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Combination of Mlodal Responses

a'3-. A.K. Gupta, K. Cordero
North Carolina State University, Departmnent of Civil Engineering,

Box 5993, Raleigh. North Carolina 27650. U.SA.

In the response spectrum method of analyzing structures under seismic loads, vilues
of the maximum probable responses are calculated in each mode of vibration. These :epne

can be combined using a double sum equation if the correlation between the modal res3ponses

ia known. An approximate expression for the correlation coefficient given by Rosenlhlueth
and Elorduy[l] does not apply in the low and high frequency ranges. It is shown thait the

modal responses can be assumed to consist of two components, a rigid component, and a
damped periodic component. Various modal rigid components are perfectly correlated. An
expression for the co~rrelation between the damped periodic components is presented which

is similar to that presented by Rosenblueth and Elorduy~l].' An equation is derived for the

correlation between modal responses on this basis, which is shown to be in good agrnement

'with the numerically obtained values.
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1. Introduction

In the response spectrum method of analyzing structures under seismic loads, the values

of the maximum probable responses are calculated in each mode of vibration. The variation

of responses with time is not known, therefore, there is no "exact" way of combining the

maximum modal responses. If the maximum response in mode i is Ri, it can be shown that the

combined maximum response, R, would satisfy the following inequality

EIR I > R > E (1)

ii

the left hand side being an upper bound, and the right hand side a lower bound. In many

cases, when the modal frequencies are sufficiently far apart, the right hand side, commonly

known as the SRSS (square root of the sum of the squares) combination, gives reasonably

accurate values. Statistically, in these cases, the modal responses can be considered to

be independent, or uncorrelated. When the modal frequencies are relatively close, however,

the modal responses no longer remain independent, and then the combined response can be

significantly greater than the SRSS value. In fact, when two of the modes have identical

frequencies, it stands reasons that their responses should be directly added in which cases

the two responses are perfectly correlated.

In general, for combining responses from two modes one can write

2 2 2 R 2
R R + R 2 + 22 RR. (2)

in which

l~c 12>

which depends on the correlation between the modal responses. Theoretically, one could

think of a negative correlation also, or when c12 < 0, but as will be seen later, it is not

very likely. Assuming that the earthquake motion can be represented by a finite duration

segment of the white noise, Rosenblueth and Elorduy[l] have obtained an approximate equation

similar to Eq(2). Based on their work, the value of £12 can be written as

w e12 _ {l +;(f 2 + f1) + 2/(td) ' (3)

where

fl - molal frequencies, Hz

C = critical damping ratio

td = duration of the earthquake motion, secs

It can be seen from Eq(3) that c12-1 for f2 - fl and c12 0 for f2  f1. Although, Eq(3)

is approximate it works well for a range of frequencies. Some of the problems are discussed

below.

One of the problems with Eq(3) is that it is not clear as to what value of td should

be used. When the frequecies, f, and f2, are sufficiently large, and for relatively large

values of the critical damping ratio, the term consisting of td does not play a significant

role. In those :ases, it does not matter what value of td is used in the equation as long

as it is reasonable. However, when the frequencies are small, the 2/(ltd) term increases

the effective vaLue of the damping, as intended, thus giving a larger value of the c12.

It is in this case the value of c12 is quite sensitive to the value of 
t
d' Using the

complete duratio:i of the ground motion for td does not appear to be rational.
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There are two other potential problems pointed out by Kennedyf2]. First, wher, the

modal frequencies are higher than the maximum ground motion frequency, Eq(3), does not hold.

In fact, the response time histories will be practically scaled input time histories, and

would be almost perfectly correlated, in which case c12 - 1.0, even when f, and f2 are

sufficiently apart. The writers found that even at other frequencies in the range greater

than lHz, significant correlation between modes existed. This particular aspect ie

discussed further in the subsequent sections. The other potential problem pointed by

Yennedy[2] is the following. When the modal frequencies are sufficiently apart, beyond a

certain point, the correlation between the modal responses may start increasing, rather

than decrease as predicted by Eq(3). Heuristically, the reason is simply that it %ould be

quite likely that the high frequency response, can easily be maximum about the same time

when the low frequency response reaches the maximum. In the numerical work done fcr the

present study, however, no such trend was evident. The explanation for that is perhaps that

different segments of the ground motion have different frequency contents. As such, it is

unlikely that the same segment of the motion would excite two modes with widely disparate

frequencies. Thus, the second potential problem was not found to exist to any discernable

degree.

A practical method of calculating the correlation factor E12, which has a wide range of

applicability, is presented in the following section. The numerical work on which this

method is based, is presented in the subsequent section.

2. Proposed Method of Cdlculating tfii

Based on the observation of the modal responses and their combinations, a heuristic

assumption is made: Any modal response Ri consists of two parts, a damped periodic

response, RP, which has characteristics similar to that obtained by using a finite segment

of the white noise[l], and a rigid response, Ri, which is perfectly correlated with the

input ground motion. It is further assumed that the two parts are mutually uncorrelated, ie.

R Rp2 + Rr
2  

(4)
i i i

Thus we can write

4i

and i Ri

i i itw 1P 2 with frqenis n

.-When two modal responses R, and R 1with frequencies f and f2 are to be combined, then the

combines response is given by

R -R 
2 
+RP

2  
(6)

in which

Rr ' a R + a R (perfectly correlated)I11 2 2
Rp p

2  
p 2~ p p p(7P -R1 I + Rp 2 + 2c 12 RIR2 (7)

In Eq(7) cp is the correlation coefficient for the damped periodic part of the responses,
12

and is defined by an equation similar to Eq(3)

U f f
Cp + 2 1

12 (f2 ~ + f ) +CII(8



where

C1 2  (1-30) (.036 - If2
2-f1 ) > ° 

(9)

when Eq(9) gives a negative c value it is taken to be zero. The term c12 here replaces,

12 12

the 2/(std) term in Eq(3). In effect, thus the value of td to be used with Eq(3) varies 1ti

2 _ 2 d .
with the amount of critical damping and with If2 f1 I. Equations (2), (4) - (7) yield a

+12= 102+ 2 p

(12 12 __al ) (1 a2 ) E1 2  
(10)

It was found that Eq(10) gives values of c12 which are quite close to the numerically

calculated values for a wide range of frequencies 
including high frequencies.

VAl,.,V * .. .Y ' -. n .- A PrnN i-,,

'2 ' 2 I' 12 -u n ~v
£12 =01

which is actually the mathematical definition 
of a implicit in the present study. The

values of a vary with the modal frequency, 
and are also a function of the critical damping ,:

ratio. The following equation can be used to evaluate 
the values of a, which was found to :-i;

be in reasonable agreement with the numerically 
calculated values

(a + 0.1) 'a - m &n f + a) - b, -0.1 a(l.0 
(12)

If the above equation gives a value of a 
greater than 1, it should be taken equal to 

1.0, r

and similarly, :.f the equation gives a less than -0.1, it should be set equal to -0.1. ' .Il

The values of the constant m, a and b vary with the damping ratio and are given by

17 34
m - 0.0737:1 tn(- )
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a - -0.3437 tn (7.594 ()

b - -. 03237 tn (14.28 4) 
(13)

3. Numerican Tesults

Consider tle response time histories R1(t) and 
R2(t) of two single degree 

of freedom

systems, frequerceis fl and f2, critical 
damping ratio C, subjected to the same earthquake

ground motion. The standard deviations, a0 and a2' and the 
covariance a12 are defined as

follows:

al _ 1t d - 2 (t)dt
1 td 20 d

2 1 td -22
02 = ~ 2 (t)dt

d

a02 t I I d 1 (t) R2(t) dt

The correlation between the two responses is given by [3]

2
a12

-12 010y2

(14)

(15)

77;;

AA1

It is noted that whereas all a2 and 012 are quite sensitive to the value of the duration

v of ground motion, td' the value of c12 given by Eq(15) is practically independent 
of the

value of td' as long as all significant part of the responses are covered in the assumed

duratibn. The s:atement can be easily verified, therefore, 
is not pursued any further here
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The intent of the present study is to arrive at the values of £12 which can le used

in conjunction with the response spectrum method of analysis. The response spectra which

are commonly used in design, such as in ref[4] are based on a number of measured earthquake

ground motions. Similarly, the present study is performed using ten such motion time

histories, which are listed below

Parkfield, 1966, N5OE and N40W

El Centro, 1940, NS and EW

El Centro, 1934, NS and EW

Taft, 1952, N21E and S69E

Olympia, 1949, S04E and S86W

For any pair of frequencies f1 and f2, the mean and the standard deviation of £12 were

calculated using the responses from the ten time histories.

When f2 is infinite, R2(t) is equal to scaled input motion time history. For any

frequency fl, the factor al, is then given by C12 as stated in Eq(ll). The mean values of

a were calculated for various frequencies and damping ratios, and were found to be in good

agreement with Eq(12).

Fig 1 shows the comparison of c12 values calculated using Eq(10), and those obtained

from the average of the values calculated using the ten motion time histories, for the

critical damping ratio of 1%. In Eq(10), actually calculated mean values of a's vere used.

As shown, the agreement between the calculated values and those given by Eq(10) is good.

The agreements for other damping ratios (2, 4 and 7%) were also found to be good. This in

effect verifies the assumptions made in this study, viz, a modal response have twc

components: rigid and damped periodic and that they are uncorrelated. When the frequency

f is small, it is seen in Fig 2 that for certain range of f2 values the correlation

coefficients have a small negative value. The writers feel that perhaps these negative

values can be attributed to a limited data in terms of using a small number of earthquake

time histories. In any case, since these values are numerically quite small, writers did

not attach much significance to them, and decided not to investigate them further.

Next, the effect of any error in the value of c12 is investigated. It is noted that

the value of the combined response would be most sensitive to any errors in the vslues

of the correlation coefficents, when there are only two significant modal responses and

when they are also equal in magnitude. The value of the combined response is ther given by

.
R 2Rl x (1 + 12 ) R R2 (16)

If a different value of the correlation coefficient, c£l were used, a new value cf the

combined response, R', would be obtained. The percentage change in the value of the

combined response is given by

ARZ-( +: -1) x100 (17)

There are two types of variations in c12 of interest here. One is the dispersion in the

value of £12 represented by the standard deviation. The other is the error introduced

because of using the idealized equations such as Eqs(l0) and (12), which attempt to

calculate the mean value of c12 In order to investigate the accuracy of Eqs(10) and (12),

and the effect of dispersion in the value of c121 Eq(l
7
) is used to calculate the maximum

error in the response value by substituting in the denominator the value of c12 from

7/5 |

I1

: i. i~a;In --
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Eqs (10) and (12), and in the numerator substituting for cli the calculated mean +bne 
1

standard deviation. The maximum of all AR values for f2/f1 - 1 to 10 for four fI - ty

frequencies are given below.
!;' r-" _ Eq(10)

X Numerical

Frequency Maximum Error at 2 ,:.r ,l>

1 .01 .02 .04 .07

0.1 11.0 10.5 9.8 8.8

1.0 3.4 3.9 3.5 3.4

10.0 5.0 6.8 7.1 5.6

21.5 4.6 2.0 0.5 0.0

The highest error of 11% is encountered at the lowest frequency and damping. Generally, i

as the frequency and the damping go up the error diminishes until it becomes zero. Since

the worst cases are considered, in most practical situations the actual errors are likely

to be much smaller.

4. Conclusiois

A modal response can be assumed to consist of two components which are uncorrelated,

a rigid component and a damped periodic component. Whereas the all the modal rigid

components are perfectly correlated, the correlation between the modal damped periodic

components is at function of the modal frequencies; an expression for the correlation

coefficient £1P, which is similar to one given in Ref[l], is given, Eq(8). On this basis

then, thie correlation coefficient for modal responses is evaluated which is given by Eq(l0).

It is shown that the theoretically calculated modal correlation coefficients are in good

agreement with those calculated directly from the response time histories of single degree ;

of freedom systems subjected to actual ground motion histories. This in effect verifies

the assumptions made in the present study.
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