The Effect of Model Conservatism on Identifying Influential Parameters

by

Sitakanta Mohanty and Razvan Nes
Center for Nuclear Waste Regulatory Analyses
Southwest Research Institute®
San Antonio, Texas, USA

Presented at the
PSAM 8 Conference
New Orleans, Louisiana

May 14-19, 2006
Outline

• Background

• Objective

• Computing Sensitivity

• Example Problems and Results

• Conclusions

• Acknowledgments
What Is Sensitivity Analysis?

• Sensitivity analysis:
 – an important component of quantitative risk assessment
 – a computational step used in any risk-informed, performance-based approach, conducted for making decisions
 – identifies and ranks influential models, parameters, and components of the model

• Sensitivity analysis results are used to derive the risk significance of various aspects of the system

• General assumption: the model is realistic (i.e. neither overly-optimistic nor overly-pessimistic)

• Conservative assumptions (i.e., underestimating the performance of the system) in modeling large and complex systems are often used
Sources of Conservatism in Models

- Analysts make simplifying assumptions because of:
 - Paucity of data
 - Complexity of the processes modeled
 - Early stage of modeling
 - Limited resources and time

- Analysts may have simplified the model without any specific attention to conservatism or realism

- In some cases what is considered to be conservative may not be truly conservative

- Simplifying assumptions may be deliberately biased toward conservatism
Complex System Models

- A multidisciplinary system model may have different degrees of conservatism in its components

- It integrates multiple abstracted conceptual and mathematical models
 - from analysts with different levels of expertise
 - analysts have subject-specific biases

- Sensitivity analysis on balanced models (neither conservative nor optimistic) can give meaningful results
Objective

- Investigate the effect of conservatism on the ranking of influential parameters
- Illustrate the effects at various levels of conservatism using simple, nonlinear, stochastic examples
Approach

• Specify uncertainty range for each parameter in the response function

• Compute sensitivity coefficients corresponding to each input parameter

• Change the range of the specific input parameter whose effect on conservatism is investigated by
 – keeping the conservative end of the distribution fixed
 – shifting the non-conservative end of the distribution toward conservative values (i.e., the mean shifts conservatively)

• Repeat the computation of sensitivity
Approach: Generation of Conservative Cases

- Direct variation of y with w
- $P(w)$ = probability distribution function for w

- Inverse variation of y with w

Diagram:

1. $(1) < (2) < (3) \
 \text{Increased Conservatism}$

2. $\Delta W_1 \
 \Delta W_2 \
 \Delta W_3$

3. $w_{\text{min}} \
 w_{\text{max}} \
 (\text{assumed realistic})$
Computation of Sensitivity

- Performance function:
 \[y = f(x_1, x_2, \ldots, x_i, \ldots, x_N; a_1, a_2, \ldots, a_M) \]

 - \(y \): model response
 - \(x_i \): parameters
 - \(a_k \): assumptions

- Normalized first-order local sensitivity of \(y \) to \(x_i \)
 \[S(y, x_i) = \frac{x_i}{y} \frac{\partial y}{\partial x_i} \]

- Partial derivative is calculated at sampled values of \(x_i \)
Computation of Sensitivity (cont’d)

• Sensitivity coefficient in a probabilistic model:

\[
S_{x_i} = \frac{1}{n} \sum_{j=1}^{n} \frac{x_{ij}}{y_j} \frac{\partial y_i}{\partial x_{ij}}
\]

\(y_j\): model response at the \(j\)-th Monte Carlo realization
\(x_{ij}\): value of \(x_i\) in the \(j\)-th realization
\(n\): number of realizations

• Analytically computed at each sampled point \(j\) in the multi-dimensional sample space
Example Problems

- Three examples: non-linear and analytic functions allowing analytical computation of sensitivity coefficients

- Example 1: a generic four-parameter function

- Example 2: radiation dose from drinking water. Model output is inversely proportional to the parameter of interest (e.g., distribution coefficient).

- Example 3: External radiation dose from a contaminated layer of soil. Model output directly proportional to the parameter of interest (e.g., layer thickness).
Example 1: Generic Function

- Non-linear function of stochastic input parameters
- Uniform distribution functions assigned to all parameters for simplicity
- Function sensitivity plotted with respect to x and w when Δw is varied
Example 1: Generic Function (cont’d)

• Sensitivity changes non-linearly with conservatism in w (Δw); x and w alternate as influential parameters

• x- and w-sensitivity are obtained with respect to variations of the conservatism in w (i.e., varying Δw)

• Sensitivity plots:

$S_x(\Delta w) :$ sensitivity of y to x with respect to Δw

$S_w(\Delta w) :$ sensitivity of y to w with respect to Δw
Example 2: Drinking Water Pathway

- Six-parameter model

 \(n_e \): effective porosity
 \(I \): infiltration rate
 \(S \): radionuclide concentration
 \(\rho \): soil density
 \(n \): total porosity
 \(K_d \): distribution coefficient

- \(S_{ne}, S_I, S_S, S_\rho, S_n, S_{Kd} \) investigated while varying conservatism in \(K_d \) (i.e., by changing the range of \(K_d \) toward conservative values)
Example 2: Drinking Water Pathway (cont’d)

- Model response varies inversely with K_d and n
- Toward the conservative end of K_d, n ranks more influential than K_d
- Toward the non-conservative end (i.e., high ΔK_d), K_d ranks as more influential than n
Example 3: External Exposure

- Three-parameter model
- Model response varies directly with d
- For conservatively biased range of d's (i.e. low Δd), S_d is 40% higher than the non-conservative (i.e., realistic) case (high Δd), i.e., the sensitivity of the output function to d clearly varies.
Conclusions

- The three examples presented illustrate that the conservatism in model parameters influences the sensitivity-based ranking of influential parameters.

- For the examples presented, depending on the level of conservatism assumed, the model output sensitivity may change non-linearly from insensitive to highly sensitive.

- Model output sensitivity changes non-linearly, with the degree of conservatism in input parameter, depending on the structure of the performance function.

- Sensitivity analyses results should be evaluated carefully in light of conservatism before being used in any resource allocation and decisions.
Acknowledgments

• The presentation was prepared to document work performed by the Center for Nuclear Waste Regulatory Analyses (CNWRA) for the Nuclear Regulatory Commission (NRC) under Contract No. NRC–02–02–012. The activities reported here were performed on behalf of the NRC Office of Nuclear Material Safety and Safeguards, Division of High-Level Waste Repository Safety.

This is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.