

.

Calculation Cover Sheet

	Dom	inior	8**		N	DCM-3.7	Atta	ichment 2	Page	of 61
1.Type CALC		. Sub 3. IFL	. Station	4. Unit 03	5. Si AC	atus	6. Syst	em Code(s)		<u></u>
7. Calculati SM-1526	on Numt	ier		8. Rev.)			9. Adde N/A	endum		
10. QA Cat	□s	r 🛛 NSO	л 🗆 из		11.	Critical Ca	lculation	🗌 Yes 🛛 No		
12. Calcula North Anna	Power S	Station ES	P ESBWR	MACCS2 M	odel f	or Level 3	Applicatic	n		
				, ESBWR, Le	evel 3	, ESP				<u> </u>
•			Yes tes in the (eferei	nce sectior	n using th	e appropriate D	MIS cod	le, doc
15. Initiatin		ent:								
16. Origina	tor:				. 17	7. Disciplin	e:	· ·		
18. Firm Na	ime:	<u>u</u>			1	19. Ve	ndor Coc	le:		
20. EDS Ma	ark Numt	per Refere	nces:			an fille an		a de de la composición		
Station	Unit	System	Prefix	Sequer	ice	Compone Code	ent S	Suffix		
NAPS site. for the seve	e the risk This calc ere accide	ulation do ent consec	cuments ti juence coo	he preparatio de MACCS2.	n and MAC	execution	of NAPS lates the	advanced react -ESBWR site-s impact of sever tification of Leve	pecific e accida	nput files ents at
population dollars for t design.	R offsite extending he year 2	g out to a 5 2030 popul	50 mile rad	lius from the	North	Anna site.	The res	release catego ulting risk in ter a conventional r	ms of do	ose and
23. Affected	l Calcula	tion(s):								
Prepared B Myron Gi. M	latras			. Signature				24c. Date		
Reviewed E Thomas G.	Hook			. Signature				25c. Date		
Approved B Thomas G.			26b	. Signature				26c. Date		

(June 2005)

	c Number SM-1526 Re	ev. 0 A	dd.	Sheet: <u>2</u> of <u>61</u>
	Table of Contents			
				Page
.0	Purpose			4
2.0	References			4
3.0	Introduction			5
1.0	Assumptions, Design Inputs and Key Parameter Un	certainties		5
	4.1 Assumptions			5
	4.2 Design Inputs			5
	4.3 Key Parameter Uncertainties			5
5.0	Method of Analysis			. 6
.0	ESBWR Level 2 Data			6
.0	MACCS2 Model Input Information			7
	7.1 ATMOS User Input File: "EBATMOS.INP"			8
	7.2 EARLY User Input File: "EBEARLY.INP"			9
	7.3 CHRONC User Input File: "EBCHRONC.IN	ວ "		9
	7.4 Meteorological Data File: "NMET98.INP"			10
	7.5 SITE Data File: "NSITE, INP"			11
	7.5.1 Population Distribution			11
	7.5.2 Land Fractions			11 .
	7.5.3 Region Index			12
	7.5.4 Watershed Index			12
	7.5.5 Crop Season and Share			12
	7.5.6 Watershed Definition			12
	7.5.7 Regional Economic Data			12
.0	Computer Codes and Computer Used			12
.0	Detailed Calculations			12
0.0	Computer Input and Output			12
1.0	Summary of Results			13
2.0	Conclusions			18

Attachment I	Rosette 10 Mile Population Distribution 50 Mile Population Distribution 50 Mile Spatial Location
Attachment II	Memorandum Nuclear Relicensing Meteorological Data Documentation
Attachment III	MACCS2 Input File Listings for Base Case EBATMOS.INP

ENGINEERING WORK SHEET									
Calc Number SM-1526	Rev. 0	Add.	Sheet: <u>3</u> of <u>61</u>						
EBEARLY.INP EBCHRONC.INP NSITE.INP				J					

Attachment IV Embedded Files (Electronic Files)

MACCS2 Input Files MACCS2 Output Files

Attachment V Draft Response to NRC Request For Additional Information Regarding The ESP

Attachment VI Reviewer Comments Response to Reviewer Comments

Attachment VII Calculation Review Checklist

CD-ROM Attached with the following contents MACCS2 Input Files

MACCS2 Input Files MACCS2 Output Files

ENGINEERING WORK SHEET							
Calc Number SM-1526	Rev. 0	Add.	Sheet: _4_ of <u>_61</u>				

1.0 Purpose

The purpose of this calculation is to calculate the consequences and the risk to population and land within a 50 mile radius of the North Anna site for a new General Electric reactor design, the Economic Simplified Boiling Water Reactor (ESBWR) model. The risk to the population is in terms of Person-Rem/year and the risk to the land and property is reported in terms of US dollars/year. This analysis will be done using the Reference 8 economic and population data

2.0 References

- 1) RF-Report, Chanin and M. L. Young, "Code Manual for MACCS2: Volume 1, User's Guide", SAND97-0594, May 1998.
- 2) RF-Report, Oak Ridge National Laboratory RISCC Computer Code Collection MACCS2 V.1.13.1, CCC-652 Code Package.
- 3) RF-Report, H. N. Jow, et al., "MELCOR Accident Consequence Code System (MACCS) Model Description", NUREG/CR-4691, SAND86-1562, Vol. 2 February 1990.
- 4) RF-Merno, Philip C. Knause, "Nuclear Relicensing Meteorological Data Documentation", December 29, 1999. (See At:achment II)
- 5) RF-Report, GE Report, GEDO-SR5-2006-0020, Information Regarding ESBWR Source Term Based on MAAP Runs, April 11, 2006.
- 6) RF-Report, R. J. Breeding, et al., "*Evaluation of Severe Accident Risks: Surry 1 Main Report*," NUREG/CR-4551, Vol. 3, Rev. 1, Part 1, October 1990
- 7) Not Used.
- 8) RF-Calc, SM-1242 Revision 0, MACCS2 Model for North Anna Level 3 Application, 2-28-2000.
- 9) RF-Report, J. L. Sprung, et al., "*Evaluation of Severe Accident Risks: Quantification of Major Input Parameters MACCS: Input*," NUREG/CR 4551, Vol. 2, Rev. 1., Part 7, December 1990.
- 10) RF-Report, U. S. Bureau of Labor, "*Consumer Price Index-All Urban Consumers*", Series Catalog: Series ID : CUUR0300SA0, 1999.
- 11) RF-Report, S. L. Humphreys, et al., "SECPOP90: Sector Population, Land Fraction, and Economic Estimation *Program*, "NUREG/CR-6525, September, 1997.
- 12) RF-Report, Bureau of the Census, "Census of Population and Housing, 1990: Public Law (P. L.) 94-171, Data Technical Documentation", CDROM set, 1991.
- 13) RF-Report, Statistical Information Staff, Population Division, U. S. Bureau of the Census, "County Population Estimates for July 1, 1998 and Population Change for April 1, 1990 to July 1, 1998 (includes revised April 1, 1990 Census Population Counts)," CO-98-002, Released to Internet, March 12, 1999. (in Appendix)
- 14) RF-Report, Statistical Information Staff, Population Division, U. S. Bureau of the Census, "*County Population Estimates for July 1, 1998 and Population Change for April 1, 1990 to July 1, 1998 (includes revised April 1, 1990 Census Population Counts)*," CO-98-002, Released to Internet, March 12, 1999. (in Appendix)
- 15) RF-Report, R. J. Breeding, et al., "*Evaluation of Severe Accident Risks: Quantificatioin of Major Input Parameters*," NUREG/CR-4551, Vol. 2, Rev. 1, Part 7, December 1990.
- 16) RF-Report, U.S. Dept. of Agriculture, "1997 Census of Agriculture," National Agricultural Statistics Service.

ENGINEERING WORK SHEET						
Calc Number SM-1526	Rev. 0	Add.	Sheet: <u>5</u> of <u>61</u>			

- 17) RF-Report, Virginia Power Nuclear Human Resources, Salary Administration Guide, 1999.
- 18) RF-Report, NRC Letter From Nitin Patel to David A. Christian, "Results of Review of the Supplement to the Early Site Permit (ESP) Application for the North Anna Site (TAC NOS. MC1126 and MC1128), March 2, 2006

3.0 Introduction

This calculation documents the preparation and execution of North Anna-ESBWR site-specific input files for the severe accident consequence code Melcor Accident Consequence Code System MACCS2 [References 1, 2 and 3]. MACCS2 simulates the impact of severe accidents at nuclear power plants on the surrounding environment and is used for the quantification of Level 3 PSA's. The principal phenomena considered in MACCS2 are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs.

To demonstrate the application of the Level 3 analysis, Level 2 PSA results for the ESBWR are used here as inputs. The Level 2 source term data is taken from the GE analysis (Ref. 5). The bulk of the North Anna ESBWR model was already developed in Reference 8 for NAPS Units 1 and 2. The ATMOS input file was revised here which was necessary to use the appropriate source term data for the ESBWR. The EARLY input file was also revised here to receive more output data and to specify the population evacuation fraction.

The Level 3 (MACCS2) model has been prepared using projected year 2030 demographic data from the North Anna UFSAR (See Attachment I). The population distribution is given for a 50 mile radius around the plant.

Three computer cases have been prepared and executed, the results including the offsite population dose and economic data, are shown in the Summary of Results section. This calculation represents a limited scope Level 3 PRA. The results are based on the internal events at-power only. No insights are derived and no analysis of the contributors to risk are performed.

4.0 Assumptions, Design Inputs and Key Parameter Uncertainties

4.1 Assumptions

- 1) The North Anna 50 mile population distribution for year 2030 is appropriate for this evaluation.
- 2) The GE ESBWR preliminary source term data is valid for this application.
- 3) The 1998 meteorological data for the Base Case is assumed to be a good representation for any given year.
- 4) The adjustment of economic data for farmland and non-farmland by using time weighted consumer price index data is appropriate.

4.2 Design Inputs

The bulk of the North Anna Units 1 and 2 model inputs from Reference 8 will be used for the ESBWR model here. This calculation will use the same North Anna 50 mile population data for year 2030 which was used in Reference 8. The radionuclide inventory and source term release fractions were taken from Reference 5. Meteorological data was obtained from the Dominion Electric Environmental Services Department (EES formerly EP&C) containing hourly meteorological data and seasonal mixing height data. Meteorological data for years 1996 through 1998 was provided (See Attachment II). Economic data was properly adjusted by using the current (1999) consumer price index.

4.3 Key Parameter Uncertainties

ENGINEERING WORK SHEET							
Calc Number SM-1526	Rev. 0	Add.	Sheet: _6_ of <u>_61</u>				

No parameter uncertainties were included in this calculation since only best estimate results are sought. Fluctuations on the meteorological data are shown by running sensitivities using three separate years of data.

5.0 Method of Analysis

The objective of this calculation is to calculate the total dose to a population within a 50 mile radius of the North Anna Power Station and the total dollar cost incurred to the decontamination of farmland and non-farmland including the cost of relocating a population that lives within this boundary.

The following steps will be used to perform this calculation.

- 1. Gather data that is specific to the North Anna Power Station. This data includes meteorological data, source term data, population data, economic data, watershed data and spatial coordinate data. Additional inputs are also required but will be discussed below.
- 2. The data are then entered into the five input files that are required and used by the MACCS2 code. These five input files are identified as ATMOS, EARLY, CHRONC, SITE and the MET data input files.

The Level 3 severe accident consequence analysis was carried out with the Melcor Accident Consequence Code System (MACCS2) code. MACCS2 simulates the impact of severe accidents at nuclear power plants on the surrounding environment. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. This analysis was performed with the MACCS2 version designated as Oak Ridge National Laboratory RSICC Computer Code Collection MACCS2 V.1.13.1, CCC-652 Code Package [1,2,3].

The sources and preparation of the input data are summarized in the following sections. The MACCS2 code is described in the technical reports provided with the code package.

6.0 ESBWR LEVEL 2 DATA

The ESBWR Level 2 data is taken from the General Electric ESBWR Submittal Document. This data includes the source term inventory, power level, release fractions, plume release start time, plume release height, delay and duration. The radionuclide core inventory, release fractions, plume release data and source term category frequencies were obtained from GE in Reference 5. A description of the eleven release categories and the corresponding frequencies are shown on Table 6-1 below. The balance of the input data was taken from Reference 8.

	Table 6-1: ESBWR Source Term Category Frequencies							
Release Category	Summary Description	Release Frequency (reactor year ⁻¹)						
BYP	Containment is bypassed because of CIS failure with large (>12" diameter hole) opening in containment. Lower drywell debris bed covered.	<1E-12						
BOC	Break outside of containment.	4E-12						
CCID	Containment fails due to core concrete interaction; lower drywell debris bed uncovered.	2.9E-11						
CCIW	Containment fails due to core concrete interaction; lower drywell debris bed covered.	2.9E-10						
DCH	Direct containment heating (high pressure RPV failure) event damages containment	<1E-12						

Calc Number SM-1526		Rev. 0	v. 0 Add. Sheet: _7_		of <u>61</u>	
EVE	Ex-vessel steam explos	ion fails containment	···· ·		2.5E-10	
FR	Release through controlled (filtered) venting from suppression chamber					
OPVB	Containment fails due to failure of vapor suppression (vacuum breaker) function.					
OPW1	Containment fails due to early (<24 hours) loss of containment heat removal.					
OPW2	Containment fails due to	at removal.	1.4E-11			
TSL	TSL Containment leakage at Technical Specification limit.				2.8E-8	

7.0 MACCS2 MODEL Input Information

This section describes the preparation of the data required in the five MACCS2 input files. The bulk of the model is similar to that used for NAPS Units 1 and 2 as documented in Reference 8. There are a large number of input data values required. Many of these have been prepared and recommended as part of the code preparation. These values are used in this analysis except where plant-specific values are required. These are noted either in the text below if the preparation required is extensive or else directly by comments in the input file body. In this calculation file, such values that differ from Fleference [2] are denoted by a listing of the applicable reference number.

The input files for MACCS2 covered in this document are described below. The actual file name given to the plant specific files used in the executable RUNIT.BAT file are shown in quotation marks.

A paper copy listing of four input files, except for the meteorological file are included in Attachment III. The complete list of input and output files are incorporated into the electronic version of this report in Attachment IV as objects that can be opened directly for use. The complete list of input and output files are also incorporated into a CD which will accompany this calculation in Records Management.

7.1 ATMOS User Input File: "EBATMOS.INP"

This file provides the main input for the ATMOS calculation phase of MACCS2. Most of the ESBWR changes to the original North Anna specific model in Reference 8 are made in this ATMOS input file.

ATMOS calculates the dispersion and deposition of material released "source terms" to the atmosphere as a function of downwind distance. It utilizes a Gaussian plume model with Pasquill-Gifford dispersion parameters. The phenomena that ATMOS treats are (1) building wake effects, (2) buoyant plume rise, (3) plume dispersion during transport, (4) wet and dry deposition, and (5) radioactive decay and ingrowth. At the midpoint of each spatial interval along the transport path, air and ground concentrations for all the radionuclides are calculated as well as miscellaneous information about plume size, height, and transport timing. These data are stored in common blocks which are used later by the EARLY and CHRONC modules of MACCS2.

Source Terms

The source term release fractions (RELFRC) for the MACCS2 element groups are shown below in Table 7-1 for 11 different source term categories (STC). The release fractions are taken from the GE ESBWR document [Reference 5].

Table 7 1: ESPWD Source Term Belease Fractions

		····	
Calc Number SM-1526	Day 0	Add.	Sheet: 8 of 61
Calc Number SW-1520	Rev. 0	I Auu.	

Source Term Category	Xe/Kr	l-Br	Cs-Rb	Te-Sb	SR	Со-Мо	LA	CE	BA
BOC	1.00E+00	8.50E-01	3.80E-01	9.06E-01	1.50E-02	7.20E-02	6.10E-04	3.43E-03	1.50E-02
ВҮР	9.80E-01	4.30E-01	3.70E-01	7.42E-01	1.60E-02	1.20E-01	5.30E-04	3.32E-03	2.90E-02
CCID	9.20E-01	5.30E-01	3.20E-01	5.95E-01	2.30E-06	5.10E-06	1.40E-07	1.40E-06	2.20E-05
CCIW	1.00E+00	7.30E-05	7.90E-03	1.54E-02	8.20E-08	5.90E-08	1.10E-08	7.49E-08	6.00E-08
DCH	9.00E-01	8.00E-01	1.50E-01	4.90E-01	3.20E-04	2.70E-04	3.20E-04	3.20E-04	3.20E-04
EVE	8.40E-01	2.50E-01	3.40E-01	6.90E-01	1.30E-02	1.10E-04	8.20E-04	6.25E-03	5.70E-03
FR	1.00E+00	9.80E-06	4.60E-05	2.53E-03	1.10E-08	1.90E-07	4.10E-10	1.51E-09	3.20E-08
OPVB	9.90E-01	2.80E-01	3.40E-02	1.10E-01	1.70E-03	1.20E-04	1.50E-04	3.11E-04	8.70E-04
OPW1	9.90E-01	6.00E-01	1.40E-01	3.70E-01	1.60E-03	4.30E-07	5.80E-06	1.81E-04	7.50E-04
OPW2	9.90E-01	3.80E-02	4.30E-02	1.57E-01	1.20E-03	2.00E-07	3.90E-06	1.40E-04	5.70E-04
TSL	2.00E-03	1.50E-04	5.50E-05	2.15E-04	2.10E-06	3.90E-05	7.30E-08	2.00E-07	7.70E-06

Other parameters associated with the release plume are shown in Table 7-2 below. They are assigned to each source term according to the STC number. Each release plume is assumed to have only one segment. The corresponding timing data is also shown below. The timing data as well as the height and energy level of each plume are taken from the GE ESBWR document [Reference 5].

	Table 7-2: ESBWR Plume Characterization Data											
STC	DALARM (S)	NUMREL	MAXRIS	REFTIM (s)	PLHEAT (w)	PLHITE (m)	PLDUR (s)	PDELAY (s)				
BOC	1,200	1	1	0.0	0	49	9,000	2,100				
ВҮР	1,200	1	1	0.0	0	49	7,800	1,800				
CCID	21,100	1	1	0.0	0	49	36,000	53,100				
CCIW	24,000	1	1	0.0	0	49	36,000	90,400				
DCH	16,300	1	1	0.0	0	49	36,000	63,000				
EVE	22,400	1	1	0.0	0	49	36,000	22,500				
FR	9,800	1	1	0.0	0	49	36,000	102,600				
OPVB	16,500	1	1	0.0	0	49	36,000	65,300				
OPW1	16,600	1	1	0.0	0.	49	36,000	91,500				
OPW2	17,600	1	1	0.0	0	49	36,000	146,900				
TSL	21,000	1	1	0.0	0	49	36,000	1,100				
				1								

The scaling factor (CORSCA) was used to adjust the ESBWR core inventory for a power level of 4500 MWt. The core inventory is based on a conservative discharge exposure burnup provided by General Electric in Reference 5.

The initial values for sigma –y and sigma-z for the plumes are calculated using the Surry containment dimensions of approximately 40 m width and 50 m height from Table 4.2-1 in Reference 6.

ENGINEERING WORK SHEET					
Calc Number SM-1526	Rev. 0	Add.	Sheet: _9_ of <u>_61</u>		

7.2 EARLY User Input File: "EBEARLY.INP"

This file provides the main input for the EARLY calculation phase of MACCS2.

The EARLY file models the time period immediately following a radioactive release. This period is commonly referred to as the emergency phase. It may extend up to 1 week after the arrival of the first plume at any downwind spatial interval. The subsequent intermediate and long-term periods are treated by CHRONC. In the EARLY module the user may specify emergency response scenarios that include evacuation, sheltering, and dose-dependent relocation. The EARLY module has the capability for combining results from up to three different emergency response scenarios. This is accomplished by appending change records to the EARLY input file. The first emergency-response scenario is defined in the main body of the EARLY input file. Up to two additional emergency-response scenarios can be defined through change record sets positioned at the end of the file.

The emergency evacuation model has been modeled as a single evacuation zone extending out 10 miles from the plant. The average evacuation speed is estimated (see Table 4.2-1 Ref. 6) to be on the order of 4 mph (1.8 m/s). For the purposes of this analysis an average evacuation speed of 1.8 m/s is used with a 7200 second delay between the alarm and start of evacuation, with no sheltering for the base case.

7.3 CHRONC User Input File: "EBCHRONC.INP".

This file provides the main input for the CHRONC calculation phase of MACCS2. It calculates the long term dose impact on the population.

The CHRONC module simulates the events that occur following the emergency-phase time period modeled by EARLY. CHRONC calculates the total accumulated dose received by a population after the emergency phase or starting on about the 8th day up to 50 years of time. Various long term protective actions may be taken during this period to limit radiation doses to acceptable levels. CHRONC calculates the individual health effects that result from both (1) direct exposure to contaminated ground and from inhalation of resuspended materials as well as (2) indirect health effects caused by the consumption of contaminated food and water by individuals who could reside both on and off of the computational grid. CHRONC also calculates the economic costs of the long term protective actions as well as the cost of the emergency response actions that were modeled in the EARLY module.

Economic costs are the recommended MACCS values as given for the NUREG-1150 study [Reference 9] updated using recent Consumer Price Indexes from the Bureau of Labor [Reference 10]. Reference 9 uses economic values that are based on 1986 consumer price index. From Reference 10, values for the CPI of 108.9 for 1986 and 127.9 for 1990 were obtained. Therefore the unit costs from [Reference 9] have been multiplied by a factor of (127.9/108.9 =) 1.17 to represent revised North Anna region values.

Additionally from Reference 10 a value for the CPI of 158.9 for 1998 was obtained. Sensitivity unit costs from [Reference 9] have been multiplied by a factor of (158.9/108.9 =) 1.46 to represent current North Anna region values.

Applying the above CPI factors on the selected Reference 9 CHRONC input data yields the following.

<u>Parameter</u>	Ref. 9 Values	<u>Multiplier</u>	Adjusted New Values
CHEVACST	27.00	1.46	40.00
CHRELCST	27.00	1.46	40.00
CHCDFRM0	562.5 1250.0	1.17	658.1 1463.0
CHCDFRM0	562.5 1250.0	1.46	821.3 1825.0
CHCDNFRM	3000. 8000.0	1.17	3510.0 9360.0
CHCDNFRM	3000. 8000.0	1.46	4380.0 11680.0
CHPOPCST	5000.	1.46	7300.0

ENGINEERING WORK SHEET					
Calc Number SM-1526	Rev. 0	Add.	Sheet: _10_ of <u>61</u>		

<u>These CHRONC input parameters are defined as:</u> CHEVACST Daily cost for a person who is evacuated (\$/Person-Day) CHRELCST Daily cost for a person who is relocated (\$/Person-Day) CHCDFRM0 Cost of farm decontamination per farmland unit area (\$/Hectare) CHCDNFRM Cost of nonfarm decontamination per resident person (\$/Person) CHPOPCST Pcpulation relocation cost (\$/Person)

The average cost of decontamination labor CHDLBCST (Dollars/Man-year) was obtained from Dominion Nuclear Human Resources Department [Reference 17]. This value is applicable in terms of 1999 dollars.

CHDLBCST 42000.0 (Dollars/Man-year)

The average farm wealth value CHVALWF (\$/hectare) has been calculated by summing the appropriate county data from Reference 11 within the North Anna 50 mile radius and dividing by the total number of hectares. This value includes both publicly and privately owned grazing lands, farmland, farm buildings, and non-recoverable farm machinery, as well as any publicly owned infrastructure serving the farm industry. The average value is listed below.

CHVALWF 6979.0 (\$/hectare)

The Average ncn-farm wealth value CHVALWNF (\$/person) has been calculated by summing the appropriate county data from Reference 11 within the North Anna 50 mile radius and dividing by the total number of hectares. Nonfarm wealth includes all public and private property not associated with farming that would be unusable if the region was rendered either temporarily or permanently uninhabitable. The average value is listed below.

CHVALWNF 141,206.0 (\$/person)

7.4 Meteorological Data File: "NMET.INP"

This file describes three year's (1996-1998) worth of hourly meteorological data for the plant as recorded at the site meteorological tower. The hourly data (wind direction, wind speed, stability category, and precipitation) were collected on-site at North Anna Power Station [Reference 4]. The wind direction and wind speed were recorded at vent height (tower upper elevation); the stability data were determined by a Delta T system measuring the temperature at 10 meters and at vent height; and precipitation was measured at ground level. The instruments were calibrated quarterly. The data were temporarily stored at the sites in dataloggers which were polled nightly to transfer the data to a personal computer at Innsbrook. The data were quality controlled each business day by EP&C personnel. Professional meteorologists resolved any unusual data situations. Each month, the data were transferred to the corporate mainframe computer and were converted to and stored in SAS datasets. SAS programs were written to produce the hourly data files in MACCS2 format.

The wind direction were recorded as direction "from" which the wind was blowing, and these were converted to direction "to".

Wind speed were recorded as miles per hour, and they were converted to tenths of meters per second. Stability data were recorded as absolute Delta T values, and these were converted to stability categories of "1" to "7".

Precipitation was recorded as inches, and it was converted to hundredths of inches.

The mixing height data were derived from radiosonde measurements taken by the National Weather Service at their station near Dulles Airport (Sterling, Virginia). Dulles Airport is the nearest inland upper

ENGINEERING WORK SHEET					
Calc Number SM-1526	Rev. 0	Add.	Sheet: _11_ of <u>_61</u>		

air station to North Anna.

Morning and afternoon mixing height values for 1996 through 1998 were obtained from the National Climatic Data Center. Missing values were replaced where possible as prescribed in the USEPA document "Procedures for Substituting Values for Missing NWS Meteorological Data for Use in Regulatory Air Quality Models." All non-missing values greater than zero were considered valid.

7.5 SITE Data File: "NSITE.INP"

The population distribution and land use information for the region surrounding the site are specified in the Site Data File. Contained in the Site Data file are the geometry data used for the site (spatial intervals and wind directions), population distribution, fraction of the area that is land, watershed data for the liquid pathways model, information on agricultural land use and growing seasons, and regional economic information. Some of the detailed data in this file supercedes certain data in the EARLY input file.

Much of the site data was initially prepared by the computer program SECPOP90 [Reference 11]. This code contains a database extracted from Bureau of the Census PL 94-171 (block level census) CD-ROMS [Reference 12], the 1992 Census of Agriculture CD ROM Series 1B, the 1994 US Census *County and City Data Book* CD-ROM, the 1993 and 1994 *Statistical Abstract of the United States*, and other minor sources. The reference contains details on how its database was created and checked. The output from SECPOP90 is a file in the MACCS2 site file format based on the data in its reference data base for the specified site.

The plant location for NAPS Unit 1 is described in the North Anna UFSAR Section 2.1.1.1 Site Location. The 50 mile radius area around the plant was divided into sixteen directions that are equivalent to a standard navigational compass rosette. This rosette was further divided into 11 "inner" radial rings, each with sixteen azimuthal sections. A picture of the rosette for North Anna 10 and 50 mile radii are shown in Attachment I.

The SECPOP90-prepared data was then modified and updated using more recent references as discussed below.

7.5.1 Population Distribution

The North Anna UFSAR Section 2.1.3 50 mile population distribution for the year 2030 was used in place of the 1990 Census SECPCIP90 data.

7.5.2 LAND FRACTIONS

SECPOP90 calculates the land fraction for each rosette section as explained in the manual for the code [Reference 11]. The code contains a county-level database with the land fractions for each county obtained from the 1990 census data files [Reference 12]. The calculated values are used directly in these analyses.

7.5.3 Region Index

The region indexes were selected to allow unique region numbers for the sectors with large areas, that is, the very small regions of the rosette near the plant were assigned to similar regions. This is required because SECPOP90 has a limit of 99 regions only.

ENGINEERING WORK SHEET				
Calc Number SM-1526	Rev. 0	Add.	Sheet: <u>12</u> of <u>61</u>	

7.5.4 Watershed Index

For North Anna the landmass surrounding the site up to a 50 mile radius is mostly land and stagnant water bodies with small streams with the exception of a part of the Potomac river in the NE direction at 40 miles. It was assumed therefore that the North Anna watershed data represents all landmass for the 16 polar coordinates at 11 spatial intervals. This is represented by specifying a 1 for each coordinate as shown in the NSITE input data file in Attachment III.

7.5.5 Crop Season and Share

The crop season data was assumed to be the same as for the Surry Power Station site and is taken from the NUREG-1150 analysis for Surry [Reference 9]. Agricultural data available in the 1997 Census of Agriculture [Reference 16] was used to produce the land fraction used for each crop.

7.5.6 Watershed Definition

The default data was used here and assumed to be the same for NAPS as for the Surry site which was taken from the analysis for Surry [Reference 9].

7.5.7 Regional Economic Data

The SECPOP9() regional economic values were updated to 1999 using cost of living and other data from the Bureau of the Census and the Department of Agriculture. Agricultural data is taken from data available in the 1999 Census of Agriculture [Reference 16]. This was accomplished by replacing the SECPOP90 data for the counties within the fifty mile radius by the 1999 value. That is, the SECPOP90 county data base was modified so that the results produced by the code were correctly assigned to the various economic regions.

8 Computer Codes And Computer Used

For this ESBWFI analysis the MACCS2 code [Reference 1] was run on a DELL platform desktop computer. No other code was used for the ESBWR analysis.

9 Detailed Calculations

Five MACCS2 runs were executed, 1 base case plus 4 sensitivity cases. The base case used the best estimate values with year 2030 population projections and 1998 meteorological data as described in the next section and is termed BASE. The Base Case evacuation modeling was carried out by assuming an evacuation scenario wherein 95% of the population are evacuated normally (within the 10 mile emergency zone). Four sensitivity runs were made using 1996 and 1997 meteorological data respectively plus a sensitivity on reactor power and plume energy.

10 Computer Input And Output

A paper copy of the base case input files for NEARLY, NCHRONC, ABATMOS, and the NSITE are included in Attachment III. The meteorological file is too large and is not included in printed form. An electronic copy of all these files are included in Attachment IV.

The various sensitivity case input files have descriptive names, and are listed below. These are included in the files included in the electronic form of this file.

	Description				
CASE1A	BASE CASE:	1998 Met Data,	95% Evac,	DLTSHL=7200,	Plume E=1.0E-6W
CASE2A	Sensitivity Case	: 1997 Met Data	, 95% Evac,	, DLTSHL=7200,	Plume E=1.0E-6W

Calc Number SM-1526 Rev. 0 Add. Sheet: _13_ of _61
--

CASE3A	Sensitivity Case: 1996 Met Data, 95% Evac, DLTSHL=7200, Plume E=1.0E-6W
CASE4A	Sensitivity Case: 1996 Met Data, 95% Evac, DLTSHL=7200, Power = 5500MWt
CASE5B	Sensitivity Case: 1996 Met Data, 95% Evac, DLTSHL=7200, Plume E=1.0E6W

The output files are too large to be included in this calculation. Therefore output files are included in the electronic file also.

The titles of the 3 input files corresponding to each sensitivity case used in the executable RUNIT.BAT file are listed below.

CASE1A	EBATMOS.INP ABEARLY.INP ABCHRONC.INP NMET98.INP NSITE.INP
CASE2A	EBATMOS.INP ABEARLY.INP ABCHRONC.INP NMET97.INP NSITE.INP
CASE3A	EBATMOS.INP ABEARLY.INP ABCHRONC.INP NMET96.INP NSITE.INP
CASE4A	EBATMOSA.INP ABEARLY.INP ABCHRONC.INP NMET96.INP NSITE.INP
CASE5B	EBATMOSB.INP ABEARLY.INP ABCHRONC.INP NMET96.INP NSITE.INP

The titles of the 3 output files corresponding to each sensitivity case is listed below.

CASE1A	ESBOUT98X.OUT
CASE2A	ESBOUT97X.OUT
CASE3A	ESBOUT96X.OUT
CASE4A	ESBOUT96A.OUT
CASE5B	ESBOUT96B.OUT

The output and input files will also be stored on a CDROM which will accompany this calculation.

11 Summary Of Results

The following results are extracted from the MACCS2 output files produced for 11 source term categories (STC) for the BASE CASE1A and four sensitivity studies CASE2A, CASE3A, CASE4A and CASE5B. Reported here in Tables 11-1 and 11-2 are the total offsite dose in Sieverts and the offsite economic cost in dollars within a 50 mile radius for each of the 11 STC's respectively. Tables 11-3 through 11-10 provide additional output that is considered to be of interest which include the early and late cancer fatalities, the affected land areas which require decontamination, interdiction, condemnation and the Exposure Index. The 11 STCs and Frequencies are defined in Table 6-1 above.

Table 11-1: ESBWR Population Dose, Sieverts					Category Frequency	
STC	CASE1A 98MET	CASE2A 97MET	CASE3A 96MET	CASE4A 5500MWt	CASE5B Plume=1.0E6W	Prob/yr
BOC	9.33E+04	8.55E+04	8.77E+04	9.79E+04	8.84E+04	<1E-12
ВҮР	8.68E+04	7.96E+04	8.22E+04	9.11E+04	8.28E+04	4E-12
CCID	7.17E+04	6.48E+04	6.65E+04	7.16E+04	6.71E+04	2.9E-11
CCIW	1.24E+04	1.09E+04	1.18E+04	1.30E+04	1.20E+04	2.9E-10
DCH	6.29E+04	5.74E+04	5.73E+04	6.41E+04	5.76E+04	<1E-12
EVE	7.72E+04	6.90E+04	7.18E+04	7.70E+04	7.27E+04	2.5E-10
FR	3.15E+02	2.64E+02	2.98E+02	3.60E+02	3.02E+02	2.3E-10
OPVB	3.12E+04	2.83E+04	2.91E+04	3.30E+04	2.93E+04	<1E-12
OPW1	5.52E+04	5.13E+04	5.21E+04	5.73E+04	5.27E+04	<1E-12
OPW2	2.87E+04	2.68E+04	2.76E+04	2.96E+04	2.78E+04	1.4E-11
TSL	2.43E+02	2.02E+02	2.29E+02	2.73E+02	2.32E+02	2:.8E-8

ENGINEERING WORK SHEET					
Calc Number SM-1526	Rev. 0	Add.	Sheet: _14_ of <u>_61</u>		

Table 11-2: ESBWR Offsite Cost, \$								
STC	CASE1A 98MET	CASE2A 97MET	CASE3A 96MET	CASE4A 5500MWt	CASE5B Plume=1.0E6W	Prob/yr		
BOC	1.36E+10	1.27E+10	1.41E+10	1.63E+10	1.43E+10	<1E-12		
BYP	1.34E+10	1.25E+10	1.38E+10	1.58E+10	1.41E+10	4E-12		
CCID	1.51E+10	1.36E+10	1.42E+10	1.62E+10	1.44E+10	2.9E-11		
CCIW	8.19E+08	6.24E+08	7.54E+08	1.06E+09	7.80E+08	2.9E-10		
DCH	9.46E+09	8.50E+09	9.20E+09	1.01E+10	9.37E+09	<1E-12		
EVE	1.59E+10	1.44E+10	1.50E+10	1.70E+10	1.52E+10	2.5E-10		
FR	2.48E+06	1.93E+06	2.51E+06	3.25E+06	2.47E+06	2.3E-10		
OPVB	4.15E+09	3.45E+09	3.95E+09	4.38E+09	4.04E+09	<1E-12		
OPW1	9.13E+09	8.11E+09	8.63E+09	9.63E+09	8.74E+09	<1E-12		
OPW2	4.58E+09	3.84E+09	4.25E+09	4.93E+09	4.35E+09	1.4E-11		
TSL	1.64E+06	1.47E+06	1.74E+06	2.60E+06	1.68E+06	2.8E-8		

The ESBWR consequence in sieverts is converted to risk as Person-Rem/year is shown in Table 11-3 below for all eleven STCs. The risk was calculated as a product of the above listed frequency with the corresponding dose and cost for each STC, respectively. It is to be noted that one sievert is equal to 100 Rem.

1	Table 11-3: ESBWR Dose Risk Assessment, Person-Rem/year								
STC	CASE1A	CASE2A	CASE3A	CASE4A	CASE5B				
	98MET	97MET	96MET	5500MWt	Plume=1.0E6W				
BOC	9.33E-06	8.55E-06	8.77E-06	9.79E-06	8.84E-06				
BYP	3.47E-05	3.18E-05	3.29E-05	3.64E-05	3.31E-05				
CCID	2.08E-04	1.88E-04	1.93E-04	2.08E-04 3.77E-04 6.41E-06 1.93E-03 8.28E-06 3.30E-06	1.95E-04 3.48E-04 5.76E-06 1.82E-03 6.95E-06				
CCIW	3.60E-04	3.16E-04 5.74E-06 1.73E-03	3.42E-04 5.73E-06 1.80E-03 6.85E-06						
DCH	6.29E-06								
EVE	1.93E-03								
FR	7.25E-06	6.07E-06							
OPVB	3.12E-06	2.83E-06	2.91E-06		2.93E-06				
OPW1	5.52E-06	5.13E-06	5.21E-06	5.73E-06	5.27E-06				
OPW2	4.02E-05	3.75E-05	3.86E-05	4.14E-05 3	3.89E-05				
TSL	6.80E-04	5.66E-04	6.41E-04	7.64E-04	6.50E-04				
Total	3.28E-03	2.89E-03 ·	3.07E-03	3.39E-03	3.11E-03				

The ESBWR percentage dose contribution to total risk is shown on Table 11-4 below. The largest contribution to dose comes from EVE release category and the lowest contribution comes from the OPVB release category. The release category EVE is defined as an ex-vessel steam explosion that fails containment whereas release category OPVB is defined as a containment failure due to failure of vapor suppression (vacuum breaker) function.

Calc Number SM-1526	Rev. 0	Add.	Sheet: _15_ of <u>_61</u>
---------------------	--------	------	---------------------------

	Table 11-4: Percentage Dose Contribution to Total Risk								
STC	CASE1A	CASE2A	CASE3A	CASE4A	CASE5B				
	98MET	97MET	96MET	5500MWt	Plume=1.0E6W				
BOC	0.28%	0.30%	0.29%	0.29%	0.28%				
BYP	1.06%	1.10%	1.07%	1.08%	1.06%				
CCID	6.33%	6.50%	6.28%	6.13%	6.25%				
CCIW	10.95%	10.93%	11.14%	11.14%	11.18%				
DCH	0.19%	0.20%	0.19%	0.19%	0.19%				
EVE	58.76%	59.64%	58.43%	56.86%	58.41%				
FR	0.22%	0.21%	0.22%	0.24%	0.22%				
OPVB	0.09%	0.10%							
OPW1	0.17%	0.18%	0.17%	0.17%	0.17%				
OPW2	1.22%	1.30%	1.26%	1.22%	1.25%				
TSL	20.72%	19.56%	20.87%	22.58%	20.88%				
Total	100.00%	100.00%	100.00%	100.00%	100.00%				

The population exceeding the 25 and 200 person rem limits respectively for the Base Case (CASE1A) are shown on Table 11-5. The mean overall dose is reported here which includes the contributions of 95% from Cohort 1 and 5% from Cohort 2. Cohort 1 represents the 95% of population within the 10 mile radius that evacuates and Cohort 2 is the 5% of the population that does not evacuate. The Base Case (CASE1A) assumes that 95% of the population evacuates out to 10 miles and 5% of the population do not evacuate.

Table 11-5: Population Exceeding Overall Dose						
Release Category	25 Person Rem	200 Person Rem				
BOC	3.93E+04	2.33E+03				
BYP	3.36E+04	1.87E+03				
CCID	6.55E+03	1.82E+01				
CCIW	4.25E-01	1.77E-04				
DCH	8.47E+03	2.18E+01				
EVE	1.04E+04	1.32E+02				
FR	2.17E-03	0.00E+00				
OPVB	1.07E+03	4.87E+00				
OPW1	4.54E+03	1.38E+01				
OPW2	1.84E+01	7.85E-01				
TSL	0.00E+00	0.00E+00				

The ESBWR mean value for total economic risk in terms of \$/year are shown for all ten STC's in Table 11-6 below. The largest economic risk comes from release category ex-vessel steam explosion (EVE). The ESBWR risk was calculated as a product of the above listed (Table 11-2) frequency with the corresponding cost for each STC respectively.

Table 11-6: ESBWR Dollar Risk Assessment, \$/year							
STC	CASE1A 98MET	CASE2A 97MET	CASE3A 96MET	CASE4A 5500MWt	CASE5B Plume=1.0E6W		
BOC	1.36E-02	1.27E-02	1.41E-02	1.63E-02	1.43E-02		
BYP	5.36E-02	5.00E-02	5.52E-02	6.32E-02	5.64E-02		
CCID	4.38E-01	3.94E-01	4.12E-01	4.70E-01	4.18E-01		

		ENC	GINEERII	NG W	ORK SH	EE	Т	
Calc Number SM-1526		:		Rev. () Ac	ld.	She	eet: _16_ of _61
Г	CCIW	2.38E-01	1.81E-	01	2.19E-0	1	3.07E-01	2.26E-01
	DCH	9.46E-03	8.50E-	03	9.20E-0	3	1.01E-02	9.37E-03
	EVE	3.98E+00	3.60E+	00	3.75E+0	0	4.25E+00	3.80E+00
	FR	5.70E-04	4.44E-	04	5.77E-04	4	7.48E-04	5.68E-04
	OPVB	4.15E-03	3.45E-	03	3.95E-0	3	4.38E-03	4.04E-03
	OPW1	9.13E-03	8.11E-	03	8.63E-0	3	9.63E-03	8.74E-03
	OPW2	6.41E-02	5.38E-	02	5.95E-0	2	6.90E-02	6.09E-02
	TSL	4.59E-02	4.12E-	02	4.87E-02	2	7.28E-02	4.70E-02
	Total	4.85E+00	4.35E+	00	4.58E+0	0	5.27E+00	4.65E+00

The ESBWR mean values for affected land areas in hectares are shown in Table 11-7 below. These values were taken from the Base Case MACCS2 output from Cohort 3 CHRONC module. The largest affected land area comes from the farm interdiction for release category DCH. The release category DCH is a direct containment heating (high pressure RPV failure) event that damages the containment boundary.

Table 11-7: CASE1A Mean Values for Affected Land Areas Hectares (0-50mi)							
Release Category	Farm Decontamin- ation	Farm Interdiction	Farm Condemnation				
BOC	4.89E+04	5.92E+04	5.80E+03				
BYP	4.69E+04	5.48E+04	5.78E+03				
CCID	8.00E+04	8.91E+04	3.79E+03				
CCIW	1.20E+04	2.72E+04	3.71E+01				
DCH	6.14E+04	9.15E+04	1.66E+03				
EVE	8.13E+04	8.89E+04	4.17E+03				
FR	4.19E+01	1.23E+03	0.00E+00				
OPVB	3.80E+04	7.82E+04	2.78E+02				
OPW1	5.99E+04	8.66E+04	1.51E+03				
OPW2	3.91E+04	6.26E+04	3.54E+02				
TSL	4.65E+01	5.75E+02	0.00E+00				
Total	2.55E+05	3.49E+05	8.17E+03				

The early and latent cancer fatalities are presented in Table 11-8. The mean values for early and latent cancer fatalities were taken from the Base Case MACCS2 overall results section which reports the sum total of Cohorts 1, 2 and 3. The early and late cancer fatalities reported are for the 0-50 mile mean values respectively. It is seen that the highest early and late cancer fatalities are associated with release category numbers 8 and 9 respectively. The total early and late cancer fatalities per year were calculated to be 2.36E-10 and 5.64E-07 respectively.

Table 11-8: ESBWR Mean Values for Early and Latent Fatalities (0-50 mi)						
Release Category	Early Fatalities	Latent Cancer Fatalities	Frequency Prob/yr	Early Fatalities/yr	Late Cancer Fatalities/yr	
BOC	5.17E+01	3.82E+03	<1E-12	5.17E-11	3.82E-09	

alc Numbe	alc Number SM-1526			Rev. 0	Add.	Sheet: _17_ of _6*	
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		
	BYP	4.47E+01	4.24E+03	4E-12	1.79E-1	10 1.70E-08	
	CCID	0	1.18E+03	2.9E-11	0.00E+0	00 3.42E-08	
	CCIW	0	3.59E+01	2.9E-10	0.00E+0	00 1.04E-08	
	DCH	0.00E+00	1.15E+03	<1E-12	0.00E+0	00 1.15E-09	
	EVE	2.39E-02	1.82E+03	2.5E-10	5.98E-1	12 4.55E-07	
	FR	0.	5.45E+00	2.3E-10	0.00E+0	00 1.25E-09	
	OPVB	0	4.31E+02	<1E-12	0.00E+0	00 4.31E-10	
	OPW1	0	8.70E+02	<1E-12	0.00E+0	00 8.70E-10	
	OPW2	0	2.99E+02	1.4E-11	0.00E+0	00 4.19E-09	
	TSL	0	1.28E+00	2.8E-8	0.00E+0	00 3.58E-08	
	Total				2.36E-1	0 5.64E-07	

The Exposure Index was calculated as the product of the average wind frequency using 1998 meteorological data and the 0-10 mile population data for all 16 compass wind directions (See Table 11-9). The average wind frequency was taken from the IMACCS output file and represents the average value for all 36 stability classes. The 0-10 mile population data was taken from the Site input file by summing the population for each wind direction. The product sum total value was calculated as 1299 for the Exposure Index.

Table 11-9: Exposure Index Data For Population (0-10mi)						
Wind Direction	Average Wind Frequency	Population Data	Product			
1	0.06	1187	71.2			
2	0.099	2044	202.4			
3	0.089	1672	148.8			
4	0.05	1918	95.9			
5	0.053	1668	88.4			
6	0.057	1452	82.8			
7	0.089	827	73.6			
8	0.088	1291	113.6			
9	0.104	886	92.1			
10	0.062	766	47.5			
11	0.046	1487	68.4			
12	0.037	1699	62.9			
13	0.047	634	29.8			
14	0.044	926	40.7			
15	0.039	1076	42.0			
16	0.036	1084	39.0			
Total			1,299.1			

The Exposure Index was also calculated for the 0-50 mile population data for all 16 compass wind directions (See Table 11-10). The average wind frequency using 1998 meteorological data was taken from the MACCS output file and represents the average value for all 36 stability classes. The 0-50 mile population data was taken from the Site input file by summing the population for each wind direction. The product sum total value was calculated as 199,059 for the 0-50 mile Exposure Index.

		<u>+</u>	
Calc Number SM-1526	Rev. 0	Add.	Sheet: _18_ of _61
		·····	······································

Table 11-10: Exposure Index Data For Population (0-50mi)							
Wind Direction	Average Wind Frequency	Population Data	Product				
1	0.06	88370	5302.2				
2	0.099	266190	26352.8				
3	0.089	298232	26542.6				
4	0.05	50487	2524.4				
5	0.053	21278	1127.7				
6	0.057	30011	1710.6				
7	0.089	194874	17343.8				
8	0.088	1045291	91985.6				
9	0.104	87390	9088.6				
10	0.062	25499	1580.9				
11	0.046	19074	877.4				
12	0.037	34444	1274.4				
13	0.047	162814	7652.3				
14	0.044	47124	2073.5				
15	0.039	36916	1439.7				
16	0.036	60628	2182.6				
Total			199,059				

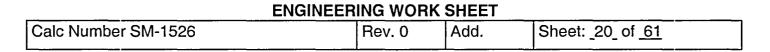
Additionally responses to preliminary NRC questions (Ref.18) regarding the Environmental Report of the Early Site Permit (ESP) application for the North Anna Site are included in Attachment V. Only the questions from Reference 18 Section 7.2 Severe Accidents, relating to the analysis done in this calculation are addressed here.

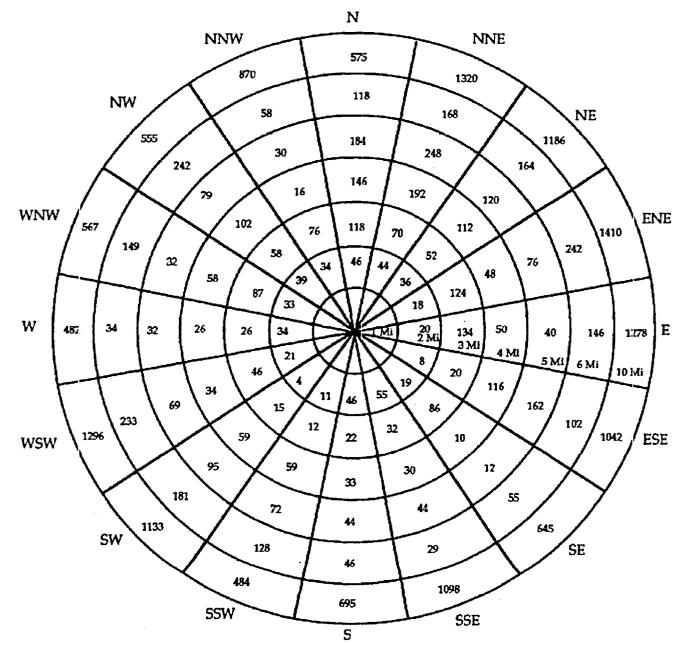
12 Conclusions

The ESBWR dose risk assessment has resulted in a total dose of 3.28E-03 person-rem/year to the population within a 50 mile radius for the Base Case (CASE1A). The ESBWR dollar risk assessment has resulted in a total economic dollar value of \$4.85/year to the population, land and property within a 50 mile radius of the plant for the Base Case. Four Sensitivity cases were made to determine the impact of met data, reactor power and plume energy. See Tables 11-1 thru-10 above with the results.

ENGINEERING WORK SHEET						
Calc Number SM-1526	Rev. 0	Add.	Sheet: _19_ of <u>_61</u>			

.

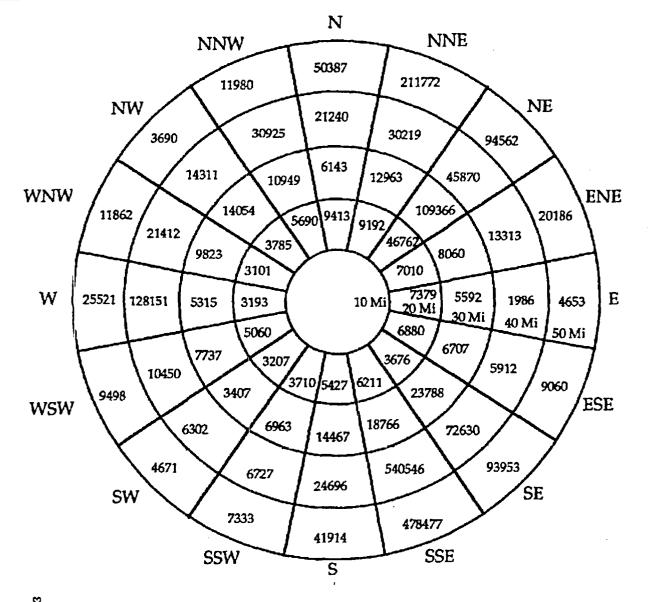

Attachment 1 Rosette North Anna Power Station


Year 2030

10 Mile Population Distribution

And

50 Mile Population Distribution

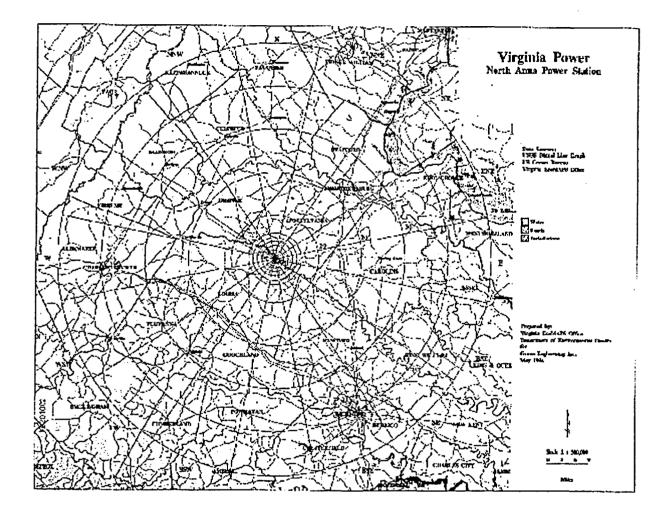

POPULATION INSIDE ONE MILE

N	NNE	NE	ENE	E	ESE	SE	SSE
0	2	2	0	0	2	0	3
0	0	0	0	0	0	1	0
S	SSW	SW'	WSW	W	WNW	NW	NNW

Ð
2
2
ю
Q
2
-

Ž		POPU	ILATION	BY ANN	ULUS			
ANNULUS	0 TO 1	1 TO 2	2 TO 3	3 TO 4	4 TO 5	5 TO 6	6 TO 10	TIDTAL
POPULATION	10	469	979	1,094	1,340	2,098	14,636	20,625

	ENGINEERING WORK	SHEET	
Calc Number SM-1526	Rev. 0	Add.	Sheet: <u>21</u> of <u>61</u>


N0201013

POPULATION BY ANNULUS

ANNULUS	0 TO 10	10 TO 20	20 TO 30	30 TO 40	40 TO 50	TOTAL
POPULATION	20,625	129,698	264,099	974,689	1,079,518	2,468,629

North Anna Power Station 50 Mile Radius

ENGINEERING WORK SHEET						
Calc Number SM-1526	Rev. 0	Add.	Sheet: _22_ of _61			

ENGINEERING WORK SHEET						
Calc Number SM-1526	Rev. 0	Add.	Sheet: 23_ of 61			

Attachment II Memorandum "Nuclear Relicensing Meteorological Data Documentation"

ENGINEERING WORK SHEET						
Calc Number	SM-1526	Rev. 0	Add.	Sheet: _24_ of <u>61</u>		
То:	Mr. Tony Banks	L		EP&C Department	-	
From:	Philip C. Knause			December 29, 1999		

Nuclear Relicensing Meteorological Data Documentation

In support of the nuclear relicensing effort, the Virginia Power Environmental Policy & Compliance Department ("EP&C") provided files containing hourly meteorological data and seasonal mixing height data, with one year of data from each site in each file. Data for 1996 through 1998 were provided.

The hourly data (wind direction, wind speed, stability category, and precipitation) were collected on-site at Surry and North Anna Power Stations. The wind direction and wind speed were recorded at vent height (tower upper elevation); the stability data were determined by a Delta T system measuring the temperature at 10 meters and at vent height; and precipitation was measured at ground level. The instruments were calibrated quarterly. The data were temporarily stored at the sites in dataloggers which were polled nightly to transfer the data to a personal computer at Innsbrook. The data were quality controlled each business day by EP&C personnel. Professional meteorologists resolved any unusual data situations. Each month, the data were transferred to the corporate mainframe computer and were converted to and stored in SAS datasets. SAS programs were written to produce the hourly data files in MACCS2 format. Several conversions were made in the data in order to provide them in the MACCS2 format:

- The wind direction were recorded as direction "from" which the wind was blowing, and these were converted to direction "to".
- Wind speed were recorded as miles per hour, and they were converted to tenths of meters per second.
- Stability data were recorded as absolute Delta T values, and these were converted to stability categories of "1" to "7".
- Precipitation was recorded as inches, and it was converted to hundredths of inches.

In order to provide data for every hour, missing data were replaced using standard methods. The logic for replacing any missing data are contained in the attached table.

Calc Number SM-1526			Rev. 0	Add.	Sheet: <u>25</u> of <u>61</u>		
Measurement	Primary	Secondary	Tertiary	Quartenary	5	6 th	
North Anna		<u> </u>					
Wind Direction	Upper elevation	10-meter elevation	Backup 10-meter elevation	Bremo Power Station 10-meter elevation			
Wind Speed	Upper elevation	10-meter elevation (1)	Backup 10-meter elevation (1)	Bremo Power Station 10-meter elevation (1)			
Stability	Delta T	Upper elevation sigma- theta	10-meter elevation sigma-theta	Backup 10-meter elevation sigma-theta			
Precipitation	Ground level	Bremo Power Station Ground Level					
Surry Wind Direction	Upper elevation	10-meter elevation	Backup 10-meter elevation	Chesapeake Energy Center 10-meter elevation	Chesterfield Power Station 10- meter elevation		
Wind Speed	Upper elevation	10-meter elevation (1)	Backup 10-meter elevation (1)	Chesapeake Energy Center 10-meter elevation (1)	Chesterfield Power Station 10- meter elevation (1)		
Stability	Delta T	Upper elevation sigma- theta	10-meter elevation sigma-theta	Backup 10- meter elevation sigma-theta	Chesapeake Energy Center 10-meter elevation sigma-theta	Chesterfield Power Station 10- meter elevation sigma-theta	
Precipitation	Ground level	Chesapeake Energy	Chesterfield Power Station				

80 The 10-meter wind speed data, if used, were powered up to the vent height elevation

ground level

Center

~

The mixing height data were derived from radiosonde measurements taken by the National Weather Service at their station near Dulles Airport (Sterling, Virginia). Dulles is the nearest inland upper air station to North Anna. The Wallops Island upper air

Calc Number SM-1526	Rev. 0	Add.	Sheet: _26_ of _61

station on the northern portion of the Eastern Shore of Virginia is actually closer to Surry than the Dulles station. Also, the Cape Hatteras, North Carolina upper air station is approximately the same distance to Surry as Dulles; however, the strong coastal influence experienced at Wallops Island and Cape Hatteras makes the data collected at these locations less representative of mixing heights likely to occur in the vicinity of Surry.

Morning and afternoon mixing height values for 1996 through 1998 were obtained from the National Climatic Data Center. Missing values were replaced where possible as prescribed in the USEPA document "Procedures for Substituting Values for Missing NWS Meteorological Data for Use in Regulatory Air Quality Models." All non-missing values greater than zero were considered valid.

Seasons were defined as follows for the purposes of this mixing height analysis:

- Winter: 12/22 3/21 (1/1 3/21 and 12/22 12/31 for a given calendar year)
- Spring: 3/22 6/21
- Summer: 6/22 9/21
- Fall: 9/22 12/21

Please contact me at Innsbrook, Extension 2946, if you need further information.

Original Signed by

Philip C. Knause

cc: (via e-mail) Steve Shaw Tracy Faix Jim Browder

ENGINEERING WORK SHEET					
Calc Number SM-1526	Rev. 0	Add.	Sheet: _27_ of <u>_61</u>		

Attachment III MACCS2 Input File Listings for Base Case EBATMOS.INP EBEARLY.INP EBCHRONC.INP NSITE.INP

ESBWF.NNAPS SESPAEND001 1.61 3.22 4.83 6.44 8.05 SESPAEND003 9.65 16.09 32.18 48.27 64.37 SESPAEND003 9.65 16.09 32.18 48.27 64.37 SESPAEND003 9.65 16.09 32.18 48.27 64.37 NUCLDE DATA BLOCK, LOADED BY INPISO, STORED IN /ISOGRP/, /SONAM/ Number of pseudo-stable nuclides (used to truncate the decay chains) SNMSTB001 27 Ist of pseudo-stable nuclides Number of the seudo-stable nuclides NAMSTB00 1.27 (daughter of To-129 and To-129m) SNMSTB002 > k-13m (daughter of 1-131) SNMSTB004 > k-135m (daughter of 1-133) SNMSTB005 SNMSTB005 SNMSTB005 SNMSTB005 Sm-147 (daughter of Pm-147) SNMSTB006 SNMSTB010 L-233 (daughter of Pm-240) SNMSTB010 L-233 (daughter of Pm-241) SNMSTB010 L-236 (daughter of 2-137) SNMSTB010 L-236 (daughter of 2-26) SNMSTB010 L-236 SNMSTB010 L-237 (daughter of 2-26) SNMSTB010 SNMSTB010	Calc Number SM-1526		Rev. 0	Add.	Sheet: _28_ of <u>61</u>	
NUMBER OF RADIAL SPATIAL ELEMENTS SENUMRAD001 11 ESBWRNAPS ESPAEND002 161 322 4.83 5.44 8.05 SESPAEND02 865 16.09 32.18 48.27 64.37 ESPAEND02 16.0 32.18 48.27 64.37 ESPAEND02 17 List of pseudo-stable nuclides (used to truncate the decay chains) SNUMSTB01 127 List of pseudo-stable nuclides NAMSTB0 SNMMSTB00 1-129 (daughter of Te-129 and Te-129m) SNMMSTB00 2-135 (daughter of 1-313) SNMMSTB00 2-135 (daughter of 1-313) SNMMSTB00 2-135 (daughter of 1-329) SNMMSTB00 2-135 (daughter of 1-329) SNMMSTB00 2-135 (daughter of 1-229) SNMMSTB00 2-123 (daughter of 1-230) SNMMSTB00 2-123 (daughter of 1-241) SNMMSTB01 1-237 (daughter of 1-29) SNMMSTB01 1-237 (daughter of 2-29) SNMMSTB01 1-237 (daughter of 2-29) SNMMSTB01 1-237 (daughter of 2-29) SNMMSTB01 1-249 (daughter of 2-29) SNMMSTB01 1-257 (daughter of 2-29) SNMMSTB01 1-257 (daughter of 2-29) SNMMSTB02 1-7-141 (daughter of 2-29) SNMMSTB03 1-7-144 (daughter of 2-29) SNMMSTB03 1-7-144 (daughter of 2-24) SNMMSTB03 1-7-144 (daughter of 2-24) SNMMST	* This is the ESBWIR BASE CASE ATMOS * LAST MODIFIED by MGM 4/10/06	input deck				
EVENUMFADD01 11 ESEWKPNAPS SESPAEND002 3.05 16.09 32.18 48.27 64.37 ESEPAEND003 40.47 INUCLIDE DATA ELOCK, LOADED BY INPISO, STORED IN /SOGRP/, /SONAW Number of pseudo-stable nuclides (used to truncate the decay chains) SNUMSTB01 1:7 ILat of pseudo-stable nuclides (used to truncate the decay chains) SNUMSTB001 1:7 SNAMSTB02 2-131m (daughter of Te-129 and Te-129m) SNAMSTB02 2-131m (daughter of Te-139 and Te-129m) SNAMSTB02 2-131m (daughter of Te-139) SNAMSTB02 2-131m (daughter of Te-130) SNAMSTB03 C-135 (daughter of Pe-130) SNAMSTB03 C-135 (daughter of Pe-130) SNAMSTB03 C-2-135 (daughter of Pe-230) SNAMSTB04 L-235 (daughter of Pe-230) SNAMSTB05 C-2-137 (daughter of Pe-230) SNAMSTB05 C-2-137 (daughter of Pe-240) SNAMSTB05 L-236 (daughter of Pe-240) SNAMSTB01 NP-237 (daughter of Pe-240) SNAMSTB03 L-236 (daughter of Pe-240) SNAMSTB04 L-236 (daughte	* GEOMETRY DATA BLOCK, LOADED BY	INPGEO, STORED IN /0	GEOM/			
ESBWA/NAPS SESPACENDOO3 NUCLIDE DATA ELC/CK, LOADED BY INPISO, STORED IN //SOGRP/, //SONAM/ Number of pseudo-stable nuclides (used to truncate the decay chains) SNUMSTB001 :27 List of pseudo-stable nuclides SNMSTB002 :4131 (daughter of Te-129 and Te-129m) SNMSTB002 :4131 (daughter of Te-129 and Te-129m) SNMSTB003 :4131 (daughter of Te-133) SNMSTB004 :4133 (daughter of Te-133 and Xe-135m) SNMSTB005 :51-135 (daughter of Pu-239) SNMSTB005 :51-135 (daughter of Pu-239) SNMSTB016 :22-35 (daughter of Pu-241) SNMSTB017 :2-8-31 (daughter of Pu-241) SNMSTB018 :2-9-81 (daughter of Pu-241) SNMSTB015 :2-9-81 (daughter of Pu-241) SNMSTB016 :2-9-81 (daughter of Pu-241) SNMSTB017 :P-8-83 (daughter of Pu-241)	* * NUMBER OF RADIAL SPATIAL ELEMEN	TS				
SESPAEND001 1.61 3.22 4.83 6.44 8.05 SESPAEND003 16.07 32.18 48.27 64.37 INUCLED DATA FILOCK, LOADED BY INPISO, STORED IN //SOGRP/, //SONAM/ Number of pseudo-stable nuclides (used to funcate the decay chains) SNUMSTB001 27 List of pseudo-stable nuclides NAMSTB00 1.27 SNUMSTB002 2-131 SNAMSTB003 1.29 SNAMSTB004 2-131 SNAMSTB005 2-131 SNAMSTB005 2-131 SNAMSTB004 2-1336 SNAMSTB005 2-1337 SNAMSTB005 2-1336 SNAMSTB005 2-1336 SNAMSTB006 2-1337 SNAMSTB006 2-1337 SNAMSTB007 2-1336 SNAMSTB008 2-34 SNAMSTB008 2-33 SNAMSTB010 1-233 SNAMSTB010 2-234 SNAMSTB010 2-33 SNAMSTB010 2-33 SNAMSTB010 1-237 <	• GENUMRAD001 11					
ESPAEND002 9.65 16.09 32.18 48.27 64.37 ESPAEND003 10.47 NUCLIDE DATA FLOCK, LOADED BY INPISO, STORED IN //SOGRP/, /SONAW Number of pseude-stable nuclides (used to truncate the decay chains) SNUMSTB001 27 List of pseude-stable nuclides NAMSTB SNAMSTB001 127 SNAMSTB002 2-131m SNAMSTB003 2-131m SNAMSTB004 2-131m SNAMSTB005 2-131m SNAMSTB004 2-133m SNAMSTB005 2-133m SNAMSTB005 2-133m SNAMSTB005 2-133m SNAMSTB005 2-133m SNAMSTB005 2-133m SNAMSTB005 2-133m SNAMSTB006 2-233 (daughter of Pu-239) SNAMSTB001 2-233 (daughter of Pu-241) SNAMSTB011 NP-237 (daughter of Cs-137) SNAMSTB015 2-93 (daughter of Cs-93) SNAMSTB015 Y-91m (daughter of Cs-97) SNAMSTB015 Y-93m (daughter of Pu-91) SNAMSTB015	• * ESBWR/NAPS					
NUCLIDE DATA BLOCK, LOADED BY INPISO, STORED IN //SOGRP/, /SONAW Number of pseudo-stable nuclides (used to truncate the docay chains) SNUMSTB001 :7 List of pseudo-stable nuclides NAMSTB SNAMSTB002 :4e-131 (daughter of 1e-129 and Te-129m) SNAMSTB002 :4e-131 (daughter of 1e-133) SNAMSTB003 :4e-133 (daughter of 1-133) SNAMSTB004 :4e-135m (daughter of 1-133) SNAMSTB005 :5e-135 (daughter of 1-135) SNAMSTB006 :5e-135 (daughter of Pm-147) SNAMSTB006 :5e-135 (daughter of Pm-249) SNAMSTB006 :2e-133 (daughter of Pm-249) SNAMSTB006 :2e-135 (daughter of Pm-240) SNAMSTB007 :2e-23 (daughter of Pm-241) SNAMSTB008 :2e-23 (daughter of Pm-241) SNAMSTB010 :2e-33 (daughter of Pm-241) SNAMSTB010 :2e-33 (daughter of Pm-241) SNAMSTB010 :2e-33 (daughter of Pm-241) SNAMSTB010 :2e-33 (daughter of Pm-241) SNAMSTB010 :2e-39 (daughter of Pm-241) SNAMSTB02 :2e-1-103m (daughter of Pm-241) SNAMSTB02 :2e-1-103m (daughter of Pm-241) SNAMSTB02 :2e-1-103m (daughter of Pm-140) SNAMSTB02 :2e-1-113 (daughter of Pm-140) SNAMSTB02 :2e-1-144 (daughter of Pm-140) SNAMSTB02 :2e-1-144 (daughter of Nm-140) SNAMSTB02 :2e-1-144 (daughter of Nm-140) SNAMS	GESPAEND002 9.65 16.09 32.18 GESPAEND003 80.47 *	48.27 64.37				
SNUMSTB001 27 List of pseudo-sta Je nuclides NAMSTB SNAMSTB001 1/29 (daughter of Te-129 and Te-129m) SNAMSTB002 2e-131m (daughter of 1-131) SNAMSTB003 2e-133m (daughter of 1-133) SNAMSTB004 2e-133m (daughter of 1-135) SNAMSTB005 2e-133m (daughter of Xe-135 and Xe-135m) SNAMSTB005 CS-135 (daughter of Pu-238) SNAMSTB007 L-232 (daughter of Pu-239) SNAMSTB000 L-232 (daughter of Pu-240) SNAMSTB010 L-232 (daughter of Am-241) SNAMSTB011 NP-237 (daughter of Am-241) SNAMSTB014 Fb-86 (daughter of Ze-91) SNAMSTB015 2e-137m (daughter of Ze-93) SNAMSTB015 Samaghter of Ze-97 and Nb-97m SNAMSTB02 Fb-97 (daughter of Ze-93) SNAMSTB02 Samaghter of Ze-97 and Nb-97m SNAMSTB02 Fb-97 and (daughter of Ze-97) SNAMSTB02 Fb-97 and Nb-97m SNAMSTB02 Fb-97 and Nb-97m SNAMSTB02 Fb-97 and Nb-97m						
List of pseudo-stable nuclides NAMSTE0 NAMSTE001 129 (daughter of Te-129 and Te-129m) NAMSTE002 2-e-131m (daughter of 1-131) NAMSTE003 2-e-133m (daughter of 1-133) NAMSTE003 2-e-133m (daughter of 1-136) NAMSTE005 C-s-135 (daughter of 1-35m) NAMSTE005 C-s-135 (daughter of 2-135m) NAMSTE005 C-s-135 (daughter of 2-135m) NAMSTE005 U-233 (daughter of 2-239) NAMSTE005 U-233 (daughter of 2-239) NAMSTE005 U-233 (daughter of 2-239) NAMSTE001 U-237 (daughter of 2-231) NAMSTE010 U-237 (daughter of 2-231) NAMSTE010 U-237 (daughter of 2-317) NAMSTE011 Np-237 (daughter of 2-317) NAMSTE013 E-3-37m (daughter of 2-317) NAMSTE013 E-3-37m (daughter of 2-317) NAMSTE014 F-b-88 (daughter of 2-319) NAMSTE015 Y-91m (daughter of 2-39) NAMSTE015 Y-91m (daughter of 2-39) NAMSTE015 Y-91m (daughter of 2-39) NAMSTE016 Z-93 (daughter of 2-39) NAMSTE016 Z-93 (daughter of 2-39) NAMSTE025 F-144 (daughter of 2-39) NAMSTE026 F-1444m (daughter of 2-39) NAMSTE027 F-144m (daughter of 2-34m) NAMSTE027 F-144m (daughter of 2-34m) NAMSTE027 F-144m (daughter of 2-34m) NAMSTE025	* * Number of pseud(+stable nuclides (used to	o truncate the decay chair	ns)			
NAMSTE SNAMSTE001 1:12.9 (daughter of Te-12.9 and Te-12.9m) SNAMSTE003 Xe-131m (daughter of 1-13.1) SNAMSTE004 Xe-133m (daughter of 1-13.5) SNAMSTE005 Cs-135 (daughter of 1-13.5) SNAMSTE005 Cs-135 (daughter of Pu-23.8) SNAMSTE007 U-234 (daughter of Pu-23.9) SNAMSTE004 L-233 (daughter of Pu-23.9) SNAMSTE005 U-233 (daughter of Pu-24.9) SNAMSTE001 U-237 (daughter of Pu-24.9) SNAMSTE001 U-237 (daughter of Pu-24.9) SNAMSTE01 NP-237 (daughter of Pu-24.9) SNAMSTE01 L-237 (daughter of Kr-87) SNAMSTE015 Fa-B47 (daughter of Kr-88) SNAMSTE016 Zr-93 (daughter of Xr-93) SNAMSTE017 N-993m (daughter of Xr-93) SNAMSTE018 I-994 (daughter of Xr-93) SNAMSTE019 N-997m (daughter of Xr-93) SNAMSTE020 L-937M (daughter of Xr-93) SNAMSTE020 </td <td>• ISNUMSTB001 27</td> <td></td> <td></td> <td></td> <td></td> <td></td>	• ISNUMSTB001 27					
SNAMSTB001 I-129 (daughter of Te-129 and Te-129m) SNAMSTB002 Xe-131m (daughter of I-131) SNAMSTB002 Xe-133m (daughter of I-133) SNAMSTB005 Cs-135 (daughter of I-135) SNAMSTB005 Cs-135 (daughter of Pm-147) SNAMSTB006 Em-147 (daughter of Pm-238) SNAMSTB009 U-236 (daughter of Pu-239) SNAMSTB009 U-236 (daughter of Pu-240) U-236 (daughter of Pu-241) SNAMSTB010 U-237 (daughter of Pu-241) SNAMSTB010 U-237 (daughter of Am-241) SNAMSTB012 Eb-87 (daughter of Cs-137) SNAMSTB013 Ea-137m (daughter of Cs-137) SNAMSTB014 Fb-88 (daughter of Sr-91) SNAMSTB015 Z-P39 (daughter of Sr-91) SNAMSTB015 Z-P39 (daughter of Zr-93) SNAMSTB015 N-957 (daughter of Zr-93) SNAMSTB015 N-957 (daughter of Zr-93) SNAMSTB015 N-957 (daughter of Zr-93) SNAMSTB02 Fb-106 (daughter of Cu-103) SNAMSTB02 Fh-106 (daughter of Cu-103) SNAMSTB02 Fh-106 (daughter of Cu-103) SNAMSTB02 Fn-106 (daughter of Cu-104) SNAMSTB02 Fr-144 (daughter of Ca-144) SNAMSTB02 Fr-144 (daughter of Cu-144) SNAMSTB02 Fr-144 (daughter of Cu-144) SNAMSTB02 Fn-106 (daughter of Cu-144) SNAMSTB02 Fn-144 (daughter of Cu-144) SNAMSTB02 Fn-145 (daughter of Cu-144) SNAMSTB02 Fn-145 (daughter of Cu-144) SNAMSTB02 Fn-145 (daughter of Cu-144) SNAMSTB02 Fn-146 (daughter of Cu-144) SNAMSTB02 Fn-146 (daughter of Cu-144) SNAMSTB02 Fn-147	 List of pseudo-stable nuclides 					
SNAMSTB002 Xe-13tm (daughter of I-131) SNAMSTB003 Xe-133m (daughter of I-133) SNAMSTB004 Xe-135m (daughter of I-133) SNAMSTB005 Cs-135 (daughter of I-135) SNAMSTB006 Sm-147 (daughter of Pu-238) SNAMSTB009 U-236 (daughter of Pu-239) SNAMSTB009 U-235 (daughter of Pu-240) SNAMSTB010 U-237 (daughter of Pu-241) SNAMSTB010 U-237 (daughter of Am-241) SNAMSTB012 Eb-87 (daughter of Kr-87) SNAMSTB014 Eb-86 (daughter of Kr-87) SNAMSTB014 Eb-86 (daughter of Kr-87) SNAMSTB015 Y-91m (daughter of Xr-91) SNAMSTB015 Y-91m (daughter of Zr-93) SNAMSTB016 Z-P33 (daughter of Zr-93) SNAMSTB017 Nb-93m (daughter of Zr-97) SNAMSTB020 Nb-97m (daughter of Zr-97) SNAMSTB020 Nb-97m (daughter of Zr-97) SNAMSTB020 Nb-97m (daughter of Zr-97) SNAMSTB025 Fh-103m (daughter of Eu-106) SNAMSTB025 Fh-103m (daughter of Eu-106) SNAMSTB025 Fr-144 (daughter of Ce-144 and Pr-144m) SNAMSTB027 Fm-147 (daughter of N-147) Number of radioactive nuclides to be considered SNUMISCO01 60 NUMBER OF NUCLIDE GROUPS SMAXGRP001 9	NAMSTB					
SNUMISO001 60 NUMBER OF NUCLIDE GROUPS SMAXGRP001 9	ISNAMSTB002Xe-131m(daughter of I-1ISNAMSTB003Xe-133m(daughter of I-1ISNAMSTB004Xe-135m(daughter of I-1ISNAMSTB005Cs-135(daughter of I-1ISNAMSTB006Sm-147(daughter of PrrISNAMSTB007U-234(daughter of PrrISNAMSTB008U-235(daughter of PrrISNAMSTB009U-236(daughter of PrrISNAMSTB009U-237(daughter of PrrISNAMSTB010U-237(daughter of PrrISNAMSTB010U-237(daughter of PrrISNAMSTB011Np-237(daughter of PrrISNAMSTB012Fib-87(daughter of CrISNAMSTB013Ea-137m(daughter of CrSNAMSTB014Fib-88(daughter of Sr-SSNAMSTB015Y-91m(daughter of Sr-SSNAMSTB016Zr-93(daughter of Zr-SSNAMSTB017Nb-93m(daughter of Zr-SSNAMSTB018Nb-97m(daughter of Zr-SSNAMSTB021Tc-99(daughter of Ru-SSNAMSTB022Fh-103m(daughter of Ru-SSNAMSTB023Fh-106(daughter of Ru-SSNAMSTB024Tib-131(daughter of Ce-SSNAMSTB025Fr-144m(daughter of Ce-S	 (31) (33) (35) (35) (35) (35) (35) (37) (39) (240) (241) (241) (241) (241) (37) (38) (39) (39) (310) (44 and Pr-144m) (-144) 			·	
NUMBER OF NUCLIDE GROUPS SMAXGRP001 9	Number of radioactive nuclides to be consi	dered				
SMAXGRP001 9	SNUMISO001 60					
•	NUMBER OF NUCLIDE GROUPS					
WET AND DRY DEPOSITION FLAGS FOR EACH NUCLIDE GROUP	SMAXGRP001 9					
	WET AND DRY DEPOSITION FLAGS FOR	R EACH NUCLIDE GROU	JP			

. WETDEP DRYDEP .

.FALSE.	.FALSE.
.TRUE.	.TRUE.
	.TRUE. .TRUE. .TRUE.

Calc Number SM-1526 Rev. 0 Add. Sheet: _29_ of _61	
--	--

ISDEPFLA006	TRUE.	.TRUE.
ISDEPFLA007	.TRUE.	.TRUE.
ISDEPFLA008	.TRUE.	.TRUE.
ISDEPFLA009	.TRUE.	.TRUE.

* NUCLIDE GROUP DATA FOR 9 NUCLIDE GROUPS

*		
ISOTPGRP001	Co-58	6
ISOTPGRP002	Co-60	6
ISOTPGRP003	F.r-85	1
ISOTPGRP004	Kr-85m	1
ISOTPGRP005	F.r-87	1
ISOTPGRP006	F.r-88	1
ISOTPGRP007	Flb-86	3
ISOTPGRP008	Sir-89	5
ISOTPGRP009	Sir-90	5
ISOTPGRP010 ISOTPGRP011	Sir-91	5
ISOTPGRP011	\$ir-92 እ'-90	5 7
ISOTPGRP012	Y-90	7
ISOTPGRP014	Y-92	, 7
ISOTPGRP015	Y-93	7
ISOTPGRP016	Z:r-95	7
ISOTPGRP017	Zir-97	7
ISOTPGRP018	Nb-95	7
ISOTPGRP019	Mo-99	6
ISOTPGRP020	Tc-99m	6
ISOTPGRP021	Flu-103	6
ISOTPGRP022	Flu-105	6
ISOTPGRP023	Flu-106	6
ISOTPGRP024	Fih-105	6
ISOTPGRP025	Sb-127	4
ISOTPGRP026	Sb-129	4
ISOTPGRP027	Te-127	4
ISOTPGRP028	Te-127m	4
ISOTPGRP029 ISOTPGRP030	Te-129	4
ISOTPGRP030	Te-129m Te-131m	4
ISOTPGRP032	Te-132	4
ISOTPGRP033	1.131	2
ISOTPGRP034	I-132	2
ISOTPGRP035	I-133	2
ISOTPGRP036	l·134	2
ISOTPGRP037	I-135	2
ISOTPGRP038	Xe-133	1
ISOTPGRP039	Xe-135	1
ISOTPGRP040	C's-134	3
ISOTPGRP041 ISOTPGRP042	Cs-136 Cs-137	3 3
ISOTPGRP042	Ea-139	9
ISOTPGRP044	Ea-140	9
ISOTPGRP045	La-140	7
ISOTPGRP046	La-141	7
ISOTPGRP047	La-142	7
ISOTPGRP048	Ce-141	8
ISOTPGRP049	Ce-143	8
ISOTPGRP050	Ce-144	8
ISOTPGRP051	Pr-143	7
ISOTPGRP052	Nd-147	7
ISOTPGRP053	Np-239	8
ISOTPGRP054 ISOTPGRP055	Pu-238	8
ISOTPGRP055	Pu-239 Fu-240	8 8
ISOTPGRP057	Pu-240 Pu-241	8
ISOTPGRP058	Am-241	7
ISOTPGRP059	Cm-242	, 7
ISOTPGRP060	Cm-244	7

ISOTPGRP060 Cm-244 7

* WET DEPOSITION DATA BLOCK, LOADED BY INPWET, STORED IN /WETCON/

* WASHOUT COEFFICIENT NUMBER ONE, LINEAR FACTOR

Calc Number SM-1526	Rev. 0	Add.	Sheet: _30_ of <u>_61</u>

WDCWASH1001 9.5E-5 (JON HELTON AFTER JONES, 1986)

* WASHOUT COEFFICIENT NUMBER TWO, EXPONENTIAL FACTOR

WDCWASH2001 0.8 (JON HELTON AFTER JONES, 1986)

* DRY DEPOSITION DATA BLOCK, LOADED BY INPDRY, STORED IN /DRYCON/

* NUMBER OF PARTICLE SIZE GROUPS

DDNPSGRP001 1

* DEPOSITION VELOCITY OF EACH PARTICLE SIZE GROUP (M/S)

DDVDEPOS001 0.01 (VALUE SELECTED BY S. ACHARYA, NRC)

* DISPERSION PARAMETER DATA BLOCK, LOADED BY INPDIS, STORED IN /DISPY/, /DISPZ/

* # of distances in plume-size tables--which can be used as an alternative to the power-law model:

* (to utilize the power-law model, set NUM_DIST to zero or delete the following data card)

NUM_DIST001 50

•			
* A-stability	Distance (m) Si	igma-y (m) Si	gma-z (m)
A-STB/DIS01	1.000E+00	3.6580E-01	2.5000E-04 Tadmor/Gur (0.5-5 km)
A-STB/DIS02	1.400E+00	4.9569E-01	5.1105E-04 Tadmor/Gur (0.5-5 km)
A-STB/DIS03	2.000E+00	6.8408E-01	1.0905E-03 Tadmor/Gur (0.5-5 km)
A-STB/DIS04	3.000E+00	9.8658E-01	2.5812E-03 Tadmor/Gur (0.5-5 km)
A-STB/DIS05	4.000E+00	1.2793E+00	4.7568E-03 Tadmor/Gur (0.5-5 km)
A-STB/DIS06	5.000E+00	1.5649E+00	7.6428E-03 Tadmor/Gur (0.5-5 km)
A-STB/DIS07	6.000E+00	1.8450E+00	1.1259E-02 Tadmor/Gur (0.5-5 km)
A-STB/DIS08	8.000E+00	2.3923E+00	2.0749E-02 Tadmor/Gur (0.5-5 km)
A-STB/DIS09	1.000E+01	2.9265E+00	3.3338E-02 Tadmor/Gur (0.5-5 km)
A-STB/DIS10	1.000E+02	2.3412E+01	4.4457E+00 Tadmor/Gur (0.5-5 km)
A-STB/DIS11	1.400E+02	3.1726E+01	9.0879E+00 Tadmor/Gur (0.5-5 km)
A-STB/DIS12	2.000E+02	4.3783E+01	1.9392E+01 Tadmor/Gur (0.5-5 km)
A-STB/DIS13	3.000E+02	6.3144E+01	4.5901E+01 Tadmor/Gur (0.5-5 km)
A-STB/DIS14	4.000E+02	8.1877E+01	8.4590E+01 Tadmor/Gur (0.5-5 km)
A-STB/DIS15	5.000E+02	1.0016E+02	1.3591E+02 Tadmor/Gur (0.5-5 km)
A-STB/DIS16	6.000E+02	1.1808E+02	2.0022E+02 Tadmor/Gur (0.5-5 km)
A-STB/DIS17	8.000E+02	1.5312E+02	3.6898E+02 Tadmor/Gur (0.5-5 km)
A-STB/DIS18	1.000E+03	1.8730E+02	5.9284E+02 Tadmor/Gur (0.5-5 km)
A-STB/DIS19	1.400E+03	2.5381E+02	1.2119E+03 Tadmor/Gur (0.5-5 km)
A-STB/DIS20	2.000E+03	3.5027E+02	2.5860E+03 Tadmor/Gur (0.5-5 km)
A-STB/DIS21	3.000E+03	5.0516E+02	6.1210E+03 Tadmor/Gur (0.5-5 km)
A-STB/DIS22	4.000E+03	6.5503E+02	1.1280E+04 Tadmor/Gur (0.5-5 km)
A-STB/DIS23	5.000E+03	8.0128E+02	1.8124E+04 Tadmor/Gur (0.5-5 km)
A-STB/DIS24	6.000E+03	9.4470E+02	2.6700E+04 Tadmor/Gur (0.5-5 km)
A-STB/DIS25	8.000E+03	1.2250E+03	4.9205E+04 Tadmor/Gur (0.5-5 km)
A-STB/DIS26	1.000E+04	1.4985E+03	7.9057E+04 Tadmor/Gur (0.5-5 km)
A-STB/DIS27	1.400E+04	2.0305E+03	1.6161E+05 Tadmor/Gur (0.5-5 km)
A-STB/DIS28	2.000E+04	2.8022E+03	3.4485E+05 Tadmor/Gur (0.5-5 km)
A-STB/DIS29	3.000E+04	4.0414E+03	8.1625E+05 Tadmor/Gur (0.5-5 km)
A-STB/DIS30	4.000E+04	5.2404E+03	1.5042E+06 Tadmor/Gur (0.5-5 km)
A-STB/DIS31	5.000E+04	6.4104E+03	2.4169E+06 Tadmor/Gur (0.5-5 km)
A-STB/DIS32	6.000E+04	7.5577E+03	3.5605E+06 Tadmor/Gur (0.5-5 km)
A-STB/DIS33	8.000E+04	9.8000E+03	6.5615E+06 Tadmor/Gur (0.5-5 km)
A-STB/DIS34	1.000E+05	1.1988E+04	1.0542E+07 Tadmor/Gur (0.5-5 km)
A-STB/DIS35	1.400E+05	1.6245E+04	2.1551E+07 Tadmor/Gur (0.5-5 km)
A-STB/DIS36	2.000E+05	2.2418E+04	4.5986E+07 Tadmor/Gur (0.5-5 km)
A-STB/DIS37	3.000E+05	3.2332E+04	1.0885E+08 Tadmor/Gur (0.5-5 km)
A-STB/DIS38	4.000E+05	4.1924E+04	2.0059E+08 Tadmor/Gur (0.5-5 km)
A-STB/DIS39	5.000E+05	5.1284E+04	3.2229E+08 Tadmor/Gur (0.5-5 km)
A-STB/DIS40	6.000E+05	6.0463E+04	4.7480E+08 Tadmor/Gur (0.5-5 km)
A-STB/DIS41	8.000E+05	7.8401E+04	8.7500E+08 Tadmor/Gur (0.5-5 km)
A-STB/DIS42	1.000E+06	9.5906E+04	1.4059E+09 Tadmor/Gur (0.5-5 km)
A-STB/DIS43	1.400E+06	1.2996E+05	2.8738E+09 Tadmor/Gur (0.5-5 km)
A-STB/DIS44	2.000E+06	1.7935E+05	6.1324E+09 Tadmor/Gur (0.5-5 km)
A-STB/DIS45	3.000E+06	2.5866E+05	1.4515E+10 Tadmor/Gur (0.5-5 km)
A-STB/DIS46	4.000E+06	3.3540E+05	2.6750E+10 Tadmor/Gur (0.5-5 km)
A-STB/DIS47	5.000E+06	4.1028E+05	4.2979E+10 Tadmor/Gur (0.5-5 km)
A-STB/DIS48	6.000E+06	4.8372E+05	6.3316E+10 Tadmor/Gur (0.5-5 km)

Colo Num				(SHEET	
Calc Null	nber SM-1	526	Rev. 0	Add.	Sheet: _31_ of _61
				<u> </u>	
A-STB/DIS49 A-STB/DIS50	£.000E+06 1.000E+07	6.2723E+05 7.6726E+05	1.1668E+11 Tadmor/Gur (0.5-5 km) 1.8747E+11 Tadmor/Gur (0.5-5 km)		
B-stability	Distance (m) S	iama-v (m) S	iama-z (m)		
3-STB/DIS01	1.000È+00	2.7510E-01	1.9000E-03 Tadmor/Gur (0.5-5 km)		
B-STB/DIS02	1.400E+00	3.7279E-01	3.2574E-03 Tadmor/Gur (0.5-5 km)		
3-STB/DIS03 3-STB/DIS04	2.000E+00 3.000E+00	5.1446E-01 7.4196E-01	5.7681E-03 Tadmor/Gur (0.5-5 km) 1.1045E-02 Tadmor/Gur (0.5-5 km)		
3-STB/DIS05	4.000E+00	9.6208E-01	1.7511E-02 Tadmor/Gur (0.5-5 km)		
3-STB/DIS06	5.000E+00	1.1769E+00	2.5036E-02 Tadmor/Gur (0.5-5 km)		
3-STB/DIS07	6.000E+00	1.3875E+00	3.3530E-02 Tadmor/Gur (0.5-5 km)		
3-STB/DIS08 3-STB/DIS09	8.000E+00 1.000E+01	1.7992E+00 2.2009E+00	5.3161E-02 Tadmor/Gur (0.5-5 km) 7.6007E-02 Tadmor/Gur (0.5-5 km)		
-STB/DIS10	1.000E+01	1.7607E+01	3.0406E+00 Tadmor/Gur (0.5-5 km)		
-STB/DIS11	1.400E+02	2.3859E+01	5.2127E+00 Tadmor/Gur (0.5-5 km)		
S-STB/DIS12	2.000E+02	3.2927E+01	9.2307E+00 Tadmor/Gur (0.5-5 km)		
B-STB/DIS13	3.000E+02	4.7487E+01	1.7675E+01 Tadmor/Gur (0.5-5 km)		
I-STB/DIS14 I-STB/DIS15	4.000E+02 5.000E+02	6.1576E+01 7.5323E+01	2.8023E+01 Tadmor/Gur (0.5-5 km) 4.0066E+01 Tadmor/Gur (0.5-5 km)		
-STB/DIS16	6.000E+02	8.8805E+01	5.3657E+01 Tadmor/Gur (0.5-5 km)		
3-STB/DIS17	8.000E+02	1.1515E+02	8.5073E+01 Tadmor/Gur (0.5-5 km)		
-STB/DIS18	1.000E+03	1.4086E+02	1.2163E+02 Tadmor/Gur (0.5-5 km)		
S-STB/DIS19	1.400E+03	1.9088E+02	2.0853E+02 Tadmor/Gur (0.5-5 km) 3.6926E+02 Tadmor/Gur (0.5-5 km)		
I-STB/DIS20	2.000E+03 3.000E+03	2.6342E+02 3.7991E+02	7.0705E+02 Tadmor/Gur (0.5-5 km)		
-STB/DIS22	4.000E+03	4.9262E+02	1.1210E+03 Tadmor/Gur (0.5-5 km)		
-STB/DIS23	5.000E+03	6.0260E+02	1.6028E+03 Tadmor/Gur (0.5-5 km)		
-STB/DIS24	6.000E+03	7.1046E+02	2.1465E+03 Tadmor/Gur (0.5-5 km)		
-STB/DIS25	8.000E+03	9.2124E+02	3.4033E+03 Tadmor/Gur (0.5-5 km)		
-STB/DIS26 -STB/DIS27	1.000E+04 1.400E+04	1.1269E+03 1.5271E+03	4.8658E+03 Tadmor/Gur (0.5-5 km) 8.3419E+03 Tadmor/Gur (0.5-5 km)		
-STB/DIS28	2.000E+04	2.1074E+03	1.4772E+04 Tadmor/Gur (0.5-5 km)		
-STB/DIS29	3.000E+04	3.0393E+03	2.8285E+04 Tadmor/Gur (0.5-5 km)		
-STB/DIS30	4.000E+04	3.9410E+03	4.4845E+04 Tadmor/Gur (0.5-5 km)		
-STB/DIS31	5.000E+04	4.8209E+03	6.4117E+04 Tadmor/Gur (0.5-5 km)		
-STB/DIS32 -STB/DIS33	6.000E+04 8.000E+04	5.6838E+03 7.3701E+03	8.5868E+04 Tadmor/Gur (0.5-5 km) 1.3614E+05 Tadmor/Gur (0.5-5 km)		
-STB/DIS34	1.000E+05	9.0155E+03	1.9465E+05 Tadmor/Gur (0.5-5 km)		
-STB/DIS35	1.400E+05	1.2217E+04	3.3371E+05 Tadmor/Gur (0.5-5 km)		
-STB/DIS36	2.000E+05	1.6860E+04	5.9093E+05 Tadmor/Gur (0.5-5 km)		
-STB/DIS37 -STB/DIS38	3.000E+05 4.000E+05	2.4315E+04 3.1529E+04	1.1315E+06 Tadmor/Gur (0.5-5 km) 1.7940E+06 Tadmor/Gur (0.5-5 km)		
-STB/DIS39	5.000E+05	3.8568E+04	2.5649E+06 Tadmor/Gur (0.5-5 km)		
-STB/DIS40	6.000E+05	4.5471E+04	3.4350E+06 Tadmor/Gur (0.5-5 km)		
-STB/DIS41	8 000E+05	5.8962E+04	5.4462E+06 Tadmor/Gur (0.5-5 km)		
-STB/DIS42	1.000E+06	7.2126E+04 9.7737E+04	7.7867E+06 Tadmor/Gur (0.5-5 km) 1.3350E+07 Tadmor/Gur (0.5-5 km)		
-STB/DIS43 -STB/DIS44	1.400E+06 2.000E+06	1.3488E+05	2.3639E+07 Tadmor/Gur (0.5-5 km)		
-STB/DIS45	3 000E+06	1.9453E+05	4.5264E+07 Tadmor/Gur (0.5-5 km)		
-STB/DIS46	4 000E+06	2.5224E+05	7.1765E+07 Tadmor/Gur (0.5-5 km)		
-STB/DIS47	5 000E+06	3.0855E+05	1.0261E+08 Tadmor/Gur (0.5-5 km)		
-STB/DIS48 -STB/DIS49	6 000E+06 8 000E+06	3.6378E+05 4.7171E+05	1.3741E+08 Tadmor/Gur (0.5-5 km) 2.1787E+08 Tadmor/Gur (0.5-5 km)		
STB/DIS50	1 000E+00	5.7702E+05	3.1150E+08 Tadmor/Gur (0.5-5 km)		
C-stability	Distance (m) Si	gma-y (m) Si			
-STB/DIS01	1.000E+00	2.0890E-01	2.0000E-01 Tadmor/Gur (0.5-5 km)		
-STB/DIS02 -STB/DIS03	1.400E+00 2.000E+00	2.8308E-01 3.9066E-01	2.6660E-01 Tadmor/Gur (0.5-5 km) 3.6158E-01 Tadmor/Gur (0.5-5 km)		
-STB/DIS03 -STB/DIS04	2.000E+00 3.000E+00	3.9066E-01 5.6341E-01	5.1125E-01 Tadmor/Gur (0.5-5 km)		
-STB/DIS05	4.000E+00	7.3056E-01	6.5369E-01 Tadmor/Gur (0.5-5 km)		
STB/DIS06	5 000E+00	8.9367E-01	7.9097E-01 Tadmor/Gur (0.5-5 km)		
STB/DIS07	6 000E+00	1.0536E+00	9.2428E-01 Tadmor/Gur (0.5-5 km)		
-STB/DIS08 -STB/DIS09	8.000E+00 1.000E+01	1.3662E+00 1.6712E+00	1.1818E+00 Tadmor/Gur (0.5-5 km) 1.4300E+00 Tadmor/Gur (0.5-5 km)		
-STB/DIS09	1.000E+01	1.3370E+01	1.0224E+01 Tadmor/Gur (0.5-5 km)		
-STB/DIS11	1.400E+02	1.8118E+01	1.3629E+01 Tadmor/Gur (0.5-5 km)		
	2.000E+02	2.5003E+01	1.8484E+01 Tadmor/Gur (0.5-5 km)		
STB/DIS12	2 0005 00	3.6060E+01	2.6136E+01 Tadmor/Gur (0.5-5 km)		
STB/DIS13	3.000E+02		O O MATELINA TELLE IO IO TELLE		
STB/DIS13 STB/DIS14	4.000E+02	4.6758E+01	3.3417E+01 Tadmor/Gur (0.5-5 km)		
STB/DIS13			3.3417E+01 Tadmor/Gur (0.5-5 km) 4.0435E+01 Tadmor/Gur (0.5-5 km) 4.7250E+01 Tadmor/Gur (0.5-5 km)		

•

			ENGIN	EERI	NG WORK	SHEET	
Calc Nur	mber SM-1	526			Rev. 0	Add.	Sheet: _32_ of _61
L						l	· · · · · · · · · · · · · · · · · · ·
C-STB/DIS18	1.000E+03	1.0696E+02	7.3102E+01 T	Fadmor/(Sur (0 5-5 km)		
C-STB/DIS19		1.4495E+02	9.7447E+01 1				
C-STB/DIS20		2.0003E+02	1.3216E+02 1				
C-STB/DIS21 C-STB/DIS22	3.000E+03 4.000E+03	2.8849E+02 3.7408E+02	1.8687E+02 T 2.3893E+02 T				
C-STB/DIS22 C-STB/DIS23		4.5759E+02	2.8911E+02 T				
C-STB/DIS24	£.000E+03	5.3949E+02	3.3784E+02 1				
C-STB/DIS25		6.9955E+02	4.3196E+02 T				
C-STB/DIS26 C-STB/DIS27	1.000E+04 1.400E+04	8.5573E+02 1.1596E+03	5.2267E+02 T 6.9673E+02 T				
C-STB/DIS28	2.000E+04	1.6003E+03	9.4493E+02 T				
C-STB/DIS29	3.000E+04	2.3080E+03	1.3361E+03 T				
C-STB/DIS30		2.9927E+03	1.7083E+03 T				
C-STB/DIS31 C-STB/DIS32	5.000E+04 6.000E+04	3.6608E+03 4.3161E+03	2.0671E+03 T 2.4155E+03 T				
C-STB/DIS33	8.000E+04	5.5965E+03	3.0884E+03 T				
C-STB/DIS34	1.000E+05	6.8460E+03	3.7371E+03 T		· · ·		
C-STB/DIS35 C-STB/DIS36	1.400E+05 2.000E+05	9.2770E+03 1.2803E+04	4.9816E+03 T 6.7562E+03 T				
C-STB/DIS37	3.000E+05	1.8464E+04	9.5529E+03 T				
C-STB/DIS38	4.000E+05	2.3942E+04	1.2214E+04 T	admor/C	aur (0.5-5 km)		
C-STB/DIS39	5.000E+05	2.9287E+04	1.4780E+04 T				
C-STB/DIS40 C-STB/DIS41	6.000E+05 8.000E+05	3.4529E+04 4.4773E+04	1.7270E+04 T 2.2082E+04 T				
C-STB/DIS42	1.000E+06	5.4769E+04	2.6720E+04 T	admor/0	aur (0.5-5 km)		
C-STB/DIS43	1.400E+06	7.4218E+04	3.5618E+04 T				
C-STB/DIS44 C-STB/DIS45	2.000E+06 3.000E+06	1.0242E+05 1.4772E+05	4.8306E+04 T 6.8302E+04 T				
C-STB/DIS46	4.000E+06	1.9154E+05	8.7331E+04 T				
C-STB/DIS47	5.000E+06	2.3430E+05	1.0567E+05 T	admor/C	aur (0.5-5 km)		
C-STB/DIS48	6.000E+06	2.7624E+05	1.2348E+05 T				
C-STB/DIS49 C-STB/DIS50	8.000E+06 1.000E+07	3.5819E+05 4.3817E+05	1.5788E+05 T 1.9104E+05 T				
•							
* D-stability	Distance (m) Si			dmar/G	rr (0 5 5 km)		
D-STB/DIS01 D-STB/DIS02	1.000E+00 1.400E+00	1.4740E-01 1.9974E-01	3.0000E-01 Ta 3.7374E-01 Ta				
D-STB/DIS03	2.000E+00	2.7565E-01	4.7180E-01 Ta				
D-STB/DIS04	3.000E+00	3.9754E-01	6.1486E-01 Ta				
D-STB/DIS05 D-STB/DIS06	4.000E+00 5.000E+00	5.1549E-01 6.3058E-01	7.4197E-01 Ta 8.5840E-01 Ta		· · ·		
D-STB/DIS00	6.000E+00	7.4344E-01	9.6696E-01 Ta				
D-STB/DIS08	8.000E+00	9.6400E-01	1.1669E+00 Ta	admor/G	ur (0.5-5 km)		
D-STB/DIS09	1.000E+01	1.1792E+00	1.3500E+00 T				·
D-STB/DIS10 D-STB/DIS11	1.000E+02 1.400E+02	9.4340E+00 1.2784E+01	6.0746E+00 T 7.5678E+00 T				
D-STB/DIS12	2.000E+02	1.7642E+01	9.5533E+00 T	admor/G	iur (0.5-5 km)		
D-STB/DIS13	3.000E+02	2.5444E+01	1.2450E+01 T				
D-STB/DIS14 D-STB/DIS15	4.000E+02 5.000E+02	3.2993E+01 4.0359E+01	1.5024E+01 T 1.7382E+01 T		•		
D-STB/DIS16	6.000E+02	4.7582E+01	1.9580E+01 T				
D-STB/DIS17	8.000E+02	6.1699E+01	2.3628E+01 T		• •		
D-STB/DIS18 D-STB/DIS19	1.000E+03 1.400E+03	7.5474E+01 1.0227E+02	2.7335E+01 Ta 3.4054E+01 Ta				
D-STB/DIS20	2.000E+03	1.4114E+02	4.2989E+01 T				
D-STB/DIS21	3.000E+03	2.0356E+02	5.6024E+01 Ta	admor/G	iur (0.5-5 km)		
D-STB/DIS22	4.000E+03	2.6395E+02	6.7606E+01 Ta				
D-STB/DIS23 D-STB/DIS24	5.000E+03 6.000E+03	3.2288E+02 3.8067E+02	7.8215E+01 Ta 8.8107E+01 Ta		•		
D-STB/DIS25	8.000E+03	4.9360E+02	1.0632E+02 Ta	admor/G	iur (0.5-5 km)		
D-STB/DIS26	1.000E+04	6.0381E+02	1.2300E+02 Ta	admor/G	iur (0.5-5 km)		
D-STB/DIS27 D-STB/DIS28	1.400E+04 2.000E+04	8.1821E+02 1.1292E+03	1.5324E+02 Ta 1.9344E+02 Ta				
D-STB/DIS28	3.000E+04	1.6285E+03	2.5210E+02 Ta				
D-STB/DIS30	4.000E+04	2.1116E+03	3.0422E+02 Ta	admor/G	ur (0.5-5 km)		
D-STB/DIS31	5.000E+04	2.5831E+03	3.5196E+02 Ta				
D-STB/DIS32 D-STB/DIS33	6.000E+04 8.000E+04	3.0454E+03 3.9489E+03	3.9647E+02 Ta 4.7843E+02 Ta			•	
D-STB/DIS33	1.000E+04	4.8306E+03	5.5350E+02 Ta				
D-STB/DIS35	1.400E+05	6.5458E+03	6.8956E+02 Ta	admor/G	ur (0.5-5 km)		
D-STB/DIS36	2.000E+05	9.0335E+03	8.7047E+02 Ta				
D-STB/DIS37 D-STB/DIS38	3.000E+05 4.000E+05	1.3028E+04 1.6893E+04	1.1344E+03 Ta 1.3689E+03 Ta				

ENGINEERING WORK SHEET						
Calc Nun	nber SM-1	526		Rev. 0	Add.	Sheet: _33_ of <u>_61</u>
L				l	l	<u> </u>
D-STB/DIS39	5.000E+05	2.0665E+04	1.5838E+03 Tadmor	• • •		
D-STB/DIS40 D-STB/DIS41	6.000E+05 8.000E+05	2.4364E+04 3.1592E+04	1.7841E+03 Tadmor 2.1529E+03 Tadmor			
D-STB/DIS41 D-STB/DIS42	1.000E+05	3.1592E+04 3.8645E+04				
D-STB/DIS43	1.400E+06	5.2368E+04				
D-STB/DIS44	2.000E+06	7.2270E+04				
D-STB/DIS45	3.000E+06	1.0423E+05				
D-STB/DIS46 D-STB/DIS47	4.000E+06 5.000E+06	1.3515E+05 1.6532E+05	6.1601E+03 Tadmor 7.1267E+03 Tadmor			
D-STB/DIS47	€.000E+06	1.9492E+05	8.0280E+03 Tadmor			
D-STB/DIS49	ξ:.000E+06	2.5274E+05	9.6877E+03 Tadmor			
D-STB/DIS50	1.000E+07	3.0917E+05	1.1208E+04 Tadmor	/Gur (0.5-5 km)		
* E-stability	Distance (m) S	igma-y (m) S	igma-z (m)			
E-STB/DIS01	1.000E+00	1.0460E-01	4.0000E-01 Tadmor/(
E-STB/DIS02	1.400E+00	1.4174E-01	4.8983E-01 Tadmor/(
E-STB/DIS03 E-STB/DIS04	2.000E+00 3.000E+00	1.9561E-01 2.8211E-01	6.0717E-01 Tadmor/0 7.7506E-01 Tadmor/0			
E-STB/DIS05	4.000E+00	3.6581E-01	9.2164E-01 Tadmor/			
E-STB/DIS06	5.000E+00	4.4748E-01	1.0542E+00 Tadmor/			
E-STB/DIS07	6.000E+00	5.2757E-01	1.1765E+00 Tadmor/			
E-STB/DIS08 E-STB/DIS09	8.000E+00 1.000E+01	6.8409E-01 8.3682E-01	1.3990E+00 Tadmor/ 1.6001E+00 Tadmor/			
E-STB/DIS10	1.000E+01	6.6947E+00	6.4012E+00 Tadmon			
E-STB/DIS11	1.400E+02	9.0719E+00	7.8387E+00 Tadmor	/Gur (0.5-5 km)		
E-STB/DIS12	2.000E+02	1.2520E+01	9.7165E+00 Tadmor,	• •		
E-STB/DIS13	3.000E+02	1.8056E+01	1.2403E+01 Tadmor			
E-STB/DIS14 E-STB/DIS15	4.000E+02 5.000E+02	2.3413E+01 2.8640E+01	1.4749E+01 Tadmor, 1.6870E+01 Tadmor,			
E-STB/DIS16	6.000E+02	3.3766E+01	1.8827E+01 Tadmor			
E-STB/DIS17	8.000E+02	4.3784E+01	2.2388E+01 Tadmor.	• •		
E-STB/DIS18	1.000E+03	5.3559E+01	2.5607E+01 Tadmor/			
E-STB/DIS19 E-STB/DIS20	1.400E+03 2.000E+03	7.2577E+01 1.0016E+02	3.1358E+01 Tadmor/ 3.8870E+01 Tadmor/			•
E-STB/DIS21	3.000E+03	1.4445E+02	4.9617E+01 Tadmor/	•		
E-STB/DIS22	4.000E+03	1.8731E+02	5.9001E+01 Tadmor/			
E-STB/DIS23	5.000E+03	2.2912E+02	6.7485E+01 Tadmor/			
E-STB/DIS24 E-STB/DIS25	6.000E+03 8.000E+03	2.7013E+02 3.5028E+02	7.5316E+01 Tadmor/ 8.9559E+01 Tadmor/			
E-STB/DIS26	1.000E+04	4.2848E+02	1.0244E+02 Tadmor/	· · · ·		
E-STB/DIS27	1.400E+04	5.8063E+02	1.2544E+02 Tadmor/	/Gur (0.5-5 km)		
E-STB/DIS28	2.000E+04	8.0129E+02	1.5549E+02 Tadmor/			
E-STB/DIS29 E-STB/DIS30	3.000E+04	1.1556E+03	1.9849E+02 Tadmor/			
E-STB/DIS31	4.000E+04 5.000E+04	1.4985E+03 1.8330E+03	2.3603E+02 Tadmor/ 2.6997E+02 Tadmor/			
E-STB/DIS32	6.000E+04	2.1611E+03	3.0129E+02 Tadmor/	'Gur (0.5-5 km)		
E-STB/DIS33	8.000E+04	2.8023E+03	3.5827E+02 Tadmor/			
E-STB/DIS34 E-STB/DIS35	1.000E+05 1.400E+05	3.4279E+03 4.6452E+03	4.0979E+02 Tadmor/ 5.0182E+02 Tadmor/	•		
E-STB/DIS36	2.000E+05	6.4105E+03	6.2203E+02 Tadmor/			
E-STB/DIS37	3.000E+05	9.2453E+03	7.9403E+02 Tadmor/	'Gur (0.5-5 km)		
E-STB/DIS38	4.000E+05	1.1988E+04	9.4419E+02 Tadmor/ 1.0800E+03 Tadmor/			
E-STB/DIS39 E-STB/DIS40	5.000E+05 6.000E+05	1.4665E+04 1.7289E+04	1.2053E+03 Tadmor/			
E-STB/DIS41	8.000E+05	2.2419E+04	1.4332E+03 Tadmor/	Gur (0.5-5 km)		
E-STB/DIS42	1.000E+06	2.7424E+04	1.6393E+03 Tadmor/	Gur (0.5-5 km)		
E-STB/DIS43	1.400E+06	3.7162E+04	2.0074E+03 Tadmor/	• • •		
E-STB/DIS44 E-STB/DIS45	2.000E+06 3.000E+06	5.1285E+04 7.3964E+04	2.4883E+03 Tadmor/ 3.1764E+03 Tadmor/			
E-STB/DIS46	4.000E+06	9.5907E+04	3.7771E+03 Tadmor/			
E-STB/DIS47	5.000E+06	1.1732E+05	4.3203E+03 Tadmor/	Gur (0.5-5 km)		
E-STB/DIS48	6.000E+06	1.3832E+05	4.8215E+03 Tadmor/			
E-STB/DIS49 E-STB/DIS50	8.000E+06 1.000E+07	1.7935E+05 2.1940E+05	5.7334E+03 Tadmor/ 6.5578E+03 Tadmor/			
*						
* F-stability [F-STB/DIS01	Distance (m) Si 1.000E+00	gma-y (m) Si 7.2200E-02	gma-z (m) 2.0000E-01 Tadmor/G	Sur (0.5-5 km)		
F-STB/DIS02	1.400E+00	9.7838E-02	2.4491E-01 Tadmor/G			
F-STB/DIS03	2 000E+00	1.3502E-01	3.0356E-01 Tadmor/G	iur (0.5-5 km)		
F-STB/DIS04	3 000E+00	1.9473E-01	3.8749E-01 Tadmor/G			
F-STB/DIS05 F-STB/DIS06	4 000E+00 5 000E+00	2.5250E-01 3.0887E-01	4.6076E-01 Tadmor/G 5.2700E-01 Tadmor/G			
F-STB/DIS07	6 000E+00	3.6415E-01	5.8814E-01 Tadmor/G			
		/				

ENCINEEDING WORK QUEET

•

ENGINEERING WORK SHEET								
Calc Num	ber SM-1	526		Rev. 0	Add.	Sheet: _34_ of _	<u>31</u>	
Calc Num F-STB/DIS08 F-STB/DIS09 F-STB/DIS10 F-STB/DIS11 F-STB/DIS12 F-STB/DIS12 F-STB/DIS14 F-STB/DIS15 F-STB/DIS16 F-STB/DIS17 F-STB/DIS17 F-STB/DIS18 F-STB/DIS19 F-STB/DIS20 F-STB/DIS20 F-STB/DIS21 F-STB/DIS23 F-STB/DIS23 F-STB/DIS28 F-STB/DIS28 F-STB/DIS28 F-STB/DIS28 F-STB/DIS28 F-STB/DIS28 F-STB/DIS28 F-STB/DIS28 F-STB/DIS28 F-STB/DIS31 F-STB/DIS33 F-STB/DIS33 F-STB/DIS33 F-STB/DIS35 F-STB/DIS36 F-STB/DIS38 F-STB/DIS38 F-STB/DIS38 F-STB/DIS38 F-STB/DIS38 F-STB/DIS37 F-STB/DIS38 F-STB/DI	8.000E+00 1.000E+01 1.000E+02 1.400E+02 2.000E+02 2.000E+02 3.000E+02 5.000E+02 5.000E+02 5.000E+02 8.000E+03 1.400E+03 3.000E+03 3.000E+03 3.000E+03 8.000E+03 1.000E+04 1.400E+04 2.000E+04 3.000E+04 3.000E+04 4.000E+04 3.000E+04 3.000E+05 1.400E+05 3.000E+05 3.000E+05 5.000E+05 5.000E+05 5.000E+05	4.7219E-01 5.7761E-01 4.6210E+00 6.2619E+00 8.6417E+00 1.2463E+01 1.6161E+01 1.9769E+01 2.3307E+01 3.0222E+01 3.6969E+01 5.0096E+01 6.9135E+01 9.9707E+01 1.2929E+02 1.5815E+02 1.5815E+02 1.8646E+02 2.4178E+02 2.9576E+02 4.0078E+02 2.9576E+02 4.0078E+02 5.5309E+02 7.9767E+02 1.0343E+03 1.2653E+03 1.2653E+03 3.2063E+03 3.2063E+03 3.2063E+03 3.2748E+03 6.3815E+03 8.2748E+03 1.0122E+04 1.1934E+04 1.5475E+04	6.9934E-01 Tadmor/ 7.9989E-01 Tadmor/ 3.1991E+00 Tadmo 3.9174E+00 Tadmo 4.8557E+00 Tadmo 6.1981E+00 Tadmo 7.3700E+00 Tadmo 9.4076E+00 Tadmo 1.1186E+01 Tadmo 1.2795E+01 Tadmo 1.2795E+01 Tadmo 2.4789E+01 Tadmo 2.4789E+01 Tadmo 3.3714E+01 Tadmo 3.7625E+01 Tadmo 5.1172E+01 Tadmo 5.1172E+01 Tadmo 5.1172E+01 Tadmo 5.1172E+01 Tadmo 5.1172E+01 Tadmo 5.1172E+01 Tadmo 5.11789E+02 Tadmo 1.3848E+02 Tadmo 1.5048E+02 Tadmo 1.5048E+02 Tadmo 2.0466E+02 Tadmo 3.9051E+02 Tadmo 3.9051E+02 Tadmo 3.9051E+02 Tadmo 3.9051E+02 Tadmo 3.927E+02 Tadmo 3.927E+02 Tadmo 3.927E+02 Tadmo 5.3927E+02 Tadmo	Gur (0.5-5 km) Gur (0.5-5 km) r/Gur (0.5-5 km)	Add.	Sheet: _34_ of _	<u>51</u>	
F-STB/DIS41 F-STB/DIS42 F-STB/DIS43 F-STB/DIS44 F-STB/DIS45 F-STB/DIS46 F-STB/DIS47 F-STB/DIS48 F-STB/DIS49 F-STB/DIS50	1.000E+06 1.400E+06 2.000E+06 3.000E+06 4.000E+06 5.000E+06 6.000E+06 8.000E+06 1.000E+07	1.8929E+04 2.5651E+04 3.5400E+04 5.1053E+04 6.6200E+04 8.0980E+04 9.5474E+04 1.2380E+05 1.5144E+05	8.1852E+02 Tadmor 1.0023E+03 Tadmor 1.2424E+03 Tadmor 1.5858E+03 Tadmor 1.8857E+03 Tadmor 2.1568E+03 Tadmor	r/Gur (0.5-5 km) r/Gur (0.5-5 km) r/Gur (0.5-5 km) r/Gur (0.5-5 km) r/Gur (0.5-5 km) r/Gur (0.5-5 km) r/Gur (0.5-5 km)				
• LINEAR SCAL	ING FACTOR	FOR SIGMA-Y	FUNCTION, NORMAL	LY 1			,	
DPYSCALE001	1.							
 LINEAR SCALING FACTOR FOR SIGMA-Z FUNCTION, NORMALLY USED FOR SURFACE ROUGHNESS LENGTH CORRECTION. (Z1 / Z0) ** 0.2, IFROM CRAC2 WE HAVE (10 CM / 3 CM) ** 0.2 = 1.27 								
* EXPANSION FACTOR DATA BLOCK, LOADED BY INPEXP, STORED IN /EXPAND/								
* TIME BASE FOR EXPANSION FACTOR (SECONDS)								
• PM:TIMBAS001 600. (10 MINUTES)								
• * BREAK POINT FOR FORMULA CHANGE (SECONDS)								
• PMBRKPNT001 3600. (1 HOUR)								
• • EXPONENTIAL EXPANSION FACTOR NUMBER 1								
* PMXPFAC1001 0.2								
• • EXPONENTIAL EXPANSION FACTOR NUMBER 2								

* EXPONENTIAL EXPANSION FACTOR NUMBER 2

PMXPFAC2001 0.25

.

* PLUME RISE DATA BLOCK, LOADED BY INPLRS, STORED IN /PLUMRS/

Calc Number SM-1526	Rev. 0	Add.	Sheet: <u>35</u> of <u>61</u>
SCALING FACTC'R FOR THE CRITICAL WIND SPEED FOR EN (USED BY FUNCTION CAUGHT)	TRAINMENT OF	A BOUYANT PLU	ME
RSCLCRW001 1.			
SCALING FACTOR FOR THE A-D STABILITY PLUME RISE FOF (USED BY FUNCTION PLMRIS)	RMULA		
RSCLADP001 1	,		
SCALING FACTOR FOR THE E-F STABILITY PLUME RISE FOR (USED BY FUNCTION PLMRIS)	RMULA		
RSCLEFP001 1.			
RELEASE DATA 3LOCK, LOADED BY INPREL, STORED IN /AT	NAM2/, /MULRE	U	
DATNAM2001 'Case 1BOC ESBWR Specific Source Term Data	Used From GE		
TIME AFTER ACCIDENT INITIATION WHEN THE ACCIDENT RE CONDITIONS (AS) DEFINED IN NUREG-0654), OR WHEN PLAN PREDICT THAT (JENERAL EMERGENCY CONDITIONS WILL B	T PERSONNEL		,
DOALARM001 1200.			
NUMBER OF PLUME SEGMENTS THAT ARE RELEASED			
DNUMREL001 1			
SELECTION OF RISK DOMINANT PLUME			
DMAXRIS001 1			
REFERENCE TIME FOR DISPERSION AND RADIOACTIVE DEC	CAY		
DREFTIM001 0.0			
HEAT CONTENT OF THE RELEASE SEGMENTS (W) A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENT	S		
DPLHEAT001 1.0E-6			
HEIGHT OF THE PLUME SEGMENTS AT RELEASE (M) A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS	S		
DPLHITE001 49.0			
DURATION OF THE PLUME SEGMENTS (S) A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS	S		
DPLUDUR001 9000.			
TIME OF RELEASE FOR EACH PLUME (S AFTER SCRAM) A VALUE SPECIFIED FOR EACH OF THE RELEASE SEGMENTS	S		
DPDELAY001 2:100.			
nitial value of signa-y for each plumeNote: values required for ea	ach plume		
GYINIT001 9.302 9.302 (initial sigma-y, calculated for 40 meter v	vide bldg.)		
nitial value of signa-z for each plumeNote: values required for ea	ach plume		
GZINIT001 23.26; 23.26 (initial sigma-z, calculated for 50 meter h	igh bldg.)		
Building height (meters)Note: values required for each plume			
EBUILDH001 50.0 50.0 (Surry)			
PARTICLE SIZE DISTRIBUTION OF EACH NUCLIDE GROUP OU MUST SPECIFY A COLUMN OF DATA FOR EACH OF THE		00000	

.

.

•

ENGINEERING WORK SHEET								
Calc Numb	per SM-1526		Rev. 0	Add.	Sheet: _36_ of _61			
RDPSDIST001								
RDPSDIST002	•							
RDPSDIST003 RDPSDIST004	•							
RDPSDIST005	•							
RDPSDIST006								
RDPSDIST007 RDPSDIST008								
RDPSDIST009	•.							
* * ESBWB COBE	INVENTORY, END-OF-CYC	IF						
	D BY GE for ESBWR, 4/04/0							
• NUCN	AM CORINV (Bq/MWt)							
* RDCORINV001	Co-58 5.10E+12							
RDCORINV001	Co-60 4.92E+12							
RDCORINV003	Kr-85 1.23E+13							
RDCORINV004 RDCORINV005	Kr-85m 2.73E+14 Kr-87 5.27E+14							
RDCORINV006	Kr-88 7.42E+14							
RDCORINV007	Rb-86 2.35E+12							
RDCORINV008 RDCORINV009	Sr-89 9.93E+14 Sr-90 9.76E+13							
RDCORINV010	Sr-91 1.25E+15							
RDCORINV011 RDCORINV012	Sr-92 1.34E+15 Y-90 1.01E+14							
RDCORINV012	Y-91 1.27E+15							
RDCORINV014	Y-92 1.34E+15							
RDCORINV015 RDCORINV016	Y-93 1.55E+15 Zr-95 1.70E+15							
RDCORINV017	Zr-97 1.69E+15							
RDCORINV018 RDCORINV019	Nb-95 1.71E+15 Mo-99 1.89E+15							
RDCORINV019	Tc-99m 1.68E+15							
RDCORINV021	Ru-103 1.50E+15							
RDCORINV022 RDCORINV023	Ru-105 1.00E+15 Ru-106 5.21E+14							
RDCORINV024	Rh-105 9.10E+14							
RDCORINV025 RDCORINV026	Sb-127 1.03E+14							
RDCORINV026	Sb-129 3.15E+14 Te-127 1.05E+14							
RDCORINV028	Te-127m 1.37E+13							
RDCORINV029 RDCORINV030	Te-129 3.10E+14 Te-129m 4.60E+13							
RDCORINV031	Te-131m 1.42E+14							
RDCORINV032 RDCORINV033	Te-132 1.41E+15 I-131 9.90E+14							
RDCORINV034	1-132 1.44E+15							
RDCORINV035 RDCORINV036	I-133 2.04E+15 I-134 2.25E+15							
RDCORINV037	I-135 1.91E+15							
RDCORINV038 RDCORINV039	Ke-133 2.03E+15							
RDCORINV039	Ke-135 6.72E+14 Cs-134 1.98E+14							
RDCORINV041	Cs-136 6.89E+13							
RDCORINV042 RDCORINV043	Cs-137 1.28E+14 Ba-139 1.84E+15		•					
RDCORINV044	I3a-140 1.77E+15							
RDCORINV045 RDCORINV046	La-140 1.82E+15 La-141 1.68E+15							
RDCORINV040	La-142 1.62E+15				·			
RDCORINV048	Ce-141 1.68E+15							
RDCORINV049 RDCORINV050	Ce-143 1.56E+15 Ce-144 1.36E+15							
RDCORINV051	Pr-143 1.53E+15							
RDCORINV052 RDCORINV053	Nd-147 6.69E+14							
RDCORINV053	Np-239 1.93E+16 Pu-238 3.34E+12		_					
RDCORINV055	Pu-239 4.02E+11		·					
RDCORINV056 RDCORINV057	Pu-240 5.21E+11 Pu-241 1.51E+14							
RDCORINV058	Am-241 1.70E+11							

Calc Number SM-1526	Rev. 0	Add.	Sheet: <u>37</u> of <u>61</u>
RDCORINV059 Cm-242 4.01E+13 RDCORINV060 Cm-244 1.94E+12 * * SCALING FACTOR TO ADJUST THE CORE INVENTORY FOR PO			
* scaling factor to adjust inventory from Bq/MWt to Bq enter the total thermal power	JWEN LEVEL		
RDCORSCA001 4500.0 • ESBWR power level = 4500			
RDAPLFRC001 PARENT (apply rel fracs the same as prior version	ons)		
* SOURCE TERM NUMBER ****** These RELEASE FRACTIONS are for Case 1BOC ************************************	•••••		
*	•		
•			
* OUTPUT CONTROL DATA BLOCK, LOADED BY INPOPT, STORE			
• FLAG TO INDICATE THAT THIS IS THE LAST PROGRAM IN THE	SERIES TO BE R	UN	
OCENDAT1001 .F.ALSE. (SET THIS VALUE TO .TRUE. TO SKIP EA	ARLY AND CHRON	NC)	
OCIDEBUG001 0			
NAME OF THE NIJCLIDE TO BE LISTED ON THE DISPERSION LI	STINGS		
OCNUCOUT001 Cs-137			·
• NUMO TYPEONUMBER 2			
INDREL INDRAD TYPE0OUT001 1 9 TYPE0OUT002 1 10 XCCDF METEOROLOGICAL SAMPLING DATA BLOCK			
• • • METEOROLOGICAL SAMPLING OPTION CODE:			
 METCOD = 1, US ER SPECIFIED DAY AND HOUR IN THE YEAR (I 2, WEATHER CATEGORY BIN SAMPLING, 3, 120 HOURS OF WEATHER SPECIFIED ON THE ATMOS L 4, CONSTANT MET (BOUNDARY WEATHER USED FROM T 5, STRATIFIED RANDOM SAMPLES FOR EACH DAY OF TH 	JSER INPUT FILE HE START),		
M1METCOD001 2			
* LAST SPATIAL INTERVAL FOR MEASURED WEATHER			
M2LIMSPA001 11			
BOUNDARY WEATHER MIXING LAYER HEIGHT			
M2BNDMXH001 1000. (METERS)			
BOUNDARY WEATHER STABILITY CLASS INDEX			
M2IBDSTB001 4 (D-STABILITY)			
BOUNDARY WEATHER RAIN RATE			
* M2BNDRAN001 5. (MM/HR)			
BOUNDARY WEATHER WIND SPEED			
• M2BNDWND001 5 (M/S)			

Calc Number SM-1526	Rev. 0	Add.	Sheet: 38_ of 61
		/	
NUMBER OF RAIN DISTANCE INTERVALS FOR BINNIN	NG		
4NRNINT001 5			
ENDPOINTS OF THE RAIN DISTANCE INTERVALS (KIL	LOMETERS)		
NOTE: THESE MIJST BE CHOSEN TO MATCH THE SP/ SPECIFIED FOR THE ARRAY SPAEND (10 % ERRC		NCES	
4RNDSTS001 3.22 6.44 8.05 16.09 32.19			
NUMBER OF RAIN INTENSITIY BREAKPOINTS			
4NRINTN001 3			
RAIN INTENSITY BREAKPOINTS FOR WEATHER BINN	IING (MILLIMETERS PEF	R HOUR)	
4RNRATE001 2. 4. 6.			
NUMBER OF SAMPLES PER BIN		•	
4NSMPLS001 4 (THIS NUMBER SHOULD BE SET TO	4 FOR RISK ASSESSME	INT)	
INITIAL SEED FOR RANDOM NUMBER GENERATOR			
4IRSEED001 79	*****		
**** 10 ESBWR STACKED CASES BEGIN HERE*******	•••••	•	
ESBWR Source Term data			
DATNAM2001 'Case 2BYP' DOALARM001 1200.0 (time to reach general emerge DPDELAY001 *800.0 (time of release after scram, s DPLUDUR001 *7800.0 (release duration, sec) DPLHEAT001 1.00E-6 (sensible heat rate, watt) DPLHITE001 49.0 (height of the plume segments a	sec)		
release fractions by group 1 2 3 4 5 6 7 8 9 XE/KR I CS TE SR RU LA	CE BA		
DRELFRC001 9.80E-01 4.30E-01 3.70E-01 7.42E-01 1.6	60E-02 1.20E-01 5.30E-04	4 3.32E-03 2.90E	E-02
DATNAM2001 'Case 3CCID' DOALARM001 21100.0 (time to reach general emerg DPDELAY001 53100.0 (time of release after scram, s DPLUDUR001 36000.0 (release duration, sec) DPLHEAT001 1.00E-6 (sensible heat rate, watt) DPLHITE001 49.0 (height of the plume segments at	gency condition, sec) sec)		===

release fractions by group
1 2 3 4 5 6 7 8 9
XE/KR I CS TE SR RU LA CE BA

RDRELFRC001 9.20E-01 5.30E-01 3.20E-01 5.95E-01 2.30E-06 5.10E-06 1.40E-07 1.40E-06 2.20E-05

RDATNAM2001 'Case 4CCIW' RDOALARM001 24000.0 (time to reach general emergency condition, sec) RDPDELAY001 \$0400.0 (time of release after scram, sec) RDPLUDUR001 36000.0 (release duration, sec) RDPLHEAT001 1.00E-6 (sensible heat rate, watt) RDPLHITE001 49.0 (height of the plume segments at release, m) * release fractions by group * 1 2 3 4 5 6 7 8 9 * XE/KR I CS TE SR RU LA CE BA

ENGINEERING WORK SHEET								
Calc Number SM-	1526	Rev. 0	Add.	Sheet: _39_ of <u>_61</u>				

RDRELFRC001 1.00E+00 7.30E-05 7.90E-03 1.54E-02 8.20E-08 5.90E-08 1.10E-08 7.49E-08 6.00E-08

•	***************************************
RDATNAM2001	
RDOALARM001	
RDPDELAY001	63000.0 (time of release after scram, sec) 36000.0 (release duration, sec)
RDPLUDUR001 RDPLHEAT001	50000.0 (release duration, sec)
RDPLHITE001	49.0 (height of the plume segments at release, m)
* .	
•	release fractions by group
* 1 2	3 4 5 6 7 8 9
 XE/KF 	R I CS TE SR RU LA CE BA
*	
RDRELFRC001	9.00E-01 8.00E-01 1.50E-01 4.90E-01 3.20E-04 2.70E-04 3.20E-04 3.20E-04 3.20E-04
*	
RDATNAM2001	'Case 6EVE'
RDOALARM001	
RDPDELAY001	22500.0 (time of release after scram, sec)
RDPLUDUR001	36000.0 (release duration, sec)
RDPLHEAT001 RDPLHITE001	.00E-6 (sensible heat rate, watt) 49.0 (height of the plume segments at release, m)
*	43.0 (height of the plane segments at release, my
•	release fractions by group
• 12	3 4 5 6 7 8 9
* XE/KR	R I CS TE SR RU LA CE BA
RURELFHC001	8.40E-01 2.50E-01 3.40E-01 6.90E-01 1.30E-02 1.10E-04 8.20E-04 6.25E-03 5.70E-03
•	
RDATNAM2001	'Case 7FR'
RDOALARM001	9800.0 (time to reach general emergency condition, sec)
RDPDELAY001	
RDPLUDUR001	36000.0 (release duration, sec)
RDPLHEAT001	1.00E-6 (sensible heat rate, watt)
RDPLHITE001	49.0 (height of the plume segments at release, m)* release fractions by group
• 1 2	3 4 5 6 7 8 9
* XE/KR	
•	
RDRELFRC001	1.00E+00 9.80E-06 4.60E-05 2.53E-03 1.10E-08 1.90E-07 4.10E-10 1.51E-09 3.20E-08
*	
RDATNAM2001	
RDOALARM001	16500.0 (time to reach general emergency condition, sec)
RDPDELAY001	65300.0 (time of release after scram, sec)
RDPLUDUR001	36000.0 (release duration, sec)
RDPLHEAT001 RDPLHITE001	1.00E-6 (sensible heat rate, watt)
	49.0 (height of the plume segments at release, m)* release fractions by group
• 1 2	3 4 5 6 7 8 9
* XE/KR	
•	
RDRELFRC001	9.90E-01 2.80E-01 3.40E-02 1.10E-01 1.70E-03 1.20E-04 1.50E-04 3.11E-04 8.70E-04
*	
	"Case 9-OPW1"
RDATNAM2001 RDOALARM001	16600.0 (time to reach general emergency condition, sec)
RDPDELAY001	§1500.0 (time of release after scram, sec)
RDPLUDUR001	
RDPLHEAT001	1.00E-6 (sensible heat rate, watt)
RDPLHITE001	49.0 (height of the plume segments at release, m)*
•	release fractions by group
· 1 2	3 4 5 6 7 8 9
* XE/KR	I CS TE SR RU LA CE BA
BDBELEBC001	9.90E-01 6.00E-01 1.40E-01 3.70E-01 1.60E-03 4.30E-07 5.80E-06 1.81E-04 7.50E-04
	0.00E 01 0.00E 01 1.40E 01 0.10E-01 1.00E-00 4.00E-07 0.00E-00 1.01E-04 7.00E-04
*============	JE:J\$25556656565656565656565656555555555555
RDATNAM2001	'Case 10-OPW2'
RDOALARM001	17600.0 (time to reach general emergency condition, sec)

•

		<u>•</u>	
Calc Number SM-1526	Rev. 0	Add.	Sheet: _40_ of <u>_61</u>
RDPDELAY001 146900.0 (time of release after scram, sec) RDPLUDUR001 36000.0 (release duration, sec) RDPLHEAT001 1.00E-6 (sensible heat rate, watt) RDPLHITE001 49.0 (height of the plume segments at release, release fractions by group * 1 2 3 4 5 6 7 8 9 * XE/KR I CS TE SR RU LA CE * PRRELFRC001 9 90E-01 3.80E-02 4.30E-02 1.57E-01 1.20E-03 2.0	BA	.40E-04 5.70E-04	
RDATNAM2001 'Jase 11TSL' RDOALARM001 21000.0 (time to reach general emergency cont RDPDELAY001 1100.0 (time of release after scram, sec) RDPLUDUR001 36000.0 (release duration, sec) RDPLHEAT001 '1.00E-6 (sensible heat rate, watt) RDPLHITE001 49.0 (height of the plume segments at release, release fractions by group 1 2 3 4 5 6 7 8 9 XE/KR I CS TE SR RU LA CE			
RDRELFRC001 2.00E-03 1.50E-04 5.50E-05 2.15E-04 2.10E-06 3.	90E-05 7.30E-08 2	.00E-07 7.70E-06	

ENGINEER	ING WORK	SHEET	
Calc Number SM-1526	Rev. 0	Add.	Sheet: _41_ of _61
**************************************	t File***	* * * * * * * * *	* * *
80 GENERAL DESCRIPTIVE TITLE DESCRIBING T			T FILE
80 BASE CASE using EZDLTSHL = 7200 second 80 Last Modified by MGM 04/06/04	is and 95%.	Evacuation	
MIEANAM1001 'NAPS ABWR NEARLY.INP, Sample			it'
DCF_FILE001 'DOSDATA.INP' (DCF file of M	ACCS 1.5.11	1)	
* *			
*			
MIORGDEF001 'A-SKIN' .TRUE.			
MIORGDEF002 'A-RED MARR' .TRUE.			
MIORGDEF003 'A-LUNGS' .TRUE.			
MIORGDEF004 `A-THYROIDH' .TRUE. MIORGDEF005 `A-STOMACH' .TRUE.			
	es not cont	ribute to e	early fatalities)
MIONGDEF007 'L-EDEWBODY' .TRUE.		TIDULE LO	carry racarrenes,
MIORGDEF008 'L-RED MARR' .TRUE.			
MIORGDEF009 'L-BONE SUR' .TRUE.			
AIORGDEF010 'L-BREAST' .TRUE.			
AIORGDEF011 'L-LUNGS' .TRUE.			
MIORGDEF012 'L-THYROID' .TRUE.			
4IORGDEF013 'L-LOWER LI' .TRUE.			
4IORGDEF014 'L-BLAD WAL' .TRUE.			
4IORGDEF015 `L-LIVER' .FALSE. 4IORGDEF016 `L-THYROIDH' .TRUE.			
*	·		
BO FLAG TO ENDICATE THAT THIS IS THE LAST	PROGRAM IN	THE SERIE:	5 TO BE RUN
MIENDAT2001 .FALSE. (SET THIS VALUE TO	D .TRUE. TO	SKIP CHRON	IC)
	TRAIGHT LIN	IE	
30 2 * WIND-SHIFT WITH ROTATION			
80 3 * WIND-SHIFT WITHOUT ROTATION			
1IIPLUME001 2			
0 NUMBER OF FINE GRID SUBDIVISIONS USED	BY THE MODE	Ľ	
IINUMFIN001 7 (3, 5 OR 7 ALLOWED)			
0 LEVEL OF DEBUG OUTPUT REQUIRED, NORMAL	RUNS SHOUI	D SPECIFY 2	ZERO
IIIPRINT001 0			
0 LOGICAL FLAG SIGNIFYING THAT THE BREAK 0 BIN ARE TO BE PRESENTED TO SHOW THEIR 1			
0 RISBIN			
IIRISCAT001 .FALSE.			
0 FLAG INDECATING IF WIND-ROSES FROM ATM	DS ARE TO E	E OVERRIDDE	EN
IOVRRID001 .FALSE. (USE THE WIND ROSE C 0 POPULATION DISTRIBUTION DATA BLOCK, LOA			

<u> </u>	ENGINEE	RING WORI		
Calc Number SM-1526		Rev. 0	Add.	Sheet: _42_ of <u>61</u>
PDPOPFLG001 FILE				
PDPOPFLG001. UNIFORM PDIBEGIN001. 1 (SPATI PDPOPDEN001. 50. (POPUL S0 SHIELDING AND EXPOSUF		PEOPLE PER S	GQUARE KIL	OMETER))
30 THREE VALUES OF EACH 30 ONE FOR EACH TYPE OF		OR ARE SUPP	LIED,	
30 ACTIVITY TYPE: 30 1 - EVACUEES WHILE MC 30 2 - NORMAL ACTIVITY I 30 3 - SHELTERED ACTIVIT	IN SHELTERING AN	D EVACUATIO	N ZONE	
0 CLOUD SHIELDING FACTO)R			
SITE GG PB SO SHELTERING 0.7 0.5	SEQ SUR ZIC 0.65 0.6 0.5	ON		
0 EVACUEES NORMAL SHE	LTER			
SECSFACT001 1.	0.75 0.6 *	SURRY SHE	ELTERING V	ALUE
0 PROTECTION FACTOR FOR	INHALATION			
	0.41 0.33 BY NRC STAFF	* VALUES FO	OR NORMAL	ACTIVITY AND
0 BREATHING RATE (CUBIC	METERS PER SEC	OND)		
EBRRATE001 2.66E-4 2.	66E-4 2.66E-4			
0 SKIN PROTECTION FACTO	R			
ESKPFAC001 1.0 0.4 0 SHELTERING SELECTED B		VALUES FOR	NORMAL A	CTIVITY AND
0 GROUND SHIELDING FACT	OR			
SITE GG PB 0 SHELTERING 0.25 0.1		DN		
EGSHFAC001 0.5 (0 NRC STAFF	0.33 0.2 *	VALUE FOR N	IORMAL ACT	IVITY SELECTED BY
0 RESUSPENSION INHALATI	ON MODEL CONCENT	TRATION COEF	FFICIENT (/METER)
0 RESCON = 1.E-4 IS APP 0 RESHAF = 2.11 DAYS CA 0 OF RESCON USED IN THE 0 USED IN CHRONC.	USES 1.E-4 TO DE	ECAY IN ONE	WEEK TO 1	.E-5, THE VALUE
ERESCON001 1.E-4	(RESUSPENSION IS	TURNED ON)		
0 RESUSPENSION CONCENTR	ATION COEFFICIEN	T HALF-LIFE	E (SEC)	

Calc Number SM-1526 Rev. 0 Add. Sheet: 43 of 61 80 EVACUATION ZONE DATA BLOCK, LOADED BY EVNETW, STORED IN /NETWOR/, /EOPTIO/ 80 SPECIFIC DESCRIPTION OF THE EMERGENCY RESPONSE SCENARIO BEING USED EZEANAM2001 'EVACUATION WITHIN 10 MILES, RELOCATION MODELS APPLY ELSEWHERE' 80 THE TYPE OF WEIGHTING TO BE APPLIED TO THE EMERGENCY RESPONSE SCENARIOS 80 YOU MUST SUPPLY A VALUE OF 'TIME' OR 'PEOPLE' EZWTNAME001 `PEOPLE' 80 WEIGHTING FRACTION APPLICABLE TO THIS SCENARIO FOR EVACUATION EZWTFRAC001 0.95 (95% of the people within 10 miles evacuate) 80 LAST RING IN THE MOVEMENT ZONE '8 EZLASMOV001 (EVACUEES DISAPPEAR AFTER TRAVELING TO 20 MILES) 80 Flag defining the time at which evacuees "enter" the destination element *TRAVELPOINT 'CENTERPOINT' (new option implemented at MACCS2 v. 1.11f) (functionality derived from MACCS circa 1984) TRAVELPOINT 'BOUNDARY' 80 RADIAL EVACUATION SPEED (M/S) or (4 mph) Contains Three Phases * 3 Phases: (Initial) (Middle) (Late) EZESPEED001 1.8 1.8 1.8 (NAPS) EZEVATYP001 'RADIAL' EZDURBEG001 86400.0 EZDURMID001 0.0 EZREFPNT001 'ALARM' EZNUMEVA001 7 7200. 7200. 7200. 7200. 7200. 7200. EZDLTSHL001 EZDLTSHL002 7200. 7200. 7200. 7200. 7200. 7200. EZDLTEVA001 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. EZDLTEVA002 0. 0. 80 SHELTER AND RELOCATION ZONE DATA BLOCK, LOADED BY INPEMR, 80 STORED IN /INPSRZ/, /RELOCA/ 80 DURATION OF THE EMERGENCY PHASE (SECONDS FROM PLUME ARRIVAL) SRENDEMP001 604800. (ONE WEEK) 80 CRITICAL ORGAN FOR RELOCATION DECISIONS SRCRIORG001 'L-EDEWBODY' 80 HOT SPOT RELOCATION TIME (SECONDS FROM PLUME ARRIVAL) SRTIMHOT001 43200. (ONE-HALF DAY) 80 NORMAL RELOCATION TIME (SECONDS FROM PLUME ARRIVAL) SRTIMNRM001 86400. (ONE DAY) 80 HOT SPOT RELOCATION DOSE CRITERION THRESHOLD (SIEVERTS) SRDOSHOT001 0.5 (50 REM DOSE TO WHOLE BODY IN 1 WEEK TRIGGERS RELOCATION)

ENGINEERING WORK SHEET Sheet: _44_ of _61 Calc Number SM-1526 Rev. 0 Add. 80 NORMAL RELOCATION DOSE CRITERION THRESHOLD (SIEVERTS) SRDOSNRM001 0.25 (25 REM DOSE TO WHOLE BODY IN 1 WEEK TRIGGERS RELOCATION) 80 EARLY FATALITY MODEL PARAMETERS, LOADED BY INEFAT, STORED IN /EFATAL/ 80 NUMBER OF EARLY FATALITY EFFECTS EFNUMEFA001 2 EFFACA EFFACB ORGNAM EFFTHR EFATAGRP001 'A-RED MARR' 3.8 5.0 1.5 EFATAGRP002 'A-LUNGS' 10.0 7.0 5.0 80 EARLY INJURY MODEL PARAMETERS, LOADED BY INEINJ, STORED IN /EINJUR/ 80 NUMBER OF EARLY INJURY EFFECTS EINUMEIN001 7 ORGNAM EISUSC EITHRE EIFACA EIFACB EINAME EINJUGRP001 'PRODROMAL VOMIT' 'A-STOMACH' 1. .5 2. 3. EINJUGRP002 'DIARRHEA' 'A-STOMACH' 1. 3. 2.5 1. EINJUGRP003 'PNEUMONITIS' 'A-LUNGS' 5. 10. 7. 1. EINJUGRP004 'SKIN ERYTHEMA' 'A-SKIN' 1. 3. 6. 5. EINJUGRP005 'TRANSEPIDERMAL' 10. 20. 'A-SKIN' 1. 5. EINJUGRP006 'THYROIDITIS' 'A-THYROIDH' 1. 40. 240. 2. EINJUGRP007 'HYPOTHYROIDISM' 2. 'A-THYROIDH' 1. 60. 1.3 80 ACUTE EXPOSURE CANCER PARAMETERS, LOADED BY INACAN STORED IN /ACANCR/. 80 NUMBER OF ACUTE EXPOSURE CANCER EFFECTS LCNUMACA001 7 80 THRESHOLD DOSE FOR APPLYING THE DOSE DEPENDENT REDUCTION FACTOR LCDDTHRE001 0.2 (LOWEST DOSE FOR WHICH DDREFA WILL BE APPLIED) 80 DOSE THRESHOLD FOR LINEAR DOSE RESPONSE (Sv) LCACTHRE001 0.0 (LINEAR-QUADRATIC MODEL IS NOT BEING USED) ORGNAM ACSUSC DOSEFA DOSEFB CFRISK CIRISK DDREFA ACNAME LCANCERSOO1 'LEUKEMIA' 'L-RED MARR' 1.0 1.0 0.0 9.70E-3 0.0 2.0 LCANCERS002 'BONE' 1.0 'L-BONE SUR' 1.0 0.0 9.00E-4 0.0 2.0 LCANCERS003 'BREAST' `L-BREAST' 1.0 5.40E-3 1.7E-2 1.0 0.0 1.0 LCANCERS004 `LUNG' `L-LUNGS' 1.0 1.0 0.0 1.55E-2 0.0 2.0 LCANCERS005 'THYROID' 7.20E-4 `L-THYROIDH' 1.0 1.0 0.0 7.2E-3 1.0 LCANCERS006 'GI' 'L-LOWER LI' 1.0 0.0 3.36E-2 0.0 2.0 1.0 LCANCERS007 'OTHER' 'L-EDEWBODY' 1.0 1.0 0.0 2.76E-2 0.0 2.0 80 RESULT 1 OPTIONS BLOCK, LOADED BY INOUT1, STORED IN /INOUT1/ 80 TOTAL NUMBER OF A GIVEN EFFECT (LATENT CANCER, EARLY DEATH, EARLY INJURY) 80 NUMBER OF DESIRED RESULTS OF THIS TYPE

Oala Niese I		ENGINEEF	1		T	Chaot: AF of C1
Calc Number	SM-1526		Rev. 0		Add.	Sheet: _45_ of <u>61</u>
TYPE1NUMBER	27					
*			1 1 1	7	NOCODE (0 mo 10 MILEC)
TYPE1OUT001	<pre>`ERL FAT/TOTAL' `ERL INJ/PRODRON</pre>		1	7	NOCCDF (NOCCDF	0 TO 10 MILES)
TYPE1OUT002 TYPE1OUT003	'ERL INJ/DIARRH		1	7	NOCCDF	
TYPE1OUT004	'ERL INJ/PNEUMO		1	7		
TYPE1OUT005	`ERL INJ/THYROII		1	, 7		
TYPE1OUT006	'ERL INJ/HYPOTH			7		
TYPE1OUT007	'ERL INJ/SKIN E			7		
TYPE1OUT008	'ERL INJ/TRANSE			7		
TYPE1OUT009	'CAN FAT/TOTAL'		1	7	NOCCDF	
TYPE1OUT010	'CAN FAT/LUNG'		1	11	(O TO 50	MILES)
TYPE1OUT011	'CAN FAT/THYROII	D'	1	11		
TYPE1OUT012	'CAN FAT/BREAST	,	1			
TYPE1OUT013	'CAN FAT/GI'		1			
TYPE1OUT014	'CAN FAT/LEUKEM	IA'	1			
TYPE1OUT015	'CAN FAT/BONE'		1			
TYPE1OUT016	'CAN FAT/OTHER'		1			
TYPE1OUT017	CAN INJ/THYROII		1	11		
TYPE1OUT018	'CAN INJ/BREAST		1	11		MILEC)
TYPE1OUT019	'CAN FAT/TOTAL'		1	11 11	(O TO 50	MILES)
TYPE1OUT020	'ERL FAT/TOTAL'			11		
TYPE1OUT021	<pre>`ERL INJ/PRODRON `ERL INJ/DIARRHH</pre>		1			
TYPE1OUT022	'ERL INJ/PNEUMON		1			
TYPE1OUT023 TYPE1OUT024	`ERL INJ/THYROII		1			
rypelour025	'ERL INJ/HYPOTHY		_			
TYPE1OUT025	'ERL INJ/SKIN EF		1			
	`ERL INJ/TRANSE		-			
	PTIONS BLOCK, LOAD					
SU FURTHEST D	DISTANCE AT WHICH A	A GIVEN RI	SK OF EF	ARD I	DEATH IS	EXCEEDED.
30 NUMBER OF	DESIRED RESULTS OF	F THIS TYP	E			
* FYPE2NUMBER	1					
*	1					
30 FATALITY R *	ISK THRESHOLD					
TYPE2OUT001	0.					
	PTIONS BLOCK, LOAI PEOPLE WHOSE DOSE	DED BY INOU	UT3, STC	RED	IN /INOUT	3/
*				2		
30 NUMBER OF	DESIRED RESULTS OF	F THIS TYPI	E			
TYPE3NUMBER	4					
, ,	ORGAN NAME DO	SE THRESHO	DLD (Sv)			
k						
	'A-RED MARR'	1.5				
YPE3OUT002	'A-LUNGS'	5.0				
TYPE3OUT003	`L-EDEWBODY' `L-EDEWBODY'	2.0				
	PTIONS BLOCK, LOAD AVERAGE RISK OF A					
r						····· /
0 POSSIBLE T	YPES OF EFFECTS AF	KE:				
0 'ERL FAT/T	OTAL'					

.

۲

ENGINEERING WORK SHEET Calc Number SM-1526 Rev. 0 Add. Sheet: _46_ of _61 80 'ERL INJ/INJURY NAME' 80 'CAN FAT/CANCER NAME' 80 'CAN FAT/TOTAL' 80 NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE4NUMBER 5 RADIAL INDEX TYPE OF EFFECT TYPE4OUT001 'ERL FAT/TOTAL' 1 TYPE4OUT002 2 `ERL FAT/TOTAL' 3 TYPE4OUT003 `ERL FAT/TOTAL' TYPE4OUT004 4 `ERL FAT/TOTAL' 5 'ERL FAT/TOTAL' TYPE4OUT005 80 RESULT 5 OPTIONS BLOCK, LOADED BY INOUT5, STORED IN /INOUT5/ 80 TOTAL POPULATION DOSE TO A GIVEN ORGAN BETWEEN TWO DISTANCES. 80 NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE5NUMBER 2 ORGAN I1DIS5 I2DIS5 * TYPE5OUT001 `L-EDEWBODY' 1 7 (0-10 MILES) TYPE5OUT002 `L-EDEWBODY' NOCCDF (0-50 MILES) 1 11 80 RESULT 6 OPTIONS BLOCK, LOADED BY INOUT6, STORED IN /INOUT6/ 80 CENTERLINE DOSE TO AN ORGAN VS DIST BY PATHWAY, PATHWAY NAMES ARE AS FOLLOWS: 80 PATHWAY NAME: * 'CLD' - CLOUDSHINE * 'GRD' - GROUNDSHINE 80 'INH ACU' - "ACUTE DOSE EQUIVALENT" FROM DIRECT INHALATION OF THE CLOUD 80 'INH LIF' - "LIFETIME DOSE COMMITMENT" FROM DIRECT INHALATION OF THE CLOUD 80 'RES ACU' - "ACUTE DOSE EQUIVALENT" FROM RESUSPENSION INHALATION 80 'RES LIF' - "LIFETIME DOSE COMMITMENT" FROM RESUSPENSION INHALATION 80 'TOT ACU' - "ACUTE DOSE EQUIVALENT" FROM ALL PATHWAYS 80 'TOT LIF' - "LIFETIME DOSE COMMITMENT" FROM ALL PATHWAYS 80 NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE6NUMBER 0 ORGNAM PATHNM I1DIS6 I2DIS6 *TYPE6OUT001 'A-RED MARR' 'TOT ACU' 1 11 (0-50 MILES) `A-LUNGS' 'TOT ACU' 1 *TYPE6OUT002 11 (0-50 MILES) 'TOT LIF' *TYPE6OUT003 `L-EDEWBODY' 1 11 (0-50 MILES) 80 RESULT 7 OPTIONS BLOCK, LOADED BY INOUT7, STORED IN /INOUT7/ 80 CENTERLINE RISK OF A GIVEN EFFECT VS DISTANCE 80 NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE7NUMBER 0

ENGINEERING WORK SHEET Calc Number SM-1526 Rev. 0 Add. Sheet: _47_ of _61 NAME I1DIS7 I2DIS7 *TYPE7OUT001 'ERL FAT/TOTAL' 1 11 (0-50 MILES) 80 RESULT 8 OPTIONS BLOCK, LOADED BY INOUT8, STORED IN /INOUT8/ 80 POPULATION WEIGHTED FATALITY RISK BETWEEN 2 DISTANCES 80 NUMBER OF DESIRED RESULTS OF THIS TYPE TYPE8NUMBER 2 NAME I1DIS8 I2DIS8 TYPE80UT001 'ERL FAT/TOTAL' 1 NOCCDF (0-EXCL ZONE + 1 MI) 2 TYPE8OUT002 'CAN FAT/TOTAL' 1 7 NOCCDF (0-10 MILES) 80 RESULT A OPTIONS BLOCK, LOADED BY INOUTA, STORED IN /INOUTA/ 80 peak dose to a given organ 80 NUMA TYPEANUMBER 1 ORGNAM I1DISA I2DISA TYPEAOUT001 'L-EDEWBODY' 1 11 ********************** 80 EMERGENCY RESPONSE SCENARIO NUMBER 2 80 SPECIFIC DESCRIPTION OF THE EMERGENCY RESPONSE SCENARIO BEING USED EZEANAM2001 'NO EVACUATION, RELOCATION MODELS APPLY EVERYWHERE' 80 THE TYPE OF WEIGHTING TO BE APPLIED TO THE EMERGENCY RESPONSE SCENARIOS 80 WEIGHTING FRACTION APPLICABLE TO THIS SCENARIO FOR EVACUATION EZWTFRAC001 0.05 (5% of the people DO NOT evacuate) 80 LAST RING IN THE MOVEMENT ZONE EZLASMOV001 0 (A ZERO TURNS OFF THE EVACUATION MODEL) ****************North Anna CHRONC Input File***************** 80 GENERAL DESCRIPTIVE TITLE DESCRIBING THIS NAPS "CHRONC" INPUT FILE 80 BASE CASE Using revise Economic data CHEVACST =40, CHRELCST = 40 80 CHDBCST = 42000, CHPOPCST = 7300, CHVALWF = 6979, CHVALWNF = 141206 80 LAST MODIFIED by MGM 04/02/04 CHCHNAME001 'NAPS ABWR CHRONC.INP, "New" COMIDA2-Based Food Model' 80 EMERGENCY RESPONSE COST DATA BLOCK 80 DAILY COST FOR A PERSON WHO IS EVACUATED (DOLLARS/PERSON-DAY)

	RING WORK		······································
Calc Number SM-1526	Rev. 0	Add.	Sheet: _48_ of <u>61</u>
*			
CHEVACST001 40.00 (INCLUDES FOOD AND *	HOUSING COS	TS BUT NOT	E LOST INCOME)
80 DAILY COST FOR A PERSON WHO IS RELOCA *	TED (DOLLA)	RS/PERSON-I	DAY)
CHRELCST001 40.00 (INCLUDES FOOD AND 80 LONG TERM PROTECTIVE ACTION DATA BLOC *		TS BUT NOT	LOST INCOME)
80 Duration of the intermediate phase pe 80 longer processed. The new input vari 80 duration, not the time after plume ar *	able DUR_II	NTPHAS is t	the period's
DUR_INTPHAS 0.0 (in seconds) (no	intermediat	e phase)	
80 LONG-TERM PHASE DOSE PROJECTION PERIO 80 PERIOD OVER WHICH THE LONG-TERM DOSE *			
CHTMPACT001 1.58E8 (5 YEAR	S)		
80 DOSE CRITERION FOR INTERMEDIATE PHASE *	RELOCATION	1 (Sv)	
	ERMEDIATE F	HASE RELOC	CATION)
30 DOSE CRITERION FOR LONG-TERM PHASE RE	LOCATION (S	Sv)	
* CHDSCRLT001 0.04			
* 30 CRITICAL ORGAN NAME FOR LONG-TERM ACT	IONS		
* CHCRTOCR001 `L-EDEWBODY'			
* * Long Term Exposure Period Previously 80 one million years = 3.15 E13 seconds 80 MACCS2 allowable range is 3.15E7 to 1		ly set to:	
CHEXPTIM001 1.E10 30 DECONTAMINATION PLAN DATA BLOCK			
80 NUMBER OF LEVELS OF DECONTAMINATION			
CHLVLDEC001 2			
0 DECONTAMINATION TIMES CORRESPONDING T 0 (SECONDS)	O THE LVLDE	C LEVELS C	OF DECONTAMINATION
HTIMDEC001 5.184E6 1.0368E7 (60, 2	120 DAYS)		
0 DOSE REDUCTION FACTORS CORRESPONDING	TO THE LVLI	EC LEVELS	OF DECONTAMINATION
CHDSRFCT001 3. 15.			
0 COST OF FARM DECONTAMINATION PER FARM 0 FOR THE VARIOUS LEVELS OF DECONTAMINA		REA (DOLLA	RS/HECTARE)
HCDFRM0001 658.1 1463.			
0 COST OF NONFARM DECONTAMINATION PER R 0 FOR THE VARIOUS LEVELS OF DECONTAMINA		SON (DOLLA	RS/PERSON)

Ĺ	alc Number SN	<i>N</i> -152			ING WORK Rev. 0	Add.	Sheet: _49_ of _61
*	2DV2DV001 2	F 1 0	0360				
*	CDNFRM001 3	510.	9360.				
	FRACTION OF FOR THE VARI) LABOR	
CH:	FRFDL0001 .3		.35				
	FRACTION OF FOR THE VARI) LABOR	
CHI *	FRNFDL001 .7		.5				
	FRACTION OF FOR THE VARI					CONTAMINAT	TED AREAS
CH'	rfwkf0001 .1	0	.33	`			
	FRACTION OF FOR THE VARI					IN CONTAM	IINATED AREAS
CH'	rfwknf001 .3	3	.33				
80	AVERAGE COST	OF D	ECONTAMINATIO	ON LABOR	(DOLLARS/M	AN-YEAR)	
	DLBCST001 42						•••••
80 *	DEPRECIATION	(DET	ERIORATION) H	RATE DURI	NG INTERDI	CTION PERI	OD (PER YEAR)
CHI *	OPRATE001	.20	(VALUE OBTAI	NED FROM	WASH-1400	, APPENDIX	6)
			•		•		ON PERIOD (PER YEAR) D FOR INFLATION
CHI	OSRATE001 · .	.12	(VALUE OBTAI	NED FROM	WASH-1400	, APPENDIX	6)
80	POPULATION RI ALTERNATIVE I AREAS WHICH I	HOUSI	NG, MOVING CO	STS, AND	LOST INCO		
	OPCST001 73 GROUNDSHIINE V						
	NUMBER OF TE	RMS II	N THE GROUNDS	HINE WEA	THERING RE	LATIONSHIP	(EITHER 1 OR 2)
* 80 *	IGWTRM001 2						
* CHN							
* CHN * 80	GROUNDSHIINE V	VEATHI	ERING COEFFIC	TENTS			
* 50 * CHG	GROUNDSHINE V				HELTON)		
* 80 * 2HG 80	WCOEF001 0.	5	0.5	(JON)		HERING COE	FFICIENTS (S)
	WCOEF001 0.	5 DRRESI 6E7	0.5 PONDING TO TH 2.8E9	(JON) E GROUND (JON)	SHINE WEAT		FFICIENTS (S)

.

ENGINEERING WORK SHEET Calc Number SM-1526 Rev. 0 Add. Sheet: 50 of 61 CHNRWTRM001 3 * RESUSPENSION CONCENTRATION COEFFICIENTS (/ METER) 80 RELATION SHIP BETWEEN GROUND CONCENTRATION AND INSTANTANEOUS AIR CONC. CHRWCOEF001 1.0E-5 1.0E-7 1.0E-9 (VALUES HERE SELECTED BY JON HELTON) 80 HALF-LIVES CORRESPONDING TO THE RESUSPENSION CONCENTRATION COEFFICIENTS (S) (6 MONTHS, 5 YEARS, 50 YEARS) CHTRWHLF001 1.6E7 1.6E8 1.6E9 80 SITE REGION DESCRIPTION DATA BLOCK 80 FRACTION OF AREA THAT IS LAND IN THE REGION CHFRACLD001 0.95 (ROUGH GUESS VALUE, SITE FILE OVERRIDES THIS VALUE) 80 FRACTION OF LAND DEVOTED TO FARMING IN THE REGION CHFRCFRM001 0.382 (VIRGINIA STATE VALUE, SITE FILE OVERRIDES THIS VALUE) 80 AVERAGE VALUE OF ANNUAL FARM PRODUCTION IN THE REGION (DOLLARS/HECTARE) 80 (CASH RECEIPTS FROM FARMING PLUS VALUE OF HOME CONSUMPTION)/(LAND IN FARMS) CHFRMPRD001 371.0 (VIRGINIA STATE VALUE, SITE FILE OVERRIDES THIS VALUE) 80 FRACTION OF FARM PRODUCTION RESULTING FROM DAIRY PRODUCTION IN THE REGION 80 (VALUE OF MILK PRODUCED)/(CASH RECEIPTS FROM FARMING PLUS HOME CONSUMPTION) CHDPFRCT001 0.198 (VIRGINIA STATE VALUE, SITE FILE OVERRIDES THIS VALUE) 80 VALUE OF FARM WEALTH (DOLLARS/HECTARE) 80 (AVERAGE VALUE PER HECTARE OF FARM LAND AND BUILDINGS TO 100 MILES) CHVALWF0001 6979. * NAPS 80 FRACTION OF FARM WEALTH IN IMPROVEMENTS FOR THE REGION CHFRFIM0001 0.25 * SURRY/NAPS 80 NON-FARM WEALTH, PROPERTY AND IMPROVEMENTS FOR THE REGION (DOLLARS/PERSON) 80 THE VALUE OF ALL RESIDENTIAL, BUSINESS, AND PUBLIC ASSETS WHICH WOULD BE 80 LOST IN THE EVENT OF PERMANENT INTERDICTION (CONDEMNATION) OF THE AREA CHVALWNF001 141206. * NAPS 80 FRACTION OF NON-FARM WEALTH IN IMPROVEMENTS FOR THE REGION CHFRNFIM001 0.8 CHFDPATH001 'NEW' 80 name of the COMIDA2 binary output file BIN_FILE001 `SAMP_A.BIN' (revised data file of 8/12/95) 80 Dose limits triggering first year crop disposal of the separate '80 milk and non-milk components of the diet, corresponding in purpose,

80 more or less, to the MACCS 1.5 input variables PSCMLK and PSCOTH

		ENG		NORK	SHEET		
Calc Numbe	er SM-1526		Rev.	0	Add.	Sheet: _51_ of <u>_61</u>	
*			· · · · · · · · · · · · · · · · · · ·				
80 producti 80 in the g 80 dose of 80 reprinte 80 the prio 80 non-milk 80 effectiv 80 non-milk	on of milk rowing seas 5 rem effec d in the 19 results, crops cont e dose limi crops, wit limit is sp	and non-milk on were deriv tive or 15 re 92 EPA PAG Ma it is being a ribute equall t used in NUF h 2.5 rem all lit into 7.5	crops conta red based or m thyroid, mual. For assumed, for y to the for REG-1150 is owed for ea	aminateon an ass per the purpose r simpl irst yea equally ach. S	d by an ac sumed maxi e 1982 FDA es of comp icity, tha ar dose. y split be imilarly,	Thus, the 5 rem tween milk and the 15 rem	
* DOSEMILK001 DOSEOTHR001 *		e thyroid 0.075 0.075		ı siever	ts)		
80 Annual d						he first year) nents of the diet	
80 an inges 80 translat 80 required 80 NUREG-11 80 here as a	tion dose i e those par by the COM 50 for "roo annual dose	ntegrated fro ameter values IDA2-based fo t uptake", 0.	m zero to i into corre od model. 5 rem effec nterdictior	infinity espondir The "to ctive ar	y. It is ng annual otal" dose nd 1.5 rem	50 wre based on not possible to dose limits, as is limits used in thyroid, are used ion in years the	
* DOSELONG001 *	effective 0.005	e thyroid 0.015	•	siever	ts)		
30 NUMBER O	F NUCLIDES	IN THE WATER	INGESTION P	PATHWAY	MODEL		
* CHNUMWPI001	4						
* 30 TABLE OF	NUCLIDE DE	FINITIONS IN	THE WATER I	NGESTIC	ON PATHWAY	MODEL	
BO FACTOR IS		IS DEFINED, D BY THE CORR				SHED INGESTION DATA FILE	
k k		INITIAL	ANNUAL	INGEST	ION FACTOR	र	
*	WATER NUCLIDE						
k							
	NAMWPI Sr-89	WSHFRI 0.01 0.01 0.005	WSHRTA 0.004		WINGF 5.0E-6		
HWTRISO002	Sr-90	0.01	0.004		5.0E-6		
HWTRISO003	Cs-134	0.005	0.001		5.0E-6		
CHWTRISOUU4 30 SPECIAL (0.005 A BLOCK	0.001		5.0E-6		
30 DETAILED 30 KSWDSC	PRINT OPTIC	ON CONTROL SW	ITCHES, LOO	ок ат тн	E CODE BE	FORE TURNING ON!!	
CHKSWTCH001		ESULTS		**			
	1 POPULATION	I DOSE IN A G	IVEN REGION	BROKEN	DOWN BY	THE 12 PATHWAYS	

•

.

ENGINEERING WORK SHEET Calc Number SM-1526 Add. Sheet: 52 of 61 Rev. 0 80 NUMBER OF RESULTS OF THIS TYPE THAT ARE BEING REQUESTED 80 FOR EACH RESULT YOU REQUEST, THE CODE WILL PRODUCE A SET OF 12 (UP TO 10 ALLOWED) TYPE9NUMBER 1 ORGNAM INNER OUTER * 'L-EDEWBODY' TYPE9OUT001 1 11 (0-50 MILES) 80 ECONOMIC COST RESULTS IN A REGION BROKEN DOWN BY 12 TYPES OF COSTS 80 NUMBER OF RESULTS OF THIS TYPE THAT ARE BEING REQUESTED 80 FOR EACH RESULT YOU REQUEST, THE CODE WILL PRODUCE A SET OF 12 (UP TO 10 ALLOWED) TYP10NUMBER 1 INNER OUTER TYP100UT001 1. 11 (0-50 MILES) 80 DEFINE A FLAG THAT CONTROLS THE PRODUCTION OF THE ACTION DISTANCE RESULTS 80 SPECIFYING A VALUE OF .TRUE. TURNS ON ALL 8 OF THE ACTION DISTANCE RESULTS, 80 A VALUE ()F .FALSE. WILL ELIMINATE THE ACTION DISTANCE RESULTS FROM THE OUTPUT. TYP11FLAG11 .FALSE. 80 IMPACTED AREA/POPULATION RESULTS IN A REGION BROKEN DOWN BY 6 TYPES OF IMPACTS 80 NUMBER OF RESULTS OF THIS TYPE THAT ARE BEING REQUESTED 80 FOR EACH RESULT YOU REQUEST, THE CODE WILL PRODUCE A SET OF 8 TYP12NUMBER 1 (UP TO 10 ALLOWED) INNER OUTER 11 TYP12OUT001 1 (0-50 MILES) 80 Maximal annual food ingestion dose to an individual, requested by IXOT13 80 This result is calculated after accounting for temporary or 80 permanent: interdiction. It is only available for the "new" food model. 80 NUMBER OF RESULTS OF THIS TYPE THAT ARE BEING REQUESTED 0 (UP TO 10 ALLOWED) TYP13NUMBER 80 IRAD13 is the radial spatial interval at which results are requested 80 ORGN13 is the name of the organ for which results are requested 80 (allowable values for ORGN13 are 'EFFECTIVE' or 'THYROID') *

ale Numbe	r SM-1526			lev. 0	Add.	Shoot: E	2 of 61
				\mathbf{U}	Auu.	Sheet: _5	<u> </u>
* * * * * * * * *	******	'North Anna	SITE Da	ata File	·********	*****	*
		ite Data File					
	-	: 77d 47'13	'' LAST MO	DIFIED	12-17-1999		
	INTERVALS						
16 WIND D:							
7 CROP Ci							
	PATHWAY IS	OTOPES					
1 WATERSI							
	C REGIONS						
		KILOMETERS	<i>.</i>	0 05	0.05	16.00	
	3.22		6.44	8.05	9.65	16.09	32.18
	64.37	80.47					
OPULATION		110	116	104	110	57 5	0412
0. 6143	46. 21240.	118.	146.	184.	ττς.	575.	9413.
6143. 2.	21240. 44.	50387. 70.	192.	248.	168.	1320.	9192.
4. 12963	44. 30219.	211772.	196.	240.	100.	1320.	9192.
2.	36.	52.	112.	120.	164.	1186.	46762.
	45870.		11 6 ,	ICU.	T04.	1100.	40/02.
0.		124.	48.	76.	242.	1410.	7010.
		20186.	40.	70.	242.	1410.	7010.
0.	20.	134.	50.	40.	146.	1278.	7379.
5592.	1986.	4563.	50.		740.	1210.	י כו כו
2.	8.	20	116.	162.	102.	1042.	6880.
6707.	5912.	9060.	±±0,	102.	102.	1092.	
0.	19.	86.	10.	12.	55.	645.	3676.
	72630.		_ • •			- 10 -	20701
3.	55.		30.	44.	29.	1098.	6211.
18766.							
0.	46.	22.	33.	44.	46.	695.	5427.
14467.		41914.					
0.	11.	12.	59.	72.	128.	484.	3710.
6963.	6727.	7333.					
0.	4.	15.	59.	95.	181.	1133.	3207.
3407.	6302.	4671.					
0.	21.	46.	34.	69.	233.	1296.	5060.
7737.	10450.	9498.					
0.	34.	26.	26.	32.	34.	482.	3193.
5315.	128151.	25521.					
0.	33.	87.	58.	32.	149.	567.	3101.
9823.	21412.	11862.					
1.	39.	58.	102.	79.	242.	555.	3785.
14054.	14311.	3690.					
0.	34.	76.	16.	30.	58.	870.	5690.
10949.	30925.	11980.					

Calc Number SM-1526		R	ev. 0	Add.	Sheet: _54_ of <u>_61</u>		
L				L	-l		
0.97 0.97 0.97 0.97 0.97	0.97 0.9	7 0.97 0.	99 0.99 ().99			
0.97 0.97 0.97 0.97 0.97							
0.97 0.97 0.97 0.97 0.97							
0.97 0.97 0.97 0.97 0.97							
80.0.0.0.0.0.0.0.0.0 0.9	0.97 0.97 0.	97 0.00 0	.97 0.97	0.99 1.00 1	1.00 1.00		
REGION INDEX 1 2 2 2 2 2 2 3 4 5 6							
1 2 2 2 2 2 2 2 7 8 910							
1 2 2 2 2 2 2 211121314							
1 2 2 2 2 2 2 215161718							
1 2 2 2 2 2 2 219202122							
1 2 2 2 2 2 2 223242526 1272829303:.3233343536							
12727272727272737383940							
12727272727272741424344							
12727272727272745464748							
12727272727272749505152							
127272727272 ⁷ 2753545556 127272727272 ⁷ 2757585960							
1272727272766263646566							
16768697077273747576							
1 2 2 2 2 2 2 277787980							
WATERSHED ::NDEX							
1 1 1 1 1 1 1 1 1 1 1 1							
$\begin{array}{c}1 1 1 1 1 1 1 1 1 1 1 1 1 \\1 1 1 1 1 1 $							
1 1 1 1 1 . 1 1 1 1 1							
1 1 1 1 1 . 1 1 1 1 1							
$\begin{array}{c}1&1&1&1&1&1&1&1&1&1\\1&1&1&1&1&1&1&1&1\end{array}$							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
1 1 1 1 1 1 1 1 1 1 1 1 1 1							
1 1 1 1 1 1 1 1 1 1 1				•			
1 1 1 1 1 1 1 1 1 1 1							
1 1 1 1 1 1 1 1 1 1 1 1							
$\begin{array}{c}1&1&1&1&1&1&1&1&1&1\\1&1&1&1&1&1&1&1&1\end{array}$							
1 1 1 1 1 1 1 1 1 1 1							
CROP SEASON AND SHARE							
1 PASTURI:	90. 270.						
2 STORED FORAGE 3 GRAINS	150. 240. 150. 240.						
4 GRN LEAFY VEGETABLES							
5 OTHER FOOD CROPS	150. 240.						
6 LEGUMES AND SEEDS	150. 240.						
7 ROOTS AND TUBERS	150. 240.						
WATERSHED DEFINITION 1 Sr-89		11111111 5.0E			33444444444		
2 Sr-90		5.0E					
3 Cs-134		5.0E					
4 Cs-137		5.0E-					
REGIONAL ECONOMIC DATA		• • •					
1 EXCLUSION 0.237		301.	5682.	121231.			
2 REGION_02 0.187 3 REGION_03 0.359		315. 510.	9617. 7306.	131822. 136163.			
4 REGION_04 0.495		499.	7434.	151560.			
5 REGION_05 0.547		484.	9041.	178741.			
6 REGION_06 0.543	.228	500.	9873.	187870.			

> \A//

	E	NGINEER	ING WORK	SHEET	
Calc Number SM-	1526		Rev. 0	Add.	Sheet: 55 of 61
				1	
7 REGION_07	0.187 .365	313.	9662.	131866.	
8 REGION_08	0.257 .142	336.	10497.	162264.	
9 REGION_09	0.303 .106	376.	11381.	179934.	
10 REGION_10	0.174 .242	644.	13466.	163079.	
11 REGION_11	0.187 .365	313.	9662.	131866.	
12 REGION_12	0.117 .074	238.	10404.	157487.	
13 REGION_13	0.144 .004	311.	11315.	165761.	
14 REGION_14	0.184 .067	529.	10960.	155691.	
15 REGION_15	0.182 .294	353.	8663.	130899.	
16 REGION_16	0.184 .081	406.	6872.	136128.	
17 REGION_17	0.280 .000	361.	5453.	137948.	
18 REGION_18	0.309 .000	481.	6253.	140558.	
19 REGION_19	0.167 .059	484.	5363.	127707.	
20 REGION_20	0.163 .000	517.	4526.	126897.	
21 REGION_21	0.260 .000	469.	4221.		
22 REGION_22	0.381 .000	565.	4386.	132106.	
23 REGION_23	0.163 .000	517.	4526.	126897.	
24 REGION_24	0.164 .000	518.	4548.	127178.	
25 REGION_25	0.260 .078	486.	4205.	129697.	
26 REGION_26	0.302 .044	465.	3836.	126644.	
27 REGION_27	0.248 .158	298.	4765.	118786.	
28 REGION_28	0.248 .158	298.	4765.	118782.	
29 REGION_29	0.248 .158	298.	4765.	118782.	
30 REGION_30	0.232 .211	302.	6029.	122159.	
31 REGION_31	0.216 .267	306.	7356.	125704.	
32 REGION_32	0.297 .101	574.	6813.	151359.	
33 REGION_33	0.312 .059	706.	7498.	165179.	
34 REGION_34	0.292 .051	681.	7106.	160138.	
35 REGION_35	0.317 .087	663.	6931.	161577.	
36 REGION_36	0.259 .063	667.	6932.	166318.	
37 REGION_37	0.322 .068	705.	7632.	166437.	
38 REGION_38	0.291 .047	725.	7761.	174110.	
39 REGION_39	0.133 .001	713.	6710.	178269.	
40 REGION_40	0.088 .000	812.	6938.	166779.	
41 REGION_41	0.262 .140	377.	5319.	127984.	
42 REGION_42	0.270 .065	431.	6431.	174439.	
43 REGION_43	0.238 .380	461.	6866.	149780.	
44 REGION_44	0.157 .080	1147.	7335.	147445.	
45 REGION_45	0.249 .136	307. 362.	4962.	128258.	
46 REGION_46	0.257 .041		6189. 5967	182163.	
47 REGION_47	0.272.334	526. 1251	5967. 4529	140373.	
48 REGION_48	0.318.174 0.251.116	1251.	4528.	120349.	
49 REGION_49	0.251 .116	314.	5126. 5071	136469.	
50 REGION_50	0.285 .002	334.	5071.	156279.	
51 REGION_51	0.299.030 0.234.017	649. 695	3521.	109866.	
52 REGION_52	0.234 .017	695.	3155.	104004.	
53 REGION_53	0.248 .157	298.	4764.	118781.	
54 REGION_54	0.309 .024	268.	3850. 5205	118092.	
55 REGION_55	0.335 .023	276.	5205.	130383.	
56 REGION_56	0.326 .053	375.	6965. 4765	142491.	
57 REGION_57	0.248.158	298.	4765.	118782.	
58 REGION_58	0.302.120	301.	6453.	136149.	
59 REGION_59	0.346 .073	286.	8218.	158406.	
60 REGION_60	0.371 .079	308.	8830.	160018.	
61 REGION_61	0.248 .158	298.	4765.	118782.	
62 REGION_62	0.228 .231	306.	6526.	123614.	
63 REGION_63	0.389 .133	515.	5491.	131831.	
64 REGION_64	0.459 .140	581.	6067.	137365.	
65 REGION_65	0.398 .219	377.	6412.	122434.	·
					•

			En	NGINEER	ING WORK	SUCEI		
Calc Numbe	Calc Number SM-1526			Rev. 0	Add.	Sheet: _56_ of <u>61</u>		
66 REGION	66 0.1	367.	161	1395.	7574.	127782.		
67 REGION	67 0.1	220 .	252	305.	7004.	124763.		
68 REGION	68 0.1	187 .	365	313.	9662.	131866.		
69 REGION_	69 0.3	248 .	158	298.	4765.	118782.		
70 REGION_	70 0.3	187 .	365	313.	9662.	131866.		
71 REGION_	71 0.3	187 .	365	313.	9662.	131866.		
72 REGION_	72 0.2	238 .	320	371.	8964.	133138.		
73 REGION_	73 0.4	164 .	121	630.	5877.	138768.		
74 REGION	.74 0.4	177 .	262	479.	6073.	125842.		
75 REGION_	.75 0.4	184 .:	312	418.	5941.	117144.		
76 REGION_	.76 0.4	131 .:	183	1413.	6654.	120587.		
77 REGION_	.77 0.4	158 .:	126	623.	5956.	138624.		
78 REGION_	.78 0.4	169 .:	252	501.	6668.	138080.		
79 REGION_	.79 0.4	169 .:	279	454.	6978.	138495.		
80 REGION_	80 0.4	138 .0	040	234.	8887.	155434.		
END								

Attachment IV Embedded Files

North Anna - ABWR ESP MACCS2 Input Files MACCS2 Output Files

MACCS2 Input Output Files.zip

.

ENGINEER	ING WORK	SHEET	
Calc Number SM-1526	Rev. 0	Add.	Sheet: _57_ of <u>_61</u>

Attachment V

Draft Response to NRC Request For Additional Information Regarding The Early Site Permit.

The official NRC RAIs are documented in Reference 18 of this calculation. Only Draft responses to RAIs that we're generated in this calculation will be included in this attachment. Relevant inputs to RAI ER Section 7.2 parts a,b,c are included here as shown below.

04/12/06

14. ER Section 7.2 Severe Accidents

a. Include the results of a site-specific assessment of the consequences of severe accidents for air and surface water pathways based on the results of the MACCS2 computer code.

Dominion Response

A site-specific assessment of severe accident consequences has been calculated using the MACCS2 computer code. GE provided accident source term release fractions and their corresponding frequencies for the ESBWR. Population dose and economic cost out to a 50-mile radius from the site is provided for all severe accident categories. Analysis results for the ESBWR are included as a part of this RAI response. Analyses results for the ABWR and AP1000 were provided to NRC in Dominion letters 04-170 and 04-170A, dated May 17, 2004 and July 12, 2004, respectively.

Dominion's ESBWR MACCS2 Results

The ESBWR consequences in terms of dose in sieverts and US dollars are provided below for all eleven source term categories that were evaluated.

Table 11-1: ESBWR Population Dose, Sieverts							
STC	CASE1A 98MET	CASE2A 97MET	CASE3A 96MET	CASE4A 5500MWt	CASE5B Plume=1.0E6W	Prob/yr	
BOC	9.33E+04	8.55E+04	8.77E+04	9.79E+04	8.84E+04	<1E-12	
ВҮР	8.68E+04	7.96E+04	8.22E+04	9.11E+04	8.28E+04	4E-12	

alc Number SM-1526		Rev. 0	Add.	Sheet: 58_ of	<u>61</u>	
	7 17 . 04		C.CET.04	7.105.04	6.71E+04	
CCID	7.17E+04	6.48E+04	6.65E+04	7.16E+04		2.9E-11
CCIW	1.24E+04	1.09E+04	1.18E+04	1.30E+04	1.20E+04	2.9E-10
DCH	6.29E+04	5.74E+04	5.73E+04	6.41E+04	5.76E+04	<1E-12
EVE	7.72E+04	6.90E+04	7.18E+04	7.70E+04	7.27E+04	2.5E-10
FR	3.15E+02	2.64E+02	2.98E+02	3.60E+02	3.02E+02	2.3E-10
OPVB	3.12E+04	2.83E+04	2.91E+04	3.30E+04	2.93E+04	<1E-12
OPW1	5.52E+04	5.13E+04	5.21E+04	5.73E+04	5.27E+04	<1E-12
OPW2	2.87E+04	2.68E+04	2.76E+04	2.96E+04	2.78E+04	1.4E-11
TSL	2.43E+02	2.02E+02	2.29E+02	2.73E+02	2.32E+02	2.8E-8

	Table 11-2: ESBWR Offsite Cost, \$							
STC	CASE1A 98MET	CASE2A 97MET	CASE3A 96MET	CASE4A 5500MWt	CASE5B Plume=1.0E6W	F'rob/yr		
BOC	1.36E+10	1.27E+10	1.41E+10	1.63E+10	1.43E+10	<1E-12		
BYP	1.34E+10	1.25E+10	1.38E+10	1.58E+10	1.41E+10	4E-12		
CCID	1.51E+10	1.36E+10	1.42E+10	1.62E+10	1.44E+10	2.9E-11		
CCIW	8.19E+08	6.24E+08	7.54E+08	1.06E+09	7.80E+08	2.9E-10		
DCH	9.46E+09	8.50E+09	9.20E+09	1.01E+10	9.37E+09	<1E-12		
EVE	1.59E+10	1.44E+10	1.50E+10	1.70E+10	1.52E+10	2.5E-10		
FR	2.48E+06	1.93E+06	2.51E+06	3.25E+06	2.47E+06	2.3E-10		
OPVB	4.15E+09	3.45E+09	3.95E+09	4.38E+09	4.04E+09	<1E-12		
OPW1	9.13E+09	8.11E+09	8.63E+09	9.63E+09	8.74E+09	<1E-12		
OPW2	4.58E+09	3.84E+09	4.25E+09	4.93E+09	4.35E+09	1.4E-11		
TSL	1.64E+06	1.47E+06	1.74E+06	2.60E+06	1.68E+06	2.8E-8		

b. Provide electronic copies of input and output files for the MACCS2 code for an ESBWR at 4500 Mwt.

Dominion Response

The site specific MACCS2 input and output files using the source term inventory for a ESBWR design thermal power level of 4500 MWt, and the analysis results are provided on the enclosed CD.

.

.

c. For an ESEWR, provide and justify the accident release categories and the core damage frequency for each release category.

Dominion Response

ENGINEERING WORK SHEET					
Calc Number SM-1526	Rev. 0	Add.	Sheet: _59_ of <u>61</u>		

NO WORK OUT

A description of the ESBWR accident release categories and their corresponding release frequencies as provided to Dominion by GE is included as part of this response.

Accident Release Categories / Release Frequencies

Shown below are descriptions of the accident release categories and their corresponding frequencies.

Release Category	Summary Description	Release Frequency (reactor year ⁻¹)
ВҮР	Containment is bypassed because of CIS failure with large (>12" diameter hole) opening in containment. Lower drywell debris bed covered.	< ⁻ E-12
BOC	Break outside of containment.	4E-12
CCID	Containment fails due to core concrete interaction; lower drywell debris bed uncovered.	2.9E-11
CCIW	Containment fails due to core concrete interaction; lower drywell debris bed covered.	2.9E-10
DCH	Direct containment heating (high pressure RPV failure) event damages containment	<1E-12
EVE	Ex-vessel steam explosion fails containment	2.5E-10
FR	Release through controlled (filtered) venting from suppression chamber	2.3E-10
OPVB	Containment fails due to failure of vapor suppression (vacuum breaker) function.	<1E-12
OPW1	Containment fails due to early (<24 hours) loss of containment heat removal.	<1E-12
OPW2	Containment fails due to late (>24 hours) loss of containment heat removal.	1.4E-11
TSL	Containment leakage at Technical Specification limit.	2.8E-8

ENGINEERING WORK SHEET						
Calc Number SM-1526	Rev. 0	Add.	Sheet: _60_ of <u>_61</u>			

Attachment VI Reviewer Comments

None. All comments were editorial.

.

. . .

Response to Reviewer Comments

None.

Calc Number:	Rev.	0	
SM-1526			

Add. 0

NDCM 3.7 Attachment 4

CALCULATION REVIEW CHECKLIST

ATTACHMENT_VII__

Calculation No. SM-1526	Rev. 0	Addendum N/A	Page 1 of 1						
NOTE: If "Yes" is not answered, an explanation shall be provided below.									
Reference may be made to explanations contained in the calculation or addendum.									
Questions:			and the second	Yes	N/A				
1. Have the sources of design calculation?	inputs been corre	ctly selected and refer	enced in the						
2. Are the sources of design in calculation?	puts up-to-date a	nd retrievable/attached	to the						
 Where appropriate, have the for which they are responsib 		reviewed or provided	the design inputs						
 Have design inputs been co or other pertinent means as 	nfirmed by analys				[]				
5. Are assumptions adequately				\boxtimes					
6. Have the bases for engineer				\square					
 Were appropriate calculation when compared to inputs? 	-	s used and are outputs	reasonable						
8. Are computations technically accurate?									
 Has the calculation made appropriate allowances for instrument errors and calibration equipment errors? (Reference STD-EEN-0304) 									
10. Have those computer codes			the calculation?	\square	[]				
11. Have all exceptions to statio ident fied and justified in acc			quirements been		[]				
12. The design authority/origina revision or addendum, if req		calculation has been ir	formed of its	X	[]				
Comments: (Attach additional pages if needed) For item 9, PRA calculations are not required to make allowances for instrument errors. Reviewer comments have been discussed and incorporated into Attachment VI of this calculation.									
Prepared By (Print	Signature		Date						
Name)	-								
Myron G. Matras				•					
Reviewed By (Print	Signature		Date						
Name)									
Tom G. Hook									
		······································	· · · · · · · · · · · · · · · · · · ·	(Jur	 le 05)				