC and Id, the 2D domain is divided into regular or irregular, nonoverlapping regions, with one 
sampling location randomly selected from each region. For purely random sampling patterns, as shown 
in Figure le, the arrangement of sample locations exhibits no structure. Depositional processes, such as 



alluviation, form geologic fabrics which exhibit different correlation structures at different scales. 
Large-scale changes in geologic structure, like the transition from a clay to a coarse sand layer, may be 
described deterministically (Gelhar et al., 1994). Small-scale variations in properties, such as porosity 
or hydraulic conductivity changes within a clay layer, may be described probabilistically (Gelhar et al., 
1994). Gelhar et al. (1994) recommend using a clustered sampling pattern (shown in Figure If) to 
determine the soil property means and variances, as well as, identify the large-scale trends. 

Real world sampling design problems are constrained both by fixed budgets which limit the 
number of boreholes drilled and the number of samples taken, and by the practical impossibility of 
considering all sample patterns when seeking the mathematically optimal solution. Moreover, to properly 
employ these formal mathematical procedures, one must already have obtained enough site 
characterization data to estimate the covariance structure of the parameter of interest. The network design 
problem is made even more difficult if the goal is to use the measurements obtained from the sampling 
network to predict the values of another, related variable. For example, one may wish to design a 
sampling network for transmissivity such that the mean prediction error for hydraulic head field is 
minimized. In this case, the head prediction error may be approximated by the estimated head variance 
derived either by numerically propagating the uncertainty in Y through the flow equation, or by 
analytically solving the small perturbation expansion of the flow equation. 

Description of Experimental Observations 

The experimental site is located northeast of Las Cruces, New Mexico on the New Mexico State 
University College Ranch near the north end of the D o h  Ana Mountains. The climate at the experiment 
site is semi-arid. Class A pan evaporation is 239 cm per year, while average annual precipitation is only 
23 cm, over half of which falls during the summer monsoon season. As shown in Figure 2, a trench 
26.4 m long, 4.8 m wide, and 6 m deep was excavated to facilitate instrumentation, site ch- on, 
and visual inspection of the infiltration experiments. Plot 2, located adjacent to the north face of the 
trench, was irrigated by an array of 80 drip lines aligned parallel to the trench face and covering a surface 
strip 12 m long and 1.2 m wide. For the Plot 2b experiment, which is the focus of this study, water was 
applied to the strip at a rate of 1.82 cdday for 70 days. Chromium, boron, and pentatluorobenzoic acid 
were applied to the strip during the first 15 days, and tritium, bromide, and 2,6difluorobenzoic acid were 
applied during days 29 through 44. Water content was monitored by neutron probes through the network 
of access tubes shown in Figure 2. Matric potential was monitored by tensiometers installed in the face 
of the trench. Solute samples were obtained using suction lysimeters installed in the trench face and 
destructive sampling of small diameter soil cores at selected locations to the north of the trench. 

. .  

Approximately, 600 soil cores and 600 disturbed soil samples were taken during the construction 
of the trench. As described in Wierenga et al. (1989), 50 samples of each type, spaced at 50 cm intervals, 
were taken along nine horizontal transects corresponding to the nine soil layers identified in the north face 
of the trench. In addition, samples were taken along three vertical transects at a spacing of 13 cm. Water 
retention data were obtained from the soil cores by determining water content at suctions of 10, 20,40, 
80, 120, 200, and 300 cm KO. The high suction end for each of the water retention curves was 
determined from crushed and sieved portions of the disturbed soil samples which were placed in pressure 
plate extractors and subjected to pressures of 1, 5, and 15 bar. 

The van Genuchten model (van Genuchten, 1980) was used to describe the water retention or 
moisture characteristic Curve. This model is given by 
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(3) 

where 0, is the residual water content, 0, is the saturated water content, h is suction head, and a ,  m ,  
and n are unknown fitting parameters. It is further assumed that m = l  -l/n, which facilitateJ the 
derivation of a closed-form expression for the unsaturated hydraulic conductivity as a function of water 
content or pressure head based on Mualem’s (1976) predictive model for the unsaturated hydraulic 
conductivity. The van Genuchten-Mualem predictive model for unsaturated hydraulic conductivity is 

where K, is the saturated hydraulic conductivity. 

In a previous modeling study of the Plot 2a experiment conducted by Wittmeyer and Sagar 
(19!33), difficulty was encountered in determining a suitable set of initial pressures, since many of the 
water content values measured by neutron probes were less than the estimated residual water contents 
(Wierenga at al., 1989). It was assumed that the soil hydraulic parameters, which were determined from 
cores taken in a vertical cross-section parallel and immediately adjacent to the north face of the trench, 
could be directly projected normal to the north trench face and made coincident with the planar arrays 
of neutron probe access tubes at 2, 6, and 10 m from the face (Figure 2). Any node, i, in the 
computational mesh that resides in the intersection of the rectangular areas of influence for soil sample 
location, I ,  and the neutron probe location, j ,  was assigned the initial pressure head 

When e,<€),, Eq. (5) implies negative saturation, and the pressure head estimated by Eq. (5) is 
meaningless. To resolve this problem the pressure head at any node for which this condition occurred 
was set  to 15 bar, the pressure at which the residual water contents were defined (Wierenga et al., 1989). 
Consequently, the estimated initial water content in many portions of the model domain exceeded the 
measured water content. 

To eliminate this difficulty e,, Q and n were reestimated for each of the measured water 
retention curves. An estimation procedure suggested by Mualem (1976) whereby 0,. a and n are 
determined subject to the constraint that the computed water retention curve passes through the point 
corresponding to the highest suction and lowest water content was implemented using constrained 
nonlinear least squares. Approximately 100 soil samples for whose retention curves the minimum water 
content did not coincide with the highest applied suction were removed from consideration. Unfortunately 
there remained some locations in the model domain where the reestimated residual water content still 
exceeded the measured initial water content. The problem was resolved by including an additional point 
to each set of water retention data consisting of the lowest water content measured by neutron probe and 
the highest suction measured by thermocouple psychrometer, followed by re-estimation of 6, a and n . 
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Network Design for Predicting Infiltration 

The goal of the network design problem addressed in this paper is to determine the number and 
configuration of sample locations where the unsaturated soil hydraulic properties should be measured in 
order to minimize the error in predicting the propagation of a moisture plume. This problem, while 
similar to the network design problem of choosing the measurement locations for Y that minimize the 
prediction error in hydraulic head, is greatly complicated by the nonlinearity of the unsaturated flow 
equation, and the large number of parameters needed to adequately describe the unsaturated hydraulic 
conductivity and soil moisture characteristic functions. At the time this study was performed, all site 
characterization activities and infiltration experiments had already been completed at the Las Cruces field 
experiment site. Our strategy for this study was to use a limited amount of the available qualitative and 
quantitative data to construct the conceptual flow model, select soil hydraulic parameters from the existing 
database, and compare the predicted water contents along the y=2m transect to the measured water 
content values. 

Soil hydraulic data may be used both to design the basic conceptual model and to assign 
parameter values to the numerical model’s zones. However, since the object of this study is to estimate! 
the impact of different sampling schemes on the accuracy of model predictions, we chose a single 
conceptual model and varied the parameters of that model based on the sampling scheme. For example, 
a conceptual model composed of two parameter zones, within each of which a single sample was collected 
to obtain parameter values, cannot be compared to a model composed of a single parameter zone, in 
which two samples were collected to assign effective, average properties to the zone. Clearly two soil 
samples were used in each case, but because the conceptual models employed are fundamentally different 
(one zone versus two) it would be difficult to draw conclusions about the superiority of one sampling 
pattern over the other. Figure 3 depicts the factors considered in conducting this study. In Figure 3, the 
x1 axis represents the number of parameter zones in the conceptual model, the 3 axis represents the 
number of sampling strata per model zone, and the 5 axis represents the number of randomly located 
samples collected per stratum. For this study a single conceptual model was used which consisted of 9 
horizontal layers or parameter zones coincident with the nine soil horizons identified on the north face 
of the trench. By selecting a single conceptual model the study could be focused on the experimental 
factors most relevant to site characterization: (i) how many samples should be taken (axis 5). and 
(ii) what sampling pattern should be used (axis 3). 

Figure 4 shows the model domain, the definition of the nine model parameter (or material) 
zones, and the locations of the actual soil samples taken in this portion of the trench face. The model 
domain extends 10 m laterally to the east from the northwest corner of the trench, and 7 m vertically 
from the strip source to a location one meter below the bottom of the trench. The computational mesh 
used for the numerical model, as shown in Figure 5 ,  consists of 81 nodes in the horizontal and 97 nodes 
in the vertical direction. The mesh is increasingly refined towards the center and top of the domain to 
accommodate the large pressure head gradients expected to occur at early time directly below the strip 
source. Boundary conditions were everywhere defined to be no-flow, except at the bottom of the model 
and at the 1.2 m horizontal portion at the top where the strip infiltration source is located. To simulate 
gravity drainage, a negative pressure head gradient of unit magnitude was specified at the bottom of the 
domain. At the strip source, the boundary condition was a prescribed flux of 1.82 cdday during the first 
70 days of simulation and zero thereafter. The redistribution of the moisture plume was monitored for 
240 days after infiltration ceased. 
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All simulations described in this paper were performed using the computer code PORFLOW, 
Version 1.2 (Sagar and Rmchal, 1990), which is similar to Version 1.0 except that the newer version 
employs the mass-conserving mixed-formulation for the storage term, and allows the specification of a 
prescribed gradient boundary condition. PORFLOW uses the method of finite volumes to discretize the 
unsaturated flow equation in space and fully implicit backward differencing for discretization in time. Pre- 
conditioned conjugate gradient method is used to solve the set of discrete equations resolving the 
nonlinearities by employing Picwd iterations. 

Two basic sampling patterns were employed in this study: (i) random sampling. and 
(ii) stratified sampling. For the purely random sampling plan, one or more soil samples were randomly 
selected from the existing sample locations in each of the nine model zones. When a singie random 
sample was taken, the soil hydraulic properties corresponding to that sample were assigned to the entire 
zone. When two or more samples were taken, the arithmetic averages for e,. 8, and n, and the 
geometric averages for K, and a , were assigned to the entire model zone. Here we have assumed that 0, 0, 
and n are normally distributed, and K, and a are lognormally distributed. For the stratified sampling 
plan, each of the nine model zones was divided into two or more sampling strata as shown in Figure 6. 
One or more soil samples were then randomly selected from each stratum, and all samples from the 
model zone were appropriately averaged to determine the effective model parameters. 

Truly random sampling could not be performed since we were constrained to choose from the 
existing sampling network described earlier (Figure 4). Spatial random sampling was approximated by: 
(i) mapping each sampling stratum to a unit square, (ii) generating a pair of uniform [0,1] random 
numbers corresponding to the Cartesian coordinates of a point in the unit square, and (iii) selecting the 
sample location within the stratum closest to the randomly generated point. Because the horizontal 
sampling transects were intentionally aligned with the nine soil horizons, sample location randomness was 
effectively constrained to the horizontal axis, except where a stratum intersected one of the vertical 
transects. 

Two metria were used to determine which sampling plan produced the most accurate estimam 
of the propagation of the moisture plume. The first metric was based on the direct point-to-point 
comparison of the measured and predicted water contents at the neutron probe measurement locations in 
the y=2m transect collected at 55 measurement times, where tq0.3101. This measure, called the 
cumulative sum of squared errors, is given by 

where NOM is the number of neutron probe measurement locations, N, is the number of measurement 

times, 8' are the measured water contents, and are the predicted water contents. The second metric 
was based on the first and second moments of the water content difference plumes. The moment of order2 
in the xdirection and k in the zdirection for the observed water content difference plume is 
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where O'(x,z,fo) and 0*(x#,,) are the measured water contents at point (52) and times to and t ,  
respectively. Similarly, the moment of order I in the xdirection and k in the zdirection for the 
predicted water content difference plume is 

k&) = 11[6(x*J - e (x?zJ ) ]x i~drdr .  (8) 
zx 

The x and z coordinates of the plume centroid for either the measured or predicted water content 
differences are generically given by 

XAt) = Mro(4 / ql& (9) 

The centroid is used to represent the mean position of the plume, while the second moment about the 
centroid is used to represent the extent of the spread of the plume about its center. Equations for the 
second moments are generically given by 

S,(4 = M,(4 I M&) - X,2(t), (1 1) 

The square roots of the second moments have units of length and are interpreted as measures of plume 
spread. 

Network design configurations tested in this study are shown in Table 1. Because each model 
simulation took between 1.5 and 5 CPU hours on a Sun SPARCstation 10/40, the total number of 
sampling patterns that could be investigated was restricted to a small number. In addition, the maximum 
number of sample strata per zone was limited to six by the horizontal spacing of the existing sample 
locations. As shown in Table 1, five stratified sampling patterns in which one measurement was 
randomly selected from each stratum (9-2-1, 9-3-1, 941, 9-5-1, 9-6-l), three purely random sampling 
patterns in which one, two and four measurements were selected (9-1-1, 9-1-2, 9-14), and two sampling 
patterns in which each model zone was divided into two strata with two and four measurements randomly 
selected from each stratum (9-2-2, 9-24) were tested. 

Because the actual sample measurement locations were selected randomly from each sample 
stratum, each sampling pattern or configuration has many possible realizations. As an example, consider 
the sampling pattern 9-3-1, which is shown for the second soil layer or material property zone in 
Figure 6. For layer 2 alone there are 180 possible realizations, and when all 9 material zones are 
considered, there are over 4.27 x Id0 possible realizations for configuration 9-3-1. It is clear that one 
cannot select the optimum sampling pattern from Table 1 using only a single realization to evaluate the 
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measures described by Eqs. (6) through (12). In order to account for the effects of randomness, ten 
realizations were taken for each network design configuration shown in Table 1. Thus for each of the 
sampling patterns shown in Table 1, ten values of the measures given by Eqs. (6) through (12) were 
obtained. The median, mean, and standard deviation of these measures over the space of realizations were 
then used to compare the various sampling configurations. 

In order to assess whether ten realizations were sufficient to obtain sample statistics that were 
sufficiently accurate for selecting one sampling configuration over another, the standard deviation of the 
mean of the SSE measure described by Eq. (6) was analyzed for sampling configuration 9-3-1. For this 
particular configuration, 25 realizations of the sampling scheme were obtained, the corresponding 25 flow 
simulations conducted, and 25 values of the SSE measure obtained. A statistical experiment was then 
performed with these 25 values of the SSE. Two thousand samples of size 2 a = 2 )  were drawn from 
the population of 25 without replacement. (Imagine that the 25 balls are labelled with the SSE estimabs 
and placed in an urn. Two balls are randomly drawn from the urn one at a t h e  without replacing the 
first ball, the SSE values of each ball then recorded and the balls returned to the urn. "his process is 
performed 2000 times.) The mean of each sample of two SSEs (2000 in all) was calculated. The mean 
and standard deviation of the 2000 mean SSEs were then calculated from the values so obtained. ' IXs 
statistical experiment was repeated for sample s u e s  N,=3, ..., 24, and for each sample size 2000 estimates 
of the SSE were obtained. The results of this statistical experiment are shown in Figure 7 where the mean 
SSE (dashed line) and its plus and minus one standard deviation limits (error bars) are plotted as a 
function of the number of realizations (2 to 24). The decrease of the standard deviation of the mean SSE 
with increasing number of realizations is obvious (the standard deviation decreased from 0.55 for N,= 10 
to 0.28 for N,=20). While, the uncertainty (or standard deviation) of the mean SSE for N,= 10 may not 
be small enough to always distinguish between sampling configurations, the added computational burden 
makes performing a greater number of simulations impractical. 

Results of Study 

Plots of the mean SSE versus time for sample patterns 9-1-1, 9-2-1, 9-3-1, 9 4 1 ,  9-5-1, and 
9-6-1 are shown in Figure 8. During the wetting portion of the infiltration experiment, which extends 
from day 0 to day 70, sampling configuration 9-1-1 produces a somewhat smaller mean SSE than do the 
other sampling configurations. However, once the moisture redistribution period begins after day 70, 
sample patterns 9 4 1 ,  9-5-1, and 9-6-1 produce the smallest mean SSE. Figure 9 shows the mean SSE 
at day 310 for these six stratified sampling patterns. It is clear that dividing each model zone into two 
strata leads to a significant reduction in the mean SSE. Further increases in the number of sampling strata 
per zone lead to a general decrease in the mean SSE, although it is also apparent that the percentage 
decrease is not as great as that from 9-1-1 to 9-2-1. In Figure 10, the median SSE at day 310 is plotted 
for sample patterns 9-1-1, 9-2-1, 9-3-1, 9 4 1 ,  9-5-1, and 9-6-1. Because the median is less afFected by 
outliers than the mean, the graph in Figure 10 is somewhat smoother and better depicts the general 
decrease in the marginal value of adding another stratum and sample in each model zone. Note that in 
Figure 10, sampling configuration 9 4 1  actually produces a lower median SSE estimate than do 9-5-1 
and 9-6-1, although the standard deviation of the 10 runs used to define each of the three points exceeds 
the maximum difference between the medians (Table 2). Note that the decrease in the median SSE using 
2 strata instead of 1 is 14 percent, while the median SSE decreases by 11 percent moving from 2 strata 
to 4 strata. 

In Figure 11, the median SSE at day 310 is plotted for sample patterns 9-1-1.9-1-2, and 9-14. 
As stated in Table 1, these sampling configurations correspond to using a single stratum per model zone, 
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with one, two, and four random samples selected per stratum. Figure 11 clearly shows that there is a 
marked decrease in the median SSE as the number of random samples increases from one to four. The 
median SSE is reduced 21 percent by increasing from 1 to 2 samples, but only 10 percent by increasing 
from 2 to 4 samples. The decrease in the marginal value of additional samples is similar to that observed 
for the stratified sampling patterns, although the rate of decrease in the marginal value is greater. 

In Figure 12, the median SSE at day 310 is plotted for sample patterns 9-2-1,9-2-2, and 9-2-4. 
These sample patterns correspond to delineating two sample strata per model zone, and taking one, two, 
and four random samples in each of the two strata. Figure 12 is similar to Figure 11 in that there is 
marked decrease in the median as the number of random samples increases from one to four. The median 
SSE is reduced 28 percent by increasing from 1 to 2 samples per stratum, but only by 7.6 percent by 
increasing from 2 to 4 samples per stratum. Once again, the now familiar decrease in the marginal value 
of additional samples is observed, however, in this case the decrease is greater. 

Analyses of the means of the first [Eqs. (8) and (9)] and second moments [Eqs. (10) and (ll)] 
lead to somewhat different, and somewhat equivocal, sets of observations about the marginal value of 
additional measurements. Figures 13a, 13b, and 13c show the evolution of the vertical coordinate of the 
centroid of the water content difference plume, the horizontal spread of the plume, and the vertical spread 
of the plume, respectively, for sample patterns 9-1-1, 9-2-1, 9-3-1, 9 4 1 ,  9-5-1, and 96-1. From 
Figure 13a it may be concluded that increasing the number of sampling strata Leads to a general 
improvement in the ability of the model to predict the depth of penetration of the water content difference 
plume. It is also apparent from Figure 13a that improvement in predicting the Z-coordinate of the 
centroid of the plume is far greater during the moisture redistribution period. Figure 13b indicates that 
using fewer strata improves the mean accuracy of predicting the horizontal spreading of the plume during 
the infiltration phase, while using more strata increases the mean prediction accuracy during the 
redistribution phase. Conversely, from Figure 13c, it appears that using fewer strata decreases the mean 
accuracy of predicting the vertical spread of the water content difference plume during inliltration, while 
using more strata decreases the mean prediction accuracy during redistribution. 

While it is disconcerting to discover that in some cases the moment-based measure of model 
performance suggests that using more samples may lead to poorer predictions, the root cause of these 
inconsistent results is most likely the selection of an incorrect conceptual model. In previous work, the 
authors noted that their models were unable to replicate a distinct vertical bifurcation in the water content 
distribution that was observed at a depth of 3 m (Wittmeyer and Sagar, 1993). Spatial analyses of the 
grain-size distribution data indicated that there was a thin, but distinct, coarse sandy layer at 3 m depth. 
Soil samples collected from this horizon for determination of the soil hydraulic properties clearly failed 
to capture the capability of this sandy layer to transmit relatively large water fluxes without a measurable 
increase in the water content (Wittmeyer and Sagar, 1993). In this study we were again limited to using 
the original soil moisture characteristic data, and thus the model should be expected to produce biased 
predictions. For this reason, one must not conclude from the moment comparisons that using additional 
samples necessarily reduces the accuracy of model predictions. 

If the soil hydraulic model parameters are homogeneous within a model zone, one soil sample 
per zone is sufficient for characterization. If the correlation length for a particular parameter is less than 
the largest dimension of the model zone, stratified sampling should be used to obtain an effective 
parameter value. Finally, if the model parameters exhibit no spatial correlation, a number of purely 
random samples should be taken within a model zone to obtain the effective parameter value used for that 
zone. There are two sample configurations for which two samples were selected from each zone (9-2-1, 
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9-1-2), and three sample patterns for which four samples were selected from each material zone ( 9 4 1 ,  
9-1-4, 9-2-2). The median SSE for pattern 9-2-1 is 18.17, while that for sample pattern 9-1-2 is only 
16.70. Similarly, the median SSE for pattern 9 4 1  is 16.25, while that for sample pattern 9-1-4 is 14.95. 
In both instances, the purely random pattern produces more accurate model predictions than does the 
stratified sampling pattern, which suggests that the soil hydraulic parameters to which the flow model is 
most sensitive are spatially uncorrelated. We may reject the possibility that each zone is homogeneous, 
both on the basis of visual inspection of the trench face, and because using two random samples per 
stratum instead of one produces more accurate predictions in terms of the SSE measure [median SSE for: 
(i) 9-1-1 equals 21.25 and 9-1-2 equals 16.70, and (ii) 9-2-1 equals 18.17 and 9-2-2 equals 15.361. 

Inasmuch as the definitions of the nine soil horizons were largely based on the observed lateral 
structure, and the general continuity of soil color and texture, the apparent superiority of purely random 
sampling over stratified sampling within each soil horizon is difficult to explain. If, however, the color 
and textural continuity observed within each soil layer does not imply spatial correlation of the soil 
hydraulic parametets obtained from the soil cores, this result may be explained. To test this hypothesis, 
horizontal sample semivariograms for In( a ), n, 8, e,, and ln(K,) were construW, and are shown in 
Figures 14a-e, respectively. Each sample semivariogram was computed from the 160 soil samples in the 
model domain using a constant lag of 0.55m, which slightly exceeds the 0.5m horizontal sampling 
interval, and a window of 60 degrees. Although semivariogram models were not fitted to any of these 
sample semivariograms, visual inspection indicates that those for In( a ), e,, and 8, could be represented 
by spherical models with approximate ranges of 6m, 7m, and 7m, respectively. The sample 
semivariogram for n suggests that this parameter is mildly spatially correlated, although a large portion 
of its sill may be due to a nugget effect. However, the horizontal sample semivariogram forln(K,) 
suggests that this parameter is not spatially correlated, and would be best represented by a pure nugget 
model. If the water content predictions made with the flow model are most sensitive to the values of 
saturated hydraulic conductivity, the lack of spatial correlation implied by its sample semivariogram 
supports the observation that a purely random sampling pattern is superior, on average, to a stratified 
sampling pattern. If instead the model is most sensitive to a. e,, and e,, the observed superiority of 
purely random sampling to stratified sampling cannot be explained at this time. 

Conclusions 

The efficiency of several sampling conf.igurations was studied by utilizing data from a detailed 
field experiment in Las Cruces, New Mexico, on flow and transport in unsaturated soils. The sampling 
configurations studied were of two general types: (i) purely random sampling in which the location of 
the sampling points is spatially random, and (ii) stratified sampling in which the domain of interest is 
divided into strata and sampling points are located randomly in each strata. Our interest centered on 
investigating sampling configurations that will provide the "best" prediction of the transient propagation 
of the moisture plume. Thus, we did not adopt the traditional approach where the goodness of the 
sampling network is based on minimizing the error in obtaining an effective value of the property being 
measured. The large amount of soil characterization data at the experimental site provided us with an 
opportunity to test the sampling configurations with actual measurements of the moisture plume. 

The results indicate that the marginal value of additional samples decreases rapidly as the sample 
size increases. Thus the greatest improvement in model predictions was obtained when the sample size 
was increased from one sample per material zone to two samples per material zone. Thereafter, the rate 
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of improvement decreased significantly. Of the two measures of “goodness” employed (i) the median 
cumulative squared error, and (ii) the moment-based measures of the centroid and spread of the moisture 
plume, the first measure appeared to provide more consistent results. 

Note that a common conceptual model was used in evaluating various sampling schemes. While 
this is a reasonable strategy for this particular study, it is to be emphasized that any new data can alter 
not only the parameter values but also the conceptual model. For example, if the new sample indicates 
the existence (or absence) of a soil structure that was not indicated by the previous data, then a change 
in the conceptual model must be made. With the new conceptual model, the interative process of 
determining the worth of further data will start anew. 

Overall, for this particular site and experiment, it was observed that random, non-stratified, 
sampling provided more accurate simulation results. This appears to imply that spatial correlation of the 
most important soil hydraulic parameters within each material zone is rather weak. Through 
semivariogram analysis, it was found that ln(K,) and van Genuchten’s IC were indeed laterally 
uncorrelated within the model area. However, e,, 8, and a were found to be correlated. These results 
appear to indicate that accurate prediction of the propagation of the moisture plume is most sensitive to 
ln(K,) and van Genuchten’s IC. However, contrary to the sample semivariogram shown in Fig 14e, a 
sample semivariogram constructed for in s i m  measurements of s a t u r d  hydraulic conductivity obtained 
with Guelph permeameters shows a very strong lateral, spatial correlation. Inasmuch as the support size 
of the permeameter measurements is greater than that of the soil cores from which the saturated hydraulic 
conductivity data used in this study were obtained, one should expect the statistical structure of the fields 
to be quite different. This observation underscores the importance of obtaining measurements of hydraulic 
parameters on a scale that conforms to the observed stratigraphic structure of the site geology. 

It appears that the sufficiency of data can only be determined in terms of the modeling results 
and the measures selected for determining worth of data. In addition, whether additional data will modify 
a decision can only be judged after the additional data is collected. All existing procedures for judging 
the worth of data before its collection are based on assumptions that imply statistical extrapolation of prior 
data. The numerical experiment described above indicates that an iterative coupling between data 
collection and modeling will be advantageous for deciding data sufficiency. 
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Table 1. SamDlhrZ configuration designation and descrimion. 

Number of Model 

9 4 1  9 4 1 

9-5-1 9 5 1 

9-1-2 9 1 I 2 

I 

9-14 9 1 4 

9-2-2 9 2 2 

9-24 9 2 4 
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Table 2. Mean SSE, median SSE, and standard deviation of SSE over 10 realizations conducted 
for each sampling configuration. 
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W ' K ,  

Figure la-lf. Sampling patterns: (a) Systematic sampling pattern on a regular, rectangular grid, (b) 
Systematic sampling pattern on a regular, hexagonal grid, (c) Stratified, random sampling pattern on a 
regular, rectangular grid, (d) Stratified, random sampling pattern on a regular, hexagonal grid, (e) h e l y  
random sampling pattern, ( f )  Random, clustered sampling pattern [from Christakos, (1992)l. 

Figure 2. Plan view of the Las Cruces trench site. 

Figure 3. Design factors for conceptual model selection and data sampling. Rectangular zone with dashed 
perimeter delineates the factor plane in (q,x3) considered here. 

Figure 4. Location of soil samples given by solid triangles. Horizontal lines delineate the nine material 
property zones or soil layers. 

Figure 5. Computational mesh. 

Figure 6. Selection of sample locations for stratified-random sampling. Horizontal strip represents one 
material zone or layer used in model. Vertical dashed lines divide material zone into three sampling 
strata. Stars represent randomly selected sample locations in each stratum. Circled triangle represents the 
actual soil sample location closest to the randomly selected point. 

Figure 7. Mean cumulative sum of squared error as a function of sample size given by the dashed 
horizontal line. Vertical bars represent one standard deviation limits. 

Figure 8. Mean cumulative sum of squared errors as a function of time for the six stratified sampling 
configurations. 

Figure 9. Mean cumulative sum of squared errors at day 310 for the six stratified sampling 
configurations. 

Figure 10. Median cumulative sum of squared errors at day 310 for the six stratified sampling 
configurations. 

Figure 11. Median cumulative sum of squared errors at day 310 for sample patterns 9-1-1, 9-1-2, and 
9-1-4. 

Figure 12. Median cumulative sum of squared errors at day 310 for sample patterns 9-2-1, 9-2-2, and 
9-2-4. 

Figure 13a-13c. (a) Mean vertical position of water content difference plume centroid as a function of 
time for six stratified sampling patterns, (b) Mean horizontal spread of water content difference plume 
as a function of time for the six stratified sampling patterns, (c) Mean vertical spread of water content 
difference plume as a function of time for six stratified sampling patterns. 

Figure 14a-14b. Sample semivariograms for : (a) In(a) ,  (b) n, (c) e,, (d) e,, (e) ln(K,). 
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