

March 30, 2006

Mr. William Snell U.S. Nuclear Regulatory Commission Region III 2443 Warrenville Road Lisle, IL 60532-4351

SUBJECT:ANALYTICAL RESULTS FOR 37 WATER SAMPLES FROM THE VICINITY
OF THE DRESDEN GENERATING STATION, DRESDEN, ILLINOIS
[INSPECTION REPORT NO. 05-000237/2006-003] (RFTA NO. 06-001)

Dear Mr. Snell:

The Oak Ridge Institute for Science and Education (ORISE) received 37 water samples on March 20 that were collected in the vicinity of the Dresden Generating Station in Dresden, Illinois. The 37 water samples were analyzed for tritium using a liquid scintillation analyzer (Procedures AP2, Revision 15 and CP4, Revision 3). The chain of custody identified the individual water samples to be analyzed by gamma spectroscopy (GS) (Procedure CP1, Revision 15). The sample identifications and collection data are presented in Table 1. The GS data are presented in Table 2. The tritium data are presented in Table 3.

ORISE's Quality Control (QC) requirements were met for these analyses. The QC files are available for your review upon request.

My contact information is listed below. You may also contact Wade Ivey at 865.576.9184 with any questions or comments.

Sincerely,

Condra

Dale Condra, Manager Laboratory

RDC:WPI:ar

- c:
- T. McLaughlin, NRC/NMSS/TWFN 7F27 E. Knox-Davin, NRC/NMSS/TWFN 8A23 G. Bonano, NRC Region III

E. Abelquist, ORISE S. Kirk, ORISE File 1694

Distribution approval and concurrence :	Initials
Technical Management Team Member	5JK
Quality Manager	TLB FORATP

١,

Voice: 865.241.3242

Fax: 865.241.3248

E-mail: CondraD@orau.gov

RECEIVED APR 0 4 2006

TABLE 1

SAMPLE IDENTIFICATIONS AND COLLECTION DATA DRESDEN GENERATING STATION DRESDEN, ILLINOIS

ORISE Sample ID	NRC Region III Sample ID	Collection Date	Collection Time
1694W0001	D-06-1-01	2/18/2006	11:00 AM
1694W0002	D-06-1-02	2/19/2006	10:15 AM
1694W0003	D-06-1-03	2/20/2006	12:26 PM
1694W0004	D-06-1-04	2/14/2006	11:30 AM
1694W0005	D-06-1-05	2/21/2006	10:25 AM
1694W0006	D-06-1-06	2/22/2006	12:50 PM
1694W0007	D-06-1-07	2/23/2006	12:05 PM
1694W0008	D-06-1-08	2/24/2006	10:30 AM
1694W0009	D-06-1-09	2/25/2006	8:30 AM
1694W0010	D-06-1-10	2/26/2006	8:15 AM
1694W0011	D-06-1-11	2/27/2006	4:15 PM
1694W0012	D-06-1-12	2/28/2006	8:40 AM
1694W0013	D-06-1-13	3/1/2006	2:15 PM
1694W0014	D-06-1-14	3/2/2006	5:40 PM
1694W0015	D-06-1-15	3/3/2006	12:05 PM
1694W0016	D-06-1-16	3/3/2006	11:25 AM
1694W0017	D-06-1-17	3/3/2006	11:45 AM
1694W0018	D-06-1-18	3/3/2006	12:15 PM
1694W0019	D-06-1-19	3/3/2006	9:15 AM
1694W0020	D-06-1-20	3/3/2006	9:25 AM
1694W0021	D-06-1-21	3/3/2006	9:00 AM
1694W0022	D-06-1-22	3/3/2006	1:05 PM
1694W0023	D-06-1-23	3/3/2006	9:35 AM
1694W0024	D-06-1-24	3/3/2006	12:50 PM
1694W0025	D-06-1-25	3/3/2006	1:00 PM
1694W0026	D-06-1-26	3/3/2006	9:45 AM
1694W0027	D-06-1-27	3/3/2006	9:50 AM
1694W0028	D-06-1-28	3/4/2006	4:40 PM
1694W0029	D-06-1-29	3/5/2006	10:50 AM
1694W0030	D-06-1-30	3/6/2006	11:50 AM
1694W0031	D-06-1-31	3/7/2006	11:00 AM
1694W0032	D-06-1-32	3/8/2006	10:1 <u>5 AM</u>
1694W0033	D-06-1-33	3/9/2006	1:00 PM
1694W0034	D-06-1-34	3/10/2006	11:20 AM
1694W0035	D-06-1-35	3/11/2006	11:15 AM
1694W0036	D-06-1-36	3/12/2006	8:20 AM
1694W0037	D-06-1-37	3/13/2006	9:40 AM

TABLE 2

CONCENTRATIONS OF SELECTED GAMMA EMITTING RADIONUCLIDES IN SELECTED WATER SAMPLES BY GAMMA SPECTROSCOPY CP1, REVISION 15 DRESDEN GENERATING STATION DRESDEN, ILLINOIS

ORISE	NRC Region III	Radionuclide Concentrations ^a (pCi/L)					
Sample ID	Sample ID	Co-58 Co-60		Cs-134	Cs-137		
1694W0005	D-06-1-05	3.0 ± 6.1^{b}	0.9 ± 5.1	0.3 ± 5.4	11.5 ± 6.4		
1694W0010	D-06-1-10	7.4 ± 8.9	0.4 ± 5.6	-4.0 ± 8.9	-4.1 ± 5.0		
1694W0015	D-06-1-15	-2.4 ± 4.9	$0.0^{\circ} \pm 4.7$	3.2 ± 4.8	4.2 ± 4.3		
1694W0020	D-06-1-20	1.0 ± 6.4	0.1 ± 6.0	-1 ± 10	3.2 ± 5.3		
1694W0025	D-06-1-25	-0.6 ± 6.7	3.4 ± 5.4	-5.9 ± 9.0	1.6 ± 4.9		
1694W0030	D-06-1-30	2.0 ± 5.2	2.8 ± 5.3	2.7 ± 5.4	11.2 ± 7.7		
1694W0035	D-06-1-35	-0.8 ± 5.5	5 ± 11	-3.5 ± 9.4	2.6 ± 6.0		

*The range of MDCs for the selected radionuclides is 7.5 pCi/L to 11 pCi/L.

^bUncertainties represent the 95% confidence level, based on total propagated uncertainties.

^cZero values are due to rounding.

TABLE 3

CONCENTRATIONS OF TRITIUM IN WATER SAMPLES BY LIQUID SCINTILLATION ANALYSIS AP2, REVISION 15; CP4, REVISION 3 DRESDEN GENERATING STATION DRESDEN, ILLINOIS

ORISE Sample	NRC Region III	Tritium Concentrations, TPUs,			
ID	Sample ID	and MDCs [*] (pCi/L)			
1694W0001	D-06-1-01	61,600	±	1,500 ^b	(390)
1694W0002	D-06-1-02	36,700	±	1,100	(390)
1694W0003	D-06-1-03	74,300	±	1,700	(390)
1694W0004	D-06-1-04	570	±	130	(200)
1694W0005	D-06-1-05	11,040	±	610	(430)
1694W0006	D-06-1-06	14,000	±	670	(390)
1694W0007	D-06-1-07	7,210	±	500	(390)
1694W0008	D-06-1-08	43,500	±	1,200	(390)
1694W0009	D-06-1-09	2,650	±	350	(390)
1694W0010	D-06-1-10	-20	±	240	(430)
1694W0011	D-06-1-11	47,600	±	1,300	(390)
1694W0012	D-06-1-12	9,490	±	560	(390)
1694W0013	D-06-1-13	71,200	±	1,600	(390)
1694W0014	D-06-1-14	4,580	±	420	(390)
1694W0015	D-06-1-15	-260	±	230	(430)
1694W0016	D-06-1-16	115,500	±	2,200	(390)
1694W0017	D-06-1-17	6,790		490	(390)
1694W0018	D-06-1-18	290	±	240	(390)
1694W0019	D-06-1-19	10,130	±	590	(430)
1694W0020	D-06-1-20	560	±	270	(430)
1694W0021	D-06-1-21	460	±	270	(430)
1694W0022	D-06-1-22	670	±	280	(430)
1694W0023	D-06-1-23	4,310	<u>+</u>	420	(430)
1694W0024	D-06-1-24	1,000	±	290	(430)
1694W0025	D-06-1-25	1,750	±_	330	(430)
1694W0026	D-06-1-26	6,410	<u>±</u>	490	(430)
1694W0027	D-06-1-27	3,820	±	400	(430)
1694W0028	D-06-1-28	131,100	±	2,400	(430)
1694W0029	D-06-1-29	10,040	±	580	(430)
1694W0030	D-06-1-30	14,100	<u>±</u>	680	(430)
1694W0031	D-06-1-31	7,550	±	520	(430)
1694W0032	D-06-1-32	83,300	±	1,300	(220)
1694W0033	D-06-1-33	250,300	±	3,900	(430)

TABLE 3 (continued)

CONCENTRATIONS OF TRITIUM IN WATER SAMPLES BY LIQUID SCINTILLATION ANALYSIS AP2, REVISION 15; CP4, REVISION 3 DRESDEN GENERATING STATION DRESDEN, ILLINOIS

ORISE Sample ID	NRC Region III Sample ID	Tritium Concentrations, TPUs, and MDCs ^a (pCi/L)			
1694W0034	D-06-1-34	43,500	±	1,200	(430)
1694W0035	D-06-1-35	6,540	±	490	(430)
1694W0036	D-06-1-36	225,800	±	3,600	(430)
1694W0037	D-06-1-37	1,320	Ŧ	310	(430)

"MDCs are in parenthesis.

•

^bUncertainties represent the 95% confidence level, based on total propagated uncertainties.