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ABSTRACT

The objective of this limited study was to provide an overview of the effects of elevated temperature on
the behavior of concrete materials and structures. In meeting this objective the effects of elevated
temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes
are summarized. The effects of elevated temperature on high-strength concrete materials are noted and
their performance compared to normal strength concretes. A review of concrete materials for elevated-
temperature service is presented. Nuclear power plant and general civil engineering design codes are
described. Design considerations and analytical techniques for evaluating the response of reinforced
concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced
concrete structural elements were subjected to elevated temperatures are described.
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FOREWORD

Under normal conditions, most concrete structures in nuclear power plants are subjected to

a range of temperatures that are no more severe than those imposed by ambient environmental
conditions. However, there are situations in which such structures may be exposed to much
higher temperatures (e.g., building fires and chemical and metallurgical applications in which
the concrete is in close proximity to furnaces). Also, some new-generation reactor designs
indicate that concrete may be exposed to long-term, steady-state temperatures in excess of
the present limit of 65°C (149°F) set forth in the Boiler and Pressure Vessel Code promulgated
by the American Society of Mechanical Engineers (ASME). In such situations, the effect of
elevated temperature on certain mechanica! and physical properties may determine whether
the concrete will maintain its structural integrity.

The purpose of this research was to provide an overview of the effects of elevated temperature
on the behavior of concrete materials. In particular, this report summarizes the effects of
elevated temperatures on the properties of ordinary Portland cement concretes and constituent
materials. This report also notes the effects of elevated temperature on high-strength concrete
materials, and compares its performance to that of normal-strength concretes. In addition,
this report presents design considerations and analytical techniques for evaluating the response
of reinforced concrete structures to elevated temperature conditions.

The major findings contained in this report are that (1) many of the elevated temperature tests
on concrete did not test either representative materials or representative nuclear power plant
environmental conditions; (2) in general, the behavior of concrete specimens at elevated
temperatures indicated that concrete loses more strength if moisture is not permitted to escape
during heating; and (3) the decrease in concrete's modulus of elasticity caused by exposure
to elevated temperatures is more pronounced than the decrease in concrete compressive strength.
Also, several research projects have been conducted to investigate the behavior of reinforced
concrete structures at elevated temperature; however, the overall leve! of effort has not been
sufficient to establish widely accepted elevated temperature concrete design or analysis
procedures.

On the basis of these findings, if a reinforced concrete structure in a proposed advanced reactor
is required to maintain its functiona! and performance specifications at temperatures in excess
of ASME Code limits for extended periods of time, techniques for optimizing the design

of structura! elements to resist these exposures should be investigated. -

\
‘rp\-./
J. Paperiello, Direktor

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
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1 INTRODUCTION

Under normal conditions, most concrete structures are subjected to a range of temperature no more severe
than that imposed by ambient environmental conditions. However, there are important cases where these
structures may be exposed to much higher temperatures (e.g., jet aircraft engine blasts, building fires,
chemical and metallurgical industrial applications in which the concrete is in close proximity to furnaces,
and some nuclear power-related postulated accident conditions). Of primary interest in the present study
is the behavior of reinforced concrete elements in designs of new-generation reactor concepts in which
the concrete may be exposed to long-term steady-state temperatures in excess of the present American
Society of Mechanical Engineers Pressure Vessel and Piping Code (ASME Code) limit of 65°C (Ref. 1).
Secondary interests include performance of concrete associated with radioactive waste storage and
disposal facilities and postulated design-basis accident conditions involving unscheduled thermal
excursions. Under such applications the effect of elevated temperature on certain mechanical and physical
properties may determine whether the concrete will maintain its structural integrity.

Concrete’s thermal properties are more complex than for most materials because not only is the concrete a
composite material whose constituents have different properties, but its properties also depend on
moisture and porosity. Exposure of concrete to elevated temperature affects its mechanical and physical
properties. Elements could distort and displace, and, under certain conditions, the concrete surfaces could
spall due to the buildup of steam pressure. Because thermally induced dimensional changes, loss of
structural integrity, and release of moisture and gases resulting from the migration of free water could
adversely affect plant operations and safety, a complete understanding of the behavior of concrete under
long-term elevated-temperature exposure as well as both during and after a thermal excursion resulting
from a postulated design-basis accident condition is essential for reliable design evaluations and
assessments. Because the properties of concrete change with respect to time and the environment to which
it is exposed, an assessment of the effects of concrete aging is also important in performing safety
evaluations. Presented in the following sections of this report is a review of the effects of elevated
temperature on concrete materials, concrete materials for elevated-temperature service, code and design
considerations for reinforced concrete structures exposed to elevated temperature, and the performance of
selected structural members subjected to elevated temperature.






2 EFFECTS OF ELEVATED TEMPERATURE ON ORDINARY
PORTLAND CEMENT CONCRETE MATERIALS

Portland cements are manufactured by mixing finely divided calcareous materials (i.e., lime containing)
and argillaceous materials (i.e., clay). The four compounds that make up more than 90% of the dry weight
of the cement are tricalcium silicate (3Ca0+Si0,), dicalcium silicate (2Ca0+Si03), tricalcium aluminate
(3Ca0+A1,03), and tetracalcium aluminoferrite (4Ca0O°A1,03°Fe;03). When water is added to Portland
cement, an exothermic reaction occurs, and new compounds are formed (i.e., hydrated cement paste):
tobermorite gel [(CasSig0;6(OH)2*4H20)], calcium hydroxide, calcium aluminoferrite hydrate,
tetracalcium aluminate hydrate, and calcium monosulfoaliminate. Mature cement paste is normally
composed of 70-80% layered calcium-silicate-hydrate (C-S-H) gel, 20% Ca(OH)2, and other chemical
compounds.2 The C-S-H gel structure is made up of three types of groups that contribute to bonds across
surfaces or in the interlayer of partly crystallized tobermorite material: calcium ions, siloxanes, and water
molecules. Bonding of the water within the layers (gel water) with other groups via hydrogen bonds
determines the strength, stiffness, and creep properties of the cement paste. Tobermorite gel is the primary
contributor to the cement paste structural properties. Under elevated-temperature exposure, the Portland
cement paste experiences physical and chemical changes that contribute to development of shrinkage,
transient creep, and changes in strength. Key material features of hydrated Portland cement paste
affecting the properties of concrete at elevated temperature are its moisture state (i.e., sealed or unsealed),
chemical structure (i.e., loss of chemically bound water from the C-S-H in the unsealed condition,
Ca0/SiO;, ratio of the hydrate in the sealed condition, and amount of Ca(OH); crystals in sealed or
unsealed conditions), and physical structure (i.e., total pore volume including cracks, average pore size,
and amorphous/crystalline structure of solid).3

Concrete is a heterogeneous multiphase material with relatively inert aggregates that is held together by
the hydrated Portland cement paste. When concretes are exposed to high temperatures, changes in
mechanical properties and durability occur. Nonlinearities in material properties, variation of mechanical
and physical properties with temperature, tensile cracking, and creep effects affect the buildup of thermal
forces, the load-carrying capacity, and the deformation capability (i.e., ductility) of the structural
members. The property variations result largely because of changes in the moisture condition of the
concrete constituents and the progressive deterioration of the cement paste-aggregate bond, which is
especially critical where thermal expansion values for the cement paste and aggregate differ significantly.
The bond region is affected by the surface roughness of the aggregate and its chemical/physical
interactions.3 Chemical interaction relates to the chemical reactions between the aggregate and cement
paste that can be either beneficial or detrimental. Physical interaction relates to dimensional compatibility
between aggregate materials and cement paste. Behavior of concrete at high temperature depends on
exposure conditions (i.e., temperature-moisture-load-time regime). Curing influences the degree of
hydration, while the temperature and load history prior to exposure to elevated temperature could have a
significant effect on the behavior of the Portland cement paste and therefore the concrete. Concrete at
elevated temperature is sensitive to the temperature level, heating rate, thermal cycling, and temperature
duration (as long as chemical and physical transformations occur). Table 1 presents a summary of
environmental factors that affect heated concrete and provides an indication of their relative influence.3

Research has been conducted on the thermal behavior of concrete in connection with the development of
prestressed concrete pressure vessels for nuclear power plants (i.e., 20°C to 200°C) and to study the
behavior of reinforced concrete members under fire conditions (i.e., 20°C to 1000°C) (Ref. 4).
Interpretation of these results can be difficult however because (1) test materials and curing conditions



Table 1 Influence of Environmental Factors on Heated Concrete

Factor Influence Comment
Temperature A Chemical-physical structure (see Chapter 2) & most
Level properties (see Chapters 6-14).
. The properties of some concrete (e.g. compressive
- strength and modulus of elasteicity ) when heated under

20-30% load can vary less with temperature - up to about

500°C - than if heated without load (see Chapters 6 & 14).
Heating Rate hid < 20C/min: Second order influence.

p 22

> about 59C/min: Becomes significant = explosive
spalling.

Cooling Rate

L 2

%

< 20C/minute: Negligible influence.
> 20C/minute: Cracking could occur.
Quenching: Very significant influence.

Thermal
Cycling

L 1)

L 2

Unsealed Concrete: Significant influence mainly during
first cycle to given temperature.

Sealed concrete: Influence in so far as it allows longer
duration at temperature for hydrothermal transformations
to develop.

Duration at
Temperature

L 2]

L 2 1)

Unsealed concrete: Only significant at early stages while
transformations decay.

Sealed concrete: Duration at temperature above 1000C =
Continuing hydrothermal transformations.

Load-Temp.
Sequence

>80

Very important - not usually appreciated

Load Level

»58

e

<30%: Linear influence on Transient Creep (Chapter 9) at
least in range up to 30% cold strength.

>50%: Failure could occur during heating at high load
levels.

Moisture
Level

L1 J

2%

Unsealed: Small influence on thermal strain and transient
creep particularly above 100°C.

Sealed: Very significant influence on the structure of
cement paste and properties of concrete above 1000C.,

*** First order influence. ** Second order influence. * First order influence.

Source: G. A. Khoury, “Performance of Heated Concrete—Mechanical Properties,” Contract NUC/56/3604A with Nuclear

Installations Inspectorate, Imperial College, London, United Kingdom, August 1996.




were different, (2) descriptions of materials are incomplete, (3) different test procedures were utilized
(e.g., heating rates and exposure times), (4) test conditions are not comparable (e.g., tested at temperature
or permitted to cool to room temperature prior to testing, and loaded or unloaded while heating), and

5 éhape and size of the test articles were different (e.g., cube and cylindrical). Contained in the
following sections of this chapter is a summary of literature that has been identified addressing the
general behavior and pertinent mechanical and physical properties of concrete materials under elevated-
temperature conditions.

2.1 General Behavior
2.1.1 Concrete Materials

If concrete made with Portland cement or blast furnace slag cement is subjected to heat, a number of
transformations and reactions occur, even if there is only a moderate increase in temperature.5:6 As
aggregate materials normally occupy 65 to 75% of the concrete volume, the behavior of concrete at
elevated temperature is strongly influenced by the aggregate type. Commonly used aggregate materials
are thermally stable up to 300°C-350°C. Aggregate characteristics of importance to behavior of concrete
at elevated temperature include physical properties (e.g., thermal conductivity and thermal expansion),
chemical properties (e.g., chemical stability at temperature), and thermal stability/integrity. Aggregate
materials may undergo crystal transformations leading to significant increases in volume [e.g., crystalline
transformation of a-quartz (trigonal) to B-quartz (hexagonal) between 500 and 650°C with an
accompanying increase in volume of ~5.7%]. Some siliceous or calcareous aggregates with some water of
constitution exhibit moderate dehydration with increasing temperature that is accompanied by shrinkage
(i.e., opal at 373°C exhibits shrinkage of ~13% by volume).” Most nonsiliceous aggregates are stable up
to about 600°C. At higher temperatures, calcareous aggregates (calcite — CaCOz3), magnesite (MgCO3),
and dolomite (MgCO3/CaCO3) dissociate into an oxide and CO; (CaO + CO,). Calcium carbonate
dissociates completely at 1 atm pressure at 898°C with partial dissociation occurring at temperatures as
low as 700°C (Ref. 8). Above 1200°C and up to 1300°C some aggregates, such as igneous rocks (e.g.,
basalt), show degassing and expansion. Refractory aggregates can be utilized to produce significant
improvements in the heat resistance of Portland cement concretes. It has been noted that the thermal
stability of aggregates increases in order of gravel, limestone, basalt, and lightweight.?

Apart from the crystalline transformations occurring mainly in the aggregate materials during heating, a
number of degradation reactions occur, primarily in the cement paste, that result in a progressive
breakdown in the structure of the concrete. An increase in temperature produces significant changes in the
chemical composition and microstructure of the hardened Portland cement paste. At low temperatures
these reactions mainly take the form of dehydration and water expulsion reactions. Changes in the
chemical composition and microstructure of the hardened Portland cement paste occur gradually and
continuously over a temperature range from room temperature to 1000°C. At room temperature, between
30 and 60% of the volume of saturated cement paste and between 2 and 10% of the volume of saturated
structural concrete are occupied by evaporable water. As the temperature to which the cement paste is
subjected increases, evaporable water is driven off until at a temperature of about 105°C all evaporable
water will be lost, given a sufficient exposure period. At temperatures above 105°C, the strongly absorbed
and chemically combined water (i.e., water of hydration) are gradually lost from the cement paste
hydrates, with the dehydration essentially complete at 850°C. Dehydration of the calcium hydroxide is
essentially zero up to about 400°C, increases most rapidly around 535°C, and becomes complete at about
600°C (Ref. 10). Figures 1 and 2 indicate the influence of temperature on the ultimate compressive
strength and modulus of elasticity of a Portland cement paste (Type I Portland cement; water/cement =
0.33) (Ref. 11). :
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A good summary of the degradation reactions that occur in Portland cement concrete is provided in

Ref. 4. Upon first heating, substantial water evaporation occurs from the larger pores close to the concrete
surface. Then, from 100°C onward, the evaporation proceeds at a faster rate with water being expelled
from concrete near the surface as a result of above-atmospheric vapor pressure (i.e., steam flow). At
120°C the expulsion of water physically bound in the smaller pores, or chemically combined, initiates and
continues up to about 500°C where the process is essentially complete. From 30°C to 300°C, in
conjunction with evaporation, dehydration of the hardened cement paste occurs (first stage) with the
maximum rate of dehydration occurring at about 180°C [Tobermorite gel is stable up to a temperature of
150°C (Ref. 12)]. In the temperature range from 450°C to 550°C there is decomposition of the portlandite
[i.e., Ca(OH)2 — CaO + H20) (Ref. 12)]. At 570°C the o. — P inversion of quartz takes place with the
transformation being endothermic and reversible. A further process of decomposition of the hardened
cement paste takes place between 600°C and 700°C with the decomposition of the calcium-silicate-
hydrate phases and formation of B-C2S. Between 600°C and 900°C the limestone begins to undergo
decarbonation (i.e., CaCO3 — CaO + CO)). The rate of decomposition and the temperature at which it
occurs are not only dependent on temperature and pressure, but also by the content of SiO2 present in the
limestone. Above 1200°C and up to 1300°C, some components of the concrete begin to melt. Above
1300°C to 1400°C concrete exists in the form of a melt. Apparently liquifaction of the concrete
commences with melting of the hardened cement paste followed by melting of the aggregates. 13-15 The
melting points of aggregates vary greatly. At 1060°C basalt is at the lower limit of all types of rock, with
quartzite not melting below 1700°C (Ref. 5).

2.1.2 Steel Reinforcing Materials

Bonded reinforcement (i.e., deformed bars) is provided to control the extent and width of cracks at
operating temperatures, resist tensile stresses and computed compressive stresses for elastic design, and
provide structural reinforcement where required by limit condition design procedures. Bonded
reinforcement in nuclear power plant structures is often used in conjunction with prestressed steel. The
prestressed steel provides the structural rigidity and the major part of the strength while the bonded
reinforcement distributes cracks, increases ultimate strength and reinforces those areas not adequately
strengthened by the prestressed steel, and provides additional safety for unexpected conditions of loading.

Structural elements fabricated from reinforced concrete, because of their typical size, have a high thermal
inertia that results in relatively slow rates of temperature increase through the cross section. As a result,
the steel reinforcement temperatures are kept sufficiently low to avoid significant softening. In addition,
due to the monolithic nature of construction, the existence of alternate load paths, and compartmentation
of fires (i.e., conventional civil engineering construction), reinforced concrete structures generally
perform well under elevated-temperature conditions that could result from a fire. However, under certain
scenarios (e.g., rapid heat buildup), spalling of the concrete could occur to expose the steel reinforcement
to the effects of elevated temperature. Such conditions at a nuclear power plant would occur only in the
unlikely event of an accident. For completeness, limited information is provided below on effects of
elevated temperature on steel reinforcing bars.

During heating of steels, crystalline transformations occur depending on the temperature (e.g., perlite at
721°C and Curie point at 768°C). Information on the density, mean specific heat, thermal conductivity,
thermal diffusivity, and coefficient of thermal expansion of different steels is presented in Figs. 3-7,
respectively.3 Strength characteristics and mechanical properties of steels depend on several factors:
amount and type of alloying constituents, heat treatment during manufacture, and retreatment in cold state
(e.g., cold drawing). Figures 8-10 present stress-strain relationships, Young’s modulus/elongation, and
yield/ultimate tensile strength data as a function of temperature for 3500 kgf/cm? specified minimum
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yield strength 51-mm-diameter steel bars.16 Information on the effect of elevated-temperature exposure
on tensile strength of prestressing steels is available.>

2.2 Mechanical and Physical Properties

Material properties are closely related to the specific test method employed. The properties of concrete at
elevated temperature can be defined from a number of viewpoints (e.g., ranging from transient such as
representing fire conditions to steady-state such as a structure operating at elevated temperature). To
interpret results, knowledge of the test condition(s) employed is required. Three main test parameters are
involved in the development of data: heating, application of load, and control of strain.!” These
parameters can be fixed at constant values or be varied during testing to provide transient conditions. Six
regimes have been identified for determining properties of concrete.417

1. Stress-strain relationships (stress-rate controlled): data provide stress-strain relationships that can be
used to establish tensile strength, modulus of elasticity, and ultimate strain at collapse.

2. Stress-strain relationships (strain-rate controlled): data also provide stress-strain relationships to
establish properties noted above as well as mechanical dissipation energy.

3. Creep: steady-state creep tests in which the specimens are heated to a specified temperature and then
loaded to provide a relationship between strain and time at different temperatures.

4. Relaxation: specimen heated to a specified temperature, loaded, strain held constant, load monitored
as function of time.

5. Total deformation: data provide a relationship between total strain and time and enable failure
temperature values and transient creep values for different stress levels to be established.

6. Total forces: data provide a relationship between stress and time for different initial stress or strain
levels and can be expressed as a relationship between restraint forces and temperature developed as a
consequence of heating.

Each of these methods or regimes determines a specific feature of material behavior. Regimes 1 through 4
are related to steady-state tests and regimes 5 and 6 transient tests. For the current study, the steady-state
regimes are of most interest because the transient regimes are primarily related to fire. For example,
unstressed tests can simulate conditions of concrete under no initial stress and exposed to high
temperature, stressed tests simulate concrete in columns or compressive zones of flexural members
subjected to heat, and unstressed residual yields information on strength of unstressed concrete that has
been exposed to a thermal excursion. More detailed descriptions of these regimes are available.4.17

2.2.1 Mechanical Properties

It has been established that the mechanical properties of concrete can be adversely affected by elevated-
temperature exposure.!8-22 Quantitative interpretation of available data is difficult, however, because

(1) samples were either tested hot or cold, (2) moisture migration was either free or restricted,

(3) concrete was either loaded or unloaded while heated, (4) mix constituents and proportions varied,

(5) test specimen size and shape were not consistent, (6) specimens were tested at different degrees of
hydration, and (7) heat-soak duration varied from test to test. To provide a consistent basis for evaluation
of data, it is recommended that several factors be taken into account:23 (1) concrete strength class; (2) test
specimen size; (3) thermal compatibility of aggregate and cement paste matrix; (4) cement and concrete
composition; (5) level of temperature; (6) degree of hydration; (7) moisture content; (8) moisture
gradients, rate of drying or wetting; (9) temperature gradient, rate of heating or cooling; (10) duration of
temperature exposure; (11) loading during temperature exposure; (12) temperature-activated
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transformations in microstructure and chemical composition of cement; {13) state of specimens tested—
hot or cold; (14) strength testing procedure; and (15) reference strength selected—wet, moist, or dry.

A review of methods used by various investigators for elevated-temperature testing of concrete indicates
that, generally, the tests can be categorized according to cold or hot testing. In cold testing, specimens are
gradually heated to a specified temperature, permitted to thermally stabilize at that temperature for a
prescribed period of time, permitted to slowly cool to ambient, and then tested to determine residual
mechanical properties. In hot testing, specimens are gradually heated to a specified temperature, permitted
to thermally stabilize at the temperature for a prescribed period of time, and then tested at temperature to
determine mechanical properties. During testing, specimens are maintained in either an open environment
where water vapor can escape (unsealed) or a closed environment where the moisture is contained
(sealed). The closed environment represents conditions for mass concrete where moisture does not have
ready access to the atmosphere, and the open environment represents conditions where the element is
either vented or has free atmospheric communication. During heating and cooling, the specimens may be
either loaded or unloaded. Mechanical properties in which the specimens have been permitted to return to
room temperature prior to testing are referred to as residual properties.

The performance of concrete can be measured by the change of its stiffness, strength, or some other
property that would affect its main function in service. Because concrete has a relatively low tensile
strength, it is normally relied upon to take compressive forces, with tensile forces taken by steel
reinforcement. As a consequence, much of the research conducted on concrete at elevated temperature has
concentrated on compressive strength as the fundamental property in examining its deterioration.
However, it has been noted that the compressive strength may not be as good an indicator of deterioration
at elevated temperature as tensile or flexural strength under short-term loading.24

Stress and Strain Characteristics

Evaluation of structures for small strain conditions involves elastic analysis procedures for which
knowledge of the concrete modulus of elasticity and strength is sufficient. When large strains are
involved, such as could occur when a structure is subjected to elevated temperature, elastic-plastic
analysis procedures are required that involve use of the load-deformation or stress-strain relations
developed for concrete at the temperature level of interest. A number of relationships have been proposed
by various authors to describe concrete’s stress-strain behavior.25.26 These expressions generally provide
good agreement with the ascending portion of the stress-strain curve but differ significantly beyond the
point of maximum stress. Reference 27 notes that the stress-strain relationships at elevated temperature
may be derived from the room-temperature relationships if the variation of maximum stress and
corresponding strain with temperature are known.

The majority of stress-strain data reported in the literature are for concrete heated to test conditions
without load or loaded under stress-controlled conditions. Stress-strain diagrams for sealed and unsealed
limestone aggregate concretes tested at temperature are presented in Figs. 11 and 12, respectively.28
These results indicate that the unsealed specimens are stiffer than the sealed specimens, but strains at
ultimate load were reduced. Figure 13 presents the influence of test temperature on the stress-strain
relationship of a quartz aggregate concrete in a stress-rate controlled test.29 These data show a significant
increase in ultimate strain and a loss of stiffness with increasing temperature. Figure 14 shows specimens
made from quartz aggregate concrete that are tested at temperature are stiffer and stronger than identical
companion specimens heated to the same temperatures and then permitted to cool to room temperature
before testing (i.e., up to 450°C the stress-strain curves of specimens tested at temperature do not change
appreciably).30 It was also concluded from this study that the type of cement and the duration of thermal
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treatment had a minor affect on the slope of the stress-strain curve. Many nuclear power plant structures,
such as prestressed concrete pressure vessels, will be under a compressive load prior to heating. The
beneficial effect of applied preload load (0, 10, or 30% the reference strength) during exposure to
temperatures of either 250°C or 450°C on strength and stiffness is demonstrated by results presented in

Fig. 15.4
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Figure 15 Stress-strain relationship of normal concrete with specimens
loaded during the heating period. Source: U. Schneider, “Behaviour
of Concrete at High Temperature,” HEFT 337, Deutscher Ausschuss
fur Stahlbeton, Wilhelm Ernst & Sohn, Munich, Germany, 1982.

Relative to temperature effects on concrete’s stress-strain curve, several general observations can be
made. Under steady-state conditions, the original concrete strength, water-cement ratio, heating rate, and
type of cement have minor influence on the stress-strain behavior. Aggregate-cement ratio and aggregate
type are the main factors affecting the shape of the stress-strain curve. Concretes made with hard
aggregates (e.g., siliceous or basalt) generally have a steeper decrease of the initial slope at high
temperature (e.g., >550°C) than softer aggregates (e.g., lightweight). Curing conditions influence the
stress-strain behavior only at relatively low temperatures (<300°C) (Ref. 17).

Poisson’s Ratio

Poisson’s ratio is needed for conducting structural analyses of flat slabs, arch dams, tunnels, tanks, and
other statically indeterminate members. At normal ambient conditions, Poisson’s ratio for concrete can
vary from 0.11 to 0.32, but is generally in the range from 0.15 to 0.20. Available data do not indicate a
consistent trend for variation of Poisson’s ratio with age, strength, or other concrete properties. However,
some test results indicate that the ratio increases with age of concrete up to about 2 years and is lower for
higher strength concretes.31:32

Data on the effect of elevated temperature on Poisson’s ratio are somewhat limited and tend to be
inconsistent. Some data indicate that the Poisson’s ratio decreases with increasing temperature,33 whereas
elsewhere it has been reported that it ranged from 0.11 to 0.25 at 20°C to 400°C, while above 400°C it
increased.34 Additional data for higher strength concrete indicated that when the stress did not exceed
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50% of peak value, the Poisson’s ratio decreased with an increase in temperature.35 Figure 16 presents
Poisson’s ratio results for a hard sandstone aggregate concrete after various heating periods (i.e., 1, 7, 28,
and 91 d) at 175°C for specimens that were either sealed or unsealed during heating.36 Poisson’s ratio
ranged from 0.14 to 0.22 with the trend for it to increase with increasing moisture content of the concrete.
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Figure 16 Poisson’s ratio results, Source: K. Hirano et al., “Physical
Properties of Concrete Subjected to High Temperature for
MONIJU,” Paper P2-25, Power Reactor and Nuclear Fuel
Development Corporation, Tokyo, Japan.
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Modulus of Elasticity

Concrete’s modulus of elasticity—a measure of its stiffness or resistance to deformation—is used
extensively in the analysis of reinforced concrete structures to determine the stresses developed in simple
elements and the stresses, moments, and deflections in more complicated structures. Because concrete’s
stress-strain curve is nonlinear, the modulus of elasticity is determined either by the initial tangent
modulus, secant modulus, or tangent modulus method. Principal variables affecting the modulus include
(1) richness of the mix (richer the mix, the greater the modulus increase with age); (2) water/cement ratio
(higher values reduce modulus); (3) age (modulus increases rapidly during first few months and shows
continual increase up to ~3 years); (4) kind and gradation of aggregate (stiffer aggregates produce higher
modulus concretes, and the modulus increases with aggregate fineness modulus as long as the mix is
workable); and (5) moisture content at time of test (wet specimens produce higher modulus values than
dry specimens). Temperature can significantly affect the modulus values.

Figure 17 summarizes results from several researchers on the temperature dependence of the concrete
modulus of elasticity (normalized to reference room temperature modulus.25 Results for normal strength
concrete (NSC) and high-strength concrete (HSC) from researchers in China is presented in Fig. 18.37
Results show that the elastic modulus for the NSC decreased monotonically with increasing temperature.
From the NSC and HSC elastic modulus results obtained at temperature or after thermal exposure
(residual), Ref. 37 notes that the elastic modulus after high-temperature exposure (residual) was lower
than that obtained at temperature and was influenced by type aggregate, the elastic modulus decreased
much more for concrete cured in water than for concrete cured in air, and the deterioration in elastic
modulus was more related to the maximum temperature during heating than to the heating-cooling cycle.
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The strong influence of aggregate type on modulus is presented in Fig. 19.5 Other conclusions from this
study were that a sustained stress during heating affects the modulus significantly and the type of cement
had little affect. The influence of water/cement ratio on static and dynamic modulus is illustrated in

Fig. 20.4 Results presented in Fig. 21 for a 31-MPa and a 63-MPa limestone concrete tested at
temperature indicate that, when normalized with respect to the room temperature modulus of elasticity,
the strength of the concrete does not have a significant effect on the modulus-temperature response.38

Results in the literature indicate that the primary factors affecting the modulus of elasticity at high
temperature are the type of aggregate (limestone concrete has less loss than quartz concrete) and the
presence of sustained stress during heating (sustained stress results in lower decreases in modulus with
increasing temperature). Duration of temperature exposure, sealing, type of cement, water/cement ratio
and original concrete strength have little effect on modulus results. The age at test apparently also does
not affect the residual modulus as noted for a flint/beach gravel concrete for which results were obtained
to 150°C at concrete ages of 3 months and 1 year.39
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Figure 19 Modulus of elasticity of different concretes at elevated temperature. Source: U. Schneider,
C. Diererichs, and C. Ehm, “Effect of Temperature on Steel and Concrete for PCRV's,” Nuclear
Engineering and Design 67, 245-258 (1981).
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Compressive Strength

The compressive strength influences the load-carrying capacity of a structure. Compressive strength of
concrete is generally considered to be its most valuable property.

Thermal gradients affect the concrete strength as well as its stiffness. Figures 22 and 23 present
normalized compressive strength results for unstressed specimens tested cold (residual) and at
temperature (hot), respectively, that are based on results from several investigators.25.33:40-51 Additional
information is presented in Fig. 24 on the effect of elevated-temperature exposure on the compressive
strength of unsealed nuclear power plant PCPV-type concretes (limestone, basalt, or gravel aggregate
materials) tested either hot (H) or cold (C) (Ref. 3). These figures indicate the influence of the concrete
and the test condition on the residual compressive strength after thermal exposure. The general trend for a
strength loss with increasing temperature reflects the influence of the cement paste and the increasing role
of the aggregate materials at higher temperatures. Factors have been identified that may contribute to the
general trend for loss of compressive strength with increasing temperature:3 aggregate damage;
weakening of the cement paste-aggregate bond; and weakening of the cement paste due to an increase in
porosity on dehydration, partial breakdown of the C-S-H, chemical transformation on hydrothermal
reactions, and development of cracking. A number of material and environmental-related factors affect
the response of concrete materials to elevated-temperature conditions. As many of the aggregate materials
are thermally stable up to temperatures of 300°C to 350°C, which includes the temperature range
considered for most applications, the compressive strength of concrete at elevated temperature is
dependent in large measure on the interaction between the cement paste and aggregate.
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