

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Percolation and Seepage at Nopal I, Peña Blanca

Presented to: Appendix 7 Meeting on Peña Blanca Natural Analogue Studies

Presented by: Teamrat A. Ghezzehei, Ph.D. Lawrence Berkeley National Laboratory

February 16, 2006 Las Vegas, Nevada

Adit and Seepage Collectors at Peña Blanca

Seepage Collection Frames at Peña Blanca

Seepage Collectors at Peña Blanca

Collection Bottles

Instrumented Column

Precipitation at Aldama (Mexico)

Cumulative Seepage at Peña Blanca: Instrumented Funnels

Department of Energy • Office of Civilian Radioactive Waste Management Ghezzehei Pena Blanca Appendix 7 Seepage.ppt

Preliminary Observations (Peña Blanca)

- Observed seepage volumes and arrival times were highly heterogeneous
- A few fast flow paths in the back adit carry large volumes of water, with large volumes of seepage occurring between September and November 2005
- Most of the remaining parts of the front and back adit exhibit slow steady seepage
- Onset of seepage began in the front adit earlier than in the back adit
- Long residence time in the front adit is consistent with higher U concentration and U isotope disequilibrium observed at this location

Statistics of Rainfall Intensity

Aldama, Mexico March 2004 – October 2005

Conceptual Model of Fracture Flow

- Fractures that connect the +10 level and the adit are modeled as 1D column
- The columns are made of parallel vertical fractures of uniform aperture
- Several fracture spacing (densities) and apertures are considered
- Hydrologic properties of the composite were calculated using theoretical models (e.g., cubic law)

Calculated Hydrologic Properties

 Composite hydrologic properties of 1D columns calculated using fracture density and aperture

Seepage Predictions: 10 µm, 50 m⁻¹

Ghezzehei Pena Blanca Appendix 7 Seepage.ppt

Seepage Predictions: 100 µm, 50 m⁻¹

Department of Energy • Office of Civilian Radioactive Waste Management

Ghezzehei Pena Blanca Appendix 7 Seepage.ppt

Potential Uses of Fracture Map

- Fracture density and dip can be used in estimation of percolation pattern and bulk permeability
- Permeability estimates will provide better constraints on predictions of seepage arrival time
- Fracture density and connectivity patterns can potentially decrease uncertainties in site characterization through inverse modeling

Proposed Revision of Conceptual Model

Ongoing & Future Lab/Field Work

• LABORATORY WORK

- Hydrologic characterization of cored samples
- Analyses of seepage water (in progress at LANL)

• FIELD DATA COLLECTION

- Collection of continuous seepage data to enable calculation of seepage rate
- Installation of meteorological station to get better estimates of infiltration rate and precipitation pattern

Ongoing & Future Modeling Work

Improved seepage prediction that accounts for:

- Routing of surface water
- Evaporative losses
- 2D and 3D interaction between fracture sets (heterogeneity and flow focusing)
- Modeling radionuclide transport
- Calibration of flow and transport models against field observations

