Westinghouse Non-Proprietary Class 3

WCAP-16527-NP Revision 0

March 2006

# Analysis of Capsule X from FirstEnergy Nuclear Operating Company Beaver Valley Unit 2 Reactor Vessel Radiation Surveillance Program



WCAP-16527-NP, Revision 0

# Analysis of Capsule X from FirstEnergy Nuclear Operating Company Beaver Valley Unit 2 Reactor Vessel Radiation Surveillance Program

B.N. Burgos J. Conermann S.L. Anderson

March 2006

Approved: <u>(Electronically Approved\*)</u>

J.S. Carlson, Manager Primary Component Asset Management

\* Electronically Approved Records are Authenticated in the Electronic Document Management System

Westinghouse Electric Company LLC Energy Systems P.O. Box 355 Pittsburgh, PA 15230-0355

©2006 Westinghouse Electric Company LLC All Rights Reserved

#### TABLE OF CONTENTS

ł

| LIST C | OF TABLE                  | ES                                                                                                                                   | iv                |
|--------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| LIST C | F FIGUR                   | ES                                                                                                                                   | vi                |
| PREFA  | CE                        |                                                                                                                                      | ix                |
| EXECU  | UTIVE SU                  | JMMARY                                                                                                                               | x                 |
| 1      | SUMMA                     | RY OF RESULTS                                                                                                                        | 1-1               |
| 2      | INTROD                    | PUCTION                                                                                                                              | 2-1               |
| 3      | BACKG                     | ROUND                                                                                                                                | 3-1               |
| 4      | DESCRI                    | PTION OF PROGRAM                                                                                                                     | 4-1               |
| 5      | 5.1 C                     | G OF SPECIMENS FROM CAPSULE X<br>DVERVIEW<br>CHARPY V-NOTCH IMPACT TEST RESULTS                                                      | 5-1               |
|        | 5.3 T                     | TENSILE TEST RESULTS                                                                                                                 | 5-5               |
| 6      | 6.1 II<br>6.2 II<br>6.3 N | ION ANALYSIS AND NEUTRON DOSIMETRY<br>NTRODUCTION<br>DISCRETE ORDINATES ANALYSIS<br>NEUTRON DOSIMETRY<br>CALCULATIONAL UNCERTAINTIES | 6-1<br>6-2<br>6-4 |
| 7      | SURVEI                    | LLANCE CAPSULE WITHDRAWAL SCHEDULE                                                                                                   | ′7-1              |
| 8      | REFERE                    | NCES                                                                                                                                 | 3-1               |
| APPEN  | DIX A                     | VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON<br>NEUTRON DOSIMETRY MEASUREMENTS CREDIBILITY                                  |                   |
| APPEN  | DIX B                     | LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS                                                                                          |                   |
| APPEN  | DIX C                     | CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC<br>HYPERBOLIC TANGENT CURVE-FITTING METHOD                                     |                   |
| APPEN  | DIX D                     | BEAVER VALLEY UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY<br>EVALUATION                                                                  |                   |

#### LIST OF TABLES

ł

| Table 4-1  | Chemical Composition (wt %) of the Beaver Valley Unit 2 Reactor Vessel<br>Surveillance Materials (Unirradiated)4-3                                                                                                   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 4-2  | Heat Treatment History of the Beaver Valley Unit 2 Reactor Vessel Surveillance<br>Materials4-4                                                                                                                       |
| Table 5-1  | Charpy V-Notch Data for the Beaver Valley Unit 2 Intermediate Shell Plate B9004-2<br>Irradiated to a Fluence of 5.601 x $10^{19}$ n/cm <sup>2</sup> (E > 1.0 MeV)<br>(Longitudinal Orientation)                      |
| Table 5-2  | Charpy V-Notch Data for the Beaver Valley Unit 2 Intermediate Shell Plate B9004-2<br>Irradiated to a Fluence of 5.601 x $10^{19}$ n/cm <sup>2</sup> (E > 1.0 MeV)<br>(Transverse Orientation)                        |
| Table 5-3  | Charpy V-notch Data for the Beaver Valley Unit 2 Surveillance Weld Material Irradiated to a Fluence of 5.601 x $10^{19}$ n/cm <sup>2</sup> (E> 1.0 MeV)                                                              |
| Table 5-4  | Charpy V-notch Data for the Beaver Valley Unit 2 Heat Affected Zone Material Irradiated to a Fluence of 5.601 x $10^{19}$ n/cm <sup>2</sup> (E> 1.0 MeV)                                                             |
| Table 5-5  | Instrumented Charpy Impact Test Results for the Beaver Valley Unit 2 Intermediate Shell Plate B9004-2 Irradiated to a Fluence of $5.601 \times 10^{19} \text{ n/cm}^2$ (E> 1.0 MeV) (Longitudir.al Orientation) 5-10 |
| Table 5-6  | Instrumented Charpy Impact Test Results for the Beaver Valley Unit 2 Intermediate ShellPlate B9004-2 Irradiated to a Fluence of $5.601 \times 10^{19} \text{ n/cm}^2$ (E> 1.0 MeV) (TransverseOrientation) $5-11$    |
| Table 5-7  | Instrumented Charpy Impact Test Results for the Beaver Valley Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 5.601 x $10^{19}$ n/cm <sup>2</sup> (E> 1.0 MeV)                                             |
| Table 5-8  | Instrumented Charpy Impact Test Results for the Beaver Valley Unit 2 Heat Affected Zone Material Irradiated to a Fluence of $5.601 \times 10^{19} \text{ n/cm}^2$ (E> 1.0MeV)                                        |
| Table 5-9  | Effect of Irradiation to 5.601 x $10^{19}$ n/cm <sup>2</sup> (E> 1.0 MeV) on the Capsule X Toughness<br>Properties of the Beaver Valley Unit 2 Reactor Vessel Surveillance Materials                                 |
| Table 5-10 | Comparison of the Beaver Valley Unit 2 Surveillance Material 30 ft-lb Transition<br>Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide<br>1.99, Revision 2, Predictions                       |

-

| Table 5-11 | Tensile Properties of the Beaver Valley Unit 2 Capsule X Reactor Vessel<br>Surveillance Materials Irradiated to 5.601 x 10 <sup>19</sup> n/cm <sup>2</sup> (E> 1.0MeV)5-16 | 5 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Table 6-1  | Calculated Neutron Exposure Rates and Integrated Exposures At The<br>Surveillance Capsule Center6-10                                                                       | ) |
| Table 6-2  | Calculated Azimuthal Variation of Maximum Exposure Rates and Integrated<br>Exposures at the Reactor Vessel Clad/Base Metal Interface                                       | 1 |
| Table 6-3  | Relative Radial Distribution Of Neutron Fluence (E > 1.0 MeV) Within The<br>Reactor Vessel Wall                                                                            | 3 |
| Table 6-4  | Relative Radial Distribution of Iron Atom Displacements (dpa) Within The<br>Reactor Vessel Wall                                                                            | • |
| Table 6-5  | Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from<br>Beaver Valley Unit 26-19                                                                       | ) |
| Table 6-6  | Calculated Surveillance Capsule Lead Factors                                                                                                                               | ) |
| Table 7-1  | Recommended Surveillance Capsule Withdrawal Schedule7-1                                                                                                                    | l |

# LIST OF TABLES (Cont.)

#### LIST OF FIGURES

| Figure 4-1  | Arrangement of Surveillance Capsules in the Beaver Valley Unit 2 Reactor Vessel4-5                                                                      |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 4-2  | Capsule X Diagram Showing the Location of Specimens, Thermal Monitors,<br>and Dosimeters                                                                |
| Figure 5-1  | Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 2 Reactor<br>Vessel Intermediate Shell Plate B9004-2 (Longitudinal Orientation)5-17 |
| Figure 5-2  | Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 2<br>Reactor Vessel Intermediate Shell Plate B9004-2 (Longitudinal Orientation) |
| Figure 5-3  | Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 2 Reactor<br>Vessel Intermediate Shell Plate B9004-2 (Longitudinal Orientation)     |
| Figure 5-4  | Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 2 Reactor<br>Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation)       |
| Figure 5-5  | Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 2<br>Reactor Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation)   |
| Figure 5-6  | Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 2 Reactor<br>Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation)       |
| Figure 5-7  | Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 2 Reactor<br>Vessel Weld Metal                                                      |
| Figure 5-8  | Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 2<br>Reactor Vessel Weld Metal                                                  |
| Figure 5-9  | Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 2 Reactor<br>Vessel Weld Metal                                                      |
| Figure 5-10 | Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 2 Reactor<br>Vessel Heat Affected Zone Material                                     |
| Figure 5-11 | Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 2 Reactor<br>Vessel Heat Affected Zone Material                                 |
| Figure 5-12 | Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 2 Reactor<br>Vessel Heat Affected Zone Material                                     |
| Figure 5-13 | Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 2 Reactor Vessel<br>Intermediate Shell Plate B9004-2 (Longitudinal Orientation)         |

# LIST OF FIGURES (Cont.)

| Figure 5-14 | Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 2 Reactor<br>Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation) |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 5-15 | Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 2 Reactor<br>Vessel Weld Metal                                                |
| Figure 5-16 | Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 2 Reactor Vessel<br>Heat Affected Zone Material5-32                           |
| Figure 5-17 | Tensile Properties for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate<br>B9004-2 (Longitudinal Orientation)5-33                 |
| Figure 5-18 | Tensile Properties for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate<br>B9004-2 (Transverse Orientation)                       |
| Figure 5-19 | Tensile Properties for Beaver Valley Unit 2 Reactor Vessel Weld Metal5-35                                                                     |
| Figure 5-20 | Fractured Tensile Specimens from Beaver Valley Unit 2 Reactor Vessel Lower Shell<br>Plate B9004-2 (Longitudinal Orientation)                  |
| Figure 5-21 | Fractured Tensile Specimens from Beaver Valley Unit 2 Reactor Vessel Lower Shell<br>Plate B9004-2 (Transverse Orientation)                    |
| Figure 5-22 | Fractured Tensile Specimens from Beaver Valley Unit 2 Reactor Vessel Weld Metal 5-38                                                          |
| Figure 5-23 | Engineering Stress-Strain Curves for Lower Shell Plate B9004-2 Tensile<br>Specimens WL-10 and WL-11 (Longitudinal Orientation)                |
| Figure 5-24 | Engineering Stress-Strain Curves for Lower Shell Plate B9004-2 Tensile<br>Specimens WL-12 (Longitudinal Orientation)                          |
| Figure 5-25 | Engineering Stress-Strain Curves for Lower Shell Plate B9004-2 Tensile<br>Specimens WT-10 and WT-11 (Transverse Orientation)                  |
| Figure 5-26 | Engineering Stress-Strain Curves for Lower Shell Plate B9004-2 Tensile<br>Specimens WT-12 (Transverse Orientation)5-42                        |
| Figure 5-27 | Engineering Stress-Strain Curves for Weld Metal Tensile Specimens WW-10<br>and WW-11                                                          |
| Figure 5-28 | Engineering Stress-Strain Curves for Weld Metal Tensile Specimens WW-125-44                                                                   |

#### viii

# LIST OF FIGURES (Cont.)

ł

| Figure 6-1 | Beaver Valley Unit 2 r,θ Reactor Geometry at the Core Midplane |
|------------|----------------------------------------------------------------|
| Figure 6-2 | Beaver Valley Unit 2 r,z Reactor Geometry with Neutron Pad     |

#### PREFACE

This report has been technically reviewed and verified by:

Reviewer:

ł

ł

All Sections

D.M. Chapman \_(Electronically Approved\*)

\* Electronically Approved Records are Authenticated in the Electronic Document Management System

#### **EXECUTIVE SUMMARY**

The purpose of this report is to document the results of the testing of Reactor Vessel Surveillance Capsule X from Beaver Valley Unit 2. Capsule X was removed at 13.94 EFPY and post irradiation mechanical tests of the Charpy V-notch and tensile specimens were performed. A fluence evaluation utilizing the NRC approved neutron transport and dosimetry cross-section libraries was derived from the ENDF/B-VI database. Capsule X received a fluence of  $5.601 \times 10^{19} \text{ n/cm}^2$  after irradiation to 13.94 EFPY. The peak clad/base metal interface vessel fluence after 13.94 EFPY of plant operation was  $1.521 \times 10^{19} \text{ n/cm}^2$ .

This evaluation led to the following conclusions: 1) Five out of the eight measured 30 ft-lb shift in transition temperature values of the intermediate shell plate B9004-2 (longitudinal & transverse) are greater than the Regulatory Guide 1.99, Revision 2 [Ref. 1], predictions. However, the shift values are less than the two sigma allowance by Regulatory Guide 1.99, Revision 2. 2) All of the measured 30 ft-lb shifts in transition temperature values of the weld metal are less than the Regulatory Guide 1.99, Revision 2, predictions. 3) The measured percent decrease in upper shelf energy for all the surveillance materials contained in the Beaver Valley Unit 2 surveillance program are less than the Regulatory Guide 1.99, Revision 2 predictions. 4) All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (36 EFPY) as required by 10CFR50, Appendix G [Ref. 2]. 5) The Beaver Valley Unit 2 surveillance data from the intermediate shell plate B9004-2 and the surveillance weld metal were found to be credible. This evaluation can be found in Appendix D.

Lastly, a brief summary of the Charpy V-notch testing can be found in Section 1. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve fitting program.

# **1 SUMMARY OF RESULTS**

The analysis of the reactor vessel materials contained in surveillance Capsule X, the fourth capsule removed and tested from the Beaver Valley Unit 2 reactor pressure vessel, led to the following conclusions:

- The Charpy V-notch data presented in WCAP-9615, Revision 1 [Ref. 3], WCAP-12406 [Ref. 4], WCAP-14484 [Ref. 5], WCAP-15675 [Ref. 6] and STC Letter Report STD-MCE-05-36 [Ref. 7] were fitted using CVGRAPH, Version 5.0.2, which is a hyperbolic tangent curve-fitting program. Appendix C presents the CVGRAPH, Version 5.0.2, Charpy V-notch plots and the program input data.
- Capsule X received an average fast neutron fluence (E> 1.0 MeV) of 5.601 x 10<sup>19</sup> n/cm<sup>2</sup> after 13.94 effective full power years (EFPY) of plant operation.
- Irradiation of the reactor vessel intermediate shell plate B9004-2 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 133.6°F and an irradiated 50 ft-lb transition temperature of 185.3°F. This results in a 30 ft-lb transition temperature increase of 98.0°F and a 50 ft-lb transition temperature increase of 105.0°F, relative to the unirradiated values, for the longitudinal oriented specimens. See Table 5-9.
- Irradiation of the reactor vessel intermediate shell plate B9004-2 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 143.9°F and an irradiated 50 ft-lb transition temperature of 212.7°F. This results in a 30 ft-lb transition temperature increase of 104.1°F and a 50 ft-lb transition temperature increase of 121.5°F, relative to the unirradiated values, for the longitudinal oriented specimens. See Table 5-9.
- Irradiation of the weld metal (*heat number 83652*) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -16.9°F and an irradiated 50 ft-lb transition temperature of 10.0°F. This results in a 30 ft-lb transition temperature increase of 22.9 °F and a 50 ft-lb transition temperature increase of 31.7 °F relative to the unirradiated values. See Table 5-9.
- The average upper shelf energy of the intermediate shell plate B9004-2 (longitudinal orientation) resulted in an average energy decrease of 14 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 81 ft-lb for the longitudinal oriented specimens. See Table 5-9.
- The average upper shelf energy of the intermediate shell plate B9004-2 (transverse orientation) resulted in an average energy decrease of 5 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 74 ft-lb for the longitudinal oriented specimens. See Table 5-9.
- The average upper shelf energy of the weld metal Charpy specimens resulted in an average energy decrease of 6 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 133 ft-lb for the weld metal specimens. See Table 5-9.

- A comparison, as presented in Table 5-10, of the Beaver Valley Unit 2 reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision 2 [Ref. 1] predictions led to the following conclusions:
  - Five out of the eight measured 30 ft-lb shifts in transition temperature values of the intermediate shell plate B9004-2 (longitudinal & transverse) are greater than the Regulatory Guide 1.99, Revision 2, predictions. However, the shift values are less than the two sigma allowance by Regulatory Guide 1.99, Revision 2.
  - All of the measured 30 ft-lb shifts in transition temperature value of the weld metal contained in Capsule X are less than the Regulatory Guide 1.99, Revision 2, predictions.
  - The measured percent decrease in upper shelf energy for all the surveillance materials contained in the Beaver Valley Unit 2 surveillance program are less than the Regulatory Guide 1.99, Revision 2 predictions.
- All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (36 EFPY) as required by 10CFR50, Appendix G [Ref. 2].
- The calculated end-of-license (36 EFPY) neutron fluence (E> 1.0 MeV) at the core midplane for the Beaver Valley Unit 2 reactor vessel using the Regulatory Guide 1.99, Revision 2 attenuation formula (i.e., Equation #3 in the guide) are as follows:

<u>Calculated:</u> Vessel inner radius\* =  $4.113 \times 10^{19} \text{ n/cm}^2$ Vessel 1/4 thickness =  $2.572 \times 10^{19} \text{ n/cm}^2$ Vessel 3/4 thickness =  $1.006 \times 10^{18} \text{ n/cm}^2$ 

\*Clad/base metal interface. (From Table 6-2)

• The credibility evaluation of the Beaver Valley Unit 2 surveillance program is presented in Appendix D of this report. The evaluation concluded that the Beaver Valley Unit 2 surveillance results are credible.

# 2 INTRODUCTION

This report presents the results of the examination of Capsule X, the fourth capsule removed from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the FirstEnergy Nuclear Operating Company (FENOC) Beaver Valley Unit 2 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the FENOC Beaver Valley Unit 2 reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Corporation. A description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-9615, Revision 1, "Duquesne Light Company Beaver Valley Unit 2 Reactor Vessel Radiation Surveillance Program" [Ref. 3]. The surveillance program was planned to cover the 40-year design life of the reactor: pressure vessel and was based on ASTM E185-73, "Recommended Practice for Surveillance Tests on Structural Materials for Nuclear Reactors" [Ref. 8]. Capsule X was removed from the reactor after 13.94 EFPY of exposure and shipped to the Westinghouse Science and Technology Department Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

This report summarizes the testing of and the post-irradiation data obtained from surveillance Capsule X removed from the FENOC Beaver Valley Unit 2 reactor vessel and discusses the analysis of the data.

## **3 BACKGROUND**

The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low alloy, ferritic pressure vessel steels such as SA533 Grade B-1 (base material of the Beaver Valley Unit 2 reactor pressure vessel beltline) are well documented in the literature. Generally, low alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code [Ref. 9]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature ( $RT_{NDT}$ ).

 $RT_{NDT}$  is defined as the greater of either the drop weight nil-ductility transition temperature (NDTT per ASTM E-208 [Ref. 10]) or the temperature 60°F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major working direction of the plate. The  $RT_{NDT}$  of a given material is used to index that material to a reference stress intensity factor curve ( $K_{Ic}$  curve) which appears in Appendix G to the ASME Code [Ref. 9]. The  $K_{Ic}$  curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the  $K_{Ic}$  curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.

 $RT_{NDT}$  and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the Beaver Valley Unit 2 reactor vessel radiation surveillance program [Ref. 3], in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens tested. The increase in the average Charpy V-notch 30 ft-lb temperature ( $\Delta RT_{NDT}$ ) due to irradiation is added to the initial  $RT_{NDT}$ , along with a margin (M) to cover uncertainties, to adjust the  $RT_{NDT}$  (ART) for radiation embrittlement. This ART ( $RT_{NDT}$  initial + M +  $\Delta RT_{NDT}$ ) is used to index the material to the K<sub>Ic</sub> curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

# 4 DESCRIPTION OF PROGRAM

Six surveillance capsules for monitoring the effects of neutron exposure on the Beaver Valley Unit 2 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant start-up. The six capsules were positioned in the reactor vessel between the thermal shield and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core.

Capsule X was removed after 13.94 effective full power years (EFPY) of plant operation. This capsule contained Charpy V-notch impact and tensile specimens from Intermediate Shell Plate B9004-2, and weld metal made from sections of B9004-2 and the adjoining Lower Shell Plate B9005-2 (Heat No. C1408-1). The weld was fabricated using a submerged arc weld metal with 3/16-inch diameter weld wire type B-4, heat number 83642, with Linde 0091 flux, lot number 3536, and is identical to the wire/flux combination used in the original fabrication of the core region. There were also Charpy V-notch impact specimens for the heat-affected-zone which obtained from the weld-heat-affected zone. Additionally, bend bar and 1/2T compact tension test specimens were included in the capsule (Figure 4-2).

Test material obtained from the Intermediate Shell Plate B9004-2 (after thermal heat treatment and forming of the plate) were taken at least one plate thickness from the quenched edges of the plate. All test specimens were machined from the ¼ thickness location of the plate after performing a simulated post-weld stress-relieving treatment on the test material. Specimens were machined from weld metal and the heat-affected-zone (HAZ) metal of a stress-relieved weldment joining sections of the intermediate and lower shell plates. All HAZ specimens were obtained from the weld heat-affected-zone of intermediate shell plate B9004-2.

Charpy V-notch impact specimens from the intermediate shell plate B9004-2 were machined in the longitudinal (longitudinal axis of the specimen parallel to the major working direction) and transverse (longitudinal axis of the specimen perpendicular to the major working direction) orientations. The core region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Tensile specimens from the intermediate shell plate B9004-2 were machined in both the longitudinal and transverse orientations. Tensile specimens from the weld metal were oriented with the long dimension of the specimen perpendicular to the weld direction.

Capsule X contained a bend bar specimen, machined from intermediate shell plate B9004-2 with the longitudinal axis of the specimen oriented to the working direction of the plate, such that the simulated crack in the specimen would propagate in the major working direction of the plate. All bend bar specimens were fatigue pre-cracked according to ASTM E399 [Ref. 11].

The compact tension specimens from intermediate shell plate B9004-2 were machined in the transverse and longitudinal orientations, to obtain fracture toughness data both normal and parallel to the rolling direction of the plate. Compact tension test specimens from the weld metal were machined normal to the

weld direction with the notch oriented in the direction of the weld. All specimens were fatigue precracked according to ASTM E399 [Ref. 11].

The chemical composition and heat treatment of the unirradiated surveillance materials are presented in Tables 4-1 and 4-2, respectively. The chemical analysis reported in Table 4-1 was obtained from unirradiated material used in the surveillance program [Ref. 3].

Capsule X contained dosimeter wires of pure iron, copper, nickel, and aluminum-0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium shielded dosimeters of neptunium  $(NP^{237})$  and uranium  $(U^{238})$  were placed in the capsule to measure the integrated flux at specific neutron energy levels [Ref. 3].

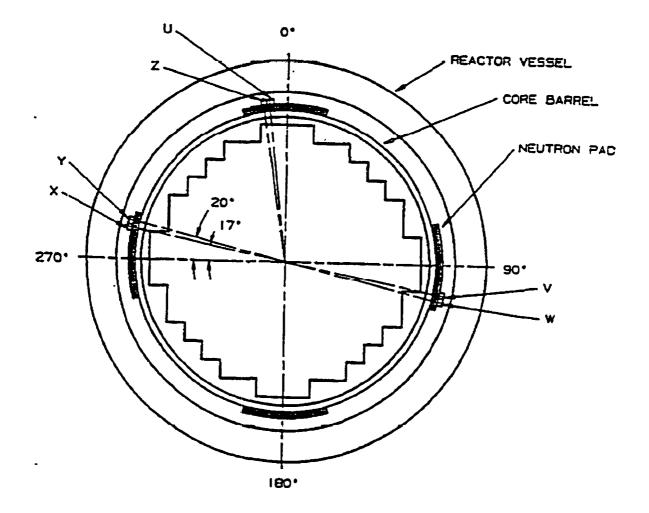
The capsule contained thermal monitors made from two low-melting-point eutectic alloys and sealed in Pyrex tubes. These thermal monitors were used to define the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are as follows:

| 2.5% Ag, 97.5% Pb            | Melting Point: 579°F (304°C) |
|------------------------------|------------------------------|
| 1.75% Ag, 0.75% Sn, 97.5% Pb | Melting Point: 590°F (310°C) |

The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule X is shown in Figure 4-2.

| Table 4-1Chemical Composition (wt%) of the Beaver<br>Valley Unit 2 Reactor Vessel Surveillance<br>Materials (Unirradiated) |                                                    |                             |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|--|--|--|--|--|
| Element                                                                                                                    | Intermediate Shell<br>Plate B9004-2 <sup>(a)</sup> | Weld Metal <sup>(a,b)</sup> |  |  |  |  |  |
| С                                                                                                                          | 0.24                                               | 0.10                        |  |  |  |  |  |
| Al                                                                                                                         | 0.047                                              | 0.001                       |  |  |  |  |  |
| S                                                                                                                          | 0.016                                              | 0.011                       |  |  |  |  |  |
| N <sub>2</sub>                                                                                                             | 0.009                                              | 0.028                       |  |  |  |  |  |
| Co                                                                                                                         | 0.009                                              | 0.007                       |  |  |  |  |  |
| As                                                                                                                         | 0.010                                              | 0.005                       |  |  |  |  |  |
| Cu                                                                                                                         | 0.05                                               | 0.08                        |  |  |  |  |  |
| W                                                                                                                          | 0.01                                               | <0.01                       |  |  |  |  |  |
| Si                                                                                                                         | 0.24                                               | 0.14                        |  |  |  |  |  |
| Sn                                                                                                                         | 0.008                                              | 0.005                       |  |  |  |  |  |
| Мо                                                                                                                         | 0.59                                               | 0.49                        |  |  |  |  |  |
| Zr                                                                                                                         | 0.002                                              | <0.001                      |  |  |  |  |  |
| Ni                                                                                                                         | 0.56                                               | 0.07                        |  |  |  |  |  |
| Р                                                                                                                          | 0.010                                              | 0.008                       |  |  |  |  |  |
| Mn                                                                                                                         | 1.32                                               | 1.17                        |  |  |  |  |  |
| В                                                                                                                          | 0.0003                                             | <0.001                      |  |  |  |  |  |
| Cr                                                                                                                         | 0.08                                               | 0.07                        |  |  |  |  |  |
| Cb                                                                                                                         | <0.01                                              | <0.01                       |  |  |  |  |  |
| v                                                                                                                          | 0.003                                              | 0.002                       |  |  |  |  |  |
| Ti                                                                                                                         | <0.01                                              | <0.01                       |  |  |  |  |  |

Notes:


ł

a. Analysis conducted by Combustion Engineering, Inc.

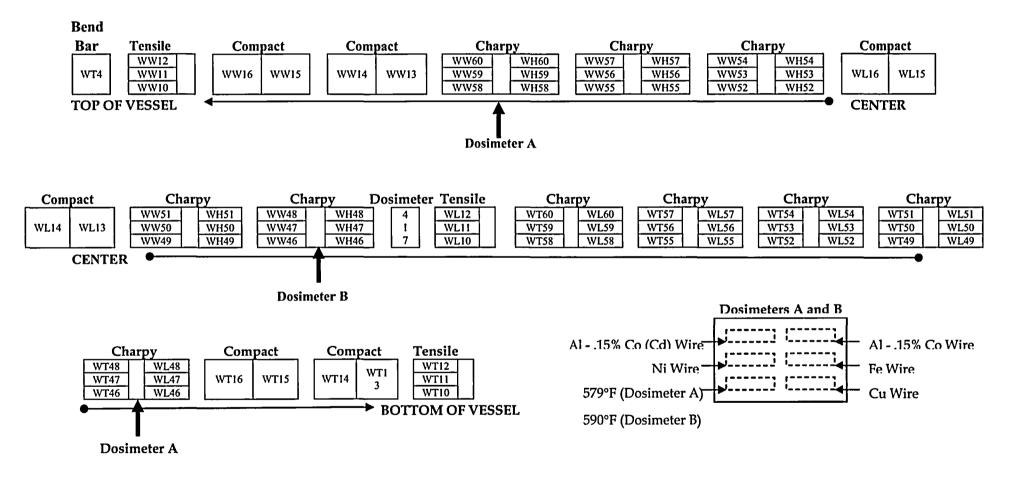
 b. The surveillance weldment is a submerged arc weld fabricated using 3/16-inch diameter weld wire type B-4, heat number 83642, with a Linde 0091 flux, lot number 3536. This weld wire/flux combination is identical to that used for the intermediate and lower shell vertical seams and the girth weld between the intermediate and lower shell plates.

| Table 4-2Heat Treatment History of the Beaver Valley Unit 2 Reactor Vessel Surveillance<br>Materials [Ref. 3] |                             |           |                |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|----------------|--|--|--|--|
| Material                                                                                                      | Temperature (°F) Time       |           | Coolant        |  |  |  |  |
|                                                                                                               | Austenitizing:<br>1600 ± 25 | 4 hrs.    | Water-Quench   |  |  |  |  |
| Intermediate Shell Plates<br>B9004-2                                                                          | Tempered:<br>1225 ± 25      | 4 hrs.    | Air-cooled     |  |  |  |  |
|                                                                                                               | Stress Relief:<br>1140 ± 25 | 30 hrs.   | Furnace Cooled |  |  |  |  |
| Weldment                                                                                                      | Stress Relief:<br>1150 ± 25 | 13.5 hrs. | Furnace Cooled |  |  |  |  |

1



#### Figure 4-1 Arrangement of Surveillance Capsules in the Beaver Valley Unit 2 Reactor Vessel


1

#### LEGEND: WL – INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL)

WT – INTERMEDIATE SHELL PLATE B9004-2 (TANGENTIAL)

WW– WELD METAL (HEAT # 83652)

WH - HEAT AFFECTED ZONE METAL





-

. .

**Description of Program** 

-- -

## 5 TESTING OF SPECIMENS FROM CAPSULE X

#### 5.1 OVERVIEW

The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed in the Remote Metallographic Facility (RMF) at the Westinghouse Science and Technology Department. Testing was performed in accordance with 10CFR50, Appendices G and H [Ref. 2], ASTM Specification E185-82 [Ref. 12], and Westinghouse Procedure RMF 8402, Revision 2 [Ref. 13] as detailed by Westinghouse RMF Procedures 8102, Revision 3 [Ref. 14], and 8103, Revision 2 [Ref.15].

Upon receipt of the capsule at the hot cell laboratory (located at RMF), the specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-9615 [Ref. 3]. No discrepancies were found.

Examination of the two low-melting point 579°F (304°C) and 590°F (310°C) eutectic alloys indicated no melting of either type of thermal monitor. Based on this examination, the maximum temperature to which the test specimens were exposed was less than 579°F (304°C).

The Charpy impact tests were performed per ASTM Specification E23-02a [Ref. 16] and RMF Procedure 8103 [Ref. 15] on a Tinius-Olsen Model 74, 358J machine. The tup (striker) of the Charpy impact test machine is instrumented with an Instrom Impulse instrumentation system, feeding information into an IBM compatible computer. With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy ( $E_D$ ). From the load-time curve (Appendix B), the load of general yielding ( $P_{GY}$ ), the time to general yielding ( $T_{GY}$ ), the maximum load ( $P_M$ ), and the time to maximum load ( $t_M$ ) can be determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture load ( $P_F$ ), and the load at which fast fracture terminated is identified as the arrest load ( $P_A$ ).

The energy at maximum load  $(E_M)$  was determined by comparing the energy-time record and the loadtime record. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack  $(E_p)$  is the difference between the total energy to fracture  $(E_D)$  and the energy at maximum load  $(E_M)$ .

The yield stress ( $\sigma_{Y}$ ) was calculated from the three-point bend formula having the following expression:

$$\sigma_{\rm r} = (P_{\rm GY} * L) / [B * (W - a)^2 * C]$$
<sup>(1)</sup>

where:

L

B

=

=

distance between the specimen supports in the impact machine the width of the specimen measured parallel to the notch

W = height of the specimen, measured perpendicularly to the notch

a = notch depth

The constant C is dependent on the notch flank angle ( $\phi$ ), notch root radius ( $\rho$ ) and the type of loading (i.e., pure bending or three-point bending). In three-point bending, for a Charpy specimen in which  $\phi = 45^{\circ}$  and  $\rho = 0.010$  inch, Equation 1 is valid with C = 1.21. Therefore, (for L = 4W),

$$\sigma_{Y} = (P_{GY} * L) / [B * (W-a)^{2} * 1.21] = (3.305 * P_{GY} * W) / [B * (W-a)^{2}]$$
(2)

For the Charpy specimen, B = 0.394 inch, W = 0.394 inch and a = 0.079 inch. Equation 2 then reduces to:

$$\sigma_{\rm Y} = 33.3 * P_{\rm GY} \tag{3}$$

where  $\sigma_y$  is in units of psi and  $P_{GY}$  is in units of lbs. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula.

The symbol A in columns 5, 6, and 7 of Tables 5-5 through 5-8 is the cross-section area under the notch of the Charpy specimens:

$$A = B * (W - a) = 0.1241$$
 sq.in. (4)

Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM Specification E23-02a [Ref. 16] and A370-97a [Ref. 17]. The lateral expansion was measured using a dial gage rig similar to that shown in the same specification.

Tensile tests were performed on a 20,000-pound Instron, split-console test machine (Model 1115) per ASTM Specification E8-04 [Ref. 18] and E21-03a [Ref. 19], and Procedure RMF 8102 [Ref. 14]. All pull rods, grips, and pins were made of Inconel 718. The upper pull rod was connected through a universal joint to improve axiality of loading. The tests were conducted at a constant crosshead speed of 0.05 inches per minute throughout the test.

Extension measurements were made with a linear variable displacement transducer extensometer. The extensometer knife-edges were spring-loaded to the specimen and operated through specimen failure. The extensometer gage length was 1.00 inch. The extensometer is rated as Class B-2 per ASTM E83-93 [Ref. 20].

Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 9-inch hot zone. All tests were conducted in air. Because of the difficulty in remotely attaching a thermocouple directly to the specimen, the following procedure was used to monitor specimen temperatures. Chromel-Alumel thermocouples were positioned at the center and at each end of the gage section of a dummy specimen and in each tensile machine griper. In the test configuration, with a slight load on the specimen, a plot of specimen temperature versus upper and lower tensile machine griper and controller temperatures was developed over the range from room temperature to  $550^{\circ}$ F. During the actual testing, the grip temperatures were used to obtain desired specimen temperatures. Experiments have indicated that this method is accurate to  $\pm 2^{\circ}$ F.

The yield load, ultimate load, fracture load, total elongation, and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength, and fracture strength were calculated using the original cross-sectional area. The final diameter and final gage length were determined from post-fracture photographs. The fracture area used to calculate the fracture stress (true stress at fracture) and percent reduction in area was computed using the final diameter measurement.

#### 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS

The results of the Charpy V-notch impact tests performed on the various materials contained in Capsule X, which received a fluence of  $5.601 \times 10^{19} \text{ n/cm}^2$ (E> 1.0 MeV) in 13.94 EFPY of operation, are presented in Tables 5-1 through 5-12 and are compared with unirradiated results [Ref. 3] as shown in Figures 5-1 through 5-12.

The transition temperature increases and upper shelf energy decreases for the Capsule X materials are summarized in Table 5-9 and led to the following results:

Irradiation of the reactor vessel intermediate shell plate B9004-2 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 133.6°F and an irradiated 50 ft-lb transition temperature of 185.3°F. This results in a 30 ft-lb transition temperature increase of 98.0°F and a 50 ft-lb transition temperature increase of 98.0°F, relative to the unirradiated values, for the longitudinal oriented specimens. See Table 5-9.

Irradiation of the reactor vessel intermediate shell plate B9004-2 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 143.9°F and an irradiated 50 ft-lb transition temperature of 212.7°F. This results in a 30 ft-lb transition temperature increase of 104.1°F and a 50 ft-lb transition temperature increase of 121.5°F, relative to the unirradiated values, for the longitudinal oriented specimens. See Table 5-9.

Irradiation of the weld metal (*heat number 83652*) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -16.9°F and an irradiated 50 ft-lb transition temperature of 10.0°F. This results in a 30 ft-lb transition temperature increase of 22.9°F and a 50 ft-lb transition temperature increase of 31.7°F, relative to the unirradiated values. See Table 5-9.

Irradiation of the reactor vessel heat affected zone Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of -1.9°F and an irradiated 50 ft-lb transition temperature of 49.8°F. This results in a 30 ft-lb transition temperature increase of 85.3°F and a 50 ft-lb transition temperature increase of 91.6°F, relative to the unirradiated values, for the HAZ specimens. See Table 5-9.

The average upper shelf energy of the intermediate shell plate B9004-2 (longitudinal orientation) resulted in an average energy decrease of 14 ft-lb after irradiation. This results in an irradiated average upper shelf energy of &1 ft-lb for the longitudinal oriented specimens. See Table 5-9.

The average upper shelf energy of the intermediate shell plate B9004-2 (transverse orientation) resulted in an average energy decrease of 5 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 74 ft-lb for the longitudinal oriented specimens. See Table 5-9.

The average upper shelf energy of the weld metal Charpy specimens resulted in an average energy decrease of 6 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 133 ft-lb for the weld metal specimens. See Table 5-9.

The average upper shelf energy of the heat affected zone material resulted in an average energy decrease of 0 ft-lb after irradiation. An irradiated average upper shelf energy of 114 ft-lb for the HAZ specimens was measured. See Table 5-9.

A comparison, as presented in Table 5-10, of the Beaver Valley Unit 2 reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision 2 [Ref. 1] predictions led to the following conclusions:

- Five out of the eight measured 30 ft-lb shifts in transition temperature values of the intermediate shell plate B9004-2 (longitudinal & transverse), relative to the unirradiated values, are greater than the Regulatory Guide 1.99, Revision 2, predictions. However, each shift value is less than the two sigma allowance by Regulatory Guide 1.99, Revision 2.
- All of the measured 30 ft-lb shifts in transition temperature value of the weld metal contained in Capsule X, relative to the unirradiated values, are less than the Regulatory Guide 1.99, Revision 2, predictions.
- The measured percent decrease in upper shelf energy for all the surveillance materials contained in the Beaver Valley Unit 2 surveillance program, relative to the unirradiated values, are less than the Regulatory Guide 1.99, Revision 2 predictions.

All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the extended life of the vessel (36 EFPY) as required by 10CFR50, Appendix G [Ref. 2].

The fracture appearance of each irradiated Charpy specimen from the various surveillance Capsule X materials is shown in Figures 5-13 through 5-16 and shows an increasingly ductile or tougher appearance with increasing test temperature.

The load-time records for individual instrumented Charpy specimen tests are shown in Appendix B.

The Charpy V-notch data presented in WCAP-9615, Revision 1 [Ref. 3], WCAP-12406 [Ref. 4], WCAP-14484 [Ref. 5], WCAP-15675 [Ref. 6] and STC Letter Report STD-MCE-05-36 [Ref. 7] were fitted using CVGRAPH, Version 5.0.2, which is a hyperbolic tangent curve-fitting program. Appendix C presents the CVGRAPH, Version 5.0.2, Charpy V-notch plots and the program input data.

#### 5.3 TENSILE TEST RESULTS

ł

The results of the tensile tests performed on the various materials contained in Capsule X irradiated to  $5.601 \times 10^{19} \text{ n/cm}^2$  (E> 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated results [Ref. 3] as shown in Figures 5-17 through 5-19.

The results of the tensile tests performed on the Intermediate Shell Plate B9004-2 (longitudinal orientation) indicated that irradiation to  $5.601 \times 10^{19} \text{ n/cm}^2$  (E> 1.0 MeV) caused approximately a 8 to 11 ksi increase in the 0.2 percent offset yield strength and approximately a 5 to 9 ksi increase in the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-17.

The results of the tensile tests performed on the Intermediate Shell Plate B9004-2 (transverse orientation) indicated that irradiation to  $5.601 \times 10^{19} \text{ n/cm}^2$  (E> 1.0 MeV) caused approximately a 9 to 13 ksi increase in the 0.2 percent offset yield strength and approximately a 6 to 11 ksi increase in the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-18.

The results of the tensile tests performed on the reactor vessel weld metal indicated that irradiation to  $5.601 \times 10^{19} \text{ n/cm}^2$  (E> 1.0 MeV) caused approximately a 3 to 10 ksi increase in the 0.2 percent offset yield strength and approximately a 3 to 10 ksi increase in the ultimate tensile strength when compared to unirradiated data [Ref. 3]. See Figure 5-19.

The fractured tensile specimens for the intermediate shell plate B9004-2 (longitudinal and transverse orientations) and the reactor vessel weld metal are shown in Figures 5-20 through 5-22. The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-28.

# 5.4 COMPACT TENSION SPECIMEN TESTS

Per the surveillance capsule testing contract, the 1/2T compact tension and bend bar specimens were not tested and are being stored at the Westinghouse Science and Technology Center Hot Cell facility.

| Table 5-1Charpy V-notch Data for the Beaver Valley Unit 2 Intermediate Shell Plate B9004-2Irradiated to a Fluence of 5.601 x 10 <sup>19</sup> n/cm² (E> 1.0 MeV)(Longitudinal Orientation) |       |        |        |        |           |                   |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|--------|-----------|-------------------|-----|--|
| Sample                                                                                                                                                                                     | Tempe | rature | Impact | Energy | Lateral H | Lateral Expansion |     |  |
| Number                                                                                                                                                                                     | °F    | °C     | ft-lbs | Joules | mils      | mm                | %   |  |
| WL49                                                                                                                                                                                       | -50   | -46    | 3      | 4      | 1         | 0.03              | 2   |  |
| WL59                                                                                                                                                                                       | 25    | -4     | 11     | 15     | 8         | 0.20              | 5   |  |
| WL60                                                                                                                                                                                       | 75    | 24     | 25     | 34     | 17        | 0.43              | 10  |  |
| WL58                                                                                                                                                                                       | 100   | 38     | 23     | 31     | 18        | 0.46              | 20  |  |
| WL47                                                                                                                                                                                       | 125   | 52     | 27     | 37     | 21        | 0.53              | 25  |  |
| WL46                                                                                                                                                                                       | 150   | 66     | 35     | 47     | 26        | 0.66              | 35  |  |
| WL48                                                                                                                                                                                       | 175   | 79     | 38     | 52     | 30        | 0.76              | 40  |  |
| WL55                                                                                                                                                                                       | 200   | 93     | 37     | 50     | 29        | 0.74              | 50  |  |
| WL56                                                                                                                                                                                       | 225   | 107    | 75     | 102    | 53        | 1.35              | 95  |  |
| WL51                                                                                                                                                                                       | 250   | 121    | 78     | 106    | 58        | 1.47              | 100 |  |
| WL52                                                                                                                                                                                       | 275   | 135    | 77     | 104    | 59        | 1.50              | 98  |  |
| WL57                                                                                                                                                                                       | 280   | 138    | 73     | 99     | 58        | 1.47              | 98  |  |
| WL50                                                                                                                                                                                       | 325   | 163    | 87     | 118    | 60        | 1.52              | 100 |  |
|                                                                                                                                                                                            | 350   | 177    | 89     | 121    | 65        | 1.65              | 100 |  |
| WL53                                                                                                                                                                                       | 375   | 191    | 86     | 117    | 63        | 1.60              | 100 |  |

| Table 5-2 | Charpy V-notch Data for the Beaver Valley Unit 2 Intermediate Shell Plate B9004-2<br>Irradiated to a Fluence of 5.601 x $10^{19}$ n/cm <sup>2</sup> (E> 1.0 MeV) (Transverse Orientation) |         |        |          |                   |      |       |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|-------------------|------|-------|--|
| Sample    | Temp                                                                                                                                                                                      | erature | Impac  | t Energy | Lateral Expansion |      | Shear |  |
| Number    | °F                                                                                                                                                                                        | °C      | ft-lbs | Joules   | mils              | mm   | %     |  |
| WT60      | -50                                                                                                                                                                                       | -46     | 3      | 4        | 2                 | 0.05 | 2     |  |
| WT57      | 25                                                                                                                                                                                        | -4      | 9      | 12       | 7                 | 0.18 | 10    |  |
| WT56      | 50                                                                                                                                                                                        | 10      | 9      | 12       | 9                 | 0.23 | 15    |  |
| WT50      | 75                                                                                                                                                                                        | 24      | 19     | 26       | 15                | 0.38 | 20    |  |
| WT46      | 100                                                                                                                                                                                       | 38      | 20     | 27       | 16                | 0.41 | 25    |  |
| WT59      | 125                                                                                                                                                                                       | 52      | 28     | 38       | 25                | 0.64 | 30    |  |
| WT54      | 150                                                                                                                                                                                       | 66      | 32     | 43       | 28                | 0.71 | 35    |  |
| WT47      | 175                                                                                                                                                                                       | 79      | 33     | 45       | 28                | 0.71 | 45    |  |
| WT52      | 200                                                                                                                                                                                       | 93      | 45     | 61       | 39                | 0.99 | 55    |  |
| WT55      | 250                                                                                                                                                                                       | 121     | 55     | 75       | 50                | 1.27 | 75    |  |
| WT58      | 275                                                                                                                                                                                       | 135     | 65     | 88       | 53                | 1.35 | 90    |  |
| WT53      | 300                                                                                                                                                                                       | 149     | 65     | 88       | 57                | 1.45 | 100   |  |
| WT48      | 325                                                                                                                                                                                       | 163     | 77     | 104      | 55                | 1.40 | 100   |  |
| WT51      | 350                                                                                                                                                                                       | 177     | 78     | 106      | 55                | 1.40 | 100   |  |
| WT49      | 375                                                                                                                                                                                       | 191     | 74     | 100      | 51                | 1.30 | 100   |  |

ł

1

| Table 5-3 | 5-3 Charpy V-notch Data for the Beaver Valley Unit 2 Surveillance Weld Metal<br>Irradiated to a Fluence of 5.601 x 10 <sup>19</sup> n/cm <sup>2</sup> (E> 1.0 MeV) |        |        |        |           |           |       |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|-----------|-----------|-------|--|--|
| Sample    | Tempe                                                                                                                                                              | rature | Impact | Energy | Lateral E | Expansion | Shear |  |  |
| Number    | °F                                                                                                                                                                 | °C     | ft-lbs | Joules | mils      | mm        | %     |  |  |
| WW51      | -75                                                                                                                                                                | -59    | 3      | 4      | 2         | 0.05      | 2     |  |  |
| WW53      | -50                                                                                                                                                                | -46    | 9      | 12     | 6         | 0.15      | 15    |  |  |
| WW54      | -25                                                                                                                                                                | -32    | 7      | 9      | 7         | 0.18      | 15    |  |  |
| WW52      | -25                                                                                                                                                                | -32    | 19     | 26     | 15        | 0.38      | 25    |  |  |
| WW55      | -10                                                                                                                                                                | -23    | 6      | 8      | 5         | 0.13      | 15    |  |  |
| WW48      | 0                                                                                                                                                                  | -18    | 56     | 76     | 40        | 1.02      | 50    |  |  |
| WW46      | 10                                                                                                                                                                 | -12    | 88     | 119    | 59        | 1.50      | 65    |  |  |
| WW59      | 25                                                                                                                                                                 | -4     | 97     | 132    | 63        | 1.60      | 75    |  |  |
| WW57      | 50                                                                                                                                                                 | 10     | 41     | 56     | 37        | 0.94      | 45    |  |  |
| WW50      | 50                                                                                                                                                                 | 10     | 79     | 107    | 48        | 1.22      | 65    |  |  |
| WW58      | 75                                                                                                                                                                 | 24     | 113    | 153    | 80        | 2.03      | 90    |  |  |
| <br>WW47  | 100                                                                                                                                                                | 38     | 117    | 159    | 82        | 2.08      | 95    |  |  |
| WW60      | 150                                                                                                                                                                | 66     | 129    | 175    | 87        | 2.21      | 100   |  |  |
| WW56      | 175                                                                                                                                                                | 79     | 130    | 176    | 85        | 2.16      | 100   |  |  |
| WW49      | 225                                                                                                                                                                | 107    | 139    | 188    | 80        | 2.03      | 100   |  |  |

1

| Table 5-4 | Charpy V-notch Data for the Beaver Valley Unit 2 Heat Affected Zone Material<br>Irradiated to a Fluence of 5.601 x 10 <sup>19</sup> n/cm <sup>2</sup> (E> 1.0 MeV) |         |        |        |           |           |       |  |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|-----------|-----------|-------|--|--|--|--|--|--|--|
| Sample    | Temp                                                                                                                                                               | erature | Impact | Energy | Lateral I | Expansion | Shear |  |  |  |  |  |  |  |
| Number    | °F                                                                                                                                                                 | °C      | Ft-lbs | Joules | mils      | mm        | %     |  |  |  |  |  |  |  |
| WH48      | -90                                                                                                                                                                | -68     | 15     | 20     | 7         | 0.18      | 15    |  |  |  |  |  |  |  |
| WH55      | -50                                                                                                                                                                | -46     | 13     | 18     | 7         | 0.18      | 15    |  |  |  |  |  |  |  |
| WH50      | -25                                                                                                                                                                | -32     | 25     | 34     | 19        | 0.48      | 35    |  |  |  |  |  |  |  |
| WH49      | 0                                                                                                                                                                  | -18     | 43     | 58     | 29        | 0.74      | 40    |  |  |  |  |  |  |  |
| WH58      | 25                                                                                                                                                                 | -4      | 45     | 61     | 34        | 0.86      | 60    |  |  |  |  |  |  |  |
| WH53      | 50                                                                                                                                                                 | 10      | 58     | 79     | 36        | 0.91      | 70    |  |  |  |  |  |  |  |
| WH51      | 75                                                                                                                                                                 | 24      | 43     | 58     | 29        | 0.74      | 40    |  |  |  |  |  |  |  |
| WH54      | 100                                                                                                                                                                | 38      | 87     | 118    | 61        | 1.55      | 95    |  |  |  |  |  |  |  |
| WH47      | 125                                                                                                                                                                | 52      | 63     | 85     | 43        | 1.09      | 90    |  |  |  |  |  |  |  |
| WH52      | 135                                                                                                                                                                | 57      | 61     | 83     | 36        | 0.91      | 90    |  |  |  |  |  |  |  |
| WH46      | 150                                                                                                                                                                | 66      | 85     | 115    | 57        | 1.45      | 98    |  |  |  |  |  |  |  |
| WH59      | 175                                                                                                                                                                | 79      | 87     | 118    | 61        | 1.55      | 100   |  |  |  |  |  |  |  |
| WH60      | 200                                                                                                                                                                | 93      | 122    | 165    | 88        | 2.24      | 100   |  |  |  |  |  |  |  |
| WH57      | 225                                                                                                                                                                | 107     | 137    | 186    | 89        | 2.26      | 100   |  |  |  |  |  |  |  |
| WH56      | 250                                                                                                                                                                | 121     | 137    | 186    | 81        | 2.06      | 100   |  |  |  |  |  |  |  |

ł

| Table 5-5     | Table 5-5       Instrumented Charpy Impact Test Results for the Beaver Valley Unit 2 Intermediate Shell Plate B9004-2 Irradiated to a         Fluence of 5.601 x 10 <sup>19</sup> n/cm <sup>2</sup> (E>1.0 MeV)       (Longitudinal Orientation) |                                     |                                                 |                           |                            |                                 |                                    |                                     |                                  |                                       |                                        |                                         |                         |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|---------------------------|----------------------------|---------------------------------|------------------------------------|-------------------------------------|----------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------|-------------------------|--|
|               |                                                                                                                                                                                                                                                  | Charpy                              | Normalized Energies<br>(ft-lb/in <sup>2</sup> ) |                           |                            | Yield                           | Time to                            |                                     | Time to                          | Fast                                  |                                        |                                         |                         |  |
| Sample<br>No. | Test<br>Temp.<br>(°F)                                                                                                                                                                                                                            | Energy<br>E <sub>D</sub><br>(ft-lb) | Charpy<br>E <sub>D</sub> /A                     | Max.<br>E <sub>M</sub> /A | Prop.<br>E <sub>p</sub> /A | Load<br>P <sub>GY</sub><br>(lb) | Yield<br>t <sub>GY</sub><br>(msec) | Max.<br>Load<br>P <sub>M</sub> (lb) | Max.<br>t <sub>M</sub><br>(msec) | Fract.<br>Load P <sub>F</sub><br>(lb) | Arrest<br>Load P <sub>A</sub><br>(lb)_ | Yield<br>Stress<br>σ <sub>Y</sub> (ksi) | Flow<br>Stress<br>(ksi) |  |
| WL49          | -50                                                                                                                                                                                                                                              | 3                                   | 24                                              | 15                        | 9                          | 1683                            | 0.1                                | 1794                                | 0.12                             | 1789                                  | 0                                      | 56                                      | 58                      |  |
| WL59          | 25                                                                                                                                                                                                                                               | 11                                  | 89                                              | 50                        | 38                         | 3411                            | 0.14                               | 4054                                | 0.19                             | 4054                                  | 0                                      | 114                                     | 124                     |  |
| WL60          | 75                                                                                                                                                                                                                                               | 25                                  | 201                                             | 157                       | 45                         | 3579                            | 0.14                               | 4600                                | 0.36                             | 4600                                  | 0                                      | 119                                     | 136                     |  |
| WL58          | 100                                                                                                                                                                                                                                              | 23                                  | 185                                             | 118                       | 68                         | 2906                            | 0.13                               | 4192                                | 0.33                             | 4189                                  | 113                                    | 97                                      | 118                     |  |
| WL47          | 125                                                                                                                                                                                                                                              | 27                                  | 218                                             | 139                       | 78                         | 3093                            | 0.14                               | 4280                                | 0.36                             | 4252                                  | 538                                    | 103                                     | 123                     |  |
| WL46          | 150                                                                                                                                                                                                                                              | 35                                  | 282                                             | 169                       | 113                        | 3088                            | 0.13                               | 4360                                | 0.41                             | 4274                                  | 983                                    | 103                                     | 124                     |  |
| WL48          | 175                                                                                                                                                                                                                                              | 38                                  | 306                                             | 194                       | 112                        | 3012                            | 0.15                               | 4372                                | 0.47                             | 4343                                  | 1306                                   | 100                                     | 123                     |  |
| WL55          | 200                                                                                                                                                                                                                                              | 37                                  | 298                                             | 134                       | 164                        | 2724                            | 0.13                               | 4174                                | 0.36                             | 4174                                  | 2639                                   | 91                                      | 115                     |  |
| WL56          | 225                                                                                                                                                                                                                                              | 75                                  | 604                                             | 239                       | 365                        | 2990                            | 0.13                               | 4601                                | 0.53                             | 3662                                  | 2602                                   | 100                                     | 126                     |  |
| WL51          | 250                                                                                                                                                                                                                                              | 78                                  | 628                                             | 216                       | 413                        | 2988                            | 0.14                               | 4430                                | 0.50                             | n/a                                   | n/a                                    | 99                                      | 123                     |  |
| WL52          | 275                                                                                                                                                                                                                                              | 77                                  | 620                                             | 229                       | 392                        | 2741                            | 0.14                               | 4409                                | 0.53                             | 3620                                  | 2282                                   | 91                                      | 119                     |  |
| WL57          | 280                                                                                                                                                                                                                                              | 73                                  | 588                                             | 211                       | 377                        | 3051                            | 0.14                               | 4335                                | 0.49                             | 2937                                  | 2182                                   | 102                                     | 123                     |  |
| WL50          | 325                                                                                                                                                                                                                                              | 87                                  | 701                                             | 251                       | 450                        | 1962                            | 0.12                               | 4337                                | 0.61                             | n/a                                   | n/a                                    | 65                                      | 105                     |  |
| WL54          | 350                                                                                                                                                                                                                                              | 89                                  | 717                                             | 276                       | 441                        | 1083                            | 0.07                               | 4383                                | 0.66                             | n/a                                   | n/a                                    | 36                                      | 91                      |  |
| WL53          | 375                                                                                                                                                                                                                                              | 86                                  | 693                                             | 216                       | 477                        | 2967                            | 0.15                               | 4247                                | 0.52                             | n/a                                   | n/a                                    | 99                                      | 120                     |  |

| Table 5-6     |                       | nented Cha<br>of_5.601              |                             |                                         |                            |                                   |                                      |                                     | ediate Sh                        | ell Plate B                           | 9004-2 Irra                           | adiated to                              | a                       |
|---------------|-----------------------|-------------------------------------|-----------------------------|-----------------------------------------|----------------------------|-----------------------------------|--------------------------------------|-------------------------------------|----------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-------------------------|
|               |                       | Charpy                              | Norn                        | nalized Ene<br>(ft-lb/in <sup>2</sup> ) | rgies                      | Yield                             | Time to                              |                                     | Time to                          | Fast                                  |                                       |                                         |                         |
| Sample<br>No. | Test<br>Temp.<br>(°F) | Energy<br>E <sub>D</sub><br>(ft-lb) | Charpy<br>E <sub>D</sub> /A | Max.<br>E <sub>M</sub> /A               | Prop.<br>E <sub>p</sub> /A | – Load<br>P <sub>CY</sub><br>(lb) | — Yield<br>t <sub>GY</sub><br>(msec) | Max.<br>Load<br>P <sub>M</sub> (lb) | Max.<br>t <sub>M</sub><br>(msec) | Fract.<br>Load P <sub>F</sub><br>(lb) | Arrest<br>Load P <sub>A</sub><br>(lb) | Yield<br>Stress<br>σ <sub>Y</sub> (ksi) | Flow<br>Stress<br>(ksi) |
| WT60          | -50                   | 3                                   | 24                          | 12                                      | 12                         | 1362                              | 0.09                                 | 1499                                | 0.11                             | 1491                                  | 0                                     | 45                                      | 48                      |
| WT57          | 25                    | 9                                   | 73                          | 37                                      | 36                         | 3213                              | 0.14                                 | 3455                                | 0.16                             | 3437                                  | 0                                     | 107                                     | 111                     |
| WT56          | 50                    | 9                                   | 73                          | 30                                      | 42                         | 2680                              | 0.13                                 | 3022                                | 0.15                             | 3017                                  | 106                                   | 89                                      | 95                      |
| WT50          | 75                    | 19                                  | 153                         | 87                                      | 66                         | 2842                              | 0.13                                 | 3978                                | 0.27                             | 3978                                  | 289                                   | 95                                      | 114                     |
| WT46          | 100                   | 20                                  | 161                         | 65                                      | 96                         | 3194                              | 0.14                                 | 4008                                | 0.22                             | 4003                                  | 495                                   | 106                                     | 120                     |
| WT59          | 125                   | 28                                  | 226                         | 146                                     | 79                         | 3068                              | 0.14                                 | 4297                                | 0.37                             | 4284                                  | 770                                   | 102                                     | 123                     |
| WT54          | 150                   | 32                                  | 258                         | 151                                     | 107                        | 2858                              | 0.13                                 | 4179                                | 0.39                             | 4161                                  | 967                                   | 95                                      | 117                     |
| WT47          | 175                   | 33                                  | 266                         | 137                                     | 129                        | 2856                              | 0.14                                 | 4214                                | 0.37                             | 4211                                  | 1376                                  | 95                                      | 118                     |
| WT52          | 200                   | 45                                  | 363                         | 203                                     | 159                        | 2769                              | 0.13                                 | 4208                                | 0.49                             | 4131                                  | 2004                                  | 92                                      | 116                     |
| WT55          | 250                   | 55                                  | 443                         | 186                                     | 257                        | 2964                              | 0.14                                 | 4041                                | 0.46                             | 3382                                  | 2385                                  | 99                                      | 117                     |
| WT58          | 275                   | 65                                  | 524                         | 204                                     | 320                        | 2766                              | 0.14                                 | 4198                                | 0.5                              | 3361                                  | 2568                                  | 92                                      | 116                     |
| WT53          | 300                   | 65                                  | 524                         | 195                                     | 329                        | 2785                              | 0.14                                 | 4152                                | 0.49                             | n/a                                   | n/a                                   | 93                                      | 115                     |
| WT48          | 325                   | 77                                  | 620                         | 214                                     | 406                        | 2689                              | 0.14                                 | 4340                                | 0.51                             | n/a                                   | n/a                                   | 90                                      | 117                     |
| WT51          | 350                   | 78                                  | 628                         | 224                                     | 405                        | 2883                              | 0.14                                 | 4270                                | 0.53                             | n/a                                   | n/a                                   | 96                                      | 119                     |
| WT49          | 375                   | 74                                  | 596                         | 208                                     | 388                        | 2742                              | 0.14                                 | 4198                                | 0.51                             | n/a                                   | n/a                                   | 91                                      | 116                     |

.

\_\_\_\_

.

.

-

| Table 5-7     | Table 5-7       Instrumented Charpy Impact Test Results for the Beaver Valley Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 5.601 x 10 <sup>19</sup> n/cm <sup>2</sup> (E>1.0 MeV) |                                     |                                                 |                           |                            |                                 |                                    |                                     |                                  |                                       |                                       |                                         |                         |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|---------------------------|----------------------------|---------------------------------|------------------------------------|-------------------------------------|----------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-------------------------|--|
|               |                                                                                                                                                                                                | Charpy                              | Normalized Energies<br>(ft-lb/in <sup>2</sup> ) |                           | ergies                     | Yield                           | Time to                            |                                     | Time to                          | Fast                                  |                                       |                                         |                         |  |
| Sample<br>No. | Test<br>Temp.<br>(°F)                                                                                                                                                                          | Energy<br>E <sub>D</sub><br>(ft-lb) | Charpy<br>E <sub>D</sub> /A                     | Max.<br>E <sub>M</sub> /A | Prop.<br>E <sub>p</sub> /A | Load<br>P <sub>GY</sub><br>(lb) | Yield<br>t <sub>GY</sub><br>(msec) | Max.<br>Load<br>P <sub>M</sub> (lb) | Max.<br>t <sub>M</sub><br>(msec) | Fract.<br>Load P <sub>F</sub><br>(lb) | Arrest<br>Load<br>P <sub>A</sub> (lb) | Yield<br>Stress<br>σ <sub>Y</sub> (ksi) | Flow<br>Stress<br>(ksi) |  |
| WW51          | -75                                                                                                                                                                                            | 3                                   | 24                                              | 13                        | 12                         | 1267                            | 0.09                               | 1516                                | 0.12                             | 1516                                  | 0                                     | 42                                      | 46                      |  |
| WW53          | -50                                                                                                                                                                                            | 9                                   | 73                                              | 27                        | 46                         | 2756                            | 0.13                               | 2870                                | 0.15                             | 2857                                  | 126                                   | 92                                      | 94                      |  |
| WW54          | -25                                                                                                                                                                                            | 7                                   | 56                                              | 22                        | 35                         | 2357                            | 0.12                               | 2473                                | 0.14                             | 2470                                  | 0                                     | 78                                      | 80                      |  |
| WW52          | -25                                                                                                                                                                                            | 19                                  | 153                                             | 94                        | 59                         | 2695                            | 0.15                               | 3951                                | 0.32                             | 3917                                  | 0                                     | 90                                      | 111                     |  |
| WW55          | -10                                                                                                                                                                                            | 6                                   | 48                                              | 15                        | 34                         | 1521                            | 0.1                                | 1624                                | 0.12                             | 1622                                  | 126                                   | 51                                      | 52                      |  |
| WW48          | 0                                                                                                                                                                                              | 56                                  | 451                                             | 244                       | 207                        | 3522                            | 0.15                               | 4611                                | 0.52                             | 4497                                  | 489                                   | 117                                     | 135                     |  |
| WW46          | 10                                                                                                                                                                                             | 88                                  | 709                                             | 326                       | 383                        | 3154                            | 0.14                               | 4557                                | 0.68                             | 3728                                  | 1354                                  | 105                                     | 128                     |  |
| WW59          | 25                                                                                                                                                                                             | 97                                  | 782                                             | 325                       | 457                        | 3237                            | 0.14                               | 4461                                | 0.68                             | 3616                                  | 1476                                  | 108                                     | 128                     |  |
| WW57          | 50                                                                                                                                                                                             | 41                                  | 330                                             | 165                       | 166                        | 3203                            | 0.14                               | 4305                                | 0.40                             | 4246                                  | 1190                                  | 107                                     | 125                     |  |
| WW50          | 50                                                                                                                                                                                             | 79                                  | 637                                             | 314                       | 322                        | 3114                            | 0.14                               | 4442                                | 0.68                             | 4290                                  | 2097                                  | 104                                     | 126                     |  |
| WW58          | 75                                                                                                                                                                                             | 113                                 | 910                                             | 318                       | 593                        | 3053                            | 0.14                               | 4454                                | 0.68                             | 3097                                  | 2008                                  | 102                                     | 125                     |  |
| WW47          | 100                                                                                                                                                                                            | 117                                 | 943                                             | 305                       | 638                        | 2703                            | 0.13                               | 4331                                | 0.68                             | 2587                                  | 1587                                  | 90                                      | 117                     |  |
| WW60          | 150                                                                                                                                                                                            | 129                                 | 1039                                            | 302                       | 738                        | 2958                            | 0.13                               | 4291                                | 0.67                             | n/a                                   | n/a                                   | 99                                      | 121                     |  |
| WW56          | 175                                                                                                                                                                                            | 130                                 | 1047                                            | 296                       | 752                        | 2707                            | 0.13                               | 4191                                | 0.68                             | n/a                                   | n/a                                   | 90                                      | 115                     |  |
| WW49          | 225                                                                                                                                                                                            | 139                                 | 1120                                            | 293                       | 827                        | 2882                            | 0.14                               | 4127                                | 0.68                             | n/a                                   | n/a                                   | 96                                      | 117                     |  |

Testing of Specimens from Capsule X

\_\_\_\_

-

| Table 5-8     |                       | iented Cha<br>10 <sup>19</sup> n/cm <sup>2</sup> |                               |                           | sults for tl               | he Beaver                       | Valley Un                          | it 2 Heat A                         | Affected Zo                      | one Materi                             | ial Irradi                            | ated to a F                             | luence of               |
|---------------|-----------------------|--------------------------------------------------|-------------------------------|---------------------------|----------------------------|---------------------------------|------------------------------------|-------------------------------------|----------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|-------------------------|
|               |                       | Charpy                                           |                               |                           |                            | Yield                           | Time to                            |                                     | Time to                          | Fast                                   |                                       |                                         |                         |
| Sample<br>No. | Test<br>Temp.<br>(°F) | Energy<br>E <sub>D</sub><br>(ft-lb)              | - Charpy<br>E <sub>D</sub> /A | Max.<br>E <sub>M</sub> /A | Prop.<br>E <sub>p</sub> /A | Load<br>P <sub>GY</sub><br>(lb) | Yield<br>t <sub>GY</sub><br>(msec) | Max.<br>Load<br>P <sub>M</sub> (lb) | Max.<br>t <sub>M</sub><br>(msec) | Fract.<br>Load P <sub>F</sub><br>_(lb) | Arrest<br>Load<br>P <sub>A</sub> (lb) | Yield<br>Stress σ <sub>Y</sub><br>(ksi) | Flow<br>Stress<br>(ksi) |
| WH48          | -90                   | 15                                               | 121                           | 67                        | 54                         | 2988                            | 0.13                               | 4255                                | 0.22                             | 4247                                   | 636                                   | 99                                      | 121                     |
| WH55          | -50                   | 13                                               | 105                           | 55                        | 49                         | 4003                            | 0.15                               | 4601                                | 0.19                             | 4596                                   | 0                                     | 133                                     | 143                     |
| WH50          | -25                   | 25                                               | 201                           | 72                        | 129                        | 3586                            | 0.14                               | 4590                                | 0.22                             | 4588                                   | 1195                                  | 119                                     | 136                     |
| WH49          | 0                     | 43                                               | 346                           | 193                       | 153                        | 3615                            | 0.14                               | 4764                                | 0.42                             | 4741                                   | 2157                                  | 120                                     | 140                     |
| WH58          | 25                    | 45                                               | 363                           | 215                       | 147                        | 3345                            | 0.15                               | 4684                                | 0.47                             | 4655                                   | 1235                                  | 111                                     | 134                     |
| WH53          | 50                    | 58                                               | 467                           | 171                       | 297                        | 3572                            | 0.14                               | 4547                                | 0.39                             | 4186                                   | 1626                                  | 119                                     | 135                     |
| WH51          | 75                    | 43                                               | 346                           | 157                       | 190                        | 2960                            | 0.13                               | 4514                                | 0.39                             | 4414                                   | 265                                   | 99                                      | 124                     |
| WH54          | 100                   | 87                                               | 701                           | 244                       | 457                        | 3618                            | 0.15                               | 4621                                | 0.52                             | 4165                                   | 1950                                  | 120                                     | 137                     |
| WH47          | 125                   | 63                                               | 508                           | 200                       | 307                        | 3342                            | 0.14                               | 4457                                | 0.46                             | 4261                                   | 3009                                  | 111                                     | 130                     |
| WH52          | 135                   | 61                                               | 491                           | 207                       | 284                        | 2967                            | 0.13                               | 4317                                | 0.48                             | 3279                                   | 1420                                  | 99                                      | 121                     |
| WH46          | 150                   | 85                                               | 685                           | 212                       | 472                        | 3564                            | 0.14                               | 4447                                | 0.47                             | 2745                                   | 1691                                  | 119                                     | 133                     |
| WH59          | 175                   | 87                                               | 701                           | 216                       | 485                        | 2766                            | 0.13                               | 4359                                | 0.51                             | n/a                                    | n/a                                   | 92                                      | 119                     |
| WH60          | 200                   | 122                                              | 983                           | 312                       | 671                        | 3368                            | 0.14                               | 4374                                | 0.67                             | n/a                                    | n/a                                   | 112                                     | 129                     |
| WH57          | 225                   | 137                                              | 1104                          | 324                       | 780                        | 3178                            | 0.14                               | 4576                                | 0.68                             | n/a                                    | n/a                                   | 106                                     | 129                     |
| WH56          | 250                   | 137                                              | 1104                          | 317                       | 787                        | 2947                            | 0.14                               | 4575                                | 0.68                             | n/a                                    | n/a                                   | 98                                      | 125                     |

.

-

Testing of Specimens from Capsule X

. . .

.

5-13

· -

|                                                 | ect of Irradia<br>ctor Vessel S                                  |            |       |              | .0 MeV) or                                                          | the C: | apsule X Tou | ghness Pro                                                     | operties o | of the Beaver | Valley Uni                                                        | it 2 |  |
|-------------------------------------------------|------------------------------------------------------------------|------------|-------|--------------|---------------------------------------------------------------------|--------|--------------|----------------------------------------------------------------|------------|---------------|-------------------------------------------------------------------|------|--|
| Material                                        | Average 30 (ft-lb) <sup>(a)</sup><br>Transition Temperature (°F) |            |       |              | Average 35 mil Lateral <sup>(b)</sup><br>Expansion Temperature (°F) |        |              | Average 50 ft-lb <sup>(s)</sup><br>Transition Temperature (°F) |            |               | Average Energy Absorption <sup>(a)</sup><br>at Full Shear (ft-lb) |      |  |
|                                                 | Unirradiated                                                     | Irradiated | ΔT    | Unirradiated | Irradiated                                                          | ΔΤ     | Unirradiated | Irradiated                                                     | ΔT         | Unirradiated  | Irradiated                                                        | ΔΕ   |  |
| Intermediate Shell<br>Plate B9004-2<br>(Long.)  | 35.6                                                             | 133.6      | 98.0  | 82.9         | 180.4                                                               | 97.5   | 80.3         | 185.3                                                          | 105.0      | 95            | 81                                                                | 14   |  |
| Intermediate Shell<br>Plate B9004-2<br>(Trans.) | 39.8                                                             | 143.9      | 104.1 | 90.8         | 179.7                                                               | 88.9   | 91.2         | 212.7                                                          | 121.5      | 79            | 74                                                                | 5    |  |
| Weld Metal<br>(Heat # 83652)                    | -39.8                                                            | -16.9      | 22.9  | -19.8        | 8.4                                                                 | 28.2   | -21.7        | 10.0                                                           | 31.7       | 139           | 133                                                               | 6    |  |
| Heat Affected<br>Zone                           | -87.2                                                            | -1.9       | 85.3  | -21.5        | 65.4                                                                | 86.9   | -41.8        | 49.8                                                           | 91.6       | 91            | 114                                                               | 0    |  |

a. "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-1, 5-4, 5-7 and 5-10).

b. "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-2, 5-5, 5-8 and 5-11).

. .

|                                 |         | Fluence <sup>(d)</sup>                                  |                                  | Transition<br>ture Shift        | Upper Shelf Energy<br>Decrease  |                                |  |
|---------------------------------|---------|---------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------|--------------------------------|--|
| Material                        | Capsule | (x 10 <sup>19</sup> n/cm <sup>2</sup> ,<br>E > 1.0 MeV) | Predicted<br>(°F) <sup>(a)</sup> | Measured<br>(°F) <sup>(b)</sup> | Predicted<br>(%) <sup>(a)</sup> | Measured<br>(%) <sup>(c)</sup> |  |
|                                 | U       | 0.6082                                                  | 31.9                             | 24.0                            | 19                              | 0                              |  |
| Intermediate Shell              | v       | 2.629                                                   | 46.6                             | 56.0                            | 24                              | 11                             |  |
| Plate H9004-2<br>(Longitudinal) | w       | 3.625                                                   | 49.4                             | 71.0                            | 26                              | 1                              |  |
|                                 | х       | 5.601                                                   | 52.7                             | 98.0                            | 29                              | 15                             |  |
| Intermediate Shell              | U       | 0.6082                                                  | 31.9                             | 17.7                            | 19                              | 0                              |  |
|                                 | v       | 2.629                                                   | 46.6                             | 46.1                            | 24                              | 4                              |  |
| Plate El9004-2<br>(Transverse)  | w       | 3.625                                                   | 49.4                             | 63.4                            | 26                              | 5                              |  |
|                                 | x       | 5.601                                                   | 52.7                             | 104.1                           | 29                              | 6                              |  |
|                                 | U       | 0.6082                                                  | 32.7                             | 4.1                             | 19                              | 4                              |  |
| Surveillance                    | v       | 2.629                                                   | 47.8                             | 25.7                            | 26                              | 2                              |  |
| Program Weld Metal              | w       | 3.625                                                   | 50.7                             | 6.0                             | 28                              | 2                              |  |
|                                 | x       | 5.601                                                   | 54.1                             | 22.9                            | 31                              | 4                              |  |
|                                 | U       | 0.6082                                                  |                                  | 0 <sup>(d)</sup>                |                                 | 0                              |  |
| Heat Affected Zone<br>Material  | v       | 2.629                                                   |                                  | 41.2                            |                                 | 4                              |  |
|                                 | w       | 3.625                                                   |                                  | 51.3                            |                                 | 0                              |  |
|                                 | x       | 5.601                                                   |                                  | 85.3                            |                                 | 0                              |  |

Notes:

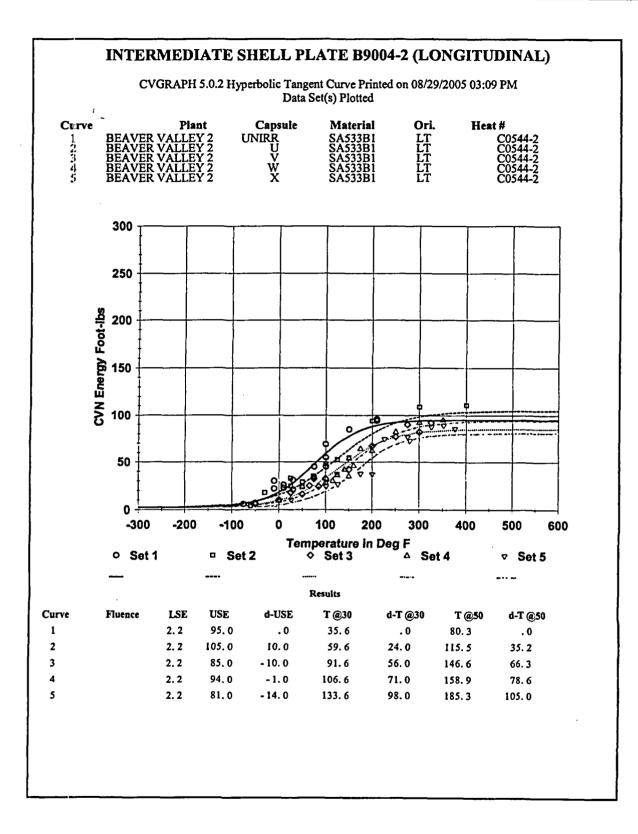
ł

(a) Based on Regulatory Guide 1.99, Revision 2 [Ref. 1], methodology using the mean weight percent values of copper and nickel of the surveillance material.

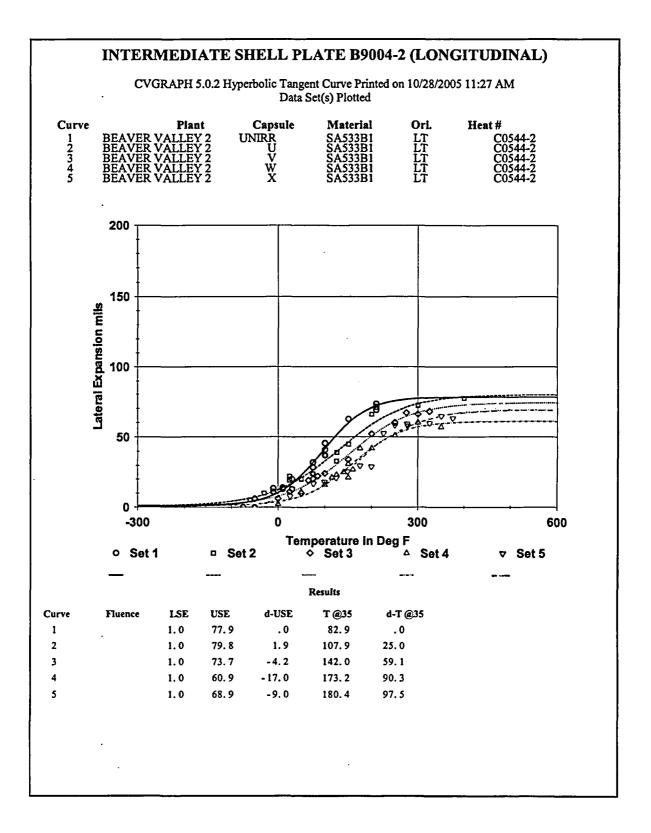
(b) Calculated using measured Charpy data plotted using CVGRAPH, Version 5.0.2 (See Appendix C)

(c) Values are based on the definition of upper shelf energy given in ASTM E185-82 [Ref. 12].

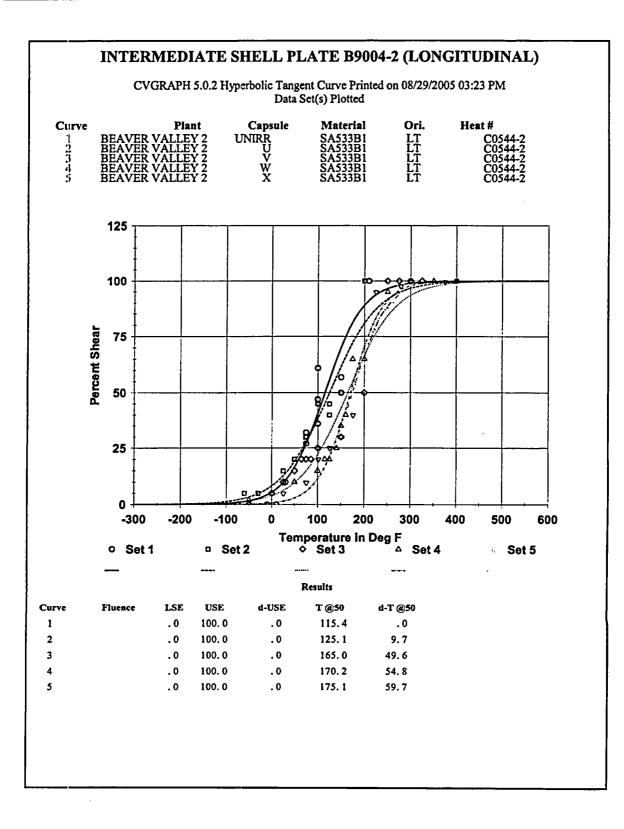
(d) The fluence values presented here are the calculated values, not the best estimate values.


L

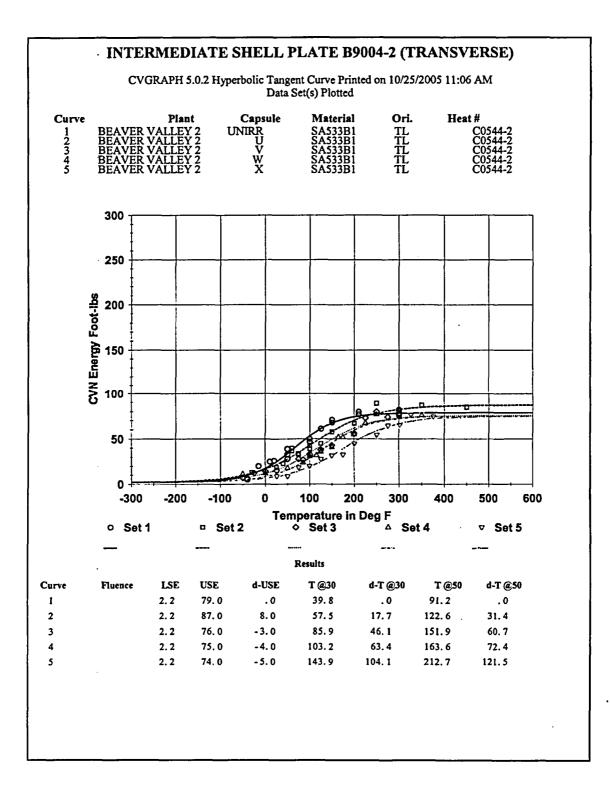
|                                    | .0 MeV)          |                       |                                 |                               |                           | <u> </u>                    |                               |                              |                            |                             |
|------------------------------------|------------------|-----------------------|---------------------------------|-------------------------------|---------------------------|-----------------------------|-------------------------------|------------------------------|----------------------------|-----------------------------|
| Material                           | Sample<br>Number | Test<br>Temp.<br>(°F) | 0.2% Yield<br>Strength<br>(ksi) | Ultimate<br>Strength<br>(ksi) | Fracture<br>Load<br>(kip) | Fracture<br>Stress<br>(ksi) | Fracture<br>Strength<br>(ksi) | Uniform<br>Elongation<br>(%) | Total<br>Elongation<br>(%) | Reduction<br>in Area<br>(%) |
| Intermediate Shell                 | WL10             | 175                   | 80.0                            | 99.5                          | 3.24                      | 176.0                       | 66.0                          | 9.4                          | 20.9                       | 62                          |
| Plate<br>B9004-2                   | WL11             | 275                   | 76.4                            | 96.4                          | 3.08                      | 167.0                       | 62.6                          | 10.1                         | 22.1                       | 62                          |
| (Longitudinal)                     | WL12             | 550                   | 70.3                            | 98.6                          | 3.26                      | 151.5                       | 66.4                          | 10.1                         | 21.6                       | 56                          |
| Intermediate Shell                 | WT10             | 150                   | 80.0                            | 99.8                          | 3.36                      | 156.2                       | 68.4                          | 10.6                         | 22.0                       | 56                          |
| Plate<br>B9004-2                   | WT11             | 245                   | 77.8                            | 96.8                          | 3.31                      | 157.6                       | 67.3                          | 9.9                          | 20.3                       | 57                          |
| (Transverse)                       | WT12             | 550                   | 72.8                            | 99.0                          | 3.69                      | 159.4                       | 75.2                          | 11.9                         | 20.6                       | 53                          |
|                                    | WW10             | 70                    | 78.9                            | 93.0                          | 2.73                      | 175.6                       | 55.6                          | 10.5                         | 26.3                       | 68                          |
| Surveillance<br>Program Weld Metal | WW11             | 125                   | 77.6                            | 90.1                          | 2.53                      | 183.4                       | 51.4                          | 9.8                          | 25.2                       | 72                          |
|                                    | WW12             | 550                   | 69.3                            | 89.0                          | 2.77                      | 163.1                       | 56.3                          | 10.1                         | 23.7                       | 65                          |


.

.


.




# Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Longitudinal Orientation)



#### Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Longitudinal Orientation)



#### Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Longitudinal Orientation)



#### Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation)

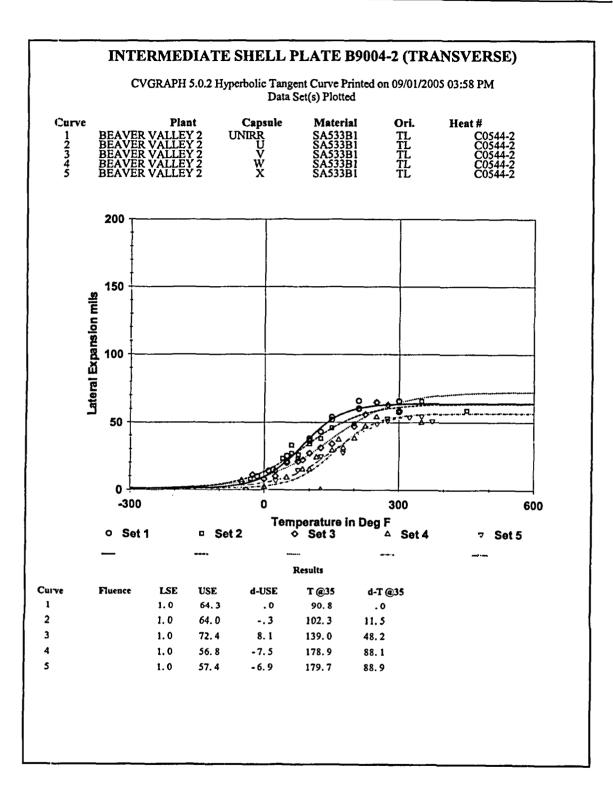



Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation)

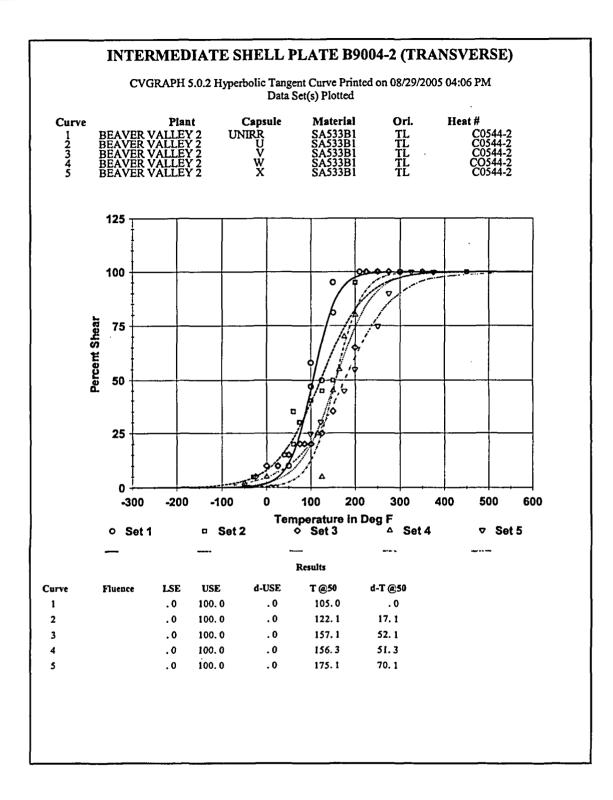
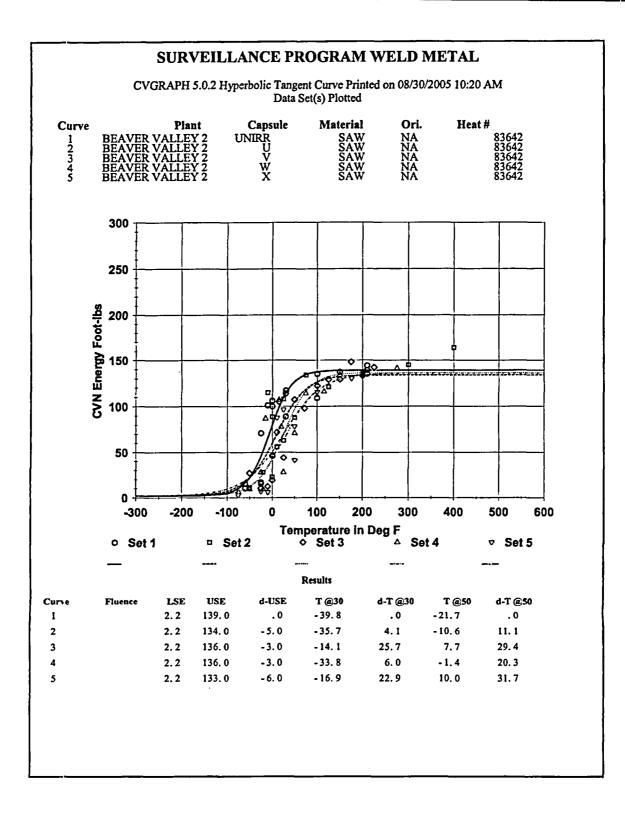




Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation)



#### Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Weld Metal

2

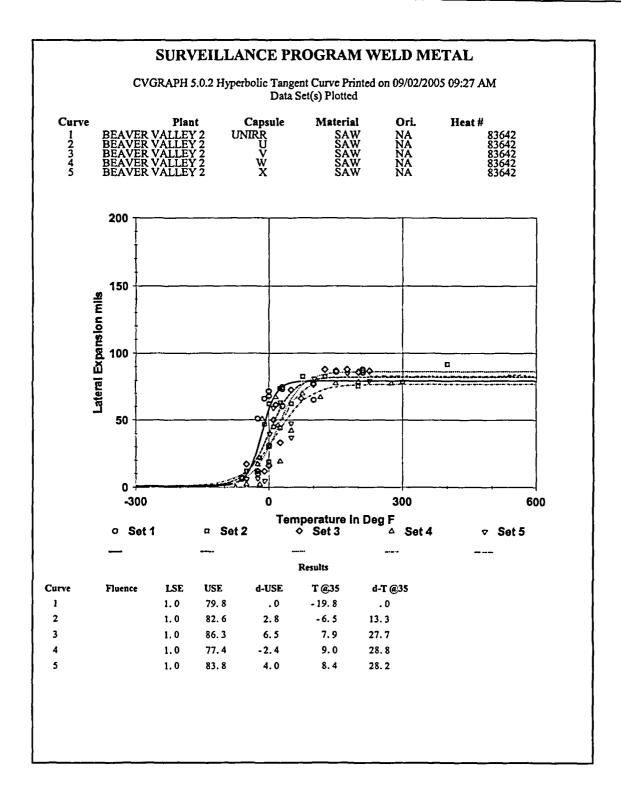
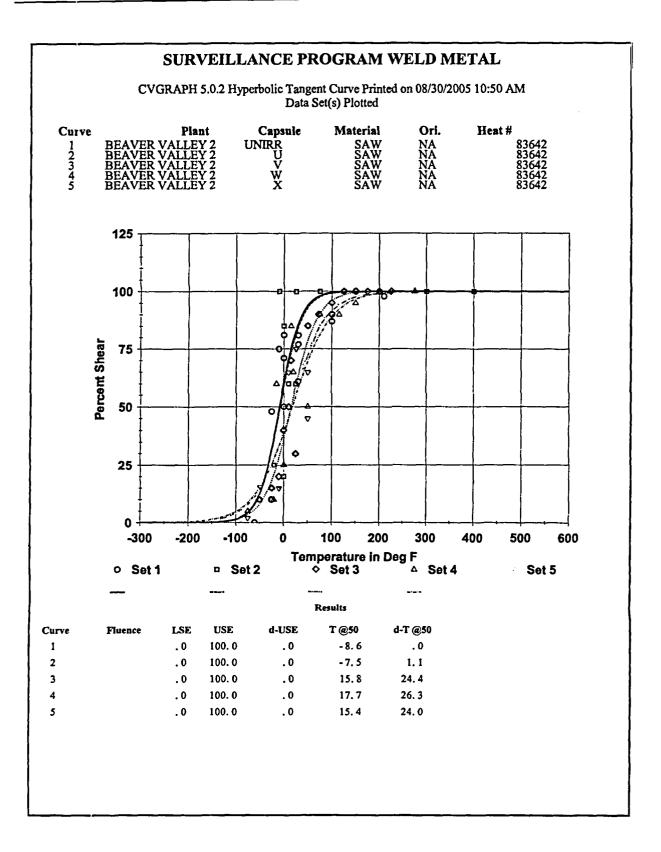
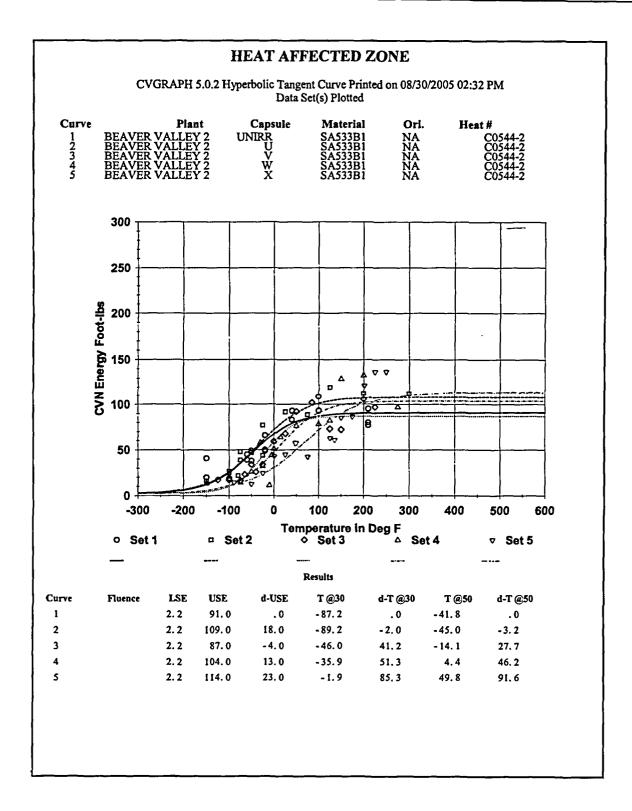
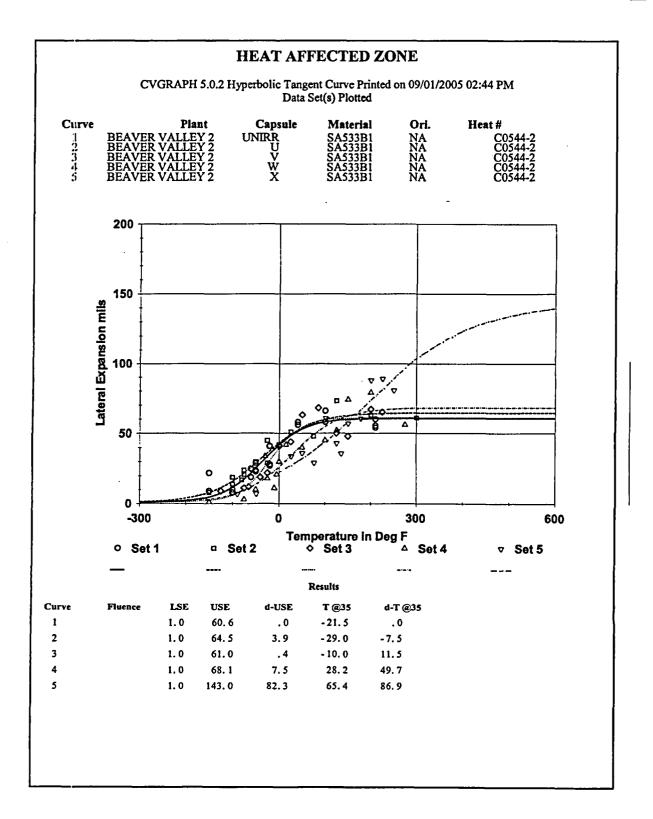
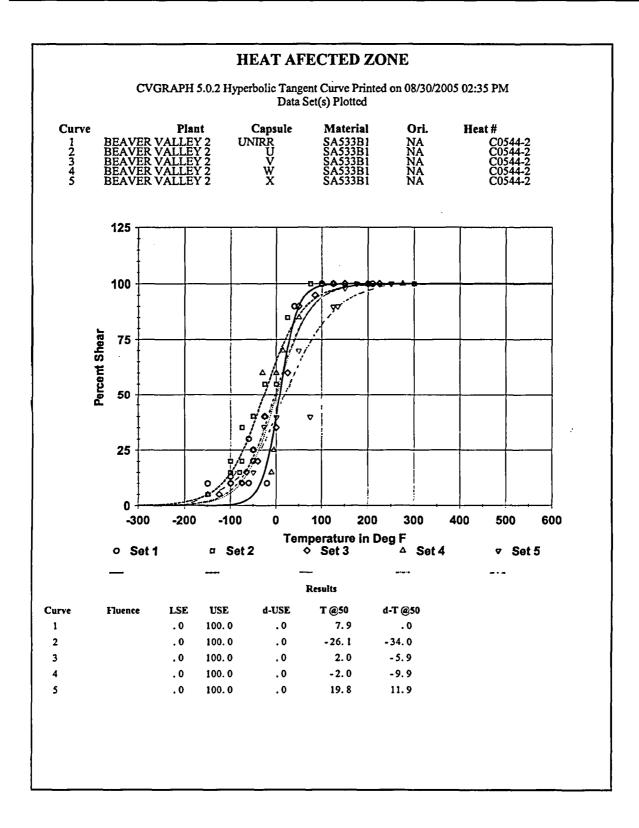





Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Weld Metal

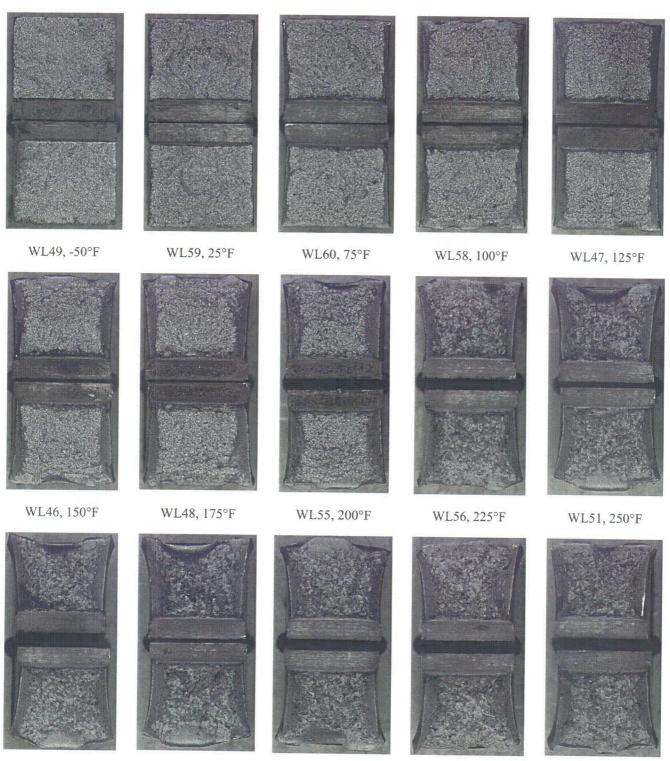



### Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Weld Metal

.




# Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Heat Affected Zone Material




### Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Heat Affected Zone Material

1



#### Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 2 Reactor Vessel Heat Affected Zone Material



WL52, 275°F

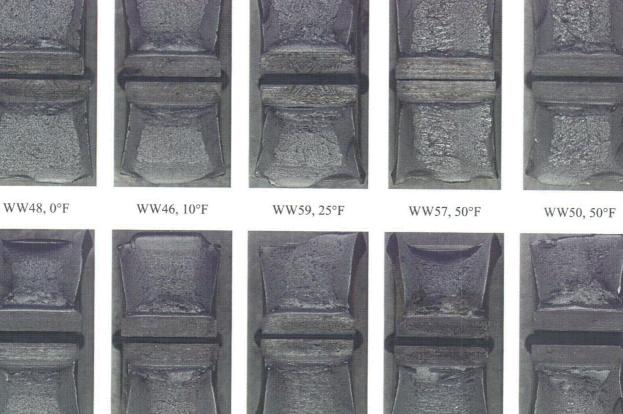
WL57, 280°F

WL50, 325°F

WL54, 350°F

WL53, 375°F

Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Longitudinal Orientation)




#### Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation)



WW51, -75°F

WW53, -50°F



WW58, 75°F

WW47, 100°F


WW60, 150°F

WW56, 175°F

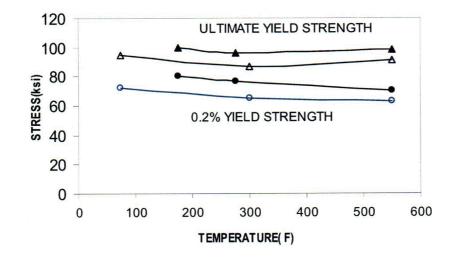
WW49, 225°F

5-31

# Figure 5-15 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 2 Reactor Vessel Weld Metal



WH46, 150°F


WH59, 175°F

WH60, 200°F

WH57, 225°F

WH56, 250°F

### Figure 5-16 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 2 Reactor Vessel Heat Affected Zone Material





 $\Delta$  and  $\circ$  are Unirradiated  $\blacktriangle$  and  $\bullet$  are Irradiated to 5.601 x 10<sup>19</sup> n/cm<sup>2</sup> (E > 1.0 MeV)

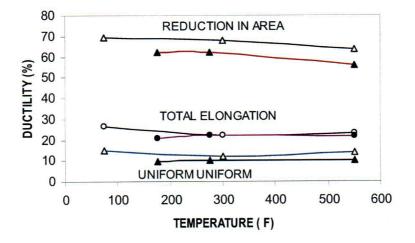
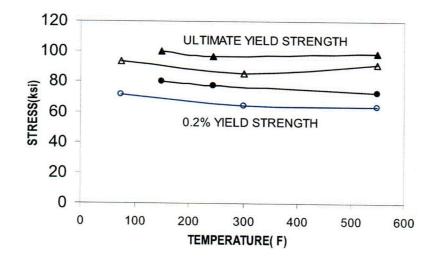



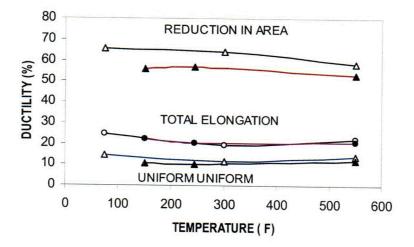
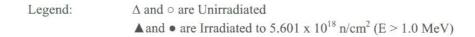

Figure 5-17 Tensile Properties for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Longitudinal Orientation)

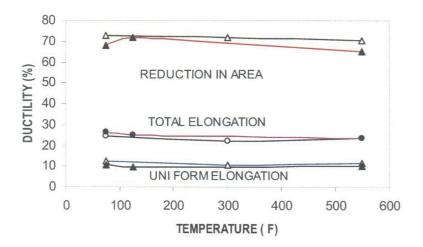
5-33

COI



Legend:  $\Delta$  and  $\circ$  are Unirradiated  $\blacktriangle$  and  $\bullet$  are Irradiated to 5.601 x 10<sup>19</sup> n/cm<sup>2</sup> (E > 1.0 MeV)

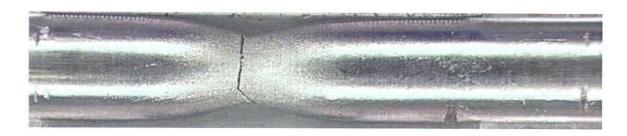





Figure 5-18 Tensile Properties for Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation)

5-34

<u>C02</u>

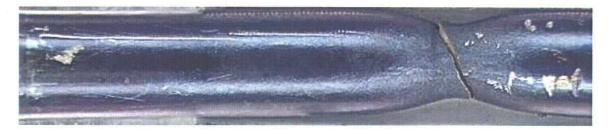






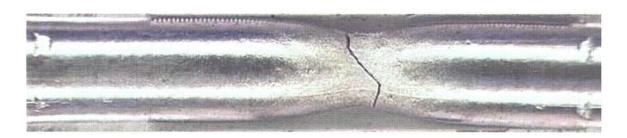



5-35

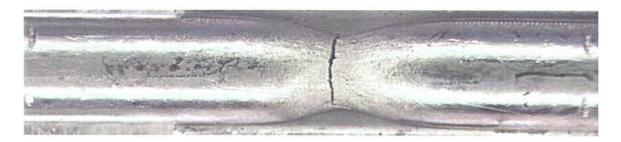

<u>co</u>3



Specimen WL-10 Tested at 175°F




Specimen WL-11 Tested at 275°F




Specimen WL-12 Tested at 550°F

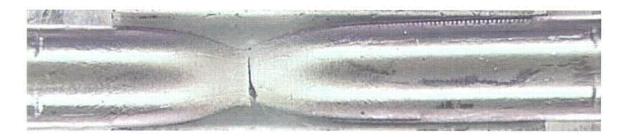
Figure 5-20 Fractured Tensile Specimens from Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Longitudinal Orientation)



Specimen WT-10 Tested at 150°F



Specimen WT-11 Tested at 245°F




Specimen WT-12 Tested at 550°F

Figure 5-21 Fractured Tensile Specimen from Beaver Valley Unit 2 Reactor Vessel Intermediate Shell Plate B9004-2 (Transverse Orientation)



Specimen WW-10 Tested at 70°F



Specimen WW-11 Tested at 125°F



Specimen WW-12 Tested at 550°F

Figure 5-22 Fractured Tensile Specimen from Beaver Valley Unit 2 Reactor Vessel Weld Metal

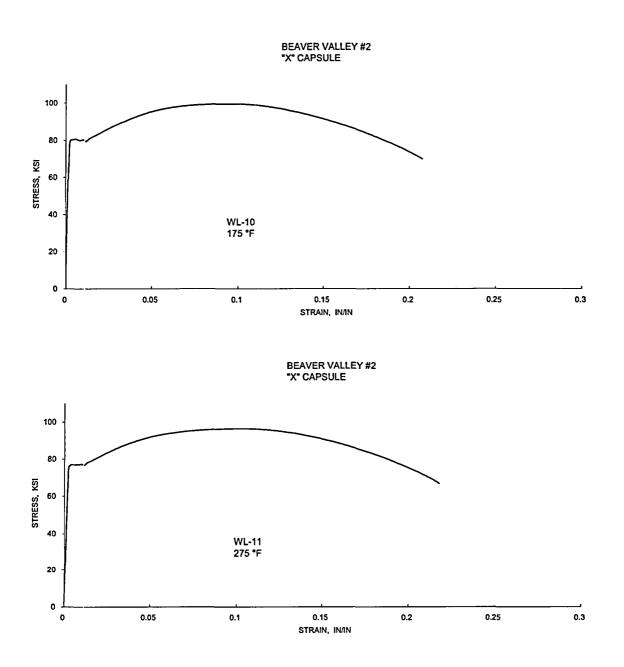



Figure 5-23 Engineering Stress-Strain Curves for Beaver Valley Unit 2 Intermediate Shell Plate B9004-2 Tensile Specimens WL-10 and WL-11 (Longitudinal Orientation)

;




Figure 5-24 Engineering Stress-Strain Curve for Beaver Valley Unit 2 Intermediate Shell Plate B9004-2 Tensile Specimen WL-12 (Longitudinal Orientation)

ī

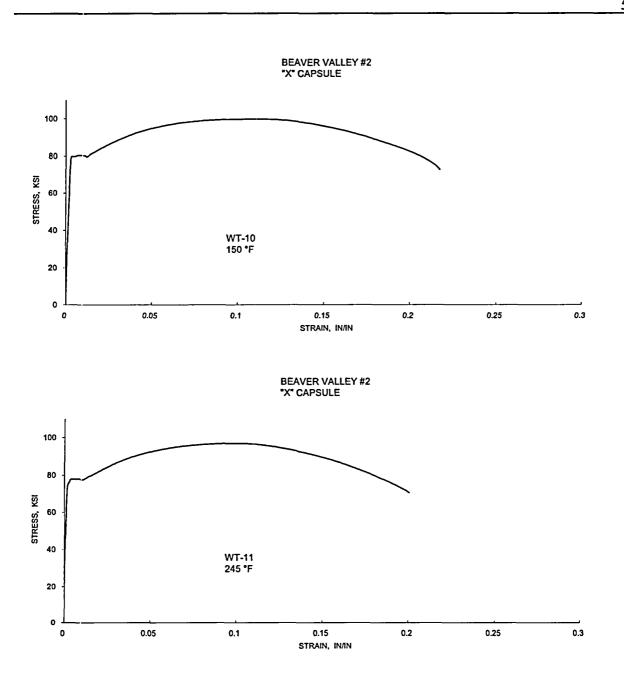



Figure 5-25 Engineering Stress-Strain Curves for Beaver Valley Unit 2 Intermediate Shell Plate B9004-2 Tensile Specimens WT-10 and WT-11 (Transverse Orientation)

ł

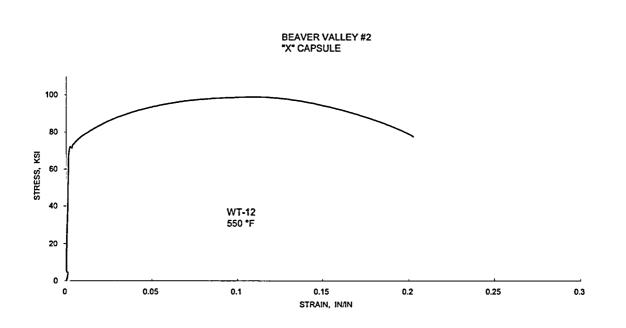
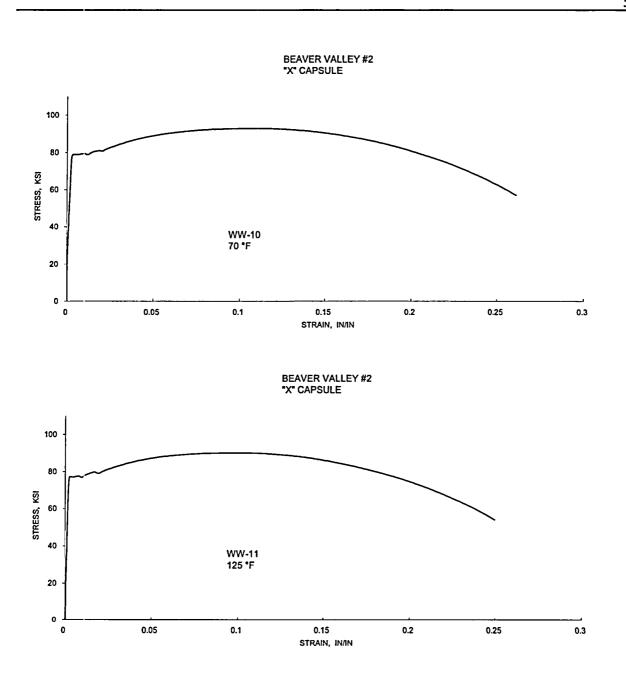




Figure 5-26 Engineering Stress-Strain Curve for Beaver Valley Unit 2 Intermediate Shell Plate B9004-2 Tensile Specimen WT-12 (Transverse Orientation)



#### Figure 5-27 Engineering Stress-Strain Curves for Beaver Valley Unit 2 Weld Metal Tensile Specimens WW-10 and WW-11

i

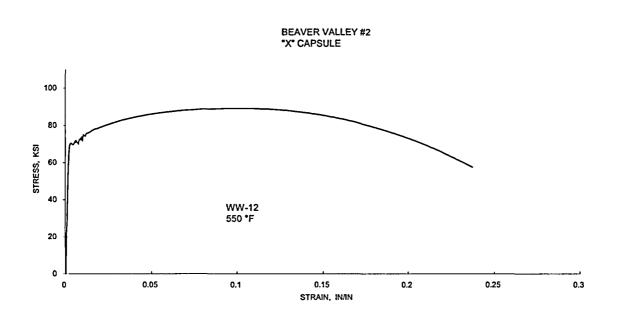



Figure 5-28 Engineering Stress-Strain Curve for Beaver Valley Unit 2 Weld Metal Tensile Specimen WW-12

# **6** RADIATION ANALYSIS AND NEUTRON DOSIMETRY

## 6.1 INTRODUCTION (REPLACED ENTIRE SECTION)

This section describes a discrete ordinates  $S_n$  transport analysis performed for the Beaver Valley Unit 2 reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules. In this analysis, fast neutron exposure parameters in terms of fast neutron fluence (E > 1.0 MeV) and iron atom displacements (dpa) were established on a plant and fuel cycle specific basis. An evaluation of the most recent dosimetry sensor set from Capsule X, withdrawn at the end of the eleventh plant operating cycle, is provided. In addition, to provide an up-to-date database applicable to the Beaver Valley Unit 2 reactor, sensor sets from previously withdrawn capsules (U, V, and W) were re-analyzed using the current dosimetry evaluation methodology. These dosimetry updates are presented in Appendix: A of this report. Comparisons of the results from these dosimetry evaluations with the analytical predictions served to validate the plant specific neutron transport calculations. These validated calculations subsequently formed the basis for providing projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 54 Effective Full Power Years (EFPY).

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementation of trend curve data to assess the condition of the vessel. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy dependent damage function for data correlation, ASTM Standard Practice E853-01, "Analysis and Interpretation of Light-Water Reactor Surveillance Results," [Ref. 21] recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a database for future reference. The energy dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693-01, "Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom." [Ref. 22] The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials." [Ref. 1]

All of the calculations and dosimetry evaluations described in this section and in Appendix A were based on the latest available nuclear cross-section data derived from ENDF/B-VI and made use of the latest available calculational tools. Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance and meet the requirements of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence" [Ref. 23]. Additionally, the methods used to develop the calculated pressure vessel fluence follow the NRC approved methodology described in WCAP-14040-NP-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," May 2004 [Ref. 24]. The dosimetry evaluations use the methodology described in WCAP-16083-NP, "Benchmark Testing of the FERRET Code for Least Squares Evaluation of Light Water Reactor Dosimetry," May 2004 [Ref. 25].

### 6.2 DISCRETE ORDINATES ANALYSIS

A plan view of the Beaver Valley Unit 2 reactor geometry at the core midplane is shown in Figure 4-1. Six irradiation capsules attached to the neutron pad are included in the reactor design that constitutes the reactor vessel surveillance program. The capsules are located at azimuthal angles of 107°, 287°, 343° (17° from the core cardinal axes) and 110°, 290°, 340° (20° from the core cardinal axes). The stainless steel specimen containers are 1.182-inch by 1-inch and are approximately 56 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the central 5 feet of the 12-foot high reactor core.

From a neutronic standpoint, the surveillance capsules and associated support structures are significant. The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the neutron pads and the reactor vessel. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

In performing the fast neutron exposure evaluations for the Beaver Valley Unit 2 reactor vessel and surveillance capsules, a series of fuel cycle specific forward transport calculations were carried out using the following three-dimensional flux synthesis technique:

$$\phi(r,\theta,z) = \phi(r,\theta)^* \frac{\phi(r,z)}{\phi(r)}$$

where  $\phi(r,\theta,z)$  is the synthesized three-dimensional neutron flux distribution,  $\phi(r,\theta)$  is the transport solution in r, $\theta$  geometry,  $\phi(r,z)$  is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and  $\phi(r)$  is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r, $\theta$  two-dimensional calculation. This synthesis procedure was carried out for each operating cycle at Beaver Valley Unit 2.

For the Beaver Valley Unit 2 transport calculations, two octant symmetric r, $\theta$  models were developed and are depicted in Figure 6-1. The first model contained the shortened neutron pad (15° span) with no surveillance capsules, while the second contained the extended neutron pad (26° span) including the surveillance capsules. The latter model was used to perform surveillance capsule dosimetry evaluations and subsequent comparisons with calculated results, while the former model was used to generate the maximum fluence at the pressure vessel wall. In developing these analytical models, nominal design dimensions were employed for the various structural components. Likewise, water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full power operating conditions. The coolant densities were treated on a fuel cycle specific basis. The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. The geometric mesh description of the r, $\theta$  reactor models consisted of 185 radial by 92 azimuthal intervals. Mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r, $\theta$  calculations was set at a value of 0.001.

The r,z model used for the Beaver Valley Unit 2 calculations is shown in Figure 6-2 and extends radially from the centerline of the reactor core out to a location interior to the primary biological shield and over an axial span from an elevation 1-foot below the active fuel to approximately 1-foot above the active fuel. As in the case of the r, $\theta$  models, nominal design dimensions and full power coolant densities were employed in the calculations. In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel former plates located between the core baffle and core barrel regions were also explicitly included in the model. The r,z geometric mesh description of this reactor model consisted of 149 radial by 178 axial intervals. As in the case of the r, $\theta$  calculations, mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,z calculations was also set at a value of 0.001.

The one-dimensional radial model used in the synthesis procedure consisted of the same 149 radial mesh intervals included in the r,z model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry.

The core power distributions used in the plant specific transport analysis were taken from the appropriate Beaver Valley Unit 2 fuel cycle design reports. The data extracted from the design reports represented cycle dependent fuel assembly enrichments, burnups, and axial power distributions. This information was used to develop spatial and energy dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of fuel cycle averaged neutron flux, which when multiplied by the appropriate fuel cycle length, generated the incremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial enrichment and burnup history of individual fuel assemblies. From these assembly dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

All of the transport calculations supporting this analysis were carried out using the DORT discrete ordinates code Version 3.1 [Ref. 26] and the BUGLE-96 cross-section library [Ref. 27]. The BUGLE-96 library provides a 67 group coupled neutron-gamma ray cross-section data set produced specifically for light water reactor (LWR) applications. In these analyses, anisotropic scattering was treated with a P<sub>5</sub> legendre expansion and angular discretization was modeled with an S<sub>16</sub> order of angular quadrature. Energy and space dependent core power distributions, as well as system operating temperatures, were treated on a fuel cycle specific basis.

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-6. In Table 6-1, the calculated exposure rates and integrated exposures, expressed in terms of both neutron fluence (E > 1.0 MeV) and dpa, are given at the radial and azimuthal center of the two azimuthally symmetric surveillance capsule positions (17° and 20°). These results, representative of the axial midplane of the active core, establish the calculated exposure of the surveillance capsules withdrawn to date as well as projected into the future. Similar information is provided in Table 6-2 for the reactor vessel inner radius. The vessel data given in Table 6-2 are representative of the axial location of the maximum neutron exposure at each of four azimuthal locations (0°, 15°, 30°, and 45°). It is also important to note that the data for the vessel inner radius were taken at the clad/base metal interface, and thus, represent the maximum calculated exposure levels of the vessel plates and welds.

Both calculated fluence (E > 1.0 MeV) and dpa data are provided in Tables 6-1 and 6-2. These data tabulations include both plant and fuel cycle specific calculated neutron exposures at the end of the eleventh operating fuel cycle as well as projections to 17, 20, 25, 32, 48, and 54 EFPY. The projections were based on the assumption that the core power distributions and associated plant operating characteristics for cycle 12 were representative of plant operation to 17 effective full power years and that the preliminary cycle 13 core power distribution was applicable beyond 17 effective full power years. The future projections listed in Tables 6-1 and 6-2 are also based on the assumption of a power uprate to 2900 MWt at 17 effective full power years.

Radial gradient information applicable to fast (E > 1.0 MeV) neutron fluence and dpa are given in Tables 6-3 and 6-4, respectively. The data, based on the cumulative integrated exposures from Cycles 1 through 11, are presented on a relative basis for each exposure parameter at several azimuthal locations. Exposure distributions through the vessel wall may be obtained by multiplying the calculated exposure at the vessel inner radius by the gradient data listed in Tables 6-3 and 6-4.

The calculated fast neutron exposures for the four surveillance capsules withdrawn from the Beaver Valley Unit 2 reactor are provided in Table 6-5. These assigned neutron exposure levels are based on the plant and fuel cycle specific neutron transport calculations performed for the Beaver Valley Unit 2 reactor.

Updated lead factors for the Beaver Valley Unit 2 surveillance capsules are provided in Table 6-6. The capsule lead factor is defined as the ratio of the calculated fluence (E > 1.0 MeV) at the geometric center of the surveillance capsule to the corresponding maximum calculated fluence at the pressure vessel clad/base metal interface. In Table 6-6, the lead factors for capsules that have been withdrawn from the reactor (U, V, W, and X) were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules. For the capsules remaining in the reactor (Y and Z) the lead factor corresponds to the calculated fluence values at the end of cycle 11, the last completed operating fuel cycle for Beaver Valley Unit 2.

### 6.3 NEUTRON DOSIMETRY

The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least squares evaluation performed for each of the capsule dosimetry sets. However, since the neutron dosimetry measurement data merely serves to validate the calculated results, only the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and least squares evaluation comparisons, is documented in Appendix A.

The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule X, that was withdrawn from Beaver Valley Unit 2 at the end of the eleventh fuel cycle, is summarized below.

|                                               | Reaction Rates (rps/atom) |            | M/C   |
|-----------------------------------------------|---------------------------|------------|-------|
| Reaction                                      | Measured                  | Calculated | Ratio |
| <sup>63</sup> Cu(n,α) <sup>60</sup> Co        | 5.96E-17                  | 6.02E-17   | 0.99  |
| <sup>54</sup> Fe(n,p) <sup>54</sup> Mn        | 6.21E-15                  | 6.99E-15   | 0.89  |
| <sup>58</sup> Ni(n,p) <sup>58</sup> Co        | 9.05E-15                  | 9.88E-15   | 0.92  |
| <sup>237</sup> Np(n,f) <sup>137</sup> Cs (Cd) | 3.64E-13                  | 4.09E-13   | 0.89  |
|                                               |                           | Average:   | 0.92  |
|                                               | % Standard Deviation:     |            | 5.1   |
|                                               |                           |            |       |

The measured-to-calculated (M/C) reaction rate ratios for the Capsule X threshold reactions range from 0.89 to 0.99, and the average M/C ratio is  $0.92 \pm 5.1\%$  (1 $\sigma$ ). This direct comparison falls well within the  $\pm 20\%$  criterion specified in Regulatory Guide 1.190; furthermore, it is consistent with the full set of comparisons given in Appendix A for all measured dosimetry removed to date from the Beaver Valley Unit 2 reactor. These comparisons validate the current analytical results described in Section 6.2; therefore, the calculations are deemed applicable for Beaver Valley Unit 2.

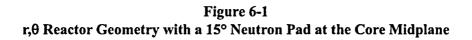
### 6.4 CALCULATIONAL UNCERTAINTIES

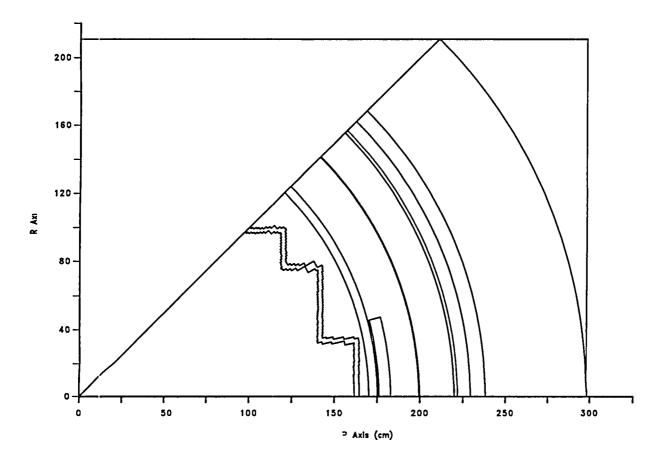
The uncertainty associated with the calculated neutron exposure of the Beaver Valley Unit 2 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190. In particular, the qualification of the methodology was carried out in the following four stages:

- 1 Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL).
- 2 Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H. B. Robinson power reactor benchmark experiment.
- 3 An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant specific transport calculations used in the neutron exposure assessments.
- 4 Comparisons of the plant specific calculations with all available dosimetry results from the Beaver Valley Unit 2 surveillance program.

The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques and associated cross-sections. This phase, however, did

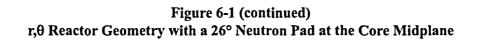
not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the qualification (H. B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods related and would tend to apply generically to all fast neutron exposure evaluations. The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations as well as to a lack of knowledge relative to various plant specific input parameters. The overall calculational uncertainty applicable to the Beaver Valley Unit 2 analysis was established from results of these three phases of the methods qualification.

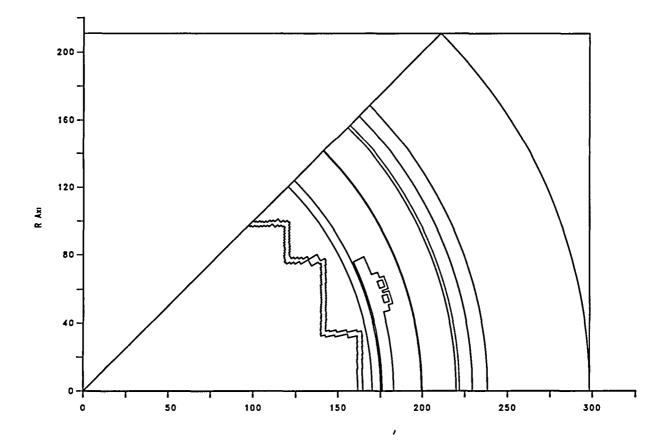

The fourth phase of the uncertainty assessment (comparisons with Beaver Valley Unit 2 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2. As such, the validation of the Beaver Valley Unit 2 analytical model based on the measured plant dosimetry is completely described in Appendix A.


The following summarizes the uncertainties developed from the first three phases of the methodology qualification. Additional information pertinent to these evaluations is provided in Reference 3.

|                                                             | Capsule | Vessel IR |
|-------------------------------------------------------------|---------|-----------|
| PCA Comparisons                                             | 3%      | 3%        |
| H. B. Robinson Comparisons                                  | 3%      | 3%        |
| Analytical Sensitivity Studies                              | 10%     | 11%       |
| Additional Uncertainty for Factors not Explicitly Evaluated | 5%      | 5%        |
| Net Calculational Uncertainty                               | 12%     | 13%       |

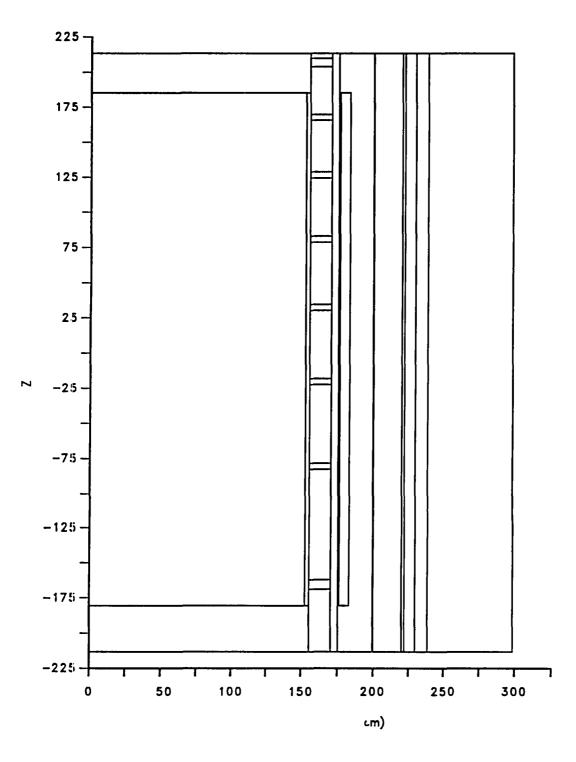
The net calculational uncertainty was determined by combining the individual components in quadrature. Therefore, the resultant uncertainty was treated as random and no systematic bias was applied to the analytical results.


The plant specific measurement comparisons described in Appendix A support these uncertainty assessments for Beaver Valley Unit 2.






6-7


;





ş

Figure 6-2 Beaver Valley Unit 2 r,z Reactor Geometry with Neutron Pad



|         |          | Cumulative  | Cumulative  | Neutron Flux           | (E > 1.0 MeV) |
|---------|----------|-------------|-------------|------------------------|---------------|
|         | Cycle    | Irradiation | Irradiation | [n/cm <sup>2</sup> -s] |               |
|         | Length   | Time        | Time        |                        |               |
| Cycle   | [EFPS]   | [EFPS]      | [EFPY]      | 17°                    | 20°           |
| 1       | 3.92E+07 | 3.92E+07    | 1.24        | 1.55E+11               | 1.34E+11      |
| 2       | 3.20E+07 | 7.12E+07    | 2.26        | 1.26E+11               | 1.11E+11      |
| 3       | 3.90E+07 | 1.10E+08    | 3.49        | 1.41E+11               | 1.27E+11      |
| 4       | 3.99E+07 | 1.50E+08    | 4.76        | 1.38E+11               | 1.23E+11      |
| 5       | 3.87E+07 | 1.89E+08    | 5.98        | 1.34E+11               | 1.16E+11      |
| 6       | 3.88E+07 | 2.28E+08    | 7.21        | 1.25E+11               | 1.14E+11      |
| 7       | 3.93E+07 | 2.67E+08    | 8.46        | 1.23E+11               | 1.09E+11      |
| 8       | 4.15E+07 | 3.08E+08    | 9.77        | 1.20E+11               | 1.07E+11      |
| 9       | 3.86E+07 | 3.47E+08    | 11.00       | 1.11E+11               | 9.64E+10      |
| 10      | 4.73E+07 | 3.94E+08    | 12.49       | 1.14E+11               | 1.01E+11      |
| 11      | 4.56E+07 | 4.40E+08    | 13.94       | 1.19E+11               | 1.03E+11      |
| 12(Prj) | 9.66E+07 | 5.37E+08    | 17.00       | 1.11E+11               | 9.57E+10      |
| Future  | 9.47E+07 | 6.31E+08    | 20.00       | 1.21E+11               | 1.03E+11      |
| Future  | 1.58E+08 | 7.89E+08    | 25.00       | 1.21E+11               | 1.03E+11      |
| Future  | 2.21E+08 | 1.01E+09    | 32.00       | 1.21E+11               | 1.03E+11      |
| Future  | 5.05E+08 | 1.52E+09    | 48.00       | 1.21E+11               | 1.03E+11      |
| Future  | 1.89E+08 | 1.70E+09    | 54.00       | 1.21E+11               | 1.03E+11      |

Table 6-1Calculated Neutron Exposure Rates And Integrated ExposuresAt The Surveillance Capsule CenterNeutrons (E > 1.0 MeV)

Note: Neutron exposure values reported for the surveillance capsules are centered at the core midplane.

#### Table 6-1 cont'd Calculated Neutron Exposure Rates And Integrated Exposures At The Surveillance Capsule Center

|         | Cumulative Cum |             | Cumulative  | Neutron Fluence ( $E > 1.0 \text{ MeV}$<br>[n/cm <sup>2</sup> ] |          |  |
|---------|----------------|-------------|-------------|-----------------------------------------------------------------|----------|--|
|         | Cycle          | Irradiation | Irradiation | [n/c                                                            | cm²]     |  |
|         | Length         | Time        | Time        |                                                                 |          |  |
| Cycle   | [EFPS]         | [EFPS]      | [EFPY]      | 17°                                                             | 20°      |  |
| 1       | 3.92E+07       | 3.92E+07    | 1.24        | 6.08E+18                                                        | 5.26E+18 |  |
| 2       | 3.20E+07       | 7.12E+07    | 2.26        | 1.01E+19                                                        | 8.81E+18 |  |
| 3       | 3.90E+07       | 1.10E+08    | 3.49        | 1.56E+19                                                        | 1.38E+19 |  |
| 4       | 3.99E+07       | 1.50E+08    | 4.76        | 2.11E+19                                                        | 1.87E+19 |  |
| 5       | 3.87E+07       | 1.89E+08    | 5.98        | 2.63E+19                                                        | 2.31E+19 |  |
| 6       | 3.88E+07       | 2.28E+08    | 7.21        | 3.11E+19                                                        | 2.76E+19 |  |
| 7       | 3.93E+07       | 2.67E+08    | 8.46        | 3.60E+19                                                        | 3.19E+19 |  |
| 8       | 4.15E+07       | 3.08E+08    | 9.77        | 4.10E+19                                                        | 3.63E+19 |  |
| 9       | 3.86E+07       | 3.47E+08    | 11.00       | 4.52E+19                                                        | 4.00E+19 |  |
| 10      | 4.73E+07       | 3.94E+08    | 12.49       | 5.06E+19                                                        | 4.48E+19 |  |
| 11      | 4.56E+07       | 4.40E+08    | 13.94       | 5.60E+19                                                        | 4.95E+19 |  |
| 12(Prj) | 9.66E+07       | 5.37E+08    | 17.00       | 6.67E+19                                                        | 5.87E+19 |  |
| Future  | 9.47E+07       | 6.31E+08    | 20.00       | 7.81E+19                                                        | 6.85E+19 |  |
| Future  | 1.58E+08       | 7.89E+08    | 25.00       | 9.72E+19                                                        | 8.47E+19 |  |
| Future  | 2.21E+08       | 1.01E+09    | 32.00       | 1.24E+20                                                        | 1.07E+20 |  |
| Future  | 5.05E+08       | 1.52E+09    | 48.00       | 1.85E+20                                                        | 1.59E+20 |  |
| Future  | 1.89E+08       | 1.70E+09    | 54.00       | 2.08E+20                                                        | 1.79E+20 |  |

#### Neutrons (E > 1.0 MeV)

Note: Neutron exposure values reported for the surveillance capsules are centered at the core midplane.

1

#### Table 6-1 cont'd Calculated Neutron Exposure Rates And Integrated Exposures At The Surveillance Capsule Center

|         |          | Cumulative  | Cumulative  | Displace     | ment Rate |
|---------|----------|-------------|-------------|--------------|-----------|
|         | Cycle    | Irradiation | Irradiation | [dpa/s]      |           |
|         | Length   | Time        | Time        |              |           |
| Cycle   | [EFPS]   | [EFPS]      | [EFPY]      | 1 <b>7</b> ° | 20°       |
| 1       | 3.92E+07 | 3.92E+07    | 1.24        | 3.19E-10     | 2.70E-10  |
| 2       | 3.20E+07 | 7.12E+07    | 2.26        | 2.54E-10     | 2.20E-10  |
| 3       | 3.90E+07 | 1.10E+08    | 3.49        | 2.85E-10     | 2.52E-10  |
| 4       | 3.99E+07 | 1.50E+08    | 4.76        | 2.79E-10     | 2.43E-10  |
| 5       | 3.87E+07 | 1.89E+08    | 5.98        | 2.73E-10     | 2.30E-10  |
| 6       | 3.88E+07 | 2.28E+08    | 7.21        | 2.53E-10     | 2.26E-10  |
| 7       | 3.93E+07 | 2.67E+08    | 8.46        | 2.49E-10     | 2.17E-10  |
| 8       | 4.15E+07 | 3.08E+08    | 9.77        | 2.43E-10     | 2.12E-10  |
| 9       | 3.86E+07 | 3.47E+08    | 11.00       | 2.25E-10     | 1.92E-10  |
| 10      | 4.73E+07 | 3.94E+08    | 12.49       | 2.30E-10     | 2.00E-10  |
| 11      | 4.56E+07 | 4.40E+08    | 13.94       | 2.39E-10     | 2.05E-10  |
| 12(Prj) | 9.66E+07 | 5.37E+08    | 17.00       | 2.25E-10     | 1.90E-10  |
| Future  | 9.47E+07 | 6.31E+08    | 20.00       | 2.45E-10     | 2.05E-10  |
| Future  | 1.58E+08 | 7.89E+08    | 25.00       | 2.45E-10     | 2.05E-10  |
| Future  | 2.21E+08 | 1.01E+09    | 32.00       | 2.45E-10     | 2.05E-10  |
| Future  | 5.05E+08 | 1.52E+09    | 48.00       | 2.45E-10     | 2.05E-10  |
| Future  | 1.89E+08 | 1.70E+09    | 54.00       | 2.45E-10     | 2.05E-10  |

#### **IRON ATOM DISPLACEMENTS**

Note: Neutron exposure values reported for the surveillance capsules are centered at the core midplane.

# Table 6-1 cont'dCalculated Neutron Exposure Rates And Integrated ExposuresAt The Surveillance Capsule Center

|         |          | Cumulative  | Cumulative  | Displac  | cements  |
|---------|----------|-------------|-------------|----------|----------|
|         | Cycle    | Irradiation | Irradiation | [d]      | pa]      |
| 1       | Length   | Time        | Time        | ·        |          |
| Cycle   | [EFPS]   | [EFPS]      | [EFPY]      | 17°      | 20°      |
| 1       | 3.92E+07 | 3.92E+07    | 1.24        | 1.25E-02 | 1.06E-02 |
| 2       | 3.20E+07 | 7.12E+07    | 2.26        | 2.06E-02 | 1.76E-02 |
| 3       | 3.90E+07 | 1.10E+08    | 3.49        | 3.18E-02 | 2.74E-02 |
| 4       | 3.99E+07 | 1.50E+08    | 4.76        | 4.29E-02 | 3.71E-02 |
| 5       | 3.87E+07 | 1.89E+08    | 5.98        | 5.34E-02 | 4.60E-02 |
| 6       | 3.88E+07 | 2.28E+08    | 7.21        | 6.32E-02 | 5.48E-02 |
| 7       | 3.93E+07 | 2.67E+08    | 8.46        | 7.30E-02 | 6.33E-02 |
| 8       | 4.15E+07 | 3.08E+08    | 9.77        | 8.31E-02 | 7.21E-02 |
| 9       | 3.86E+07 | 3.47E+08    | 11.00       | 9.18E-02 | 7.95E-02 |
| 10      | 4.73E+07 | 3.94E+08    | 12.49       | 1.03E-01 | 8.90E-02 |
| 11      | 4.56E+07 | 4.40E+08    | 13.94       | 1.14E-01 | 9.83E-02 |
| 12(Prj) | 9.66E+07 | 5.37E+08    | 17.00       | 1.35E-01 | 1.17E-01 |
| Future  | 9.47E+07 | 6.31E+08    | 20.00       | 1.59E-01 | 1.36E-01 |
| Future  | 1.58E+08 | 7.89E+08    | 25.00       | 1.97E-01 | 1.68E-01 |
| Future  | 2.21E+08 | 1.01E+09    | 32.00       | 2.51E-01 | 2.14E-01 |
| Future  | 5.05E+08 | 1.52E+09    | 48.00       | 3.75E-01 | 3.17E-01 |
| Future  | 1.89E+08 | 1.70E+09    | 54.00       | 4.22E-01 | 3.56E-01 |

#### **IRON ATOM DISPLACEMENTS**

Note: Neutron exposure values reported for the surveillance capsules are centered at the core midplane.

----

ł

;

|         |          | onin oprac  | C (0 2300 141 W | t at the Star | t of Cycle 12 |              |          |
|---------|----------|-------------|-----------------|---------------|---------------|--------------|----------|
| r       | L        | Cumulative  | Cumulative      |               | Jeutron Flux  | (F > 1.0 Me) | Δ        |
|         | Cycle    | Irradiation | Irradiation     | 1             |               | $m^2-s$ ]    | )        |
|         | Length   | Time        | Time            |               |               | 5j           |          |
| Cruala  | -        |             |                 | 0°            | 15°           | 30°          | 45°      |
| Cycle   | [EFPS]   | [EFPS]      | [EFPY]          | -             |               |              |          |
| 1       | 3.92E+07 | 3.92E+07    | 1.24            | 4.89E+10      | 2.73E+10      | 2.02E+10     | 1.38E+10 |
| 2       | 3.20E+07 | 7.12E+07    | 2.26            | 3.34E+10      | 2.09E+10      | 1.56E+10     | 1.07E+10 |
| 3       | 3.90E+07 | 1.10E+08    | 3.49            | 3.39E+10      | 2.29E+10      | 1.80E+10     | 1.29E+10 |
| 4       | 3.99E+07 | 1.50E+08    | 4.76            | 3.68E+10      | 2.29E+10      | 1.67E+10     | 1.07E+10 |
| 5       | 3.87E+07 | 1.89E+08    | 5.98            | 3.75E+10      | 2.27E+10      | 1.56E+10     | 1.06E+10 |
| 6       | 3.88E+07 | 2.28E+08    | 7.21            | 3.18E+10      | 2.11E+10      | 1.79E+10     | 1.29E+10 |
| 7       | 3.93E+07 | 2.67E+08    | 8.46            | 3.32E+10      | 2.08E+10      | 1.71E+10     | 1.30E+10 |
| 8       | 4.15E+07 | 3.08E+08    | 9.77            | 3.11E+10      | 1.99E+10      | 1.58E+10     | 1.15E+10 |
| 9       | 3.86E+07 | 3.47E+08    | 11.00           | 3.31E+10      | 1.900+10      | 1.46E+10     | 1.11E+10 |
| 10      | 4.73E+07 | 3.94E+08    | 12.49           | 2.96E+10      | 1.89E+10      | 1.46E+10     | 1.07E+10 |
| 11      | 4.56E+07 | 4.40E+08    | 13.94           | 3.25E+10      | 1.97E+10      | 1.43E+10     | 9.50E+09 |
| 12(Prj) | 9.66E+07 | 5.37E+08    | 17.00           | 3.12E+10      | 1.86E+10      | 1.38E+10     | 9.98E+09 |
| Future  | 9.47E+07 | 6.31E+08    | 20.00           | 3.82E+10      | 2.04E+10      | 1.44E+10     | 1.01E+10 |
| Future  | 1.58E+08 | 7.89E+08    | 25.00           | 3.82E+10      | 2.04E+10      | 1.44E+10     | 1.01E+10 |
| Future  | 2.21E+08 | 1.01E+09    | 32.00           | 3.82E+10      | 2.04E+10      | 1.44E+10     | 1.01E+10 |
| Future  | 5.05E+08 | 1.52E+09    | 48.00           | 3.82E+10      | 2.04E+10      | 1.44E+10     | 1.01E+10 |
| Future  | 1.89E+08 | 1.70E+09    | 54.00           | 3.82E+10      | 2.04E+10      | 1.44E+10     | 1.01E+10 |

Table 6-2Calculated Azimuthal Variation Of Maximum Exposure RatesAnd Integrated Exposures At The Reactor VesselClad/Base Metal InterfaceWith Uprate to 2900 MWt at the Start of Cycle 13

| Table 6-2 cont'd                                         |
|----------------------------------------------------------|
| Calculated Azimuthal Variation Of Maximum Exposure Rates |
| And Integrated Exposures At The Reactor Vessel           |
| Clad/Base Metal Interface                                |
| With Uprate to 2900 MWt at the Start of Cycle 13         |

|         |          | Cumulative  | Cumulative  | Ne       | Neutron Fluence ( $E > 1.0 \text{ MeV}$ ) |          |          |
|---------|----------|-------------|-------------|----------|-------------------------------------------|----------|----------|
|         | Cycle    | Irradiation | Irradiation |          | [n/cm <sup>2</sup> ]                      |          |          |
|         | Length   | Time        | Time        |          |                                           |          |          |
| Cycle   | [EFPS]   | [EFPS]      | [EFPY]      | 0°       | 15°                                       | 30°      | 45°      |
| 1       | 3.92E+07 | 3.92E+07    | 1.24        | 1.92E+18 | 1.07E+18                                  | 7.91E+17 | 5.41E+17 |
| 2       | 3.20E+07 | 7.12E+07    | 2.26        | 2.98E+18 | 1.74E+18                                  | 1.29E+18 | 8.82E+17 |
| 3       | 3.90E+07 | 1.10E+08    | 3.49        | 4.31E+18 | 2.63E+18                                  | 1.99E+18 | 1.38E+18 |
| 4       | 3.99E+07 | 1.50E+08    | 4.76        | 5.77E+18 | 3.55E+18                                  | 2.66E+18 | 1.81E+18 |
| 5       | 3.87E+07 | 1.89E+08    | 5.98        | 7.22E+18 | 4.42E+18                                  | 3.26E+18 | 2.22E+18 |
| 6       | 3.88E+07 | 2.28E+08    | 7.21        | 8.46E+18 | 5.24E+18                                  | 3.96E+18 | 2.72E+18 |
| 7       | 3.93E+07 | 2.67E+08    | 8.46        | 9.76E+18 | 6.06E+18                                  | 4.63E+18 | 3.23E+18 |
| 8       | 4.15E+07 | 3.08E+08    | 9.77        | 1.11E+19 | 6.88E+18                                  | 5.29E+18 | 3.70E+18 |
| 9       | 3.86E+07 | 3.47E+08    | 11.00       | 1.23E+19 | 7.62E+18                                  | 5.85E+18 | 4.13E+18 |
| 10      | 4.73E+07 | 3.94E+08    | 12.49       | 1.37E+19 | 8.51E+18                                  | 6.54E+18 | 4.64E+18 |
| 11      | 4.56E+07 | 4.40E+08    | 13.94       | 1.52E+19 | 9.41E+18                                  | 7.20E+18 | 5.07E+18 |
| 12(Prj) | 9.66E+07 | 5.37E+08    | 17.00       | 1.82E+19 | 1.12E+19                                  | 8.53E+18 | 6.04E+18 |
| Future  | 9.47E+07 | 6.31E+08    | 20.00       | 2.18E+19 | 1.31E+18                                  | 9.89E+18 | 6.99E+18 |
| Future  | 1.58E+08 | 7.89E+08    | 25.00       | 2.79E+19 | 1.63E+19                                  | 1.22E+19 | 8.58E+18 |
| Future  | 2.21E+08 | 1.01E+09    | 32.00       | 3.63E+19 | 2.09E+19                                  | 1.53E+19 | 1.08E+19 |
| Future  | 5.05E+08 | 1.52E+09    | 48.00       | 5.56E+19 | 3.11E+19                                  | 2.26E+19 | 1.59E+19 |
| Future  | 1.89E+08 | 1.70E+09    | 54.00       | 6.29E+19 | 3.50E+19                                  | 2.53E+19 | 1.78E+19 |

!

ï

| Table 6-2 cont'd                                              |
|---------------------------------------------------------------|
| Calculated Azimuthal Variation Of Fast Neutron Exposure Rates |
| And Iron Atom Displacement Rates At The Reactor Vessel        |
| Clad/Base Metal Interface                                     |
| With Uprate to 2900 MWt at the Start of Cycle 13              |

|         |          | Cumulative  | Cumulative  | Ir       | on Atom Dis | placement Ra | ite      |
|---------|----------|-------------|-------------|----------|-------------|--------------|----------|
|         | Cycle    | Irradiation | Irradiation |          | [dpa/s]     |              |          |
|         | Length   | Time        | Time        |          |             |              |          |
| Cycle   | [EFPS]   | [EFPS]      | [EFPY]      | 0°       | 15°         | 30°          | 45°      |
| 1       | 3.92E+07 | 3.92E+07    | 1.24        | 7.76E-11 | 4.29E-11    | 3.09E-11     | 2.13E-11 |
| 2       | 3.20E+07 | 7.12E+07    | 2.26        | 5.32E-11 | 3.29E-11    | 2.41E-11     | 1.66E-11 |
| 3       | 3.90E+07 | 1.10E+08    | 3.49        | 5.39E-11 | 3.60E-11    | 2.77E-11     | 1.99E-11 |
| 4       | 3.99E+07 | 1.50E+08    | 4.76        | 5.84E-11 | 3.60E-11    | 2.57E-11     | 1.66E-11 |
| 5       | 3.87E+07 | 1.89E+08    | 5.98        | 5.96E-11 | 3.57E-11    | 2.40E-11     | 1.64E-11 |
| 6       | 3.88E+07 | 2.28E+08    | 7.21        | 5.05E-11 | 3.31E-11    | 2.75E-11     | 1.99E-11 |
| 7       | 3.93E+07 | 2.67E+08    | 8.46        | 5.27E-11 | 3.27E-11    | 2.63E-11     | 2.00E-11 |
| 8       | 4.15E+07 | 3.08E+08    | 9.77        | 4.94E-11 | 3.13E-11    | 2.43E-11     | 1.78E-11 |
| 9       | 3.86E+07 | 3.47E+08    | 11.00       | 5.28E-11 | 3.00E-11    | 2.24E-11     | 1.71E-11 |
| 10      | 4.73E+07 | 3.94E+08    | 12.49       | 4.69E-11 | 2.96E-11    | 2.25E-11     | 1.66E-11 |
| 11      | 4.56E+07 | 4.40E+08    | 13.94       | 5.15E-11 | 3.09E-11    | 2.22E-11     | 1.47E-11 |
| 12(Prj) | 9.66E+07 | 5.37E+08    | 17.00       | 4.95E-11 | 2.92E-11    | 2.11E-11     | 1.55E-11 |
| Future  | 9.47E+07 | 6.31E+08    | 20.00       | 6.07E-11 | 3.21E-11    | 2.22E-11     | 1.56E-11 |
| Future  | 1.58E+08 | 7.89E+08    | 25.00       | 6.07E-11 | 3.21E-11    | 2.22E-11     | 1.56E-11 |
| Future  | 2.21E+08 | 1.01E+09    | 32.00       | 6.07E-11 | 3.21E-11    | 2.22E-11     | 1.56E-11 |
| Future  | 5.05E+08 | 1.52E+09    | 48.00       | 6.07E-11 | 3.21E-11    | 2.22E-11     | 1.56E-11 |
| Future  | 1.89E+08 | 1.70E+09    | 54.00       | 6.07E-11 | 3.21E-11    | 2.22E-11     | 1.56E-11 |

.

#### Table 6-2 cont'd Calculated Azimuthal Variation Of Maximum Exposure Rates And Integrated Exposures At The Reactor Vessel Clad/Base Metal Interface With Uprate to 2900 MWt

|         |          | Cumulative  | Cumulative  |          | Iron Atom D | isplacements | · · · · · · · · · · · · · · · · · · · |
|---------|----------|-------------|-------------|----------|-------------|--------------|---------------------------------------|
|         | Cycle    | Irradiation | Irradiation |          | [dpa]       |              |                                       |
|         | Length   | Time        | Time        |          |             |              |                                       |
| Cycle   | [EFPS]   | [EFPS]      | [EFPY]      | 0°       | 15°         | 30°          | 45°                                   |
| 1       | 3.92E+07 | 3.92E+07    | 1.24        | 3.04E-03 | 1.68E-03    | 1.21E-03     | 8.35E-04                              |
| 2       | 3.20E+07 | 7.12E+07    | 2.26        | 4.75E-03 | 2.73E-03    | 1.98E-03     | 1.37E-03                              |
| 3       | 3.90E+07 | 1.10E+08    | 3.49        | 6.85E-03 | 4.14E-03    | 3.06E-03     | 2.14E-03                              |
| 4       | 3.99E+07 | 1.50E+08    | 4.76        | 9.18E-03 | 5.57E-03    | 4.09E-03     | 2.80E-03                              |
| 5       | 3.87E+07 | 1.89E+08    | 5.98        | 1.15E-02 | 6.95E-03    | 5.02E-03     | 3.44E-03                              |
| 6       | 3.88E+07 | 2.28E+08    | 7.21        | 1.34E-02 | 8.24E-03    | 6.09E-03     | 4.21E-03                              |
| 7       | 3.93E+07 | 2.67E+08    | 8.46        | 1.55E-02 | 9.52E-03    | 7.12E-03     | 5.00E-03                              |
| 8       | 4.15E+07 | 3.08E+08    | 9.77        | 1.76E-02 | 1.08E-02    | 8.13E-03     | 5.73E-03                              |
| 9       | 3.86E+07 | 3.47E+08    | 11.00       | 1.96E-02 | 1.20E-02    | 8.99E-03     | 6.40E-03                              |
| 10      | 4.73E+07 | 3.94E+08    | 12.49       | 2.18E-02 | 1.34E-02    | 1.01E-02     | 7.18E-03                              |
| 11      | 4.56E+07 | 4.40E+08    | 13.94       | 2.42E-02 | 1.48E-02    | 1.11E-02     | 7.85E-03                              |
| 12(Prj) | 9.66E+07 | 5.37E+08    | 17.00       | 2.90E-02 | 1.76E-02    | 1.31E-02     | 9.35E-03                              |
| Future  | 9.47E+07 | 6.31E+08    | 20.00       | 3.47E-02 | 2.07E-02    | 1.52E-02     | 1.08E-02                              |
| Future  | 1.58E+08 | 7.89E+08    | 25.00       | 4.43E-02 | 2.57E-02    | 1.87E-02     | 1.33E-02                              |
| Future  | 2.21E+08 | 1.01E+09    | 32.00       | 5.77E-02 | 3.28E-02    | 2.36E-02     | 1.67E-02                              |
| Future  | 5.05E+08 | 1.52E+09    | 48.00       | 8.83E-02 | 4.91E-02    | 3.48E-02     | 2.46E-02                              |
| Future  | 1.89E+08 | 1.70E+09    | 54.00       | 9.98E-02 | 5.51E-02    | 3.90E-02     | 2.76E-02                              |

| RADIUS | AZIMUTHAL ANGLE                                                                                                                                                                                                                     |       |       |       |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|--|--|--|
| (cm)   | 0° 15°                                                                                                                                                                                                                              |       | 30°   | 45°   |  |  |  |
| 199.79 | 1.000                                                                                                                                                                                                                               | 1.000 | 1.000 | 1.000 |  |  |  |
| 204.79 | 0.587                                                                                                                                                                                                                               | 0.601 | 0.600 | 0.603 |  |  |  |
| 209.79 | 0.301                                                                                                                                                                                                                               | 0.316 | 0.314 | 0.318 |  |  |  |
| 214.79 | 0.148                                                                                                                                                                                                                               | 0.159 | 0.158 | 0.161 |  |  |  |
| 219.79 | 0.068                                                                                                                                                                                                                               | 0.078 | 0.078 | 0.082 |  |  |  |
| Note:  | te: Base Metal Inner Radius = $199.79 \text{ cm}$<br>Base Metal $1/4T$ = $204.79 \text{ cm}$<br>Base Metal $1/2T$ = $209.79 \text{ cm}$<br>Base Metal $3/4T$ = $214.79 \text{ cm}$<br>Base Metal Outer Radius = $219.79 \text{ cm}$ |       |       |       |  |  |  |

Table 6-3Relative Radial Distribution Of Neutron Fluence (E > 1.0 MeV)Within The Reactor Vessel Wall

| Table 6-4                                                     |
|---------------------------------------------------------------|
| Relative Radial Distribution Of Iron Atom Displacements (dpa) |
| Within The Reactor Vessel Wall                                |

| RADIUS                                    | AZIMUTHAL ANGLE               |           |            |       |  |  |
|-------------------------------------------|-------------------------------|-----------|------------|-------|--|--|
| (cm)                                      | 0°                            | 45°       |            |       |  |  |
| 199.79                                    | 1.000                         | 1.000     | 1.000      | 1.000 |  |  |
| 204.79                                    | 0.666                         | 0.681     | 0.665      | 0.668 |  |  |
| 209.79                                    | 0.417                         | 0.436     | 0.416      | 0.420 |  |  |
| 214.79                                    | 0.254                         | 0.274     | 0.256      | 0.262 |  |  |
| 219.79                                    | 0.140                         | 0.163     | 0.154      | 0.164 |  |  |
|                                           |                               |           |            |       |  |  |
| Note: Base Metal Inner Radius = 199.79 cm |                               |           |            |       |  |  |
|                                           | Base Me                       | etal 1/4T | = 204.79 c | m     |  |  |
| Base Metal $1/2T$ = 209.79 cm             |                               |           |            |       |  |  |
|                                           | Base Metal $3/4T$ = 214.79 cm |           |            |       |  |  |
| Base Metal Outer Radius = 219.79 cm       |                               |           |            |       |  |  |

|         | Irradiation Time | Fluence ( $E > 1.0 \text{ MeV}$ ) | Iron Displacements |
|---------|------------------|-----------------------------------|--------------------|
| Capsule | [EFPY]           | [n/cm <sup>2</sup> ]              | [dpa]              |
| U       | 1.24             | 6.08E+18                          | 1.25E-02           |
| v       | 5.98             | 2.63E+19                          | 5.34E-02           |
| w       | 9.77             | 3.63E+19                          | 7.20E-02           |
| x       | 13.94            | 5.60E+19                          | 1.14E-01           |

Table 6-5Calculated Fast Neutron Exposure of Surveillance CapsulesWithdrawn from Beaver Valley Unit 2

## Table 6-6 Calculated Surveillance Capsule Lead Factors

| Capsule ID   |                  |             |
|--------------|------------------|-------------|
| And Location | Status           | Lead Factor |
| U (17°)      | Withdrawn EOC 1  | 3.17        |
| V (17°)      | Withdrawn EOC 5  | 3.64        |
| W (20°)      | Withdrawn EOC 8  | 3.29        |
| X (17°)      | Withdrawn EOC 11 | 3.68        |
| Y (20°)      | In Reactor       | 3.25        |
| Z (20°)      | In Reactor       | 3.25        |

Note: Lead factors for capsules remaining in the reactor are based on cycle specific exposure calculations through the current operating fuel reload, i.e., Cycle 11

1

t

#### 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE

The following surveillance capsule removal schedule meets the requirements of ASTM E185-82 [Ref. 12] and is recommended for future capsules to be removed from the Beaver Valley Unit 2 reactor vessel.

| Table 7-1         Recommended Surveillance Capsule Withdrawal Schedule |                         |                            |                                |                                              |  |
|------------------------------------------------------------------------|-------------------------|----------------------------|--------------------------------|----------------------------------------------|--|
| Capsule                                                                | <b>Capsule Location</b> | Lead Factor <sup>(a)</sup> | Withdrawal EFPY <sup>(b)</sup> | Fluence (n/cm <sup>2</sup> ) <sup>(:i)</sup> |  |
| U                                                                      | 343°                    | 3.17                       | 1.24                           | $6.082 \ge 10^{18}$ (c)                      |  |
| v                                                                      | 107°                    | 3.64                       | 5.98                           | 2.629 x 10 <sup>19 (c)</sup>                 |  |
| w                                                                      | 110°                    | 3.29                       | 9.77                           | 3.625 x 10 <sup>19 (c)</sup>                 |  |
| x                                                                      | 287°                    | 3.68                       | 13.94                          | 5.601 x 10 <sup>19 (c)</sup>                 |  |
| Y                                                                      | 290°                    | 3.25                       | Standby <sup>(d)</sup>         | (d)                                          |  |
| Z                                                                      | 340°                    | 3.25                       | Standby <sup>(d)</sup>         | (d)                                          |  |

Notes:

(a) Updated in Capsule X dosimetry analysis.

(b) Effective Full Power Years (EFPY) from plant startup.

(c) Actual plant evaluation calculated fluence.

(d) These capsules will reach a fluence of approximately 6.29 x 10<sup>19</sup> (54 EFPY Peak Fluence) which occurs at 17.33 EFPY. It is recommended that these standby capsules are withdrawn between 17 and 18 EFPY and placed in storage. Future testing: of one of the standby capsules is prudent if license extension for the plant is implemented.

#### 8 **REFERENCES**

- 1. Regulatory Guide 1.99, Revision 2, *Radiation Embrittlement of Reactor Vessel Materials*, U.S. Nuclear Regulatory Commission, May, 1988.
- 2. Code of Federal Regulations, 10CFR50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
- 3. WCAP-9615, Revision 1, Duquesne Light Company Beaver Valley Unit 2 Reactor Vessel Radiation Surveillance Program, P.A. Peters, dated June 1995.
- 4. WCAP-12406, Analysis of Capsule U from the Duquesne Light Company Beaver Valley Unit 2 Reactor Vessel Radiation Surveillance Program, S.E. Yanichko, et. al., September 1989.
- 5. WCAP-14484, Analysis of Capsule V from the Duquesne Light Company Beaver Valley Unit 2 Reactor Vessel Radiation Surveillance Program, P.A. Grendys, et. al., February 1996.
- 6. WCAP-15675, Analysis of Capsule W from FirstEnergy Nuclear Operating Company Beaver Valley Unit 2 Reactor Vessel Radiation Surveillance Program, J.H. Ledger, et. al., August 2001.
- 7. STD Letter Report STD-MCE-05-36, *Beaver Valley Unit 2, Capsule X Test Report*, J. Conermann, et al., July 11, 2005.
- 8. ASTM E185-73, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, American Society for Testing and Materials.
- 9. Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G, Fracture Toughness Criteria for Protection Against Failure
- 10. ASTM E208, Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels, American Society for Testing and Materials.
- 11. ASTM E399, *Test Method for Plane-Strain Fracture Toughness of Metallic Materials*, American Society for Testing and Materials.
- 12. ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels, American Society for Testing and Materials.
- 13. Westinghouse Science and Technology Department Procedure RMF 8402, *Surveillance Capsule Testing Program*, Revision 2, dated 1/6/2005.
- 14. Westinghouse Science and Technology Procedure RMF 8102, *Tensile Testing*, Revision 3, dated 3/1/1999.

- 15. Westinghouse Science and Technology Procedure RMF 8103, *Charpy Impact Testing*, Revision 2, dated 8/1/1998.
- 16. ASTM E23-02a, Standard Test Method for Notched Bar Impact Testing of Metallic Materials, American Society for Testing and Materials.
- 17. ASTM A370-97a, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, American Society for Testing and Materials.
- 18. ASTM E8-04, *Standard Test Methods for Tension Testing of Metallic Materials*, American Society for Testing and Materials.
- 19. ASTM E21-03a, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, American Society for Testing and Materials.
- 20. ASTM E83-93, *Standard Practice for Verification and Classification of Extensometers*, in ASTM Standards, Section 3, American Society for Testing and Materials.
- 21. ASTM E853-01, Standard Practice for Analysis and Interpretation of Light Water Reactor Surveillance Results, E706(1A), Volume 12.02, American Society for Testing and Materials.
- 22. ASTM E693-01, Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E706(ID), Volume 12.02, American Society for Testing and Materials.
- 23. Regulatory Guide RG-1.190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.
- 24. WCAP-14040-NP-A, Revision 4, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves, May 2004.
- 25. WCAP-16083-NP, Benchmark Testing of the FERRET Code for the Least Squares Evaluation of Light Water Reactor Dosimetry, S.L. Anderson, May 2004.
- 26. RSICC Computer Code Collection CCC-650, DOORS 3.1, One, Two- and Three-Dimensional Discrete Ordinates Neutron/Photon Transport Code System, August 1996.
- 27. RSICC Data Library Collection DLC-185, BUGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derived from ENDF/B-VI for LWR Shielding and Pressure Vessel Dosimetry Applications, March 1996.

### **APPENDIX A**

## VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS CREDIBILITY

#### A.1 Neutron Dosimetry

Comparisons of measured dosimetry results to both the calculated and least squares adjusted values for all surveillance capsules withdrawn from service to date at Beaver Valley Unit 2 are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence." [Ref. A-1] One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least squares adjusted values to within  $\pm$  20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report.

#### A.1.1 Sensor Reaction Rate Determinations

In this section, the results of the evaluations of the four neutron sensor sets withdrawn to date as part of the Beaver Valley Unit 2 Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

|            | Azimuthal       | Withdrawal      | Irradiation |
|------------|-----------------|-----------------|-------------|
| Capsule ID | <b>Location</b> | <u>Time</u>     | Time [EFPY] |
| U          | 17°             | End of Cycle 1  | 1.24        |
| v          | 17°             | End of Cycle 5  | 5.98        |
| W          | 20°             | End of Cycle 8  | 9.77        |
| x          | 17°             | End of Cycle 11 | 13.94       |

The azimuthal locations included in the above tabulation represent the first octant equivalent azimuthal angle of the geometric center of the respective surveillance capsules. The passive neutron sensors included in the evaluations of Surveillance Capsules U, V, W and X are summarized as follows:

|                  | Reaction                                 |                  |                  |                  |           |
|------------------|------------------------------------------|------------------|------------------|------------------|-----------|
| Sensor Material  | Of Interest                              | <u>Capsule U</u> | <u>Capsule V</u> | <u>Capsule W</u> | Capsule X |
| Copper           | $^{63}Cu(n,\alpha)^{60}Co$               | х                | х                | х                | х         |
| Iron             | <sup>54</sup> Fe(n,p) <sup>54</sup> Mn   | х                | х                | х                | х         |
| Nickel           | <sup>58</sup> Ni(n,p) <sup>58</sup> Co   | х                | х                | х                | х         |
| Uranium-238      | <sup>238</sup> U(n,f) <sup>137</sup> Cs  | х                | х                | X**              | X**       |
| Neptunium-237    | <sup>237</sup> Np(n,f) <sup>137</sup> Cs | х                | х                | х                | х         |
| Cobalt-Aluminum* | <sup>59</sup> Co(n,γ) <sup>60</sup> Co   | х                | х                | х                | Х         |

\* The cobalt-aluminum measurements for this plant include both bare wire and cadmium-covered sensors.

\*\* The U-238 sensors from these capsules yielded erroneous results and were, therefore, rejected.

Since all of the dosimetry monitors were accommodated within the dosimeter block centered at the radial center of the material test specimen array, gradient corrections were not required for these reaction rates. Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table A-1.

The use of passive monitors such as those listed above does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

- the measured specific activity of each monitor,
- the physical characteristics of each monitor,
- the operating history of the reactor,
- the energy response of each monitor, and
- the neutron energy spectrum at the monitor location.

Results from the radiometric counting of the neutron sensors from Capsules U, V, W, and X are provided in Table A-4. In all cases, the radiometric counting followed established ASTM procedures. Following sample preparation and weighing, the specific activity of each sensor was determined by means of a highresolution gamma spectrometer. For the copper, iron, nickel, and cobalt-aluminum sensors, these analyses were performed by direct counting of each of the individual samples. In the case of the uranium and neptunium fission sensors, the analyses were carried out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.

The irradiation history of the reactor over the irradiation periods experienced by Capsules U, V, W, and X was based on the reported monthly power generation of Beaver Valley Unit 2 from initial reactor criticality through the end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to Capsules U, V, W, and X is given in Table A-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

$$R = \frac{A}{N_0 F Y \sum \frac{P_j}{P_{ref}} C_j [1 - e^{-\lambda_{l_j}}] [e^{-\lambda_{l_d}}]}$$

where:

- R = Reaction rate averaged over the irradiation period and referenced to operation at a core power level of P<sub>ref</sub> (rps/nucleus).
- A = Measured specific activity (dps/gm).
- $N_0$  = Number of target element atoms per gram of sensor.
- F = Weight fraction of the target isotope in the sensor material.
- Y = Number of product atoms produced per reaction.
- $P_j$  = Average core power level during irradiation period j (MW).
- $P_{ref}$  = Maximum or reference power level of the reactor (MW).
- $C_j$  = Calculated ratio of  $\phi(E > 1.0 \text{ MeV})$  during irradiation period j to the time weighted average  $\phi(E > 1.0 \text{ MeV})$  over the entire irradiation period.
- $\lambda$  = Decay constant of the product isotope (1/sec).
- $t_j$  = Length of irradiation period j (sec).
- $t_d$  = Decay time following irradiation period j (sec).

and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio  $[P_j]/[P_{ref}]$  accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio C<sub>j</sub>, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, C<sub>j</sub> is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional C<sub>j</sub> term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another. The fuel cycle specific neutron flux values along with the computed values for C<sub>j</sub> are listed in Table A-3. These flux values represent the cycle dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the <sup>238</sup>U measurements to account for the presence of <sup>235</sup>U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation. Corrections were also made to the <sup>238</sup>U and <sup>237</sup>Np sensor reaction rates to account for gamma ray induced fission reactions that occurred over the course of the capsule irradiations. The correction factors applied to the Beaver Valley Unit 2 fission sensor reaction rates are summarized as follows:

| Correction                            | Capsule U | Capsule V | Capsule W | Capsule X |
|---------------------------------------|-----------|-----------|-----------|-----------|
| <sup>235</sup> U Impurity/Pu Build-in | 0.861     | 0.789     |           |           |
| <sup>238</sup> U(γ,f)                 | 0.976     | 0.976     |           |           |
| Net <sup>238</sup> U Correction       | 0.840     | 0.770     | n/a       | n/a       |
|                                       |           |           |           |           |
| <sup>237</sup> Np(γ,f)                | 0.994     | 0.994     | 0.994     | 0.994     |

These factors were applied in a multiplicative fashion to the decay corrected uranium and neptunium fission sensor reaction rates.

Results of the sensor reaction rate determinations for Capsules U, V, W, and X are given in Table A-4. In Table A-4, the measured specific activities, decay corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed. The fission sensor reaction rates are listed both with and without the applied corrections for <sup>238</sup>U impurities, plutonium build-in, and gamma ray induced fission effects.

#### A.1.2 Least Squares Evaluation of Sensor Sets

Least squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a Best Estimate neutron energy spectrum with associated uncertainties. Best Estimates for key exposure parameters such as  $\phi(E > 1.0 \text{ MeV})$  or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example,

$$R_i \pm \delta_{R_i} = \sum_g (\sigma_{ig} \pm \delta_{\sigma_{ig}}) (\phi_g \pm \delta_{\phi_g})$$

relates a set of measured reaction rates,  $R_i$ , to a single neutron spectrum,  $\phi_g$ , through the multigroup dosimeter reaction cross-section,  $\sigma_{ig}$ , each with an uncertainty  $\delta$ . The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least squares evaluation of the Beaver Valley Unit 2 surveillance capsule dosimetry, the FERRET code [Ref. A-2] was employed to combine the results of the plant specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters ( $\phi(E > 1.0 \text{ MeV})$  and dpa) along with associated uncertainties for the four in-vessel capsules withdrawn to date.

The application of the least squares methodology requires the following input:

- 1 The calculated neutron energy spectrum and associated uncertainties at the measurement location.
- 2 The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.
- 3 The energy dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Beaver Valley Unit 2 application, the calculated neutron spectrum was obtained from the results of plant specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A.1.1. The dosimetry reaction cross-sections and uncertainties were obtained from the SNLRML dosimetry cross-section library [Ref. A-3]. The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations by ASTM Standard E1018, "Application of ASTM Evaluated Cross-Section Data File, Matrix E 706 (IIB)".

The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least squares procedure in the form of variances and covariances. The assignment of the input uncertainties followed the guidance provided in ASTM Standard E 944, "Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance."

The following provides a summary of the uncertainties associated with the least squares evaluation of the Beaver Valley Unit 2 surveillance capsule sensor sets.

#### Reaction Rate Uncertainties

The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

| Reaction                                 | Uncertainty |
|------------------------------------------|-------------|
| $^{63}Cu(n,\alpha)^{60}Co$               | 5%          |
| <sup>54</sup> Fe(n,p) <sup>54</sup> Mn   | 5%          |
| <sup>58</sup> Ni(n,p) <sup>58</sup> Co   | 5%          |
| <sup>238</sup> U(n,f) <sup>137</sup> Cs  | 10%         |
| <sup>237</sup> Np(n,f) <sup>137</sup> Cs | 10%         |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co   | 5%          |

These uncertainties are given at the  $1\sigma$  level.

#### Dosimetry Cross-Section Uncertainties

The reaction rate cross-sections used in the least squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least squares adjustment applications. These cross-sections were compiled from the most recent cross-section evaluations and they have been tested with respect to their accuracy and consistency for least squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Beaver Valley Unit 2 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

| Reaction                                 | Uncertainty  |
|------------------------------------------|--------------|
| <sup>63</sup> Cu(n,α) <sup>60</sup> Co   | 4.08-4.16%   |
| <sup>54</sup> Fe(n,p) <sup>54</sup> Mn   | 3.05-3.11%   |
| <sup>58</sup> Ni(n,p) <sup>58</sup> Co   | 4.49-4.56%   |
| <sup>238</sup> U(n,f) <sup>137</sup> Cs  | 0.54-0.64%   |
| <sup>237</sup> Np(n,f) <sup>137</sup> Cs | 10.32-10.97% |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co   | 0.79-3.59%   |

These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

#### Calculated Neutron Spectrum

The neutron spectra input to the least squares adjustment procedure were obtained directly from the results of plant specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

$$M_{gg} = R_n^2 + R_g * R_g * P_{gg}.$$

where  $R_n$  specifies an overall fractional normalization uncertainty and the fractional uncertainties  $R_g$  and  $R_g$ , specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

$$P_{gg'} = [1 - \theta] \delta_{gg'} + \theta e^{-H}$$

where

$$H = \frac{(g - g')^2}{2\gamma^2}$$

The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range  $\gamma$  ( $\theta$  specifies the strength of the latter term). The value of  $\delta$  is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Beaver Valley Unit 2 calculated spectra was as follows:

| Flux Normalization Uncertainty (R <sub>n</sub> ) |     |
|--------------------------------------------------|-----|
| Flux Group Uncertainties (Rg, Rg')               |     |
| (E > 0.0055 MeV)                                 | 15% |
| $(0.68 \text{ eV} \le E \le 0.0055 \text{ MeV})$ | 29% |
| (E < 0.68 eV)                                    | 52% |
| Short Range Correlation ( $\theta$ )             |     |
| (E > 0.0055 MeV)                                 | 0.9 |
| (0.68 eV < E < 0.0055 MeV)                       | 0.5 |
| (E < 0.68 eV)                                    | 0.5 |
| Flux Group Correlation Range (y)                 |     |
| (E > 0.0055 MeV)                                 | 6   |
| (0.68 eV < E < 0.0055 MeV)                       | 3   |
| (E < 0.68 eV)                                    | 2   |

#### A.1.3 Comparisons of Measurements and Calculations

Results of the least squares evaluations of the dosimetry from the Beaver Valley Unit 2 surveillance capsules withdrawn to date are provided in Tables A-5 and A-6. In Table A-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least squares adjusted reaction rates.

These ratios of M/C and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. In Table A-6, comparison of the calculated and best estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules.

The data comparisons provided in Tables A-5 and A-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, it may be noted that the uncertainty associated with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12% at the 1 $\sigma$  level. From Table A-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6%-7% for neutron flux (E > 1.0 MeV) and 8%-9% for iron atom displacement rate. Again, the uncertainties from the least squares evaluation are at the 1 $\sigma$  level.

Further comparisons of the measurement results with calculations are given in Tables A-7 and A-8. These comparisons are given on two levels. In Table A-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table A-8, calculations of fast neutron exposure rates in terms of  $\phi(E > 1.0 \text{ MeV})$  and dpa/s are compared with the best estimate results obtained from the least squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron reactions range from 0.89–1.11 for the 18 samples included in the data set. The overall average M/C ratio for the entire set of Beaver Valley Unit 2 data is 0.98 with an associated standard deviation of 7.5%.

In the comparisons of best estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.90–0.98 for neutron flux (E > 1.0 MeV) and from 0.91 to 0.99 for iron atom displacement rate. The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 0.95 with a standard deviation of 3.6% and 0.96 with a standard deviation of 3.6%, respectively.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Beaver Valley Unit 2 reactor pressure vessel.

1

|                 |                         | Target          | 90% Response  |                  | Fission    |
|-----------------|-------------------------|-----------------|---------------|------------------|------------|
| Monitor         | Reaction of             | Atom            | RANGE         | Product          | Yield      |
| <u>Material</u> | Interest                | <u>Fraction</u> | (MEV)         | <u>Half-life</u> | <u>(%)</u> |
| Copper          | <sup>63</sup> Cu (n,α)  | 0.6917          | 4.9 - 11.8    | 5.271 y          |            |
| Iron            | <sup>54</sup> Fe (n,p)  | 0.0585          | 2.1 - 8.4     | 312.3 d          |            |
| Nickel          | <sup>58</sup> Ni (n,p)  | 0.6808          | 1.5 - 8.2     | 70.82 d          |            |
| Uranium-238     | <sup>238</sup> U (n,f)  | 1.0000          | 1.2 - 6.8     | 30.07 y          | 6.02       |
| Neptunium-237   | <sup>237</sup> Np (n,f) | 1.0000          | 0.4 - 3.6     | 30.07 y          | 6.17       |
| Cobalt-Aluminum | <sup>59</sup> Co (n,γ)  | 0.0015          | non-threshold | 5.271 y          |            |

## Table A-1 Nuclear Parameters Used In The Evaluation Of Neutron Sensors

Note: The 90% response range is defined such that, in the neutron spectrum characteristic of the Beaver Valley Unit 2 surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.

Monthly Thermal Generation During The First Eleven Fuel Cycles Of The Beaver Valley Unit 2 Reactor (Reactor Power of 2652 MWt for Cycles 1 through 9, and 2689MW for Cycles 10 and 11)

|      |          | Thermal<br>Generation |             |                       | Thermal Generation |             |                     | Thermal<br>Generation |
|------|----------|-----------------------|-------------|-----------------------|--------------------|-------------|---------------------|-----------------------|
| Year | Month    | (MWt-hr)              | Year        | Month                 | (MWt-hr)           | Year        | Month               | (MWt-hr)              |
| 1987 | <u>8</u> | 188655                | <u>1990</u> | <u>101011111</u><br>8 | 1664072            | <u>1993</u> | <u>1000000</u><br>8 | 1951094               |
| 1987 | 9        | 309627                | 1990        | 9                     | 74406              | 1993        | 9                   | 782113                |
| 1987 | 10       | 1138592               | 1990        | 10                    | 0                  | 1993        | 10                  | 0                     |
| 1987 | 11       | 517531                | 1990        | 10                    | 375293             | 1993        | 10                  | 0                     |
| 1987 | 12       | 1868106               | 1990        | 12                    | 1962999            | 1993        | 12                  | 1318343               |
| 1988 | 1        | 1647518               | 1991        | 1                     | 1966105            | 1994        | 1                   | 1957437               |
| 1988 | 2        | 948305                | 1991        | 2                     | 1772383            | 1994        | 2                   | 1767624               |
| 1988 | 3        | 1961547               | 1991        | 3                     | 1920061            | 1994        | 3                   | 1957207               |
| 1988 | 4        | 1816453               | 1991        | 4                     | 1899670            | 1994        | 4                   | 1895053               |
| 1988 | 5        | 1963013               | 1991        | 5                     | 1959596            | 1994        | 5                   | 1960148               |
| 1988 | 6        | 1795032               | 1991        | 6                     | 1764771            | 1994        | 6                   | 1121998               |
| 1988 | 7        | 1881079               | 1991        | 7                     | 1941503            | 1994        | 7                   | 1954090               |
| 1988 | 8        | 1783059               | 1991        | 8                     | 1954146            | 1994        | 8                   | 1958831               |
| 1988 | 9        | 1802754               | 1991        | 9                     | 1881952            | 1994        | 9                   | 1897976               |
| 1988 | 10       | 1882405               | 1991        | 10                    | 1861135            | 1994        | 10                  | 1962873               |
| 1988 | 11       | 1900844               | 1991        | 11                    | 1674762            | 1994        | 11                  | 1894630               |
| 1988 | 12       | 1963294               | 1991        | 12                    | 1636047            | 1994        | 12                  | 1950889               |
| 1989 | 1        | 1863158               | 1992        | 1                     | 1870700            | 1995        | 1                   | 1917701               |
| 1989 | 2        | 1018798               | 1992        | 2                     | 1796307            | 1995        | 2                   | 1754716               |
| 1989 | 3        | 612808                | 1992        | 3                     | 509755             | 1995        | 3                   | 1200818               |
| 1989 | 4        | 0                     | 1992        | 4                     | 0                  | 1995        | 4                   | 0                     |
| 1989 | 5        | 12973                 | 1992        | 5                     | 1023309            | 1995        | 5                   | 1147307               |
| 1989 | 6        | 1009593               | 1992        | 6                     | 1809717            | 1995        | 6                   | 1864365               |
| 1989 | 7        | 1033532               | 1992        | 7                     | 1934799            | 1995        | 7                   | 1916207               |
| 1989 | 8        | 1948907               | 1992        | 8                     | 1959446            | 1995        | 8                   | 1773194               |
| 1989 | 9        | 1900600               | 1992        | 9                     | 1859358            | 1995        | 9                   | 1880865               |
| 1989 | 10       | 1966839               | 1992        | 10                    | 1960015            | 1995        | 10                  | 1957435               |
| 1989 | 11       | 1899581               | 1992        | 11                    | 1752279            | 1995        | 11                  | 1754746               |
| 1989 | 12       | 1814015               | 1992        | 12                    | 1708578            | 1995        | 12                  | 1891015               |
| 1990 | 1        | 1686721               | 1993        | 1                     | 1635667            | 1996        | 1                   | 1810014               |
| 1990 | 2        | 1194673               | 1993        | 2                     | 1702839            | 1996        | 2                   | 1742890               |
| 1990 | 3        | 1476919               | 1993        | 3                     | 1947152            | 1996        | 3                   | 1915329               |
| 1990 | 4        | 1380856               | 1993        | 4                     | 1786447            | 1996        | 4                   | 1777999               |
| 1990 | 5        | 1489609               | 1993        | 5                     | 1839535            | 1996        | 5                   | 1934637               |
| 1990 | 6        | 1431870               | 1993        | 6                     | 1888001            | 1996        | 6                   | 1857380               |
| 1990 | 7        | 1577454               | 1993        | 7                     | 1834053            | 1996        | 7                   | 1918340               |

#### Table A-2 cont'd

Monthly Thermal Generation During The First Eleven Fuel Cycles Of The Beaver Valley Unit 2 Reactor (Reactor Power of 2652 MWt for Cycles 1 through 9, and 2689MW for Cycles 10 and 11)

|      |              | Thermal         |             |              | Thermal    |             |              | Thermal    |
|------|--------------|-----------------|-------------|--------------|------------|-------------|--------------|------------|
|      |              | Generation      |             |              | Generation |             |              | Generation |
| Year | <u>Month</u> | <u>(MWt-hr)</u> | <u>Year</u> | <u>Month</u> | (MWt-hr)   | <u>Year</u> | <u>Month</u> | (MWt-hr)   |
| 1996 | 8            | 1469931         | 1999        | 8            | 1928918    | 2002        | 8            | 1997895    |
| 1996 | 9            | 0               | 1999        | 9            | 1874313    | 2002        | 9            | 1823374    |
| 1996 | 10           | 0               | 1999        | 10           | 1323291    | 2002        | 10           | 2000043    |
| 1996 | 11           | 0               | 1999        | 11           | 1682987    | 2002        | 11           | 1933715    |
| 1996 | 12           | 694343          | 1999        | 12           | 1775505    | 2002        | 12           | 1962537    |
| 1997 | 1            | 1210605         | 2000        | 1            | 1903763    | 2003        | 1            | 1997888    |
| 1997 | 2            | 1776258         | 2000        | 2            | 1677554    | 2003        | 2            | 1804094    |
| 1997 | 3            | 1178064         | 2000        | 3            | 1681774    | 2003        | 3            | 1997749    |
| 1997 | 4            | 1768747         | 2000        | 4            | 1873178    | 2003        | 4            | 1930985    |
| 1997 | 5            | 1942927         | 2000        | 5            | 1944510    | 2003        | 5            | 1953657    |
| 1997 | 6            | 1853679         | 2000        | 6            | 1857436    | 2003        | 6            | 1894875    |
| 1997 | 7            | 1082321         | 2000        | 7            | 1931752    | 2003        | 7            | 1997943    |
| 1997 | 8            | 1914272         | 2000        | 8            | 1925633    | 2003        | 8            | 1998043    |
| 1997 | 9            | 1572152         | 2000        | 9            | 1207003    | 2003        | 9            | 733841     |
| 1997 | 10           | 1944012         | 2000        | 10           | 286752     | 2003        | 10           | 1019110    |
| 1997 | 11           | 1895487         | 2000        | 11           | 1901991    | 2003        | 11           | 1931584    |
| 1997 | 12           | 990665          | 2000        | 12           | 1435864    | 2003        | 12           | 1998849    |
| 1998 | 1            | 0               | 2001        | 1            | 1950715    | 2004        | 1            | 1997347    |
| 1998 | 2            | 0               | 2001        | 2            | 1778926    | 2004        | 2            | 1869774    |
| 1998 | 3            | 0               | 2001        | 3            | 1724097    | 2004        | 3            | 1998361    |
| 1998 | 4            | 0               | 2001        | 4            | 1748718    | 2004        | 4            | 1869427    |
| 1998 | 5            | 0               | 2001        | 5            | 1944298    | 2004        | 5            | 1949549    |
| 1998 | 6            | 0               | 2001        | 6            | 1904103    | 2004        | 6            | 1933646    |
| 1998 | 7            | 0               | 2001        | 7            | 1938365    | 2004        | 7            | 1965028    |
| 1998 | 8            | 0               | 2001        | 8            | 1928137    | 2004        | 8            | 1997512    |
| 1998 | 9            | 25385           | 2001        | 9            | 1873345    | 2004        | 9            | 1928322    |
| 1998 | 10           | 1935467         | 2001        | 10           | 1968825    | 2004        | 10           | 2001362    |
| 1998 | 11           | 1624078         | 2001        | 11           | 1932741    | 2004        | 11           | 1934478    |
| 1998 | 12           | 1955838         | 2001        | 12           | 1997249    | 2004        | 12           | 1997979    |
| 1999 | 1            | 1954784         | 2002        | 1            | 1997170    | 2005        | 1            | 1999031    |
| 1999 | 2            | 1626617         | 2002        | 2            | 157181     | 2005        | 2            | 1675452    |
| 1999 | 3            | 0               | 2002        | 3            | 1730020    | 2005        | 3            | 1831750    |
| 1999 | 4            | 964605          | 2002        | 4            | 1842917    | 2005        | 4            | 154254     |
| 1999 | 5            | 1943731         | 2002        | 5            | 1816591    | 2005        | т            | 107607     |
| 1999 | 6            | 1859034         | 2002        | 6            | 1932910    |             |              |            |
| 1999 | 0<br>7       | 1226305         | 2002        | 7            | 1997512    |             |              |            |
| エフププ | /            | 1220303         | 2002        | 1            | 177/312    |             |              |            |

| Fuel<br>Cycle |           |           |           |           |
|---------------|-----------|-----------|-----------|-----------|
|               | Capsule U | Capsule V | Capsule W | Capsule X |
| 1             | 1.55E+11  | 1.55E+11  | 1.34E+11  | 1.55E+11  |
| 2             |           | 1.26E+11  | 1.11E+11  | 1.26E+11  |
| 3             |           | 1.41E+11  | 1.27E+11  | 1.41E+11  |
| 4             |           | 1.38E+11  | 1.23E+11  | 1.38E+11  |
| 5             |           | 1.34E+11  | 1.16E+11  | 1.34E+11  |
| 6             |           |           | 1.14E+11  | 1.25E+11  |
| 7             |           |           | 1.09E+11  | 1.23E+11  |
| 8             |           |           | 1.07E+11  | 1.20E+11  |
| 9             |           |           |           | 1.11E+11  |
| 10            |           |           |           | 1.14E+11  |
| 11            |           |           |           | 1.18E+11  |
|               |           |           |           |           |
| Average       | 1.55E+11  | 1.39E+11  | 1.18E+11  | 1.27E+11  |

Table A-3Calculated C<sub>J</sub> Factors at the Surveillance Capsule CenterCore Midplane Elevation

| Fuel<br>Cycle |           |           |           |           |
|---------------|-----------|-----------|-----------|-----------|
|               | Capsule U | Capsule V | Capsule W | Capsule X |
| 1             | 1.000     | 1.115     | 1.136     | 1.220     |
| 2             |           | 0.906     | 0.941     | 0.992     |
| 3             |           | 1.014     | 1.076     | 1.110     |
| 4             |           | 0.993     | 1.042     | 1.087     |
| 5             |           | 0.964     | 0.983     | 1.055     |
| 6             |           |           | 0.966     | 0.984     |
| 7             |           |           | 0.924     | 0.969     |
| 8             |           |           | 0.907     | 0.945     |
| 9             |           |           |           | 0.874     |
| 10            |           |           |           | 0.898     |
| 11            |           |           |           | 0.929     |
| Average       | 1.000     | 1.000     | 1.000     | 1.000     |

ł

|                                                |          |                             |                                   | • .              |            |
|------------------------------------------------|----------|-----------------------------|-----------------------------------|------------------|------------|
|                                                |          |                             |                                   | Radially         | Radially   |
|                                                |          |                             |                                   | Adjusted         | Adjusted   |
|                                                |          | Measured                    | Saturated                         | Saturated        | Reaction   |
|                                                |          | Activity                    | Activity                          | Activity         | Rate       |
| Reaction                                       | Location | (dps/g)                     | (dps/g)                           | (dps/g)          | (rps/atom) |
|                                                |          |                             | 1 <u>.</u>                        | 1000081          | <u></u>    |
| ${}^{63}$ Cu (n, $\alpha$ ) ${}^{60}$ Co       | Тор      | 7.54E+04                    | 5.18E+05                          | 5.18E+05         | 7.90E-17   |
|                                                | Middle   | 7.17E+04                    | 4.92E+05                          | 4.92E+05         | 7.51E-17   |
|                                                | Bottom   | 6.70E+04                    | 4.60E+05                          | 4.60E+05         | 7.02E-17   |
|                                                | Average  |                             |                                   |                  | 7.48E-17   |
|                                                | 0        |                             |                                   |                  |            |
| <sup>54</sup> Fe (n,p) <sup>54</sup> Mn        | Тор      | 2.77E+06                    | 5.33E+06                          | 5.33E+06         | 8.44E-15   |
|                                                | Middle   | 2.53E+06                    | 4.87E+06                          | 4.87E+06         | 7.71E-15   |
|                                                | Bottom   | 2.44E+06                    | 4.69E+06                          | 4.69E+06         | 7.44E-15   |
|                                                | Average  |                             |                                   |                  | 7.86E-15   |
|                                                |          |                             |                                   |                  |            |
| <sup>58</sup> Ni (n,p) <sup>58</sup> Co        | Middle   | 3.49E+07                    | 7.80E+07                          | 7.80E+07         | 1.12E-14   |
|                                                | Bottom   | 3.37E+07                    | 7.54E+07                          | 7.54E+07         | 1.08E-14   |
|                                                | Average  |                             |                                   |                  | 1.10E-14   |
| <u> </u>                                       |          |                             |                                   |                  |            |
| $^{238}$ U (n,f) $^{137}$ Cs (Cd)              | Middle   | 2.66E+05                    | 9.48E+06                          | 9.48E+06         | 6.23E-14   |
| <sup>238</sup> U (n,f) <sup>137</sup> Cs (Cd)  |          | Including <sup>235</sup> U, | $^{239}$ Pu, and $\gamma$ , fissi | ion corrections: | 5.23E-14   |
|                                                |          |                             |                                   |                  |            |
| $^{237}$ Np (n,f) $^{137}$ Cs (Cd)             | Middle   | 1.99E+06                    | 7.10E+07                          | 7.10E+07         | 4.53E-13   |
| <sup>237</sup> Np (n,f) <sup>137</sup> Cs (Cd) |          |                             | Including y, fiss                 | sion correction: | 4.50E-13   |
|                                                |          |                             |                                   |                  |            |
| <sup>59</sup> Co (n,γ) <sup>60</sup> Co        | Тор      | 1.50E+07                    | 1.03E+08                          | 1.03E+08         | 6.72E-12   |
|                                                | Тор      | 1.28E+07                    | 8.79E+07                          | 8.79E+07         | 5.73E-12   |
|                                                | Middle   | 1.36E+07                    | 9.34E+07                          | 9.34E+07         | 6.09E-12   |
|                                                | Middle   | 1.58E+07                    | 1.09E+08                          | 1.09E+08         | 7.08E-12   |
|                                                | Bottom   | 1.43E+07                    | 9.82E+07                          | 9.82E+07         | 6.41E-12   |
|                                                | Average  |                             |                                   |                  | 6.41E-12   |
|                                                |          |                             |                                   |                  |            |
| ${}^{59}$ Co (n, $\gamma$ ) ${}^{60}$ Co (Cd)  | Тор      | 8.57E+06                    | 5.88E+07                          | 5.88E+07         | 3.84E-12   |
|                                                | Middle   | 8.69E+06                    | 5.97E+07                          | 5.97E+07         | 3.89E-12   |
|                                                | Bottom   | 9.17E+06                    | 6.30E+07                          | 6.30E+07         | 4.11E-12   |
|                                                | Average  |                             |                                   |                  | 3.95E-12   |
|                                                |          |                             |                                   |                  |            |

#### Table A-4 Measured Sensor Activities And Reaction Rates Surveillance Capsule U

Notes: 1) Measured specific activities are indexed to a counting date of May 17, 1989.

- 2) The average <sup>238</sup>U (n,f) reaction rate of 5.23E-14 includes a correction factor of 0.861 to account for plutonium build-in and an additional factor of 0.976 to account for photo-fission effects in the sensor.
- photo-fission effects in the sensor.
  3) The average <sup>237</sup>Np (n,f) reaction rate of 4.50E-13 includes a correction factor of 0.994 to account for photo-fission effects in the sensor.

| <u>Reaction</u>                                                                                  | Location                                                      | Measured<br>Activity<br><u>(dps/g)</u>                               | Saturated<br>Activity<br>(dps/g)                                     | Radially<br>Adjusted<br>Saturated<br>Activity<br><u>(dps/g)</u>      | Radially<br>Adjusted<br>Reaction<br>Rate<br><u>(rps/atom)</u>                                |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| <sup>63</sup> Cu (n,α) <sup>60</sup> Co                                                          | Top<br>Middle<br>Bottom<br>Average                            | 2.41E+05<br>2.27E+05<br>2.16E+05                                     | 4.99E+05<br>4.67E+05<br>4.44E+05                                     | 4.99E+05<br>4.67E+05<br>4.44E+05                                     | 7.56E-17<br>7.13E-17<br>6.78E-17<br><b>7.16E-17</b>                                          |
| <sup>54</sup> Fe (n,p) <sup>54</sup> Mn                                                          | Top<br>Middle<br>Bottom<br>Average                            | 3.25E+06<br>3.08E+06<br>2.94E+06                                     | 4.80E+06<br>4.55E+06<br>4.34E+06                                     | 4.80E+06<br>4.55E+06<br>4.34E+06                                     | 7.61E-15<br>7.21E-15<br>6.88E-15<br><b>7.23E-15</b>                                          |
| <sup>58</sup> Ni (n,p) <sup>58</sup> Co                                                          | Top<br>Middle<br>Bottom<br>Average                            | 2.56E+07<br>2.41E+07<br>2.34E+07                                     | 7.45E+07<br>7.01E+07<br>6.81E+07                                     | 7.45E+07<br>7.01E+07<br>6.81E+07                                     | 1.07E-14<br>1.00E-14<br>9.75E-15<br><b>1.02E-14</b>                                          |
| <sup>238</sup> U (n,f) <sup>137</sup> Cs (Cd)<br><sup>238</sup> U (n,f) <sup>137</sup> Cs (Cd)   | Middle                                                        | 1.13E+06<br>Including <sup>235</sup> U,                              | 8.97E+06<br><sup>239</sup> Pu, and γ,fissi                           | 8.97E+06<br>on corrections:                                          | 5.89E-14<br>4.53E-14                                                                         |
| <sup>237</sup> Np (n,f) <sup>137</sup> Cs (Cd)<br><sup>237</sup> Np (n,f) <sup>137</sup> Cs (Cd) | Middle                                                        | 8.83E+06                                                             | 7.01E+07<br>Including γ,fiss                                         | 7.01E+07<br>sion correction:                                         | 4.47E-13<br><b>4.45E-1</b> 3                                                                 |
| <sup>59</sup> Co (n,γ) <sup>60</sup> Co                                                          | Top<br>Top<br>Middle<br>Middle<br>Bottom<br>Bottom<br>Average | 4.07E+07<br>3.63E+07<br>3.67E+07<br>4.36E+07<br>3.71E+07<br>4.40E+07 | 8.37E+07<br>7.47E+07<br>7.55E+07<br>8.97E+07<br>7.63E+07<br>9.05E+07 | 8.37E+07<br>7.47E+07<br>7.55E+07<br>8.97E+07<br>7.63E+07<br>9.05E+07 | 5.46E-12<br>4.87E-12<br>4.93E-12<br>5.85E-12<br>4.98E-12<br>5.91E-12<br>5.91E-12<br>5.33E-12 |
| <sup>59</sup> Co (n,γ) <sup>60</sup> Co (Cd)                                                     | Top<br>Middle<br>Bottom<br>Average                            | 2.41E+07<br>2.48E+07<br>2.51E+07                                     | 4.96E+07<br>5.10E+07<br>5.16E+07                                     | 4.96E+07<br>5.10E+07<br>5.16E+07                                     | 3.24E-12<br>3.33E-12<br>3.37E-12<br><b>3.31E-12</b>                                          |

#### Table A-4 cont'd **Measured Sensor Activities And Reaction Rates** Surveillance Capsule V

 Notes: 1) Measured specific activities are indexed to a counting date of June 30, 1995.
 2) The average <sup>238</sup>U (n,f) reaction rate of 4.53E-14 includes a correction factor of 0.789 to account for plutonium build-in and an additional factor of 0.976 to account for photo-fission effects in the sensor.

3) The average <sup>237</sup>Np (n,f) reaction rate of 4.45E-13 includes a correction factor of 0.994 to account. for photo-fission effects in the sensor.

ł

| <u>Reaction</u>                                                                                  | Location                                                      | Measured<br>Activity<br><u>(dps/g)</u>                               | Saturated<br>Activity<br><u>(dps/g)</u>                              | Radially<br>Adjusted<br>Saturated<br>Activity<br><u>(dps/g)</u>      | Radially<br>Adjusted<br>Reaction<br>Rate<br><u>(rps/atom)</u>                    |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <sup>63</sup> Cu (n,α) <sup>60</sup> Co                                                          | Top<br>Middle<br>Bottom                                       | 2.39E+05<br>2.17E+05<br>2.11E+05                                     | 4.11E+05<br>3.73E+05<br>3.63E+05                                     | 4.11E+05<br>3.73E+05<br>3.63E+05                                     | 6.27E-17<br>5.69E-17<br>5.54E-17                                                 |
|                                                                                                  | Average                                                       |                                                                      |                                                                      |                                                                      | 5.83E-17                                                                         |
| <sup>54</sup> Fe (n,p) <sup>54</sup> Mn                                                          | Top<br>Middle<br>Bottom<br>Average                            | 2.91E+06<br>2.65E+06<br>2.44E+06                                     | 4.29E+06<br>3.90E+06<br>3.60E+06                                     | 4.29E+06<br>3.90E+06<br>3.60E+06                                     | 6.80E-15<br>6.19E-15<br>5.70E-15<br><b>6.23E-15</b>                              |
| <sup>58</sup> Ni (n,p) <sup>58</sup> Co                                                          | Top<br>Middle<br>Bottom<br>Average                            | 4.39E+06<br>3.94E+06<br>3.85E+06                                     | 6.88E+07<br>6.17E+07<br>6.03E+07                                     | 6.88E+07<br>6.17E+07<br>6.03E+07                                     | 9.85E-15<br>8.84E-15<br>8.63E-15<br>9.11E-15                                     |
| <sup>237</sup> Np (n,f) <sup>137</sup> Cs (Cd)<br><sup>237</sup> Np (n,f) <sup>137</sup> Cs (Cd) | Middle                                                        | 1.06E+07<br>Including γ,fissio                                       | 5.50E+07<br>n correction:                                            | 5.50E+07                                                             | 3.51E-13<br>3.49E-13                                                             |
| <sup>59</sup> Co (n,γ) <sup>60</sup> Co                                                          | Top<br>Top<br>Middle<br>Middle<br>Bottom<br>Bottom<br>Average | 3.24E+07<br>3.73E+07<br>3.33E+07<br>3.98E+07<br>3.40E+07<br>3.89E+07 | 5.57E+07<br>6.42E+07<br>5.73E+07<br>6.85E+07<br>5.85E+07<br>6.69E+07 | 5.57E+07<br>6.42E+07<br>5.73E+07<br>6.85E+07<br>5.85E+07<br>6.69E+07 | 3.64E-12<br>4.19E-12<br>3.74E-12<br>4.47E-12<br>3.82E-12<br>4.37E-12<br>4.03E-12 |
| <sup>59</sup> Co (n,γ) <sup>60</sup> Co (Cd)                                                     | Top<br>Middle<br>Bottom<br>Average                            | 2.22E+07<br>2.27E+07<br>2.31E+07                                     | 3.82E+07<br>3.90E+07<br>3.97E+07                                     | 3.82E+07<br>3.90E+07<br>3.97E+07                                     | 2.49E-12<br>2.55E-12<br>2.59E-12<br><b>2.54E-12</b>                              |

#### Table A-4 cont'd **Measured Sensor Activities And Reaction Rates** Surveillance Capsule W

Notes: 1) Measured specific activities are indexed to a counting date of October 20, 2000. 2) The average <sup>237</sup>Np (n,f) reaction rate of 4.97E-13 includes a correction factor of 0.994 to account for photo-fission effects in the sensor.

| <u>Reaction</u>                                                                                  | <u>Location</u>                                               | Measured<br>Activity<br><u>(dps/g)</u>                               | Saturated<br>Activity<br><u>(dps/g)</u>                              | Radially<br>Adjusted<br>Saturated<br>Activity<br><u>(dps/g)</u>      | Radially<br>Adjusted<br>Reaction<br>Rate<br><u>(rps/aton)</u>                    |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <sup>63</sup> Cu (n,α) <sup>60</sup> Co                                                          | Top<br>Middle<br>Bottom<br>Average                            | 2.97E+05<br>2.83E+05<br>2.71E+05                                     | 4.09E+05<br>3.90E+05<br>3.73E+05                                     | 4.09E+05<br>3.90E+05<br>3.73E+05                                     | 6.24E-17<br>5.94E-17<br>5.69E-17<br><b>5.96E-1</b> 7                             |
| <sup>54</sup> Fe (n,p) <sup>54</sup> Mn                                                          | Top<br>Bottom<br>Average                                      | 3.33E+06<br>3.07E+06                                                 | 4.08E+06<br>3.76E+06                                                 | 4.08E+06<br>3.76E+06                                                 | 6.46E-15<br>5.96E-15<br><b>6.21E-1</b> 5                                         |
| <sup>58</sup> Ni (n,p) <sup>58</sup> Co                                                          | Top<br>Top<br>Middle<br>Bottom<br>Average                     | 3.59E+07<br>3.58E+07<br>3.40E+06<br>3.31E+06                         | 6.54E+07<br>6.52E+07<br>6.19E+07<br>6.03E+07                         | 6.54E+07<br>6.52E+07<br>6.19E+07<br>6.03E+07                         | 9.36E-15<br>9.33E-15<br>8.86E-15<br>8.63E-15<br>9.05E-15                         |
| <sup>237</sup> Np (n,f) <sup>137</sup> Cs (Cd)<br><sup>237</sup> Np (n,f) <sup>137</sup> Cs (Cd) | Middle                                                        | 1.54E+07<br>Including γ,fissio                                       | 5.74E+07<br>on correction:                                           | 5.74E+07                                                             | 3.66E-13<br>3.64E-13                                                             |
| <sup>59</sup> Co (n,γ) <sup>60</sup> Co                                                          | Top<br>Top<br>Middle<br>Middle<br>Bottom<br>Bottom<br>Average | 4.73E+07<br>5.19E+07<br>5.54E+07<br>4.58E+07<br>5.37E+07<br>4.66E+07 | 6.51E+07<br>7.15E+07<br>7.63E+07<br>6.31E+07<br>7.39E+07<br>6.42E+07 | 6.51E+07<br>7.15E+07<br>7.63E+07<br>6.31E+07<br>7.39E+07<br>6.42E+07 | 4.25E-12<br>4.66E-12<br>4.98E-12<br>4.11E-12<br>4.82E-12<br>4.19E-12<br>4.50E-12 |
| <sup>59</sup> Co (n,γ) <sup>6)</sup> Co (Cd)                                                     | Top<br>Middle<br>Average                                      | 3.04E+07<br>2.97E+07                                                 | 4.19E+07<br>5.74E+07                                                 | 4.19E+07<br>5.74E+07                                                 | 2.73E-12<br>2.67E-12<br><b>2.70E-1</b> 2                                         |

#### Table A-4 cont'd **Measured Sensor Activities And Reaction Rates** Surveillance Capsule X

Notes: 1) Measured specific activities are indexed to a counting date of May 27, 2005.
 2) The average <sup>237</sup>Np (n,f) reaction rate of 3.64E-13 includes a correction factor of 0.994 to account for photo-fission effects in the sensor.

!

### Table A-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates At The Surveillance Capsule Center

| ······································        | Reaction Rate [rps/atom] |            |          |      |      |
|-----------------------------------------------|--------------------------|------------|----------|------|------|
|                                               |                          |            | Best     |      |      |
| Reaction                                      | Measured                 | Calculated | Estimate | M/C  | M/BE |
| <sup>63</sup> Cu(n,α) <sup>60</sup> Co        | 7.47E-17                 | 6.82E-17   | 7.22E-17 | 1.10 | 0.97 |
| <sup>54</sup> Fe(n,p) <sup>54</sup> Mn        | 7.86E-15                 | 8.22E-15   | 8.09E-15 | 0.96 | 1.03 |
| <sup>58</sup> Ni(n,p) <sup>58</sup> Co        | 1.10E-14                 | 1.17E-14   | 1.14E-14 | 0.94 | 1.04 |
| <sup>238</sup> U(n,f) <sup>137</sup> Cs (Cd)  | 5.23E-14                 | 4.71E-14   | 4.59E-14 | 1.11 | 0.88 |
| <sup>237</sup> Np(n,f) <sup>137</sup> Cs (Cd) | 4.50E-13                 | 5.05E-13   | 4.71E-13 | 0.89 | 1.05 |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co        | 6.41E-12                 | 4.92E-12   | 6.24E-12 | 1.30 | 0.97 |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co (Cd)   | 3.95E-12                 | 3.77E-12   | 4.02E-12 | 1.05 | 1.02 |

#### Capsule U

#### Capsule V

|                                               | React    | ion Rate [rps/ | atom]    |      |      |
|-----------------------------------------------|----------|----------------|----------|------|------|
|                                               |          |                | Best     |      |      |
| Reaction                                      | Measured | Calculated     | Estimate | M/C  | M/BE |
| <sup>63</sup> Cu(n,α) <sup>60</sup> Co        | 7.16E-17 | 6.47E-17       | 6.88E-17 | 1.11 | 0.96 |
| <sup>54</sup> Fe(n,p) <sup>54</sup> Mn        | 7.23E-15 | 7.59E-15       | 7.47E-15 | 0.95 | 1.03 |
| 58Ni(n,p)58Co                                 | 1.01E-14 | 1.07E-14       | 1.05E-14 | 0.94 | 1.03 |
| <sup>238</sup> U(n,f) <sup>137</sup> Cs (Cd)  | 4.53E-14 | 4.27E-14       | 4.18E-14 | 1.06 | 0.92 |
| <sup>237</sup> Np(n,f) <sup>137</sup> Cs (Cd) | 4.44E-13 | 4.49E-13       | 4.43E-13 | 0.99 | 1.00 |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co        | 5.33E-12 | 4.26E-12       | 5.20E-12 | 1.25 | 0.98 |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co (Cd)   | 3.31E-12 | 3.27E-12       | 3.37E-12 | 1.01 | 1.02 |

#### Capsule W

|                                               | React    | ion Rate [rps/a |          |      |      |
|-----------------------------------------------|----------|-----------------|----------|------|------|
|                                               |          |                 | Best     |      |      |
| Reaction                                      | Measured | Calculated      | Estimate | M/C  | M/BE |
| <sup>63</sup> Cu(n,α) <sup>60</sup> Co        | 5.83E-17 | 5.90E-17        | 5.78E-17 | 0.99 | 0.99 |
| <sup>54</sup> Fe(n,p) <sup>54</sup> Mn        | 6.23E-15 | 6.70E-15        | 6.37E-15 | 0.93 | 1.02 |
| <sup>58</sup> Ni(n,p) <sup>58</sup> Co        | 9.10E-15 | 9.44E-15        | 9.04E-15 | 0.96 | 0.99 |
| <sup>237</sup> Np(n,f) <sup>137</sup> Cs (Cd) | 3.49E-13 | 3.70E-13        | 3.52E-13 | 0.94 | 1.01 |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co        | 4.03E-12 | 3.28E-12        | 3.93E-12 | 1.23 | 1.02 |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co (Cd)   | 2.54E-12 | 2.53E-12        | 2.59E-12 | 1.00 | 1.00 |

#### Table A-5 cont'd Comparison of Measured, Calculated, and Best Estimate Reaction Rates At The Surveillance Capsule Center

|                                                                                                                                                                                                                                                                      | React                                                                | ion Rate [rps/a                                                      | atom]                                                                |                                              |                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| Reaction                                                                                                                                                                                                                                                             | Measured                                                             | Calculated                                                           | Best<br>Estimate                                                     | M/C                                          | M/BE                                         |
| <sup>63</sup> Cu(n,α) <sup>60</sup> Co<br><sup>54</sup> Fe(n,p) <sup>54</sup> Mn<br><sup>58</sup> Ni(n,p) <sup>58</sup> Co<br><sup>237</sup> Np(n,f) <sup>137</sup> Cs (Cd)<br><sup>59</sup> Co(n,γ) <sup>60</sup> Co<br><sup>59</sup> Co(n,γ) <sup>60</sup> Co (Cd) | 5.96E-17<br>6.21E-15<br>9.05E-15<br>3.64E-13<br>4.50E-12<br>2.70E-12 | 6.02E-17<br>6.99E-15<br>9.88E-15<br>4.09E-13<br>3.87E-12<br>2.97E-12 | 5.83E-17<br>6.38E-15<br>9.05E-15<br>3.68E-13<br>4.39E-12<br>2.75E-12 | 0.99<br>0.89<br>0.92<br>0.89<br>1.16<br>0.91 | 1.02<br>0.97<br>1.00<br>0.99<br>1.03<br>0.98 |

#### Capsule X

;

|            |            | φ(E > 1.0 Me | V) [n/cm²-s] |       |
|------------|------------|--------------|--------------|-------|
|            |            | Best         | Uncertainty  |       |
| Capsule ID | Calculated | Estimate     | (1σ)         | BE/C  |
| U          | 1.55E+11   | 1.51E+11     | 6%           | 0.972 |
| v          | 1.39E+11   | 1.37E+11     | 6%           | 0.981 |
| W          | 1.18E+11   | 1.12E+11     | 7%           | 0.954 |
| х          | 1.27E+11   | 1.15E+11     | 7%           | 0.903 |

# Table A-6Comparison of Calculated and Best Estimate Exposure RatesAt The Surveillance Capsule Center

Note: Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period.

|            |            | Iron Atom Displace | ement Rate [dpa/s | ]     |
|------------|------------|--------------------|-------------------|-------|
|            |            | Best               | Uncertainty       |       |
| Capsule ID | Calculated | Estimate           | (1σ)              | BE/C  |
| U          | 3.19E-10   | 3.10E-10           | 8%                | 0.971 |
| v          | 2.83E-10   | 2.80E-10           | 8%                | 0.988 |
| W          | 2.34E-10   | 2.23E-10           | 8%                | 0.956 |
| х          | 2.58E-10   | 2.35E-10           | 9%                | 0.909 |

Note: Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period.

Table A-7 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions

|                                               | 1         |           |           |           |
|-----------------------------------------------|-----------|-----------|-----------|-----------|
| Reaction                                      | Capsule U | Capsule V | Capsule W | Capsule X |
| <sup>63</sup> Cu(n,α) <sup>60</sup> Co        | 1.10      | 1.11      | 0.99      | 0.99      |
| <sup>54</sup> Fe(n,p) <sup>54</sup> Mn        | 0.96      | 0.95      | 0.93      | 0.89      |
| <sup>58</sup> Ni(n,p) <sup>58</sup> Co        | 0.94      | 0.94      | 0.96      | 0.92      |
| <sup>238</sup> U(n,p) <sup>137</sup> Cs (Cd)  | 1.11      | 1.06      |           |           |
| <sup>237</sup> Np(n,f) <sup>137</sup> Cs (Cd) | 0.89      | 0.99      | 0.94      | 0.89      |
| Average                                       | 1.00      | 1.01      | 0.96      | 0.92      |
| % Standard Deviation                          | 9.9       | 7.2       | 2.8       | 5.1       |

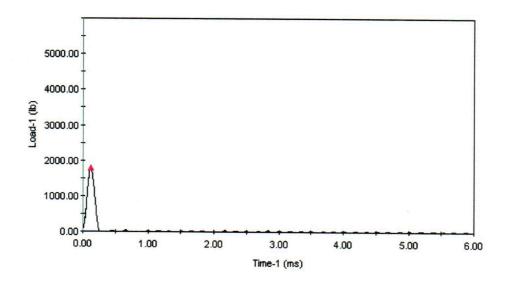
Note: The overall average M/C ratio for the set of 18 sensor measurements is 0.98 with an associated standard deviation of 7.5%.

| Table A-8                                                          |
|--------------------------------------------------------------------|
| Comparison of Best Estimate/Calculated (BE/C) Exposure Rate Ratios |

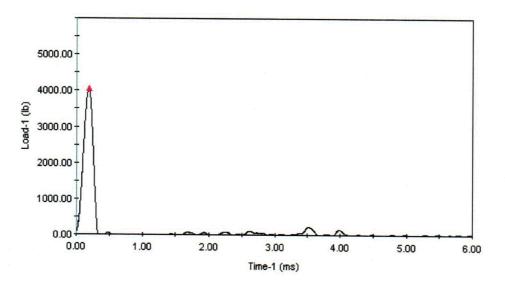
|                      | BE/C Ratio     |       |  |
|----------------------|----------------|-------|--|
| Capsule ID           | φ(E > 1.0 MeV) | dpa/s |  |
| U                    | 0.97           | 0.97  |  |
| V                    | 0.98           | 0.99  |  |
| W                    | 0.95           | 0.96  |  |
| Х                    | 0.90           | 0.91  |  |
| Average              | 0.95           | 0.96  |  |
| % Standard Deviation | 3.6            | 3.6   |  |

#### **Appendix A References:**

- A-1. Regulatory Guide RG-1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.
- A-2. A. Schmittroth, *FERRET Data Analysis Core*, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.
- A-3. RSIC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Section Compendium", July 1994.


### **APPENDIX B**

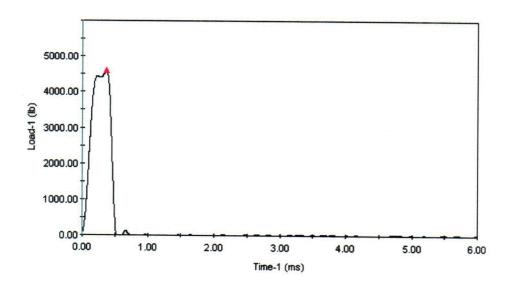
## LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS


### **INSTRUMENTED CHARPY IMPACT TEST CURVES**

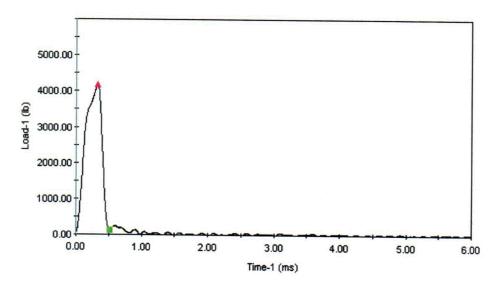
- Specimen prefix "WL" denotes Intermediate Plate, Longitudinal Orientation
- Specimen prefix "WT" denotes Intermediate Plate, Transverse Orientation
- Specimen prefix "WW" denotes Weld Material
- Specimen prefix "WH" denotes Heat-Affected Zone material

ł



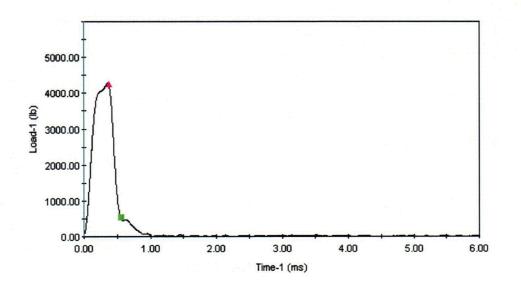




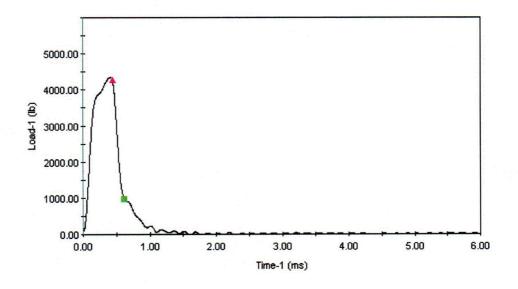


WL59, 25°F

**B-1** 

COY

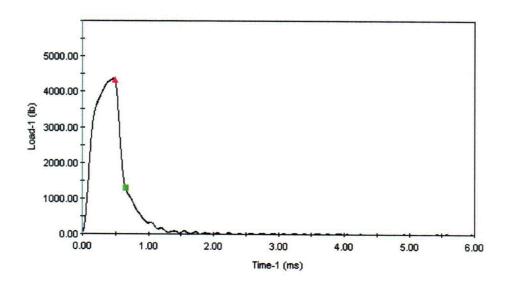




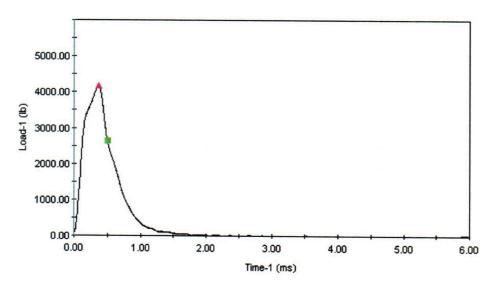




WL58, 100°F

<u>c05</u>

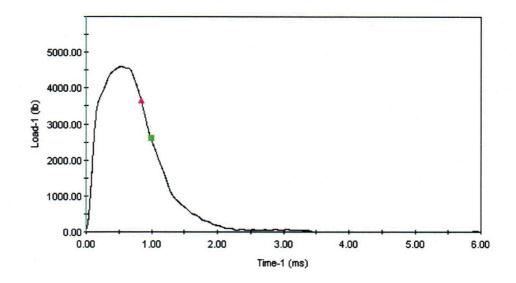



WL47, 125°F

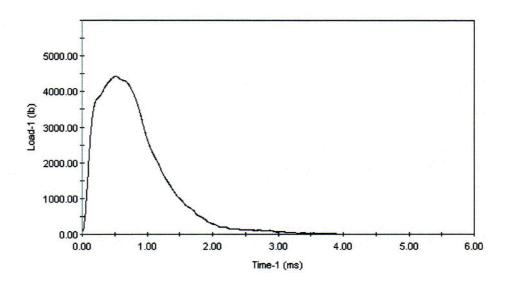



WL46, 150°F

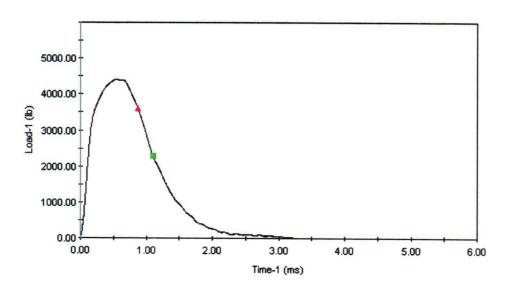
Appendix C



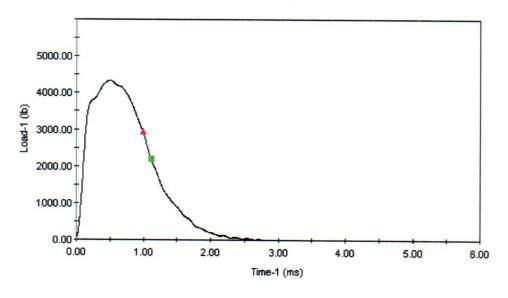


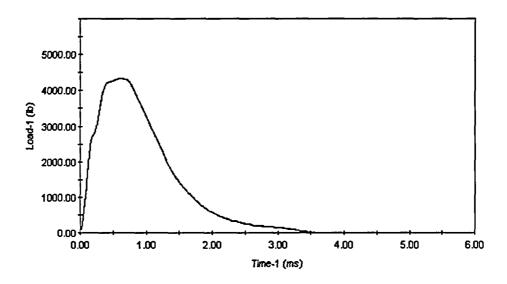

WL55, 200°F


<u>C07</u>

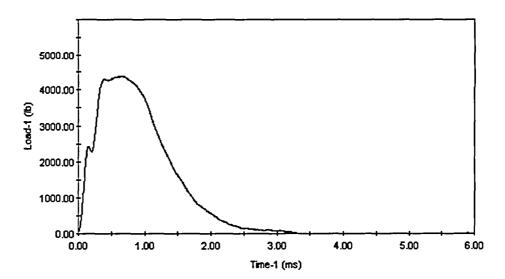



WL56, 225°F

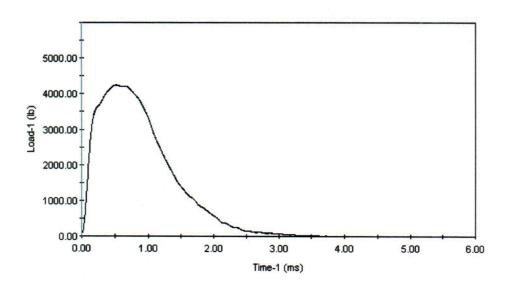



WL51, 250°F

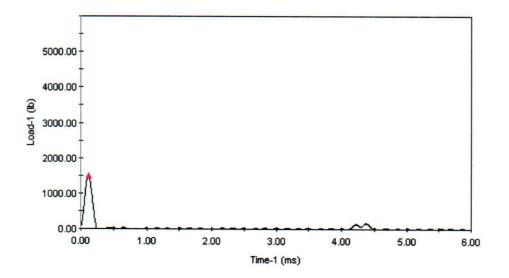



WL52, 275°F



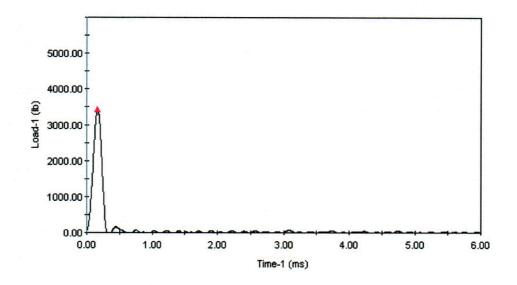

WL57, 280°F



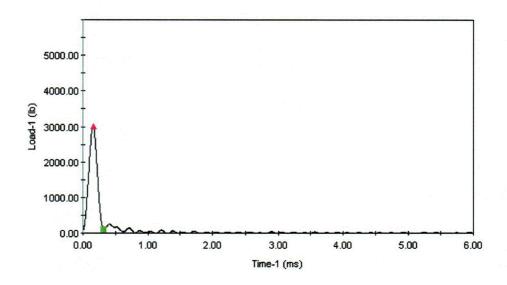

WL50, 325°F



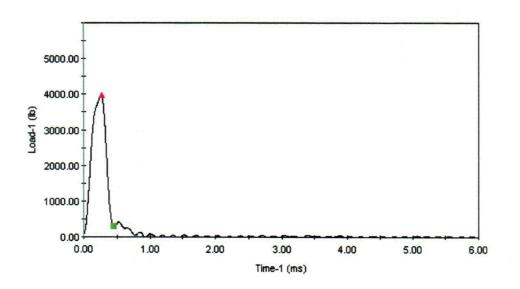
WL54, 350°F



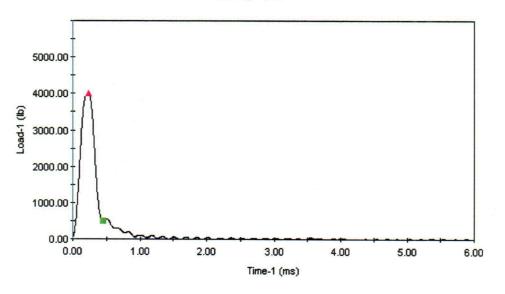

WL53, 375°F




WT60, -50°F


<u>C10</u>

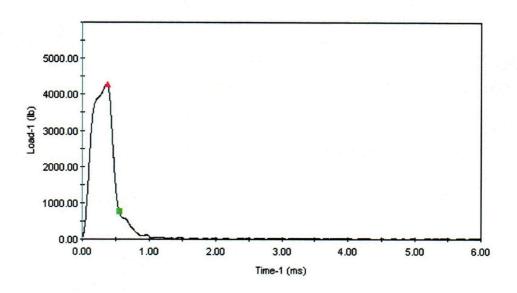



WT57, 25°F

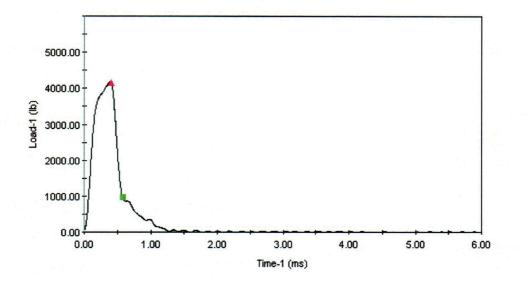


WT56, 50°F



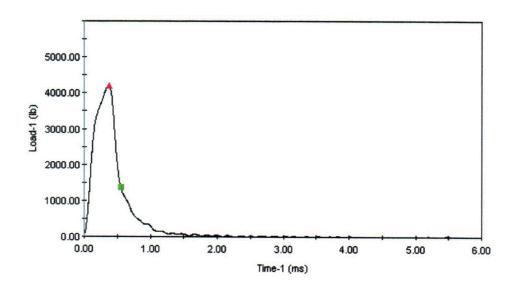




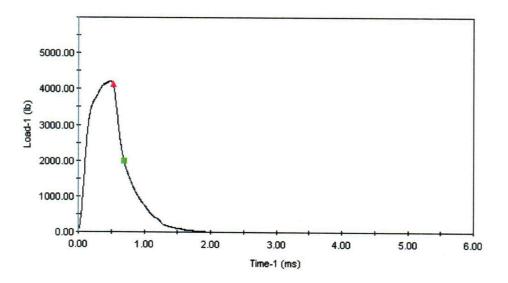


WT46, 100°F

B-10

<u>C12</u>

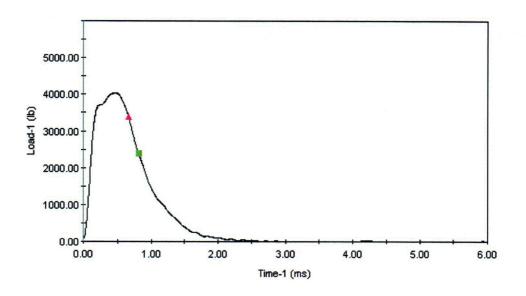



WT59, 125°F

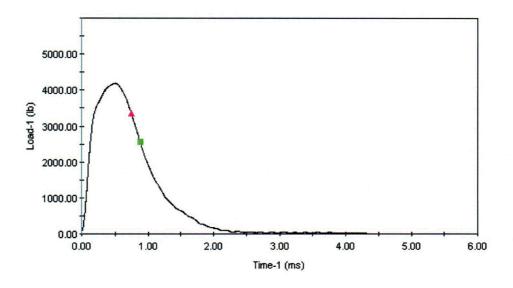



WT54, 150°F

C13



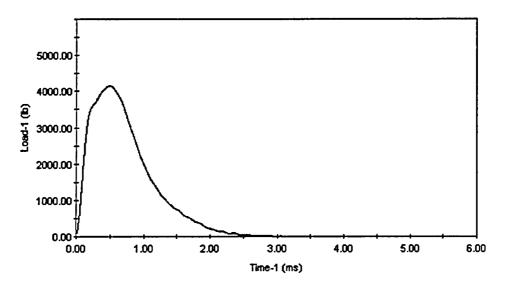


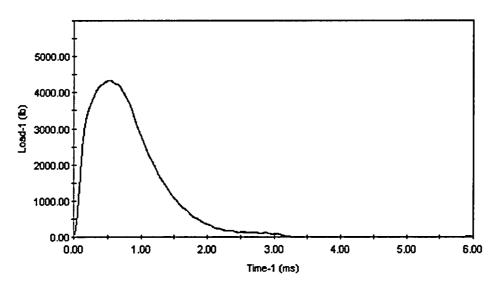

WT52, 200°F

<u>C1</u>4



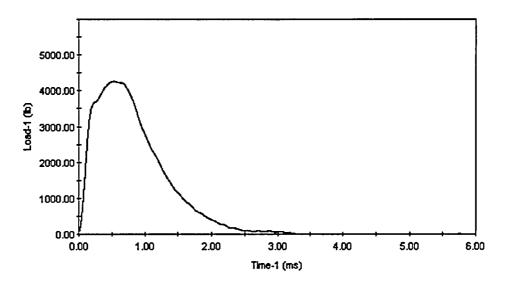

WT55, 250°F



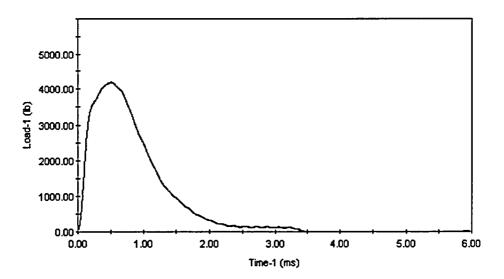

WT58, 275°F

B-13

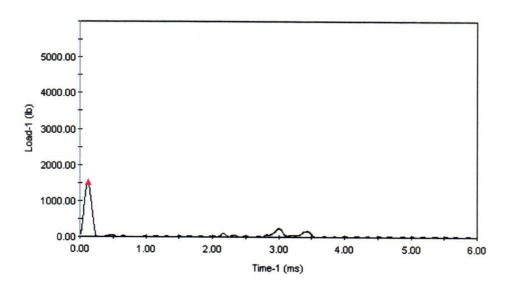
<u>C15</u>



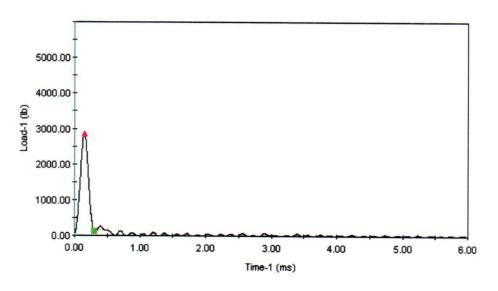


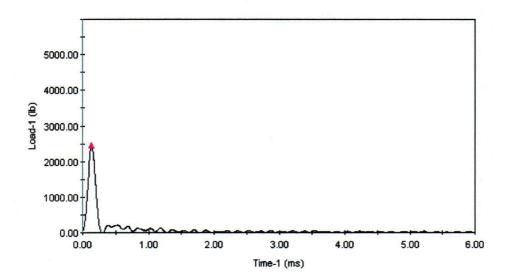




•

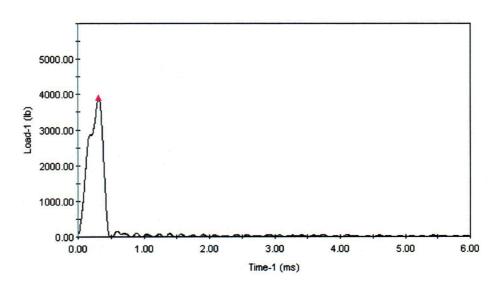



WT51, 350°F



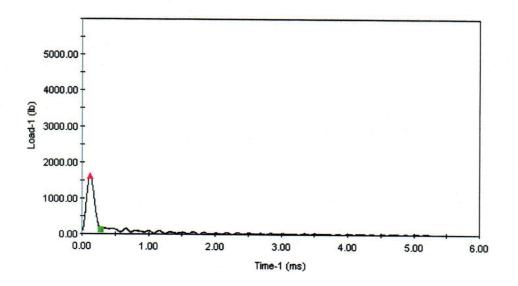

WT49, 375°F



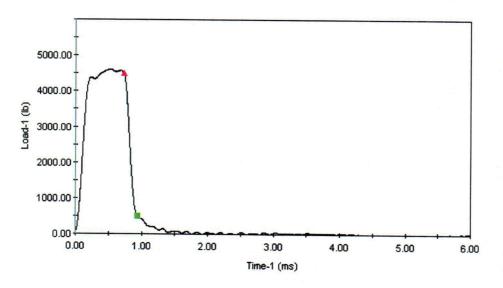

WW51, -75°F



WW53, -50°F



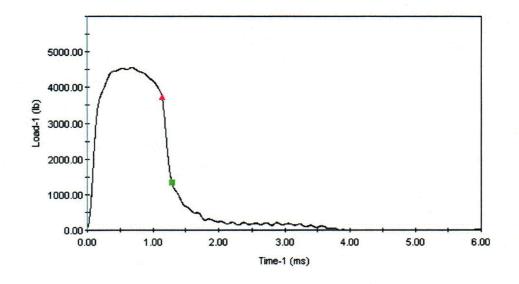

WW54, -25°F



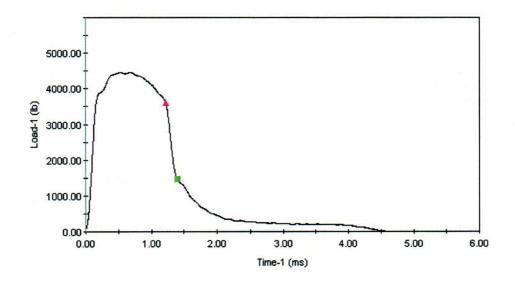

WW52, -25°F

<u>C17</u>





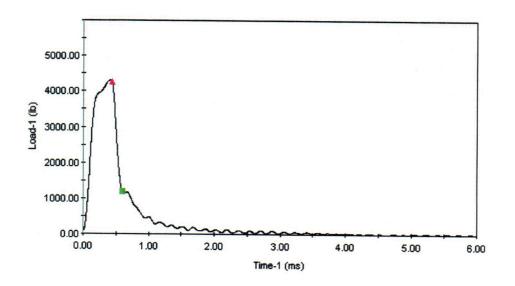




WW48, 0°F

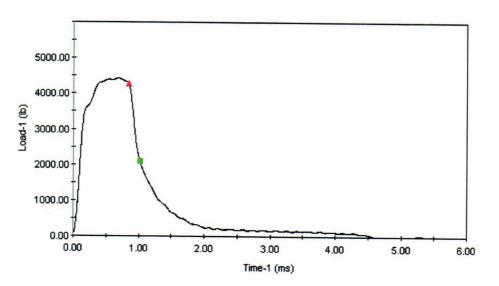
B-18

<u>C18</u>




WW46, 10°F

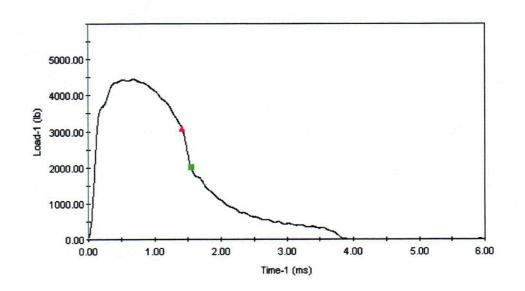



WW59, 25°F

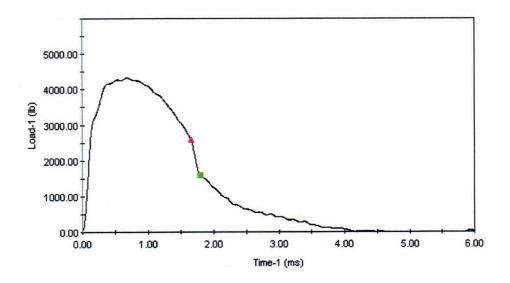
C19

B-19



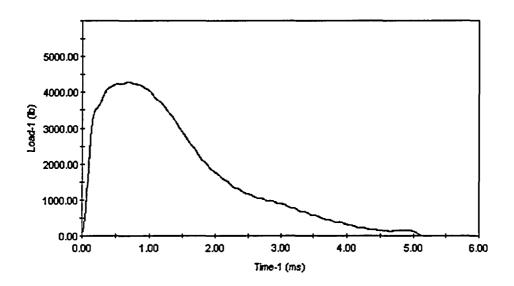




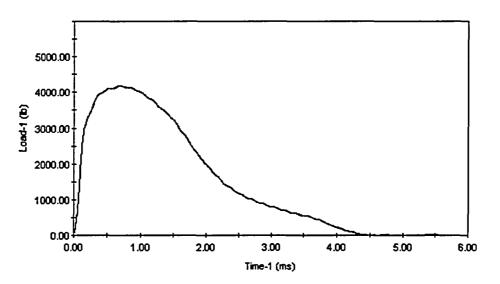


WW50, 50°F

**B-20** 

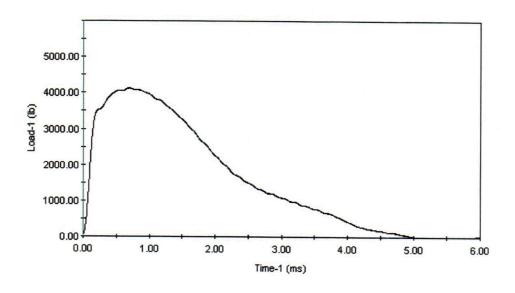
<u>C20</u>

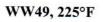


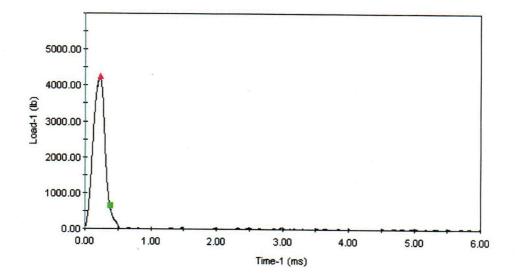

WW58, 75°F



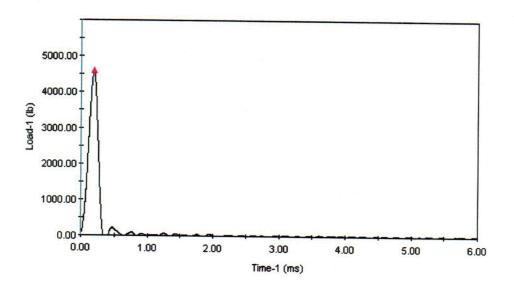

WW47, 100°F


CZI

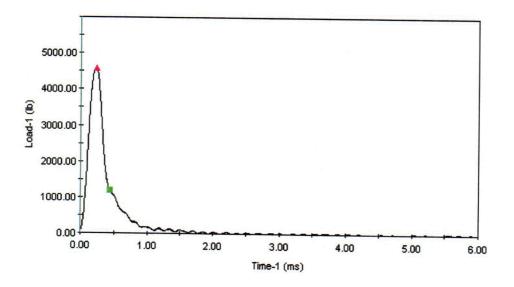




WW60, 150°F



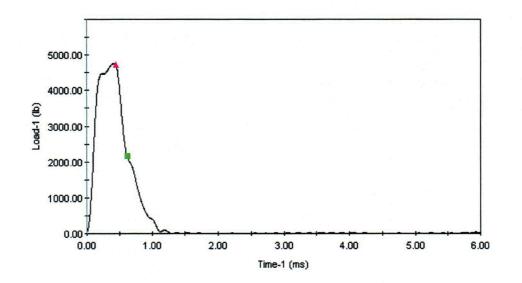

WW56, 175°F



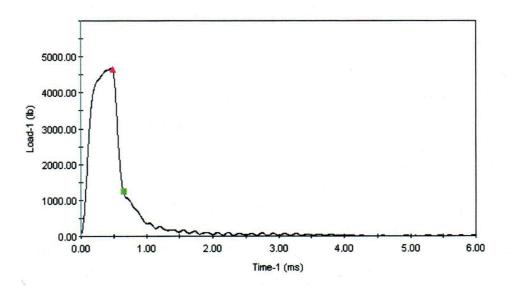





WH48, -90°F

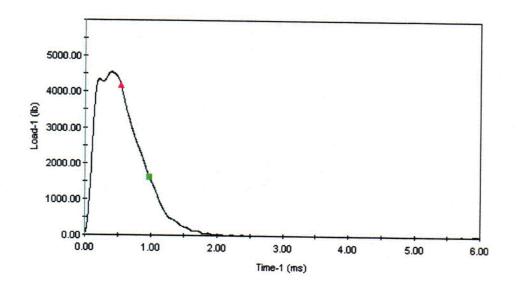




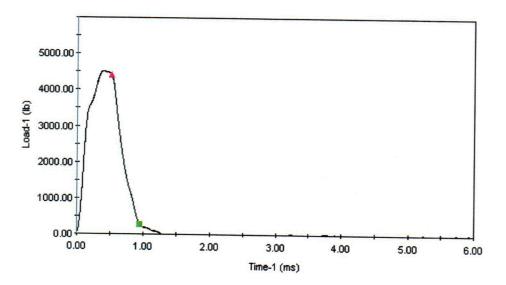




WH50, -25°F

<u>C</u>Z3



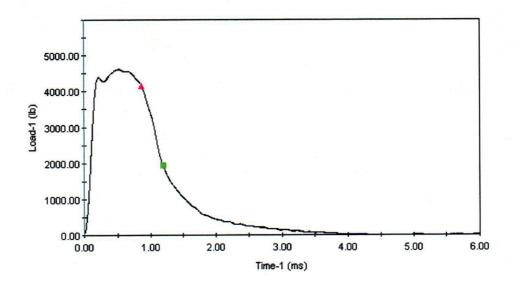

WH49, 0°F



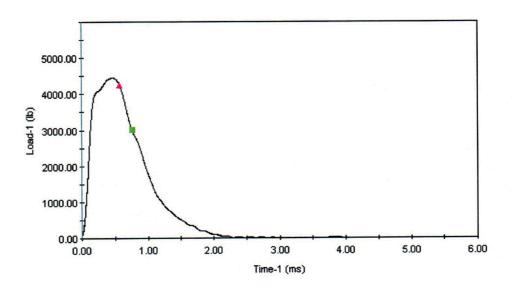

WH58, 25°F

<u>c</u>24



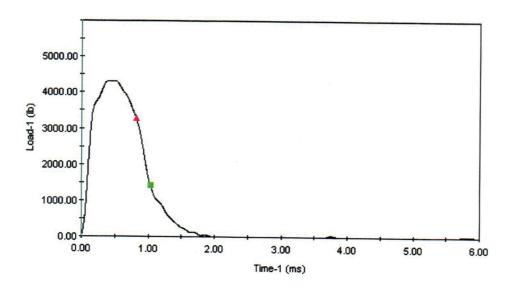




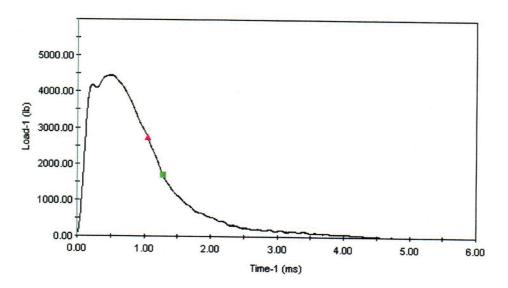


WH51, 75°F

B-26

<u>c</u>25



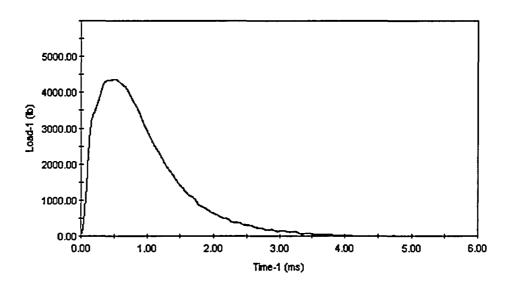

WH54, 100°F



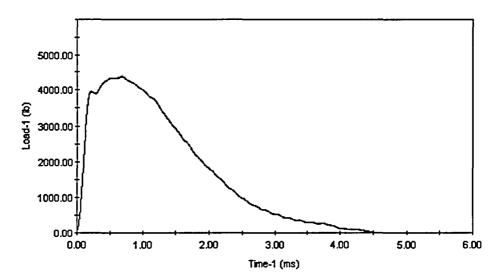

WH47, 125°F

**B-27** 

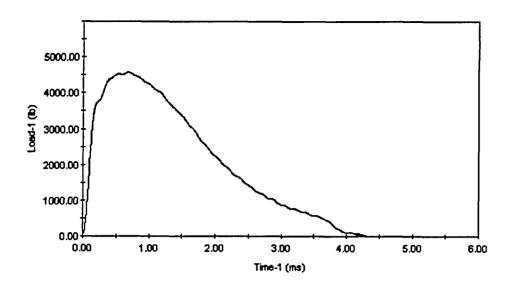




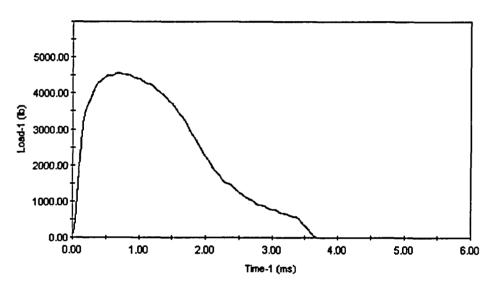




WH46, 150°F

<u>C27</u>


B-28




WH59, 175°F



WH60, 200°F



WH57, 225°F

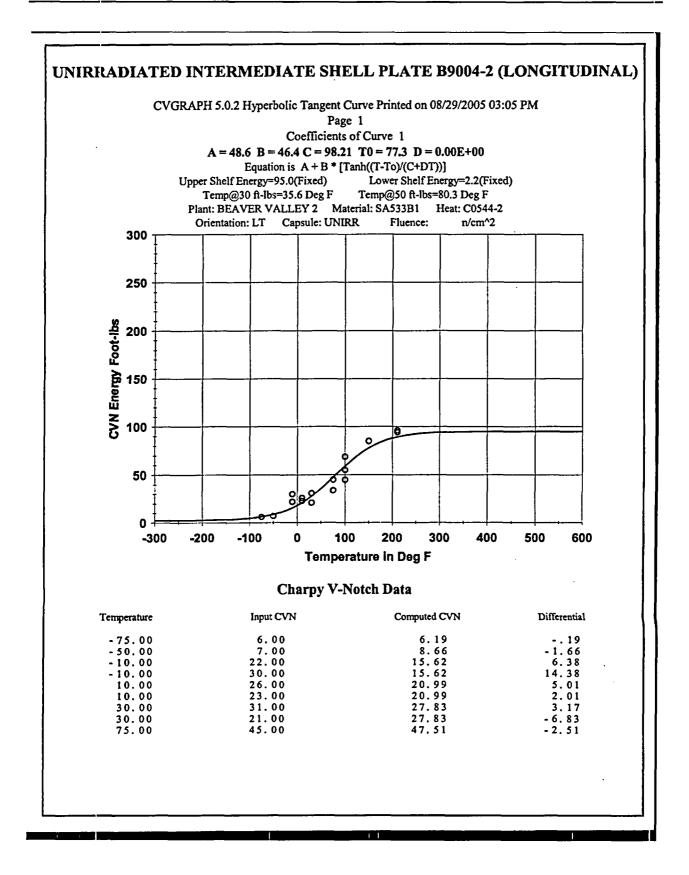


WH56, 250°F

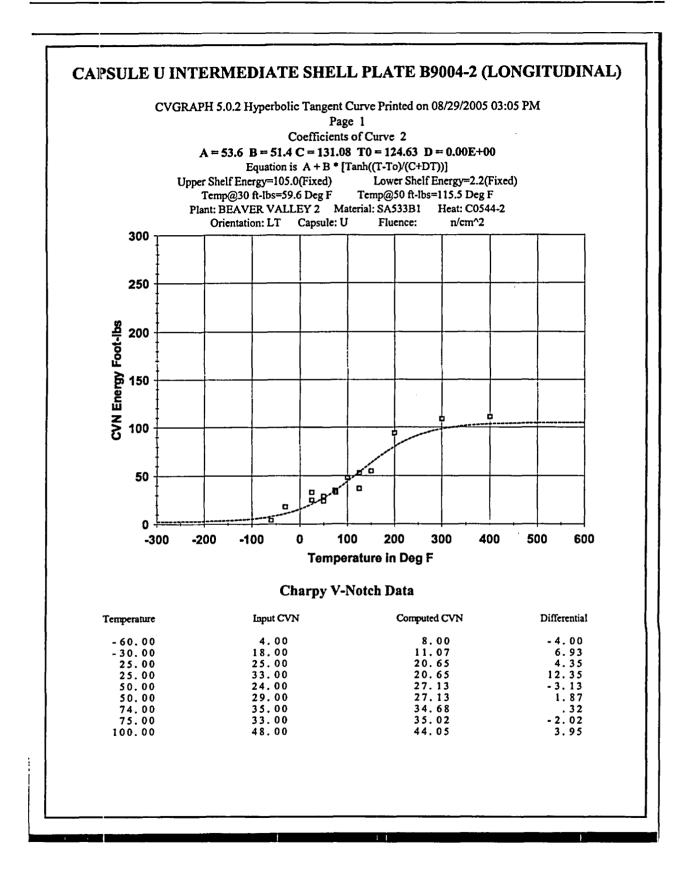
ł

## **APPENDIX C**

# CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD


Contained in Table C-1 are the upper shelf energy values used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 5.0.2. The definition for Upper Shelf Energy (USE) is given in ASTM E185-82, Section 4.18, and reads as follows:

"*upper shelf energy level* – the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy."


Westinghouse typically reports the average of all Charpy data  $\geq$  95% shear as the USE. In some instances, there may be data deemed 'out of family' and are removed from the determination of the USE based on engineering judgement. The USE values reported in Table C-1 and used to generate the Charpy V-notch curves were determined utilizing this methodology.

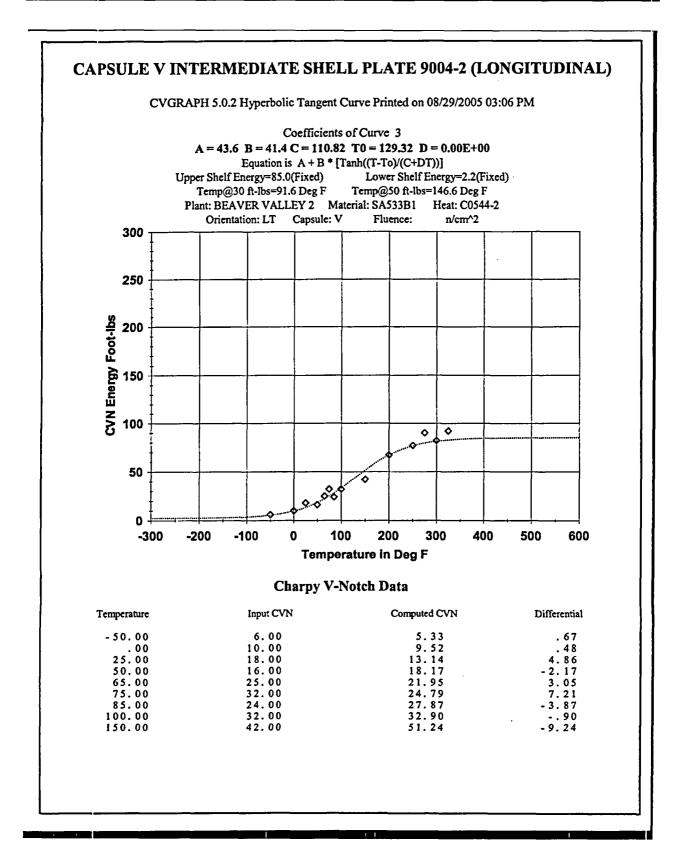
| Material                                                    | Unirradiated | Capsule U  | Capsule V  | Capsule W  | Capsule X  |
|-------------------------------------------------------------|--------------|------------|------------|------------|------------|
| Intermediate<br>Shell Plate<br>B9004-2<br>(Long.)           | 95 ft-lbs    | 105 ft-lbs | 85 ft-lbs  | 94 ft-lbs  | 81 ft-lbs  |
| Intermediate<br>Shell Plate<br>B9004-2<br>( <i>Trans</i> .) | 79 ft-lbs    | 87 ft-lbs  | 76 ft-lbs  | 75 ft-lbs  | 74 ft-lbs  |
| Weld Metal<br>( <i>Heat # 83652</i> )                       | 139 ft-lbs   | 134 ft-1bs | 136 ft-lbs | 136 ft-lbs | 133 ft-1bs |
| Heat Affected<br>Zone Material                              | 91 ft-lbs    | 109 ft-1bs | 87 ft-lbs  | 104 ft-1bs | 114 ft-lbs |

The lower shelf energy values were fixed at 2.2 ft-lb for all cases.



#### UNIRRADIATED INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL) Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: LT Capsule: UNIRR Fluence: n/cm^2 **Charpy V-Notch Data** Differential Computed CVN Input CVN Temperature 47.51 75.00 34.00 -13.51 100.00 69.00 59.14 9.86 59.14 59.14 55.00 -4.14 100.00 45.00 -14.14 100.00 77.80 7.20 150.00 85.00 150.00 210.00 85.00 77.80 7.20 4.83 94.00 89.17 89.17 96.00 210.00 6.83 94.00 89.17 4.83 210.00 Correlation Coefficient = .970




ł

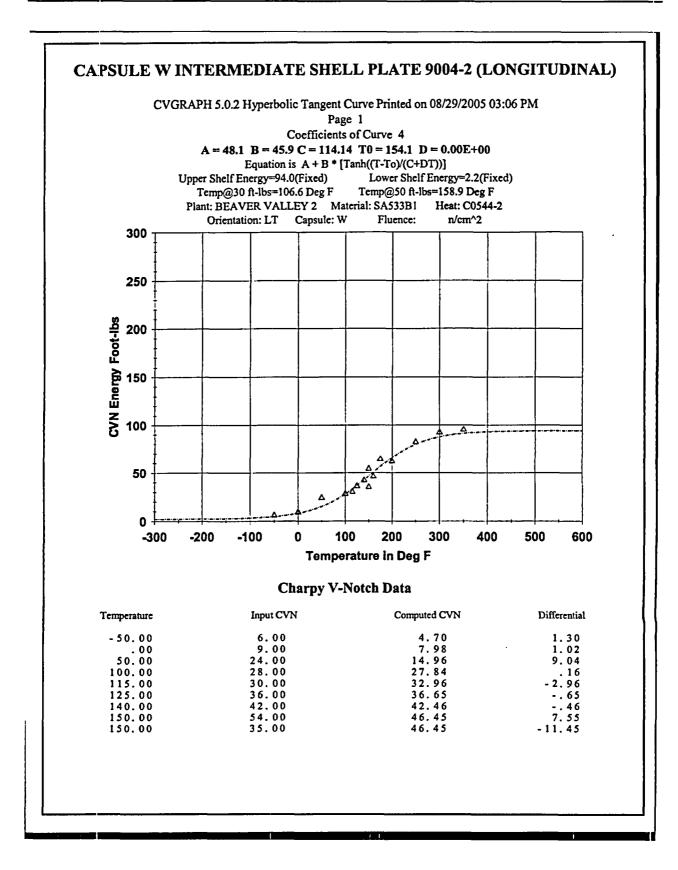
# CAPSULE U INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: LT Capsule: U Fluence: n/cm^2

### **Charpy V-Notch Data**

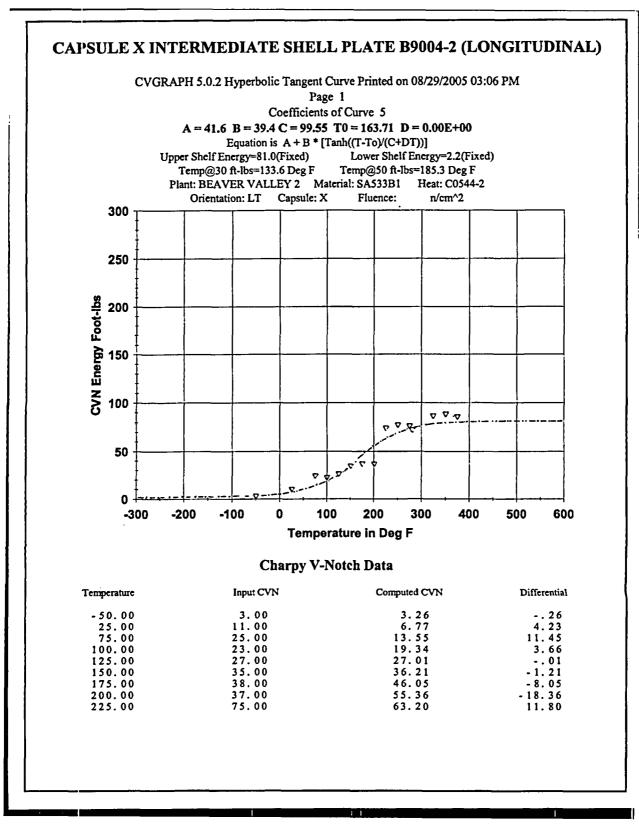
| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| 125.00      | 37.00     | 53.74        | - 16.74      |
| 125.00      | 53.00     | 53.74        | 74           |
| 150.00      | 55.00     | 63.42        | - 8, 42      |
| 200.00      | 94.00     | 80.28        | 13.72        |
| 300.00      | 109.00    | 98.38        | 10.62        |
| 400.00      | 111.00    | 103.48       | 7.52         |




# CAPSULE V INTERMEDIATE SHELL PLATE 9004-2 (LONGITUDINAL)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: LT Capsule: V Fluence: n/cm^2

### **Charpy V-Notch Data**

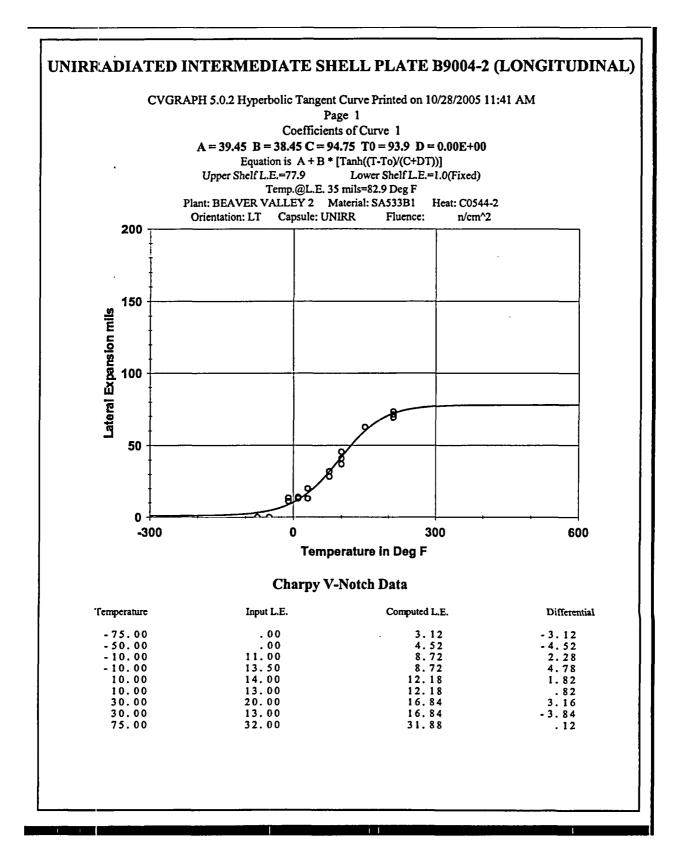

| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| 200.00      | 67.00     | 66.92        | . 08         |
| 250.00      | 77.00     | 76.57        | . 43         |
| 275.00      | 90.00     | 79.43        | 10.57        |
| 300.00      | 82.00     | 81.36        | . 64         |
| 325.00      | 92.00     | 82.65        | 9.35         |

| 300.00 | 82.00<br>92.00                 | 81.36<br>82.65 | . 64 |
|--------|--------------------------------|----------------|------|
|        | Correlation Coefficient = .986 |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                | ·    |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |
|        |                                |                |      |

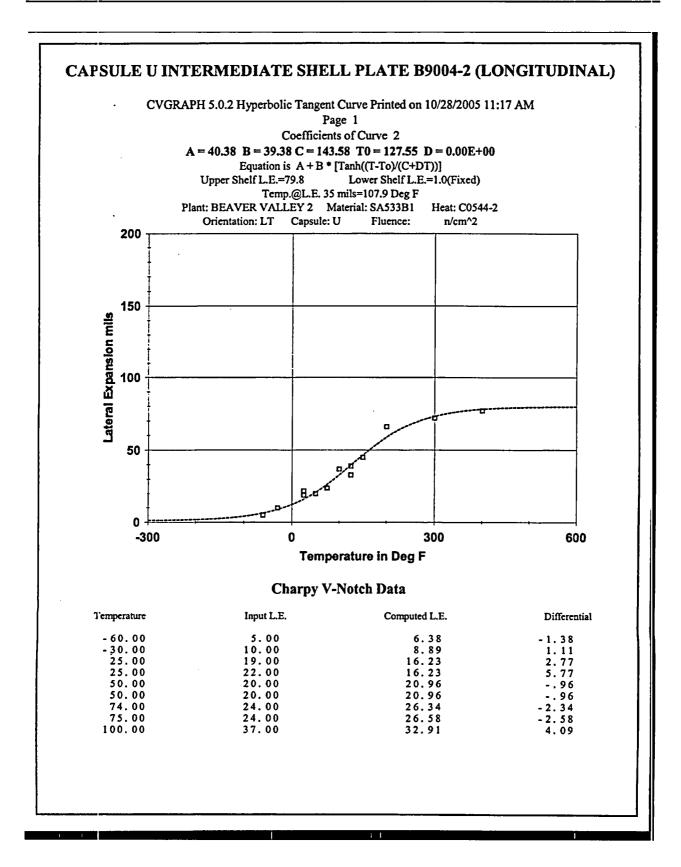


| Plant: BEAVER VALLEY 2         Material: SA533B1         Heat: C0544-2           Orientation: LT         Capsule: W         Fluence:         n/cm*2           Charpy V-Notch Data         Differential         Material: SA533B1         Heat: C0544-2           Temperature         Input CVN         Computed CVN         Differential           160.00         64.00         50.47         -4.47           175.00         64.00         56.41         7.59           200.00         82.00         79.58         2.42           300.00         92.00         91.13         3.67           300.00         95.00         91.13         3.87           Correlation Coefficient = .981 | _           | Pag                            | e 2                                            |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|------------------------------------------------|--------------|
| Charpy V-Notch DataTemperatureInput CVNComputed CVNDifferential160.0046.0050.47-4.47175.0064.0056.417.59200.0062.0065.62-3.62250.0082.0079.582.42300.0092.0087.394.61350.0095.0091.133.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P           | Plant: BEAVER VALLEY 2 Mai     | terial: SA533B1 Heat: C05<br>W Fluence: n/cm^2 | 44-2         |
| TemperatureInput CVNComputed CVNDifferential160.0046.0050.47-4.47175.0064.0056.417.59200.0062.0065.62-3.62250.0082.0079.582.42300.0092.0087.394.61350.0095.0091.133.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Onentation. ET Capsule.        |                                                |              |
| 160.0046.0050.47-4.47175.0064.0056.417.59200.0062.0065.62-3.62250.0082.0079.582.42300.0092.0087.394.61350.0095.0091.133.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | Charpy V-l                     | Notch Data                                     |              |
| 175.0064.0056.417.59200.0062.0065.62-3.62250.0082.0079.582.42300.0092.0087.394.61350.0095.0091.133.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temperature | Input CVN                      | Computed CVN                                   | Differential |
| 175.0064.0056.417.59200.0062.0065.62-3.62250.0082.0079.582.42300.0092.0087.394.61350.0095.0091.133.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160.00      |                                | 50.47                                          |              |
| 250.0082.0079.582.42300.0092.0087.394.61350.0095.0091.133.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175.00      |                                |                                                |              |
| 300.0092.0087.394.61350.0095.0091.133.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                |                                                |              |
| 350.00         95.00         91.13         3.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                | 79.30                                          | 2.42         |
| Correlation Coefficient = .981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                | 91.13                                          | 3.87         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Correlation Coefficient = .981 |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                                                |              |

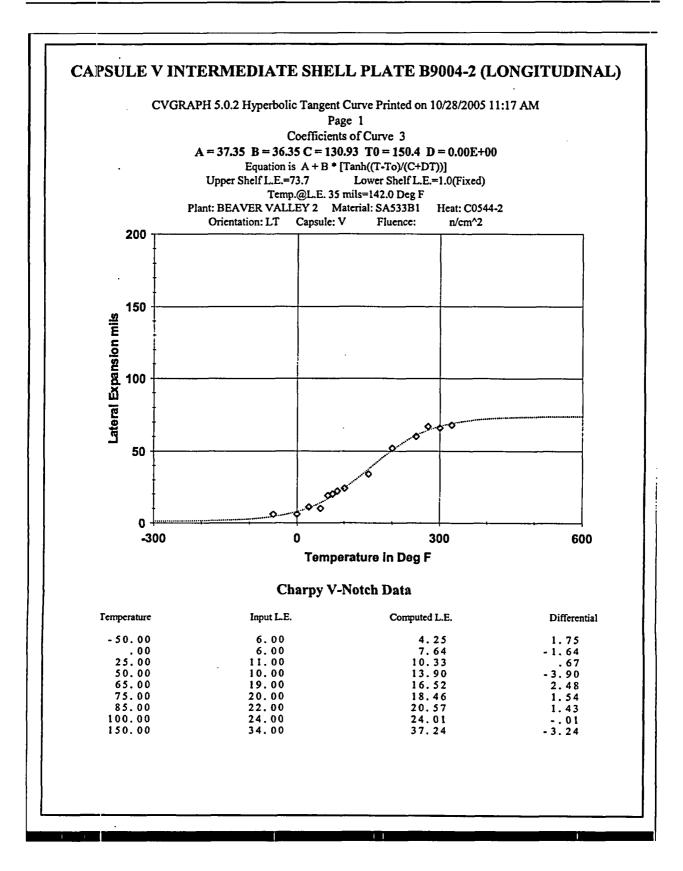
j




C-10


÷

ł


| Pla                                                      | Pag<br>nt: BEAVER VALLEY 2 Ma<br>Orientation: LT Capsule: |                                                    | 44-2                                          |
|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|
|                                                          | Charpy V-                                                 | Notch Data                                         |                                               |
| Temperature                                              | Input CVN                                                 | Computed CVN                                       | Differential                                  |
| 250.00<br>275.00<br>280.00<br>325.00<br>350.00<br>375.00 | 78.00<br>77.00<br>73.00<br>87.00<br>89.00<br>86.00        | 69.17<br>73.39<br>74.05<br>78.03<br>79.18<br>79.89 | 8.83<br>3.61<br>-1.05<br>8.97<br>9.82<br>6.11 |
|                                                          | Correlation Coefficient = .965                            |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |
|                                                          |                                                           |                                                    |                                               |



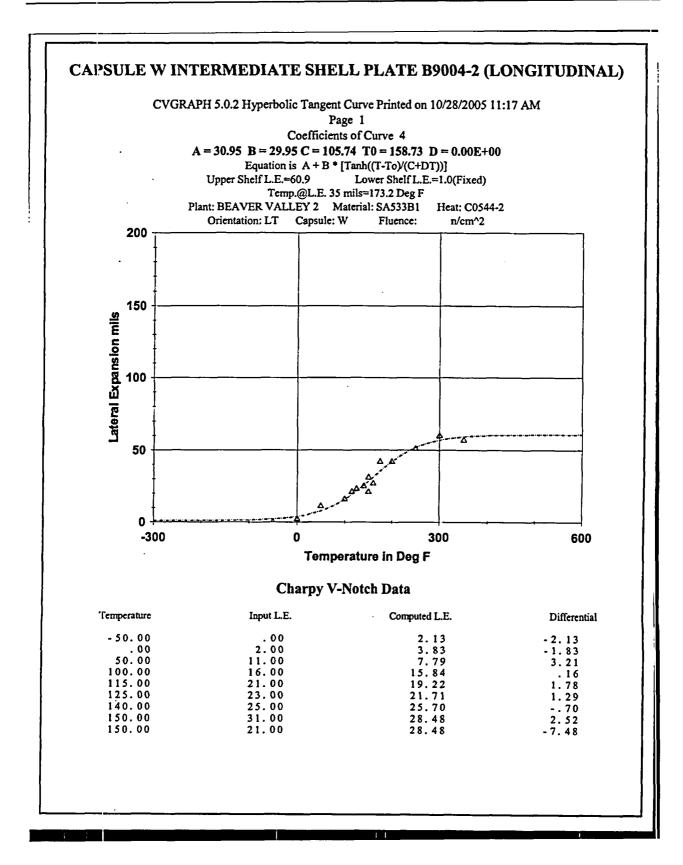
| UNIRRADIATED INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL)                                                |                                                                               |                                                                      |                                                                               |  |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
|                                                                                                             | Pag<br>Plant: BEAVER VALLEY 2 Ma<br>Orientation: LT Capsule: UI               | e 2<br>sterial: SA533B1 Heat: C054<br>NIRR Fluence: n/cm^2           |                                                                               |  |  |
|                                                                                                             | Charpy V-                                                                     | Notch Data                                                           |                                                                               |  |  |
| Temperature                                                                                                 | Input L.E.                                                                    | Computed L.E.                                                        | Differential                                                                  |  |  |
| $\begin{array}{c} 75.00\\ 100.00\\ 100.00\\ 100.00\\ 150.00\\ 150.00\\ 210.00\\ 210.00\\ 210.00\end{array}$ | 28.50<br>45.50<br>37.00<br>41.00<br>62.50<br>62.50<br>69.00<br>73.00<br>71.00 | 31.88<br>41.92<br>41.92<br>59.88<br>59.88<br>71.79<br>71.79<br>71.79 | - 3. 38<br>3. 58<br>- 4. 92<br>92<br>2. 62<br>2. 62<br>- 2. 79<br>1. 21<br>79 |  |  |
|                                                                                                             | Correlation Coefficient = .993                                                |                                                                      |                                                                               |  |  |
|                                                                                                             |                                                                               |                                                                      |                                                                               |  |  |



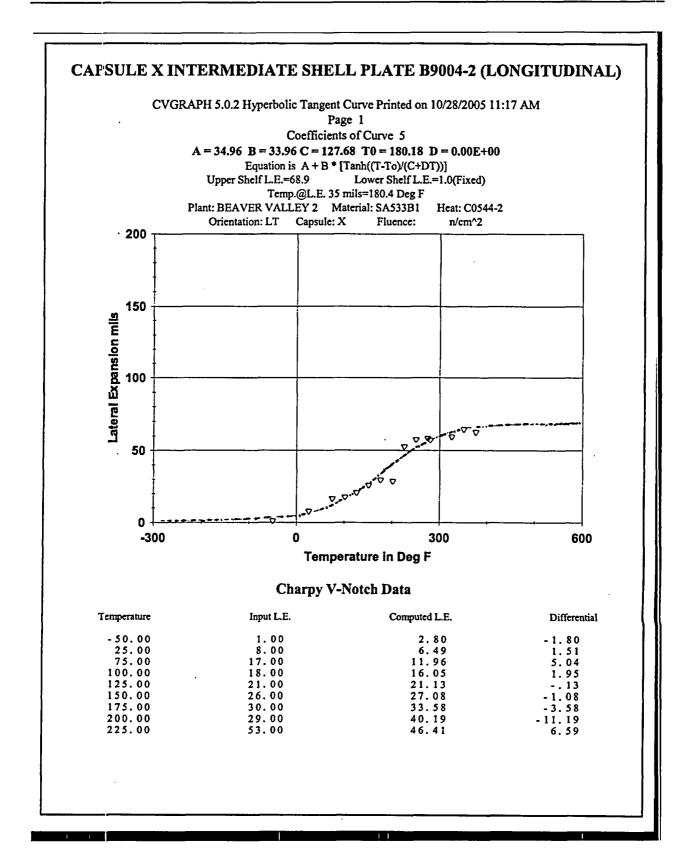
|                  | Plant: BEAVER VALLEY 2 Ma      | te 2<br>tterial: SA533B1 Heat: C0:<br>U Fluence: n/cm^2 | 544-2         |
|------------------|--------------------------------|---------------------------------------------------------|---------------|
|                  | Charpy V-                      | Notch Data                                              |               |
| Temperature      | Input L.E.                     | Computed L.E.                                           | Differential  |
| 125.00<br>125.00 | 33.00<br>39.00                 | 39.68<br>39.68                                          | -6.68<br>68   |
| 150.00           | 45.00                          | 46.48                                                   | - 1.48        |
| 200.00<br>300.00 | 66.00<br>72.00                 | 58.72<br>73.22                                          | 7.28<br>-1.22 |
| 400.00           | 77.00                          | 78,02                                                   | - 1. 02       |
|                  | Correlation Coefficient = .987 |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
| ·                |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
| ·                |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
| •                |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |
|                  |                                |                                                         |               |



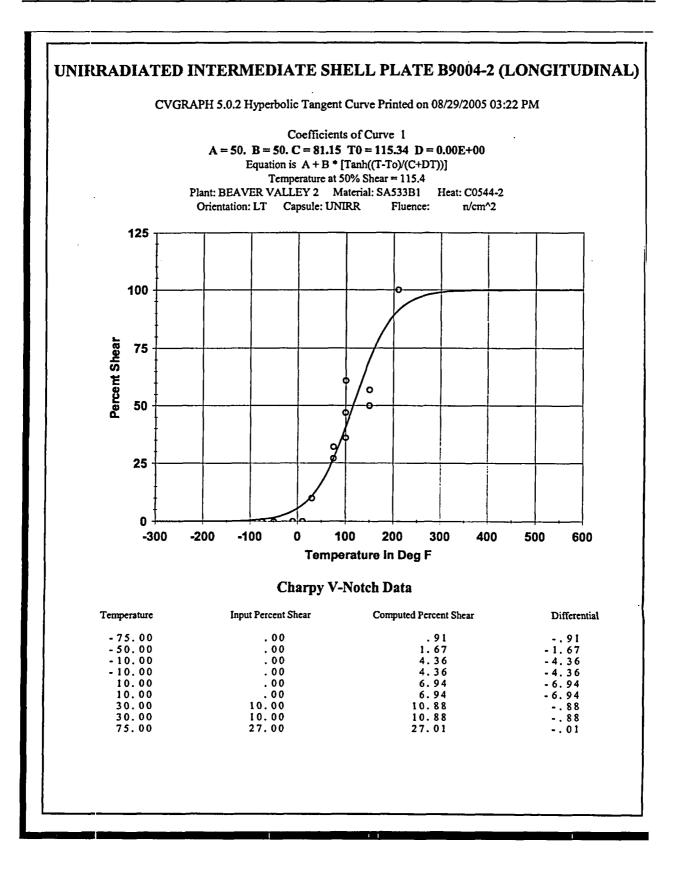
# CAPSULE V INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL)


Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: LT Capsule: V Fluence: n/cm^2

# Charpy V-Notch Data


.

| Temperature | Input L.E. | Computed L.E. | Differential |
|-------------|------------|---------------|--------------|
| 200.00      | 52.00      | 50.50         | 1.50         |
| 250.00      | 60.00      | 60.67         | 67           |
| 275.00      | 67.00      | 64.27         | 2.73         |
| 300.00      | 66.00      | 66.99         | 99           |
| 325.00      | 68.00      | 68.98         | 98           |


| 275.00<br>300.00<br>325.00 | 67.00<br>66.00<br>68.00        | 64.27<br>66.99<br>68.98 | 2.73<br>99<br>98 |
|----------------------------|--------------------------------|-------------------------|------------------|
|                            | Correlation Coefficient = .996 |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
| ·                          |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
|                            |                                |                         |                  |
| <br>                       |                                |                         |                  |



| Charpy V-Notch Data <u>Inperature</u> <u>Input LE</u> <u>Onrepetation</u> <u>10.00             <u>10.10             <u>10.10             <u>10.10             <u>10.10             10.00             <u>10.00             10.00             <u>10.00             10.00             <u>10.00             10.00             10.00           </u></u></u></u></u></u></u></u> |                            | Plant: BEAVER VALLEY 2 M       | ge 2<br>aterial: SA533B1 Heat: C05<br>: W Fluence: n/cm^2 | 44-2        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|-----------------------------------------------------------|-------------|
| 160.00       27.00       31.31       -4.31         175.00       42.00       35.52       6.48         200.00       42.00       42.08      08         250.00       51.00       51.85      85         300.00       60.00       57.02       2.98         350.00       57.00       59.33       -2.33                                                                            |                            | Charpy V-                      | Notch Data                                                |             |
| 175.0042.0035.526.48200.0042.0042.0808250.0051.0051.8585300.0060.0057.022.98350.0057.0059.33-2.33                                                                                                                                                                                                                                                                          | Temperature                | Input L.E.                     | Computed L.E.                                             | Differentia |
| 300.00         60.00         57.02         2.98           350.00         57.00         59.33         -2.33                                                                                                                                                                                                                                                                 | 175.00<br>200.00<br>250.00 | 42.00<br>42.00<br>51.00        | 35.52<br>42.08<br>51.85                                   | 6.48<br>08  |
| Correlation Coefficient = .983                                                                                                                                                                                                                                                                                                                                             |                            |                                | 57.02<br>59.33                                            | 2.98        |
|                                                                                                                                                                                                                                                                                                                                                                            |                            | Correlation Coefficient = .983 |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            | •                          |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            |                            |                                |                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                            | •                          |                                |                                                           |             |

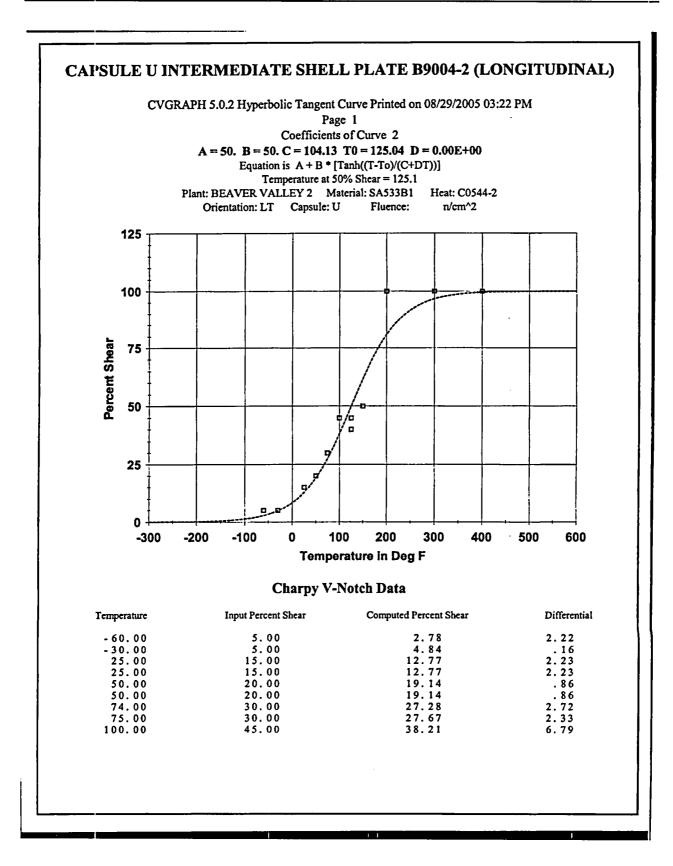


# CAPSULE X INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL) Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: LT Capsule: X Fluence: n/cm^2 **Charpy V-Notch Data** Temperature Input L.E. Computed L.E. Differential 58.00 59.00 58.00 250.00 51.87 6.13 56.37 57.15 275.00 280.00 2.63 . 85 325.00 60.00 62.55 -2.55 350.00 375.00 . 53 65.00 64.47 63.00 65.85 Correlation Coefficient = .980

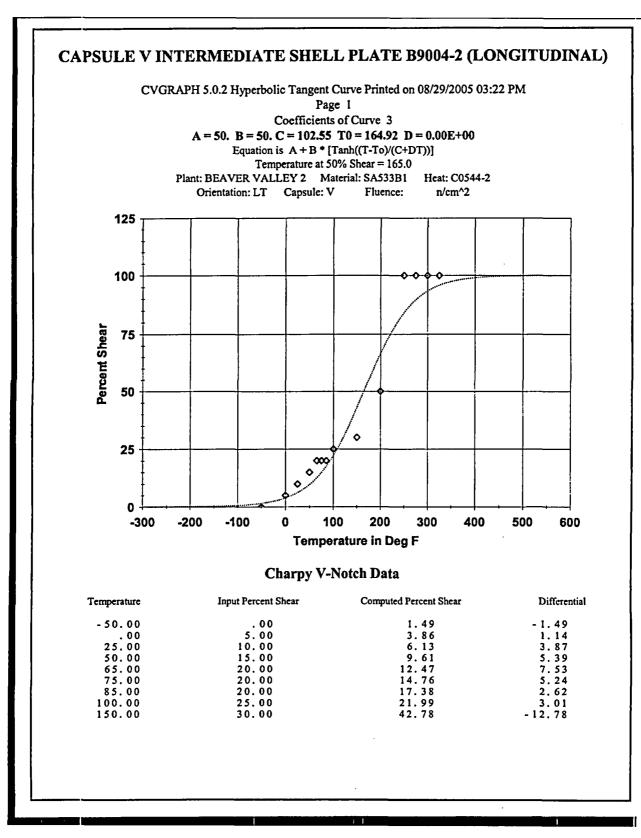


ł

# UNIRRADIATED INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL)


Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: LT Capsule: UNIRR Fluence: n/cm^2

### **Charpy V-Notch Data**

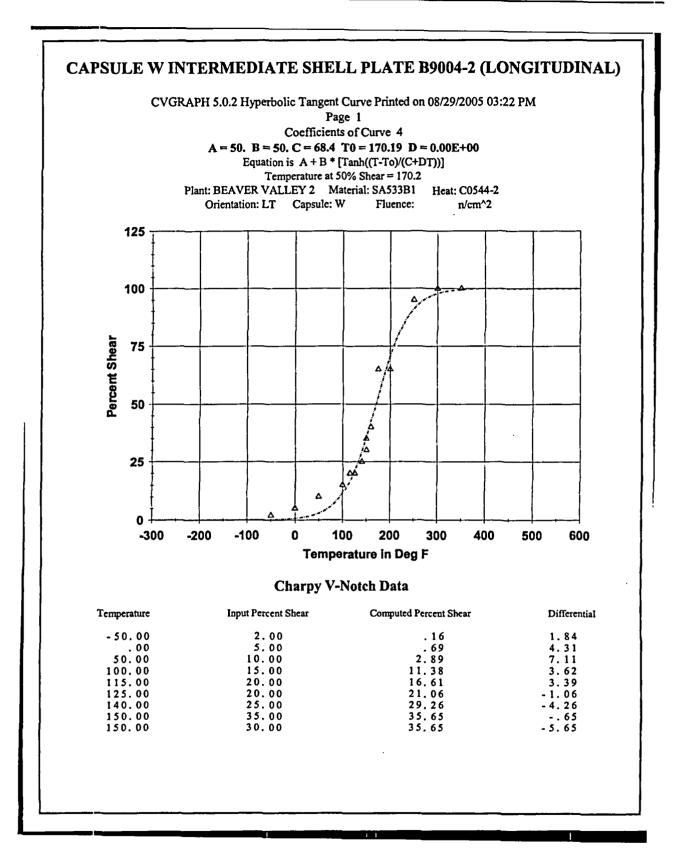

| Temperature | Input Percent Shear | Computed Percent Shear | Differential |
|-------------|---------------------|------------------------|--------------|
| 75.00       | 32.00               | 27.01                  | 4.99         |
| 100.00      | 61.00               | 40.66                  | 20.34        |
| 100.00      | 47.00               | 40.66                  | 6.34         |
| 100.00      | 36.00               | 40.66                  | - 4.66       |
| 150.00      | 50.00               | 70.14                  | -20.14       |
| 150.00      | 57.00               | 70.14                  | -13.14       |
| 210.00      | 100.00              | 91.16                  | 8.84         |
| 210.00      | 100.00              | 91.16                  | 8.84         |
| 210.00      | 100.00              | 91.16                  | 8.84         |

Correlation Coefficient = .969

!



| CAPSULE U INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL) |                                                       |                                                |                        |                                                           |  |
|-----------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|------------------------|-----------------------------------------------------------|--|
|                                                           | Plant: BEAVER VALLEY 2<br>Orientation: LT Caps        | Page 2<br>Material: SA533B1<br>ule: U Fluence: | Heat: C0544-<br>n/cm^2 | -2                                                        |  |
|                                                           | Charpy                                                | V-Notch Data                                   |                        |                                                           |  |
| Temperature                                               | Input Percent Shear                                   | Computed Perc                                  | cent Shear             | Differential                                              |  |
| 125.00125.00150.00200.00300.00400.00                      | 40.00<br>45.00<br>50.00<br>100.00<br>100.00<br>100.00 | 49.<br>49.<br>61.<br>80.<br>96.<br>99.         | 98<br>76<br>84<br>64   | - 9. 98<br>- 4. 98<br>- 11. 76<br>19. 16<br>3. 36<br>. 51 |  |
|                                                           | Correlation Coefficient =                             | .978                                           |                        |                                                           |  |
|                                                           |                                                       |                                                |                        |                                                           |  |



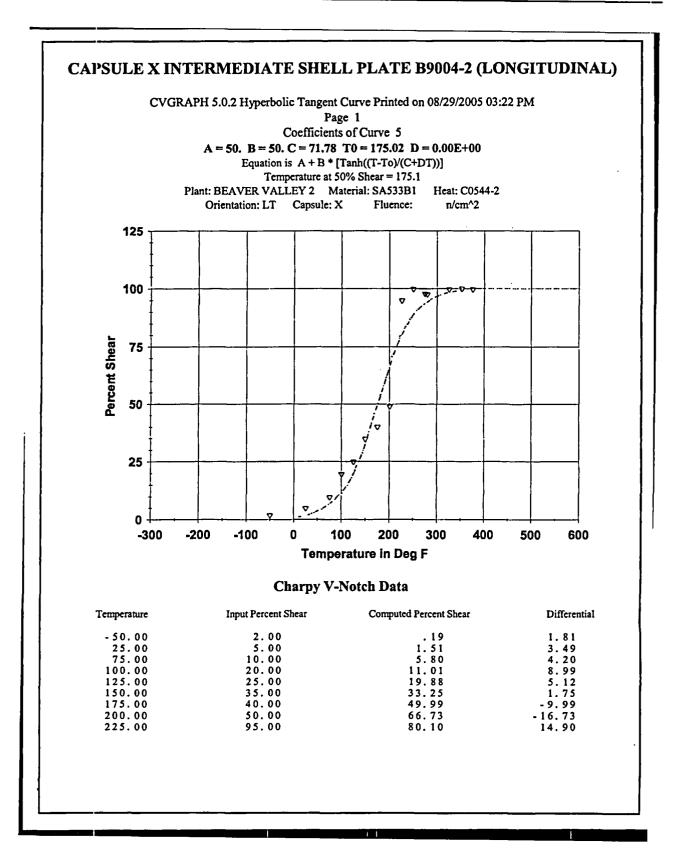

# CAPSULE V INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: LT Capsule: V Fluence: n/cm^2

### Charpy V-Notch Data

| Temperature | ture Input Percent Shear Computed Percent Shear |       | Differential |  |
|-------------|-------------------------------------------------|-------|--------------|--|
| 200.00      | 50.00                                           | 66.47 | -16.47       |  |
| 250.00      | 100.00                                          | 84.02 | 15.98        |  |
| 275.00      | 100.00                                          | 89.54 | 10.46        |  |
| 300.00      | 100.00                                          | 93.31 | 6.69         |  |
| 325.00      | 100.00                                          | 95.78 | 4.22         |  |



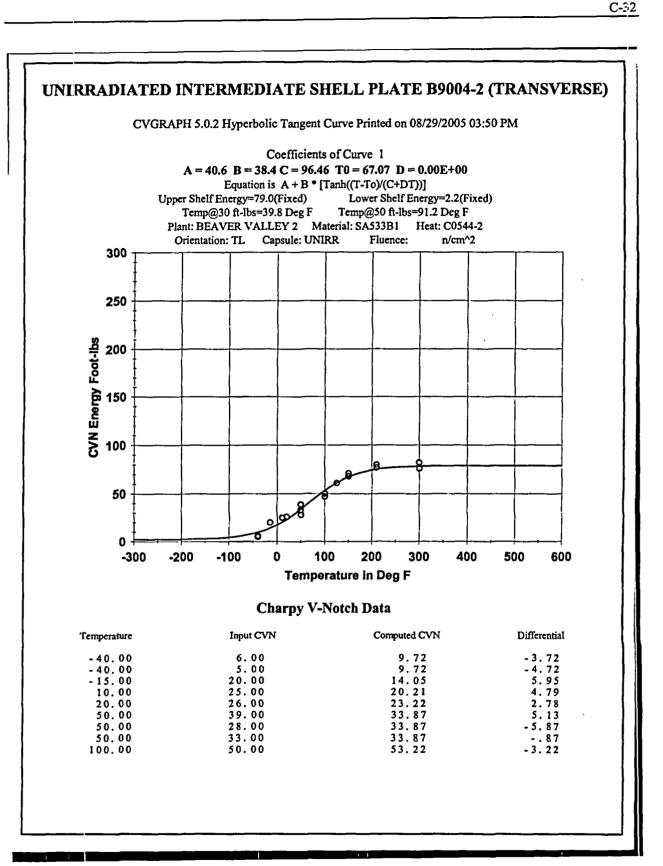

# CAPSULE W INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL)

Page 2

Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: LT Capsule: W Fluence: n/cm^2

### **Charpy V-Notch Data**

| Temperature | Input Percent Shear | Computed Percent Shear | nt Shear Differential |  |
|-------------|---------------------|------------------------|-----------------------|--|
| 160.00      | 40.00               | 42.60                  | -2.60                 |  |
| 175.00      | 65.00               | 53.51                  | 11.49                 |  |
| 200.00      | 65.00               | 70.50                  | - 5. 50               |  |
| 250.00      | 95.00               | 91.16                  | 3.84                  |  |
| 300.00      | 100.00              | 97.80                  | 2.20                  |  |
| 350.00      | 100.00              | 99.48                  | . 52                  |  |



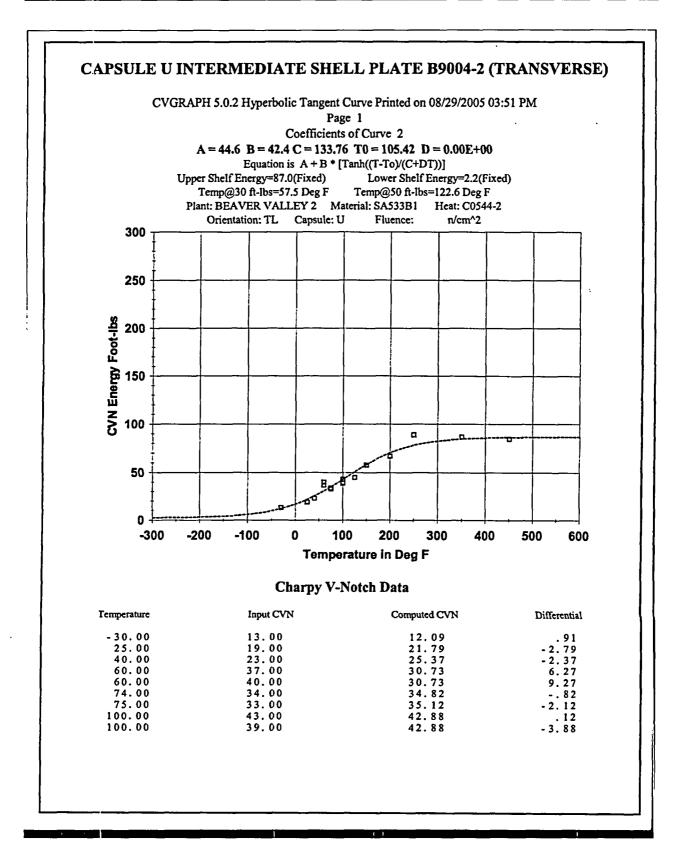

# CAPSULE X INTERMEDIATE SHELL PLATE B9004-2 (LONGITUDINAL)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: LT Capsule: X Fluence: n/cm^2

### **Charpy V-Notch Data**

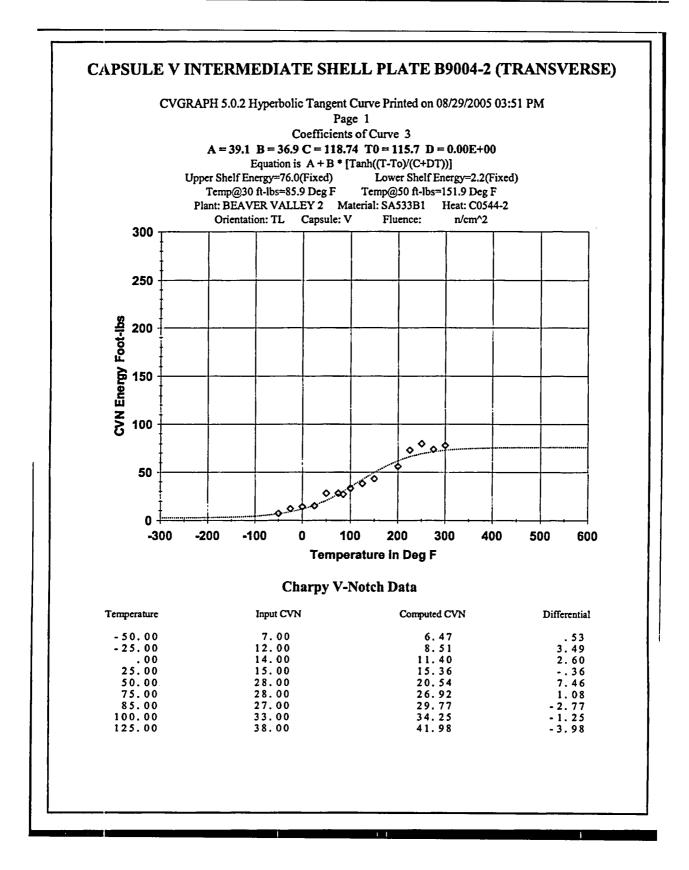
| Temperature | Input Percent Shear | Computed Percent Shear | Differential |
|-------------|---------------------|------------------------|--------------|
| 250.00      | 100.00              | 88.98                  | 11.02        |
| 275.00      | 98.00               | 94.19                  | 3.81         |
| 280.00      | 98.00               | 94.91                  | 3.09         |
| 325.00      | 100.00              | 98.49                  | 1.51         |
| 350.00      | 100.00              | 99.24                  | . 76         |
| 375.00      | 100.00              | 99.62                  | . 38         |



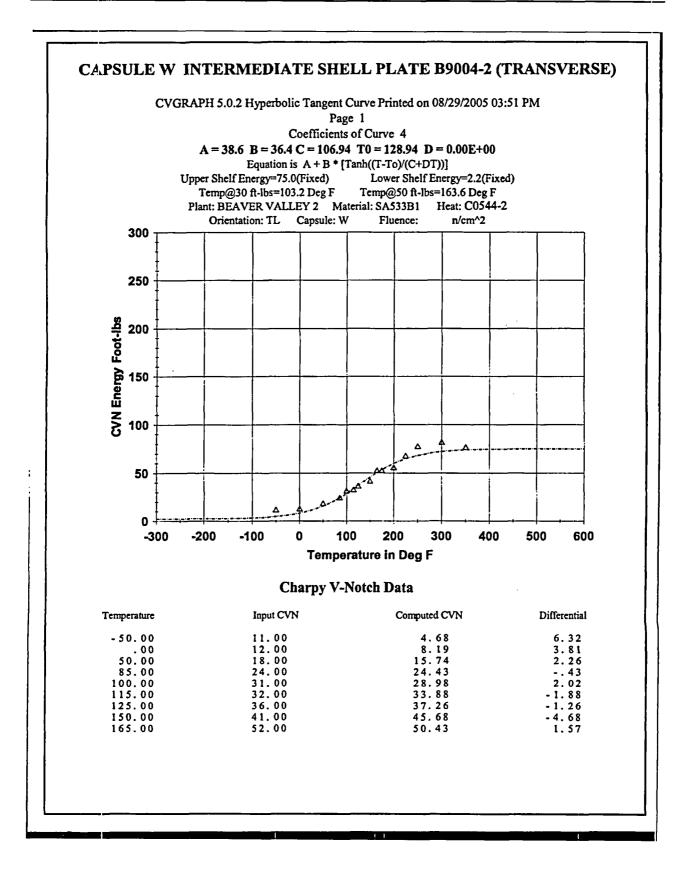

# UNIRRADIATED INTERMEDIATE SHELL PLATE B9004-2 (TRANSVERSE)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Orientation: TL Capsule: UNIRR Fluence: n/cm^2

Heat: C0544-2


### **Charpy V-Notch Data**

| Temperature | Input CVN | Computed CVN | Differential |  |
|-------------|-----------|--------------|--------------|--|
| 100.00      | 47.00     | 53.22        | - 6. 22      |  |
| 125.00      | 61.00     | 61.24        | 24           |  |
| 150.00      | 68.00     | 67.33        | . 67         |  |
| 150.00      | 71.00     | 67.33        | 3.67         |  |
| 210.00      | 77.00     | 75.23        | 1.77         |  |
| 210.00      | 80.00     | 75.23        | 4.77         |  |
| 210.00      | 80.00     | 75.23        | 4.77         |  |
| 300.00      | 82.00     | 78.39        | 3.61         |  |
| 300.00      | 76.00     | 78.39        | -2.39        |  |

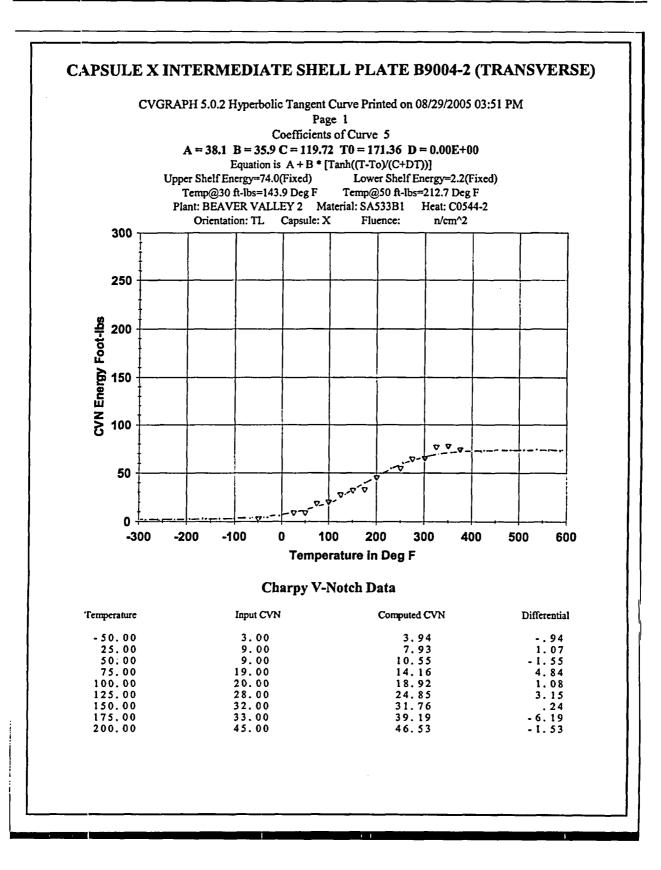



| Pl               |                                | e 2<br>terial: SA533B1 Heat: C0<br>U Fluence: n/cm^2 | 544-2         |
|------------------|--------------------------------|------------------------------------------------------|---------------|
|                  | Charpy V-                      | Notch Data                                           |               |
| Temperature      | Input CVN                      | Computed CVN                                         | Differential  |
| 125.00           | 45.00<br>58.00                 | 50.76<br>58.23                                       | - 5.76        |
| 150.00<br>200.00 | 67.00                          | 70.41                                                | - 3. 41       |
| 250.00<br>350.00 | 89.00<br>87.00                 | 78.24<br>84.87                                       | 10.76<br>2.13 |
| 450.00           | 85.00                          | 86.51                                                | - 1. 51       |
|                  | Correlation Coefficient = .981 |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      | ·             |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |
|                  |                                |                                                      |               |

ı



| Pla                        | ant: BEAVER VALLEY 2 Ma        | ge 2<br>aterial: SA533B1 Heat: C0<br>: V Fluence: n/cm^2 | 544-2                       |
|----------------------------|--------------------------------|----------------------------------------------------------|-----------------------------|
|                            | Charpy V-                      | Notch Data                                               |                             |
| Temperature                | Input CVN                      | Computed CVN                                             | Differentia                 |
| 150.00<br>200.00<br>225.00 | 43.00<br>56.00<br>73.00        | 49.47<br>61.63<br>65.89                                  | - 6. 47<br>- 5. 63<br>7. 11 |
| 250.00<br>275.00<br>300.00 | 80.00<br>74.00<br>78.00        | 69.04<br>71.28<br>72.83                                  | 10.96<br>2.72<br>5.17       |
|                            | Correlation Coefficient = .981 |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |
|                            |                                |                                                          |                             |

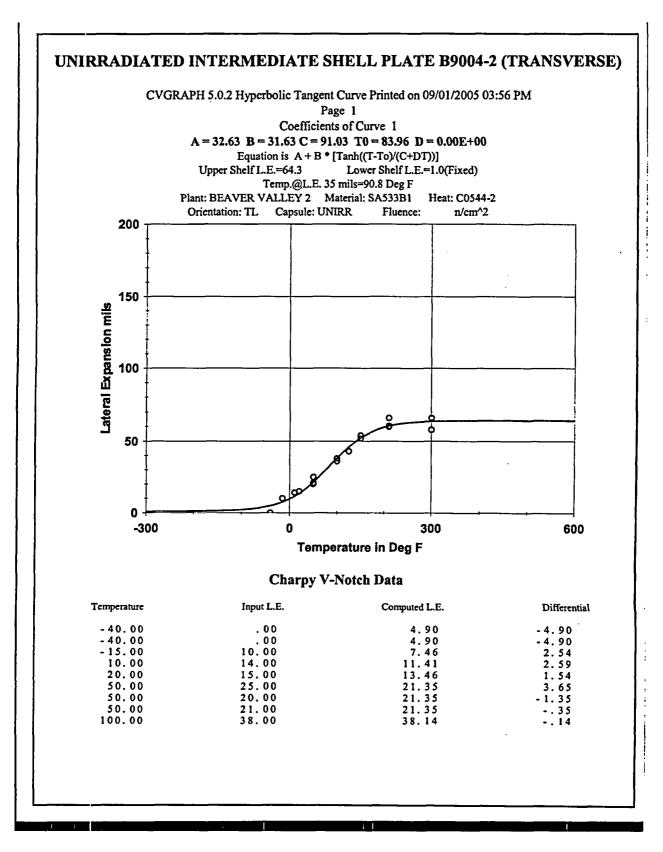



# CAPSULE W INTERMEDIATE SHELL PLATE B9004-2 (TRANSVERSE)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: CO544-2 Orientation: TL Capsule: W Fluence: n/cm^2

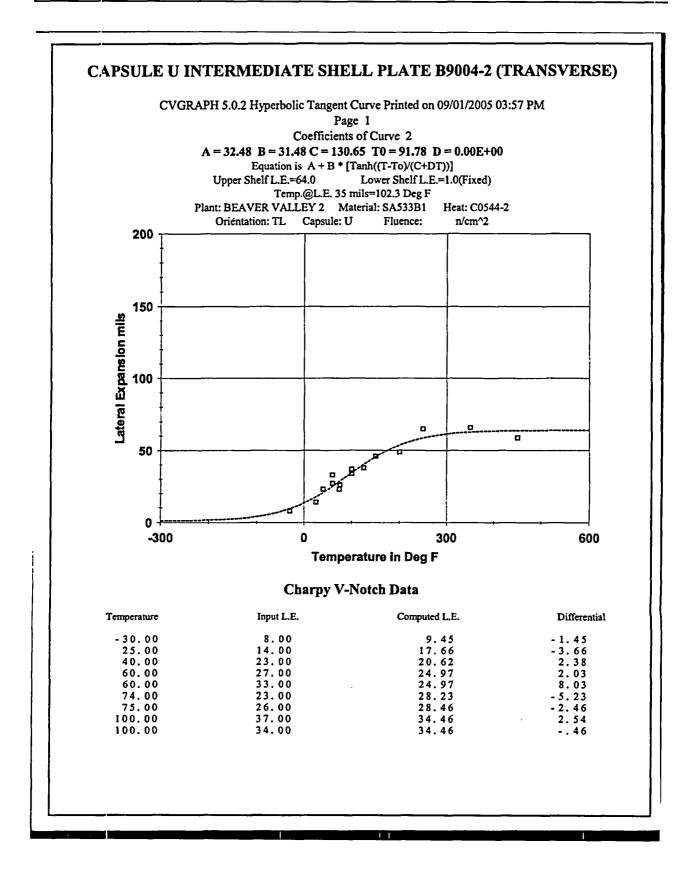
### Charpy V-Notch Data

| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| 175.00      | 52.00     | 53.37        | -1.37        |
| 200.00      | 55.00     | 59.76        | - 4.76       |
| 225.00      | 67.00     | 64.64        | 2.36         |
| 250.00      | 77.00     | 68,15        | 8.85         |
| 300.00      | 81.00     | 72.15        | 8.85         |
| 350.00      | 76.00     | 73.85        | 2.15         |




## CAPSULE X INTERMEDIATE SHELL PLATE B9004-2 (TRANSVERSE)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: TL Capsule: X Fluence: n/cm^2


### **Charpy V-Notch Data**

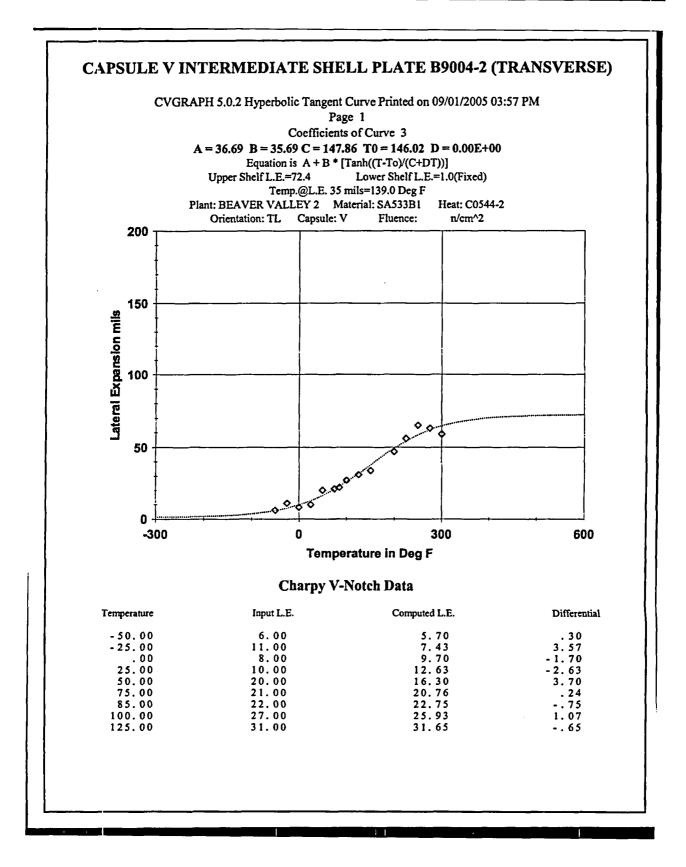
| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| 250.00      | 55.00     | 58.79        | - 3.79       |
| 275.00      | 65.00     | 63.20        | 1.80         |
| 300.00      | 65.00     | 66.50        | - 1.50       |
| 325.00      | 77.00     | 68.88        | 8.12         |
| 350.00      | 78.00     | 70.54        | 7.46         |
| 375.00      | 74.00     | 71.69        | 2.31         |



1

# UNIRRADIATED INTERMEDIATE SHELL PLATE B9004-2 (TRANSVERSE) Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: TL Capsule: UNIRR Fluence: n/cm^2 **Charpy V-Notch Data** Computed L.E. Differential Input L.E. Temperature -2.14 36.00 38.14 100.00 125.00 150.00 150.00 45.99 52.25 52.25 43.00 -2.99 54.00 1.75 -.25 -.02 210.00 60.50 60.52 5.48 66.00 60.52 210.00 210.00 60.00 60.52 -.52 300.00 63.71 63.71 66.00 2.29 - 5.71 58.00 Correlation Coefficient = .991



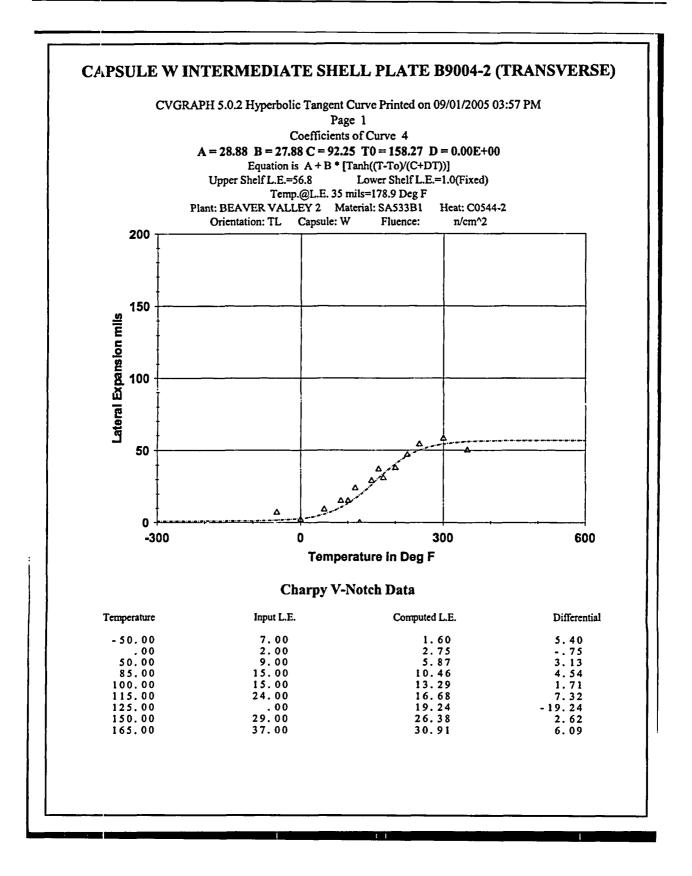

t

# CAPSULE U INTERMEDIATE SHELL PLATE B9004-2 (TRANSVERSE)

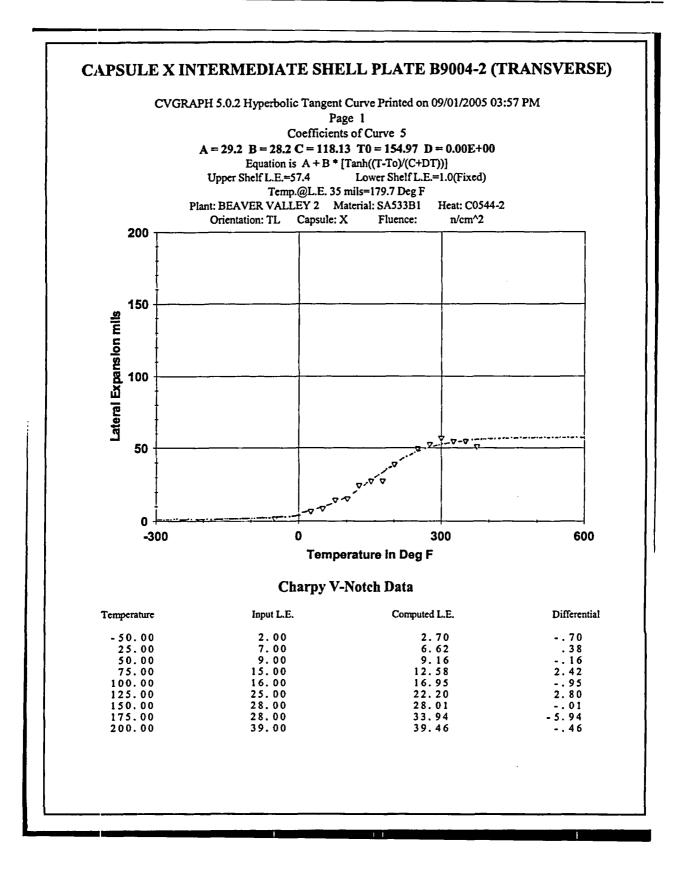
Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: TL Capsule: U Fluence: n/cm^2

### **Charpy V-Notch Data**

| Temperature | Input L.E. | Computed L.E. | Differential |
|-------------|------------|---------------|--------------|
| 125.00      | 38.00      | 40.32         | - 2.32       |
| 150.00      | 46.00      | 45.65         | . 35         |
| 200.00      | 49.00      | 53.88         | - 4, 88      |
| 250.00      | 65.00      | 58.84         | 6.16         |
| 350.00      | 66.00      | 62.78         | 3,22         |
| 450.00      | 59.00      | 63.71         | - 4.71       |




1


| Page<br>ant: BEAVER VALLEY 2 Mate<br>Orientation: TL Capsule: V | erial: SA533B1 Heat: C054 | 4-2          |
|-----------------------------------------------------------------|---------------------------|--------------|
| Charpy V-N                                                      | lotch Data                |              |
| Input L.E.                                                      | Computed L.E.             | Differential |
| 34.00                                                           | 37.65                     | - 3.65       |
| 47.00                                                           | 49.18                     | -2.18        |
| 56.00                                                           | 54.13<br>58.34            | 6.66         |
| 65.00<br>63.00                                                  | 61.77                     | 1.23         |
| 59.00                                                           | 64.48                     | - 5.48       |
| Correlation Coefficient = .989                                  |                           |              |
|                                                                 |                           |              |
|                                                                 |                           |              |

# CAPSULE V INTERMEDIATE S

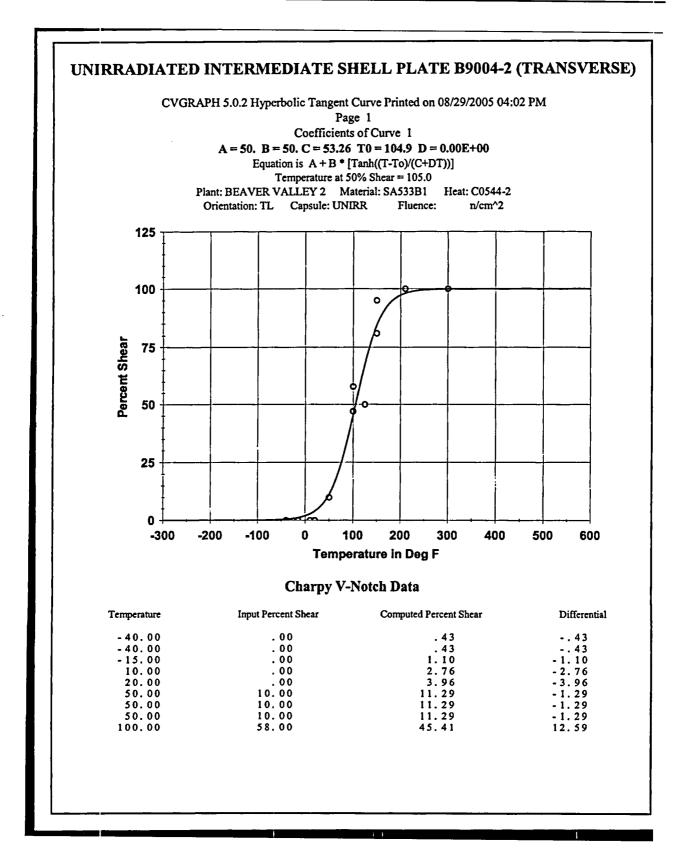
|                                                | Orientation: TL                           | Capsule: V    | Fluence:                                  | n/cm^2 |  |
|------------------------------------------------|-------------------------------------------|---------------|-------------------------------------------|--------|--|
|                                                | <b>Charpy V-Notch Data</b>                |               |                                           |        |  |
| Temperature                                    | Input L.E                                 | •             | Compute                                   | d L.E. |  |
| 150.00<br>200.00<br>225.00<br>250.00<br>275.00 | 34.00<br>47.00<br>56.00<br>65.00<br>63.00 |               | 37.65<br>49.18<br>54.13<br>58.34<br>61.77 |        |  |
| 300.00                                         | 59.00<br>Correlation Coeff                | īcient = .989 | 64                                        | .48    |  |
|                                                |                                           |               |                                           |        |  |
|                                                |                                           |               |                                           |        |  |
|                                                |                                           |               |                                           |        |  |



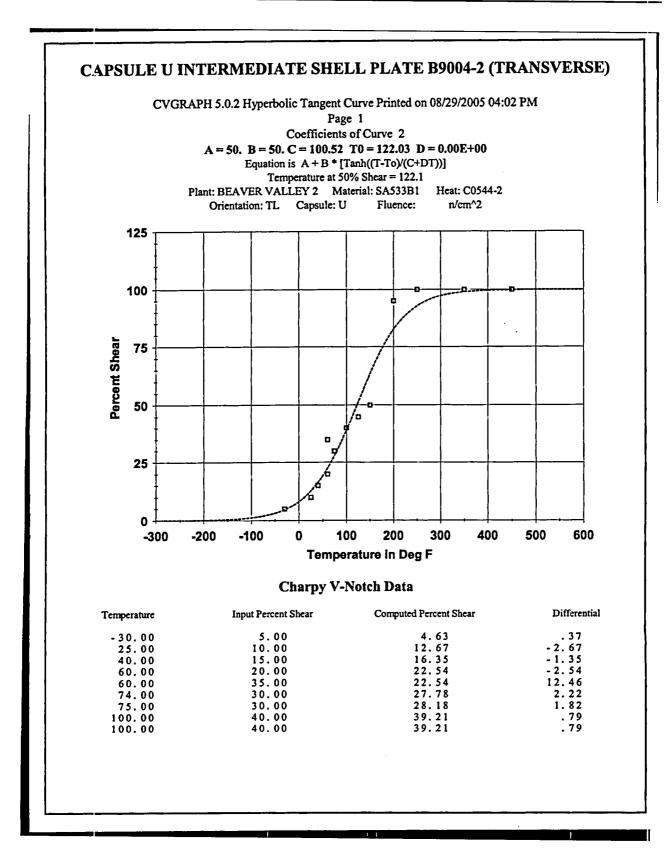
# **CAPSULE W INTERMEDIATE SHELL PLATE B9004-2 (TRANSVERSE)** Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: TL Capsule: W Fluence: n/cm^2 **Charpy V-Notch Data** Computed L.E. Differential Input L.E. Temperature 31.00 33.88 -2.88 175.00 - 2. 69 . 87 3. 96 40.69 200.00 38.00 47.00 46.13 225.00 250.00 300.00 350.00 54.00 50.04 58.00 54.29 3.71 50.00 55.89 - 5.89 Correlation Coefficient = .941



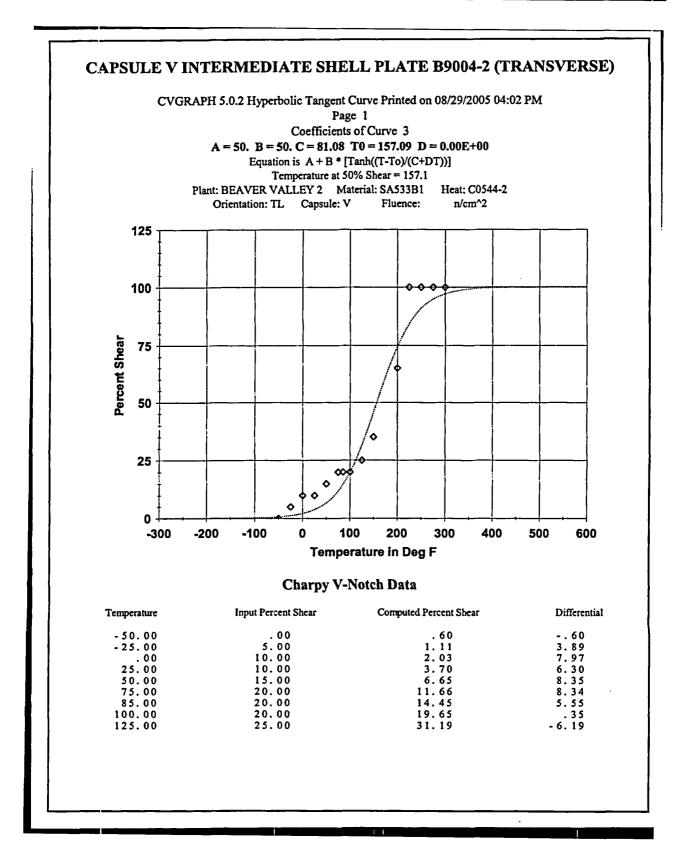
## CAPSULE X INTERMEDIATE SHELL PLATE B9004-2 (TRANSVERSE)


Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: TL Capsule: X Fluence: n/cm^2

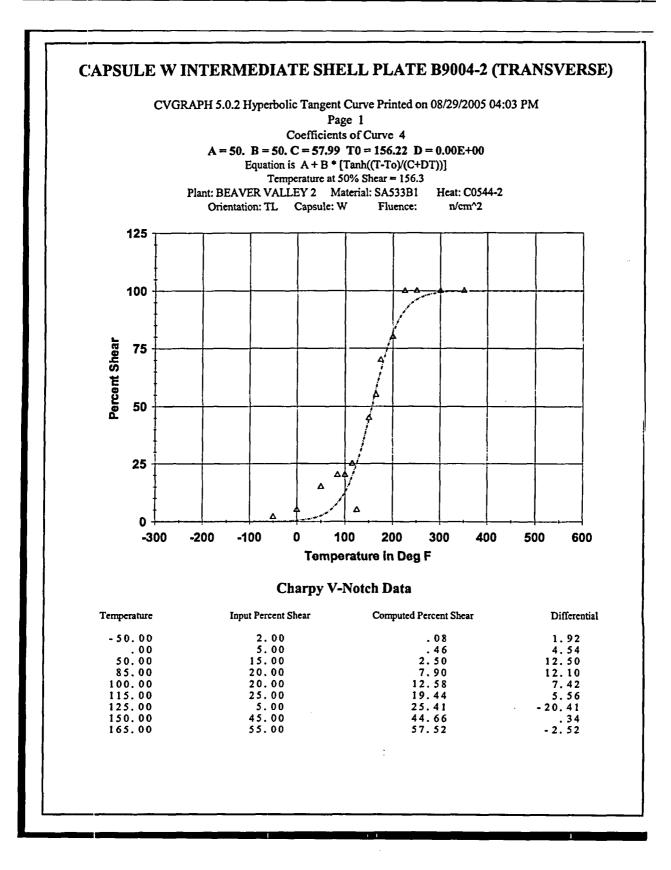
#### **Charpy V-Notch Data**


| Temperature | Input L.E. | Computed L.E. | Differential |
|-------------|------------|---------------|--------------|
| 250.00      | 50.00      | 48.00         | 2.00         |
| 275.00      | 53.00      | 50.87         | 2.13         |
| 300.00      | 57.00      | 52.94         | 4,06         |
| 325.00      | 55.00      | 54,40         | . 60         |
| 350.00      | 55.00      | 55.40         | 40           |
| 375.00      | 51.00      | 56.08         | - 5.08       |

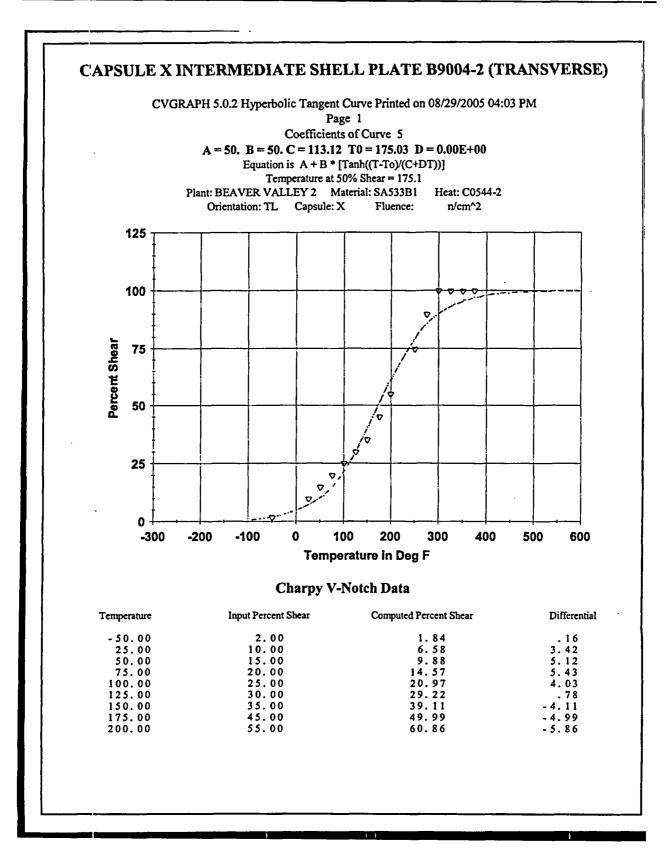
Correlation Coefficient = .991


#### C-51

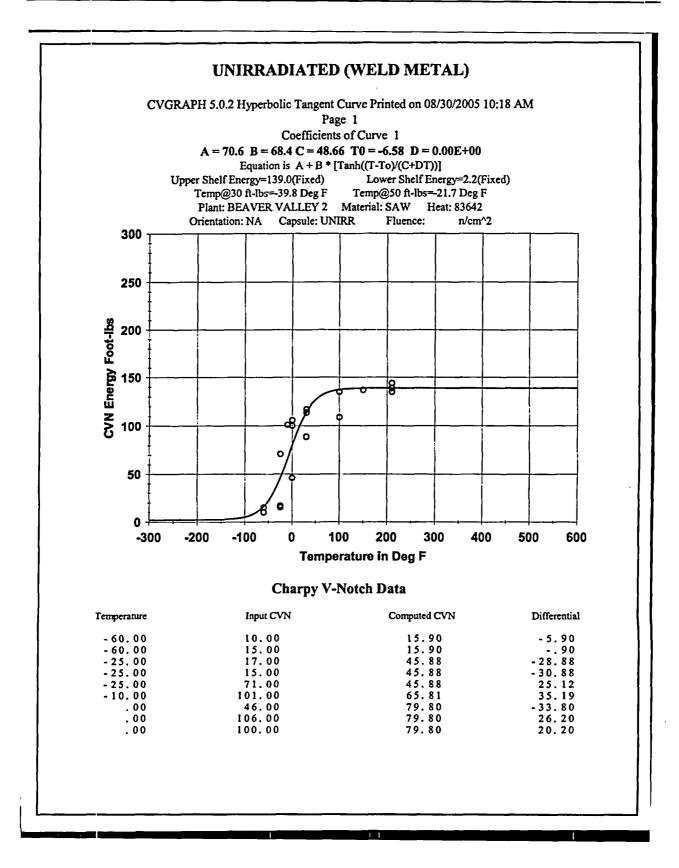



|                                                                              | it: BEAVER VALLEY 2 M                                                    | ge 2<br>aterial: SA533B1 Heat: C0544<br>NIRR Fluence: n/cm^2         | 1-2                                                                    |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                              | Charpy V-                                                                | Notch Data                                                           |                                                                        |
| Temperature                                                                  | Input Percent Shear                                                      | Computed Percent Shear                                               | Differential                                                           |
| 100.00<br>125.00<br>150.00<br>210.00<br>210.00<br>210.00<br>210.00<br>300.00 | 47.00<br>50.00<br>95.00<br>81.00<br>100.00<br>100.00<br>100.00<br>100.00 | 45.41<br>68.02<br>84.47<br>98.10<br>98.10<br>98.10<br>99.93<br>99.93 | 1.59<br>-18.02<br>10.53<br>-3.47<br>1.90<br>1.90<br>1.90<br>.07<br>.07 |
|                                                                              | Correlation Coefficient = .990                                           | )                                                                    |                                                                        |
|                                                                              |                                                                          |                                                                      |                                                                        |
|                                                                              |                                                                          |                                                                      |                                                                        |




|                  | Plant: BEAVER VALLEY 2 Ma      | ge 2<br>aterial: SA533B1 Heat: C054<br>: U Fluence: n/cm^2 | 4-2           |
|------------------|--------------------------------|------------------------------------------------------------|---------------|
|                  | Charpy V-                      | Notch Data                                                 |               |
| Temperature      | Input Percent Shear            | Computed Percent Shear                                     | Differential  |
| 125.00           | 45.00                          | 51.48                                                      | - 6. 48       |
| 150.00           | 50.00                          | 63.57<br>82.51                                             | -13.57        |
| 200.00<br>250.00 | 95.00<br>100.00                | 82.51<br>92.73                                             | 12.49<br>7.27 |
| 350.00           | 100.00                         | 98.94                                                      | 1.06          |
| 450.00           | 100.00                         | 99.85                                                      | . 15          |
|                  | Correlation Coefficient = .982 | <b>)</b>                                                   |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |
|                  |                                |                                                            |               |




| 1                | Plant: BEAVER VALLEY 2 Ma      | ge 2<br>aterial: SA533B1 Heat: C0544<br>: V Fluence: n/cm^2 | -2             |
|------------------|--------------------------------|-------------------------------------------------------------|----------------|
|                  | Charpy V-                      | Notch Data                                                  |                |
| Temperature      | Input Percent Shear            | Computed Percent Shear                                      | Differential   |
| 150.00           | 35.00                          | 45.64                                                       | -10.64         |
| 200.00<br>225.00 | 65.00<br>100.00                | 74.24<br>84.23                                              | -9.24<br>15.77 |
| 250.00           | 100.00                         | 90.82                                                       | 9.18           |
| 275.00           | 100.00                         | 94.83                                                       | 5.17           |
| 300.00           | 100.00                         | 97.14                                                       | 2.86           |
|                  | Correlation Coefficient = .983 |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |
|                  |                                |                                                             |                |

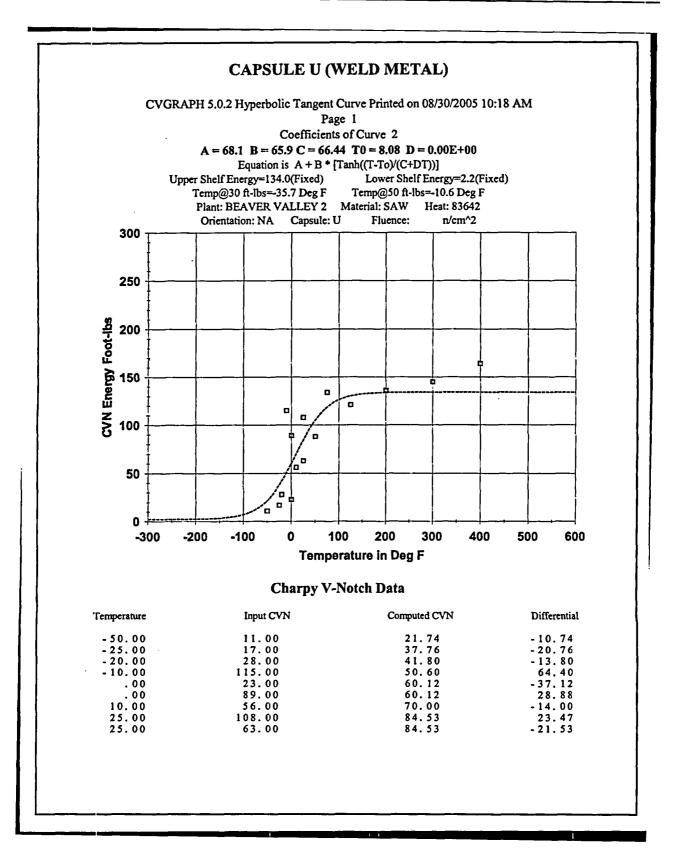


# **CAPSULE W INTERMEDIATE SHELL PLATE B9004-2 (TRANSVERSE)** Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: TL Capsule: W Fluence: n/cm^2 **Charpy V-Notch Data** Input Percent Shear **Computed Percent Shear** Differential Temperature 175.00 200.00 70.00 65.65 81.91 4.35 -1.91 8.53 3.79 225.00 100.00 91.47 250.00 100.00 96.21 . 70 300.00 350.00 100.00 99.30 100.00 99.88 Correlation Coefficient = .980



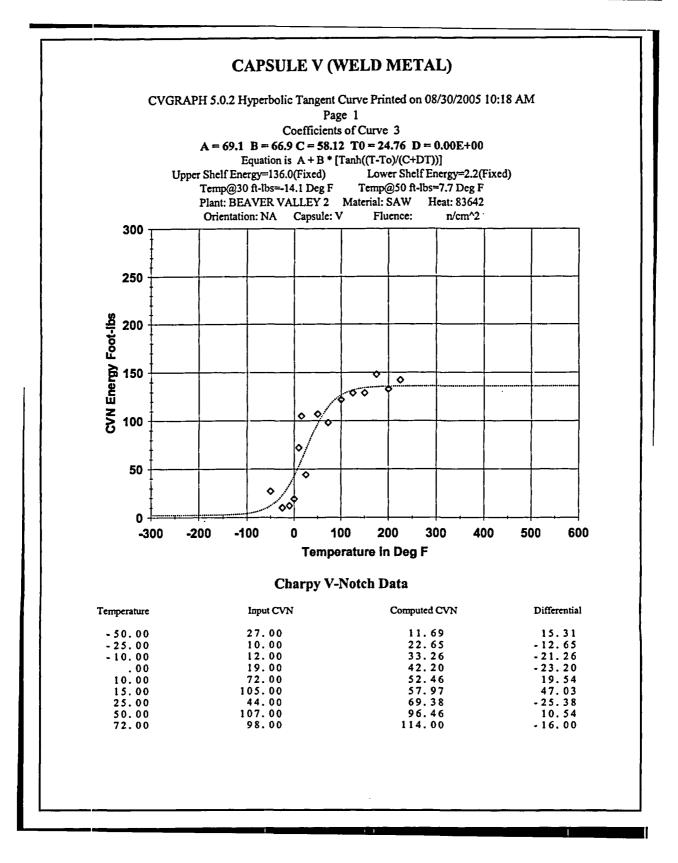
| Pla                                            | P:<br>nt: BEAVER VALLEY 2 M<br>Orientation: TL Capsul                                             |                                                    | 1-2                                            |
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|
|                                                | Charpy V                                                                                          | -Notch Data                                        |                                                |
| Temperature                                    | Input Percent Shear                                                                               | Computed Percent Shear                             | Differential                                   |
| 250.00<br>275.00<br>300.00<br>325.00<br>350.00 | $\begin{array}{c} 75.00\\ 90.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\end{array}$ | 79.01<br>85.42<br>90.11<br>93.41<br>95.66<br>97.17 | - 4.01<br>4.58<br>9.89<br>6.59<br>4.34<br>2.83 |
| 375.00                                         | Correlation Coefficient = .99                                                                     |                                                    | 2.05                                           |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |
|                                                |                                                                                                   |                                                    |                                                |




#### C-63

# UNIRRADIATED (WELD METAL)

Page 2 Plant: BEAVER VALLEY 2 Material: SAW Heat: 83642 Orientation: NA Capsule: UNIRR Fluence: n/cm^2


### **Charpy V-Notch Data**

| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| 30.00       | 114.00    | 114.12       | 12           |
| 30.00       | 117.00    | 114.12       | 2.88         |
| 30.00       | - 89.00   | 114.12       | - 25, 12     |
| 100.00      | 135.00    | 137.31       | - 2. 31      |
| 100.00      | 109.00    | 137.31       | -28.31       |
| 150.00      | 137.00    | 138.78       | -1.78        |
| 210.00      | 135.00    | 138.98       | - 3, 98      |
| 210.00      | 139.00    | 138.98       | . 02         |
| 210.00      | 144.00    | 138.98       | 5.02         |



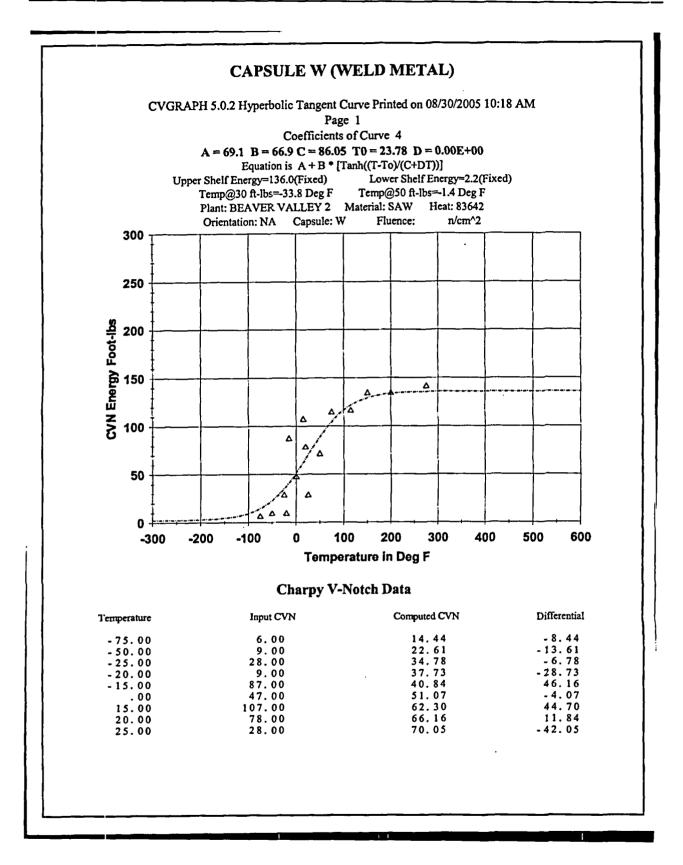
|                                                                                 | CAPSULE U (V                                              | VELD METAL)                                              |                                                      |
|---------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|
|                                                                                 | Pag<br>Plant: BEAVER VALLEY 2<br>Orientation: NA Capsule: | Material: SAW Heat: 83642                                |                                                      |
|                                                                                 | Charpy V-                                                 | Notch Data                                               |                                                      |
| Temperature                                                                     | Input CVN                                                 | Computed CVN                                             | Differential                                         |
| $\begin{array}{c} 50.00\\ 75.00\\ 125.00\\ 200.00\\ 300.00\\ 400.00\end{array}$ | 88.00<br>134.00<br>121.00<br>136.00<br>145.00<br>164.00   | 104.92<br>118.49<br>130.21<br>133.59<br>133.98<br>134.00 | - 16.92<br>15.51<br>- 9.21<br>2.41<br>11.02<br>30.00 |
|                                                                                 | Correlation Coefficient = .856                            |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |
|                                                                                 |                                                           |                                                          |                                                      |

\_ \_

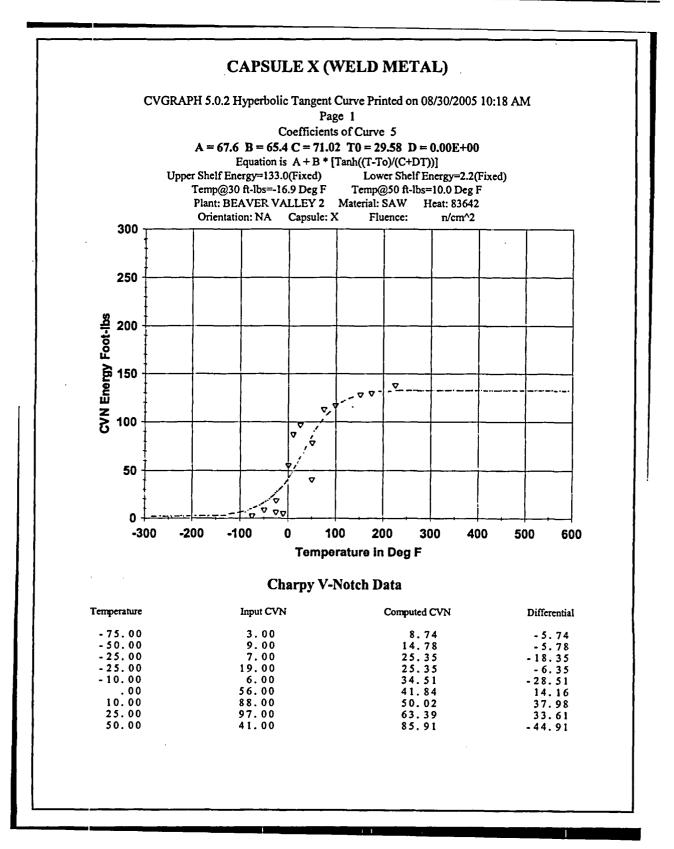


# CAPSULE V (WELD METAL)

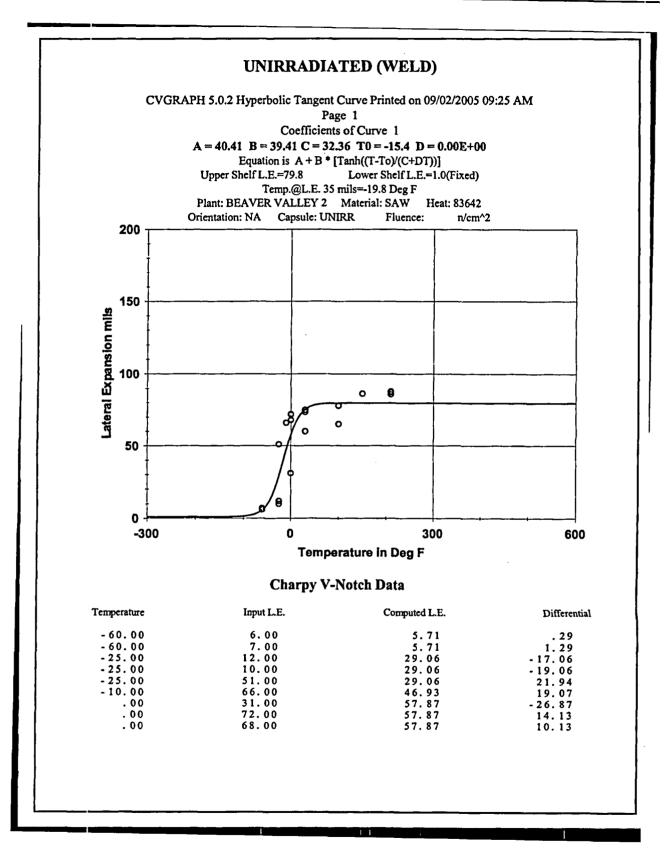
.


Page 2 Plant: BEAVER VALLEY 2 Material: SAW Heat: 83642 Orientation: NA Capsule: V Fluence: n/cm^2

### Charpy V-Notch Data


| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| 100.00      | 122.00    | 126.66       | - 4.66       |
| 125.00      | 129.00    | 131.88       | -2.88        |
| 150.00      | 129.00    | 134.23       | - 5.23       |
| 175.00      | 148.00    | 135.24       | 12.76        |
| 200.00      | 133.00    | 135,68       | -2.68        |
| 225.00      | 142.00    | 135.86       | 6.14         |

Correlation Coefficient = .925

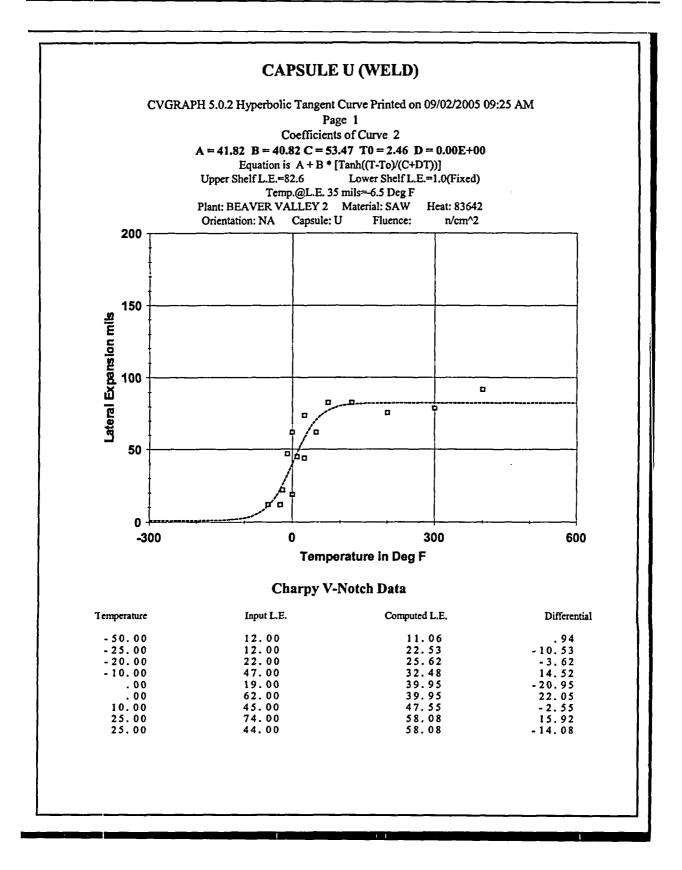

1



|                                                        | CAPSULE W (V                                               | VELD METAL)                                             |                                                  |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|--|--|--|
|                                                        | Page<br>Plant: BEAVER VALLEY 2<br>Orientation: NA Capsule: | Material: SAW Heat: 83642                               |                                                  |  |  |  |
| Charpy V-Notch Data                                    |                                                            |                                                         |                                                  |  |  |  |
| Temperature                                            | Input CVN                                                  | Computed CVN                                            | Differential                                     |  |  |  |
| 50.00<br>75.00<br>115.00<br>150.00<br>200.00<br>275.00 | 71.00<br>114.00<br>116.00<br>134.00<br>134.00<br>141.00    | 88.88<br>104.80<br>121.66<br>129.24<br>133.81<br>135.61 | - 17.88<br>9.20<br>- 5.66<br>4.76<br>.19<br>5.39 |  |  |  |
|                                                        | Correlation Coefficient = .882                             |                                                         |                                                  |  |  |  |
|                                                        |                                                            |                                                         |                                                  |  |  |  |
|                                                        |                                                            |                                                         |                                                  |  |  |  |



|                                                        | CAPSULE X (V                                            | WELD METAL)                                             |                                             |
|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|
|                                                        | Plant: BEAVER VALLEY 2                                  | ge 2<br>Material: SAW Heat: 8364<br>: X Fluence: n/cm^2 | 2                                           |
|                                                        | Charpy V-                                               | Notch Data                                              |                                             |
| Temperature                                            | Input CVN                                               | Computed CVN                                            | Differential                                |
| 50.00<br>75.00<br>100.00<br>150.00<br>175.00<br>225.00 | 79.00<br>113.00<br>117.00<br>129.00<br>130.00<br>139.00 | 85.91<br>104.53<br>117.18<br>128.74<br>130.86<br>132.47 | - 6.91<br>8.47<br>- 18<br>.26<br>86<br>6.53 |
|                                                        | Correlation Coefficient = .913                          |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         | 4                                           |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |
|                                                        |                                                         |                                                         |                                             |




### **UNIRRADIATED (WELD)**

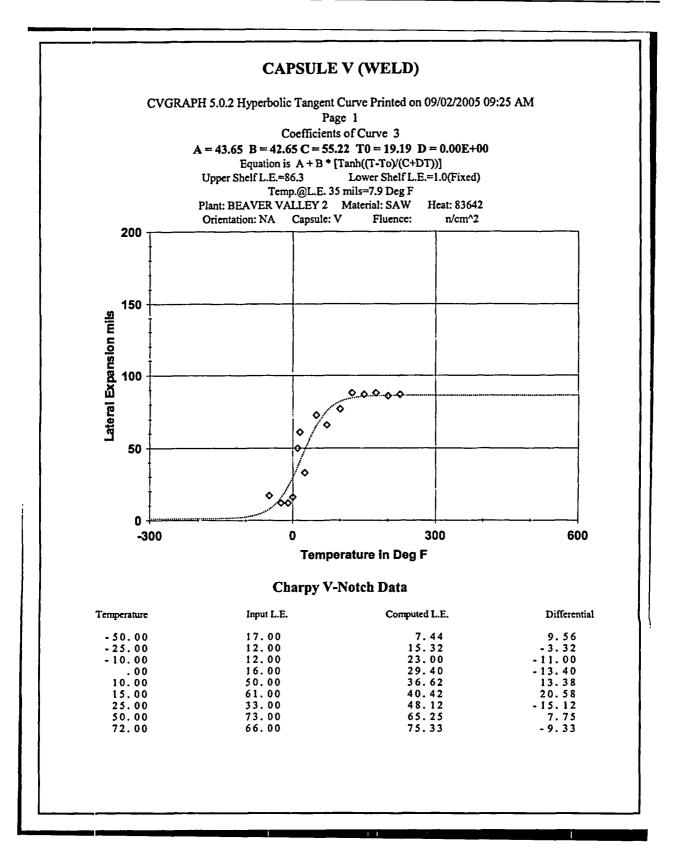
Page 2Plant: BEAVER VALLEY 2Material: SAWHeat: 83642Orientation: NACapsule: UNIRRFluence:n/cm^2

### **Charpy V-Notch Data**

| Temperature | Input L.E. | Computed L.E. | Differential |
|-------------|------------|---------------|--------------|
| 30.00       | 73.50      | 75.33         | - 1.83       |
| 30.00       | 75.00      | 75.33         | 33           |
| 30.00       | 60.00      | 75.33         | - 15.33      |
| 100.00      | 78.00      | 79.76         | -1.76        |
| 100.00      | 65.00      | 79.76         | - 14.76      |
| 150.00      | 86.50      | 79.82         | 6.68         |
| 210.00      | 87.50      | 79.82         | 7.68         |
| 210.00      | 86.00      | 79.82         | 6.18         |
| 210.00      | 88.00      | 79.82         | 8.18         |



## CAPSULE U (WELD)

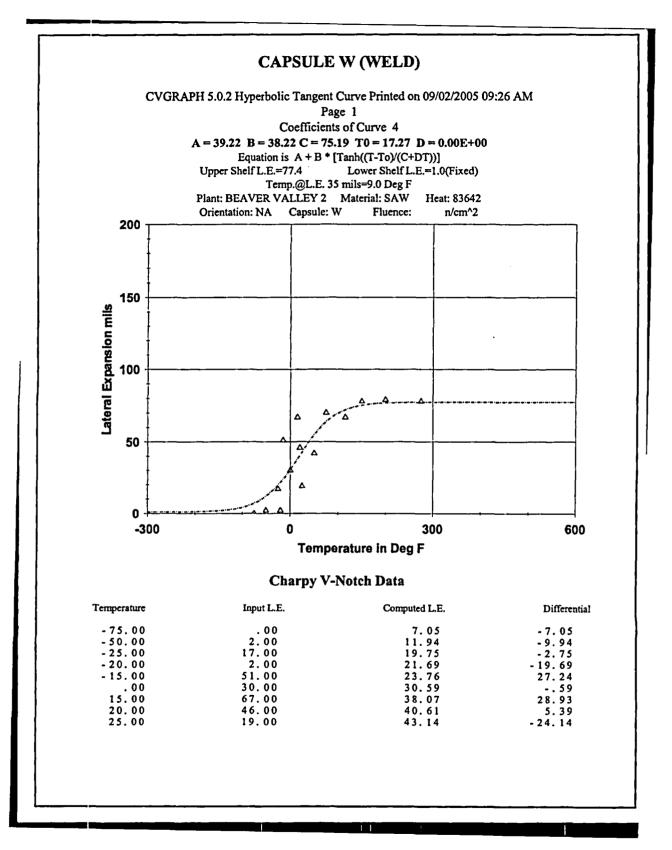

Page 2 Plant: BEAVER VALLEY 2 Material: SAW Heat: 83642 Orientation: NA Capsule: U Fluence: n/cm^2

### Charpy V-Notch Data

| Temperature | Input L.E. | Computed L.E. | Differential |  |
|-------------|------------|---------------|--------------|--|
| 50.00       | 62.00      | 70.85         | - 8.85       |  |
| 75.00       | 83.00      | 77.57         | 5.43         |  |
| 125.00      | 83.00      | 81.82         | 1.18         |  |
| 200.00      | 76.00      | 82.60         | - 6, 60      |  |
| 300.00      | 79.00      | 82.65         | - 3. 65      |  |
| 400.00      | 92.00      | 82.65         | 9.35         |  |

Correlation Coefficient = .904

.

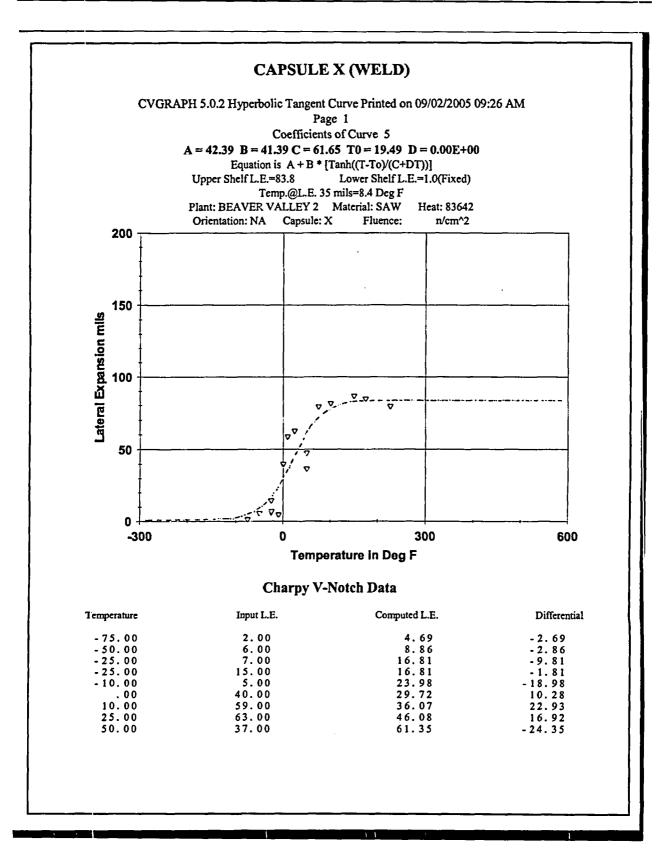



# CAPSULE V (WELD)

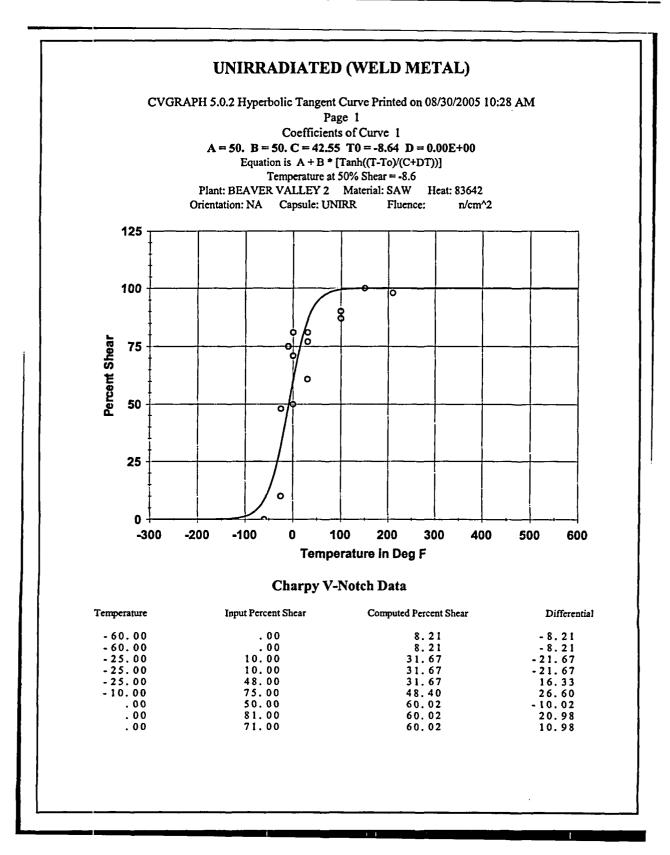
Page 2 Plant: BEAVER VALLEY 2 Material: SAW Heat: 83642 Orientation: NA Capsule: V Fluence: n/cm^2

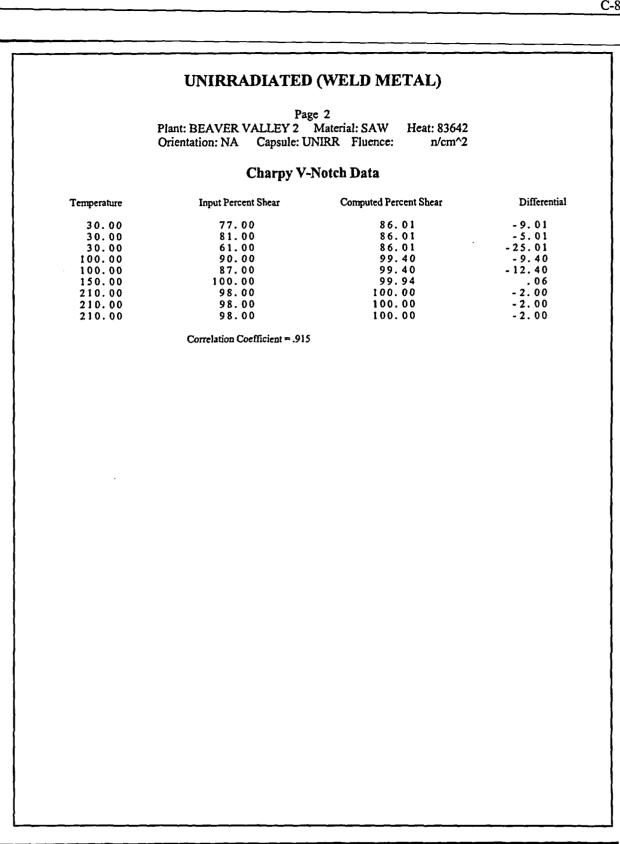
#### Charpy V-Notch Data

| Temperature | Input L.E. | Computed L.E. | Differential |
|-------------|------------|---------------|--------------|
| 100.00      | 77.00      | 81.97         | - 4. 97      |
| 125.00      | 88.00      | 84.50         | 3.50         |
| 150.00      | 87.00      | 85.57         | 1.43         |
| 175.00      | 88.00      | 86.01         | 1.99         |
| 200.00      | 86.00      | 86.18         | 18           |
| 225.00      | 87.00      | 86.26         | . 74         |

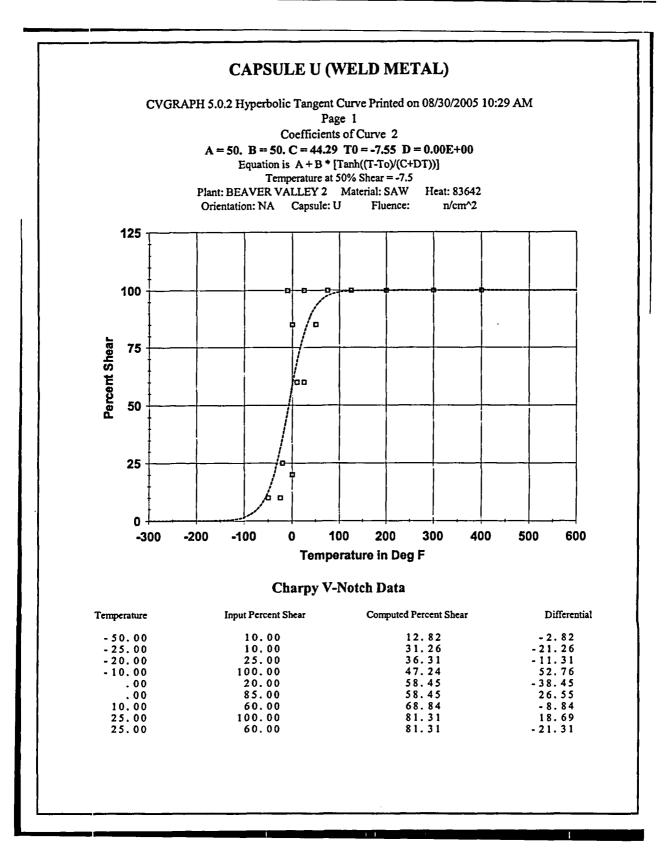



**C-**78


|                                              | CAPSULE                                            | W (WELD)                                               |                                                        |
|----------------------------------------------|----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|                                              |                                                    |                                                        |                                                        |
| Pla                                          | ant: BEAVER VALLEY 2                               | ge 2<br>Material: SAW Heat: 83642<br>W Fluence: n/cm^2 | 2                                                      |
|                                              | Charpy V-                                          | Notch Data                                             |                                                        |
| Temperature                                  | Input L.E.                                         | Computed L.E.                                          | Differential                                           |
| 50.00<br>75.00<br>115.00<br>200.00<br>275.00 | 42.00<br>70.00<br>67.00<br>78.00<br>79.00<br>78.00 | 54.88<br>63.90<br>72.15<br>75.26<br>76.85<br>77.36     | - 12. 88<br>6. 10<br>- 5. 15<br>2. 74<br>2. 15<br>. 64 |
| 275.00                                       | Correlation Coefficient = .872                     |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |
|                                              |                                                    |                                                        |                                                        |

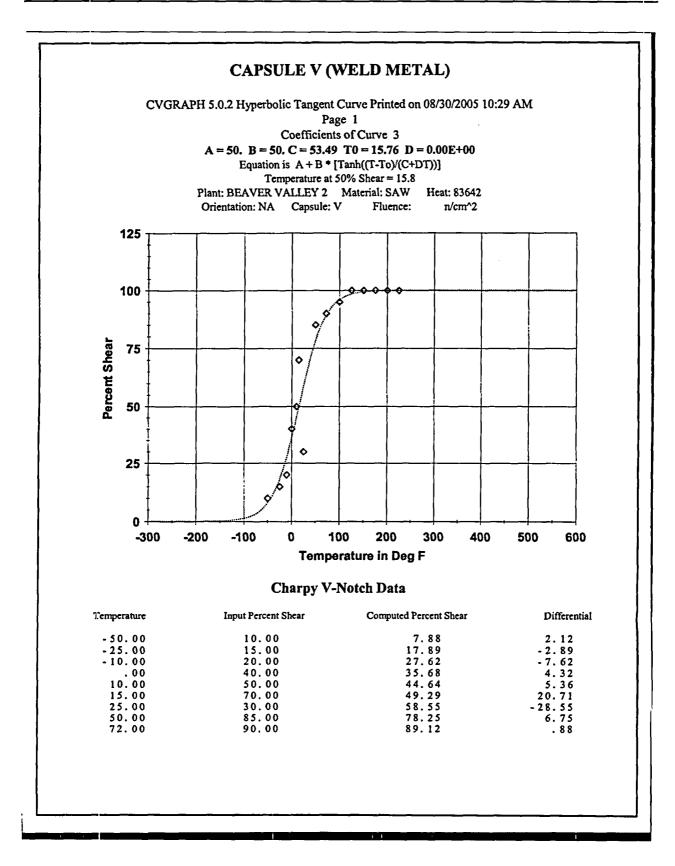

\_\_\_\_

\_\_\_\_\_




|                                                        | CAPSULE                                            | X (WELD)                                                  |                                                         |
|--------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|
| Р                                                      | lant: BEAVER VALLEY 2                              | ge 2<br>Material: SAW Heat: 83642<br>:: X Fluence: n/cm^2 | 2                                                       |
|                                                        | Charpy V-                                          | Notch Data                                                |                                                         |
| Temperature                                            | Input L.E.                                         | Computed L.E.                                             | Differential                                            |
| 50.00<br>75.00<br>100.00<br>150.00<br>175.00<br>225.00 | 48.00<br>80.00<br>82.00<br>87.00<br>85.00<br>80.00 | 61.35<br>72.04<br>78.12<br>82.59<br>83.25<br>83.67        | - 13. 35<br>7. 96<br>3. 88<br>4. 41<br>1. 75<br>- 3. 67 |
|                                                        | Correlation Coefficient = .922                     | 2                                                         |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |
|                                                        |                                                    |                                                           |                                                         |



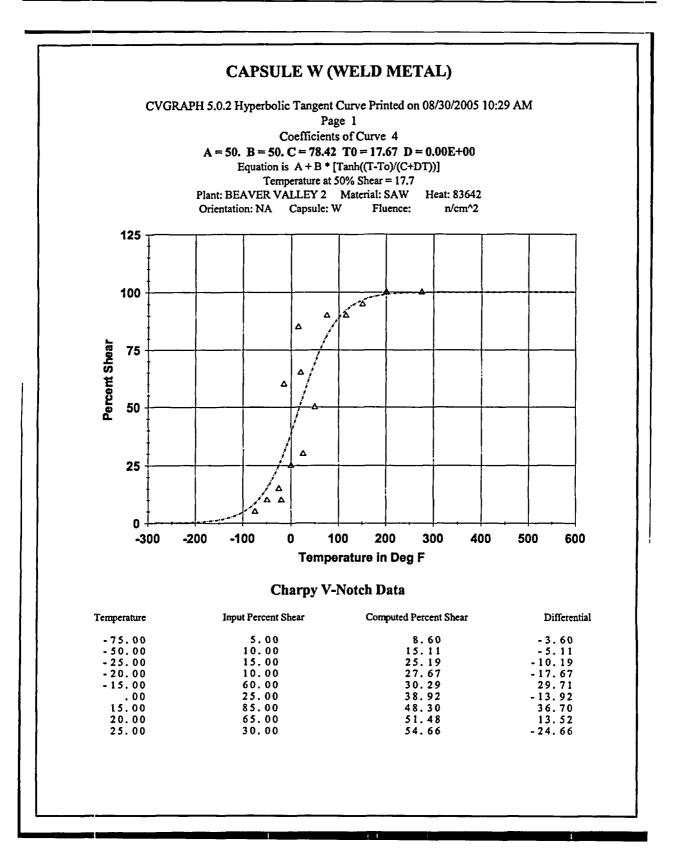



\_ \_ \_

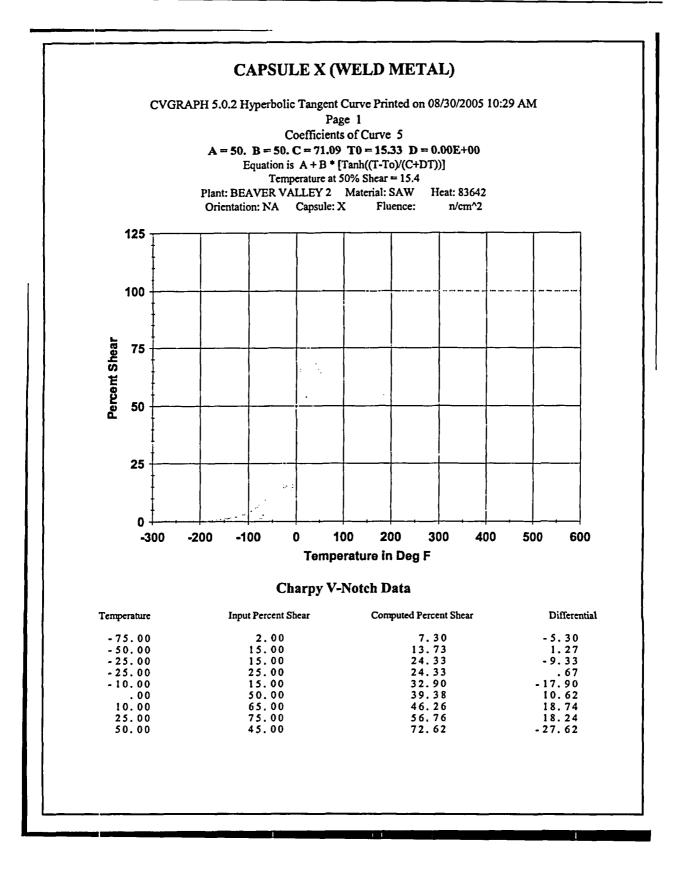


|                                    | CAPSULE U (                                             | WELD METAL)                                               |                                            |
|------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|
|                                    | Plant: BEAVER VALLEY 2                                  | ge 2<br>Material: SAW Heat: 83642<br>:: U Fluence: n/cm^2 |                                            |
|                                    | Charpy V-                                               | Notch Data                                                |                                            |
| Temperature                        | Input Percent Shear                                     | Computed Percent Shear                                    | Differentia                                |
| 50.0075.00125.00200.00300.00400.00 | 85.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00 | 93.08<br>97.65<br>99.75<br>99.99<br>100.00<br>100.00      | - 8.08<br>2.35<br>.25<br>.01<br>.00<br>.00 |
|                                    | Correlation Coefficient = .808                          |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |
|                                    |                                                         |                                                           |                                            |

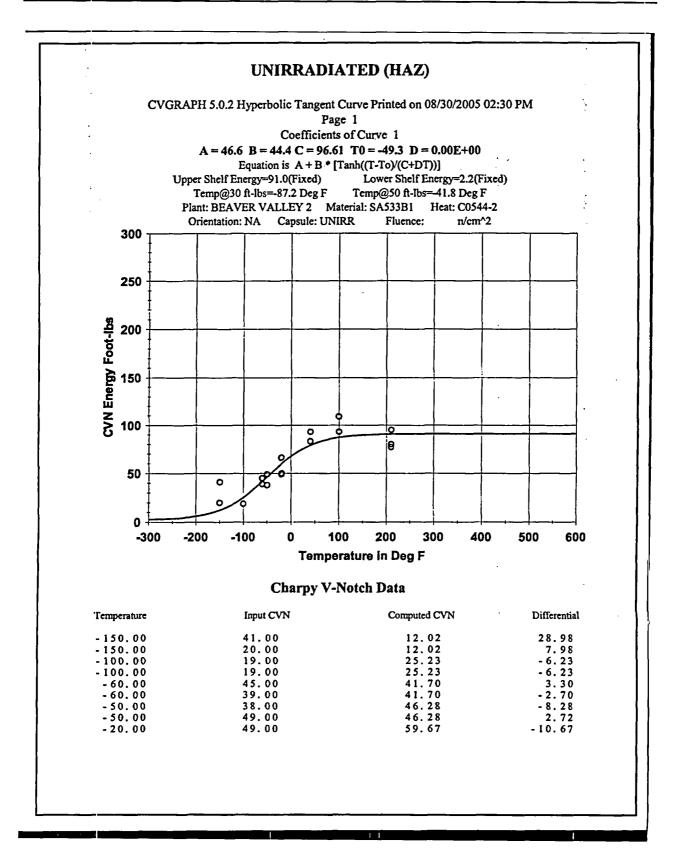
.




# CAPSULE V (WELD METAL)


Page 2 Plant: BEAVER VALLEY 2 Material: SAW Heat: 83642 Orientation: NA Capsule: V Fluence: n/cm^2

#### Charpy V-Notch Data

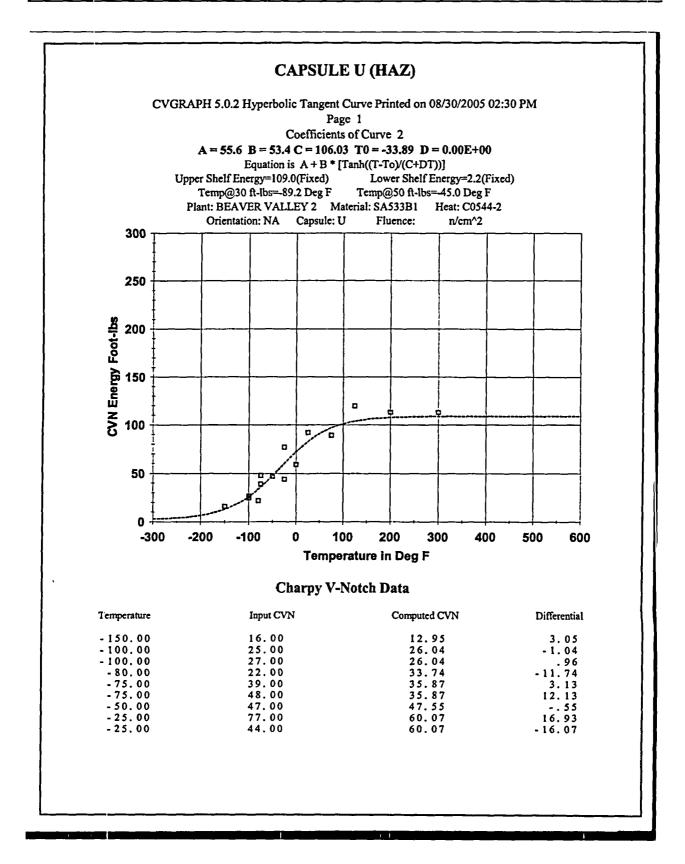

| Temperature | Input Percent Shear | Computed Percent Shear | Differential |
|-------------|---------------------|------------------------|--------------|
| 100.00      | 95.00               | 95.89                  | 89           |
| 125.00      | 100.00              | 98.35                  | 1.65         |
| 150.00      | 100.00              | 99.34                  | . 66         |
| 175.00      | 100.00              | 99.74                  | . 26         |
| 200.00      | 100.00              | 99.90                  | . 10         |
| 225.00      | 100.00              | 99.96                  | . 04         |



# **CAPSULE W (WELD METAL)** Page 2 Plant: BEAVER VALLEY 2 Material: SAW Heat: 83642 Orientation: NA Capsule: W Fluence: n/cm^2 **Charpy V-Notch Data** Input Percent Shear Computed Percent Shear Differential Temperature 50.00 75.00 115.00 50.00 69.52 -19.52 81.19 92.29 96.69 99.05 8.81 - 2. 29 90.00 - 1. 69 . 95 . 14 150.00 200.00 275.00 95.00 100.00 100.00 99.86 Correlation Coefficient = .884



|                                                        | CAPSULE X (                                             | WELD METAL)                                        |                                              |
|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------------------------------|
|                                                        | Pa<br>Plant: BEAVER VALLEY 2<br>Orientation: NA Capsulo |                                                    |                                              |
|                                                        | Charpy V                                                | -Notch Data                                        |                                              |
| Temperature                                            | Input Percent Shear                                     | Computed Percent Shear                             | Differential                                 |
| 50.00<br>75.00<br>100.00<br>150.00<br>175.00<br>225.00 | 65.00<br>90.00<br>95.00<br>100.00<br>100.00<br>100.00   | 72,62<br>84,27<br>91,55<br>97,79<br>98,89<br>99,73 | -7.62<br>5.73<br>3.45<br>2.21<br>1.11<br>.27 |
| 225.00                                                 | Correlation Coefficient = .94                           |                                                    | . 27                                         |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |
|                                                        |                                                         |                                                    |                                              |

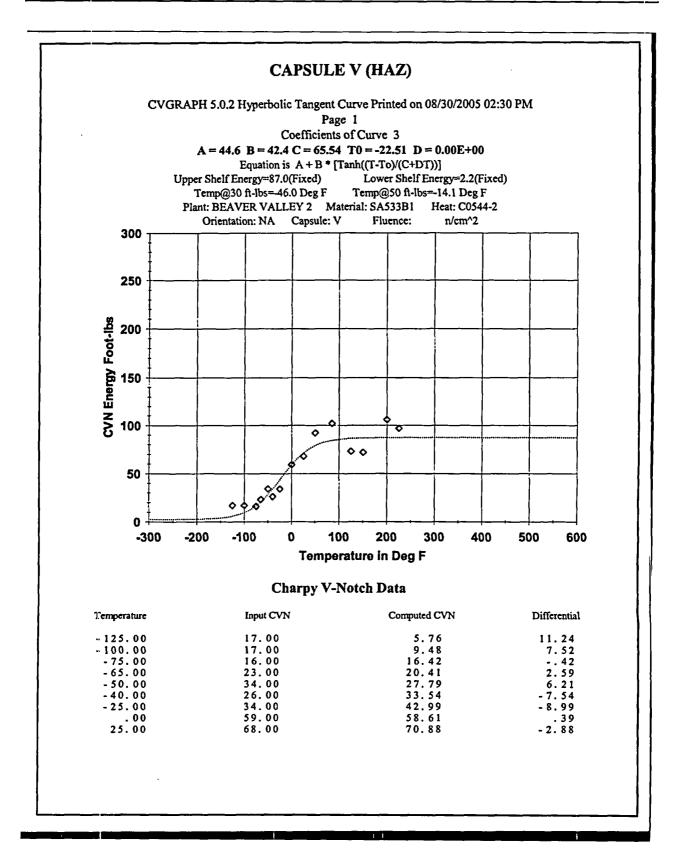



# UNIRRADIATED (HAZ)

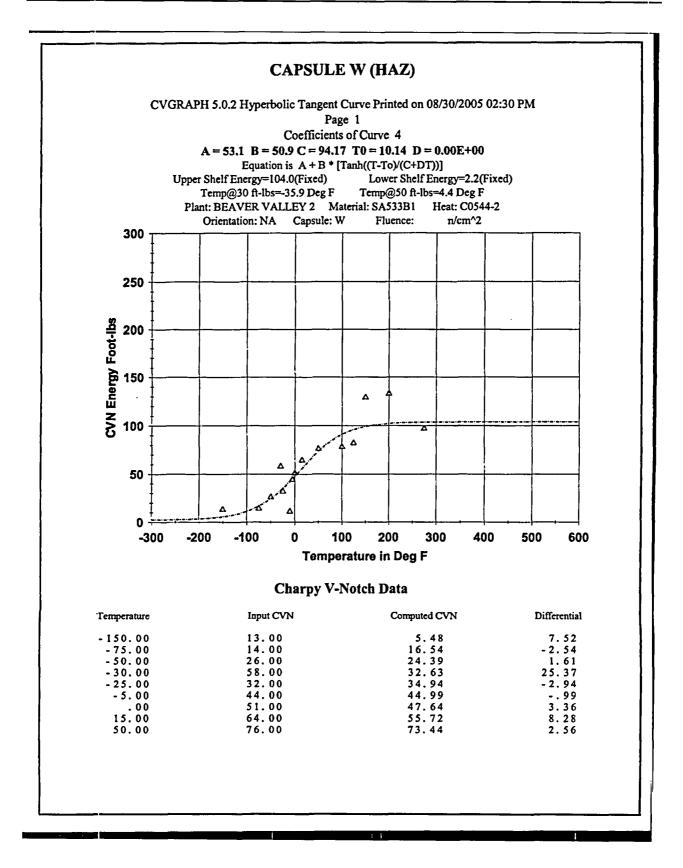
Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: UNIRR Fluence: n/cm^2

#### **Charpy V-Notch Data**

| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| -20.00      | 50.00     | 59.67        | -9.67        |
| -20.00      | 66.00     | 59.67        | 6.33         |
| 40.00       | 93.00     | 78.92        | 14.08        |
| 40.00       | 83.00     | 78.92        | 4.08         |
| 100.00      | 109.00    | 87.14        | 21,86        |
| 100.00      | 93.00     | 87.14        | 5.86         |
| 210.00      | 77.00     | 90.59        | -13.59       |
| 210.00      | 80.00     | 90.59        | -10.59       |
| 210.00      | 95.00     | 90.59        | 4.41         |




# CAPSULE U (HAZ)

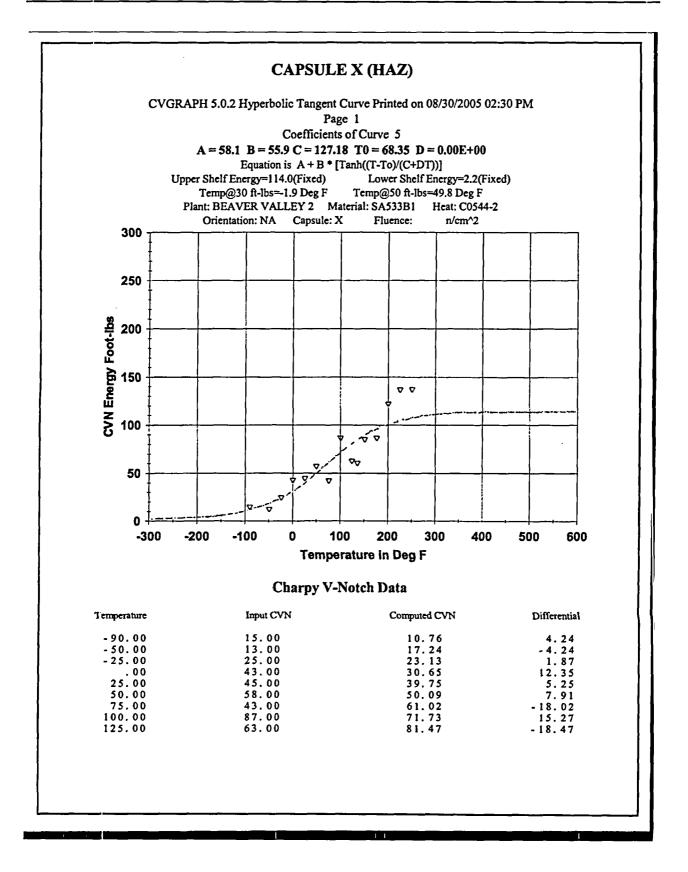

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: U Fluence: n/cm^2

#### Charpy V-Notch Data

| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| .00         | 59.00     | 72.11        | - 13. 11     |
| 25.00       | 92.00     | 82.54        | 9.46         |
| 75.00       | 89.00     | 96.86        | - 7.86       |
| 125.00      | 120,00    | 103,92       | 16.08        |
| 200.00      | 113.00    | 107.72       | 5.28         |
| 300.00      | 113.00    | 108.80       | 4.20         |



|                                    | CAPSULE                                              | E V (HAZ)                                             |                                                      |
|------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
|                                    |                                                      | e 2<br>terial: SA533B1 Heat: C05<br>V Fluence: n/cm^2 | 44-2                                                 |
|                                    | Charpy V-I                                           | Notch Data                                            |                                                      |
| Temperature                        | Input CVN                                            | Computed CVN                                          | Differential                                         |
| 50.0085.00125.00150.00200.00225.00 | 92.00<br>102.00<br>73.00<br>72.00<br>106.00<br>97.00 | 78.64<br>83.93<br>86.07<br>86.56<br>86.90<br>86.96    | 13.36<br>18.07<br>-13.07<br>-14.56<br>19.10<br>10.04 |
|                                    | Correlation Coefficient = .948                       |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |
|                                    |                                                      |                                                       |                                                      |

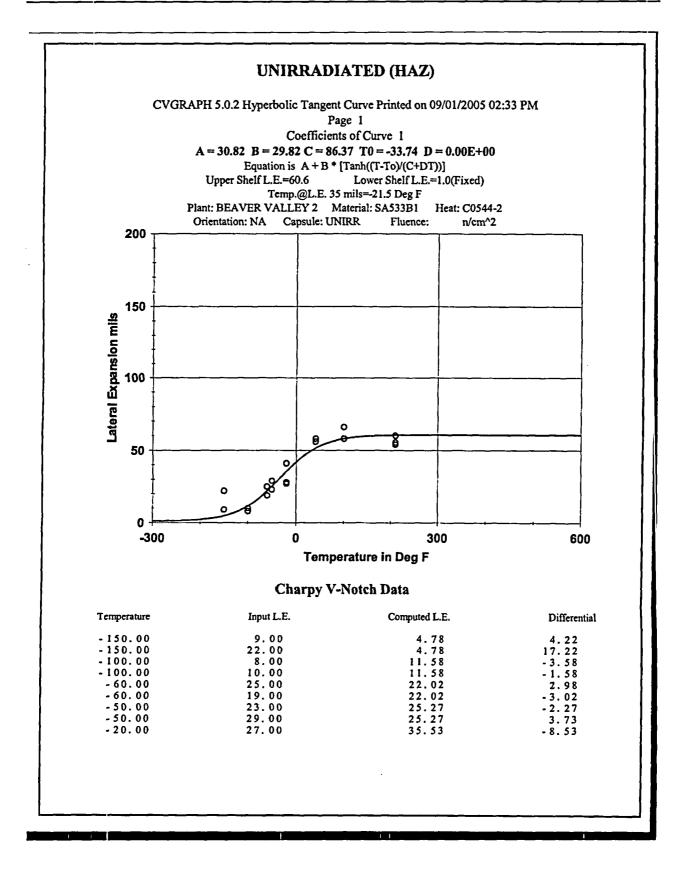



# CAPSULE W (HAZ)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: W Fluence: n/cm^2

#### **Charpy V-Notch Data**

| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| 100.00      | 78.00     | 90.85        | -12.85       |
| 125.00      | 82.00     | 95.83        | - 13.83      |
| 150.00      | 129.00    | 99.03        | 29.97        |
| 200.00      | 133.00    | 102.23       | 30.77        |
| 275.00      | 97.00     | 103.63       | - 6.63       |
| -10.00      | 11.00     | 42.38        | -31.38       |

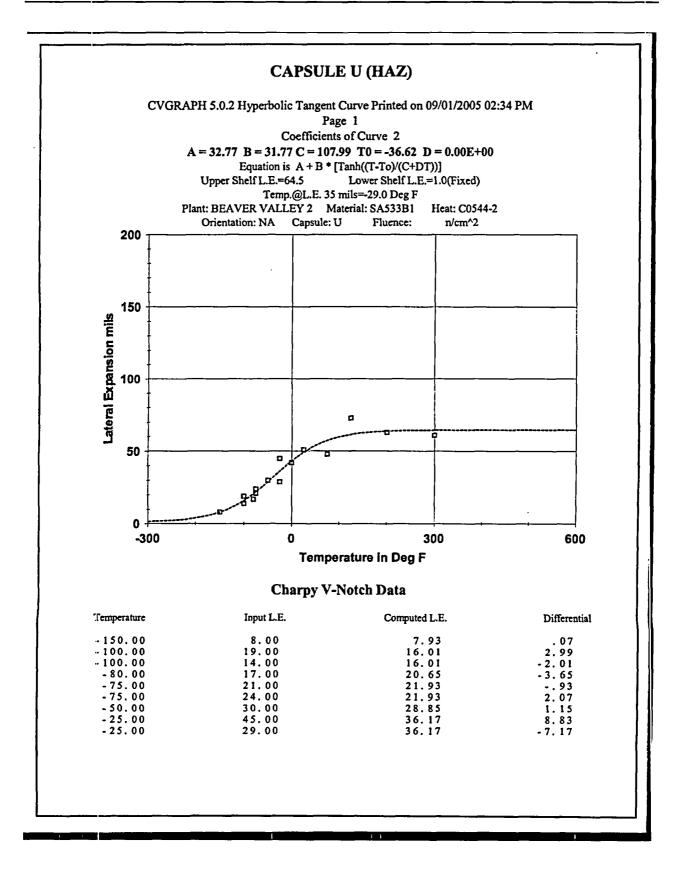



#### CAPSULE X (HAZ)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: X Fluence: n/cm^2

#### **Charpy V-Notch Data**

| Temperature | Input CVN | Computed CVN | Differential |
|-------------|-----------|--------------|--------------|
| 135.00      | 61.00     | 84.98        | - 23. 98     |
| 150.00      | 85.00     | 89.75        | - 4.75       |
| 175.00      | 87.00     | 96.39        | - 9.39       |
| 200.00      | 122.00    | 101.48       | 20.52        |
| 225.00      | 137.00    | 105.23       | 31.77        |
| 250.00      | 137.00    | 107.92       | 29.08        |

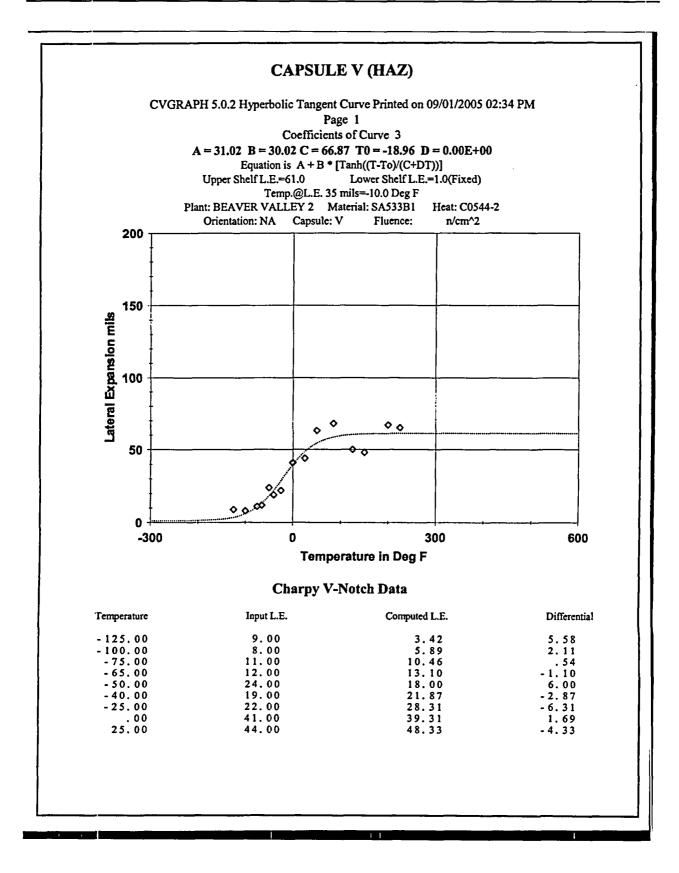



# **UNIRRADIATED (HAZ)**

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: UNIRR Fluence: n/cm^2

#### **Charpy V-Notch Data**

| Temperature | Input L.E. | Computed L.E. | Differential |
|-------------|------------|---------------|--------------|
| - 20,00     | 28.00      | 35.53         | - 7. 53      |
| -20.00      | 41.00      | 35.53         | 5.47         |
| 40.00       | 56.00      | 51.49         | 4.51         |
| 40.00       | 58.00      | 51.49         | 6.51         |
| 100.00      | 66.00      | 58.06         | 7.94         |
| 100.00      | 58.00      | 58.06         | 06           |
| 210.00      | 54.00      | 60.43         | - 6, 43      |
| 210.00      | 55.50      | 60.43         | - 4. 93      |
| 210.00      | 60.00      | 60.43         | 43           |

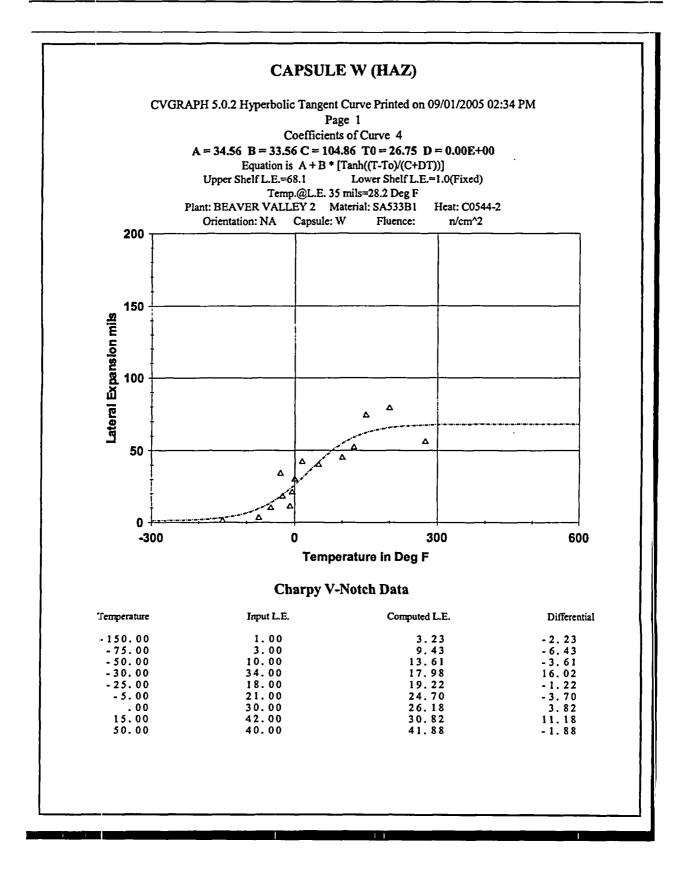



.

ı.

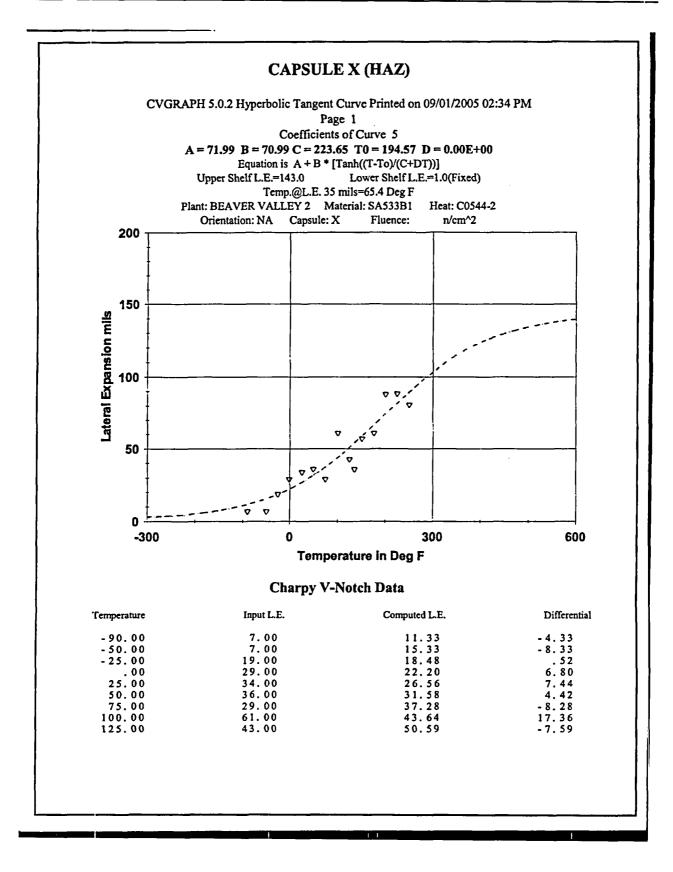
,

|                                           | CAPSULE                                                   | L U (HAZ)                                 |                                             |  |
|-------------------------------------------|-----------------------------------------------------------|-------------------------------------------|---------------------------------------------|--|
| Pla                                       | Pag<br>at: BEAVER VALLEY 2 Ma<br>Orientation: NA Capsule: | terial: SA533B1 Heat: C054                | 14-2                                        |  |
| Charpy V-Notch Data                       |                                                           |                                           |                                             |  |
| Temperature                               | Input L.E.                                                | Computed L.E.                             | Differential                                |  |
| .00<br>25.00<br>75.00<br>125.00<br>200.00 | 42.00<br>51.00<br>48.00<br>73.00<br>63.00                 | 43.15<br>49.15<br>57.40<br>61.50<br>63.75 | - 1. 15<br>1. 85<br>- 9. 40<br>11. 50<br>75 |  |
| 300.00                                    | 61.00<br>Correlation Coefficient = .964                   | 64.41                                     | - 3. 41                                     |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |
|                                           |                                                           |                                           |                                             |  |




# CAPSULE V (HAZ)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: V Fluence: n/cm^2

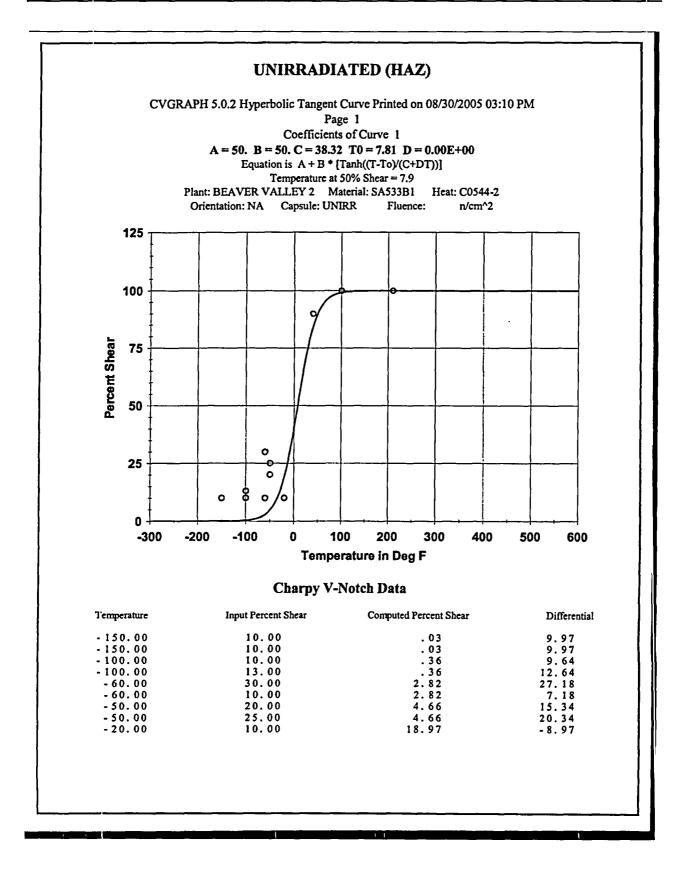

#### **Charpy V-Notch Data**

| Temperature | Input L.E. | Computed L.E. | Differential |
|-------------|------------|---------------|--------------|
| 50.00       | 63.00      | 54.26         | 8.74         |
| 85.00       | 68.00      | 58.47         | 9.53         |
| 125.00      | 50.00      | 60.24         | -10.24       |
| 150.00      | 48.00      | 60.66         | -12.66       |
| 200.00      | 67.00      | 60.95         | 6.05         |
| 225.00      | 65.00      | 61.00         | 4.00         |



2

| CAPSULE W (HAZ)                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------------|--|--|--|
| Page 2<br>Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2<br>Orientation: NA Capsule: W Fluence: n/cm^2 |                                                    |                                                    |                                                      |  |  |  |
| Charpy V-Notch Data                                                                                            |                                                    |                                                    |                                                      |  |  |  |
| Temperature                                                                                                    | Input L.E.                                         | Computed L.E.                                      | Differential                                         |  |  |  |
| 100.00<br>125.00<br>150.00<br>200.00<br>275.00<br>-10.00                                                       | 45.00<br>52.00<br>74.00<br>79.00<br>56.00<br>11.00 | 54.81<br>59.19<br>62.28<br>65.74<br>67.54<br>23.26 | -9.81<br>-7.19<br>11.72<br>13.26<br>-11.54<br>-12.26 |  |  |  |
|                                                                                                                | Correlation Coefficient = .923                     |                                                    | · .                                                  |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
| 2                                                                                                              |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    |                                                      |  |  |  |
|                                                                                                                |                                                    |                                                    | {                                                    |  |  |  |
| L                                                                                                              |                                                    |                                                    |                                                      |  |  |  |




# CAPSULE X (HAZ)

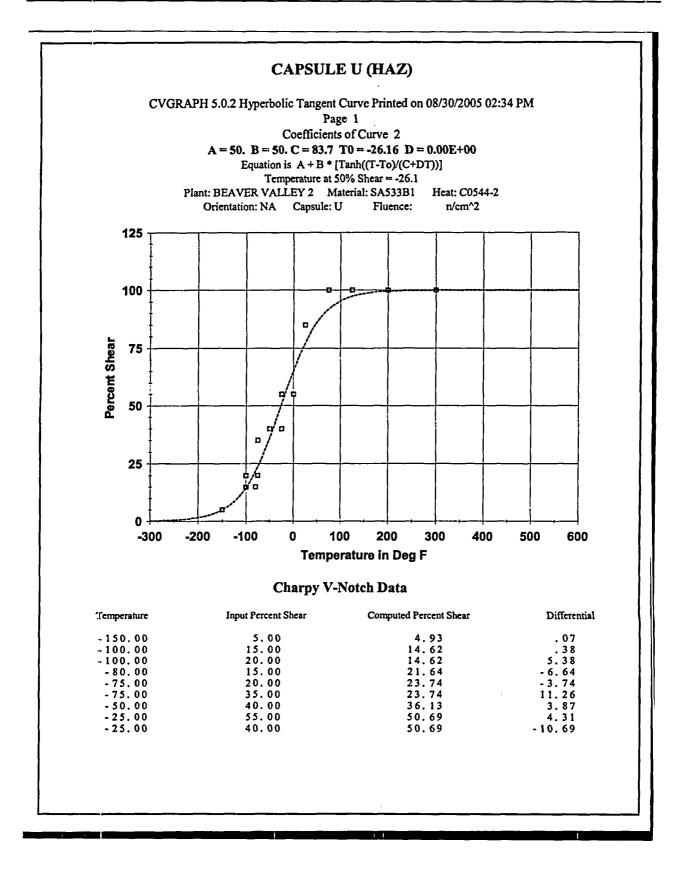
Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: X Fluence: n/cm^2

#### Charpy V-Notch Data

| Temperature | Input L.E. | Computed L.E. | Differential |
|-------------|------------|---------------|--------------|
| 135.00      | 36.00      | 53.52         | - 17.52      |
| 150.00      | 57.00      | 58.03         | -1.03        |
| 175.00      | 61.00      | 65.79         | - 4.79       |
| 200.00      | 88.00      | 73.71         | 14.29        |
| 225.00      | 89.00      | 81.59         | 7.41         |
| 250.00      | 81.00      | 89.23         | - 8.23       |



1


### **UNIRRADIATED (HAZ)**

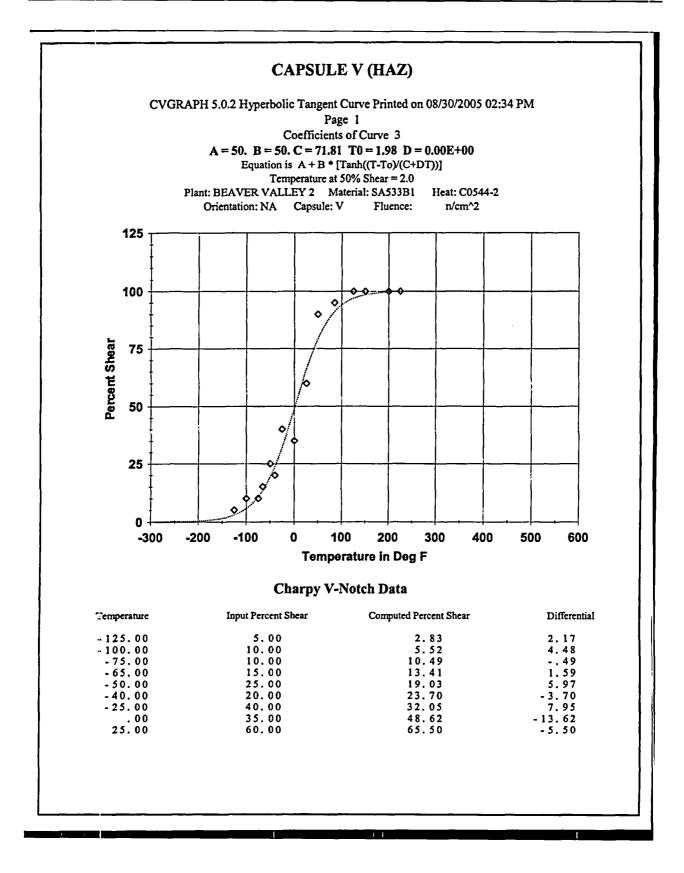
Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: UNIRR Fluence: n/cm^2

### **Charpy V-Notch Data**

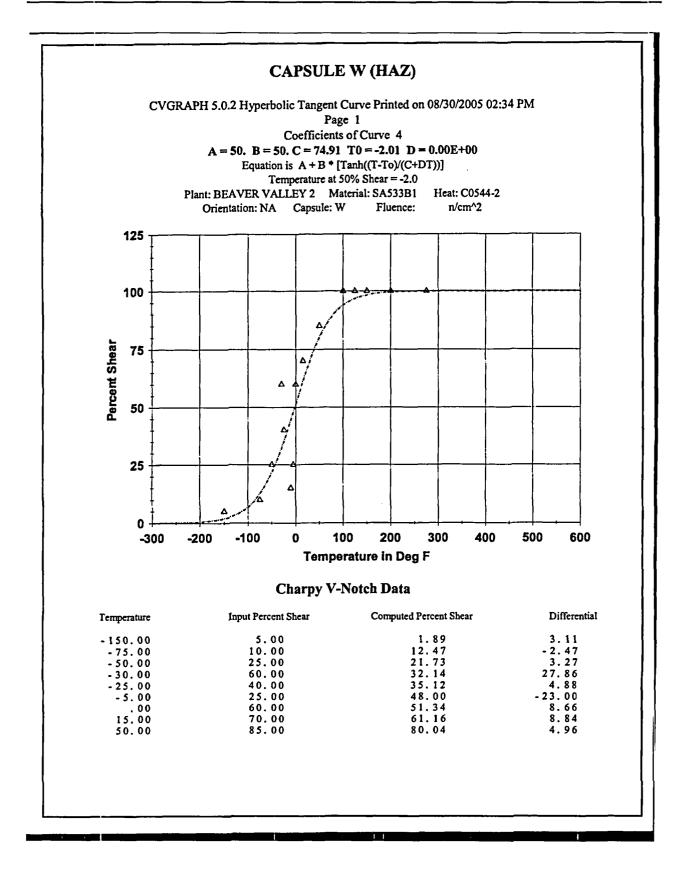
| Temperature | Input Percent Shear | Computed Percent Shear | Differential |  |
|-------------|---------------------|------------------------|--------------|--|
| -20.00      | 10,00               | 18.97                  | - 8, 97      |  |
| -20.00      | 10.00               | 18.97                  | - 8, 97      |  |
| 40.00       | 90.00               | 84.29                  | 5.71         |  |
| 40.00       | 90.00               | 84.29                  | 5.71         |  |
| 100.00      | 100.00              | 99.19                  | . 81         |  |
| 100.00      | 100.00              | 99.19                  | . 81         |  |
| 210.00      | 100.00              | 100.00                 | . 00         |  |
| 210.00      | 100.00              | 100.00                 | . 00         |  |
| 210.00      | 100.00              | 100.00                 | . 00         |  |

Correlation Coefficient = .977




## CAPSULE U (HAZ)

Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: U Fluence: n/cm^2


### **Charpy V-Notch Data**

| Temperature | Input Percent Shear | Computed Percent Shear | Differential |  |
|-------------|---------------------|------------------------|--------------|--|
| . 00        | 55.00               | 65.13                  | -10.13       |  |
| 25.00       | 85.00               | 77.25                  | 7.75         |  |
| 75.00       | 100.00              | 91.81                  | 8.19         |  |
| 125.00      | 100.00              | 97.37                  | 2.63         |  |
| 200.00      | 100.00              | 99.55                  | . 45         |  |
| 300.00      | 100.00              | 99.96                  | . 04         |  |

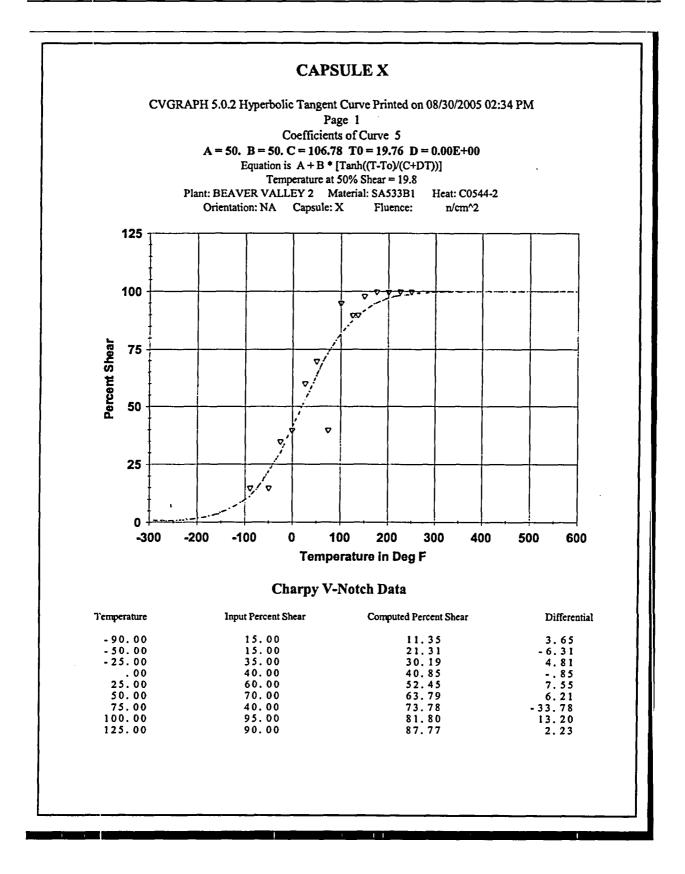
Correlation Coefficient = .984



| CAPSULE V (HAZ)                                                                                                |                                                        |                                                    |                                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|---------------------------------------------|--|--|--|--|
| Page 2<br>Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2<br>Orientation: NA Capsule: V Fluence: n/cm^2 |                                                        |                                                    |                                             |  |  |  |  |
|                                                                                                                | Charpy V-Notch Data                                    |                                                    |                                             |  |  |  |  |
| Temperature                                                                                                    | Input Percent Shear                                    | Computed Percent Shear                             | Differential                                |  |  |  |  |
| 50.00<br>85.00<br>125.00<br>150.00<br>200.00<br>225.00                                                         | 90.00<br>95.00<br>100.00<br>100.00<br>100.00<br>100.00 | 79.21<br>90.99<br>96.85<br>98.41<br>99.60<br>99.80 | 10.79<br>4.01<br>3.15<br>1.59<br>.40<br>.20 |  |  |  |  |
|                                                                                                                | Correlation Coefficient = .989                         |                                                    |                                             |  |  |  |  |
|                                                                                                                |                                                        |                                                    |                                             |  |  |  |  |



### **CAPSULE W (HAZ)**


Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: W Fluence: n/cm^2

### Charpy V-Notch Data

| Temperature | Input Percent Shear | Computed Percent Shear | Differential |
|-------------|---------------------|------------------------|--------------|
| 100.00      | 100.00              | 93.84                  | 6.16         |
| 125.00      | 100.00              | 96.74                  | 3.26         |
| 150.00      | 100.00              | 98.30                  | 1.70         |
| 200.00      | 100.00              | 99.55                  | . 45         |
| 275.00      | 100.00              | 99.94                  | . 06         |
| -10.00      | 15.00               | 44.69                  | -29.69       |

Correlation Coefficient = .934

ł



1

Differential

. 35 6. 02 5. 18 3. 31

2.10

1.32

#### **CAPSULE X** Page 2 Plant: BEAVER VALLEY 2 Material: SA533B1 Heat: C0544-2 Orientation: NA Capsule: X Fluence: n/cm^2 **Charpy V-Notch Data Computed Percent Shear** Temperature Input Percent Shear 89.65 91.98 94.82 96.69 135.00 90.00 98.00 100.00 175.00 200.00 225.00 250.00 100.00 97.90 100.00 100.00 98.68 Correlation Coefficient = .947

,

•

## **APPENDIX D**

## BEAVER VALLEY UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY EVALUATION

ł

### **INTRODUCTION:**

Regulatory Guide 1.99, Revision 2 describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2 describes the method for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date, there have been four surveillance capsules removed from the Beaver Valley Unit 2 reactor vessel. To use these surveillance data sets, they must be shown to be credible. In accordance with the discussion of Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible. Each of these five requirements is presented, along with an evaluation of each, in the following section.

The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2 to the Beaver Valley Unit 2 reactor vessel surveillance data and determine if the Beaver Valley Unit 2 surveillance data are credible.

### **EVALUATION:**

# Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements," as follows:

...the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage.

The Beaver Valley Unit 2 reactor vessel consists of the following beltline region materials:

- Intermediate shell plates B9004-1 and -2
- Lower shell plates B9005-1 and -2
- Intermediate shell longitudinal (axial) weld seams 101-142 A & B
- Lower shell longitudinal (axial) weld seams 101-142 A & B
- Intermediate to lower shell circumferential (girth) weld seam 101-171

From WCAP-9615, Revision 1, selection of the surveillance material was based on an evaluation of initial toughness (characterized by the reference temperature,  $RT_{NDT}$  and  $C_v$  upper shelf energies), and the predicted effect of chemical composition (residual copper and phosphorus) and neutron fluence on the toughness ( $RT_{NDT}$  shift) during reactor operation. Lower shell plate numbered B9004-2 (Heat C0544-1) was selected as the surveillance base metal since it had the highest adjusted EOL  $RT_{NDT}$  of the four beltline region plates. Weld Heat 83642 was selected because it is the same heat used in fabrication of all of the axial and circumferential welds.

Based on this discussion, Criterion 1 is met for the Beaver Valley Unit 2 reactor vessel.

#### Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature, and the USE of the Beaver Valley Unit 2 surveillance materials unambiguously. Hence, the Beaver Valley Unit 2 surveillance program meets this criterion.

Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of  $\Delta RT_{NDT}$  values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28°F for welds and 17°F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM E185-82.

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for these data and to determine if the scatter of  $\Delta RT_{NDT}$  values about this line is less than 28°F for welds and less than 17°F for the plate.

The Beaver Valley Unit 2 lower shell plate B9004-2 and surveillance weld will be evaluated for credibility. The surveillance weld is made from weld wire Heat 83642. Since there are now four data points available that are specific to the Beaver Valley surveillance program, only that data will be evaluated to determine credibility. Note that there are two magnitudes of fluence, therefore a wider scatter band is permitted if needed.

Table D-1 contains the calculation of chemistry factors for the Beaver Valley Unit 2 reactor vessel beltline materials contained in the surveillance program. These chemistry factors are calculated per Regulatory Guide 1.99, Revision 2, Position 2.1.

1

FF<sup>(b)</sup> Capsule f<sup>(a)</sup>  $\Delta RT_{NDT}^{(c)}$ FF<sup>2</sup> Material Capsule FF\*∆RT<sub>NDT</sub> U 0.6082 24.0 0.861 20.66 0.741 Intermediate Shell v 1.259 2.629 56.0 70.50 1.585 Plate B9004-2 W 3.625 1.335 71.0 94.79 1.782 (Longitudinal) Х 1.424 98.0 2.028 5.601 139.55 U 0.6082 0.861 17.7 15.24 0.741 Intermediate Shell v 2.629 1.259 46.1 58.04 1.585 Plate B9004-2 W 3.625 1.335 63.4 84.64 1.782 (Transverse) Х 5.601 1.424 148.24 104.1 2.028 SUM: 631.66 12.272  $CF = \sum (FF * RT_{NDT}) \div \sum (FF^2) = (631.66) \div (12.272) = 51.5^{\circ}F$ U 0.6082 0.861 4.1 3.53 0.741 Beaver Valley v 25.7 2.629 1.259 32.36 1.585 Surveillance Weld W 3.625 1.335 6.0 8.01 1.782 Metal 83642 Х 1.424 22.9 5.601 32.61 2.028 SUM: 76.51 6.136  $CF = \sum (FF * RT_{NDT}) \div \sum (FF^2) = (76.51) \div (6.136) = 12.5^{\circ}F$ 

Table D-1 Calculation of Chemistry Factors using Beaver Valley Unit 2 Surveillance Capsule Data

Notes:

- (a) f = Calculated fluence from the Beaver Valley Unit 2 capsule X dosimetry analysis results, (x 10<sup>19</sup> n/cm<sup>2</sup>, E > 1.0 MeV). (b) FF = fluence factor =  $f^{(0.28 - 0.1*\log f)}$ .
- (c)  $\Delta RT_{NDT}$  values are the measured 30 ft-lb. shift values for Beaver Valley Unit 2 taken from Appendix C.

The scatter of  $\Delta RT_{NDT}$  values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table D-2.

| Material                                                          | Capsule | CF<br>(Slope <sub>best fit</sub> ) | FF    | Measured<br>ART <sub>NDT</sub> | Predicted<br>ΔRT <sub>NDT</sub> | Scatter<br>∆RT <sub>NDT</sub> | <17°F<br>(Base Metals)<br><28°F<br>(Weld) |
|-------------------------------------------------------------------|---------|------------------------------------|-------|--------------------------------|---------------------------------|-------------------------------|-------------------------------------------|
| Intermediate<br>Shell<br>Plate B9004-2<br>( <i>Longitudinal</i> ) | U       | 51.5°F                             | 0.861 | 24.0°F                         | 44.3°F                          | -20.3°F                       | No <sup>(a)</sup>                         |
|                                                                   | v       | 51.5°F                             | 1.259 | 56.0°F                         | 64.8°F                          | -8.8°F                        | Yes                                       |
|                                                                   | w       | 51.5°F                             | 1.335 | 71.0°F                         | 68.8°F                          | 2.2°F                         | Yes                                       |
|                                                                   | x       | 51.5°F                             | 1.424 | 98.0°F                         | 73.3°F                          | 24.7°F                        | No <sup>(a)</sup>                         |
| Intermediate<br>Shell<br>Plate B9004-2<br><i>(Transverse)</i>     | U       | 51.5°F                             | 0.861 | 17.7°F                         | 44.3°F                          | -26.6°F                       | No <sup>(a)</sup>                         |
|                                                                   | v       | 51.5°F                             | 1.259 | 46.1°F                         | 64.8°F                          | -18.7°F                       | No <sup>(a)</sup>                         |
|                                                                   | W       | 51.5°F                             | 1.335 | 63.4°F                         | 68.8°F                          | -5.4°F                        | Yes                                       |
|                                                                   | x       | 51.5°F                             | 1.424 | 104.1°F                        | 73.3°F                          | 30.8°F                        | No <sup>(a)</sup>                         |
| Surveillance Weld<br>Material<br>(Heat # 83642)                   | U       | 12.5°F                             | 0.861 | 4.1°F                          | 10.8°F                          | -6.7°F                        | Yes                                       |
|                                                                   | v       | 12.5°F                             | 1.259 | 25.7°F                         | 15.7°F                          | 10.0°F                        | Yes                                       |
|                                                                   | W       | 12.5°F                             | 1.335 | 6.0°F                          | 16.7°F                          | -10.7°F                       | Yes                                       |
|                                                                   | x       | 12.5°F                             | 1.424 | 22.9°F                         | 17.8°F                          | 5.1°F                         | Yes                                       |

 
 Table D-2

 Beaver Valley Unit 2 Surveillance Capsule Data Scatter about the Best-Fit Line for Surveillance Materials

Note:

(a) Based on guidelines from Regulatory guide 1.99, Revision 2, and guidance from 10 CFR 50.61, if there are two or more orders of magnitude of the fluence, you are permitted to double the scatter acceptability criteria. In this case, there are two magnitudes of fluence, therefore, these data scatter can be considered acceptable.

Table D-2 indicates that 5 out of the 8 data points fall outside the  $\pm 1\sigma$  of 17°F scatter band for the lower shell plate B9004-2 surveillance data. Per guidelines provided in Regulatory Guide 1.99 and 10 CFR 50.61, if there are two or more magnitudes in fluence, the scatter bands are allowed to be doubled. For Beaver Valley Unit 2, there are two orders of magnitude for the fluence. Therefore, the plate data meet this criterion since the scatter is < 34°F for all of the plate materials. No weld data points fall outside the  $\pm 1\sigma$  of 28°F scatter band for the surveillance weld data; therefore, the weld data meet this criterion.

# Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25°F.

The capsule specimens are located in the reactor between the fuel and the vessel wall opposite the center of the core. The test capsules are in baskets attached to the vessel wall. The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the

specimens are subjected to equivalent operating conditions such that the temperatures will not differ by more than 25°F. Hence, this criterion is met.

# Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.

The Beaver Valley Unit 2 surveillance program does not contain correlation monitor material. Therefore, this criterion is not applicable to the Beaver Valley Unit 2 surveillance program and exemption to its requirements is implemented.

### **CONCLUSION:**

Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2 and guidance from 10 CFR 50.61, the Beaver Valley Unit 2 surveillance plate and weld data are deemed credible. For future evaluations of ART and RT<sub>PTS</sub> values, reduced margin terms for the plate and weld material is permitted per Regulatory Guide 1.99, Revision 2.