


DOE/NRC Quarterly Management Meeting

Licensing Update

Presented to:

DOE/NRC-Quarterly Management Meeting

Presented by:

Wark Willams

Oilean, Oilean of License Application and Strategy.

AS: Descriment of Lierby

Weinda PAI DOISIS

-Reclaville, we average inc

Main Topics

- Licensing Support Network
- Aircraft Hazards Analysis
- Design Control
- Audit Observation Report OAR-05-05
- Level of Design Detail
- Peña Blanca Appendix 7 Meeting
- Future Interactions

Licensing Support Network

- DOE continues to process new documents for LSN
 - 3.35M documents crawled by NRC, up from 2.1M in June 2004
 - Approximately 1M documents publicly available
 - Approximately 15,000 new documents added each month
- DOE will certify LSN not less than 6 months prior to License Application submittal

Aircraft Hazards Analysis

Issues

- Flight restrictions
- Credit for pilot actions
- Frequency Analysis updates
- DOE request for NRC reports

Path forward

- DOE intends to show that aircraft crash is not a credible hazard
- DOE continues to work with US Air Force on flight restrictions
- DOE plans to take no credit for pilot actions in analyses
- Updated frequency analysis will be provided to NRC after CD-1
- DOE will re-visit need for NRC reports

Design Control

Issue

 Timing of implementation of design control process for Critical Decision – 1 (CD-1)

Background

 DOE continues to implement design control and plans to conduct a validation review in April 2006

Path forward

- OCRWM managing development of CD-1 in accordance with DOE requirements
- After the CD-1 decision
 - Potential changes to the repository design will be identified
 - Baseline will be updated to incorporate design changes and managed under design control procedures

Observation Audit Report OAR-05-05

- The NRC identified 5 technical Audit Observation Inquiries (AOIs) and 2 technical weaknesses in the January 9, 2006 Observation Audit Report
 - AOI-1: Drift Scale Thermal Hydrologic Chemical Seepage Analysis Model Report
 - AOI-2: Analysis of Dust Deliquescence for Features, Events, and Processes Screening
 - AOI-3: Inconsistencies for Overall Localized Corrosion Modeling
 - AOI-4: Referencing Cancelled Documents
 - AOI-5: Use of Viasala Humidity Probes at Temperatures Outside Their Calibrated Range
 - Weakness-1: Reduction in scope of audit and timely availability of audit checklists
 - Weakness-2: Lack of participation of technical specialists in the audit

Observation Audit Report OAR-05-05

(Continued)

Path Forward

- DOE initiated condition reports to document issues raised by the NRC in their report
- Single management board (DOE/BSC) oversees and integrates issues raised from this event
- Independent review team commissioned by Acting Program Director
- Status briefings provided to NRC On-site Representatives
- DOE is preparing a response for the AOIs and technical weaknesses

Level of Design Detail History

- DOE reviewed previous feedback from NRC to capture issues on level of design detail
 - NRC Letters
 - 12/2003 Comments on sample LA Heating Ventilation Air Conditioning section
 - 10/2004 The Design of the Proposed Surface and Subsurface Facilities at Yucca Mountain
 - Technical Exchange Meeting Summaries
 - 11/2002 Phased Repository/Alternative Design
 - 2/2004 Pre-Licensing Activities and the Level of Detail in the LA
 - 5/2004 Identification of Structures, Systems, and Components (SSCs) Important to Safety
 - 9/2004 Design of the Proposed Surface and Subsurface Facilities
 - 7/2005 Information to Support 10 CFR 63 Analyses

Level of Design Detail History

- Much of the feedback has already been incorporated into the draft LA or will be as design and analysis are completed
- Issues for further discussion with NRC staff:
 - Demonstration of reliability of Passive Important to Safety (ITS) SSCs
 - Design information for Transport-Age-Dispose canisters (TADs), (previously site-specific casks)
 - Utilization of precedent for natural initiating events under 10CFR63.102(f)
 - Uncertainties and margins for Preclosure Safety Analysis (PCSA)
 - Consideration of human reliability
- Items being introduced today
 - Demonstration of achieving reliability requirements for Active ITS SSCs
 - Preclosure seismic safety strategy

Level of Design Detail to Demonstrate Active SSCs Reliability Requirements are Met

- Design details for the ITS SSCs will be enhanced
 - Ventilation and instrumentation diagrams, process and instrumentation diagrams, electrical one lines, logic diagrams, schematic/block diagrams
- Analyses will be performed to demonstrate that reliability requirements for active ITS SSCs are met
 - Collect industry data on similar systems (e.g., cranes); and/or
 - Perform fault tree modeling on the design
 - Collect component data
 - Assess common-cause failure
 - Assess uncertainties
- Similar level of detail as previously developed for HVAC/HEPA system - Technical Exchange to be planned

Preclosure Seismic Safety Strategy

- January 24, 2006 NRC letter states:
 - Seismic design bases, and design codes and standards, consistent with regulatory requirements
 - Seismic Margins Analysis (SMA) approach is useful but "is not a substitute for demonstrating compliances with the performance objectives in §63.111(b)(2)"
 - Suggested "additional supporting analyses" to demonstrate compliance
 - Develop probability of seismic failure through convolution of hazard curves and fragility curves to demonstrate the probability of unacceptable performance for seismically initiated event sequences is less than 1 in 10,000 over the preclosure period"
- DOE understands the letter is limited to seismically initiated events and believes the combination of the SMA approach and probabilistic seismic analysis will demonstrate compliance with regulations

Preclosure Seismic Safety Strategy

- In consideration of NRC's January 24, 2006, letter, DOE will augment seismic margins analysis with probabilistic seismic analyses
- Probabilistic seismic analysis consists of the following:
 - Development of the site- specific seismic hazard function
 - Development of seismic event trees
 - Performance of fragility analyses of SSCs
 - Performance of convolution analyses
- The objective of the probabilistic seismic analysis is to demonstrate that the annual probability of seismically initiated event sequences having potential doses that exceed Category 2 limits is less than 1 in 10,000 during the preclosure period
- Approach consistent with American Society of Civil Engineers Standard 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities
- SSCs will be redesigned if convolution analysis does not confirm required seismic performance

Peña Blanca Appendix 7 Meeting

- Purpose of meeting (2/16/06) was to discuss data and models related to movement of groundwater through unsaturated tuff from uranium deposit
- Site has been studied for many years by DOE and NRC staff and contractors
- Studies provide valuable insights in support of TSPA models for radionuclide transport
- Meeting provided productive interchange of data and opportunity to coordinate additional planning for field work and sample collection in June 2006

Future Interactions

Programmatic Issues

- Corrective Action Program
- Evaluation of issues raised by E-mails of former project participants
- Critical Decision 1 (CD-1) Process and Status

Technical Issues

- Demonstration of achieving reliability requirements for Active ITS SSCs
- Preclosure Seismic Safety Strategy
- Demonstration of reliability of Passive ITS SSCs
- Utilization of precedent for natural initiating events under 10CFR63.102(f)
- Uncertainties and margins for PCSA
- Consideration of human reliability
- Aircraft Hazards Analysis
- Design Information for TADs

Design and Engineering Update

Presented to:

DOE/NRC Quarterly Management Weeting

Presented by:

Paul Hanningkon

Actual Director, Office of Project meneroment and Engineering

Office of Givillan Regionalive Whole Wencelewent

US Department of Anaron

Weirsh 27 2005

Reachiville, Waryleine

Main Topics

- Critical Decision-1 Revision Process
- Potential Features of Revised Design Approach
- Preclosure Safety Analysis Impacts
- Independent Engineering Study

Critical Decision-1 Revision Process

- October 25, 2005, DOE directed contractor to develop revised Critical Decision-1 (CD-1) package, including Conceptual Design Report, for selection of preferred alternative and range cost estimates for canister-based waste handling
- Implementation of canister-based approach
 - Commercial spent nuclear fuel (CSNF) generally would be sent to the repository in a Transportation, Aging and Disposal canister (TAD)
 - CSNF would not require repetitive handling prior to disposal
 - Canister handling would result in cleaner facilities

Critical Decision-1 Revision Process

- On February 14, 2006, DOE selected a recommended configuration to be developed in the Critical Decision-1 revision package
 - Modular, flexible configuration
 - 90% of CSNF received in TADs; 10% of CSNF waste stream as uncanistered SNF assemblies
 - Adds dedicated facilities for receipt and waste package (WP) closure
- Critical Decision-1 package being developed, including:
 - Conceptual Design Report
 - Preliminary Hazard Analysis
 - Risk Assessment
 - Project Execution Plan
 - Cost and schedule information

Critical Decision-1 Revision Process

- Until Energy Systems Acquisition Advisory Board (ESAAB) review and approval, anticipated in May 2006, this information is preliminary
- Following ESAAB approval, design development and updates to preclosure and postclosure safety analyses to support License Application (LA) will be performed

Potential Features of Critical Decision-1 Revision

- Revised sets of surface facilities
 - Receipt Facility accepts TADs and Dual Purpose Canisters (DPCs) and sends to aging
 - Canister Receipt and Closure Facility (CRCF) accepts TADs and other disposable canisters and inserts into WPs
 - Wet Handling Facility accepts uncanistered CSNF or DPCs, transfers to TADs, and sends TADs to CRCF or aging
- Subsurface layout unchanged
- CSNF WPs similar to naval long WPs
 - TADs similar in size to naval long canisters

Potential Features of Critical Decision-1 Revision

- Uncanistered CSNF assembly handling performed in pools
- Canister handling generally performed with local shielding
- Waste packages to include shield plugs to support local access during WP closure operations
 - Shield plugs included in full-diameter canisters (TADs, naval) and in WPs for small-diameter canisters (DOE SNF and high-level waste)
- Deletion of separate site rail system and associated transportation cask transfers

Potential Effects on Preclosure Safety Analysis

- Category 1 event sequences reduced or eliminated due to reduction of number of uncanistered CSNF assembly lifts
- Consequence of uncanistered CSNF drops reduced due to confinement provided by pool
- Category 2 event sequences likely little changed
- Important To Safety classification still expected for structures, lifting/handling equipment, electrical power, ventilation systems

Independent Engineering Study

- Independent systems engineering study performed
- Similarities to BSC recommendation
 - Wet handling of uncanistered CSNF assemblies
 - Canister handling uses local shielding
- Differences from BSC recommendation
 - Equipment for handling canisters
 - Potential for underground aging
- Evaluate further through Value Engineering studies during preliminary design development

Summary

- Canister-based design will simplify waste handling
- Until ESAAB review and approval, anticipated in May 2006, this information is preliminary
- Following ESAAB approval, baseline will be updated and LA products developed
- Greatest changes in surface facilities, less in subsurface and waste packages
- Event sequences will be minimized and consequences likely reduced

