

A CN'S Energy Company

Kurt M. Haas General Manager

April 27, 2006

10 CFR 50, Appendix I, IV.B.2 10 CFR 50, Appendix I, IV.B.3 10 CFR 50, Appendix I, IV.C 10 CFR 50.36(b)

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001

DOCKETS 50-155 AND 72-043 – LICENSE DPR-6 - BIG ROCK POINT PLANT – ANNUAL RADIOACTIVE ENVIRONMENTAL REPORT FOR THE PERIOD OF JANUARY 1, 2005 – DECEMBER 31, 2005

In accordance with the Big Rock Point Defueled Technical Specifications Section 6.6.2 attached (Attachment 1) is the Annual Radioactive Environmental Report for the period of January 1, 2005 to December 31, 2005. This report includes summaries, interpretations, and statistical evaluation of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided is consistent with the objectives outlined in the Offsite Dose Calculation Manual and Sections IV.B.2, IV.B.3, and IV.C Appendix I 10 CFR 50 and 10 CFR 50.36(b).

Kurt M. Haas Site General Manager

cc: Administrator, Region III, USNRC NRC Decommissioning Inspector, Big Rock Point NRC NMSS Project Manager – James Shepherd US Army Corp of Engineers – Detroit District ATTACHMENT

NMSSOI

ATTACHMENT 1

1

Big Rock Point Dockets 50-155 and 72-043

April 27, 2006

BIG ROCK POINT RADIOACTIVE ENVIRONMENTAL REPORT

January 1, 2005 - December 31, 2005

66 pages

Big Rock Point Restoration Project 2005 Annual Radiological Environmental Operating Report

Report Prepared by:

TAGoble, Environmental Services Supt.

Technical Review by: RAEnglish

Administrative Review and Report Approval by:

KEPallagi, Radiation Protection & Environmental Services Department Manager

5106 Date

<u>4-20-06</u> Date

<u>4-26-06</u> Date

.....

Big Rock Point Nuclear Plant Annual Radiological Environmental Operating Report January through December 2005

Big Rock Point Annual Radiological Environmental Operating Report January to December 2005

I. Introduction

The 2005 Big Rock Point Annual Radiological Environmental Operating Report provides a summary and data interpretation of the Big Rock Point Radiological Environmental Monitoring Program (REMP) as conducted during the 2005 reporting period. Reporting requirements are detailed in the Big Rock Point Defueled Technical Specifications 6.6.2, and Offsite Dose Calculation Manual (ODCM) Section III, Subsection 2.0.

The Big Rock Point site has been actively decommissioning since 1997; the site is expected to be restored to a Greenfield by the end of 2006. Decommisioning activities in 2005 involved completing final dismantlement activities to facilitate demolition and removal of remaining buildings and structures. At the end of 2005 the only structures remaining that supported power operations were a portion of the Containment Building and its foundation.

Big Rock Point's Defueled Technical Specifications contain administrative requirements for the REMP while specific technical requirements for this program are contained in the Big Rock Point ODCM Section III. The radiological environmental monitoring sampling requirements are greatly reduced when compared to the plant's operating period. A land use census is no longer required for Big Rock Point. Use of an assumed garden and milk animal at the site boundary in the downwind sector of highest D/Q, per ODCM Section II, Table 1.4, is conservative with respect to any actual garden and milk locations.

Tables 1, 2 and 3 provide a summary of 2005 BRP REMP sample requirements and results. Detailed sample station identification and location information can be found in Enclosure B. Well water, sediment, and fish samples were evaluated using data means comparisons against an appropriate control location (if available) and BRP ODCM limits. There are no remaining 2005 laboratory sample analyses pending completion for inclusion into this report.

The BRP ISFSI dry fuel storage facility environmental monitoring requirements pursuant to 10 CFR Part 72.44(d)(3) were submitted to the NRC in a letter dated February 16, 2006.

II. Discussion and Interpretation of Results

A. <u>TLDs - Gamma Dose</u>

The Big Rock Point gamma dose assessment program consists of 13 TLD locations: four on-site TLDs (locations 1-ST, 14-G, 15-H, and 17-K), six site boundary TLDs (locations 9-A, 10-B, 11-C, 12-D, 13-F, 16-J), and three control TLDs, 10.5 to 50 miles out, (locations 5-PT, 6-BC, 7-TR). Environmental gamma doses are measured quarterly and annually by placement of two TLD badges per designated location. Enclosure B provides a description and diagrams for TLD locations.

For 2005 the average quarterly gamma readings were:

23.6 millirem for the onsite TLDs;

- 11.7 millirem for the site boundary TLDs, and
- 13.2 millirem for the control TLD locations.

The average of the annual gamma readings in 2005 were:

- 90.5 millirem for the onsite TLDs,
- 42.7 millirem for the site boundary TLDs, and
- 42.7millirem for the control TLD locations¹.

The onsite quarterly TLD mean and the onsite annual TLD values measured in 2005 are consistent with 2004 TLD data. Site boundary and offsite control TLDs are also consistent with 2004 Annual Radiological Environmental Operating Report and historical data.

A statistical evaluation was completed comparing 2005 quarterly offsite control TLD data to site boundary TLD data. The site boundary TLD mean, although lower than the offsite control mean, is not statistically different than the offsite control TLD mean.

Each TLD badge contains a 4-zone CaSO₄ phosphor wafer (the wafer also includes an additional backup/reserve read-out zone). Sensitivity for the multi-zone TLDs are 1.0 millirem with a linear response to 1000 rem.

B. Air Samples

The Big Rock Point Radiological Environmental Monitoring Program no longer requires airborne surveillance be conducted.

¹ Control TLD BRP-07 (50 miles from the site) was lost in the field due to building remodeling.

C. <u>Milk</u>

The Big Rock Point Radiological Environmental Monitoring Program no longer requires milk samples be collected.

D. Lake Water

The site did not withdraw any lake water during 2005 and no liquid batch releases occurred in 2005; therefore, no lake water samples were required.

Groundwater and surface water from site dewatering activities is detained for sediment control during decommissioning activities. Sampling of this water prior to release for gamma isotopes and tritium is performed as a precautionary measure. All composite water sample analyses were less than established minimum detectable activity levels for gamma isotopes. Composite sample tritium value is 3291 pCi/L for the two retention pond releases in 2005. Precautionary sampling of the detained water during release is consistent with the ODCM requirement for semiannual lake water sample collection near the site (see Enclosure A)

A one-gallon quantity of sample is sent to Environmental Inc. Midwest Laboratory for analysis. No treatment of the water samples with a preservative is necessary.

E. Well Water

The BRP ODCM requires semiannual sampling of the site drinking water well with analysis for tritium and gamma isotopes. Well water samples were collected in June and December. None of the analyses detected any tritium or gamma isotopes in the well water samples.

No indicator well water samples had any detectable tritium. No BRP ODCM reporting limits were exceeded nor were any special/supplemental analyses required during 2005.

F. Groundwater Monitoring Wells

Big Rock Point ODCM requires semiannual sampling of six site groundwater monitoring wells, with analysis for tritium and gamma isotopes. Big Rock: Point has up to 22 monitoring wells available for sampling. Nine groundwater monitoring wells were installed in 1994 while the remaining monitoring wells were installed in 2002 and 2003 for the purpose of additional groundwater characterization. Monitoring wells were sampled semiannually in April and October of 2005. A total of 21 monitoring well samples were collected and analyzed in 2005. All gamma isotopic results were less than detectable. Tritium was detected above the required LLD in 13 of the samples at a mean of 3344 pCi/L. Historically MW-5 and MW-6 have shown the highest detectable tritium concentrations of the monitoring wells. The mean value for MW-5 and MW-6 was 4850 pCi/L, slightly higher than the 2004 mean value of 3176 pCi/L for the same well locations. Enclosure E contains a chart depicting the overall trend for MW-5 and MW-6 since plant shutdown in 1997. All monitoring well samples collected in 2005 were well below the reporting criteria of 20,000 pCi/L.

No BRP ODCM reporting limits were exceeded during 2005.

Each well water sample consists of a one-gallon grab sample. This sample is sent to Environmental Inc. Midwest Laboratory for analysis. No treatment of the water samples with a preservative is necessary.

G. Drinking Water

Collection of drinking water samples, other than the plant's drinking water supply well (see Section E), is no longer required by the BRP Radiological Environmental Monitoring Program.

H. Crops

The collection of food crops/vegetation samples is not required by the BRP Radiological Environmental Monitoring Program.

I. Sediment

A total of six individual sediment samples were collected from four locations during 2005. Sediment samples locations are the lakeshore adjacent to the former discharge channel (1-ST), 1/4 mile south of discharge (24-STS), 1/4 mile north of discharge (25-STN), and the Ludington control station (26-LP, 115 miles SSW). The BRP ODCM requirement for sampling where clarified water enters the lake is met by sample collected adjacent to the former discharge location due to the proximity of these two locations (approximately 100 yard distance).

Evaluation of the sediment analytical results was based on data mean comparisons between the BRP samples and the Ludington control samples and the BRP ODCM reporting limits. Gross beta was detected in three indicator samples with a mean value of 7.4 pCi/g. Cs-137 was detected in four indicator samples with a mean of 0.28 pCi/g. Co-60 was detected in all six indicator samples with a mean of 0.09 pCi/g. Detection of Cs-137 and

Co-60 were at levels slightly lower than the 2004 values for these sample locations. Neither Cs-137 nor Co-60 was detected in control samples.

No BRP ODCM reporting levels or action levels were exceeded during 2005.

Sediment samples are collected in one-liter quantities and obtained a few yards off-shore. No treatment of the samples with a preservative is necessary prior to shipment to Environmental Inc. Midwest Laboratory.

J. Fish

The BRP Radiological Environmental Monitoring Program requires that either one fish or invertebrate (crayfish) sample is collected semiannually at or near the Plant discharge area. Fish samples were collected from the shoreline adjacent to the former discharge area (1-ST) in July and October of 2005 (see Enclosure A). Control samples were taken from the Ludington location. Radionuclide analyses results are listed in Table 2 for these samples. The fall fish sample from the former discharge area indicated the presence of Cs-137 at less than one-half of the required LLD. Gross beta, which originates primarily from naturally-occurring background radionuclides, is not required by the Big Rock Point ODCM for fish samples.

No BRP ODCM reporting levels were exceeded nor were any special or supplemental analyses required during 2005.

One liter quantities of frozen fish are sent to Environmental Inc. Midwest Laboratory for analysis.

K. Crayfish

No crayfish samples were collected in 2005.

L. Aquatic Biota

The collection/analysis of aquatic biota (algae and periphyton) is no longer required for the Big Rock Point Radiological Environmental Monitoring Program.

M. Broad Leaf Vegetation

The collection/analysis of broad leaf vegetation is no longer required in the Big Rock Point Radiological Environmental Monitoring Program.

N. Gaseous and Liquid Radwaste Effluent Composite Samples

Although not a direct reporting component in the BRP Annual Radiological Environmental Monitoring Report, results of collected gaseous and liquid effluent composite samples are evaluated against overall environmental trending data. All isotopic analysis results were below BRP ODCM reporting levels.

Gaseous particulate composite samples from demolition areas that had the potential to become effluents were collected monthly and sent to Environmental Inc. Midwest Laboratory for analysis. The gaseous effluent monthly composite sample results are based on analyzing four or five weekly effluent filters. The liquid effluent composite sample is a representative sample quantity collected during each release activity. As noted in Enclosure C, two liquid effluent composite samples were collected for detained groundwater and surface water discharges in 2005 and sent to Environmental Inc. Midwest Laboratory for analyses. No special sample treatment with a preservative is required prior to laboratory analysis.

III. Assessment of Big Rock Point's Operational Environmental Impact

In reviewing the 2005 Big Rock Point radiological environmental monitoring data and comparing it to previous operational and pre-operational data, all trending parameters continue to indicate that operation and decommissioning activities of Big Rock Point have minimal environmental impact. Most radionuclide activity is at environmental "background" levels. Evidence of an overall environmental isotopic build-up attributable to site effluents remains negligible at all locations. In most instances, sample analytical results were below previously established environmental background levels. A comparison of analytical results showed that the shoreline adjacent to the former plant

discharge canal (also the former location of licensed radioactive liquid release) remained the indicator location with the highest annual mean for the samples collected in 2005.

Big Rock Point Annual Radiological Environmental Operating Report January to December 2005

Table 1. Sampling and Analysis Summary

Medium	Description	Location(s)	Type of Analysis	Number of Samples Collected	Frequency of Analysis
TLD	Continuous	1-ST, 5-PT, 6-BC, 7-TR, 9A-17K	Gamma isotopic	51 12	Quarterly Annual ^a
Lake Water ^b	1 gallon composite	1-ST Near Discharge	Tritium ^e , Gamma isotopic	0	Semiannual
Well Water	1 gallon grab/composite	1-ST Well	Tritium ^e , Gamma isotopic	2	Semiannual
Monitoring Wells ^c	1 gallon grab	MW 1-9	Tritium ^e , Gamma isotopic	21	Semiannual
Sediment	Grab	1-ST, 24-STS, 25-STN, 26-LP	Gamma Isotopic	7	Semiannual
Fish ^d	Grab	1-ST Near discharge, 26-LP	Gamma Isotopic	5	Semiannual
Crayfish ^d	Grab	1-ST Near discharge	Gamma Isotopic	0	Semiannual

Table Notes

^a Only quarterly TLD's are required per Big Rock Point ODCM ^b Composite samples from retention pond releases collected semiannually; see Enclosure A for additional information. ^c Tritium and gamma isotopic analysis for a minimum of 6 monitoring wells, semi-annually ^d BRP ODCM requires one fish or crayfish sample semiannually

^e Tritium background sample analyses are not required since background is expected to be less than established LLDs

Big Rock Point Annual Radiological Environmental Operating Report January to December 2005

Table 2. Sample Data Summary^a

Medium or Pathway Sampled (Units)	Analyses Eval Versus Total N Analyses Perf	luated lumber ormed	Lower Limit of Detection (LLD) ^b	All Indic	ator Locations Mean ^c (Range)	All Cont	rol Locations Mean ^c (Range)	Nonroutine Measure- ments
Direct Radiation:		• •						
TLD - Onsite (mR)	TLD (quarterly) ^d	27/28	1.0	16/16	23.6 (11.8-87.3)	11/12	13.2 (10.3-20.3)	None
	TLD (annual)	6/7	1.0	4/4	90.5 (51.3-173.8)	2/3	42.7 (39.4-46.0)	None
TLD - Site Boundary (mR)	TLD (quarterly) ^d	35/36	1.0	24/24	11.7 (9.3-14.8)	11/12	13.2 (10.3-20.3)	None
	TLD (annual)	8/9	1.0	6/6	42.7 (37.0-51.7)	2/3	42.7 (39.4-46.0)	None
Waterborne:								
Lake ^e (pCi/L)	Samples not collected							
Well Water	Tritium	2/2	500.0	0/2	LLD	N/A	N/A	None
()012)	Gamma Isotopic	2/2	15.0-30.0	0/2	LLD	N/A	N/A	None
Groundwater Monitoring Wells	Tritium	21/21	1000.0	13/21	2450 (1405-5254)	N/A	N/A	None
(pCi/L)	Gamma Isotopic	21/21	15.0-30.0	0/21	LLD	N/A	N/A	None
Biota:								
Crayfish ^f (pCi/g wei)	Samples not collected							
Fish ^f (pCi/g wet)	Gamma Isotopic (Cs-137)	5/5	0.15	1/2	0.05 N/A	1/3	0.035 N/A	None

Medium or Pathway Sampled (Units)	Analyses E Versus Tota Analyses P	valuated al Number erformed	Lower Limit of Detection (LLD) ^b	All Indic	ator Locations Mean [°] (Range)	All Contro	bl Locations Mean ^c (Range)	Nonroutine Measure- ments
Lake Sediment:								
Shoreline sediment (pCi/g dry)	Gross Beta	3/3	1.0	3/6	7.4 (4.18-13.1)	0/0	N/A	None
	Co-60	7/7	0.05	4/6	0.09 (0.04-0.11)	0/1	LLD	None
	Cs-137	7/7	0.18	6/6	0.28 (0.10-0.61)	0/1	LLD	None

Table 2. Sample Data Summary^a

Table Notes:

^a Values for sample locations with the greatest annual mean are provided in Table 3.
 ^b Nominal LLD as defined in the Big Rock Point Offsite Dose Calculation Manual Section I, Table I.H-3 or vendor analytical capabilities.
 ^c Mean and range data reported are based upon detectable measurements.
 ^d Quarterly TLD results are normalized for 91 days net.
 ^e Analyses of two composite samples collected during retention pond were 3835 pCi/L and 2747 pCi/L with an average of 3291 pCi/L.
 ^f Sample requirements are either one fish <u>or</u> invertebrate sample semiannually

Big Rock Point Annual Radiological Environmental Operating Report January to December 2005

Table 3. Reporting Results Greatest Mean Sampling Location

<u>Medium</u>	Type of Analysis	Location	<u>High</u>	Low	Mean
TLD - Onsite (mR)	TLD (Quarterly) ^a TLD (Annual)	17-K NE Restricted Area	87.3 	17.6 	43.3 173.8
TLD - Site Boundary (mR)	TLD (Quarterly) ^a TLD (Annual)	12-E SE Boundary	14.8 	12.4 	13.5 51.7
Lake Water (pCi/L)	No samples collected ^b				
Well Water (pCi/L)	Tritium Gamma Isotopic	Not applicable – all samples <lld Not applicable – all samples <lld< td=""><td></td><td></td><td></td></lld<></lld 			
Groundwater Monitoring Wells (pCi/L)	Tritium Gamma Isotopic	MW-6 North Restricted Area Not applicable – all samples <lld< td=""><td>4987</td><td>4918</td><td>4953</td></lld<>	4987	4918	4953
Sediment (pCi/g dry)	Gross Beta Co-60 Cs-137	1-ST, near former Plant Discharge 1-ST, near former Plant Discharge 1-ST, near former Plant Discharge	0.11 0.61	0.11 0.30	13.1 0.11 0.46
Fish ^c (pCi/g wet)	Gamma Isotopic (Cs-137)	1-ST, near former Plant Discharge			0.05
Crayfish ^c (pCi/g wet)	No samples collected				

Table Notesa Quarterly TLD results are normalized for 91 days net.b See Enclosure A.d Sample requirements are either one fish or invertebrate sample semiannually

Enclosures

- A. Sample Collection Anomalies
- B. Big Rock Point Environmental Sample Schedule (with sample locations and maps)
- C. Radiological Environmental Monitoring Program Data as provided by Environmental, Inc. Midwest laboratory, Northbrook, IL.
- D. Environmental, Inc. Midwest laboratory EPA Interlaboratory Comparison Program Results
- E. Data Graphs
 - 1. Mean Quarterly TLDs, Big Rock Point 1997-2005
 - 2. Groundwater Monitoring Well Mean Tritium Concentration, Big Rock Point 1997-2005
 - 3. Sediment Mean Total Gamma Activity, Big Rock Point 1997-2005
 - 4. Fish & Crayfish Mean Total Gamma Activity, Big Rock Point 1997-2005

Big Rock Point Annual Radiological Environmental Operating Report January to December 2005

Big Rock Point Annual Radiological Environmental Operation Report January through December 2005

Enclosure A: Sample Collection Anomalies

• •

Enclosure A

). A 100 Million and a

Sample Collection Anomalies

<u>Sample</u> <u>Type</u> Affected	Location	Date	Problem Description	Evaluation
TLD	BRP-07	10-06-05	Quarterly TLD lost in field	TLD lost during building exterior remodeling; remaining offsite TLD readings consistent with previous years data.
TLD	BRP-07	10-06-05	Annual TLD lost in field	Same as above
Biota	1-ST (near site)	07-12-05	Semi-annual fish sample collected in July	Sample was collected 12 days late due to emergent work.
Lake Water	1-ST (near site)	Semiannual	Samples not obtained	Table 1-1 of the ODCM states that semiannual lake water samples are to be collected near the site; however, these samples have been determined not to be required. The ODCM basis for environmental samples along the lakeshore discusses only biota and sediment sampling. The ODCM will be revised to resolve this inconsistency.
				Precautionary tritium and gamma isotopic analyses from composites of detained surface and groundwater released to the lake show that gamma activity was less than LLD. Tritium levels from these composite samples were 3835 pCi/L and 2747 pCi/L, for an average value of 3291 pCi/L.

Big Rock Point Annual Radiological Environmental Operation Report January through December 2005

/

ŀ

Enclosure B: Big Rock Point Environmental Sample Schedule and Sample Location Maps

VOLUME 25 OFF-SITE DOSE CALCULATION MANUAL AND RELATED DOCUMENTS A. OFF-SITE DOSE CALCULATION MANUAL SECTION I – PROCEDURAL AND SURVEILLANCE REQUIREMENTS Revision 29 Page 19 of 63

TABLE 1-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Exposure Pathway and/or Sample		Number of Representative Samples and Sample Locations ^a	Sampling and Collection Frequency	Type and frequency of Analysis
1.	Direct Radiation ^b	 21 monitoring stations either with two or more TLDs or one instrument for measuring and recording dose rate continuously, placed as follows ^d: a) Miscellaneous site locations (4) b) A ring of stations (6) at or near the Site boundary c) Balance of stations (3) placed to serve as control stations d) Outside perimeter of ISFSI (4) 	Quarterly	Gamma dose quarterly
	Waterborne	e) 15PSI protected area tence line (4)		······································
4.	a. Lake	1 sample near site	Semiannual (grab)	Tritium and gamma isotopic ^d
	b. Well (drinking) and groundwater monitoring wells	1 sample from Site well, if in use, and 1 sample from minimum of 6 monitor wells	Semiannual (grab) Semiannual (grab)	Tritium and gamma isotopic semiannually
3.	Biota	······································		
	a. Marine	1 fish or invertebrate sample where clarified, detained water enters lake	Semiannual (grab) Apr-Nov	Gamma Isotopic Semiannually
4.	Lake Sediment	· · · · · · · · · · · · · · · · · · ·		
	a. Shoreline	1 sample where clarified, detained water enters lake	Semiannual (grab) Apr-Nov	Gamma Isotopic Semiannually
	b. Shoreline	1 sample each side of 4.a (above), within ~1/2 mile	Semiannual (grab) Apr-Nov	Gamma Isotopic Semiannually

Big Rock Point Annual Radiological Environmental Operation Report January through December 2005

Enclosure C: BRP Radiological Environmental Monitoring Program Data

Environmental, Inc. Midwest Laboratory an Allegheny Technologies Co.

700 Landwehr Road • Northbrook, IL 60062-2310 (847) 564-0700 fax (847) 564-4517

FINAL REPORT TO CONSUMERS ENERGY COMPANY JACKSON, MICHIGAN

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP) FOR BIG ROCK NUCLEAR GENERATING PLANT

PREPARED AND SUBMITTED BY ENVIRONMENTAL INCORPORATED MIDWEST LABORATORY

Project Number: 8022

Reporting Period: January - December, 2005

Reviewed and Approved by B. Grob, M.S. Laboratory Manager

Distribution: R. J. Bearss (1 copy)

Date 02-14-2006

TABLE OF CONTENTS

Section	
	List of Tables iii
1	INTRODUCTIONiv
2	LISTING OF MISSED SAMPLESv
Appendices	
А	Interlaboratory Comparison Program ResultsA-1
В	Data Reporting Conventions B-1
С	Special AnalysesC-1

ii

ID

1

LIST OF TABLES

Ø

<u>No.</u>	Page
1.	Gamma Radiation, as measured by TLDs, Quarterly Exposure . 1-1
2.	Gamma Radiation, as measured by TLDs, Annual Exposure 2-1
3.	Lake Water, Inlet and Discharge
4.	Water, Ludington Controls4-1
5.	Well Water 5-1
6.	Fish
7	Crayfish 7-1
8.	Bottom Sediments 8-1
9.	Reactor Effluent Samples
	9.1 Liquid Radwaste

iii

<u>BIG ROCK</u>

1.0 INTRODUCTION

iv

The following constitutes a final 2005 Progress Report for the Radiological Environmental Monitoring Program conducted at the Consumers Power Company, Big Rock Nuclear Generating Plant. Results of completed analyses are presented in the attached tables.

All concentrations, except gross alpha and gross beta, are decay corrected to the time of collection.

All samples were collected within the scheduled period unless noted otherwise in the Listing of Missed Samples.

BIG ROCK 2.0 LISTING OF MISSED SAMPLES

A

Sample Type	Location	Expected Collection Date	Reason
TLD	BRP-07	10-05-05	Lost in field.
TLD	BRP-07	01-05-06	Lost in field.

<u>1st Qtr.</u>	2nd Qtr.	<u>3rd Qtr.</u>	4th Qtr.
01-06-05	04-04-05	07-07-05	10-05-05
04-04-05	07-07-05	10-05-05	01-05-06
3.1 ± 0.3	2.0 ± 0.3	2.7 ± 0.4	1.2 ± 0.3
17.3 ± 1.2	14.8 ± 1.1	14.1 ± 1.0	12.6 ± 1.0
11.0 ± 0.6	11.3 ± 0.4	12.5 ± 1.1	11.5 ± 0.4
14.1 ± 0.4	13.0 ± 0.9	14.7 ± 0.6	14.1 ± 1.0
12.3 ± 0.5	10.3 ± 0.6	ND ^b	20.3 ± 0.7
11.1 ± 0.5	11.2 ± 0.8	12.2 ± 1.0	11.1 ± 0.4
10.5 ± 0.6	10.1 ± 0.4	10.9 ± 0.6	10.5 ± 0.4
12.4 ± 0.5	12.1 ± 0.8	13.5 ± 0.5	12.2 ± 0.5
12.4 ± 0.4	13.3 ± 0.5	14.8 ± 0.6	13.6 ± 0.4
11.3 ± 0.4	12.0 ± 0.5	13.6 ± 0.4	12.3 ± 0.4
15.7 ± 0.8	13.2 ± 0.8	13.0 ± 0.7	12.1 ± 0.5
43.4 ± 1.4	17.7 ± 0.6	18.1 ± 0.8	11.8 ± 0.5
9.3 ± 0.5	9.8 ± 0.5	9.6 ± 0.6	9.9 ± 0.4
17.6 ± 0.5	48.2 ± 0.8	87.3 ± 2.2	20.0 ± 0.8
10.7 ± 0.5	10.1 ± 0.6	10.0 ± 0.5	10.8 ± 0.6
11.9 ± 0.6	13.1 ± 0.6	13.5 ± 0.6	13.6 ± 0.6
12.3 ± 0.6	12.4 ± 0.5	15.0 ± 0.8	13.0 ± 0.5
10.7 ± 0.6	10.2 ± 0.4	10.6 ± 0.7	10.9 ± 0.4
17.3 ± 0.6	16.8 ± 0.6	17.0 ± 0.7	17.8 ± 0.4
34.2 ± 0.7	34.7 ± 1.6	34.9 ± 1.2	34.1 ± 1.0
19.3 ± 0.9	19.1 ± 0.3	19.1 ± 0.7	19.5 ± 0.4
16.1 ± 0.5	15.9 ± 0.4	16.7 ± 0.6	16.4 ± 0.4
	$\frac{1 \text{ st Qtr.}}{01-06-05}$ $04-04-05$ 3.1 ± 0.3 17.3 ± 1.2 11.0 ± 0.6 14.1 ± 0.4 12.3 ± 0.5 11.1 ± 0.5 10.5 ± 0.6 12.4 ± 0.4 11.3 ± 0.4 15.7 ± 0.8 43.4 ± 1.4 9.3 ± 0.5 17.6 ± 0.5 10.7 ± 0.5 10.7 ± 0.6 12.3 ± 0.6 10.7 ± 0.5 11.9 ± 0.6 12.3 ± 0.6 10.7 ± 0.5 10.5 ± 0.5 10.7 ± 0.5 10.5 ± 0.5	1st Qtr. 2nd Qtr. 01-06-05 04-04-05 04-04-05 07-07-05 3.1 ± 0.3 2.0 ± 0.3 17.3 ± 1.2 14.8 ± 1.1 11.0 ± 0.6 11.3 ± 0.4 14.1 ± 0.4 13.0 ± 0.9 12.3 ± 0.5 10.3 ± 0.6 11.1 ± 0.5 11.2 ± 0.8 10.5 ± 0.6 10.1 ± 0.4 12.4 ± 0.5 12.1 ± 0.8 12.4 ± 0.4 13.3 ± 0.5 11.3 ± 0.4 12.0 ± 0.5 15.7 ± 0.8 13.2 ± 0.8 43.4 ± 1.4 17.7 ± 0.6 9.3 ± 0.5 9.8 ± 0.5 17.6 ± 0.5 48.2 ± 0.8 10.7 ± 0.6 13.1 ± 0.6 11.9 ± 0.6 13.1 ± 0.6 12.3 ± 0.6 12.4 ± 0.5 10.7 ± 0.6 10.2 ± 0.4 17.3 ± 0.6 16.8 ± 0.6 34.2 ± 0.7 34.7 ± 1.6 19.3 ± 0.9 19.1 ± 0.3 16.1 ± 0.5 15.9 ± 0.4	1st Qtr. 2nd Qtr. 3rd Qtr. 01-06-05 04-04-05 07-07-05 04-04-05 07-07-05 10-05-05 3.1 \pm 0.3 2.0 \pm 0.3 2.7 \pm 0.4 17.3 \pm 1.2 14.8 \pm 1.1 14.1 \pm 1.0 11.0 \pm 0.6 11.3 \pm 0.4 12.5 \pm 1.1 14.1 \pm 0.4 13.0 \pm 0.9 14.7 \pm 0.6 12.3 \pm 0.5 10.3 \pm 0.6 ND ^b 11.1 \pm 0.5 11.2 \pm 0.8 12.2 \pm 1.0 10.5 \pm 0.6 10.1 \pm 0.4 10.9 \pm 0.6 12.4 \pm 0.5 12.1 \pm 0.8 13.5 \pm 0.5 12.4 \pm 0.4 13.3 \pm 0.5 14.8 \pm 0.6 11.3 \pm 0.4 12.0 \pm 0.5 13.6 \pm 0.4 15.7 \pm 0.8 13.2 \pm 0.8 13.0 \pm 0.7 43.4 \pm 1.4 17.7 \pm 0.6 18.1 \pm 0.8 9.3 \pm 0.5 9.8 \pm 0.5 9.6 \pm 0.6 17.6 \pm 0.5 10.1 \pm 0.6 10.0 \pm 0.5 11.9 \pm 0.6 13.1 \pm 0.6 13.5 \pm 0.6 12.3 \pm 0.6 12.4 \pm 0.5 15.0 \pm 0.8

Table 1. Gamma radiation, as measured by TLDs, quarterly exposure.

^a Intrarisit exposure has been subtracted.

^b "ND" = No data; TLD missing.

D

	2005	
Date Placed	01-06-05	
Date Removed	01-05-06	
Intransit (mR)	2.6 ± 0.7	
BRP-01 (ST) (Onsite)	52.5 ± 3.8	
BRP-05 (PT) (Control)	39.4 ± 0.8	
BRP-06 (BC) (Control)	46.0 ± 1.1	
BRP-07 (TR) (Control)	ND ^b	
BRP-09 (Site Boundary)	37.0 ± 1.3	
BRP-10 (Site Boundary)	38.1 ± 1.2	
BRP-11 (Site Boundary)	44.9 ± 2.1	
BRP-12 (Site Boundary)	51.7 ± 1.1	
BRP-13 (Site Boundary)	47.2 ± 1.0	
BRP-14 (G) (Onsite)	51.3 ± 1.0	
BRP-15 (H) (Onsite)	84.3 ± 1.4	
BRP-16 (J) (Site Boundary)	37.3 ± 0.8	
BRP-17 (K) (Onsite)	173.8 ± 1.4	
BRP-18 (ISFSI-NW)	37.7 ± 1.1	
BRP-19 (ISFSI-SW)	44.5 ± 1.6	
BRP-20 (ISFSI-SE)	45.9 ± 0.9	
	34.3 ± 1.1	
DRF-22 (IOFOI-FINE)	03.3 I 3.9	
DRF-23 (13F31-F3E) RDD-24 (19E91 E9MI)	137.0 ± 2.2	
BRP-25 (ISFSI-FNW)	57.8 ± 1.9	
Control 1 (Shield)	21.4 ± 1.2	
Control 2 (Shield)	22.1 ± 1.0	

Table 2. Gamma radiation, as measured by TLDs, annual exposure.Units: mR/365 days^a

^a Intransit exposure has been subtracted.

^b "ND" = No data; TLD missing.

	· · · · · · · · · · · · · · · · · · ·		
Location		Site Well	
Lab Code Date Collected	BRWW-3205 6/3/2005	BRWW-6948 11/30/2005	Reg. LLD
H-3	< 169	< 166	
Mn-54	< 4.6	< 4.3	15
Fe-59	< 12.4	< 6.9	30
Co-58	< 4.2	< 4.1	15
Co-60	< 3.1	< 3.1	15
Zn-65	< 5.3	< 6.9	30
Zr-Nb-95	< 4.1	< 6.7	15
Cs-134	< 3.3	< 4.7	15
Cs-137	< 3.3	< 7.1	18
Ba-La-140	< 12.2	< 4.8	15

Table 5.1 Well water, analyses for tritium and gamma emitting isotopes. Collection: Semiannual Units: pCi/L

13

Table 6. Fish, analyses for gross beta and gamma-emitting isotopes. Collection: Semiannually Units: pCi/g wet

Location		Di	scharge	
Lab Code Date Collected	BRF- 7/12/	4088 2005	BRF-5864 10/12/2005	Rec. LLD
Sample Type	Ca	гр	Salmon	
Gross Beta			3.63 ± 0.09	
Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-Nb-95 Cs-134 Cs-137	< < < < < <	0.020 0.032 0.015 0.013 0.014 0.026 0.016 0.015	< 0.007 < 0.052 < 0.018 < 0.014 < 0.021 < 0.022 < 0.010 0.050 ± 0.017	0.13 0.26 0.13 0.13 0.26 0.10 0.13 0.15
Location	Ludingt	on Pumped Stora	age Plant (Control)	
Lab Code Date Collected	PAF-7122 10/13/2005	PAF-7124 12/8/2005	PAF-7125 12/8/2005	Req. LLD
Sample Type	Chinook Salmon	Whitefish	Trout	
Gross Beta				
Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-Nb-95 Cs-134 Cs-137	< 0.028 < 0.174 < 0.037 < 0.030 < 0.046 < 0.097 < 0.020 < 0.023	< 0.017 < 0.028 < 0.015 < 0.013 < 0.031 < 0.043 < 0.020 < 0.017	< 0.013 < 0.059 < 0.014 < 0.011 < 0.025 < 0.023 < 0.016 0.035 ± 0.020	0.13 0.26 0.13 0.13 0.26 0.10 0.13 0.15

D

Table 8. Bottom sediment, analyses for gross beta and gamma-emitting isotopes. Collection: Semiannually Units: pCi/g dry

Location	1/4 Mi	le East	1/4 Mil	e West	:
Lab Code Date Collected	BRBS-4091 6/3/2005	BRBS-5866 10/11/2005	BRBS-4092 6/3/2005	BRBS-5867 10/11/2005	Req. LLD
Gross Eleta		4.18 ± 1.74		5.00 ± 1.64	
Mn-54	< 0.023	< 0.021	< 0.026	< 0.022	0.08
Fe-59	< 0.108	< 0.091	< 0.124	< 0.052	0.10
Co-58	< 0.038	< 0.028	< 0.038	< 0.029	0.08
Co-60	0.09 ± 0.021	0.04 ± 0.026	< 0.022	< 0.021	0.05
Zn-65	< 0.070	< 0.045	< 0.056	< 0.048	0.10
Zr-Nb-95	< 0.064	< 0.062	< 0.152	< 0.038	0.10
Cs-134	< 0.028	< 0.026	< 0.035	< 0.024	0.15
Cs-137	0.28 ± 0.035	0.28 ± 0.039	0.11 ± 0.046	0.10 ± 0.027	0.18

Location	Disch	narge	Ludington (Control)	
Lab Code	BRBS-4089,90	BRBS-5865	PABS-7127	Rec. LLD
Date Collected	6/3/2005	10/11/2005	12/8/2005	
Gross Beta		13.13 ± 1.77		
Mn-54	< 0.020	< 0.025	< 0.025	0.08
Fe-59	< 0.130	< 0.077	< 0.091	0.10
Co-58	< 0.036	< 0.015	< 0.027	0.08
Co-60	0.11 ± 0.016	0.11 ± 0.028	< 0.026	0.05
Zn-65	< 0.055	< 0.050	< 0.087	0.10
Zr-Nb-95	< 0.078	< 0.045	< 0.025	0.10
Cs-134	< 0.020	< 0.024	< 0.037	0.15

D

plutonium-239 and gamma emitting isotopes. Collection: Monthly Units: uCi/ml					
Lab Code	Required LLD	NS ^a	NSª	NSª	
Date Collected	1 -	01-31-05	02-28-05	03-31-05	
Gross Alpha	1.0 E-07	-	-	-	
H-3	1.0 E-05	-	-	-	
S89	5.0 E-08	-	-	-	
S90	5.0 E-08	-	-	-	
P ₁ -239	5.0 E-08	-	-	-	
C51	5.0 E-07	-		-	
Mn-54	5.0 E-07	-	-	•	
Fe-59	5.0 E-07	-	-	-	
Co-58	5.0 E-07	-	-	•	
Co-60	5.0 E-07	-	-	•	
Zn-65	5.0 E-07	-	-	•	
Zr-95	5.0 E-07	-	-	-	
Nb-95	5.0 E-07	-	- -	-	
Ag-110m	5.0 E-07	-	-	-	
Sb-124	5.0 E-07	-	-	-	
Cs-134	5.0 E-07	-	-	•	
Cs-137	5.0 E-07	-	-	•	
Ba-140	5.0 E-07	-	-	-	
La-140	5.0 E-07	-	-	-	
Ce-141	5.0 E-07	-	-	•	
Ce-144	5.0 E-07	-	-	-	

Table 9.1. Liquid Radwaste, analyses for gross alpha, tritium, strontium-89, strontium-90,

* Sample not collected.

D

9.1-1

Ur	nits: uCi/n	าl	•	
Lab Code	Required LLD	NSª	NSª	NSª
Date Collected	-	04-30-05	05-31-05	06-30-05
Gross Alpha	1.0 E-07	-	-	-
H-3	1.0 E-05	-	-	-
Sr⊷89	5.0 E-08	-	-	-
Sr-90	5.0 E-08	-	-	-
Pu-239	5.0 E-08	-	-	-
Cr₀51	5.0 E-07	-	-	-
Mri-54	5.0 E-07	-	-	-
Fe-59	5.0 E-07	-	-	
Co-58	5.0 E-07	-	-	•
Co-60	5.0 E-07	-	- `	-
Zn-65	5.0 E-07	-	-	-
Zr-95	5.0 E-07	-	-	-
Nb-95	5.0 E-07	-	-	•
Ag-110m	5.0 E-07	-	-	•
Sb-124	5.0 E-07	-		•
Cs-134	5.0 E-07	-	-	•
Cs-137	5.0 E-07	-	-	-
Ba-140	5.0 E-07	-	-	•
La-140	5.0 E-07	-	-	•
Ce-141	5.0 E-07	-	-	-
Ce-144	5.0 E-07	-	-	-

Table 9.1. Liquid Radwaste, analyses for gross alpha, tritium, strontium-89, strontium-90, plutonium-239 and gamma emitting isotopes. Collection: Monthly

^a Sample not collected.

9.1-2

	Collection: Monthly Units: uCi/m	1		
Lao Code	Required LLD	NSª	NSª	NSª
Date Collecte	ed -	07-31-05	08-31-05	09-30-05
Gross Alpha	1.0 E-07			
H-3	1.0 E-05			
Sr-89 Sr-90	5.0 E-08 5.0 E-08			
Pu-239	5.0 E-08			
Cr-51 Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-95 Nb-95 Ag-110m Sb-124	5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07			
Cs-134 Cs-137 Ba-140 La-140 Ce-141 Ce-144	5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07 5.0 E-07			

 Table 9.1. Liquid Radwaste, analyses for gross alpha, tritium, strontium-89, strontium-90, plutonium-239 and gamma emitting isotopes.

^a Sample not collected.

9.1-3

Table 9.1.	Liquid Radwa	ste, analyses for gross alpha, tritium, strontium-89, strontium-90),
	plutonium-2	39 and gamma emitting isotopes.	
	Collection:	Monthly	
	Units:	uCi/ml	

Lab Code	Required LLD	NS ^a	NSª	NSª
Date Collected	-	10-31-05	11-30-05	12-31-05
Gross Alpha	1.0 E-07			
H-3	1.0 E-05			
Sr-39	5.0 E-08			
Sr-90	5.0 E-08			
Pu-239	5.0 E-08			
Cr-51	5.0 E-07			
Mn-54	5.0 E-07			
Fe-59	5.0 E-07			
Co-58	5.0 E-07			
Co-60	5.0 E-07		·	
Zn-65	5.0 E-07			
Zr-95	5.0 E-07			
Nb-95	5.0 E-07			
Ag-110m	5.0 E-07			
Sb-124	5.0 E-07			
Cs-134	5.0 E-07			
Cs-137	5.0 E-07			
Ba-140	5.0 E-07			
La-140	5.0 E-07			
Ce-141	5.0 E-07			
Ce-144	5.0 E-07			

^a Sample not collected.

D

۲

Table 9.2. Stack Filters, analyses for gross alpha, plutonium-239, strontium-89 and strontium-90.Collection:Continuous, monthly exchange.Units:pCi/filter

Location			Bi	g Rock	
Date Collec	te Lab Code	Gross Alpha	Sr-89	Sr-90	Pu-239
Required LL	<u>_D</u>	<u>10</u>	<u>10</u>	<u>10</u>	<u>10</u>
01-31-05 02-28-05 03-31-05	BRSP -543 -1042 -1615	16.3 ± 1.6 19.2 ± 1.8 17.2 ± 0.7	< 3.2 < 2.1 < 3.6	4.9 ± 2.0 7.7 ± 1.4 18 7 + 3.0	0.6 ± 0.2 < 0.3 1.1 ± 0.5
04-30-05 05-28-05	-2354 -3120	17.2 ± 0.7 17.1 ± 1.8 12.8 ± 1.6	< 5.2 < 4.5	134.1 ± 7.0 28.3 ± 3.6	0.5 ± 0.4 3.0 ± 0.6
06-30-05 07-31-05 08-31-05	-3915 -4525 -5024	12.9 ± 1.5 6.6 ± 1.2 4.8 ± 1.3	< 2.6 < 4.6 < 5.3	66.5 ± 4.7 32.2 ± 3.5 12.7 ± 2.5	2.7 ± 1.0 1.4 ± 0.6 1.0 ± 0.4
09-30-05 10-31-05 11-30-05	-5544 -6326 -6947	5.3 ± 1.4 1.9 ± 0.7 3.5 ± 1.1	< 6.6 < 4.6 < 4.3	10.4 ± 2.7 < 3.3 < 2.6	< 0.1 < 0.1 < 0.2
12-31-05	-7377	0.7 ± 0.4	< 5.6	< 3.3	< 0.1

9.2-1

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

Mr. Randy Bearss	LABORATORY REPORT NO.	8022-100-179
Big Rock Foint	DATE:	05-18-2005
10269 US-31 North	SAMPLES RECEIVED:	05-11-2005
Charlevoix MI 49720	PURCHASE ORDER NO:	

Below are the results of the analyses for tritium on two samples.

Sample Description	Collection Date	Lab Code	Concentration (pCi/L) H-3	<u> </u>
PZ-3MA	04-19-05	BRW-2470	2,141 ± 145	
PZ-5S	04-20-05	BRW-2471	4,842 ± 200	

The error g ven is the probable counting error at 95% confidence level.

Brohia Grob, Labbratory Manager APPROVED BY

.

Tony Coorlim, Quality Assurance 700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

Environmental, Inc. Midwest Laboratory an Allegheny Technologies Co.

Mr. Randy Bearss	LABORATORY REPORT NO.	80:22-100-181
Big Rock Point	DATE:	05-23-2005
10269 US-31 North	SAMPLES RECEIVED:	05-12-2005
Charlevoix, MI 49720	PURCHASE ORDER NO:	

Below are the results of the analyses for tritium on eight samples.

Sample Description	Collection Date	Lab Code	Concentration (pCi/L) H-3	
PZ-2D	04-20-05	BRW-2516	< 1000	
PZ-3D-	04-20-05	BRW-2517	1,405 ± 407	
PZ-2M	04-20-05	BRW-2518	< 1000	
PZ-8M	04-28-05	BRW-2519	< 1000	
PZ-9M-	04-19-05	BRW-2520	< 1000	
P7-8MA	04-28-05	BRW-2521	< 1000	
PZ-9MA	04-19-05	BRW-2522	< 1000	
PZ-3MB ⁻	04-19-05	BRW-2523	$1,745 \pm 422$	

The error given is the probable counting error at 95% confidence level.

Brohia G rob, aboratory Manager APPROVED BY

Tony Coorlim, Quality Assurance

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

Mr. Randy Bearss Big Rock Foint 10269 US-31 North Charlevoix, MI 49720	LABORATORY REPORT NO. DATE: SAMPLES RECEIVED: PURCHASE ORDER NO:	80:22-100-178 05-18-2005 05-11-2005

Below are the results of the analyses for tritium on two samples.

Sample ·Description	Collection Date	Lab Code	Concentration (pCi/L) H-3	
MW-5	05-03-05	BRW-2468	4,436 ± 193	
MW-6	04-28-05	BRW-2469	4,918 ± 204	

The error given is the probable counting error at 95% confidence level.

HORE Grob, **bnia** Br Labdratory Manager APPROVED BY

Tony Coorlim, Quality Assurance

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

Mr. Randy Bearss Big Rock Point 10269 IJS-31 North Charlevoix, MI 49720	LABORATORY REPORT NO. DATE: SAMPLES RECEIVED: PURCHASE ORDER NO:	8022-100-199 10-25-2005 10-18-2005
--	---	--

Below are the results of the analyses for tritium on two samples.

Sample Description	Collection Date	Lab Code	Concentration (pCi/L) H-3	· · ·
MW-5	10-05-05	BRW-5942	4,825 ± 533	
MW-5	10-05-05	BRW-5943	5,254 ± 544 <	
MW-6	10-05-05	BRW-5944	4,987 ± 537 -	

[•] Denotes a duplicate. The error given is the probable counting error at 95% confidence level.

Stro Bronia Grob, Laboratory Manager

.

1 ony tim pms APPROVED BY Co

Tony Coorlim, Quality Assurance

Environmental, Inc. **Midwest Laboratory** an Allegheny Technologies Co.

700 Landwehr Road • Northbrook, IL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

Mr. Randy Bearss	LABORATORY REPORT NO.	8022-100-200
Big Rock Point	DATE:	10-25-2005
10269 US-31 North	SAMPLES RECEIVED:	10-18-2005
Charlevoix, MI 49720	PURCHASE ORDER NO:	······

Below are the results of the analyses for tritium on seven samples.

Sample Description	Collection Date	Lab Code	Concentration (pCi/L) H-3	
P7-3D	10-05-05	BRW-5045	2 813 + 477	
PZ-30 P7-3M4	10-05-05	BRW-5946	2,010 ± 477	
PZ-3MB	10-05-05	BRW-5947	4.248 ± 517	
PZ-8M	10-06-05	BRW-5948	< 1000	
PZ-9M	10-04-05	BRW-5949	1,477 ± 436	
PZ-9MA	10-04-05	BRW-5950	< 1000	
PZ-5S	10-05-05	BRW-5951	2,222 ± 459	

Corrected Sample Description. The error given is the probable counting error at 95% confidence level.

Brohia Grob, Laboratory Manager APPROVED BY Tony Coorlim, Quality Assurance

CORRECTED REPORT

Big Rock Point Annual Radiological Environmental Operation Report January through December 2005

Enclosure D: Interlaboratory Comparison Program Results

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE:

Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2005 through December, 2005

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

The results in Table A-2 list results for thermoluminescent dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters, when available, and internal laboratory testing.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 list results of the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Data for previous years available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Attachment A lists acceptance criteria for "spiked" samples.

Out-of-I mit results are explained directly below the result.

Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES*

Analysis	Level	One standard deviation for single determination
Gamma Emitters	5 to 100 pCi/liter or kg > 100 pCi/liter or kg	5.0 pCi/liter 5% of known value
Strontium-89 ^b	5 to 50 pCi/liter or kg > 50 pCi/liter or kg	5.0 pCi/liter 10% of known value
Strontium-90 ^b	2 to 30 pCi/liter or kg > 30 pCi/liter or kg	5.0 pCi/liter 10% of known value
Potassium-40	≥ 0.1 g/liter or kg	5% of known value
Gross alpha	≤ 20 pCi/liter > 20 pCi/liter	5.0 pCi/liter 25% of known value
Gross beta	≤ 100 pCi/liter > 100 pCi/liter	5.0 pCi/liter 5% of known value
Tritium	≤ 4,000 pCi/liter	± 1σ = (pCi/liter) = 169.85 x (known) ^{0.0933}
	> 4,000 pCi/liter	10% of known value
Radium-226,-228	≥ 0.1 pCi/liter	15% of known value
Plutonium	≥ 0.1 pCi/liter, gram, or sample	10% of known value
Iodine-131, Iodine-129 ⁶	≤ 55 pCi/liter > 55 pCi/liter	6.0 pCi/liter 10% of known value
Uranium-238, Nickel-63 ^b Technetium-99 ^b	≤ 35 pCi/liter > 35 pCi/liter	6.0 pCi/liter 15% of known value
Iron-55 ^b	50 to 100 pCi/liter > 100 pCi/liter	10 pCi/liter 10% of known value
Others ^b		20% of known value

^a From EFA publication, "Environmental Radioactivity Laboratory Intercomparison Studies Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

			Concen	tration (pCi/L)		
Lab Code	Date	Analysis	Laboratory	ERA	Control	
·			Result ^b	Result ^c	Limits	Acceptance
STW-1051	02/15/05	Sr-89	28.0 ± 1.2	29.4	20.7 - 38.1	Pass
STW-1051	02/15/05	Sr-90	25.1 ± 0.7	24.4	15.7 - 33.1	Pass
STW-1052	02/15/05	Ba-133	52.9 ± 2.8	53.4	44.2 - 62.6	Pass
STW-1052	02/15/05	Co-60	54.4 ± 0.4	56.6	47.9 - 65.3	Pass
STW-1052	02/15/05	Cs-134	67.7 ± 1.8	64.9	56.2 - 73.6	Pass
STW-1052	02/15/05	Cs-137	39.6 ± 1.8	40.2	31.5 - 48.9	Pass
STW-1052	02/15/05	Zn-65	159.7 ± 3.0	161.0	133.0 - 189.0	Pass
STW-1053	02/15/05	Gr. Alpha	55.1 ± 1.8	67.9	38.5 - 97.3	Pass
STW-1053	02/15/05	Gr. Beta	46.8 ± 1.3	51.1	38.5 - 97.3	Pass
STW-1054	02/15/05	Ra-226	13.7 ± 1.5	14.1	10.4 - 17.8	Pass
STW-1054	02/15/05	Ra-228	13.3 ± 0.6	13.7	7.8 - 19.6	Pass
STW-1054	02/15/05	Uranium	5.1 ± 0.2	5.0	0.0 - 10.2	Pass
STW-1055	05/17/05	Sr-89	45.1 ± 4.1	41.3	32.6 - 50.0	Pass
STW-1055	05/17/05	Sr-90	7.5 ± 0.9	5.9	0.0 - 14.6	Pass
STW-1056	05/17/05	Ba-133	87.1 ± 2.0	88.4	73.1 - 104.0	Pass
STW-1C56	05/17/05	Co-60	38.4 ± 0.8	37.0	28.3 - 45.7	Pass
STW-1056	05/17/05	Cs-134	75.3 ± 0.7	78.6	69.9 - 87.3	Pass
STW-1C56	05/17/05	Cs-137	201.0 ± 8.4	194.0	184.0 - 218.0	Pass
STW-1056	05/17/05	Zn-65	130.0 ± 6.7	118.0	97.6 - 138.0	Pass
STW-1057	05/17/05	Gr. Alpha	42.7 ± 2.9	37.0	21.0 - 53.0	Pass
STW-1057	05/17/05	Gr. Beta	34.0 ± 0.4	34.2	25.5 - 42.9	Pass
STW-1058	05/17/05	I-131	14.7 ± 0.5	15.5	10.3 - 20.7	Pass
STW-1059	05/17/05	Ra-226	6.6 ± 0.1	7.6	5.6 - 9.5	Pass
STW-1059	05/17/05	Ra-228	19.3 ± 0.7	18.9	10.7 - 27.1	Pass
STW-1059	05/17/05	Uranium	9.6 ± 0.1	10.1	4.9 - 15.3	Pass
STW-1060	05/17/05	H-3	24100.0 ± 109.0	24400.0	20200.0 - 28600.0	Pass
STW-1067	08/16/05	Sr-89	29.1 ± 3.0	28.0	19.3 - 36.7	Pass
STW-1067	08/16/05	Sr-90	36.0 ± 0.6	33.8	25.1 - 42.5	Pass
STW-1068	08/16/05	Ba-133	107.0 ± 1.7	106.0	87.7 - 124.0	Pass
STW-1068	08/16/05	Co-60	15.2 ± 0.2	13.5	4.8 - 22.2	Pass
STW-1068	08/16/05	Cs-134	89.1 ± 0.3	92.1	83.4 - 101.0	Pass
5TW-1068	08/16/05	Cs-137	72.1 ± 1.0	72.7	64.0 - 81.4	Pass
STW-1068	08/16/05	Zn-65	67.4 ± 1.4	65.7	54.3 - 77.1	Pass
5TW-1 069	08/16/05	Gr. Alpha	44.3 ± 1.5	55.7	31.6 - 79.8	Pass
STW-1069	08/16/05	Gr. Beta	58.4 ± 2.1	61.3	44.0 - 78.6	Pass
TW-1070	08/16/05	Ra-226	16.6 ± 1.5	16.6	12.3 - 20.9	Pass
TW-1070	08/16/05	Ra-228	6.2 ± 0.3	6.2	3.5 - 8.9	Pass
STW-1070	08/16/05	Uranium	4.5 ± 0.1	4.5	0.0 - 9.7	Pass

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

.

A1-1

		Concentration (pCi/L)					
Lab Code	Date	Analysis	Laboratory Result ^b	ERA Result ^e	Control Limits	Acceptance	
STW-1072	11/15/05	Sr-89	20.6 ± 0.4	19.0	10.3 - 27,7	Pass	
STW-1072	11/15/05	Sr-90	15.0 ± 0.3	16.0	7.3 - 24.7	Pass	
STW-1073	11/15/05	Ba-133	31.8 ± 1.8	31.2	22.5 - 39,9	Pass	
STW-1073	11/15/05	Co-60	85.0 ± 1.4	84.1	75.4 - 92.8	Pass	
STW-1073	11/15/05	Cs-134	37.2 ± 2.1	33.9	25.2 - 42.6	Pass	
STW-1073	11/15/05	Cs-137	27.8 ± 0.7	28.3	19.6 - 37.0	Pass	
STW-1073	11/15/05	Zn-65	109.0 ± 1.0	105.0	86.8 - 123.0	Pass	
STW-1074 d	11/15/05	Gr. Alpha	41.1 ± 1.2	23.3	13.2 - 33.4	Fail	
STW-1074	11/15/05	Gr. Beta	42.7 ± 0.5	39.1	30.4 - 47.8	Pass	
STW-1075	11/15/05	I-131	20.5 ± 0.6	17.4	12.2 - 22.6	Pass	
STW-1076	11/15/05	Ra-226	7.8 ± 0.6	8.3	6.2 - 10.5	Pass	
STW-1076 *	11/15/05	Ra-228	5.5 ± 0.6	3.5	2.0 - 5.0	Fail	
STW-1076	11/15/05	Uranium	15.5 ± 0.3	16.1	10.9 - 21.3	Pass	
STW-1077	11/15/05	H-3	12500.0 ± 238.0	12200.0	10100.0 - 14300.0	Pass	

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a,

- Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).
- ^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.
- ^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.
- ^d The original samples were calculated using an Am-241 efficiency. The samples were spiked with Th-232. Samples were recounted and calculated using the Th-232 efficiency. Results of the recount: 27.01 ± 2.35 pCi/L.
- * Decay of short-lived radium daughters contributed to a higher counting rate. Delay of counting for 100 minutes provided better results. The reported result was the average of the first cycle of 100 minutes, the average of the second cycle counts was 4.01 pCi/L

Lab Code	Date		Known	Lab Result	Control	
	Duto	Description	Value	± 2 sigma	Limits	Acceptance
<u>Environmen</u>	tal, Inc.					
2005-1	4/4/2005	30 cm	55.01	64.02 ± 2.86	38.51 - 71.51	Pass
2005-1	4/4/2005	60 cm	13.75	15.43 ± 1.02	9.63 - 17.88	Pass
2005-1	4/4/2005	60 cm	13.75	14.98 ± 0.80	9.63 - 17.88	Pass
2005-1	4/4/2005	90 cm	6.11	6.24 ± 0.16	4.28 - 7.94	Pass
2005-1	4/4/2005	90 cm	6.11	5.45 ± 0.48	4.28 - 7.94	Pass
2005-1	4/4/2005	120 cm	3.44	3.50 ± 0.35	2.41 - 4.47	Pass
2005-1	4/4/2005	120 cm	3.44	3.15 ± 0.18	2.41 - 4.47	Pass
2005-1	4/4/2005	150 cm	2.2	2.31 ± 0.25	1.54 - 2.86	Pass
2005-1	4/4/2005	180 cm	1.53	1.65 ± 0.41	1.07 - 1.99	Pass
Environmenta	al, Inc.		•			
2005-2	9/12/2005	30 cm	54.84	59.30 ± 2.66	38.39 - 71.29	Pass
2005-2	9/12/2005	60 cm	13.71	17.55 ± 1.30	9.60 - 17.82	Pass
2005-2	9/12/2005	75 cm	8.77	8.24 ± 0.38	6.14 - 11.40	Pass
2005-2	9/12/2005	90 cm	6.09	5.94 ± 0.49	4.26 - 7.92	Pass
2005-2	9/12/2005	90 cm	6.09	5.93 ± 0.37	4.26 - 7.92	Pass
2005-2	9/12/2005	120 cm	3.43	3.42 ± 0.18	2.40 - 4.46	Pass
2005-2	9/12/2005	150 cm	2.19	1.71 ± 0.14	1.53 - 2.85	Pass
2005-2	9/12/2005	150 cm	2.19	1.87 ± 0.27	1.53 - 2.85	Pass
2005-2	9/12/2005	180 cm	1.52	1.58 ± 0.99	1.06 - 1.98	Pass

TABLE A-2. Crosscheck program results; Thermoluminescent Dosimetry, (TLD, CaSO4: Dy Cards).

ID

TABLE A-3. In-House "Spike" Samples

			Concent	ration (pCi/L) ^a		
Lab Code ^b	Date	Analysis	Laboratory results 2s, n=1 ^c	Known Activity	Control Limits ^d	Acceptance
W-11105	1/11/2005	Gr. Alpha	24.05 ± 1.01	20.08	10.04 - 30.12	Pass
W-11105	1/11/2005	Gr. Beta	61.59 ± 1.11	65.70	55.70 - 75.70	Pass
SPW-754	2/18/2005	H-3	77595.00 ± 764.00	80543.00	64434.40 - 96651.60	Pass
SPAP-766	2/18/2005	Gr. Beta	416.08 ± 5.52	463.00	370.40 - 509.30	Pass
STW-2887	2/28/2005	Tc-99	32.91 ± 1.23	32.98	20.98 - 44.98	Pass
W-30105	3/1/2005	Gr. Alpha	25.22 ± 0.45	20.08	10.04 ~ 30.12	Pass
W-30105	3/1/2005	Gr. Beta	62.27 ± 0.48	65.73	55.73 - 75.73	Pass
SPW-1836	4/15/2005	I-131	109.79 ± 0.94	106.30	85.04 - 127.56	Pass
SPW-1836	4/15/2005	l-131(G)	110.25 ± 9.68	106.30	95.67 - 116.93	Pass
SPMI-1338	4/15/2005	Cs-134	25.94 ± 1.28	26.60	16.60 - 36.60	Pass
SPMI-1338	4/15/2005	Cs-137	59.31 ± 3.66	60.90	50.90 - 70.90	Pass
SPMI-1838	4/15/2005	I-131	97.71 ± 0.81	106.30	85.04 - 127.56	Pass
SPMI-1838	4/15/2005	l-131(G)	109.45 ± 3.06	106.30	95.67 - 116.93	Pass
SPMI-1838	4/15/2005	Sr-89	104.44 ± 2.89	108.20	86.56 - 129.84	Pass
SPMI-1838	4/15/2005	Sr-90	8.97 ± 0.79	7.53	0.00 - 17.53	Pass
SPVE-1932	4/18/2005	l-131(G)	1.00 ± 0.04	0.73	0.44 - 1.02	Pass
SPCH-1935	4/18/2005	I-131	382.40 ± 14.95	328.64	262.91 - 394.37	Pass
SPAP-1966	4/18/2005	Cs-134	52.10 ± 7.27	53.35	43.35 - 63.35	Pass
SPAP-1966	4/18/2005	Cs-134	57.28 ± 13.47	53.35	43.35 - 63.35	Pass
SPAP-1966	4/18/2005	Cs-137	124.68 ± 18.41	121.77	109.59 - 133.95	Pass
SPAP-1968	4/18/2005	Cs-134	52.10 ± 7.27	53.35	43.35 - 63.35	Pass
SPAP-1968	4/18/2005	Cs-137	116.79 ± 14.00	121.77	109.59 - 133.95	Pass
SPW-2098	4/26/2005	Fe-55	2565.20 ± 63.66	3017.60	2414.08 - 3621.12	Pass
SPW-2922	5/31/2005	Cs-134	27.01 ± 1.09	25.54	15.54 - 35.54	Pass
SPW-2922	5/31/2005	Cs-134	65.38 ± 2.92	60.71	50.71 - 70.71	Pass
SPW-2922	5/31/2005	Sr-89	107.90 ± 3.60	113.90	91.12 - 136.68	Pass
SPW-2922	5/31/2005	Sr-90	11.11 ± 1.13	6.90	0.00 - 16.90	Pass
SPAP-2892	6/1/2005	Gr. Beta	420.32 ± 5.55	448.00	358.40 - 492.80	Pass
SPW-2895	6/1/2005	H-3	75271.00 ± 724.00	78676.00	62940.80 - 94411.20	Pass
/-60105	6/1/2005	Gr. Alpha	23.69 ± 0.52	20.08	10.04 - 30.12	Pass
/-60105	6/1/2005	Gr. Beta	60.08 ± 0.57	65.73	55.73 - 75.73	Pass
PF-3089	6/7/2005	Cs-134	1.08 ± 0.05	1.02	0.61 - 1.43	Pass
PF-3089	6/7/2005	Cs-137	2.54 ± 0.10	2.43	1.46 - 3.40	Pass
PW-	7/1/2005	Ni-63	20.57 ± 1.10	16.75	10.05 - 23.45	Pass
PW-47731	8/24/2005	C-14	2112.30 ± 9.13	2370.80	1422.48 - 3319.12	Pass
PW-47732	8/24/2005	C-14	2294.10 ± 10.37	2370.80	1422.48 <i>-</i> 3319.12	Pass
PW-4775	8/24/2005	Fe-55	2633.50 ± 62.40	2777.50	2222.00 - 3333.00	Pass
PMI-4834	8/30/2005	Cs-134	49.27 ± 4.68	47.02	37.02 - 57.02	Pass
PMI-4834	8/30/2005	Cs-137	58.17 ± 8.18	60.37	50.37 - 70.37	Pass
PMI-4834	8/30/2005	Sr-89	66.39 ± 3.13	65.90	52.72 - 79.08	Pass
PMI-4834	8/30/2005	Sr-90	11.15 ± 1.13	9.60	0.00 - 19.60	Pass

D

TABLE A-3. In-House "Spike" Samples

		<u></u>	Concentration (pCi/L)				
Lab Ccde	Date	Analysis	Laboratory results 2s, n≈1 ^b	Known Activity	Control Limits ^c	Acceptance	
SPW-4836	8/30/2005	Cs-134	47.35 ± 5.19	47.02	37.02 - 57.02	Pass	
SPW-4836	8/30/2005	Cs-137	62.91 ± 9.08	60.37	50.37 - 70.37	Pass	
SPW-4836	8/30/2005	Sr-89	11.04 ± 0.98	9.60	0.00 - 19.60	Pass	
SPW-4336	8/30/2005	Sr-90	65.89 ± 2.79	65.90	52.72 - 79.08	Pass	
SPW-5014	8/30/2005	H-3	77518.20 ± 753.80	77602.52	62082.02 - 93123.02	Pass	
W-90705	9/7/2005	Gr. Alpha	24.61 ± 0.48	20.08	10.04 - 30.12	Pass	
W-907()5	9/7/2005	Gr. Beta	58.35 ± 0.49	65.73	55.73 - 75.73	Pass	
SPW-5:237	9/22/2005	C-14	2387.40 ± 11.00	2370.80	1422.48 - 3319.12	Pass	
SPW-5:508	9/26/2005	Ni-63	20.64 ± 1.23	16.70	10.02 - 23.38	Pass	
SPW-6019	10/24/2005	Tc-99	547.99 ± 6.69	539.22	377.45 - 700.99	Pass	
SPF-6293	11/4/2005	Cs-134	941.30 ± 44.10	886.00	797.40 - 974.60	Pass	
SPF-6293	11/4/2005	Cs-137	2570.40 ± 105.30	2400.00	2160.00 - 2640.00	Pass	
SPAP-6309	11/7/2005	Cs-134	41.24 ± 1.91	44.03	34.03 - 54.03	Pass	
SPAP-6309	11/7/2005	Cs-137	114.03 ± 5.01	120.24	108.22 - 132.26	Pass	
SPAP-6311	11/7/2005	Gr. Beta	1.58 ± 0.02	1.42	1.14 - 11.42	Pass	
SPW-6451	11/10/2005	H-3	77126.00 ± 747.00	76749.00	61399.20 - 92098.80	Pass	
W-120105	12/1/2005	Gr. Alpha	25.16 ± 0.45	20.08	10.04 - 30.12	Pass	
W-120105	12/1/2005	Gr. Beta	74.58 ± 0.81	65.73	55.73 - 75.73	Pass	
SPW-7440	12/30/2005	Cs-134	42.67 ± 4.22	42.03	32.03 - 52.03	Pass	
SPW-7440	12/30/2005	Cs-137	61.19 ± 7.20	59.91	49.91 - 69.91	Pass	
SPMI-7:142	12/31/2005	Cs-134	40.41 ± 5.66	42.03	32.03 - 52.03	Pass	
SPMI-7:142	12/31/2005	Cs-137	60.05 ± 7.80	59.91	49.91 - 69.91	Pass	

* Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/m³), and solid samples (pCi/g).

^b Laboratory codes as follows: W (water), MI (milk), AP (air filter), SO (soil), VE (vegetation),

CH (charcoal canister), F (fish).

^cResults are based on single determinations.

^d Control limits are based on Attachment A, Page A2 of this report.

NOTE: For fish, Jello is used for the Spike matrix. For Vegetation, cabbage is used for the Spike matrix.

TABLE A-4. In-House "Blank" Samples

					Concentration (pCi/	'L) ^a
Lab Code	Sample	Date	Analysis	Laborat	ory results (4.66σ)	Acceptance
	Туре			LLD	Activity ^b	Criteria (4.63 σ)
W-11105	water	1/11/2005	Gr Alpha	0.055	0.00 + 0.038	1
W-11105	water	1/11/2005	Gr. Beta	0.000	-0.016 ± 0.000	32
SPW-765	water	2/18/2005	H-3	165.8	7.4 + 82.5	200
SPAP-766	Air Filter	2/18/2005	Gr. Beta	0.72	0.29 ± 0.48	32
STW-2388	water	2/28/2005	Tc-99	1.32	0.45 ± 0.81	10
W-30105	water	3/1/2005	Gr. Aloha	0.067	-0.007 ± 0.043	
W-30105	water	3/1/2005	Gr. Beta	0.18	-0.04 ± 0.11	3.2
SPW-1/337	water	4/15/2005	Cs-134	4.66		10
SPW-1837	water	4/15/2005	Cs-137	5.38		10
SPW-1837	water	4/15/2005	I-131	0.30	-0.13 ± 0.16	0.5
SPW-1837	water	4/15/2005	l-131(G)	6.56		20
SPMI-1839	Milk	4/15/2005	I-131	0.26	-0.083 ± 0.14	0.5
SPMI-1839	Milk	4/15/2005	Sr-89	0.54	-0.069 ± 0.56	5
SPMI-1839	Milk	4/15/2005	Sr-90	0.53	0.88 ± 0.34	1
SPCH-1934	Charcoal	4/18/2005	l-131(G)	2.34		9.6
SPW-2097	water	4/26/2005	Fe-55	859.0	96.1 ± 528.4	1000
SPW-2923	water	5/31/2005	Cs-134	3.29		10
SPW-2923	water	5/31/2005	Cs-137	3.87		10
SPW-2896	water	6/1/2005	H-3	138.30	48.1 ± 85.9	200
w-60105	water	6/1/2005	Gr. Alpha	0.061	0.002 ± 0.043	1
w-60105	water	6/1/2005	Gr. Beta	0.16	0.056 ± 0.11	3.2
SPF-3030	Fish	6/7/2005	Cs-134	15.69		100
SPF-3090	Fish	6/7/2005	Cs-137	11.71		100
SPW-	water	7/1/2005	Ni-63	1.60	0.79 ± 0.99	20
SPW-4774	water	8/24/2005	C-14	12.18	2.84 ± 6.45	200
SPW-4776	water	8/24/2005	Fe-55	833	275 ± 525	1000
SPMI-4835	Milk	8/30/2005	Co-60	4.42		10
SPMI-4835	Milk	8/30/2005	Cs-134	4.18	~	10
SPMI-4835	Milk	8/30/2005	Cs-137	6.25		10
SPMI-4835	Milk	8/30/2005	l-131(G)	5.37		20
SPMI-4835	Milk	8/30/2005	Sr-89	0.66	-0.23 ± 0.65	5
SPMI-4835 °	Milk	8/30/2005	Sr-90	0.66	1.02 ± 0.41	1
SPW-4837	water	8/30/2005	Co-60	2.48		10
SPW-4837	water	8/30/2005	Cs-134	3.85		10
SPW-4837	water	8/30/2005	Cs-137	3.00		10
SPW-4837	water	8/30/2005	Sr-89	0.63	0.25 ± 0.53	5
SPW-4837	water	8/30/2005	Sr-90	0.63	-0.035 ± 0.29	1
SPW-5015	water	8/30/2005	H-3	142.8	168 ± 93	200
SPW-5238	water	9/22/2005	C-14	17.10	3.02 ± 9.04	200

.

D

TABLE A-4. In-House "Blank" Samples

					Concentration (pCi	/L) ^a
Lab Ccde	Sample	Date	Analysis	Laborator	ry results (4.66σ)	Acceptance
·	Туре			LLD	Activity ^b	Criteria (4.66 σ)
W-90705	water	9/7/2005	Gr. Alpha	0.056	0.034 ± 0.04	1
W-90705	water	9/7/2005	Gr. Beta	0.16	0.082 ± 0.11	3.2
SPW-5238	water	9/22/2005	C-14	17.10	3.02 ± 9.04	200
SPW-5509	water	9/26/2005	Ni-63	1.25	1.23 ± 0.79	20
SPW-6020	water	10/24/2005	Tc-99	4.81	-1.75 ± 2.90	10
SPF-6294	Fish	11/4/2005	Cs-134	18.60		100
SPF-6294	Fish	11/4/2005	Cs-137	12.99		100
SPAP-6310	Air Filter	11/7/2005	Cs-134	3.23		100
SPAP-6310	Air Filter	11/7/2005	Cs-137	3.86		100
SPAP-6312	Air Filter	11/7/2005	Gr. Beta	1.22	-0.64 ± 0.64	3.2
W-120105	water	12/1/2005	Gr. Alpha	0.05	0.033 ± 0.04	1
W-120105	water	12/1/2005	Gr. Beta	0.15	-0.043 ± 0.11	3.2
SPMI-7419	Milk	12/22/2005	Co-60	7.24		10
SPMI-7419	Milk	12/22/2005	Cs-137	5.61		10
SPMI-7419	Milk	12/22/2005	l-131(G)	10.96		20
SPW-7421	water	12/22/2005	Co-60	2.43		10
SPW-7421	water	12/22/2005	Cs-137	3.12		10
SPW-7441	water	12/30/2005	Cs-134	4.25		10
SPW-7441	water	12/30/2005	Cs-137	1.63		10
SPMI-7:443	Milk	12/30/2005	Cs-134	4.74		10
SPMI-7-143	Milk	12/30/2005	Cs-137	8.53		10

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/filter), charcoal (pCi/charcoal canister), and solid samples (pCi/g).

^b Activity reported is a net activity result. For gamma spectroscopic analysis, activity detected below the LLD value is not reported ^c I-131(Ci); iodine-131 as analyzed by gamma spectroscopy.

^d Low levels of Sr-90 are still detected in the environment. A concentration of (1-5 pCi/L) in milk is not unusual.

				Concentration (pCi/L)*	
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
SW-62, 63	1/3/2005	Gr. Beta	3.01 ± 0.57	2.39 ± 0.58	2.70 ± 0.41	Pass
SW-62, 63	1/3/2005	K-40	2.00 ± 0.20	2.10 ± 0.20	2.05 ± 0.14	Pass
CF-95, 96	1/3/2005	Gr. Beta	6.26 ± 0.23	6.28 ± 0.23	6.27 ± 0.16	Pass
CF-95, 96	1/3/2005	K-40	5.68 ± 0.59	5.37 ± 0.48	5.53 ± 0.38	Pass
AP-791, 792	1/14/2005	Be-7	0.057 ± 0.017	0.07 ± 0.04	0.06 ± 0.02	Pass
WW-353, 354	1/19/2005	Gr. Beta	8.37 ± 1.21	10.28 ± 1.34	9.32 ± 0.90	Pass
SO-383, 384	1/19/2005	H-3	453.50 ± 107.20	417.90 ± 106.00	435.70 ± 75.38	Pass
LW-431, 432	1/27/2005	Gr. Beta	2.45 ± 0.54	2.20 ± 0.54	2.33 ± 0.38	Pass
MI-486, 487	2/1/2005	K-40	1319.40 ± 163.60	1177.20 ± 179.70	1248.30 ± 121.51	Pass
SW-511, 512	2/1/2005	I-131	0.37 ± 0.22	0.44 ± 0.23	0.40 ± 0.16	Pass
TD-628, 629	2/1/2005	H-3	489663 ± 1918	491225 ± 1915	490444 ± 1355	Pass
DW-538, 539	2/3/2005	Gr. Beta	3.93 ± 1.18	3.62 ± 1.10	3.78 ± 0.81	Pass
MI-564, 565	2/8/2005	· K-40	1316.20 ± 171.10	1292.60 ± 154.40	1304.40 ± 115.23	Pass
DW-50134, 5	2/11/2005	Gr. Beta	18.41 ± 0.98	16.76 ± 0.98	17.59 ± 0.69	Pass
SWU-893, 894	2/22/2005	Gr. Beta	4.00 ± 0.96	4.20 ± 0.72	4.10 ± 0.60	Pass
SW-925, 926	2/25/2005	Gr. Beta	5.97 ± 1.51	6.14 ± 1.55	6.06 ± 1.08	Pass
SW-950, 951	3/1/2005	Gr. Beta	0.92 ± 0.27	1.21 ± 0.27	1.07 ± 0.19	Pass
SW-950, 951	3/1/2005	Gr, Beta	2.06 ± 0.40	2.29 ± 0.44	2.18 ± 0.30	Pass
SW-973, 974	3/1/2005	I-131	1.08 ± 0.19	0.92 ± 0.18	1.00 ± 0.13	Pass
DW-50248, 9	3/16/2005	Gr. Alpha	5.27 ± 1.06	4.17 ± 0.90	4.72 ± 0.70	Pass
DW-1264, 1:265	3/19/2005	I-131	0.54 ± 0.21	0.73 ± 0.20	0.63 ± 0.15	Pass
AP-1955, 1956	3/28/2005	Be-7	0.071 ± 0.009	0.071 ± 0.009	0.071 ± 0.006	Pass
AP-1890, 1891	3/29/2005	Be-7	0.060 ± 0.013	0.069 ± 0.013	0.065 ± 0.009	Pass
AP-2025, 2026	3/29/2005	Be-7	0.063 ± 0.012	0.071 ± 0.011	0.067 ± 0.008	Pass
MI-1346, 1347	3/30/2005	K-40	1252.80 ± 120.50	1334.10 ± 106.60	1293.45 ± 80.44	Pass
AP-2048, 2049	3/30/2005	Be-7	0.075 ± 0.018	0.071 ± 0.015	0.073 ± 0.012	Pass
AP-2081, 2082	3/30/2005	Be-7	0.073 ± 0.016	0.061 ± 0.018	0.067 ± 0.012	Pass
SWU-1521, 1522	3/31/2005	Gr. Beta	2.83 ± 1.16	3.46 ± 1.23	3.14 ± 0.85	Pass
WW-1738, 1739	4/5/2005	Gr. Beta	11.44 ± 1.17	11.14 ± 1.62	11.29 ± 1.00	Pass
SW-1857, 1858	4/13/2005	Gr. Beta	7.04 ± 1.71	9.96 ± 1.65	8.50 ± 1.19	Pass
LW-1911, 1912	4/14/2005	Gr. Beta	2.50 ± 0.63	3.23 ± 0.67	2.86 ± 0.46	Pass
F-1976, 197?	4/18/2005	K-40	3.09 ± 0.60	3.33 ± 0.40	3.21 ± 0.36	Pass
MI-2111, 2112	4/26/2005	K-40	1291.50 ± 177.90	1323.70 ± 108.80	1307.60 ± 104.27	Pass
SWU-2158, 2159	4/26/2005	Gr. Beta	3.69 ± 0.74	3.54 ± 0.66	3.62 ± 0.50	Pass
DW-2349, 2350	4/29/2005	1-131	0.58 ± 0.27	0.49 ± 0.27	0.53 ± 0.19	Pass
SO-2305, 2306	5/2/2005	Cs-137	0.11 ± 0.05	0.11 ± 0.04	0.11 ± 0.03	Pass
SO-2305, 2306	5/2/2005	Gr. Alpha	7.55 ± 2.88	12.41 ± 3.38	9.98 ± 2.22	Pass
SO-2305, 2306	5/2/2005	Gr. Beta	28.74 ± 2.57	28.17 ± 2.52	28.46 ± 1.80	Pass
SO-2305, 2306	5/2/2005	K-40	21.51 ± 1.22	21.42 ± 1.24	21.47 ± 0.87	Pass
SO-2305, 2306	5/2/2005	Sr-90	32.90 ± 9.90	29.60 ± 13.90	31.25 ± 8.53	Pass
MI-2260, 2261	5/3/2005	K-40	1028.10 ± 99.36	1206.70 ± 118.50	1117.40 ± 77.32	Pass
F-2630, 2631	5/5/2005	K-40	3.08 ± 0.46	3.04 ± 0.51	3.06 ± 0.34	Pass
UT 0500 0500	E1401000E	Cr Alaba	0.06 ± 0.03	0.07 ± 0.04	0.07 ± 0.03	Door

۰. ^د.

.

A5-1

)				Concentration (pCi/L) ^a			
						Averaged	
	Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
	VE-2502, 2503	5/10/2005	Gr. Beta	3.81 ± 0.10	3.86 ± 0.10	3.83 ± 0.07	Pass
	VE-2502, 2503	5/10/2005	K-40	3.79 ± 0.40	4.30 ± 0.59	4.04 ± 0.36	Pass
	G-2546, 2547	5/11/2005	Be-7	0.81 ± 0.39	1.25 ± 0.38	1.03 ± 0.27	Pass
	G-2546, 2547	5/11/2005	K-40	9.43 ± 1.00	7.96 ± 0.85	8.70 ± 0.66	Pass
	SS-2787, 2788	5/18/2005	Cs-137	0.13 ± 0.04	0.14 ± 0.05	0.13 ± 0.03	Pass
	SS-2787, 2788	5/18/2005	K-40	12.44 ± 0.76	13.33 ± 0.83	12.88 ± 0.56	Pass
	SO-3056, 3057	5/19/2005	Cs-137	0.18 ± 0.04	0.17 ± 0.01	0.18 ± 0.02	Pass
	SO-3056, 3057 b	5/19/2005	K-40	20.06 ± 1.10	21.73 ± 0.36	20.90 ± 0.58	Fail
	SS-3175, 3176	5/23/2005	K-40	6.06 ± 0.44	5.96 ± 0.61	6.01 ± 0.38	Pass
	SO-2865, 2866	5/25/2005	Cs-137	0.18 ± 0.04	0.18 ± 0.03	0.18 ± 0.02	Pass
	SO-2865, 2866	5/25/2005	Gr. Beta	32.95 ± 2.48	33.88 ± 2.36	33.41 ± 1.71	Pass
	SO-2865, 2866	5/25/2005	K-40	21.93 ± 0.97	22.32 ± 0.98	22.13 ± 0.69	Pass
	DW-2935, 2936	5/27/2005	1-131	0.51 ± 0.34	0.56 ± 0.30	0.53 ± 0.23	Pass
	SWU-3103, 3104	6/1/2005	Gr. Beta	3.29 ± 0.49	3.75 ± 0.66	3.52 ± 0.41	Pass
	G-2958, 2959	6/1/2005	Be-7	1.06 ± 0.40	1.21 ± 0.28	1.14 ± 0.24	Pass
	G-2958, 2959 ^b	6/1/2005	Gr. Beta	8.06 ± 0.07	7.79 ± 0.07	7.93 ± 0.05	Fail
	G-2958, 2959	6/1/2005	K-40	5.93 ± 0.73	6.05 ± 0.28	5.99 ± 0.39	Pass
	BS-4089, 4C90	6/3/2005	Co-60	0.11 ± 0.02	0.10 ± 0.02	0.11 ± 0.02	Pass
	BS-4089, 4C90	6/3/2005	Cs-137	0.60 ± 0.05	0.62 ± 0.05	0.61 ± 0.04	Pass
	DW-50527, 3	6/8/2005	Gr. Alpha	11.58 ± 1.31	13.52 ± 1.43	12.55 ± 0.97	Pass
	VE-3278, 3279	6/13/2005	K-40	6.34 ± 0.59	7.29 ± 0.68	6.81 ± 0.45	Pass
	MI-3299, 3300	6/15/2005	K-40	1215.40 ± 110.20	1250.70 ± 106.70	1233.05 ± 76.70	Pass
	BS-3348, 3349	6/17/2005	Co-60	0.20 ± 0.04	0.22 ± 0.04	0.21 ± 0.03	Pass
	BS-3348, 3349	6/17/2005	Cs-137	2.59 ± 0.10	2.51 ± 0.07	2.55 ± 0.06	Pass
	BS-3348, 3349	6/17/2005	K-40	11.57 ± 0.81	11.82 ± 0.76	11.69 ± 0.56	Pass
	DW-3486, 3487	6/28/2005	Gr. Beta	0.97 ± 0.54	1.67 ± 0.58	1.32 ± 0.40	Pass
	SWT-3631, 3632	6/28/2005	Gr. Beta	2.12 ± 0.53	1.62 ± 0.56	1.87 ± 0.39	Pass
	W-3507, 3508	6/29/2005	H-3	38717 ± 382	38017 ± 535	38367 ± 329	Pass
	VE-3555, 3556	6/29/2005	Gr. Beta	7.53 ± 0.18	7.56 ± 0.18	7.55 ± 0.13	Pass
	VE-3555, 3556	6/29/2005	K-40	5.70 ± 0.52	5.64 ± 0.53	5.67 ± 0.37	Pass
	AP-3781, 3782	6/29/2005	Be-7	0.09 ± 0.02	0.08 ± 0.02	0.09 ± 0.01	Pass
	LW-3610, 3611	6/30/2005	Gr. Beta	1.37 ± 0.35	1.40 ± 0.36	1.39 ± 0.25	Pass
	SW-3760, 3761	6/30/2005	Gr. Beta	9.70 ± 1.63	9.77 ± 1.61	9.73 ± 1.15	Pass
	E-3654, 3655	7/5/2005	Gr. Beta	1.76 ± 0.07	1.69 ± 0.07	1.72 ± 0.05	Pass
	E-3654, 3655	7/5/2005	K-40	1.49 ± 0.25	1.05 ± 0.21	1.27 ± 0.16	Pass
	MI-3676, 3677	7/5/2005	K-40	1383.90 ± 116.20	1428.20 ± 125.40	1406.05 ± 85.48	Pass
	DW-3739, 3740	7/5/2005	I-131	1.93 ± 0.24	2.18 ± 0.23	2.05 ± 0.17	Pass
	W-3808, 3809	7/6/2005	H-3	4189.61 ± 196.68	4438.33 ± 201.39	4313.97 ± 140.75	Pass
	DW-3938, 3939	7/8/2005	I-131	1.11 ± 0.30	1.26 ± 0.31	1.18 ± 0.22	Pass
	VE-3896, 3897	7/12/2005	K-40	3.44 ± 0.62	3.60 ± 0.36	3.52 ± 0.36	Pass
	MI-3963, 3964	7/13/2005	K-40	1438.70 ± 102.80	1351.80 ± 100.80	1395.25 ± 71.99	Pass
	DW-4068, 4069	7/15/2005	I-131	0.64 ± 0.27	0.91 ± 0.28	0.78 ± 0.20	Pass
	-						

			······	Concentration (pCi/L) ^a	
				,,,.	Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
VE-4290, 4291	7/26/2005	Gr. Alpha	0.11 ± 0.04	0.05 ± 0.03	0.08 ± 0.03	Pass
VE-4290, 4291	7/26/2005	Gr. Beta	4.55 ± 0.13	4.69 ± 0.14	4.62 ± 0.09	Pass
SWU-4311, 431	2 7/26/2005	Gr. Beta	2.62 ± 0.64	1.67 ± 0.37	2.15 ± 0.37	Pass
SWU-4311, 431	2 7/26/2005	H-3	192.30 ± 92.90	304.60 ± 97.40	248.45 ± 67.30	Pass
G-4383, 4334	8/1/2005	Be-7	2.06 ± 0.49	1.76 ± 0.29	1.91 ± 0.28	Pass
G-4383, 4334	8/1/2005	Gr. Beta	8.76 ± 0.22	8.40 ± 0.20	8.58 ± 0.15	Pass
G-4383, 4334	8/1/2005	K-40	6.74 ± 0.64	6.88 ± 0.92	6.81 ± 0.56	Pass
MI-4425, 4426	8/1/2005	K-40	1358.10 ± 169.20	1267.90 ± 164.40	1313.00 ± 117.96	Pass
TD-4446, 4447	8/1/2005	H-3	563.00 ± 252.00	529.00 ± 251.00	546.00 ± 177.84	Pass
SL-4473, 4474	8/4/2005	Gr. Beta	5.44 ± 0.48	4.57 ± 0.42	5.00 ± 0.32	Pass
SL-4473, 4474	8/4/2005	K-40	2.91 ± 0.83	2.74 ± 0.54	2.82 ± 0.49	Pass
VE-4532, 4533	8/5/2005	Gr. Beta	31.20 ± 1.20	31.70 ± 1.20	31.45 ± 0.85	Pass
VE-4618, 4619	8/9/2005	Gr. Alpha	0.09 ± 0.05	0.09 ± 0.04	0.09 ± 0.03	Pass
VE-4618, 4619	8/9/2005	Gr. Beta	4.60 ± 0.13	4.54 ± 0.12	4.57 ± 0.09	Pass
VE-4618, 4619	8/9/2005	K-40	4.19 ± 0.46	4.34 ± 0.47	4.27 ± 0.33	Pass
F-4639, 4640	8/11/2005	Cs-137	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.02	Pass
F-4639, 4640	8/11/2005	Gr. Beta	3.33 ± 0.11	3.37 ± 0.10	3.35 ± 0.07	Pass
F-4639, 4640	8/11/2005	K-40	2.62 ± 0.57	2.58 ± 0.59	2.60 ± 0.41	Pass
DW-4730, 4731	8/12/2005	1-131	0.82 ± 0.23	0.83 ± 0.25	0.83 ± 0.17	Pass
MI-4855, 4856	8/28/2005	K-40	1341.50 ± 107.70	1340.00 ± 114.70	1340.75 ± 78.67	Pass
MI-4855, 4856	8/28/2005	Sr-90	0.77 ± 0.37	0.87 ± 0.37	0.82 ± 0.26	Pass
MI-4945, 4946	8/31/2005	K-40	1388.90 ± 158.90	1307.50 ± 165.20	1348.20 ± 114.61	Pass
MI-4945, 4946	8/31/2005	Sr-90	0.67 ± 0.34	0.82 ± 0.36	0.75 ± 0.25	Pass
TD-4921, 4922	9/1/2005	H-3	5737.00 ± 266.00	5860.00 ± 269.00	5798.50 ± 189.15	Pass
VE-4900, 4901	9/2/2005	Gr. Beta	3.40 ± 0.06	3.51 ± 0.06	3.45 ± 0.04	Pass
VE-4900, 4901	9/2/2005	K-40	2.15 ± 0.27	2.27 ± 0.24	2.21 ± 0.18	Pass
DW-50769, 50770	9/2/2005	Gr. Alpha	6.17 ± 1.42	6.08 ± 1.46	6.13 ± 1.02	Pass
VE-4990, 4991	9/6/2005	K-40	18.81 ± 1.12	19.52 ± 0.86	19.17 ± 0.71	Pass
MI-5011, 5012	9/8/2005	K-40	1584.00 ± 194.00	1707.60 ± 173.00	1645.80 ± 129.97	Pass
VE-5119, 5120	9/12/2005	Gr. Alpha	0.10 ± 0.06	0.09 ± 0.05	0.10 ± 0.04	Pass
VE-5119, 5120	9/12/2005	Gr. Beta	6.05 ± 0.18	5.92 ± 0.17	5.98 ± 0.12	Pass
VE-5119, 5120	9/12/2005	K-40	4.61 ± 0.46	4.74 ± 0.69	4.68 ± 0.41	Pass
LW-5361, 5362	9/12/2005	Gr. Beta	1.09 ± 0.33	1.18 ± 0.34	1.13 ± 0.24	Pass
SW-5098, 5099	9/13/2005	I-131	0.44 ± 0.22	0.31 ± 0.20	0.38 ± 0.15	Pass
LW-5178, 5179	9/14/2005	Gr. Beta	2.92 ± 0.56	2.95 ± 0.59	2.93 ± 0.41	Pass
DW-5239, 5240	9/16/2005	I-131	0.45 ± 0.27	0.55 ± 0.29	0.50 ± 0.20	Pass
CF-5432, 5433	9/19/2005	Be-7	0.91 ± 0.40	0.64 ± 0.30	0.78 ± 0.25	Pass
CF-5432, 5433	9/19/2005	K-40	1.43 ± 0.34	1.38 ± 0.43	1.41 ± 0.27	Pass
MI-5292, 5293	9/21/2005	K-40	1228.80 ± 78.13	1297.00 ± 81.03	1262.90 ± 56.28	Pass
BS-5340, 5341	9/23/2005	Be-7	1286.10 ± 550.80	1222.90 ± 394.40	1254.50 ± 338.72	Pass
BS-5340, 5341	9/23/2005	Cs-137	726.97 ± 76.24	677.49 ± 70.03	702.23 ± 51.76	Pass

H)

A5-3

		•		Concentration (pCi/L) ^a	
				V	Averaged	<u>_</u>
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
BS-5340, 5341	9/23/2005	K-40	12404 ± 1154	13033 ± 983	12719 ± 758	Pass
DW-5382, 5383	9/23/2005	I-131	0.79 ± 0.31	0.53 ± 0.31	0.66 ± 0.22	Pass
MI-5405, 5406	9/27/2005	K-40	1324.80 ± 112.20	1366.80 ± 99.44	1345.80 ± 74.96	Pass
AP-5769, 5770	9/27/2005	Be-7	0.08 ± 0.01	0.09 ± 0.02	0.08 ± 0.01	Pass
AP-5983, 5984	9/27/2005	Be-7	0.08 ± 0.01	0.08 ± 0.01	0.08 ± 0.01	Pass
AP-5878, 5879	9/29/2005	Be-7	0.06 ± 0.01	0.07 ± 0.01	0.07 ± 0.01	Pass
G-5526, 5527	10/3/2005	Be-7	4.03 ± 0.62	4.07 ± 0.80	4.05 ± 0.51	Pass
G-5526, 5527	10/3/2005	Gr. Beta	8.10 ± 0.30	8.80 ± 0.40	8.41 ± 0.24	Pass
G-5526, 5527	10/3/2005	K-40	4.93 ± 0.67	6.00 ± 0.72	5.47 ± 0.49	Pass
VE-5721, 5722	10/10/2005	Gr. Alpha	0.07 ± 0.05	0.08 ± 0.06	0.08 ± 0.04	Pass
VE-5721, 5722	10/10/2005	Gr. Beta	5.09 ± 0.15	5.00 ± 0.16	5.05 ± 0.11	Pass
VE-5721, 5722	10/10/2005	K-40	4.27 ± 0.43	4.20 ± 0.34	4.23 ± 0.27	Pass
CF-5695, 5696	10/11/2005	Be-7	2.70 ± 0.37	2.80 ± 0.34	2.75 ± 0.25	Pass
CF-5695, 5696	10/11/2005	K-40	11.79 ± 0.86	13.11 ± 0.68	12.45 ± 0.55	Pass
LW-6129, 6130	10/11/2005	Gr. Beta	1.34 ± 0.25	1.85 ± 0.29	1.59 ± 0.19	Pass
LW-6129, 6130	10/11/2005	H-3	304.35 ± 95.31	369.23 ± 97.88	336.79 ± 68.31	Pass
DW-50844, 5	10/11/2005	Gr. Beta	5.30 ± 1.50	4.20 ± 1.40	4.75 ± 1.03	Pass
LW-5748, 5749 °	10/12/2005	Gr. Beta	1.09 ± 0.25	1.89 ± 0.28	1.49 ± 0.19	Fail
AP-6485, 6486	10/20/2005	Be-7	0.10 ± 0.03	0.09 ± 0.03	0.09 ± 0.02	Pass
SWU-6156, 6157	10/25/2005	Gr. Beta	4.69 ± 1.34	4.18 ± 1.34	4.44 ± 0.95	Pass
VE-6186, 6187	10/26/2005	K-40	2.90 ± 0.49	2.83 ± 0.51	2.87 ± 0.35	Pass
LW-6203, 6204	10/27/2005	Gr. Beta	2.92 ± 0.62	3.09 ± 0.66	3.01 ± 0.45	Pass
SO-6270, 6271	10/28/2005	Cs-137	0.33 ± 0.03	0.34 ± 0.04	0.33 ± 0.03	Pass
SO-6270, 6271	10/28/2005	Gr. Beta	26.85 ± 2.78	22.25 ± 2.41	24.55 ± 1.84	Pass
SO-6270, 6271	10/28/2005	K-40	13.67 ± 0.74	14.02 ± 0.76	13.85 ± 0.53	Pass
TD-6320, 6321	11/1/2005	H-3	444202 ± 1770	446633 ± 1775	445418 ± 1253	Pass
SO-6605, 6606	11/11/2005	Gr. Beta	18.22 ± 2.23	18.47 ± 2.22	18.35 ± 1.57	Pass
CF-6509, 6510	11/14/2005	K-40	0.85 ± 0.14	0.99 ± 0.22	0.92 ± 0.13	Pass
SW-6638, 6639	11/22/2005	I-131	0.95 ± 0.35	0.67 ± 0.31	0.81 ± 0.23	Pass
SO-6887, 6888	11/22/2005	Gr. Alpha	6.80 ± 2.92	10.27 ± 3.26	8.53 ± 2.19	Pass
SO-6887, 6388	11/22/2005	Gr. Beta	19.27 ± 2.16	18.43 ± 2.21	18.85 ± 1.54	Pass
SO-6887, 6388	11/22/2005	K-40	14.29 ± 1.11	13.78 ± 0.78	14.03 ± 0.68	Pass
SWT-6721, 6722	11/29/2005	Gr. Beta	0.98 ± 0.31	0.87 ± 0.31	0.93 ± 0.22	Pass
VE-6775, 6776	11/29/2005	Gr. Beta	12.75 ± 0.28	13.16 ± 0.21	12.96 ± 0.18	Pass
LW-6743, 6744	11/30/2005	Gr. Beta	3.19 ± 0.47	2.50 ± 0.44	2.85 ± 0.32	Pass
DW-51023, 4	12/2/2005	Gr. Alpha	0.55 ± 1.40	2.21 ± 1.31	1.38 ± 0.96	Pass
SWT-7282, 7283	12/27/2005	Gr. Beta	1.62 ± 0.37	1.85 ± 0.38	1.74 ± 0.27	Pass

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

* Results are reported in units of pCi/L, except for air filters (pCi/Filter), food products, vegetation, soil, sediment (pCi/g).

^b 600 minute count time or longer, resulting in lower error.

^c Recount of W-5748, 2.38 \pm 0.85 pCi/L Averaged result; 2.14 \pm 0.45 pCi/L

·	<u></u>					
				Known	Control	a
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
STW-1045	01/01/05	Gr Alpha	0 45 + 0 10	0.53	0.00 - 1.05	Page
STW-1045	01/01/05	Gr. Beta	1 90 + 0 10	1 67	0.84 - 2.51	Pass
3104-1045	01/01/05	Gr. Dela	1.50 ± 0.10	1.07	0.04 - 2.01	1005
STW-1(146	01/01/05	Am-241	1.62 ± 0.12	1.72	1.20 - 2.24	Pass
STW-1(46	01/01/05	Co-57	239.40 ± 1.20	227.00	158.90 - 295.10	Pass
STW-1(46	01/01/05	Co-60	248.70 ± 1.00	251.00	175.70 - 326.30	Pass
STW-1(46	01/01/05	Cs-134	115.50 ± 1.80	127.00	88.90 - 165.10	Pass
STW-1046	01/01/05	Cs-137	328.50 ± 1.70	332.00	232.40 - 431.60	Pass
STW-1046	01/01/05	Fe-55	64.90 ± 7.00	75.90	53.13 - 98.67	Pass
STW-1046	01/01/05	Н-З	304.00 ± 9.70	280.00	196.00 - 364.00	Pass
STW-1046	01/01/05	Mn-54	334.80 ± 1.90	331.00	231.70 - 430.30	Pass
STW-1(46	01/01/05	Ni-63	7.10 ± 1.60	9.00	0.00 - 20.00	Pass
STW-1(46	01/01/05	Pu-238	0.01 ± 0.02	0.02	0.00 - 1.00	Pass
STW-1046	01/01/05	Pu-239/40	2.50 ± 0.14	2.40	1.68 - 3.12	Pass
STW-1046	01/01/05	Sr-90	0.70 ± 0.80	0.00	0.00 - 5.00	Pass
STW-1046	01/01/05	Tc-99	43.20 ± 1.40	42.90	30.03 - 55.77	Pass
STW-1046	01/01/05	U-233/4	3.31 ± 0.20	3.24	2.27 - 4.21	Pass
STW-1046	01/01/05	U-238	3.38 ± 0.20	3.33	2.33 - 4.33	Pass
STW-1046	01/01/05	Zn-65	538.40 ± 3.80	496.00	347.20 - 644.80	Pass
						_
STVE-1047	01/01/05	Co-57	10.60 ± 0.20	9.88	6.92 - 12.84	Pass
STVE-1047	01/01/05	Co-60	3.00 ± 0.20	3.15	2.21 - 4.10	Pass
STVE-1047	01/01/05	Cs-134	4.80 ± 0.40	5.00	3.50 - 6.50	Pass
STVE-1047	01/01/05	Cs-137	4.10 ± 0.30	4.11	2.88 - 5.34	Pass
STVE-1047	01/01/05	Mn-54	5.10 ± 0.30	5.18	3.63 - 6.73	Pass
STVE-1047	01/01/05	Zn-65	6.20 ± 0.50	6.29	4.40 - 8.18	Pass
STSO-1048	01/01/05	Am-241	96.60 ± 10.00	109.00	76.30 - 141.70	Pass
STSO-1048	01/01/05	Co-57	264.00 ± 2.00	242.00	169.40 - 314.60	Pass
STSO-1048	01/01/05	Co-60	226.50 ± 2.20	212.00	148.40 - 275.60	Pass
STSO-1048	01/01/05	Cs-134	760.60 ± 3.70	759.00	531.30 - 986.70	Pass
STSO-1048	01/01/05	Cs-137	336.20 ± 3.60	315.00	220.50 - 409.50	Pass
STSO-1048	01/01/05	К-40	663.70 ± 18.00	604.00	422.80 - 785.20	Pass
STSO-1048	01/01/05	Mn-54	541.30 ± 3.90	485.00	339.50 - 630.50	Pass
STSO-1048	01/01/05	Ni-63	924.30 ± 17.20	1220.00	854.00 - 1586.00	Pass
STSO-1048	01/01/05	Pu-238	0.60 ± 0.80	0.48	0.00 - 1.00	Pass
STSO-1048	01/01/05	Pu-239/40	78 00 + 4 80	89.50	62.65 - 116.35	Pass
STSO-1048	01/01/05	Sr-90	514.60 ± 18.70	640.00	448.00 - 832.00	Pass
STSO-1048	01/01/05	11-233/4	47.90 + 4.00	62.50	43.75 - 81.25	Pass
STSO-1048	01/01/05	11-238	226.30 + 8.60	249.00	174.30 - 323.70	Pass
STSO_1040	01/01/05	7n-65	851 30 + 7 30	810.00	567.00 - 1053.00	Pass
0100-1040	01/01/05	£11-00	001.00 ± 1.00	010.00		, 000
STAP-1050	01/01/05	Gr. Alpha	0.11 ± 0.03	0.23	0.00 - 0.46	Pass
STAP-1050	01/01/05	Gr. Beta	0.38 ± 0.05	0.30	0.15 - 0.45	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)*.

D

•			Conce	entration ^b	- <u></u>	, <u></u> -,
				Known	Control	
Lab Ccde ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
STAP-1049	01/01/05	Am-241	0.10 ± 0.04	0.10	0.07 - 0.13	Pass
STAP-1049	01/01/05	Co-57	4.76 ± 0.64	4.92	3.44 - 6.40	Pass
STAP-1049	01/01/05	Co-60	2.84 ± 0.22	3.03	2.12 - 3.94	Pass
STAP-1049	01/01/05	Cs-134	3.54 ± 0.37	3.51	2.46 - 4.56	Pass
STAP-1049	01/01/05	Cs-137	2.20 ± 0.27	2.26	1.58 - 2.94	Pass
STAP-1049	01/01/05	Mn-54	3.15 ± 0.21	3.33	2.33 - 4.33	Pass
STAP-1049	01/01/05	Pu-238	0.16 ± 0.04	0.20	0.14 - 0.25	Pass
STAP-1049	01/01/05	Pu-239/40	0.17 ± 0.02	0.17	0.14 - 0.25	Pass
STAP-1049°	01/01/05	Sr-90	2.24 ± 0.34	1.35	0.95 - 1.76	Fail
STAP-1049	01/01/05	U-233/4	0.34 ± 0.02	0.34	0.24 - 0.44	Pass
STAP-1049	01/01/05	U-238	0.35 ± 0.02	0.35	0.25 - 0.46	Pass
STAP-1049	01/01/05	Zn-65	3.12 ± 0.15	3.14	2.20 - 4.08	Pass
STW-1061	07/01/05	Am-241	2.21 ± 0.13	2.23	1.56 - 2.90	Pass
STW-1061	07/01/05	Co-57	293.20 ± 7.30	272.00	190.40 - 353.60	Pass
STW-1061	07/01/05	Co-60	275.70 ± 1.30	261.00	182.70 - 339.30	Pass
STW-1061	07/01/05	Cs-134	171.80 ± 4.00	167.00	116.90 - 217.10	Pass
STW-1061	07/01/05	Cs-137	342.10 ± 2.20	333.00	233.10 - 432.90	Pass
STW-1061	07/01/05	Fe-55	167.80 ± 9.30	196.00	137.20 - 254.80	Pass
STW-1061	07/01/05	H-3	514.20 ± 12.60	527.00	368.90 - 685.10	Pass
STW-1061	07/01/05	Mn-54	437.00 ± 2.50	418.00	292.60 - 543.40	Pass
STW-1061	07/01/05	Ni-63	105.10 ± 3.60	100.00	70.00 - 130.00	Pass
STW-1061	07/01/05	Pu-238	1.64 ± 0.12	1.91	1.34 - 2.48	Pass
STW-1061	07/01/05	Pu-239/40	2.32 ± 0.13	2.75	1.93 - 3.58	Pass
STW-1061	07/01/05	Sr-90	9.20 ± 1.30	8.98	6.29 - 11.67	Pass
STW-1061	07/01/05	Tc-99	72.30 ± 2.30	66.50	46.55 - 86.45	Pass
STW-1061	07/01/05	U-233/4	4.11 ± 0.18	4.10	2.87 - 5.33	Pass
STW-1061	07/01/05	U-238	4.14 ± 0.18	4.26	2.98 - 5.54	Pass
STW-1061	07/01/05	Zn-65	364.60 ± 4.90	330.00	231.00 - 429.00	Pass
STW-1062	07/01/05	Gr. Alpha	0.57 ± 0.05	0.79	0.21 - 1.38	Pass
STW-1062	07/01/05	Gr. Beta	1.36 ± 0.05	1.35	0.85 - 1.92	Pass .
STSO-1063 f	07/01/05	Am-241	48.40 ± 3.90	81.10	56.77 - 105.43	Fail
STSO-1063	07/01/05	Co-57	608.30 ± 2.80	524.00	366.80 - 681.20	Pass
STSO-1063	07/01/05	Co-60	322.70 ± 2.40	287.00	200.90 - 373.10	Pass
STSO-1063	07/01/05	Cs-134	632.10 ± 5.20	568.00	397.60 - 738.40	Pass
STSO-1063	07/01/05	Cs-137	512.40 ± 4.20	439.00	307.30 - 570.70	Pass
STSO-1063	07/01/05	K-40	720.50 ± 19.00	604.00	422.80 - 785.20	Pass
STSO-1063	07/01/05	Mn-54	516.80 ± 5.10	439.00	307.30 - 570.70	Pass
STSO-1063	07/01/05	Ni-63	366.50 ± 13.30	445.00	311.50 - 578.50	Pass
STSO-1063	07/01/05	Pu-238	68.80 ± 15.00	60.80	42.56 - 79.04	Pass
STSO-1063	07/01/05	Pu-239/40	0.00 ± 0.00	0.00	0.00 - 0.00	
STSO-1063	07/01/05	Sr-90	602.90 ± 17.20	757.00	529.90 - 984.10	Pass
STSO-1063	07/01/05	U-233/4	61.50 ± 1.00	52.50	36.75 - 68.25	Pass
STSO-1063	07/01/05	U-238	164.50 ± 16.70	168.00	117.60 - 218.40	Pass
STSO-1063	07/01/05	Zn-65	874.70 ± 8.40	823.00	576.10 - 1070.00	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)^a.

D

			Conce	entration ^b		
				Known	Control	
Lab Ccde ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
	07/04/05	A 044		0.00	0.40 0.00	_
STVE-1064	07/01/05	Am-241	0.18 ± 0.03	0.23	0.16 - 0.30	Pass
STVE-1064	07/01/05	Co-57	15.90 ± 0.20	13.30	9.31 - 17.29	Pass
STVE-1064	07/01/05	Co-60	4.80 ± 0.10	4.43	3.10 - 5.76	Pass
STVE-1064	07/01/05	Cs-134	4.60 ± 0.20	4.09	2.86 - 5.32	Pass
STVE-1064	07/01/05	Cs-137	5.90 ± 0.30	5.43	3.80 - 7.06	Pass
STVE-1064	07/01/05	Mn-54	7.20 ± 0.20	6.57	4.60 - 8.54	Pass
STVE-1064	07/01/05	Pu-238	0.04 ± 0.02	0.00	0.00 - 1.00	Pass
STVE-1064	07/01/05	Pu-239/40	0.13 ± 0.02	0.16	0.11 - 0.21	Pass
STVE-1064	07/01/05	Sr-90	2.80 ± 0.30	2.42	1.69 - 3.15	Pass
STVE-1064	07/01/05	U-233/4	0.28 ± 0.03	0.33	0.23 - 0.43	Pass
STVE-1064	07/01/05	U-238	0.33 ± 0.04	0.35	0.24 - 0.45	Pass
STVE-1064	07/01/05	Zn-65	11.00 ± 0.50	10.20	7.14 - 13.26	Pass
STAP-1065	07/01/05	Gr. Alpha	0.30 ± 0.04	0.48	0.00 - 0.80	Pass
STAP-1065	07/01/05	Gr. Beta	0.97 ± 0.06	0.83	0.55 - 1.22	Pass
STAP-1066	07/01/05	Am-241	0.14 ± 0.03	0.16	0.11 - 0.21	Pass
STAP-1066	07/01/05	Co-57	5.81 ± 0.17	6.20	4.34 - 8.06	Pass
STAP-1066	07/01/05	Co-60	2.79 ± 0.14	2.85	2.00 - 3.71	Pass
STAP-1066	07/01/05	Cs-134	3.67 ± 0.12	3.85	2.70 - 5.01	Pass
STAP-1066	07/01/05	Cs-137	2.93 ± 0.23	3.23	2.26 - 4.20	Pass
STAP-1066	07/01/05	Mn-54	4.11 ± 0.26	4.37	3.06 - 5.68	Pass
STAP-1066	07/01/05	Pu-238	0.11 ± 0.02	0.10	0.07 - 0.13	Pass
STAP-1066	07/01/05	Pu-239/40	0.10 ± 0.01	0.09	0.06 - 0.12	Pass
STAP-1066	07/01/05	Sr-90	2.25 ± 0.29	2.25	1.58 - 2.93	Pass
STAP-1066	07/01/05	U-233/4	0.28 ± 0.02	0.27	0.19 - 0.35	Pass
STAP-1066	07/01/05	U-238	0.28 ± 0.02	0.28	0.20 - 0.37	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP)*.

* Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

4.11 ± 0.26

STAP-1066

07/01/05

Zn-65

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation) as requested by the Department of Energy.

3.06 - 5.68

Pass

4.33

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

- ^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.
- ^e The strontium carbonate precipitates were redissolved and processed. The average of the three analyses was 1.34 j although the recovery was only 30%. The result of a new analysis was 1.56 pCi/L.
- ^f Incorrect sample weight used in calculation. Result of recalculation: 97.0 ± 7.8 Bq/kg.

<u>APPENDIX B</u>

DATA REPORTING CONVENTIONS

· ·

.

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the enc of the collection period.

2.0. Single Measurements

Each single measurement is reported as follows:

where:

x = value of the measurement;

s = 2s counting uncertainty (corresponding to the 95% confidence level).

x + s

In cases where the activity is less than the lower limit of detection L, it is reported as: <L, where L = the lower limit of detection based on 4.66s uncertainty for a background sample.

3.0. Duplicate analyses

3.1	Individual results:	For two analysis result	For two analysis results; $x_1 \pm s_1$ and $x_2 \pm s_2$				
	Reported result:	x±s; where x = (1/2) (x ₁ + x ₂) and s = (1/2) $\sqrt{s_1^2 + s_2^2}$					
3.2.	Individual results:	<l1, <l2<="" td=""><td>Reported result: <l,< td=""><td>where $L = lower of L_1 and L_2$</td></l,<></td></l1,>	Reported result: <l,< td=""><td>where $L = lower of L_1 and L_2$</td></l,<>	where $L = lower of L_1 and L_2$			
3.3.	Individual results:	x±s, <l< td=""><td>Reported result:</td><td>$x \pm s$ if $x \ge L$; <l otherwise.<="" td=""></l></td></l<>	Reported result:	$x \pm s$ if $x \ge L$; <l otherwise.<="" td=""></l>			

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements cver the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average x and standard deviation s of a set of n numbers x₁, x₂... x_n are clefined as follows:

$$\bar{x} = \frac{1}{n} \Sigma x$$
 $s = \sqrt{\frac{\Sigma (x - \bar{x})^2}{n - 1}}$

4.2 Values below the highest lower limit of detection are not included in the average.

4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.

- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the number following those to be retained is less than 5, the number is dropped, and the retained number s are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the number following those to be retained is equal to or greater than 5, the number is dropped and the last retained number is raised by 1. As an example, 11.445 is rounded off to 11.45.

APPENDIX C

SPECIAL ANALYSES

i

C-1

Big Rock Point Annual Radiological Environmental Operation Report January through December 2005

;

Enclosure E: Data Graphs

,

