Reactive Transport Modeling of the Unsaturated Zone Hydrogeochemical System at Yucca Mountain, Nevada

Lauren Browning

This presentation is an independent product of the CNWRA and does not necessarily reflect the view or regulatory position of the NRC.

> Indiana University January 28, 2003

Background: Who and Why?

Why are reactive transport simulations being developed?

* The quantity and chemistry of in-drift water may affect the lifetimes of engineered materials.

Who is developing these models?

* U.S. Department of Energy, U.S. Nuclear Regulatory Commission

MULTIFLO Capabilities

- * Heat, fluid, vapor transport in 1-, 2-, or 3-D
- * Dual continuum models or equivalent continuum models
- * Structured or unstructured grids
- * Equilibrium, kinetic or mixed reactions for precipitation and dissolution
- * Large numbers of minerals, primary and secondary aqueous species
- * Diffusion and advection of aqueous and gaseous components
- * Adsorption and ion exchange
- * Permeability responds to mineral precipitation/dissolution

Reactive Transport Using MULTIFLO: Specifying the Reaction System

Availability of Relevant Site-Specific Data

Site characterization data (ambient conditions): pore water chemistry, stratigraphy, hydrological and mineralogical properties of the rock units
Exploratory Studies Facility (thermal perturbation): drift scale heater test (DST)

Hydrostratigraphic Units Included in Model Domain

Hydrogeologica Unit	al I	Description	Hydrostratigraphy
		bedded tuff	(not included in
Nonwelded Paintbrush Tuff, PTn		Yucca Tuff	model)
		bedded tuff	
	Pa	h Canyon Tuff	
-		bedded tuff	·
	(non)welded, mod. welded vitric		ptn26
	up	per welded vitric	tsw31
Topopah Spring Tuff, TSw	gs crystal rich, nonlithophysal		tsw32
	crystal rich lithophysal and crystal poor upper lithophysal		tsw33
	middle nonlithophysal, crystal poor		tsw34
	lower lithophysal, crystal poor		tsw35
]			tsw36
	lower	nonlithophysal, crystal poor	tsw37
	low	er welded vitric	tsw38
	lower	mod. welded vitric	tsw39
	lowe	r nonwelded vitric	
		bedded tuff	(not included in model)

Basic Model Structure

Basic Model Properties

Code: MULTIFLO v. 1.5 (Painter et al., 2001)

Gridding: a 56 cell structured grid with a mixed upper boundary condition (i.e. specified gas pressure, temperature and liquid flux) and a gravity drainage lower boundary condition

- Groundwater flow:
- * Darcy's law coupled with constitutive relationships
- * van Genuchten function with Mualem assumption for moisture retention and relative permeability
- * the active fracture model (Liu et al., 1998)
- * parameter values adopted from CRWMS M&O (2001).

Geochemical Model: The model considers:

- * <u>dissolved species and gas</u>: Cl⁻, Ca²⁺, H⁺, HCO₃-, CO₂(aq), CO₃²⁻, SiO₂(aq), HSiO₃⁻, Al(OH)₄⁻, Na⁺, K⁺, OH⁻, and Al³⁺, and CO₂(g)
- * <u>kinetically reactive phases</u>: low albite, calcite, rhyolitic glass, amorphous silica, and endmember Na, Ca, and K-smectites
- * <u>infiltrating and initial water compositions</u>: revised analytical data described in Browning et al. (2000).

Uncertainties in Measured and Calculated Compositions of Pore Waters Extracted from Boreholes at Yucca Mountain

Analytical vs. Equilibrium Aqueous Speciation

(Data from Yang et al., 1996; figure from Browning et al., 2000)

)

)

Measured and Calculated Distributions of pH (Borehole UE-25, UZ#16)

Revised matrix pore water compositions constrain the boundary/initial conditions in our model

Groundwater Component	Revised SD-9 Composition
pH	8.04
Ca (mg/L)	22.7
Na (mg/L)	53
$SiO_{c}(aq) (mg/L)$	48.6
K (mg/L)	8
Al (mg/L)	1.3e-5
$HCO_3^{-}(mg/L)$	115.3
CO_{3}^{2-} (mg/L)	0.64
Cl (mgL)	60

)

Reactive transport predictions have three substantial sources of uncertainty that are difficult to quantify: code limitations, unrepresentative conceptual models, and uncertain parameter values

confidence in reactive transport models should be improved by successful applications

calibration of parameter values within plausible ranges of uncertainty is generally needed to accurately represent the observable system

(from Browning et al., 2003)

Uncertain thermodynamic and kinetic parameters were calibrated to reflect observed trends at Yucca Mountain

Three calibration criteria were defined:

agreement between observed and simulated multicomponent matrix pore water compositions in PTn.

)

- 2 feldspars and glass dissolve, while clays and calcite precipitate.
- 3 where data are lacking, silica concentrations with depth must be bounded by observed analytical range.

(from Browning et al., 2003)

Calibration of Thermodynamic Data

(from Browning et al., 2003)

Calibration of Kinetic Data

Rate Law:
$$R = k^*A_s^* a(H^+)^* (Q/K - 1)$$

k = rate coefficient A_s = specific reactive surface area $a(H^+)^x$ = hydrogen activity term(Q/K-1) = chemical affinity

* defined maximum relative rates for individual minerals.
* estimated absolute rates for the set of minerals by calibrating surface area values for individual minerals.

Satisfaction of First Calibration Criterion

Satisfaction of Second Calibration Criterion

)

)

Satisfaction of Third Calibration Criterion and Partial Model Validation

Calibrated Thermodynamic & Kinetic Parameters

Relative reaction rates are defined by our conceptualization of ambient YM conditions.

) Absolute reaction rates are constrained by the calibration criteria.

Calibrated surface areas	Rate constant (K _{ml}) and calibrated specific reactive surface areas (S _m) for glass			
are consistent with in situ surface area	Parameter type (hydrostratigraphic unit)	Units	Value	
measurements	K _{ml} (ptn26-tsw39)	moles/cm ^{2*} s	9.3e-18	
of natural	S _m (ptn26)	cm ² /cm ³	2.64	
	S _m (tsw31)	cm ² /cm ³	0.013	
permeable	S _m (tsw32)	cm ² /cm ³	0.622	
glass deposits	^a S _m (tsw33-37)	cm ² /cm ³	n/a	
(Bourcier et	S _m (tsw38)	cm ² /cm ³	0.021	
al., 2000).	S _m (tsw39)	cm ² /cm ³	0.013	

Insights: Controlling Water-Rock-Gas Reactions

Changes in simulated solution composition in the unsaturated zone above the repository horizon are largely related to glass dissolution reactions, as in:

Glass +1.345Al(OH)₄⁻+1.366H⁺+1.214SiO₂(aq) = $2.689H_2O+0.3515Beid-Na+0.3327Beid-K+0.0103Ca^{2+}$

Glass is a major phase both above (PTn) and below (CHn) the repository horizon (TSw), but is generally absent throughout the TSw units, suggesting that solution compositions at the depth of the potential repository are inherited from percolating waters, rather than being controlled by in situ chemical reactions.

Model Results

Increased confidence in our ability to accurately represent complex hydrogeochemical processes at YM using reactive transport models.

- A set of calibrated thermodynamic and kinetic data for major phases present in the geologic units above the potential repository horizon that:
 - * improve our understanding of the ambient hydrogeochemical system at Yucca Mountain.
 - * may constrain the initial and boundary conditions of thermally perturbed models of Yucca Mountain.

References

Bourcier et al., Determination of reactive surface area of melt glass. LLNL, UCRL-145181, 2000;

Browning et al., Thermodynamic interpretation of chemical analyses of unsaturated zone water from Yucca Mountain, NV., Scientific Basis for Nuclear Waste Management XXIII. R. Smith and D. Shoesmith, eds. Symposium Proceedings 663, 2000;

Browning et al. Reactive transport model for the ambient unsaturated hydrogeochemical system at Yucca Mountain, Nevada, Computers & Geosciences, vol. 23, number 3, 247-265, 2003;

<u>CRWMS M&O.</u> 2001. ANL-EBS-MD-000049, Revision 00, ICN02, North Las Vegas, Nevada;

<u>Liu et al.</u>, Active fracture model for unsaturated flow and transport in fractured rocks. Water Resources Research 34(10), pp. 2633-2646, 1998;

Painter et al., MULTIFLO version 1.5. CNWRA, 2001;

<u>Yang et al</u>., Interpretation of chemical and isotopic data from boreholes in the unsaturated zone at Yucca Mountain, NV. U.S.G.S. Water-Resources Investigations Report 96-4058, 1996