

Fluvial Redistribution of Contaminated Tephra: Description of an Abstracted Model

Roland Benke¹ Brittain Hill² Donald Hooper¹

International High-Level Radioactive Waste Management Conference April 30 – May 4, 2006 Las Vegas, Nevada

¹ Center for Nuclear Waste Regulatory Analyses, San Antonio, Texas ² U.S. Nuclear Regulatory Commission, Washington, DC

Outline

- Introduction
- Significance to Waste Isolation
- Disruptive Scenario
- Consequence Modeling
 - HLW Concentration Factor in Tephra
 - Fluvial Dilution Factor
 - Duration of Fluvial Redistribution
- Summary of Modeling Assumptions
- Conclusion
- Companion Paper
- Acknowledgment

Introduction

- U.S. Department of Energy (DOE) Repository Developer
- U.S. Nuclear Regulatory Commission (NRC) Regulator
- Center for Nuclear Waste Regulatory Analyses (CNWRA) — Federally Funded Research and Development Center

Δ

Introduction (cont'd)

- DOE Total System Performance Assessment (TSPA) Model
- NRC Total-system Performance Assessment (TPA) Code

5

Significance to Waste Isolation

- Risk = Probability x Consequence
- Current Risk Insights on Key Factors
 - Inhalation of Resuspended Volcanic Ash
 - Remobilization of Ash Deposits
 - Wind Vectors During an Eruption
 - Volume of Ash Produced by an Eruption

6

Disruptive Scenario

- Volcanic Conduit Intersection with Potential Repository
- Waste Package Disruption by Magma
- High-Level Waste (HLW) Incorporation into Erupting Tephra
- Direct Release into Biosphere

Disruptive Scenario (cont'd)

- Atmospheric Transport of Tephra
- Tephra Deposition within Yucca Mountain Region
- Redistribution of Deposited Tephra by Water (Fluvial) and Wind (Eolian)
- Resuspension of Contaminated Ash (Tephra < 2 mm [0.08 in])
- Inhalation of Airborne Ash

7

Consequence Modeling

- NRC TPA Code
- New Abstracted Model
 - Improve Realism
 - Reduce Uncertainty
- Fluvial Redistribution Modeling Component
 - HLW Concentration Factor in Tephra
 - Fluvial Dilution Factor
 - Duration of Fluvial Redistribution

International High-Level Radioactive Waste Management Conference May 3, 2006

8

9

HLW Concentration Factor

 Uniform Mixing of High-Level Waste in Tephra

$$c_f = \frac{m_{\text{HLW},f}}{m_{\text{ash},f}}$$

 $m_{\text{HLW},f}$ Mass of high-level waste deposited in the Fortymile Wash catchment basin from the eruption [g]

*m*_{ash,*f*} Mass of ash deposited in the Fortymile Wash catchment basin from the eruption [g]

Fluvial Dilution Factor

 Uniform Mixing of Contaminated and Clean Sediments

$$d_{f} = \frac{1}{1 + \frac{Y_{\text{sediment},f}}{Y_{\text{ash},f}}} \left(\frac{A_{\text{basin},f}}{a_{\text{ash},f}} - 1\right)$$

Y_{sediment,f} Preeruption sediment volume from the drainage basin that discharges through Fortymile Wash per unit area per discharge event [m/event]

Posteruption volume of fluvial redistributed ash at the Fortymile Wash depositional region per unit area per discharge event [m/event]

 $A_{\text{basin}f}$ Area of the drainage basin that discharges through Fortymile Wash [m²]

 $Y_{ash,f}$

Area of the Fortymile Wash catchment basin with an ash deposit from the eruption [m²]

Duration of Fluvial Redistribution

 Time to Deplete Fortymile Wash of Contaminated Tephra

$$t_{\text{duration},f} = \frac{m_{\text{ash},f}T_f}{Y_{\text{ash},f}a_{\text{ash},f}\rho_{\text{ash},f}}$$

 T_f Average time between significant flow events [yr/event] $\rho_{ash.f}$ Density of proximal ash deposit [g/m³]

International High-Level Radioactive Waste Management Conference May 3, 2006

Summary of Modeling Assumptions

- Uniform Mixing of High-Level Waste in Tephra
- Frequent Flooding Events
- Surface of Depositional Area Regularly Renewed with Fresh Fluvial Tephra Deposits
- Uniform Mixing of Contaminated and Clean Sediments
- Airborne Concentration of High-Level Waste Persists Until Fortymile Wash is Depleted of Contaminated Tephra

Conclusion

- New Abstracted Model
 - Improve Realism
 - Reduce Uncertainty
- Independent Capability to Evaluate Risk-Significant Processes
- Fluvial Redistribution Component
- Companion Paper on Process-Level Modeling

Companion Paper

Process-Level Modeling Determines Input Values for Abstracted Model Parameters

Symbol	Description
Y _{sediment,f}	Preeruption sediment volume from the drainage basin that discharges through Fortymile Wash per unit area per discharge event [m/event]
$Y_{ash,f}$	Posteruption volume of fluvial redistributed ash at the Fortymile Wash depositional region per unit area per discharge event [m/event]
A _{basinf}	Area of the drainage basin that discharges through Fortymile Wash [m ²]
$ ho_{{\sf ash},{\it f}}$	Density of proximal ash deposit [g/m ³]
T_{f}	Average time between significant flow events [yr/event]
International High-Level Radioactive Waste Management Conference May 3, 2006	

Acknowledgment

- This presentation describes work performed by the Center for Nuclear Waste Regulatory Analyses (CNWRA) for the Nuclear Regulatory Commission (NRC) under Contract No. NRC-02-02-012.
- The activities reported here were performed on behalf of the NRC Office of Nuclear Material Safety and Safeguards, Division of High-Level Waste Repository Safety.
- This presentation is an independent product of the CNWRA and does not necessarily reflect the view or regulatory position of the NRC.
- The NRC staff views expressed herein are preliminary and do not constitute a final judgment or determination of the matters addressed or acceptability of a license application for a geologic repository at Yucca Mountain.

International High-Level Radioactive Waste Management Conference May 3, 2006