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RESPONSES OF LINEAR SYSTEMS TO CERTAIN TRANSIENT DISTURBANCES

By Emilio Rosenblueth and Jorge Elorduy(i)

Synopsis. Earthquakes are idealized as segments of modified sta-
tionary gaussian processes. Methods are developed for calculating re-
sponses of linear systems including systems that do not have classical
modes. These methods are more accurate and, for some systems, much
fire so than the root of the sum of squared modal responses.

It is shown that many current code provisions for torsion in
buildings and for overturning-moment reduction in buildings and chim-
neys are inadequate. More realistic criteria are proposed.

Introduction. Modal analysis of systems that behave linearly re-
quires knowledge of the response spectra of the-family of disturbances
for which design is intended and a criterion.for combining the modal
responses. Such criteria have thus far been confined to identifying
the total response-with that in the fundamental mode of vibration,
with the sum of numerical values of modal responses, or with the root
of the sum of these responses squared.(ii) Yet there are structures
for which even the.last method'is grossly inadequate. This is usual-
lyr.the case when two or more natural frequencies of vibration are ap-
proximately equal to each other. And.many systems do not have.clas-
sical modes. (ILi).

The present paper develops methods of analysis-more accurate and
general than the ones used up to now. The new methods are based on
an idealization of earthquakes as stationary gaussian processes, but
results are modified to recognize the transient character of actual
disturbances.

Rather than treating the probability distribution of a response
toea family-of.motions we deal mostly with the expectation of the re-
sponse or with.a close approximation thereto, as.though this were a
deterministic variable. This is justified to some extent because
tthere is vast uncertainty about the characteristic.parameters of fu-
tire earthquakes, and this overshadows the variability of responses
to individual earthquakes about the mean. 2 It is still desirable to
hilve an approximate description of the distribution of deviations
aliout the means the questioneis touched upon in this paper.

(iT}Facultad de Ingenierla, Universidad Nacional Autonomn de Me6-
xico, Mexico, D.F., Mexico.

(ii) Linear combinations of the last two have been proposed but
they lack generality and have almost the same limitations as the third
criterion.

(iii) Caugheyl has given a necessary and sufficient condition for a
linear system to have natural modes in the classical sense. This con-
*dition is not met in general. Still, the assumption that a system has
such modes is acceptable for sufficiently small damping.
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The methods developed here allow arriving at interesting conclu-
sions concerning the seismic behavior of several types of structures.

Iransfer Functions. We define the transfer function ,(t) ats a
system's response, q(t), to a Dirac-delta accelerogram, X X (t).
(Here t is time and x is the ground motion.) Linear behavior insures
that, given an arbitrary disturbance,

q~t) - So O 2() t-rt) dr 1

For systems having classical modes of vibration we can write

q 'q 1  q i *qi (2)

where qI is the response in the jth natural mode and *qi is the modal
transfer function for qu.

In conservative systems the modal transfer functions are perioii-
Ic. Functions *q are also periodic when all the natural periods are
submultiples of a multiple of the system's fundamental period of vi
bration, T1. The smallest such multiple is the period of the trans-
fer functions.

In suberitically damped structures the modal transfer functions
are damped sine functions of time.

For damped systems having classical modes the *'s are damped pe-
riodic waves (they-change in amplitude but not in shape from one cycle
to another) if the damped natural periods meet the foregoing condition
and the damping ratios of the natural modes are proportional to the
corresponding natural periods.-

Responses to White Noise. Consider a single-degree linear system
potentially subjected to a family of accelerograms which are a segment
of white noise, of duration s. Let Q w maxtlq(t)l, let subscript 0
refer to an undamped system, E denote expectation, and Tl the system's
undamped natural period. An approximate solution is available3 for
the distribution of Q/E(Qo) which is valid when s >> T1 (or even when
sA T1 ).

The probability, P, that lq(t)l exceed a given response, Q, may
be called the probability of failure. In a given system, Q can be
expressed as a function of. P. It is found that

lim e 2t.lols 33
pa 0 Q(2 t1°ls

where t1 and c are the system's coefficient of damping and natural
circular frequency respectively.

The ratio E(Q)/E(Q0) is available In graphical form. Approxi-
mately,4

E(Q)/E(Qo) (1 + ?lcls/2)l'2 (4)

186 A-1

K



This solution assumes that a structure survives as long as Iqi
does not exceed a critical value. Problems of this nature are far
more difficult than those of finding the distribution function of the
response at a given instant. Indeed, the solution we have quoted for
single-degree systems is only approximate(iv) and no analytical solu-
tion is known for other * functions. Consequently, attempts have been
made to estimate the distribution of maximum responses, or their ex-
pectations, with basis on the responses at a specified instant to sta-
tionary processes or to finite segments thereof.

Stationary processes are attractive because of the simplicity of
their mathematical treatment. However, we cannot speak of the maximum
responses of a linear system to a white noise or stationary gaussian
process because such a response is infinite with probability one. Ad-
justments are necessary to convert the responses at an arbitrary in-
stant to a stationary process into the maximum responses to transient
disturbances such as earthquakes. A more direct approach will base
the desired solution on that for the responses at a specified instant
to a transient disturbance.

Consider the class of transient disturbances x - f(t) w(t) where
. is a deterministic function and w is white noise. The distribution
of responses of every linear system at any specified instant to such a
disturbance is gaussian, with expectation zero. Consider now the
class of systems with damped periodic transfer functions. If, for a
given f, the damped period of *q, T', is sufficiently short, the ratio
of successive maxima ofIqlwill gave a distribution practically inde-
pendent of the shape of Vq. Therefore, the distribution of O/E(Qo)-
(and, hence, the curves for E(Q)/E(Q0) for single-degree systems will
be directly applicable if we replace lcoxl with died, which is a con-
stant for each system.

It is shown from eq 1 that, for the systems at hand,

Q2 cS St+T' d (5

where Q is the response associated with any given probability of fail-
tire and t1 is such that 1q(t) is damped periodic for t - t1.

When q is the pseudovelocity (0o times the displacement relative
to the ground) of a conservative single-degree system, *q is sin wit.
The integral in eq 5 is then T'/2. Hence,

- ( 2 Stl+T' 2 dt)1/2 (6)Q 0 (In it 1  q2

where VO is the undamped spectral pseudovelocity associated with the
given probability of failure, that is, the design pseudovelocity.

Now, if *q is periodic, *qi are orthogonal in every interval of

- vT}There us room for doubt5 concerning the validity of some in-
termediate steps in the derivation of the distribution of Q/E(Qo) but
the results have been amply confirmed.
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duration equal to the period of 1 . t follows from eq 5 that, for
systems having periodic transfer Unctions of sufficiently short pe-
riod, 2

ii (7)

where Qj is the design response in the ith natural mode. And since
the distribution of Q/E(Q0) is practically independent of *q when T'
is sufficiently short, we conclude that eq 7 also applies to the class
of systems that we are considering.

The solution that we have mentioned for single-degree systems
corresponds to responses to finite segments of white noise with V' C<s
but the foregoing conclusions apply to solutions for any functions f
satisfying the restrictions in question.

So as to widen the type of linear system that we can treat, di-
rect the attention now to white noise proper (f = 1. Since the dis-
tribution of q(t) is gaussian, Elq(t)1 C (E q2 7(t))L/2. The value of
Jq(t)1 associated with a given probability that it be exceeded is also
proportional to JE(q2(t))Pi/2. This suggests assuming that the design
value of the maximum response to a tran ient disturbance of form x
f(t) w(t) is proportional to {E(q2(t))L/2, where this q is the re-
sponse to white noise at an arbitrary instant. From the same reason-
ing which led to eq 5 we conclude that

E (q2(t)) c Son * q2C(t-) di' So *q2(t) dt

Therefore, Q2 be SO *2 dt (8)

When q is the pseudovelocity of a single-degree system, the sec-
ond member in eq 8 gives 1/2t1clc. The result differs appreciably from
that for the square of the maximum response to a finite segment of
white noise, which depends on the duration of the motion and on the
probability of failure. Let us adjust the percentage of damping coin-
cide for the expected response. To this end we shall make use of eq
4. We seek, then, the "equivalent" percentage of damping, tj, which.
will make 2 jlwj cc i + t; wi s/2. where we have replaced subscript 1
with I. The answer must be such that tj ' {i when s tends to infini-
ty. We find

t + 2/" s (9)

Thus, we may use eq 8 with the increased damping ratios given by eq 9
in the system's natural modes of vibration. This will be correct for
single-degree systems and can be expected to be satisfactory for a wide
class of multidegree systems.

If we assume that the modal transfer functions are damped trigo-
nometric functions and if all the damping ratios are small compared
with unity, eqs 2 and 8 lead to the approximate relation

9 X 92 I i /(1 +.E) (20)
ii Idj ij J10

where Ej -l r |/( t ioj + Acoj). co is the ith damped natural circu-
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liar frequency, and Q- is to be taken with the sign that *qi(t) has
ashen it attains its maximum numerical value.

Equation go improves over eq 7 when { is not inversely propor-
1i.onal to cx (usually it is not). The difference between eqs 7 and
3.0 tends to zero when the natural frequencies are well differentiated.
the damping ratios are small, and the ratios s/TI are large. To il-
]ustrate the influence of the second term in eq 10, fig 1 has been
prepared for a two-degree system havinga tw1 -o and =

When * is not damped periodic, the distribution of Q may be as-
sumed to lie between the one for damped periodic * and the one which
results from assigning each Qi the gaussian distribution associated
with the corresponding *qi.

Although derivation of eq 10 has been quite heuristic, we notice
that it cannot give very large errors in two-degree systems when E12
<- l; when 912 >> 1 and IQiI IQ21; nor when 1Q11 >>1Q21 whatever
the value of 612. Also that it satisfies the obvious restrictions
Q X 1Ql - Q21 in these systems and Q £ iIQ1I in all cases.

This expression is limited to systems that have classical modes
of vibration. Besides, it is easy to imagine V functions having a
very long period and small degrees of damping, for which eq 10 would
give poor results. Further to widen the range of applicability of our
results we shall take as basis for estimating Q the responses at a
specified instant to a transient disturbance of the type x - f(t)w(t).
Pfoceeding as for stationary disturbances we anticipate that Q2 cc

f f(t-.) *2(t-'r) dr. If we take t 0 nd f exn(-t/s), this ex-
pression can be written in the form Q2  OF 4 eW2t/S '(t) dt. In this
manner we obtain answers that practically coincide wJth those of eq 4
for single-degree systems having T1 << s and <<l c 1. Better results
can be expected by taking

2 C maxt S f2(.f) *2 (t-sr) dr (ii)

with f = exp(-ct). For single-degree systems this gives Q2 cc max
3 e-2c% *2(t-'r) dr which approximates the "exact" solution for finite-
sl~gment disturbances if we make c = 2/s. In fact, because of the var-
iiability of intensity per unit time this is very likely a better ideal-
i;:ation of earthquakes than the finite segment. The matter will', how-
ever, not be explored further here because eq 11 does not lend itself
to simple modal analysis, which we wish to use in the applications.

The expression we quoted for Ihe limit of E(Q)/E(Qo) as P- 0 (eq
3) is also valid for tEtq2(s))/E(q4(s))jl/2 where q is the response of
a single-degree system to a finite segment of duration s of white
noise. This suggests taking the responses at the end of such a segment
as; bases for computing the maximum responses to earthquakes. We would
make the segmient's duration such as to give the desired results. The
approach lends itself both to analysis in terms of transfer functions
and to modal analysis.. Lptting s' denote the segment's duration we
would have 92 c maxt SO *q dt with t ~ s'. If T << s', there is little
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error in taking t = s'. The same argument applies to the integrals
of the squared modal 4 functions. However, in taking the second mem-
ber of eq 3 proportional to that of eq 4 we cannot find a unique rela-
tion between s' and s. If kiuis is known to lie within a certain
range, an approximate s' can be found to satisfy this relation. Thus,
when tio>is> 1 we find s' = s/4. Even for a system without classi-
cal modes, its * functions may be approximated by the combination of
damped trigonometric functions to conclude that this approximation
may be satisfactory.

Responses to Gaussian Processes and to Earthquakes. Consider a
single-degree system of period T, subjected to a family of disturb-
ances which are segments of duration s of a stationary gaussian pro-
cess. If the motion's power spectral density varies smoothly with pe-
riod in the neighborhood of T', the distribution of the system's mcaxi-
mum responses to this family of disturbances lies close to the distri-
bution of its maximum responses to a segment of white noise of dura-
tion s and whose power spectral density equals that which the segme'nt
of gaussian process has at V. 6 Therefore the expressions we have
derived for combining modal responses apply when the disturbances tire
a segment of a stationary gaussian process, with essentially the stme
limitations, provided the power spectral density, or the spectral
pseudovelocity, is sufficiently smooth in the neighborhood of the Fer-
tinent natural period.

Particularly for systems without classical modes we may use an
approach parallel to the one which assumes that maximum responses to
the disturbance are proportional to the root of expected squared re-
sponses at a specified instant to x = f(t) w(t), except that we now
replace w(t) with the corresponding stationary gaussian process. The
use of Fourier transforms in the manner of Tajimi7 is then indicated.

Extremely rigid systems require a special treatment, as the pseu-
dovelocity spectrum is not smooth at the origin. We shall not delve
into this matter, as solutions to the examples we will examine are not
strongly affected thereby.

In extrapolating to real earthquakes the conclusions derived for
gaussian processes, several differences between the two must be borne
in mind. Some important earthquakes are too short and their accelero-
grams too simple to admit idealization as gaussian processes. None-
theless, with due caution the present results should be useful in cal-
culating the responses of multidegree systems.

Application to Uniform Shear-Beams. The responses of shear beams
having constant stiffness and mass per unit height are often used as
indicative of the behavior of tall buildings. The transfer functions
for shear and overturning moment at various elevations of an undamped
beam are depicted in fig 2, where k and m denote the stiffness and
mass of a unit length of beam and h is the beam's height.

Using eqs 10 and 7, the responses associated both with a hyper-
bolic and with a flat acceleration spectrum have been computed. The
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hyperbolic spectrum has a cutoff that makes A - constant for T 4
O.lTl. It has been assumed that ti = 5 percent in all the natural
modes and that s - 20 T1 and that the spectra already include effects
of damping. Results appear in figs 3 and 4 including a comparison
with the shears and moments computed-from statically applied accelera-
tions that vary in proportion to height above ground. The base shears
for the two design spectra and the static method have all been com-
puted for the same spectral acceleration, Al, associated with funda-
mental mode.

These results lead to the following conclusions:8 The base shear
is from 0 877 (for a hyperbolic spectrum) to 0.816 (for a flat spec-
trum) times (Al/g)W, where g is the acceleration of gravity and W is
the building's weight. (Shear beams are a special case of structures
in whose ground story the deformation is proportional to the base
shear. In such structures the design base shear does not exceed
(Ai/g)W, where Ai is the acceleration for the structure's fundamental
period in a hyperbolic spectrum whose ordinates, at the structure's
natural periods, are not smaller than those of the design spectrum.
In the cases considered we may take A' = A1. Thus it is not surpris-;-.
ing to find the design shear smaller than A1 /gW.)

The static method is satisfactory for computing the distribution
of shears in buildings idealized as uniform shear-beams except near
the top of very tall buildings on firm ground, subjected to nearby
earthquakes (this condition approaches hyperbolic acceleration spec-
tra). (The same conclusion does not apply to nonuniform buildings in
general.)

The overturning moments computed dynamically are smaller at all
elevations than the corresponding integrals of the shear diagrams.
The reduction factor ranges between 0.836 and 0.989 if we take for
comparison the integral of the dynamically computed shears,(vi and be-
twveen 0.773 and 0.779 if we take that of the shears computed statical-
ly.

A slightly more drastic reduction can be defended on the basis of
inelastic behavior. This justifies the rule9 that the moment at any
elevation be taken equal to the shear at that section times the dis-
tance to the centroid of the building's portion lying above the, eleva-
tilon considered, which for uniform shear-beams gives a reduction fac-
tor varying between 0.75 at the base and 1.Q At the building's top.
Certainly the reduction factorl1  J - 0.5Tf'/ 3, but k 0.33, cannot be
justified. Such drastic reduction comes about from an overoptimistic
interpretation of structural behavior and from an analysis that takes
much lower spectral accelerations for moment than for shear.

Behavior has been misinterpreted because of the overconservative-
ness that has prevailed in the design of columns under axial force;

(v) Theoretically this factor cannot be smaller than the value we
would obtain if the overturning moment were due only to the fundamen-
tal mode, which would give 0.775 for a hyperbolic spectrum.
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also out of semantic reasons: 'overturning" seems to imply toppling in
the style of some buildings in Niigata, while conditions leading to
such occurrences are rarely met; most failures due to high overturning
moment consist in column fracturell (whose direct cause is difficult
to diagnose when combined with flexure and shear) and in damage to
various structural members because of stress redistribution traceable
to foundation deformations.

Application to Chimneys. The same method of analysis has been
applied to cylindrical chimneys idealized as uniform flexural beams
fixed at their base. Gravity effects, shear deformations, and rotri-
tional inertia were neglected. (These matters are often important arid
should be incorporated in future studies.) The transfer functions are.
not periodic. Yet there is little difference in the shears and mo-
ments computed from eqs 7 and 10 (less than 1.5 percent of the base
shear and less than 0.4 percent of the base moment).

Again two acceleration spectra were considered: hyperbolic (with
a cutoff at T = O.1T1) and flat. All modes were assumed to have 5
percent damping. Earthquakes were idealized as finite segments of
stationary gaussian processes of duration s - 4.78T1.

Computed shears and moments are shown in figs 5 and 6. Simple
expressions can be used to approximate them.12 Again we find that'the
code formula for reduction of the integral of the shear envelope to
.obtain the base overturning moment (J - 0.6T 1/2 but -'O.4) often errs
seriously on the unsafe side (the computed J's are 0.587 with hyper-
bolic spectra and 0.972'with flat spectra) and for the same reason as
in buildings. Besides, the analyses of chimneyslOl 3 which serve as
basis for design compute shears by the adding the numerical values of
shear in the first three natural modes, and this series diverges.
Results of such analyses are not'defensible.

For spectra of arbitrary shape, one need not take design shears
greater than those for either a hyperbolic or a flat spectrum that
constitute upper bounds to the design spectrum in the range of periods
equal'to'or shorter than the chimney's fundamental period. This con-
sideration leads to a simple method for specifying a conservative
shear envelope for an arbitrary spectrum (fig 7). The same criterion
may be used for the design moments.

Analysis of several tapered chimneys'4 subjected to records of
actual earthquakes confirms that the root of the sum of squared modal
responses gives a satisfactory approximation to the total response.
The base shear coefficients are given with adequate accuracy by the
same expression as for cylindrical chimneys, and agaiy the moment re-
duction coefficients appreciably exceed the code 3's.

Actually there is no need for moment reduction coefficients in
chimneys, as simple "static" rules have not been 'developed for comput-
ing the shear envelopes.

Application to Single-Story Buildings with Torsion. The methods
of analysis we have presented are particularly useful in connection
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with buildings subjected to torsion, since dynamic'and static torques
may differ greatly and since pairs of natural frequencies may lie very
close to each other, so that eq 7 may entail large errors. The prob-
lem has been dealt with for single-story buildings with eccentricity
only in the direction perpendicular to the ground motion, so that only
two natural modes are excited by the earthquake.15

Responses to the hyperbolic and flat spectra were studied. The
two natural modes were assumed to have 10 percent of equivalent dam'p-
ing.

In order to study separately the effects of shear and torsional
moments structures like the one in fig 8 were analyzed. Results in
figs 9 and 10 refer to the shear force and the magnification factor
for eccentricity, relative to its "static" value, es (see fig 8). in-
cluding a comparison with taking the total response equal to the root
of the sum of the squared modal values responses for different values
of the parameters.

This study shows that shear forces computed as the root of the
sum of squared modal responses (eq 7) are practically equal to those
obtained from the more accurate eq 10 and that it is always conserva-
tive to ignore torsion in computing base shear. However, eq 7 seri-
ously overestimates torques in ranges Where natural frequencies are
nearly equal to each other, but in these same ranges even the more ac-
curate criterion yields much'higher torques than may be obtained from
the product of es-and shear. Results for buildings of arbitrary shape
indicate that under some conditions much higher magnification factors
may.obtain for the design shear on certain walls or frames.

One way of overcoming these deficiencies of the static method
consists in specifying that eccentricity-be taken equal to es or
lSes, whichever is more severe, and that the method be applied only
when K/k'4 36J/m - 25e 2m/Jm where K - torsional stiffness about the
center of mass, J polar moment of inertia about the same center, k
translational stiffness, and m - mass.15

The present study is confined to structures having natural periods
that are neither too short nor too long. When the fundamental period
is extremely short, all maximum accelerations approach the ground's
maximum acceleration, so that the static method of analysis yields sat-
isfactory results; in other words, design responses approach the alge-
braic sum of the modal responses. When the periods of natural modes
that contribute significantly to the overall responses are very long,
the design responses approach the numerical sum of the modal responses.

Additional research should cover the matters mentioned in the fore-
going paragraph as well as such questions as earthquake resistant de-
sign of chimneys including effects of shearing deformations, rotational
inertia, gravity forces, foundation compliance, and inelastic behavior;
torsion in multistory buildings with eccentricity in two directions in-
cludingeffects of inelastic behavior, torsional excitation, and random-
ness of-mass and stiffness'distributions; and behavior'oftappendixes on

.. 1 9
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shear-type buildings.

Acknowledgment. Part of this paper is based on ref 16.
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