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Self-affine properties of the ten standard profiles for the joint roughness 
coefficient (JRC), as proposed by Barton [l] for rock engineering 
practice and adopted by the International Society for Rock Mechanics 

[2], were analyzed using the theory of fractal geometry with the 
ultimate goal of relating the JRC values and the fractal properties of 
rock profiles. The semi-variogram method was adopted in the study for 
calculation of fractal properties. The validity of this method was tested 
using the fractional Brownian motion functions with Hurst exponent (H) 
varying from 0.5 to 0.9. A decreasing trend of JRC values with increase 
in fractal dimension was found for the Barton’s ten profiles. This 
finding seems to suggest that fractal dimension may not be a good 
indicator of roughness of a rock joint. A good correlation was found 
between the intercept of the fractal model and the JRC values for the ten 
profiles and an empirical relation is suggested. This empirical relation 
appears to offer a viable method for estimating the JRC values for 
natural rock joints. Studies on the Apache Leap tuff joint profiles 
indicate that reasonably good estimation of the 3RC values can be made 
using the suggested relation. 

INTRODUCTION 

A suitable measure of rock joint roughness is necessary to adequately describe rock joint behavior under both 
pseudostatic and dynamic shear conditions. The most commonly used measure of joint roughness in rock 
engineering practice is the joint roughness coefficient (JRC) proposed by N.R. Barton [ 11 and adopted by the 
International Society for Rock Mechanics (ISRM) [2]. This JRC concept has been implemented in a rock joint 
model developed by Barton and Choubey [3]. This rock joint model is able to adequately describe the 
unidirectional shear and dilation behavior of fresh rock joints [4], provided representative JRC values are 
Used. 

Barton and Choubey [3] proposed an approximation of the JRC by visually matching joint surface profiles 
with their ten “standard” ISRM profiles that range from 0 to 20. This approach is highly subjective [5,6]. 
To minimize this subjectivity, several methods have been proposed to link the JRC value with various aspects 
of the statistical characteristics of a rock joint to provide an objective alternative for JRC determination. 

One of the approaches used for analyzing rock joint profiles is the theory of fractal geometry. Several 
researchers have proposed equations that correlate JRC values (which range from 0 to 20) of the ten ISRM 
profiles to their fractal dimensions. In the process of determining the fractal dimensions, the ten ISRM 
profiles were assumed to be self-similar [6,7,8]. This assumption implies that each profile is composed of 
several copies of itself with possible rotation and translation, scaled down from the original by a constant 
ratio r in all spatial directions. However, in reality, studies have shown that rock profiles or surface 
topographies are often self-affine fractals [9,10,11,12] that require different scaling factors in different 
directions . 

In this paper, the self-affine properties of the ten ISRM profiles and the profiles of the natural rock joints 
from the Apache Leap site of Arizona are analyzed and discussed using the theory of fractal geometry. An 
empirical relationship between the intercepts of the fractal models and the related JRC values of the ten ISRM 
profiles is proposed. The usefulness of the empirical equation in estimating the JRC values of Apache Leap 
rock joints is also evaluated. 



SEMI-VARIOGRAM METHOD 
w w 

As discussed previously, rock profiles or surface topographies are often self-affine fractals and will require 
different scaling factors in different directions. Formally, points X= (x,y) transform into new points 
X' = (rxx, ruy) with rx = rYH where H is the Hurst exponent and ranges between 0 and 1. There are several 
methods avalable for calculating the properties of a self-affine fractal. The semi-variogram method was used 
in this study. 

The semi-variogram approach is used to characterize the spatial variability of random functions and is ex- 
tremely well suited for describing random functions that are second-order stationary or appear to vary without 
bound [13]. The semi-variogram function is defined as the average of the sum of the squares of the 
differences of profile heights at a constant lag, h. It assumes zero means. The one-dimensional variogram 
function, ~(h), can be expressed in a discrete form: 

where Z(3) is the height of the profile at location 3, Z(%+h) is the height of the profile at location 3 + h ,  
h is the lag between two adjacent points, and Nis the number of observations. The semi-variogram function, 
~(h), and the lag, h, shows a log-linear relationship: 

y(h) = Z he 

where I and fl  are constants, Z can be defined also as an intercept at h=l .  The fractal dimension, D, of a 
profile can be determined using the equation, D = 2 - 8/2. 

A FORTRAN computer program based on the semi-variogram method was written for fractal dimension 
calculation. The fractional Brownian motion functions with known fractal dimensions were used to verify this 
program. Generation of the fractional Brownian motion functions used the algorithm proposed by Saupe [ 141. 
In this algorithm, the middle point between two known adjacent points is determined. This newly generated 
middle point then serves as a known point and the algorithm is repeated recursively until a desired number 
of points is obtained. A displacement, D,, with desired variance is added to all the points at each step. 0, 
is given as [14]: 

where n is the level of subdivision, H is the Hurst Exponent, and u is the input standard deviation. 
Five Hurst exponent H values ranging from 0.5 to 0.9 were chosen to generate the fractional Brownian 

motion functions that have fractal dimensions D from 1.1 to 1.5, where D = 2 - H. Figure 1 shows the five 
fractional Brownian motion functions with Q = 1.0. Figure 2 compares the H values calculated from the 
FORTRAN program with the actual H values used to generate the Brownian motion functions. It can be 
concluded from the figure that the semi-variogram method can be used to predict reasonably well the H value 
of each Brownian motion function, although there is a slight overestimation for rougher Brownian motion 
functions (corresponding to smaller H values) and underestimation for smoother Brownian motion functions 
(corresponding to larger H values) recognizing the fact that self-affmity is intrinsically difficult to measure 
on a finite sample. 

EVALUATION OF BARTON'S TEN PROFILES 

As discussed earlier, the JRC value is the most commonly used measure for representing joint roughness 
in various rock mechanics applications. The proposed ten profiles [1,2] represent JRC values from 0 to 20. 
Each profile covers a range of two scales of JRC; for example, from 0 to 2. In this study, a unique value 
was assigned to each profile for practicality; for example, 1 is assigned to a profile covering the JRC range 
of 0 to 2. 



The ten profiles contained in +’ ‘ ISRM publication [2] were magnifie? ’ 7 about three times the size of the 
original plot, using a photocow, for ease of digitization. The e w e d  profiles were then digitized 
individually to create ten data sets. The upper boundary of each curve was used as the basis for digitizing. 
Only local peaks and valleys were digitized to give coordinates with respect to a selected horizontal datum. 
Consequently, the data interval in each of the data sets was not constant. For most of the profile curves, more 
than 300 points (locations) were digitized. The same unit length was used for both the horizontal and vertical 
axes. A small FORTRAN program was developed to rescale the data using the interpolating technique such 
that each data set has an equal data spacing and contains 512 data points. Equal spacing is necessary for using 
the semi-variogram method. Figure 3 shows the plot of the ten ISRM profiles regenerated using the final data 
sets. Comparison of the ten profile curves with the corresponding ones in the original ISRM publication [2] 
shows a remarkable similarity and can be considered representative. 

Figure 4 shows the relation of the JRC values of the ten ISRM profiles and the corresponding fractal 
dimensions (solid circles) from the semi-variogram method in a log-log plot. Against common belief that a 
larger fractal dimension should correspond to a higher JRC value, a decreasing trend of the JRC values with 
increase in fractal dimension is shown in Figure 4. A similar result has also been reported by Sakellariou et 
al. [12] and Kulatilake et al. [l5]. The variogram method was used by Kulatilake et al. [15] and the spectral 
method was used by Sakellariou et al. [ 121 to calculate the fractal dimensions of the ten ISRM profiles. Al- 
though the fractal dimensions reported by Sakellariou et al. [12] do not show a distinct decreasing trend, they 
did report unusually high fractal dimensions for the first five profiles. Sakellariou et al. [12] considered these 
relatively high values as erratic behavior and suggested that this behavior may be explained by the ‘quality 
of source material (smooth figures of a book) that causes mixing of noise in the signal in the raw data, a fact 
that cannot be overcome.” W e  their postulation may be correct in general, it cannot explain the distinct 
and consistent trend of decreasing fractal dimension with increasing JRC value observed in Figure 4. The 
open circles in Figure 4 denote data from Apache Leap tuff joints. Related discussion wil l  be provided later. 

The finding that a higher JRC value corresponds to a smaller fractal dimension suggests that the use of 
fractal dimension alone for the characterization of the ten ISRM profiles is not sufficient since, according to 
the conventional wisdom, a rougher surface should yield a larger fractal dimension. Also, the fractal di- 
mension only describes how the roughness varies with the scale of observation. It is the intercept, for 
example, the constant Z in equation (2), or the crossover length that determines the steepness of the 
topography [la. Figure 5 shows a distinct log-linear relation (solid circles) between the JRC values and the 
corresponding intercepts of the fractal models of the ten ISRM profiles. As can be observed from the figure, 
the intercept increases with the JRC values. Apache Leap tuff joints related data in Figure 5 (open circles) 
will be discussed later. 

A multiple linear regression analysis was performed to determine the correlation among the JRC value, 
intercept, I ,  and fractal dimension, D. In this analysis, the logarithm of JRC was treated as a dependent 
variable whereas the logarithms of Z and D were treated as independent variables. A regression equation to 
relate these three variables can be expressed as 

* 

JRC = 170 - D 1.61 
(4) 

This equation has an adjusted R2 value of 0.982 and a standard error of estimate of 0.0541. However, the 
analysis has indicated the presence of a sample-based multicollinearity between independent variables Z and 
D. Action-such as collecting more data to break up the correlation or dropping one or more independent 
variables from the regression equation-will need to be taken to eliminate this multicollinearity. Since getting 
more data from the ten ISRM profiles is not possible, the only alternative is to drop one independent variable 
from equation (4). Testing the null hypothesis of the independent variables in the regression model of 
equation (4) indicates that the probability, P, of being wrong in concluding that there is a true association 
between the JRC and I is small with P < O.OOO1. On the other hand, the probability of committing a Type 
I error is quite high, about 3 196, in concluding that the JRC and D have a true correlation. A separate log- 
linear regression analysis of the JRC and D has concluded that the homoscedasticity (Le., constant variance) 
assumption has been violated. Homoscedasticity is one of the three basic assumptions made in conducting 
a linear regression analysis. This violation suggests that a different model should be considered. The results 



of the multiple and the sepm'- log-linear regressions pointed to a '~g ica l  conclusion that the 
dimension, D, is redundant anMould be dropped from the regressionwe1 of equation (4). . The log-linear regression model for the JRC and Z can be expressed as 

JRC = 195 Io." 

The adjusted R2 value for this correlation is 0.981 and the standard error of estimate 0.0548. Note that the 
adjusted R2 values for equations (4) and (5) are essentially the same and the difference between the two 
standard error of estimates is small, further suggesting that the intercept, I ,  alone is sufficient for predicting 
TRC. This regression model is represented in Figure 5 as a solid line. The two broken lines on the sides of 
the regression line give the prediction interval at a 95% confidence level of the regression line. This 
prediction interval, also called the confidence interval for the population, describes the range where the data 
values will fall 95% of the time for repeated measurements. 

It is well-known that two parameters, namely Z and D, will be needed to uniquely characterize the fractal 
model of a rough profile in log-log space [9,16,17,18]; due to the complexity of natural rock joint surfam, 
it is possible that D may not be a constant value or may be a constant only over a limited range of scales 
[19]. As discussed earlier, D represents the variation of surface elevation at different scales and the variance 
or the deviation from the mean elevation associated with a profile is represented by Z [lq. In other words, 
Z is more representative of the primary asperities with long wavelengths that are believed to control the actual 
shear behavior of natural rock joints, while D seems to represent the higher order asperities that have a 
secondary effect on rock joint shear behavior [ 181. In the past, most of the focus on characterizing rock joint 
surfaces for engineering practices has been on relating the fractal dimension with the associated JRC values 
[6,7, 8,12,19]. This approach may have ignored one fundamental and important aspect of rock joint 
roughness. Only recently, the importance of Z or primary asperities of a rock joint has been emphasized and 
considered in the development of joint shear models [15,17,20]. The analysis performed here on the ten 
ISRM profiles further suggests that the intercept, Z, alone may offer a reasonable approximation for various 
applications in the rock mechanics field, using the expression proposed in equation (S), in determining the 
JRC values of rockjoints. In the following discussion, the usefulness of equation (5)  for the determination 
of the JRC values of Apache Leap rock joints is evaluated. 

APPLICABILITY EVALUATION OF EQUATION (5)  

Rock profile meaurements and experimenfal procedures 

The rock joint specimens used in this study were collected from the Apache Leap site near Superior, 
Arizona. The rock at this site is a vitrified and densely welded tuff. Each specimen consists of two mated 
rock blocks with a natural joint interface between them. The top block of the specimen is about 203 mm in 
length and width and about 102 mm in height. The bottom block is about 305 mm long, 203 mm wide, and 
102 mm high. 

Before the two blocks of a jointed specimen were grouted into the steel shear boxes that are part of futures 
of a dynamic shear test apparatus, measurements of rebound numbers using a Schmidt hammer were taken 
on both joint surfaces and on the sides of both blocks. A discussion regarding the direct shear test apparatus, 
which can simulate controlled dynamic motions, is provided elsewhere [21]. Immediately following the 
Schmidt hammer tests, tilt tests were performed to determine the tilt angle of the joint along both the 
projected direction of shear and its reverse direction. The two blocks were then grouted into their respective 
specimen steel boxes that house the joint specimen during the direct shear test, and subsequently put into an 
oven at 102°C for 24 hr to accelerate the curing of the grout. The thickness of the grout between the shear 
box and the rock block is about 12.7 mm. 

After heating both joint surfam, profile measurements were taken. The profile measurement was taken 
using a non-contact surface height gauging profdometer. This profilometer consists of an Asymtek benchtop 
gantry type X-Y-Z positioner and a Keyence laser displacement meter attached to the Z-axis of the positioner. 
This laser displacement meter includes a red visible laser head that has a displacement measurement 
resolution of about 0.5 micrometer. The profilometer movements were controlled by personal computer (PC) 



commands to the A-102B X-Y 'I table via a serial port. The A-102P +able had a built-in computer for 
interpreting high-level commanb'from the PC and then executing the h6e.s. A custom computer program 
written in Borland's Turbo C was used to issue movement commands to the A-l02B, to read the displacement 
measurement Z-axis movement from the LC-2100, and to format and store pertinent scanning and rock joint 
profile displacement information to a hard-drive data file. For both blocks, profiles were measured along 
more than 140 longitudinal sections at an interval of 1.27 mm between the two consecutive sections. For each 
longitudinal profile section, measurements were taken at an interval of 1.27 mm. 

Twenty-two direct shear tests on single-joint rock specimens have been performed. Sixteen of them were 
carried out under pseudostatic loading conditions, two were carried out under harmonic loading conditions, 
and four were tested under simulated earthquake loading conditions. Before the shear test started, a joint was 
subjected to five normal loading and unloading cycles to bring the mated blocks to their assumed undisturbed 
state. The shear tests, under various constant normal loads, were displacement controlled and the results of 
these tests are reported elsewhere [22]. 

Calculation of JRC using laboratory shear test results 

JRC values of the twenty-two single-joint rock specimens were calculated from the corresponding shear 
test results using the following equation [3]: 

where 7 is the joint shear strength, q, is the applied normal stress, JCS is the joint wall compressive strength, 
and 4, is the joint residual angle of friction. JCS and 4, need to be calculated separately by using the 
following two equations [3] which may introduce some uncertainties into the determination of JRC. 

log (JCS) = O.OOOSSyr, + 1.01 (7) 

where y is the rock density, &, is the basic friction angle, and re and Re are the rebound numbers from 
Schmidt hammer tests on joint wall and smooth rock surface, respectively. From a tilt test of one rock 
cylinder sliding down the other [23] &, was estimated. The JRC values for the twenty-two rock joints, back- 
calculated from the results of direct shear tests using equation (6), are given in Table 1. 

Serf-afine fractal properties of rock joint profiles 

The same FORTRAN computer program used for evaluating the ten ISRM profiles was used to determine 
the self-affme properties of the Apache Leap tuff joints. Each profile along the direction of shear for both 
the top and bottom blocks of ajoint specimen was analyzed to determine the fractal dimension and intercept. 
The representative fractal dimension and intercept of the joint specimen, which are assumed to be the 
arithmetic average of all profiles, are given in Table 1. 

Examination of fractal properties 

The relation between the JRC values and the corresponding fractal dimensions of the twenty-two Apache 
Leap tuff joints is shown in Figure 4 (hollow circles). It is interesting to note that, consistent with the 
observation made for the ISRM profiles, the fractal dimensions of the Apache Leap joints, in general, exhibit 
a decreasing trend with an increase in JRC values, although they show wider scattering than those of the 
ISRM profiles. This result is consistent with the findings reported by Miller et al. [ll] on rock joint surfaces 
of basalt, gneiss, and quartizite. Figure 4 also shows that the fractal dimensions calculated from the Apache 



Leap joint profiles are consisten" and substantially larger than those oft' ISRM profrles with the Same JRC 
values. This observation suggesmat the relation between the fractal dh!&sions and JRC values of the ten 
ISRM profiles will not be appropriate for predicting the JRC values of Apache Leap joints because such 
predictions will lead to unrealistically low JRC. The plot for the intercepts of fractal models of the Apache 
Leap joints and the associated JRC values is shown in Figure 5 as open circles. As can be seen, the majority 
of the data points fall within or near the range of the 95% prediction interval of the regression model of 
equation (5), an indication that a reasonably good estimation of the JRC values can be made using equation 
(5) for the Apache Leap tuff joints. It should be noted that the form of semi-variogram used in this study is 
often highly sensitive to sampling direction and sampling interval [24]. Therefore, the same sampling 
procedure that has been discussed earlier in this paper for obtaining profile data of the Apache Leap tuff 
joints should be followed if equation (5) is to be used properly. 

CONCLUSIONS 

The ten ISRM profiles associated with the JRC concept and several Apache Leap tuff joints were analyzed 
using the theory of fractal geometry and the semi-variogram method. The result shows a consistent trend that 
a profile with a higher JRC value seems to have a smaller fractal dimension. For practical engineering 
applications, the intercept of the fractal model of a profrle or rock joint is found to be adequate for 
representing the roughness of the profile. A good correlation has been found between the JRC values and 
associated intercepts, I, of fractal models of the ten ISRM profiles. An empirical equation relating the JRC 
and I is proposed. This equation appears to give a reasonably good estimation of the JRC values of the 
Apache Leap tuff joints and may offer a reasonable alternative for the prediction of those of other natural 
rock joints. Further investigation is recommended for extending the proposed equation, and verifying its 
applicability, to rock joints of other rock types. 

Acknowledgements -The authors thank Drs. W.C. Patrick and B. Sagar for their review of this paper. This paper was prepared 
to document work performed by the Center for Nuclear Waste Regulatory Analyses (CNWRA) for the Nuclear Regulatory 
Commission (NRC) under Contract No. NRC-02-93-005. The activities reported here were performed on behalf of the NRC 
Division of Waste Management. This paper is an independent product of the CNWRA and does not necessarily reflect the views 
or regulatory position of the NRC. All CNWRA-generated original data contained in this paper meet the quality assurauca 
requirements described in the CNWRA Quality Assurance Man~~al. Sources for other data should be consulted for determining 
the level of quality for those data. 

REFERENCES 

1. 

2. 

3. 

4. 

5.  

6. 

7. 

8. 

Barton N.R. Review of a new shear strength criterion for rock joints. Engineering Geology, 7,287-332 
(1973). 
International Society for Rock Mechanics (ISRM). Suggested methods for the quantitative description 
of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15,319-368 (1978). 
Barton N.R. and Choubey V. The shear strength of rock joints in theory and practice. Rock Mechanics, 

Hsiung S.M., Ghosh A., Chowdhury A.H., and Ahola M.P. Evaluation of rock joint models and 
computer code UDEC againrr experimental resulrs. NUREGKR-6216, U.S. Nuclear Regulatory 
Commission, Washington, DC (1994). 
Miller S.M., McWilliam P.C., and Kerkenng J.C. Evaluation of stereo digitizing rock fracture 
roughness. Rock Mechanics as a Guide for EDcient Utilization of NantraI Resources, A.W. Khair, ed., 
Balkema, Rotterdam: Netherlands, 201-208 (1989). 
Wakabayashi N. and Fukushige I. Experimental study on the relation between fractal dimension and 
shear strength. Con$ Fractured and Jointed Rock Masses, Preprints, Lake Tahoe, CA (1992). 
Turk N., Greig M.J., Dearman W.R., and Amin F.F. Characterization of rock joint surfaces by fractal 
dimension. 28th U.S. Symp. on Rock Mechanics, Tucson, AZ: University of Arizona, 1,223-1,236 
(1987). 
Lee Y.-H., Carr J.R., Barr D.J., and Haas C.J. The fractal dimension as a measure of the roughness 
of rock discontinuity profiles. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 27, 453-464 (1990). 

10, 1-54 (1977). 



9. Brown S.R. and Scholz C -- Broad bandwidth study of the t o p  iphy of natural rock surfam. J.fllt 
10. Malinverno A. A simple method to estimate the fractal dimension of a self-affine series. Geophys. Res. 

11. Miller S.M., McWilliam P.C. , and Kerkering J.C. Ambiguities in estimating fractal dimensions of rock 
fracture surfaces. Rock Mechanics Contributionr and challenges, W.A. Hustrulid and G.A. Johnson 
eds., Balkema, Rotterdam: Netherlands, 471-478 (1990). 

12. Sakellariou M., Nakos B., and Mitsakaki C. On the fractal character of rough surfaces. Int. J. Rock 
Mech. Min. Sci. & Gkomech. Abstr., 28(6), 527-533 (1991). 

13. Oliver M.A. and Webster R. Semi-variograms for modelling the spatial pattern of landform and soil 
properties. Earth Sugluce Processes and Landfom, 11, 491-504 (1986). 

14. Saupe D. Algorithms for random fractals. 2 7 ~  science offiactd images. H. Peitgen and D. Saupe, eds., 
Springer-Verlag, New York, 71-136 (1988). 

15. Kulatilake P.H.S.W., Shou G., and Huang T.H. A variogdfractal based new peak shear strength 
criterion for rock joints. 35th U.S. Qm. on Rock Mechanics, Reno, NV: University of Nevada, Reno, 

16. Power W.L. and Tullis T.E. Euclidean and fractal models for the description of rock surface roughness. 
J. Geophys. Res., %(Ill), 415-424 (1991). 

17. Ghosh A. and Hsiung S.M. On characterization of self-affme fractal profiles. Roc. 10th Con$ of Eng. 
Mech. , Boulder, Colorado, 179-182 (1995). 

18. Hsiung S.M., Ghosh A., and Chowdhury A.H. On natural rock joint profile characterization using self- 
affine fractal approach. 35th U.S. Sym. on Rock Mechanics, Reno, NV: University of Nevada, Reno, 

19. Carr J.R. and Warriner J.B. Relationship between the fractal dimension and joint roughness coefficient. 
Bull. Associm'on of Engineering Geologists, XXVI(2) , 253-263 (1989). 

20. Seidel J.P. and Haberfield C.M. The use of fractal geometry in a joint shear model. Mechanics of 
Jointed and Fuulred Rock, H.P. Rossmanith ed., Balkema, Rotterdam: Netherlands, 529-534 (1995). 

21. Kana D.D., Chowdhury A.H., Hsiung S.M., Ahola M.P., Brady B.H.G. , and Philip J. Experimental 
techniques for dynamic shear testing of natural rock joints. Proc. 7th Int. Congress on Rock Mech., 
Aachen, Germany, 519-526 (1991). 

22. Hsiung S.M., Kana D.D., Ahola M.P., Chowdhury A.H., and Ghosh A. luborazory characte?ization 
of rockjoints. NUREGKR-6178, U.S. Nuclear Regulatory Commission, Washington, DC (1994). 

23. Barton N.R., Bandis S., and Bakhtar K. Strength, deformation and conductivity coupling of rock joints. 
Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 22, 121-140 (1985). 

24. Burrough P.A. Fractal dimensions of landscapes and other environmental data. Nature, 294, 240-242 
(198 1). 

Geophys. Res., 90(B14), 1%75-12,582 (1985). w 
' 

Let. 17(11), 1,953-1,956 (1990). 

653-658 (1995). 

681-687 (1995). 



.W w 
Table 1 Estimated JRC, mtercept (a, and fractal dimension (0) for Apache Leap tuff joints 
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