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Colloid Movement in Unsaturated Porous Media:
Recent Advances and Future Directions

Nicole M. DeNovio, James E. Saiers, and Joseph N. Ryan*

ABSTRACT (Buol and Hole, 1961; McKeague and St. Arnaud,
1969; Matlack and Houseknecht, 1989).Investigations of colloid movement through geologic materials are

driven by a variety of issues, including contaminant transport, soil- How do these colloids become suspended in pore-profile development, and subsurface migration of pathogenic micro-
water? Are they readily transported through the vadoseorganisms. In this review, we address recent advances in understanding
zone? How rapidly are these colloids deposited backof colloid transport through partially saturated porous media. Special
onto soil surfaces? These questions can be addressed,emphasis is placed on features of the vadose zone (i.e., the presence
in part, by examining processes of colloid depositionof air–water interfaces, rapid fluctuations in porewater flow rates and

chemistry) that distinguish colloid transport in unsaturated media and mobilization in saturated porous media (McDowell-
from colloid transport in saturated media. We examine experimental Boyer et al., 1986; Ryan and Elimelech, 1996), but in
studies on colloid deposition and mobilization and survey recent devel- this review, we focus on what is known about these
opments in modeling colloid transport and mass transfer. We conclude processes in unsaturated porous media.
with an overview of directions for future research in this field. Three key features of the vadose zone play a critical

role in colloid movement: (i) the presence of air–water
interfaces, (ii) transients in flow and chemistry, and (iii)

Mobile colloids are ubiquitous in the porewaters soil structure and heterogeneity (Fig. 1). First, the unsat-
of vadose zone soils. Concentrations in excess of urated nature of the vadose zone introduces a third phase,

1 g L�1 have been reported during simulated and natural air, which affects colloid partitioning between water and
rainfall events (Table 1). The colloids include mineral soil. Colloids of many types associate with the air–water
fragments, microbes, and plant decay debris, with min- interface (Wan and Wilson, 1994b; Sirivithayapakorn
eral fragments being the most plentiful in typical soils. and Keller, 2003), and the movement of these colloids
The mineral fragments are derived mainly from the soil is affected by the movement of air bubbles (Gomez-
itself, which contains a great abundance of particles in Suarez et al., 1999; Gomez-Suarez et al., 2001; Saiers et
the colloidal size range (Wu et al., 1993; Grout et al., al., 2003). Second, porewater flow and chemistry are
1998; Posadas et al., 2001). The colloidal size range is highly transient in unsaturated porous media. Flow tran-
about 10 nm to 10 �m, with the smallest colloids being sients, generated by rainfall and snowmelt events inter-those that are just larger than dissolved macromolecules, spersed by drying periods, can promote very rapid col-and the largest colloids being those that resist settling loid mobilization (El-Farhan et al., 2000). Chemicalonce suspended in soil porewaters. transients, often produced by the introduction of lowColloid movement in the vadose zone is of concern ionic-strength rainwater into the vadose zone, result infor four major reasons: destabilization of colloidal aggregates in soils and mobili-

1. The movement of mobile colloids may facilitate zation of colloids (e.g., Kaplan et al., 1993; Ryan et al.,
the transport of some contaminants (Amrhein et 1998). Third, the soils of the vadose zone are usually
al., 1993; de Jonge et al., 1998; Ryan et al., 1998; structured or physically heterogeneous to some extent.
McGechan and Lewis, 2002). For example, macropores promote preferential flow

2. The movement of pathogenic microbes (“biocol- that has the potential to augment colloid mobilization
loids”) during wastewater reclamation and aquifer and reduce colloid deposition. Soil layering often inhib-
recharge presents a public health risk (Hurst, 1980; its colloid movement by enhancing deposition of col-
Powelson et al., 1993; Redman et al., 2001). loids mobilized in the upper soil horizons (Bond, 1986).

3. The deposition of mobile colloids may reduce soil In this review, we emphasize processes that control
permeability (Quirk and Schofield, 1955; Frenkel the transfer of inorganic colloids between immobile
et al., 1978; Baveye et al., 1998). phases of unsaturated porous media and moving pore-

4. The movement of colloids through the vadose zone water. Microbes and particulate organic matter are not
(illuviation) is an important process in soil genesis considered in detail, nor are the effects of solution com-

position, soil composition, biota, and soil aggregate
structure on the dispersion and stability of soil colloids.N.M. DeNovio and J.N. Ryan, Department of Civil, Environmental,

and Architectural Engineering, University of Colorado at Boulder, These factors have been studied extensively (e.g., Ren-
428 UCB, Boulder, CO 80309-0428; J.E. Saiers, School of Forestry gasamy et al., 1984; Pojasok and Kay, 1990; Brubaker
and Environmental Studies, Yale Univ., Sage Hall, 205 Prospect

et al., 1992; Oades, 1993; Le Bissonnais, 1996), but usu-Street, New Haven, CT 06511. Received 22 Jan. 2004. Special Section:
ally in batch systems that do not elucidate the mass-Colloids and Colloid-Facilitated Transport of Contaminants in Soils.

*Corresponding author (joseph.ryan@colorado.edu). transfer processes that occur during flow. We begin by
examining colloid deposition and mobilization in “ideal”Published in Vadose Zone Journal 3:338–351 (2004).
soils, or unsaturated porous media composed of grains Soil Science Society of America

677 S. Segoe Rd., Madison, WI 53711 USA of uniform size and shape (Table 2), and survey the
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Fig. 1. Processes affecting colloid movement in unsaturated porous media. Colloid deposition mechanisms include attachment to grains by
physicochemical filtration, attachment to immobile air–water interfaces (water flow is around bubble trapped in a pore), attachment by
straining in water-saturated pores, and entrapment in thinning water films during draining. Colloid mobilization mechanisms include colloid
dispersion by chemical perturbation, expansion of water films during imbibition, air–water interface scouring during imbibition and drainage,
and shear mobilization (soil profile from Tarbuck and Lutgens, 1997).

grain surface and on the probability that a colloid collisiondevelopment of mathematical models that describe col-
with the mineral grain will succeed in attachment. Colloidsloid transport in these ideal soils. We then explore the
are transported from the bulk fluid to the mineral grains byapplication of our understanding of colloid deposition
Brownian diffusion, interception, and sedimentation (Yao etand mobilization in ideal soils to “nonideal” soils, or
al., 1971). The transport rates due to these three mechanismsnatural and intact soils that are physically and geochemi-
can be calculated for water-saturated media as functions ofcally heterogeneous (Table 1). We conclude with recom- the physical properties of the porous medium–water–colloid

mendations for future research. system, including colloid diameter and density, grain size, and
flow velocity (Yao et al., 1971; Rajagopalan and Tien, 1976;
Logan et al., 1995; Tufenkji and Elimelech, 2004). An analo-COLLOID MOVEMENT IN IDEAL
gous theory for water-unsaturated media is unavailable. ItsPOROUS MEDIA
development relies on improvements in models for air–water

Colloid Transport and Deposition configuration in variably saturated porous media and, for natu-
ral systems, on consideration of the effects of irregularities inMost experimental studies in ideal porous media have been
the shapes of the mineral grains and colloids.conducted under conditions of uniform moisture content and

Attachment of colloids that strike the mineral grains issteady porewater velocity and have focused on elucidating
determined from the net-interaction potential, which can befactors that influence colloid deposition. The experimental
calculated from DLVO theory as the sum of the electrostaticresults reveal that colloid deposition rates are sensitive to
double-layer force, the van der Waals force, and short-rangeseveral physical and chemical properties, including volumetric
solvation or steric forces (Derjaguin and Landau, 1941; Ver-moisture content, flow rate, porewater ionic strength, and
wey and Overbeek, 1948; McDowell-Boyer et al., 1986; Ryancolloid size and composition (Wan and Wilson, 1994b; Wan
and Elimelech, 1996). The magnitude and direction of theseand Tokunaga, 1997; Jewett et al., 1999; Gamerdinger and
forces depend on the chemical and physical characteristicsKaplan, 2001; Saiers and Lenhart, 2003a). The variations in
of the colloid and soil-grain surfaces and, for the electricalcolloid deposition rates with changes in these properties have

been attributed to interactions among three deposition mecha- double-layer force, the chemical composition of the porewater.
nisms: mineral-grain attachment, air–water interface capture, At low ionic strength and for similarly charged colloids and
and film straining (Fig. 1). soil grains, the net-interaction potential exhibits a repulsive

The kinetics of colloid deposition on mineral grains depends maximum that hinders the attachment of colloids that ap-
on the rate of colloid transport from the bulk fluid to the proach the mineral-grain surface. With increasing ionic strength,
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eter exceeded about one-twentieth to one-tenth the diameter
of the porous media grains (Sakthivadivel, 1966; Herzig et al.,
1970). More recent studies motivated by the need to better
understand the removal of protozoan cysts during riverbank
filtration have explored the pore straining of polystyrene mi-
crospheres in uniform and poorly sorted porous media (Brad-
ford et al., 2002, 2003). This recent work showed that pore
straining can be modeled as first-order removal with a rate
coefficient that depends on the depth and mean grain diameter
of the porous media. Pore straining may also contribute to
colloid immobilization within small, water-filled pore spaces
present within unsaturated porous media. In partially satu-
rated pores with dimensions that exceed those of the colloids,
film straining may remove colloids from the mobile phase.
According to Wan and Tokunaga (1997), colloid immobiliza-
tion by film straining depends on the probability of pendularFig. 2. Negatively charged latex colloids (0.95 �m) deposited prefer-

entially onto an air bubble trapped in a pore body of a porous- ring discontinuity and on the ratio of colloid size to film thick-
medium micromodel (from Wan and Wilson, 1994a). ness (a pendular ring is water held by surface tension near

the contacts of adjacent mineral grains). The probability ofthe repulsive barrier decreases in magnitude, which increases
pendular ring discontinuity increases from zero to unity asthe probability that a colloid-grain collision will succeed in
the capillary pressure decreases (i.e., as the porous mediumcolloid attachment. The repulsive barrier is absent for oppo-
drains). As pendular rings disconnect, an increasing propor-sitely charge colloids and soil grains, in which case the deposi-
tion of water flow and colloid transport is relegated to thetion rate is controlled by the rate at which colloids are trans-
adsorbed films of water that envelop the mineral grains. Whenported from the pore fluid to the mineral-grain surface.
film width is greater than colloid diameter, straining does notPredictions of colloid deposition that are based on DLVO
occur. When film width is similar to or less than the colloidtheory have not been published for water-unsaturated sys-

tems, but DLVO theory has been tested against measurements diameter, however, surface tension retains colloids against the
of colloid deposition in water-saturated porous media. These mineral grain surfaces.
evaluations show that theoretically determined deposition rates The relative importance of soil-grain attachment, air–water
substantially underestimate corresponding measured values interface capture, and film straining to colloid deposition is
when repulsive barriers exist between the colloids and mineral not constant, but varies as a function of porewater chemistry,
grains (Elimelech et al., 1995). Agreement between DLVO- moisture content, and colloid characteristics. The work of Wan
based and laboratory-measured deposition rates has been im- and Tokunaga (1997) and Lenhart and Saiers (2002) suggests
proved through recent modifications to theory that account that film straining represents the most important deposition
for complexities associated with surface-charge heterogeneity, mechanism for hydrophilic colloids under conditions of low
grain-scaled surface roughness, and deposition within the sec- ionic strength (�10�3 M) and low to intermediate moistureondary minimum of the net-interaction energy profile (Bhatta- content. As moisture content and ionic strength increase, thecharjee et al., 1998; Hahn and O’Melia, 2004). These modifi-

leading colloid deposition mechanism may transition from filmcations, although designed to improve descriptions of colloid
straining to air–water interface capture or soil grain attach-deposition in water-saturated media, should also be applicable
ment, depending on the surface characteristics of the colloidsfor quantifying colloid deposition reactions on mineral-grain
and mineral grains (Saiers and Lenhart, 2003a).surfaces present within unsaturated porous media.

Like the soil surfaces, air–water interfaces present within
unsaturated porous media can serve as collectors of colloidal Modeling Colloid Transport and Deposition
particles (Fig. 1 and 2). Colloids that are transported to the

The observations reviewed above have been instrumentalair–water interface are retained by either capillary or electro-
in guiding the development of mathematical models for colloidstatic forces; therefore, colloid capture at air–water interfaces

depends on pH, ionic strength, and colloid surface properties. transport and deposition within homogeneous granular mate-
Increases in ionic strength reduce the magnitude of the repul- rials. Most of these transport and deposition models are based
sive energy barrier between the negatively charged air–water on the assumption of steady porewater flow and conceptualize
interface and like-charged mineral colloids, leading to progres- the unsaturated porous medium as a three-component system
sively more favorable conditions for attachment and faster consisting of air, water, and mineral grains (e.g., Sim and
rates of air–water interface capture (Wan and Wilson, 1994a; Chrysikopoulos, 2000). Colloids are transmitted through the
Saiers and Lenhart, 2003a). Hydrophobic colloids, such as cer- water-filled sections of the porous medium by advection and
tain bacteria, exhibit a greater affinity for air–water interfaces dispersion and are removed from the porewater by straining,
than mineral colloids, which have comparatively hydrophilic air–water interface capture, and deposition onto soil–water
surfaces (Wan and Wilson, 1994b; Schäfer et al., 1998; Lenhart interfaces. Film straining and air–water interface capture areand Saiers, 2002). Among clay-mineral colloids, the affinity treated as irreversible mass-transfer processes, a suitable ap-for the air–water interfaces depends on the colloid shape and

proximation provided that flow and porewater chemistry re-surface-charge distribution and varies inversely with colloid
main steady (Corapcioglu and Choi, 1996; Wan and Tokunaga,cation-exchange capacity. Kaolinite partitions more strongly
1997). Colloid release from soil–water interfaces is often ac-to the air–water interface than illite, while bentonite and mont-
commodated in unsaturated transport models, but is generallymorillonite exhibit negligible partitioning (Wan and Tokunaga,
slow in the absence of hydrologic and chemical perturbations2002).
(Schäfer et al., 1998; Chu et al., 2001).Straining occurs within mobile-water conduits that are too

The advection–dispersion equation describes the move-narrow to permit colloids to pass (Fig. 1). Early studies on
ment of porewater colloids. The one-dimensional form of thisthe removal of colloids by pore straining in water-saturated

porous media showed that colloids were retained if their diam- equation is given by
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the attachment probability can be accurately determined on�C
�t

�
�	STR

�t
�


c

Sw
�fair

�	AWI

�t
� fsoil

�	SWI

�t � � AL v
�2C
�z2

� v
�C
�z

[1]
a theoretical basis, discernible trends between the magnitude
of kAWI and some system properties have been identified. In

where C is the porewater colloid concentration; 	STR, 	AWI, and particular, values of kAWI that quantify silica-colloid attach-
	SWI are immobile-phase colloid concentrations for removal by ment vary proportionately with the one-third power of the
film straining (STR) air–water interface capture (AWI), and porewater velocity (kAWI � v1/3) (Lenhart and Saiers, 2002) and
soil–water interface deposition (SWI); t is time; 
c is the ratio increase linearly with porewater ionic strength (Saiers and
of colloid mass to its effective cross-sectional area; Sw is water Lenhart, 2003a).
saturation; fair is the air–water interfacial area per unit void The reciprocal of �AWI (�AWI

�1) defines the maximum attain-
volume; fsoil is the soil–water interfacial area per unit void able surface coverage at the air–water interface. Estimates of
volume; AL is the longitudinal dispersivity; v is the average

�AWI
�1 increase with ionic strength because of a reduction in

porewater velocity; and z is the coordinate parallel to flow. repulsive electrical double layer forces between colloids. Even
The concentration of strained colloids (	STR) is expressed in at elevated ionic strengths, maximum surface coverages for
terms of colloid mass per volume of porewater, while 	AWI both biocolloids and mineral colloids are low. For example,
and 	SWI are expressed in terms of normalized surface cover- Abdel-Fattah and El-Genk (1998) reported �AWI

�1 values for
ages (i.e., area of attached colloids per area of interface). hydrophobic microsphere ranging from 0.012 to 0.08 for ionic
Solution of Eq. [1] requires specification of the kinetics expres- strengths between 0.001 and 1 M, while Saiers and Lenhart
sions for film straining, air–water interface capture, and depo- (2003a) reported �AWI

�1 values for silica colloids ranging from
sition onto soil–water interfaces. 0.001 to 0.03 for ionic strengths between 2 � 10�4 and 0.2 M.

Wan and Tokunaga (1997) quantified colloid straining in- The parameter �AWI
�1 likely depends on hydrodynamic forces

side thin films with a first-order kinetics expression: in addition to forces between colloids (Ko and Elimelech,
2000). Because hydrodynamic forces vary with position along�	STR

�t
� kSTR C [2] the air–water interface, colloid surface coverages are undoubt-

edly nonuniform, with some areas of the air–water interface
completely devoid of colloids (even at maximum surface cov-where kSTR, the rate coefficient for film straining, varies ac-
erages), while other areas collect colloids in high concentra-cording to
tions. Estimates of �AWI

�1, then, should be regarded as a spatial
average over the entire air–water interface.kSTR � P(
)�d

w�
�

Nv(1�h) [3]
Methods for quantifying soil–water interface reactions in

unsaturated media are largely based on approaches derived
In Eq. [3], P(
) is the probability of pendular ring discontinu- from studies conducted in water-saturated systems. Several
ity (expressed as a function matric potential, 
), d is the investigators have adopted a second-order reversible rate law
colloid diameter, set w is the film thickness. h, N, and � are to describe colloid mass-transfer reactions with the solid phase
empirical parameters. Wan and Tokunaga (1997) employed (Corapcioglu and Choi, 1996; Schäfer et al., 1998; Chu et al.,
Eq. [2] and [3] to describe film straining rates in a suite of 2001):
column experiments that were conducted at matric potentials
ranging from �0.05 to �0.5 m and with microspheres ranging 
c

Sw

fsoil
�	SWI

�t
� kSWI�SWI C �


c

Sw

fsoil kR	SWI [5a]in diameter from 0.014 to 0.97 �m.
Colloids traveling within relatively large water channels

(e.g., interconnected pendular rings) are not affected by film
�SWI � 1 � �SWI	SWI [5b]straining, but they may diffuse to the air–water interface where

electrostatic or capillary forces retain them. A second-order
where kSWI is a rate coefficient for colloid deposition onto thekinetics expression has been invoked to describe the attach-
mineral grains, kR is a rate coefficient for colloid release, andment of microspheres, bacteria, viruses, and mineral colloids
�SWI is an excluded area parameter. Application of this kineticsat air–water interfaces present within porous media (Corapci-
formulation to data on microsphere, virus, and bacteria trans-oglu and Choi, 1996; Schäfer et al., 1998; Chu et al., 2001).
port indicate that kR is small or zero, at least for conditionsThe formulation of this rate law varies slightly depending on
of constant flow and porewater chemistry. Like their air–waterwhether the captured colloid mass is normalized by the volume
interface counterparts, kSWI and �SWI are sensitive to porewaterof air or by air–water interfacial area. For the case of normal-
chemistry, soil composition, and colloid type (Corapciogluization by interfacial area, the rate law is expressed by
and Choi, 1996; Schäfer et al., 1998; Chu et al., 2001). The
deposition rate coefficient (kSWI) should exhibit an additional
c

Sw

fair
�	AWI

�t
� kAWI�AWI C [4a] dependence on volumetric moisture content because changes

in air–water configuration that accompany variation in mois-
where kAWI is a rate coefficient for air–water interface capture ture content will affect colloid trajectories around (and the
and �AWI is a blocking function. The blocking function declines transport rate to) the mineral-grain surfaces.
linearly as 	AWI increases: Equations [1], [2], and [4a] to [5b] with unknowns C, 	STR,

	AWI, and 	SWI are suitable for simulating colloid transport,
�AWI � 1 � �AWI	AWI [4b] film straining, air–water interface capture, and mineral-grain

attachment in unsaturated, homogeneous porous media. Pub-where �AWI is an excluded area parameter equivalent to the
lished models that incorporate one or more of these threeratio of blocked air–water interfacial area to the projected
mass-transfer mechanisms have successfully reproduced datacross-sectional area of the colloid. Inspection of Eq. [4a] and
from laboratory experiments on the transport of both inor-[4b] shows that colloid capture rates vary linearly with C and
ganic and organic colloids in ideal porous media. Though verydecline as colloids accumulate on the air–water interface.
encouraging, these results should not be taken as evidence thatThe magnitude of kAWI depends on the rate of colloid trans-
the colloid-transport problem has been solved. The publishedport from the bulk fluid phase to the air–water interface and
simulations rely on adjustment of model parameters that can-on the probability that a colloid collision with the interface

will result in attachment. While neither the transport rate nor not be determined on a theoretical basis and hence the favor-
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able model-data agreement should not be considered defini- measuring the concentrations of colloids in water samples
collected in lysimeters installed within the soil profile (fortive proof of positive identification of the mechanisms that

govern colloid mass transfer. Alternative interpretations of field experiments) or at the base of the core (for laboratory
experiments). Results of these studies have been instrumentalthe experimental observations are possible.
in improving our understanding of factors that control the
mobilization of naturally occurring soil colloids.Colloid Mobilization

A salient characteristic of these field and intact soil labora-
Few experimental or theoretical studies on colloid mobiliza- tory experiments is the consistent occurrence of a pulse of

tion within ideal unsaturated media are available. On the basis colloids at the beginning, and sometimes at the end, of a
of studies with saturated porous media, we anticipate that rainfall event with an interlude of relatively steady colloid
perturbations in porewater chemistry will promote colloid re- mobilization (e.g., Kaplan et al., 1993; Jacobsen et al., 1997;
lease (Fig. 1). Ionic-strength reductions and pH increases are Ryan et al., 1998; El-Farhan et al., 2000). The colloid pulses
the most common chemical perturbations that mobilize col- during imbibition and draining can be attributed to the effect
loids in saturated systems (McDowell-Boyer, 1992; Ryan and of flow transients on colloid mobilization. The relatively steady
Gschwend, 1994; Grolimund and Borkovec, 1999) and are colloid mobilization during the rainfall event can be attributed
likely to play an important role in colloid mobilization within to the gradual propagation of chemical (and perhaps some
unsaturated systems. physical) perturbations through the soil column.

Physical perturbations in flow that characterize typical infil- The best example of colloid mobilization pulses coinciding
tration events also drive colloid mobilization. Several mecha- with the beginning and end of a simulated rainfall event is
nisms for this flow-induced mobilization have been proposed provided by the field experiments conducted by El-Farhan et
(Fig. 1). Colloids trapped in narrow porewater conduits (by al. (2000). Infiltrating water was applied as water ponded on
straining) may be released into the pore fluid when these flow the soil surface. Peak colloid concentrations (up to 265 mg
paths expand during soil imbibition (Fig. 3; Saiers and Lenhart, L�1) were recorded in the first few and last few samples of
2003b). Moving air–water interfaces associated with wetting water taken from zero-tension lysimeters at 25-cm depths (Fig.
and drying fronts may scavenge colloids from mineral-grain 4). These peak concentrations were attributed to the passage
surfaces and facilitate their transport through the porous me- of colloid-scavenging air–water interfaces during imbibition
dium (Gomez-Suarez et al., 1999, 2001; Saiers et al., 2003). and draining. The experiments conducted by Saiers et al.
Increases in shear stress that accompany porewater-velocity (2003) in ideal porous media reinforce this interpretation for
increases may cause colloids to roll along the surface to which the draining. In addition, some of the pulse of colloid mobiliza-
they are attached, and these colloids may be released into the tion that occurs at the beginning of a rainfall event can be
porewater upon encountering surface roughness that reduces attributed to the release of colloids into expanding of water
the DLVO adhesion force (Hubbe, 1985). films (Saiers and Lenhart, 2003b).

Following the pulse of colloid mobilization typically ob-
COLLOID MOVEMENT IN NONIDEAL served during imbibition, colloid concentrations are often rela-

tively steady (El-Farhan et al., 2000) or they gradually decreasePOROUS MEDIA
with time (Kaplan et al., 1993; Jacobsen et al., 1997; Ryan et al.,Findings from ideal systems have been used to identify 1998; Schelde et al., 2002). The colloid mobilization behaviorkey mechanisms that influence colloid-deposition kinetics in observed during steady rainfall infiltration has frequently beennatural vadose-zone environments and to define, at least quali- interpreted as control of colloid mobilization kinetics by col-tatively, how colloid mobility in soils and sediments responds loid diffusion. Colloid mobilization can be viewed as a two-to changes in measurable properties, such as moisture content, step process involving (i) detachment of colloids from soilporewater chemistry, and flow velocity. However, natural geo- grain and aggregate surfaces and (ii) diffusion of colloids fromlogic environments are more heterogeneous than ideal sys- the detachment site to the mobile porewater. The diffusiontems. Although the soils of some vadose-zone systems exhibit step may be envisioned as diffusive transport through a layera narrow distribution in pores sizes and are characterized by of immobile water in which diffusive transport of colloids isweak structure, abiotic and biotic processes lead to the cre- more important than advective transport (Ryan and Gschwend,ation of macropores (e.g., root channels, worm borrows, desic- 1994). The diffusion step can also be viewed as diffusioncation cracks) and aggregation of primary mineral particles through two regions, one being a soil “crust” representing soilin many near-surface soils. This soil structure complicates de- aggregates or soil matrix, and the other being the immobilescriptions of colloid transport because it produces nonunifor-
water layer (Schelde et al., 2002).mity in the velocity of infiltrating water (Beven and Germann,

In nonideal porous media, there are indications that the1982; Selker et al., 1999). Therefore, mathematical models
detachment step is promoted by various chemical and physicaldeveloped for ideal porous media that are based on the as-
perturbations (e.g., decreasing ionic strength, increasing pH,sumption of uniform flow cannot be used without modification
shear stress), with the addition of another chemical perturba-to quantify colloid movement through macroporous or aggre-
tion, the detachment of colloids by dissolution of mineralgated soils. In addition to heterogeneity in porous-medium
cements that bind together various soil constituents (e.g., Har-physical properties, the geologic solids of real vadose-zone
ris et al., 1987; Weisbrod et al., 2002). Despite these indica-environments exhibit substantial geochemical heterogeneity.
tions, experiments in nonideal porous media have not yieldedConsequently, the distribution in the rates of colloid mass-
much insight into detachment mechanisms because it is highlytransfer reactions may be broader than those measured in
unlikely that the detachment kinetics would be the rate-lim-experiments with ideal porous media.
iting step in an experiment in which a measurable amount of
colloids were mobilized. Instead, most of these experimentsExperimental Findings show that kinetics of colloid mobilization during steady infil-
tration appears to be limited by the diffusion step (JacobsenColloid movement through nonideal porous media has been
et al., 1997; Lægdsmand et al., 1999; Schelde et al., 2002).measured in small-scale field experiments and in laboratory

The key experimental result that supports an interpretationexperiments with intact soil cores. These experiments most
often involve applying water to the surface of the soil and of diffusion-limited kinetics for colloid mobilization is a linear
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Fig. 3. Model-computed results and those measured in duplicate experiments on silica-colloid mobilization from columns of quartz sand: (A,B)
measured specific discharge at column boundaries, (C,D) measured moisture content (symbols) and modeled moisture content (lines) for
three positions along the 32-cm-long columns (z � 0 at column top), and (E,F) colloid breakthrough pulses generated by successive increases
in flow rate (from Saiers and Lenhart, 2003b).

relationship between the cumulative mass of mobilized col- may be dominating colloid mobilization. At high flow rates,
loids and the square root of time (Fig. 5) following shear stress may affect colloid mobilization kinetics. In model

systems of spherical colloids attached to flat plates, the force
of hydrodynamic shear (FH) is proportional to the flow velocityMt � 4M∞l �Dct

�
[6]

VR at the height of the colloid radius R and the radius of the
where Mt is the cumulative mass of mobilized colloids as a colloids (O’Neill, 1968):
function of time t, M∞ is the total mass of colloids that can be

FH � (1.7)6��RVR [7]mobilized in a sheet of thickness l, and Dc is the diffusion
coefficient of the colloid (Crank, 1975). Such linear relation-

where � is the dynamic viscosity of the fluid. The shear forceships were observed by Jacobsen et al. (1997), Lægdsmand et
is opposed by an adhesive force, which is described by DLVOal. (1999), and Schelde et al. (2002) for intact soils in labora-
interactions. Kaplan et al. (1993) and Lægdsmand et al. (1999)tory columns.
found support for mobilization by shear in positive correla-Under some conditions, the linear relationship between
tions between mobilized colloid concentrations and flow ratecumulative mass and the square root of time has not been ob-
by assuming that the velocity of infiltrating water is propor-served. For example, both Jacobsen et al. (1997) and Lægdsmand
tional to flow rate and the concentration of colloids is propor-et al. (1999) noted deviations from the linear relationship for
tional to the shear force. Similarly, Weisbrod et al. (2002)early time (during imbibition) and for high flow rates. These
reported a power law relationship between the flow rate anddeviations indicate that processes other than diffusion may
the amount of colloids mobilized from a fractured chalk for-control colloid mobilization kinetics under these conditions.

During imbibition, colloid scavenging by air–water interfaces mation.
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that approximates the average behavior of the actual macro-Modeling Colloid Mobilization in Nonideal Media
pore network. Water in the partially saturated macropore is

Efforts are just beginning to build a modeling framework assumed to occur as a thin film with mobile- and immobile-
appropriate for describing the mobilization and transport of water portions. Colloids are generated from a “crust layer”
colloids in nonideal, unsaturated porous media (Jarvis et al., near the macropore edge. These colloids presumably diffuse
1999; Schelde et al., 2002). These colloid-transport models, across the stagnant portion of the water film and enter its
like those developed for ideal systems, ignore the effects of mobile-water portion, where flow is steady and the colloids are
biological processes (e.g., growth, decay, predation, and inacti- transported by advection and dispersion. Although Schelde et
vation) and thus are most appropriately applied to the move- al. (2002) developed this model in the context of macroporous
ment of inorganic colloids. soils, it could be applied to describe colloid transport and mass

Schelde et al. (2002) developed a model capable of simulat- transfer in aggregated soils by conceptualizing the water in
ing the mobilization and transport of natural mineral colloids the aggregates as immobile water and the water in the interag-
within macroporous soils cores (Fig. 6). This model is similar gregate pore spaces as the mobile water.
in form to dual-porosity, mobile–immobile models for solute The model of Jarvis et al. (1999) shares the two-domain
transport in structured and aggregated porous media (Coats conceptualization embodied in the model of Schelde et al.
and Smith, 1964; van Genucthen and Cleary, 1979; Nkedi- (2002), but accounts for transient porewater flow in both the

macroporous and microporous regions of the soil. This modelKizza et al., 1984). It accounts for an equivalent macropore

Fig. 4. Colloid mass flux (filled circles) and porewater flow rates (solid lines) measured during two ponded infiltration experiments. Colloid
concentrations peak during the passage of both wetting and drying fronts (from El-Farhan et al., 2000).
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While progress has been made toward developing a capabil-
ity to simulate the unsaturated transport of colloids in nonideal
systems characterized by porous-medium heterogeneity, there
is clearly a long way to go. Available models are very simple
and incorporate only a subset of the mass-transfer processes
that combine to influence colloid mobility in the vadose zone.
Additional testing of models over a broader range of experi-
mental conditions is needed. These model-data evaluations
will lead to model refinement by illuminating gaps in our
understanding of processes and will help to define quantitative
relationships between model parameters and measurable sys-
tem properties.

FUTURE DIRECTIONS

To better understand colloid movement through the unsatu-
rated zone, five major areas of research should be emphasized:
(i) improved visualization of unsaturated flow and colloid
transport phenomena, (ii) continued investigation of transient
flow (wetting and drying) conditions, (iii) further examina-
tion of the effects of soil structure on colloid mobilization
and transport, (iv) better quantification of pore straining of
colloids and its effect of soil clogging, and (v) assessment
of colloid mobilization under extreme conditions present at

Fig. 5. Cumulative colloid mobilization as a function of the square waste sites.root of time during leaching through intact macroporous soil cores.
Using tools like light transmission through transparent mi-The linear relationship between these variables suggests that the

cro- and meso-models (Wan and Wilson, 1994a; Sirivithaya-kinetics of colloid mobilization were controlled by diffusion (from
pakorn and Keller, 2003), magnetic resonance imaging, andJacobsen et al., 1997).
X-ray computed tomography, efforts are underway to improve
our understanding of flow and colloid transport in the un-is based on the assumptions that mineral colloids are only

mobilized at the soil surface, not within the soil profile, and saturated zone (Darnault et al., 2002; Nestle et al., 2002;
Wildenschild et al., 2002; Weisbrod et al., 2003). As the resolu-that colloid deposition in both porewater domains can be

described by simple first-order kinetics expressions. Calcula- tion and capabilities of these visualization systems improve,
it will be possible to test hypotheses regarding proposed mech-tions of the model of Jarvis et al. (1999) agree reasonably well

with colloid concentrations measured over an 80-d period in anisms of colloid mobilization and deposition, as well as to
identify new mechanisms that cannot readily be inferred fromsoil water samples collected from a tile-drained silty clay soil

in Sweden. analysis of column experiments. Visualization experiments

Fig. 6. Representation of a single equivalent macropore with colloid mass transfer between three phases: mobile water, immobile water, and
crust. The horizontal arrows indicate colloid diffusion between phases, and the vertical arrows indicate advective colloid transport (from
Schelde et al., 2002).
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that permit air–water interface reactions to be unambiguously 1987; Liang et al., 1993; Schemel et al., 2000), must be assessed
in vadose zones subject to these hazardous-waste environments.distinguished from solid–water interface reactions should be

particularly useful in guiding the development of mechanistic
models for colloid deposition and mobilization. ACKNOWLEDGMENTS
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