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Background
• Waste emplacement drifts at Yucca Mountain may degrade and lead to 

rubble accumulation around engineered components such as the drip 
shield

• Under such conditions, existing models estimate substantial decrease 
in heat losses, causing substantial increase in temperatures of 
engineered components

• Increased temperatures could potentially affect: waste package 
corrosion, water chemistry, water flow distribution, spent nuclear fuel 
dissolution

• Existing models simplify calculations by assuming that rubble will form 
an impermeable and insulating thermal blanket around the waste 
package
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Objective

• Develop a more realistic abstracted model for 
estimating heat transfer through accumulated rubble 
(i.e., natural backfill) surrounding engineered 
components

• Provide rationale for the choice of values for key 
parameters

• Identify the convective heat transfer regime
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Conceptualization
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Approach
• Consider rubble aggregate with a distribution of rubble 

sizes

• Estimate the rate of natural convection through the 
aggregate

• Estimate the rate of heat transfer resulting from natural 
convection

• Estimate an equivalent thermal conductivity 
considering natural convection

• Compute the overall heat transfer rate from the waste 
package to the surrounding region 
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Natural Convection: Rayleigh Number
• Determine the flow regime:  convection radially outward 

in the annular permeable region between two horizontal 
concentric cylinders
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Permeability of Natural Backfill
• Permeability of the rubble aggregate with a distribution 

of rubble sizes:
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Equivalent Thermal Conductivity
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Estimation of Rubble Size 
Distribution

• Gaudin–Schuhmann distribution to characterize rubble 
distribution

• A two-parameter model
• α = 1:  uniform distribution
• α < 1: fine fragment fraction increases with the associated 

decrease in large fragments
• α > 1:  large fragment fraction increases with the associated 

decrease in small fragments 

1100 −= α
α

α x
Fdx

dy
y = percentage fine than x
x = fragment size
F = maximum fragment size
α = uniformity parameter
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Estimation of Rubble Size 
Distribution (continued)

• Experiments and natural analog evidences are rare -
high uncertainty

• Proposed approach derives rubble size distribution 
from the fracture size distributions at Yucca Mountain
– Rubble is likely to form when rock fails along fractures
– Significant portion of the repository in the lower lithophysal unit 

of Topopah Springs
– Two types of fractures measured

• Long fractures  (trace length > 1m;  5 per 10 m with mean spacing 
4.6 to 9 m, median 1.4 to 6.2 m)

• Abundance of short fractures with much shorter trace lengths: 
Distribution highly skewed toward large spacing (mean 0.10 to 
1.08 m; median 0.03 to 0.12 m)

– Small fractures controlling block formation
– Potential mode of failure under seismicity:  raveling mode 

creating many small blocks



IHLRWMC: 4/30 -5/3, 2006 12

Rock Block Size Distribution
• Size of block assumed to be 

smallest dimension of the block

• 0.7 m, the likely maximum block 
size, assumed to have significant 
uncertainty

– alpha parameter varied to capture 
the uncertainty

– assumed the median value of the 
true spacing of the fracture sets 
are appropriate (skewed 
distribution)

– Investigation underway to study the 
effect of uncertainty in the 
maximum block size

• Statistics: mean: 0.13 m;  std. dev.: 
0.18 m; skewness: 1.5 m
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Void Porosity

• Collapsed rock mass adjacent to the drifts results in 
bulking of the rock mass and creates void porosity

• Bulking factor defined as percentage increase in volume 
of rock in going from an intact rock mass to rubble 

• Void porosity can be determined from bulking factor

• Significant uncertainty in the packing of rubble material. 
Selected range: 0.1-0.6
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Assumptions
• Rubble consists of spherical particles with a range of 

diameters

• Schuhmann distribution assumes a continuous rubble 
size distribution. Site-specific characterization should be 
carried out to determine if a truncated distribution is 
more appropriate.

• Dry air inside the porous medium. No consideration of 
the effect of seepage on backfill material thermal 
conductivity
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Results
• A high permeability leads to high Raleigh’s number

• Permeability is strongly sensitive to 
– mean rubble diameter
– void porosity

• Tortuosity has only a moderate influence on 
permeability

• Coefficient of variation, skewness also show sensitivity

• Convection dominates at higher porosities and at 
higher temperature gradients in regions where the 
porous medium is thickest
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Results (continued)
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Results (continued)
An example of waste package average surface 

temperature with and without convection in 
natural backfill (Mohanty and Adams, 2005)
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Summary and Conclusions
• Natural backfill material is likely to have a large variation in

rock/rubble sizes, potentially ranging from a very small diameter to 
as large as 1 m (although highly unlikely)

• Provided rationale for the choice of rubble size and void porosity

• Uncertainties in the rubble size distribution may result in heat
transfer ranging from pure conduction to convection-dominated heat 
transfer

• Convection will lower waste package temperatures from what they 
would be if conduction alone were considered

• Convection will dominate when the porosities are high and the 
temperature gradient is large.

• A spatial distribution of conduction-dominated and convection-
dominated heat transfer is anticipated.
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Results (continued)
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