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Transport of Reacting Solute in a One-Dimensional,
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Reacting, nonlinearly adsorbing solute transport in chemically heterogeneous soils is studied.
Assuming adsorption is adequately described with the Freundlich equation, random variation of the
adsorption coefficient is assumed to describe the heterogeneity. In a homogeneous case, traveling
wave fronts develop, characterized by a constant velocity and a constant front shape. Using the
method of moments, an analytical expression is derived to describe the constant variance of the
traveling wave front. Deviations from the analytical variance and velocity, both calculated with an
average adsorption coefficient, show that column scale heterogeneity has significant effects on front
spreading and front movement. Expected values of front velocity and variance are computed as
averages of values of 600 randomly generated columns. The nonlinear process causes small deviations
from the case with average parameters. The ensemble average concentration front, representing an
average front for the flow domain, shows that three mechanisms are responsible for the front
spreading. At early displacement times the front spreading is caused by the thickness of the individual
traveling waves. Subsequently, the effect of the internal variation of the adsorption coefficient (column
scale heterogeneity) increases, whereas at large displacement times the front spreading is dominated
by the different retardation coefficients of the different columns. The latter effect causes the variance
to increase in proportion to #2. An analytical approximation is derived for the ensemble average front,

ignoring column scale heterogeneity.

INTRODUCTION

The contamination of the environment has become a
matter of considerable concern. In areas with high intensity
of industry and agriculture, large concentrations of heavy
metals or organic contaminants may reach the soil by
atmospheric deposition or by waste disposal. These contam-
inated sites are a potential risk for groundwater quality, for
the quality of agricultural production, and for the quality of
the drinking water supply. In order to manage our soil and
groundwater resources properly, modeling tools are neces-
sary to understand and predict movement of contaminants in
the environment.

During the past decades much attention has been given to
the theory and modeling of solute transport. This develop-
ment has been accelerated and increased by the difficulty
and high costs of field scale measurements. Much attention
has been given to one-dimensional monocomponent solute
transport in homogeneous media. Monocomponent models
may adequately describe situations where nonreacting sol-
utes or solutes at trace levels are present [van der Zee,
1990b]1. A number of analytical solutions for these cases, for
different boundary conditions, were given by van Genuchten
and Alves [1982], who considered linear adsorption and
zeroth- and first-order production and decay. Extensions
were developed, taking into account the nonequilibrium
aspect of the adsorption process, by van Genuchten et al.
[1974] and Rao et al. [1979].

Many transport models concern homogeneous media, but
in practice soils and groundwater systems appear to be
heterogeneous. One of the first efforts to describe heteroge-
neity was achieved by making use of the dual-porosity
concept [Coats and Smith, 1964; van Genuchten and
Wierenga, 1976] and of the two-site surface adsorption
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concept [Cameron and Klute, 1977]. In some cases hetero-
geneity may be treated deterministically (e.g., in the case of
well-defined layers with different texture or composition that
are separated by relatively sharp interfaces). Valocchi [1989]
studied the effect of a stratified aquifer on (two-dimensional)
longitudinal solute spreading. He found that pore scale
dispersion, column scale heterogeneity and adsorption kinet-
ics are three dominating front-spreading factors. However,
in order to study heterogeneity in general cases a stochastic
approach may be necessary. One of the first stochastic
approaches for nonreactive solute transport was given by
Dagan and Bresler [1979] and Bresler and Dagan [1979,
1981, 1983]. By linearizing the flow equation Dagan [1988,
1989] derived an analytical solution for the spreading process
of a nonreactive solute, taking into account a lognormal
distribution of the hydraulic conductivity. It was shown that
for a nonreactive solute, spatial variability of hydraulic
conductivity accounts for a much larger solute spreading
than pore scale dispersion. Bellin et al. [1992] validated
Dagan’s linear solution with extensive numerical calcula-
tions. Graham and McLaughlin [1991] applied a technique
which uses field measurements to condition model results in
order to improve the predictions of observed solute spread-
ing. Successful results were obtained with this technique,
although (costly) site specific measurements are necessary.
A somewhat different approach to heterogeneity of soil
physical parameters was given by Jury [1982], who derived a
transfer function model to calculate the distribution of solute
travel times.

The studies concerning heterogeneity of porous media
mainly involve variable soil hydraulic properties caused by
spatially variable porosity, dispersion and hydraulic conduc-
tivity. Boekhold et al. [1990] have shown that chemical
properties which play a role in the process of adsorption,
such as pH and organic matter content, may show highly
variable distributions. Studies concerning reactive solute
transport with random sorption parameters were performed
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by van der Zee and van Riemsdijk [1986, 1987], Cvetkovic
and Shapiro [1990], Destouni and Cvetkovic [1991], Jury et
al. [1986] and Chrysikopoulos et al. [1990]. Cvetkovic and
Shapiro [1990] studied the mass arrival of transporting solute
taking into account spatial variability of hydraulic conduc-
tivity, of linear adsorption coefficient, and of adsorption and
desorption rate parameters. Destouni and Cvetkovic [1991]
showed a double peak behavior for the mass arrival of solute
into groundwater considering random hydraulic conductivity
and random adsorption and desorption rate parameters. Jury
et al. [1986] extended the transfer function model for solutes
that undergo physical, chemical and biological transforma-
tions in heterogencous systems. Van der Zee and van
Riemsdijk [1987] used a random distribution of chemical
parameters to simulate solute transport in a heterogeneous
field. They found that variation of the retardation factor and
the water velocity causes non-Fickian front shapes for the
average field concentration front. Chrysikopoulos et al.
[1990] studied the effect of a spatially variable retardation
factor on linearly adsorbing one-dimensional solute trans-
port, focusing on column scale heterogeneity.

Most studies reported here, describing soil physical or soil
chemical heterogeneity, considered adsorption to be a linear
process. However, as Calvet et al. [1980] showed for pesti-
cides and de Haan et al. [1987] and Boekhold et al. [1990]
have shown for heavy metals such as cadmium, adsorption
may be nonlinear. For homogeneous media, van der Zee
[19905b] derived an analytical solution for the limited trav-
eling wave for a two-site system with equilibrium linear
adsorption for one site and nonequilibrium nonlinear adsorp-
tion for the other site. This analytical solution was adapted
by Bosma and van der Zee [1992b] in order to describe
solute transport subject to nonlinear adsorption and first-
order decay. A first approach to model nonlinear adsorption
and column scale heterogeneity was performed by studying
the effect of two-layered soils on solute transport [Bosma
and van der Zee, 1992a].

Our aim is to analyze the effect of chemical heterogeneity
on solute transport. Although we are aware of the signifi-
cance of heterogeneity of hydraulic properties, this is not
included in this study. In order to obtain basic information
about the effect of variable nonlinear adsorption on one-
dimensional solute transport, variation of the flow velocity
has been ignored. A random distribution of the adsorption
coefficient has been used. The method of moments [Aris,
1956] is applied, to quantify the effect of heterogeneity on the
front velocity and on the front shape. Numerically calculated
front variances are compared with an analytically derived
expression for the variance of a traveling wave. By studying
the ensemble average front, the effect of different front-
spreading mechanisms is analyzed.

THEORY

We consider a solute, subject to nonlinear equilibrium
adsorption, transported in the z direction of a soil. Since no
production or decay is assumed, the governing equation for
local equilibrium assumption (LEA) valid is given by (for
symbols see the notation section)

=0D —— v — @)

assuming steady state flow. With adsorption expressed on a
volumetric basis (i.e., g = ps), (1) can be rewritten as

dc dq

0 —+—=0D —— v — ()
it ot

For this study nonlinear adsorption is described by the

Freundlich equation, an expression often used to character-

ize adsorption of heavy metals and organic compounds [de

Haan et al., 1987; Calvet et al., 1980]. The Freundlich

equation is given by

q=kc" 0<n<i1 3)
OQur aim is to study the transport of a solute through a
chemically heterogeneous soil, where & is a random space
function. First we describe the behavior of a solute subject
to nonlinear adsorption in a homogeneous soil. Depending
on the nonlinearity of adsorption, van Duijn and Knabner
[1990] have shown that under certain conditions a traveling
wave front develops in a homogeneous porous medium.
These conditions are, for ¢y > ¢;, thatg’ > 0 and ¢" <0,
where primes denote differentiation with respect to ¢. Due to
the nonlinearity of adsorption, lower concentrations experi-
ence a larger retardation than higher concentrations (if 0 < n
< 1 in the Freundlich equation (3)). Consequently, a rela-
tively steep front develops as adsorption nonlinearity op-
poses the front-spreading effect due to pore scale dispersion.
If both effects, due to nonlinear adsorption and due to pore
scale dispersion, are of equal force, the front shape and front
velocity remain constant. Van der Zee [1990b] and van
Duijn and Knabner [1990] have given an analytical solution
for the limiting (t—x) front. Van der Zee [1990b] and
Bosma and van der Zee [1992a] have shown that in practice
the traveling wave solution is already valid after short
displacement times.

The initial and boundary conditions used for the derivation
of the analytical solution are given by

c(z, ) =0 z>0 t=0 (4a)

c(z, 1) =cy z=0 t>0 (4b)

Bosma and van der Zee [1992b] gave the transformation to
describe the concentration with respect to a moving coordi-
nate system by

n =z — (vt/R) 3%
where R, the nonlinear front retardation factor, is

Ag(c)
0Ac

R=1+ (6)

in which Ac = ¢y — ¢; and Agq is the corresponding change
in amount adsorbed. When the traveling wave front has
formed we have

c(n)=clz, 1);  qln)=q(z, 1) N
The transformed boundary conditions for the infinite system
are

dc dg

e =cg =0 =0 (8a)

n=-%
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dc dq
cm)=0 —=0 -——=

8b
o i (8)

0; n =

The analytical traveling wave solution for (2)-(3) is given as

” ):@:[l_e (R — 1)
CO DR
1/(1 = n)
-(1—n)(yg - n*)“ n=n* (9a)
() =0 n>n* (9b)

where ¢(7) is the relative concentration (0 = ¢ < 1). The
reference value n* was discussed by van der Zee [1990b].
For LEA valid and ¢; = 0, n* is given by [Bosma and van
der Zee, 1992a]

n* = —(G* + Ly) (10
with the constant G* equal to
0+kC6’_1 co n—1 1—n
G*:Ldmc—n j ln[l“CO C ]dC (11)
0 0

In (10) and (11), L, is the dispersivity (equal to D/v,
assuming no molecular diffusion).

With (9)-(11) it is possible to describe transport of a solute
subject to nonlinear adsorption in a homogeneous soil. In
order to quantify effects of several variables (e.g., degree of
nonlinearity, dispersivity) and to assess the effects of heter-
ogeneity, the concentration distribution can be characterized
in terms of spatial moments [Valocchi, 1989]. The Kth
moment that can be calculated to analyze the concentration
front moving in the z direction is defined as

MK=F Xf(2) dz (12)

where f{ z) is the probability density function (pdf) of travel
distance. To characterize the downward moving front with
respect to the average front position, the Kth central mo-
ment is defined as

(13)

—0

M,”<=f (z— w)Kf2) d
where w is the first moment (M) given by (following (12))

M=M1=f°° A2) dz (14)

In order to determine the moments My and Mg with
(12)~(13), an expression for f(z) is required. Similar to the
linear adsorption case, &(z, ) is related to the cumulative
probability or distribution function of travel distance z for a
continuous injection as considered here. Hence, the deriva-
tive of ¢(z, ) with respect to z is related to the pdf of travel
distance z for the nonlinear front. In particular,

aé(z, 1)

A2 = - P

(15)

The minus sign accounts for the descending front, i.e., our
choice for the direction of the z coordinate, because the
zeroth moment M should be normalized to unity. We obtain
for the moments of (12) and (13)

Mg = —J X&' (2, 1) dz (16a)

Mg = —fw (z — w%e'(z, 1) dz (16b)

—oo

where primes denote spatial derivatives.

The defined moments physically describe a concentration
front. The zeroth moment (M) gives the amount of dis-
solved solute present in the column. The first moment (M ;)
denotes the average position of the front and, divided by
time, quantifies the front velocity. The central moments are
used to describe the front shape. The second central moment
(M%) gives the variance of the front s2, whereas the third
central moment (M%) and the fourth central moment (M)
are related to the skewness and the kurtosis of the concen-
tration distribution. For this study, we are mainly interested
in the first moment (M;; average front position) and the
second central moment (M5 ; variance). Later, we will make
use of the third and fourth central moments (M5, M) to
characterize the ensemble average concentration front of the
flow domain.

If solute transport subject to nonlinear adsorption is
considered, it is possible to derive an analytical expression
for the variance of the front, provided (9) is valid, i.e., when
k is constant and not a random space function (i.e., homo-
geneous porous medium). As mentioned earlier, a traveling
wave is characterized by a constant front shape and a
constant velocity. The constant front shape implies that the
front variance is also invariant with time and depth. This
suggests that an expression for the front variance $% can be
derived that depends only on pore scale dispersion and on
the degree of nonlinear adsorption. If, for convenience, we
use the substitution 3 = » — n* to rewrite (9) as

e(q) =[1 —exp (P7)]" ) € (—o, 0] a7y

where
P=v(R—1)DRm (18)
m=1/{1-n) (19)

an expression for the variance s% is derived with respect to
the moving coordinate system 7. Because the front shape in
terms of n is equal to the front shape in terms of z, and
because the substitution 7 = n — n* does not affect the front
shape, we have the equivalence s% = s2. The variance s%
can be calculated according to

=((F —(GND = (7 — (F)? (20)

S

N

where (7)) denotes the expected value of 7, given by the first
moment (M ). With (15) we can evaluate (7?) according to

0
(7% = —f nie'(q) di 3]
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with the integration limits given by —o and 0, in view of the
7 domain (—, 0] defined in (17). The second term on the
right-hand side of (20) can be computed as

2

(M= —fo fe' () di (22)

It is not necessary to evaluate the derivative of the concen-
tration front (¢’ (7)) for (21) or (22) because these equations
can be formulated as

(9@ = - f " g@e ) di = - f ° (@) de(d)  (23a)

—o0

(g(M) = —[g(F) (@1 + f &) dg(7) (23b)

—

where ¢g(7) is a function of 7 (e.g., 7]2 in (21) or 7 in (22)).
This shows that the expected value of g(7) can be evaluated
directly from the concentration front, ¢(7). The integrations
of (21)~(22) with ¢(%) given by (17) can only be performed
analytically for integer values of m. This restricts the values
fornton =G+ 1)/G + 2)(withi =0,1,---, ). For
other n values, (21) and (22) have to be calculated numeri-
cally. To derive a general expression for s%, considering
only positive integer values for m, the expression for ¢(%)
given by (17) can be written as a series according to

m

() =1+ 2, a; exp (Pi)

i=1

(24)

with
m!

@ =D o

(25)

Integrating (21) and (22) from 7 = —o to 0 using (24)—(25), an

expression for the variance s? of a traveling wave front can

be derived from (20). The obtained result is given by
1 [ & ’

) a; a;

7 p? 2 27 p? 2 N

i=1 i=

(26)

with P, m, and «; given by (18), (19) and (25), respectively.
With (26), the variance of a traveling wave for a homoge-
neous column, s%, which is related to the thickness of the
front, can be calculated. Note that s% is determined only by
m and by P, which represent nonlinear adsorption and pore
scale dispersion, respectively. In agreement with the travel-
ing wave concept, s% is independent of space and time.

NUMERICAL PROCEDURE

Incorporation of Heterogeneity

In order to describe solute spreading in heterogeneous
porous media one must account for the often irregular
variation of transport and adsorption parameters [Mackay et
al., 1986a, b]. To study the effect of column scale hetero-
geneity on solute transport, the transport and adsorption
parameters may be considered variable in the vertical direc-
tion. Bosma and van der Zee [1992a] have shown the effect
of layering on solute transport with nonlinear adsorption.

Considering linearly and nonlinearly adsorbing layers, the
layering order was found to be important in order to describe
the downstream concentration front. Whereas a soil consist-
ing of two different layers was considered [Bosma and van
der Zee, 19924], here it is our aim to show the effect of
multilayered soils.

In accordance with van der Zee [1990a], only variation of
the adsorption parameters was considered in order to de-
scribe the effect of chemical heterogeneity, whereas varia-
tion of physical parameters such as flow velocity and disper-
sivity is not taken into account. The latter effects have been
studied by Dagan and Bresler [1979], Bresler and Dagan
[1979, 1981, 1983] and Amoozegar-Fard et al. [1982]. In view
of the often rather constant n value [de Haan et al., 1987,
Boekhold et al., 1991], we have considered only the Freun-
dlich adsorption coefficient k to be random, characterized by
a probability density function (pdf). The variation of the
adsorption coefficient k is given by a normal distribution
N(my, s?). Similar to Black and Freyberg [1987] and
Chrysikopoulos et al. [1990]1, who used a spatial correlation
of their random variable, we assumed the Freundlich adsorp-
tion coefficient k to be spatially correlated according to the
exponential autocorrelation function given as

r(g) = exp (=¢/A) 27

where { is the separation distance, r is the autocorrelation
and A is the correlation scale.

To assess the effect of a spatially variable adsorption
coefficient, Monte Carlo simulations were performed. The
random columns were finely discretized with different values
for the adsorption coefficient k at each node. The columns
had a prescribed probabilistic structure and each column is
considered an equally likely configuration for the actual
spatial pattern of the adsorption coefficient. A one-
dimensional random generator has been used to construct
one-dimensional random fields of a normally distributed
parameter with autocorrelation described by the first-order
exponential autocorrelation function given by (27). Use was
made of a generator, creating uncorrelated normally distrib-
uted random numbers. To improve the accuracy of the
reproduction of the autocorrelation structure in the random
columns, more points per correlation scale were generated
than actually used in the numerical transport calculations.
The remaining points were not considered during the rest of
the calculations. This technique, used by Bellin [1991], has
been shown to improve the results.

The variable adsorption coefficient at each discrete gener-
ation point is evaluated by

k=m;+ ¢ (28)
where m is the average adsorption coefficient and ¢ is the
random fluctuation of m; with zero mean. With the fluctu-
ations ¢ the autocorrelation of the adsorption coefficient can
be created. Using the first-order exponential autocorrelation
function, the adsorption coefficient & at node i is determined
by node i — 1, i.e.,

ki=PBki- 1+ ;-1 (29)
where g is the autocorrelation coefficient for two subsequent
generation points. The variance of the fluctuation of k£, s 2 is
determined by the variance of k, s ,% , and can easily be
derived from (29) as
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st=(1-gYsi (30)
With 52 it is possible to generate uncorrelated normally
distributed random fluctuations with a zéro mean, so that
(29) can be used to generate a random field of & with a
first-order exponential autocorrelation function. With (30)
this exponential autocorrelation function can be derived as
r = plit 31)
where Az* is the distance between the generation points.
Relating the correlation scale A to 8, (31) can be rewritten in
terms of ¢ according to (27). The expression is given as

A=—1/In B (32)

With the random generator 600 possible chemically heter-
ogeneous soil columns were generated. At each generation
point of each column the k value is determined by the
expected value m; and the fluctuation e. If the discretization
of the columns used for the numerical calculations is given
by Az, these columns are constructed by selecting the k
value of every jth generation point, where j is given by
Az/Az*.

Solving Transport Equitions

A numerical solution of (2)-(3) has been developed to
perform the calculations with the 600 random columns. The
numerical solution is based on a finite difference Crank-
Nicolson approximation of (2) in combination with a New-
ton-Raphson iteration scheme. In order to prevent oscilla-
tion the increments in depth z and time ¢ were chosen to
satisfy the criteria for linear adsorption, given by van Gen-
uchten and Wierenga [1974]. The discretization makes it
possible to specify a different adsorption coefficient for each
node. A first type boundary condition was used at the inlet of
the column, whereas at the outlet a flux type boundary was
imposed:

(33a)

dc

— = finite z—> t>0

(33b)

The initial condition for the numerical calculations was

z2>0 t=0 34)

c=c;

where ¢; was taken negligibly small.

The analytical solution (9) was derived for a zero initial
concentration. The numerical approximation for that case is
involved, as, due to the infinite derivative of (3) with respect
to ¢ at ¢ = 0, we must deal with a moving boundary
problem. We have taken the initial concentration negligibly
small (but not zero) for the numerical approximation. This
yields small deviations from the solution method proposed
by Dawson and Wheeler [1990] for the same problem. These
deviations are, for the chosen parameter values and the
present context, insignificant.

Discretization of the soil columns is required for the
numerical approximation and the implementation of chemi-
cal heterogeneity. Preliminary calculations for homogeneous
columns illustrated that discretization should be done with
exfreme care, as otherwise s? for the numerical approxima-
tion does not agree with s2 evaluated analytically with (26).
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Fig. 1. Traveling wave front (solid line) with corresponding

(negative) derivative (dashed line) at time ¢ = 42 (for parameter
values see Table 1).

Deviations arising from a wrong discretization were not
always visible by comparing plots of front shapes, but were
clearly visible by comparing limiting s? values (t—).

To evaluate the analytical solution given by (9) for a
homogeneous soil column with a constant average adsorp-
tion coefficient k, the parameters R, n*, and G* need to be
calculated. The parameter G*, necessary to determine n* in
(10), can analytically be found for particular values of n. The
integral in (15) has been solved analytically by van der Zee
[1990b] for n = (i + 1)/@ + 2) (withi = 0,1, ---, ).
Here, we used a numerical integration of the integral in (11)
to compute G* and subsequently n*.

Assessment of Spreading Mechanisms

Concentration distributions, calculated with the random
columns using the numerical solution, give an indication of
the effect of chemical heterogeneity. However, effects on the
front shapes are difficult to distinguish by observing only the
fronts. In a previous section we have derived an analytical
expression for the variance of a traveling wave front in a
homogeneous column. By computing the moments of the
fronts in a chemically heterogeneous column and comparing
these with the analytical moments of a homogeneous case,
with the same spatially averaged k value for 0 < z < L for
the heterogeneous and homogeneous column, the effect of
heterogeneity can be demonstrated more clearly. The ad-
sorption coefficient k¥ determines the front shape and the
front velocity (through retardation factor R). Hence, ran-
domness of & causes a variation in both front shape and front
velocity. Consequently, a numerical calculation of the mo-
ments described by (16) is necessary. The nonlinearity of
adsorption causes steep fronts which may limit the accuracy
of the numerical computation of the moments due to a lack
of points between ¢ = 1 and ¢ = 0. Using a rational function
interpolation method to interpolate between the calculated
points of the fronts, we ensured a sufficiently large number
of points to define the fronts. Consequently, the moments
can be calculated numerically with the trapezoidal rule for
integration. Figure 1 shows for a homogeneous column the
traveling wave front with its related density function of z, ¢'.
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The dashed line in Figure 1, representing ¢', clearly has a
non-Gaussian shape. The asymmetry of the front is due to
the opposing effects of adsorption nonlinearity and of dis-
persion. Besides the asymmetric shape the non-Fickian
behavior is also clear from the time and spatial independence
of the front shape for the homogeneous column considered
in Figure 1.

Incorporation of heterogeneity of the adsorption coeffi-
cients causes several mechanisms to play a role in solute
spreading. These spreading mechanisms can be character-
ized as follows: (1) thickness of the individual traveling wave
front; (2) column scale heterogeneity of the adsorption
coefficient; and (3) different average retardation factors for
an ensemble consisting of all columns.

The thickness of the individual traveling wave front can be
assessed by considering a homogeneous column. The front
width due to dispersion and, in this case, nonlinear adsorp-
tion, may play a role in all transport cases considered in this
study. If, however, an individual heterogeneous column is
taken into account, both thickness of the individual front and
column scale heterogeneity play a role in solute spreading.
The front velocity and front variance give an impression of
the impact of the heterogeneity of the adsorption coefficient.
Averaging over all realizations of the velocity and variance,
both as a function of depth, yields the expected behavior of
a heterogeneous column.

Additionally, an average front can be considered, repre-
senting an ensemble average front, assuming that the flow
domain consists of an ensemble of parallel vertical random
columns. In addition to the first two spreading mechanisms,
extra spreading of the ensemble average front is caused by
the variable average retardation factors for different col-
umns. The latter spreading mechanism is caused by the
numerical generation of the random columns. The fluctua-
tion imposed on the mean value of the adsorption coefficient
causes slightly different average adsorption coefficients for
each column. Note that the effect of the third spreading
mechanism decreases as the column length increases, be-
cause the bias in the column average k decreases with
increasing number of generated points.

Parameter Values

For the simulations and analytical calculations of solute
transport through chemically heterogeneous soils, we have
chosen to calculate transport of cadmium. De Haan et al.
[1987] have shown that contaminants like copper and cad-
mium show Freundlich adsorption behavior, and parameter
values were available for Cd from van der Zee [1990b]. We
have simulated transport of Cd with an initial concentration
of 0 mol m 2 and a feed concentration of 0.02 mol m 3. The
flow parameters were kept constant in this study with the
volumetnc water content § = 0.445, bulk dens1ty p=1350kg

-3 , dispersivity L, = 0.03 m, velocity v = 1.9 m yr 1,
and consequently the dispersion coefficient D = 0.057 m?
yr . Of the chemical parameters with respect to which we
have assumed n to be nonrandom, for Cd, # = 0.65. In
agreement with Chardon [1984] and de Haan et al. [1987],
the n value is relatively insensitive for soil type differences.

The random correlated fields of k were generated with an
average m; of 4.4, with a variance s of 0.8. This results in
a coefficient of variation CV of 0.2. This value is in a likely
range, as shown by, e.g., Boekhold et al. [1990, 1991]. The

TABLE 1. Parameter Values
Parameter Value

0 0.445

p, kg m™3 1350

[, m 4

v, myr~! 1.9

Ly, m 0.03

D, m? yr7! 0.057

co, mol m 3 0.02

c;, molm™3 0

my, moll™" m3n-D 4.4

s7, mol¥~2 mst-1 0.8

n 0.65

A, m 0.22

m?%, mol' ™" m3=-D 4.2

Az, m 22 x 1072

Az*, m 22x 1073

average k value gives an average retardation factor R of 40;
however, the CV of R is not equal to the CV of k. The
correlation scale used for the random fields was A = 0.22 m,
denoting that the values of the adsorption coefficient may be
considered to be uncorrelated for separation distances larger
than 0.22 m. For the generation of the random columns Az*
was 2.2 X 1073 m, creating 100 points per correlation scale.
The node distance for the numerical calculations, Az, was
chosen to be 2.2 X 1072 m, which corresponds to 10 nodes
per correlation scale. Consequently, this corresponds to a
correlation scale of A = 10Az. The parameter values used
for the transport calculations are summarized in Table 1.

REsuLTS AND DiscussioN

Homogeneous Column

In order to show the effect of nonlinear adsorption, Figure
2 gives the fronts and the related variances of the fronts, for
cases with linear and nonlinear adsorption. For Figure 2 only
analytical solutions have been used. Earlier research has
given evidence of the appropriateness of the used analytical
solutions [Lapidus and Amundsen, 1952; van der Zee,
19905b]. The traveling wave fronts of Figure 2 have been
calculated with (9), whereas for the case with linear adsorp-
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Fig. 2 Analytically calculated fronts for nine times ¢t = iA? (i =

, 2,0+, 9; At = 8.4) for case with nonlinear adsorption and
lmear adsorptlon Solid line: traveling wave solution (9). Dashed
line: linear adsorption solution (35).
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tion use was made of a solution given by van Genuchten and
Alves [1982], i.e.,

( ) 1 o R[Z"'Ut
D Rz — vt
AL D=3 2R

1 vz Rz + vt
+ > exp D erfc 2(DR) 7 (35)
where, in this case, R; was set equal to R.

From Figure 2 can be seen that the shape and velocity of
the traveling wave front become constant during the solute
displacement. The analytical solution given by (9), used for
the calculations of the traveling wave fronts of Figure 2, has
been derived for the limiting case (+—>«), and is therefore
not valid for early displacement times. Van der Zee [19905]
has shown that although small deviations occur between the
analytical solution and the numerical approximation upon
entry of the solute into the column, the solution is quickly
applicable. The analytical solution assumes an instantaneous
front shape with a variance to be calculated with (26),
whereas in practice the front shape starts as a block front
that converges to the actual traveling wave. This effect
causes the deviating front depths of the concentration fronts
at early displacement times in Figure 2. At larger displace-
ment times these deviations of the average front depths
disappear.

In Figure 3 we show how the front velocity (related to the
first moment) and the variance (second central moment) of
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Fig. 3. (a) Relative front velocity and (b) relative front variance
of numerically calculated transport through homogeneous columns.
Dashed lines: numerically calculated relative velocities and vari-
ances. Solid lines: analytically calculated relative velocity and
variance.

the numerical solution approach the constant values of the
analytical traveling wave solution. The velocity of the ana-
lytical traveling wave is determined with the retardation
factor, whereas the analytical variance is computed with
(26). For comparison, we have divided the velocities and
variances by the analytical values, which yields relative
quantities. Figure 3a shows that the actual front starts with
a velocity of zero, but rapidly approaches the velocity
calculated by the analytical solution. From Figure 35 it can
be seen that, compared with the front velocity, more time is
necessary for the numerical solution to obtain the exact
thickness of the traveling wave front. However, it is clear
that although the traveling wave solution is derived for t—>,
the solution is applicable at earlier times. In fact, we will
demonstrate that the reaction time of the front shape is quick
enough to show differences due to a spatially variable
adsorption coefficient & in the random columns.

Heterogeneous Column

An analysis as given above of the front shape and front
velocity of a concentration front characterized by a traveling
wave is applicable to homogeneous columns. In practice,
however, soils are physically and chemically heterogeneous.
Looking at a single realization, randomly selected from the
600 columns with normally distributed adsorption coefficient
k, we are able to obtain information about the effect of
heterogeneity of nonlinear adsorption. The selected profile is
a feasible representation of the ensemble of columns gener-
ated with m, and s?, as given in a previous section. The
distribution of the adsorption coefficient X with its related
statistics (mean, standard deviation and autocorrelation) is
given in Figure 4. Additionally, Figure 456 shows the first-
order autocorrelation function used as input for the genera-
tion of the random columns. The distribution of the adsorp-
tion coefficient k£ has been used to numerically calculate the
solute fronts. Subsequently, w¢ have used the average
adsorption coefficient of this realization, m%, to compare the
numerically calculated fronts with analytically calculated
fronts for the homogeneous case.

The results given in Figure 5 show that the chemical
heterogeneity causes a spatially variable rate of solute trans-
port. Due to a series of high peaks of the adsorption
coefficient in the top part of the column (Figure 4a), the
retardation factor increases, which causes a lower solute
velocity until z = 2 m. An ensuing series of low adsorption
parameters causes an increase of the front velocity. At the
end of the column the numerical fronts coincide with the
analytical fronts. This is caused by the averaging procedure
of the adsorption coefficient necessary for the analytical
solution. Consequently, at z = 4 m both cases have experi-
enced the same total retardation.

The numerical and analytical fronts of Figure 5 give a
qualitative view of the effect of chemical heterogeneity. In
fact, in Figure 5 only the effect on the front velocity is
visible, whereas differences in front shapes cannot be de-
tected. Figure 6 gives the relative velocity of the front,
calculated with the first moment, and the relative variance of
the front, represented by the second central moment. For
reasons of comparison we have chosen to represent the
velocity and variance as relative quantities. Apparently, the
front shape is also sensitive for the variable adsorption
coefficient. The variance and velocity both have peaks at



124

adsorption coefficient
7

depth (m)

11

0.9 +
0.8+
0.7}
0.6
05
04|
03
02}
0.1+

autocorrelation

0.1

02 0 0.2 0.4 0.‘6

b separation distance (m)

0.8 1

Fig. 4. (a) Spatial distribution and (b) autocorrelation (dia-
monds) of the adsorption coefficient of a single realization. In Figure
4a, the dashed-dotted line denotes mean value, and the dashed line
denotes distribution plus and minus standard deviation. In Figure
4b, the solid line denotes first-order autocorrelation used as input
for generation of random columns.

corresponding depths, indicating that a high adsorption
coefficient causes steeper fronts. This observation agrees
with van der Zee [1990b], who showed that the effect of
nonlinearity of adsorption is larger when the adsorption
coefficients are larger. Hence a steeper traveling wave front
results. Figures 5-6 demonstrate that describing the concen-
tration front in terms of moments can be very useful.
Influences of a variable adsorption coefficient on the front
shape are invisible in Figure 5, whereas the variance, with its
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16.8) through a chemically heterogeneous column of an individual
realization. Solid line: analytical traveling wave solution with aver-
age adsorption coefficient. Diamonds: numerically calculated fronts.
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Fig. 6. (a) Relative front velocity and (b) relative front variance
of numerically calculated transport through a heterogeneous col-
umn. Dashed lines with diamonds: relative velocities and variances.
Solid lines: constant velocity and variance of homogeneous column
with corresponding average adsorption coefficient.

high sensitivity, shows a clear variation of the front thick-
ness. Similar to the variance of the homogeneous case,
shown in Figure 3b, the variance of the heterogeneous
realization needs more displacement time to approach the
analytical value than the velocity. Nevertheless, the sensi-
tivity of the front variance is high enough to react to the
pattern of the variable adsorption coefficient, shown in
Figure 4a.

A different way to show the effect of the spatially variable
adsorption coefficient £ on the concentration front is to
compare the autocorrelation of the spatial distribution of the
adsorption coefficient with the autocorrelation of the distri-
bution of the front velocity and front variance. The autocor-
relations of the adsorption coefficient & of the front velocity
and of the front variance are given in Figure 7. It can be seen
that all three correlations follow about the same course. The
autocorrelation of the adsorption coefficient k at the lower
separation distances is less than the autocorrelation of the
other two quantities, indicating that at a short distance
values of the adsorption coefficient are less similar than
values of the velocity and variance. This can be seen from
Figures 4-6 where the distribution of the adsorption coeffi-
cient k is shown to be highly variable, even at short
distances. The distributions of the front velocity and front
variance show a corresponding course, but are more
smoothed, causing a decrease of the small-scale variability.
The smoothing is due to the fact that a concentration front is
spread out over a number of nodes, whereas the values of
the adsorption coefficient are node specific. If a moving



BOSMA AND VAN DER ZEE: TRANSPORT OF REACTING SOLUTE 125

1.1

09}
08l
07}
0.6
05t
04}
03}
02}
01}

autocorrelation

-01F
-0.2 L L .

separation distance (m)

Fig. 7. Autocorrelations of adsorption coefficient (solid line),
front velocity (dashed line with triangles), and front variance
(dashed line with squares).

average of the adsorption coefficients k is calculated, the profile
of k is more smoothed, corresponding to the distributions of the
front velocity and front variance. The adsorption coefficient
profile, calculated as a moving average, is shown in Figure 8a.
Figure 8b demonstrates the corresponding autocorrelation of
the moving average adsorption coefficient, compared with the
autocorrelations of the front velocity and front variance. At
lower separation distances the autocorrelation of the average
adsorption coefficient has increased and corresponds to the
autocorrelation of the front velocity and the front variance. The
small-scale heterogeneity is reduced.
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Fig. 8. (a) Moving average of the adsorption coefficient %,
averaged over five nodes. (b) Autocorrelations of moving average
adsorption coefficient (solid line), front velocity (dashed line with
triangles), and front variance (dashed line with squares).

In general, it can be said that chemical heterogeneity of
nonlinear adsorption causes deviations of the velocity and
thickness of the traveling wave front. Figures 5-6 demon-
strate that the heterogeneity has significant effects on single
realizations of nonlinearly adsorbing solute transport. Val-
ues of front velocity and front variance are locally substan-
tially higher than the analytical values calculated with an
average adsorption coefficient. If, however, adsorption
would be described as a linear process, the front variances
wotld be much larger, due to the increasing thickness of the
concentration front as displacement proceeds.

Expected Heterogeneous Column Behavior

Due to one-dimensional chemical heterogeneity the front
shape and front depth can be highly variable. A single
realization has been shown to give results deviating consid-
erably from the homogeneous case with a nonvariable single-
valued adsorption coefficient. The randomness of a single
realization increases the uncertainty to make predictions
concerning the arrival time and front thickness at a certain
point. The best prediction of front velocity and front vari-
ance is the expected value of the two quantities. The
expectation characterizes the effect of the spreading mech-
anism denoted by column scale heterogeneity. The spread-
ing around the expected values is a measure of the possible
deviations from the expected values.

The best available estimate for the expected value of the
front velocity and front variance is obtained by averaging
these quantities for all 600 random columns. The average
velocity and average variance are given as a function of
depth in Figure 9. Both quantities are represented as relative
quantities with respect to the analytical value for the case of
a homogeneous traveling wave solution. The latter was
calculated with the average adsorption coefficient. As is
shown in Figure 9, the averaging has a smoothing effect. The
deviations from the analytical value are significantly smaller
compared with a single realization (Figure 6). In fact, if an
infinite number of columns were used, the average velocity
and variance curves would increase smoothly, just like in
Figure 3 (however, not necessarily to the same value). In
Figures 3a and 3b the confidence intervals are not shown,
for they are equal to about 1% of limiting velocity and
variance, respectively. This proves convergence of the
Monte Carlo calculations. Note that, corresponding to a
single realization, the expected variance tends to a constant
value, typical for a traveling wave. However, if adsorption
were described as a linear process, the expected variance
would increase continuously with depth.

Additionally, Figure 9 reveals that the spreading around
the analytical velocity is smaller than the spreading around
the analytical variance (compare different scales). There-
fore, the expected velocity will not differ much from the
analytical velocity of the homogeneous case. The average
variance tends toward a value larger than the analytical
variance of the traveling wave front. The fact that the
expected value of the variance is not equal to the value
calculated with average parameters can be visualized with
the frequency distributions in Figure 10. Here, 8000 adsorp-
tion coefficients were randomly generated, following a nor-
mal distribution (Figure 10a). With the ensemble of nor-
mally distributed adsorption coefficients and constant values
of n, 8 and ¢y, normally distributed retardation factors have
been computed according to
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ko, _

R=1+54 ! (36)
where k is the random variable. If, with a normally distrib-
uted R, the front variance is calculated with (26) a frequency
distribution is produced with a non-Gaussian shape. The
frequency distribution of the front variance is given in Figure
10b. The nonlinear relationship between variance and R in
(26) causes the shape that differs from a normal distribution.
The expected value in Figure 105 is larger than the median,
calculated with the analytical solution (26) and shown as the
solid line in Figure 9.

Ensemble Average Front

An extra effect of chemical heterogeneity can be studied
by considering the ensemble average fronts of the 600
random columns. The ensemble average front represents an
average front for a flow domain, consisting of an ensemble of
parallel noninteracting soil columns. Representing a field in
this manner was introduced by Dagan and Bresler [1979],
and applied to a chemically spatial variable field by van der
Zee and van Riemsdijk [1987] and Destouni and Cvetkovic
[1991]. Considering the fiow domain, we have a random
distribution of the adsorption coefficient k in each column,
combined with a spatial distribution of the average adsorp-
tion coefficient over the domain. The latter causes slightly
different average retardation factors for each column, and
therefore a variable flow domain of the transported solute.
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Consequently, in some columns the solute will move more
rapidly than in others.

Compared with the case of column scale heterogeneity,
the extra front spreading mechanism due to the spatially
variable retardation factor causes a different behavior of the
ensemble average front. Whereas only two spreading mech-
anisms are present if column scale heterogeneity (individual
front spreading and column scale heterogeneity) is consid-
ered, here we are dealing with three spreading mechanisms,
which have been discussed previously.

In a previous section it has already been shown that for a
homogeneous column the thickness of a traveling wave (the
first spreading mechanism) can be calculated analytically
with (26). Since the front shape is not much affected by
column scale heterogeneity, (26) can also be used as an
estimation for the front thickness in heterogeneous columns.

To study the spreading due to column scale heterogeneity
and due to the spatially variable retardation factor (second
and third spreading mechanisms), results are given in Figure
11 of the ensemble average fronts, with corresponding
variance, of the heterogeneous columns and of the homoge-
neous columns with variable average retardation factors. Of
the above mentioned spreading mechanisms, the column
scale heterogeneity does not apply to the case with homo-
geneous columns. In the flow domain with homogeneous
columns, the ensemble average fronts have been calculated
with traveling wave fronts computed with different average
adsorption coefficients.

The first effect visible in Figure 11a is, in contrast with a
traveling wave front, that the ensemble average front has a
continuously spreading character. Figure 115 verifies this with
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a continilously increasing variance. This can be explained by
the variable retardation factor at each column, which causes a
variable velocity field of the transported solute. Consequently,
during displacement time, the front will spread continuously.
A different effect, visible in Figure 11a; is that there is
good agreement between the ensemble average fronts of the
heterogeneous columns and the fronts of the homogeneous
columns with variable average retardation factors. This
implies that the second spreading mechanism, the column
scale heterogeneity, is of minor importance when consider-
ing ensemble average fronts. The spatial disiribution of the
retardation factor over the different columns predominates
over the effect of front spreading. From Figure 115 can be
seen that at early displacement times the effect of the
average retardation factors of the different columns is still
small. The variance of the ensemblée average front of the
homogeneous columns with variable average retardation
factor is equal to the variance of the individual traveling
wave, whereas the thickness of the ensemble average front
of the heterogeneous columns is initially zero. At larger
displacement times the effect of column scale heterogeneity
becomes relatively less important and, consequently, the
relative effect of the variable average retardation factor
becomes larger. The difference between the variances of the
ensemble average front of the heterogeneous columns and
the homogeneous columns hardly changes, whereas the
absolute value of the variances continuously increases. Note
that Figure 115 again justifies the use of moments. The effect
of column scale heterogeneity can be made clearly visible.
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Fig 11. (a) Ensemble average fronts and (b) correspondmg
variances. Solid lines: ensemble average fronts and variances of 600
homogeneous columns with variable averaged adsorption coefficient
(ignoring column scale heterogeneity). Diamonds: ensemble average
fronts and variances of 600 heterogeneous columns.
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In addition to the second central moment, use can be made
of the third and fourth central momerits to assess the shape
of the ensemble average concentration front. The third
central moment of a concentration front can be used to
quantify the skewness of the distribution function, ¢ "(z, ).
The fourth central moment is related to the kurtosis of the
distribution function. The kurtosis measures the peakedness
or flatness of the distribution. In order to compare the
distribution functions, both skewness and kurtosis dre non-
dimensional quantities with a value of 0 for normal distribu-
tions.

- Figure 12 shows the skewness and kurtosis for the ensem-
ble average front of 600 heterogeneous coiumns and for the
ensemble average front of 600 homogeneous columns with
different average adsorption coefficients. In Figure 124 we
see that the skewness of the ensemble average front for thé
homogeneous columns with different average adsorption
coefficients approaches a value just above the value charac-
terizing a normal distribution. The skewness incréases from
a negative value, which represents the skewness of a single
traveling wave front. The negative skewness is due to a
stronger adsorption of the lower concentrations compared to
adsorption of the higher coricentrations. This causes the
front to be steeper at low concentrations, resulting in a
negatively skewed distribution function &’(z, t). The skew-
ness of the ensemble average front of the heterogeneous
columns shows similar results. In the course of displacement
the value of the normal distribution is approached. At ¢ = 0
the solution of the heterogeneous column starts as a block
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front, causing a lesser negative skewness at early displace-
ment time compared with the skewness of the ensemble
average front for the homogeneous columns. The approach
to the value 0 of the fronts of the heterogeneous columns
clearly demonstrates a normal behavior of the ensemble
average front.

The normal behavior of the ensemble average front is
verified by Figure 125, which demonstrates the kurtosis of
the concentration distributions. Corresponding to Figure
12a, the kurtosis for the ensemble average front calculated
with homogeneous columns with different average adsorp-
tion coefficients approaches a value just above the normal
value. The approach starts at the characteristic kurtosis of a
single traveling wave. The kurtosis of the ensemble average
front calculated with the heterogeneous columns shows a
behavior corresponding to a normal distribution.

The discrepancy between the behavior of the ensemble
average front of the homogeneous columns and a normal
distribution (illustrated with skewness and Kkurtosis) can be
attributed to the front shape of an individual traveling wave
front. The steepness of the downstream part of the regular
traveling wave causes the deviations of the average front
from 0 in Figure 12 (horizontal solid line). The ensemble
average front of the heterogeneous columns shows a normal
behavior due to averaging out of the irregularities of the
individual fronts which develop in the heterogeneous col-
umns (see Figure 6).

If column scale heterogeneity is ignored, it is possible to
derive an analytical approximation for the ensemble average
front. This approximation can be obtained by adjusting the
analytical solution for Fickian-type transport given by (35). If
transport with linear adsorption in a homogeneous medium is
considered, (35) can be rewritten in terms of the first moment
(average position) and the second central moment (variance) of
the front. To use (35) in order to describe the ensemble average
front we have to account for the extra spreading due to the
thickness of the individual traveling wave front.

If v* is defined as the ensemble average front velocity (v*
= u/R), the mean position m, and the variance s2 of the
ensemble average front can be given as

m, = mst (37a)

sz2 = s% + (sv*t)2

(37b)
whereé s,g, is the variance of an individual traveling wave,
given by (26). To arrive at (37) we have assumed that 1/R is
normally distributed if R is normally distributed, which in
general is only valid if the coefficient of variation of R is
small. With (37) the analytical approximation for the ensem-
ble average front can be derived from (35) as

(. 1) 1 i z—my, 1 2m, i z+m,
c(z, t)=zerfc | —= |+ - exp | —5— z] erfc
2 Sz‘/i 2 SZZ sz‘/g

(38)

With Fickian-type transport (linear adsorption) in homoge-
neous columns, the variance sz2 is not given by (37h), but

can be written as
s2=2D1/R, (39)

Equation (39) shows that s 22 increases linearly with time ¢.
However, for a spatially variable retardation factor, the
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Fig. 13. (a) Analytical approximation of ensemble average front
and (b) corresponding variances, ignoring column scale heteroge-
neity. Solid lines: analytical approximation (38) and variances of
ensemble average fronts. Diamonds: ensemble average fronts and
variances of 600 homogeneous columns with variable average
adsorption coefficient.

variance sz2 increases with £2, as can be seen in (37b). This

can be visualized in Figure 115, where a parabolic course is
clearly visible.

To show the applicability of (38), Figure 13 gives the
results of the ensemble average front of the homogeneous
columns with variable average retardation factors, approxi-
mated by the adjusted analytical solution. The correspond-
ing variances are shown as well. Despite the assumption that
1/R is normally distributed the agreement is good, aithough
at early displacement times the ensemble average front has
the shape of a traveling wave, which cannot be described
adequately by a Fickian-type front.

In the above considered case, column scale heterogeneity
was ignored; because the distribution of the average retar-
dation factor produced dominant effects. However, neglect-
ing column scale heterogeneity may not always be justified.
In the case with heterogeneous columns, an extra term needs
to be added to (37bh) to account for the column scale
heterogeneity. Although this term is unknown, it will be
dependent on s7, the variance of the adsorption coefficient
within a single column. Whereas at large displacement times
(t+—) the spreading of the ensemble average front will be
dominated by the (s« £)? term, this term will show less
dominating effects in cases with large column scale hetero-
geneity and small differences between columns if the limiting
situation has not yet been reached.

The effect of column scale heterogeneity can be demon-
strated more clearly if we consider the 600 randomly gener-
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erage retardation factor and (b) corresponding variances. Solid
lines: traveling wave fronts and variance with m;. Dashed line
(Figure 14b): difference between the variances of Figure 115 added
to variance of individual traveling wave. Diamonds: ensemble
average fronts and variances of 600 heterogeneous columns with
equal average adsorption coefficients.

ated heterogeneous columns with adjusted adsorption coef-
ficients, so that the average front retardation factors are
equal in all columns. At each node the adsorption coeffi-
cients have been multiplied with a column-specific factor, in
order to equalize the average adsorption coefficients of all
columns. Therefore, m,« = v/R, where R is constant and s 2
= (. In this sitnation two front-spreading mechanisms are
significant: the thickness of the individual traveling wave and
the column scale heterogeneity of the adsorption coefficient.
The ensemble average fronts with the corresponding vari-
ances are given in Figure 14. Figure 14a shows how the
ensemble average front attains a shape, deviating from the
Freundlich traveling wave, but remaining constant during
the transport process. The continuous spreading of the
ensémble average front of Figure 11a is removed and the
resulting front demonstrates a significant symmetric shape.
At the end of the column the front approaches a Freundlich
traveling wave front, because at that point all columiis have
experiénced the same average adsorption coefficient.

In Figure 145 the dashed line is based on the difference of
the variances of the ensemble average front with the three
front-spreading mechanisms and the variances of the ensem-
ble average front with the homogeneous columns with vari-
able retardation factor, both given in Figure 11b. This
difference represents the spreading due to the spatial distri-
bution of the adsorption coefficients within the columns. If
the difference between the two variances of Figure 115 is
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added to the expected thickness of the traveling wave, 52,
these two added spreading mechanisms approach the vari-
ances of the ensemble average front of Figure 14a. Figure
145 shows that the different front-spreading mechanisms are
completely additive. :

The procedure of omitting the variability of the average
retardation factors demonstrates a few valuable aspects.
First, it can be seen that, in this situation, the variarice of the
ensemble average frorit tends to a constant value. At the end
of the column the thickness of the front decreases, which is
due to the fact that at that point all columns have experi-
enced the same average retardation factor. At the beginning
of the column the curves show an equal course, for this part
mainly represernits the approach of the actual individual
fronts to the individual traveling wave. The internal hetero-
geneity still has little effect.

Figure 14b, compared with Figure 115, also gives the
significance of the variance due to column scale heterogene-
ity. It can be seen that this front-spreading mechanism is
quite relevant, although, after longer displacement times,
variation of the different retardation factors among columns
will dominate the front-spreading process.

CONCLUSIONS

We have studied the effect of chemical heterogereity on
solute transport in one-dimensional soil columns. The heter-
ogeneity was obtained by assuming a random variation of the
Freundlich adsorption coefficient with depth. A normal
distribution in combination with exponential autocorrelation
was assumed. The method of momenis was used to show the
effect of chemical heterogeneity on the front velocity and on
the front variance. This method was proven to be very
valuable, for differences in front shape could be made clearly
visible. Considering a homogeneous column, an analytical
expression was derived for the front variance, which is, due
to nonlinear adsorption, nonvariable with space and time.
For a single realization, chemical heterogeneity has a signif-
icant effect. The front velocity and front variance may show
large deviations from the case with average adsorption
coefficient. The expected values of the front velocity and
front variance, calculated as average values from 600 ran-
domly generated columns, show a more smoothed character
compared with single realizations. The front velocity shows
less spreading around the case calculated with average
adsorption coefficient than the front variance. The nonlinear
character of the calculations causes the deviations from the
case with average parameters. Considering the énsemble
average front, it was shown that three front-spreading mech-
anisms play a role. First, the thickness of the individual
fronts causes spreading, followed by an effect of the internal
variation of the adsorption coefficient in the individual
columns. With time, the effect of different average retarda-
tion factors of different columns incredses and dominates the
front spreading. It was shown that the latter spreading
mechanism causés a front to spread proportionally to 72
Due to the time dependency, the internal variation of the
adsorption coefficient can, in some cases, be insignificant.
Nevertheless, the steep fronts caused by nonlinear adsorp-
tion, in contrast with the continuously spreading fronts
caused by linear adsorption, prove the importance of the
characterization of the adsorption process.
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NOTATION

¢ concentration, mol m .
co feed concentration, mol m ™.
¢, initial concentration, mol m >,
¢ relative concentration.
Ac concentration difference, mol m 3.
coefficient of variation.
D pore scale dispersion coefficient, m? yr~!.
[ probability density function.
g function.
*  constant.
k nonlinear adsorption coefficient, mol! ™ m3*~V.
! column length, m.
L, dispersivity, m.
m  parameter.
my average adsorption coefficient, mol!™" m3*~D,
m’, average adsorption coefficient of a single realization,

mol! ™" m3¢—D,
1

m,~ average ensemble average front velocity, m yr— .
m, average position of ensemble average front, m.
Mg Kth moment.

Mg Kth central moment.

n  Freundlich sorption parameter,

q adsorbed amount (volumetric basis), mol m ~3.
Ag change in g, mol m .

P parameter.

r autocorrelation coefficient.

R nonlinear retardation factor.
R, linear retardation factor.

s adsorbed amount (mass basis), mol kg ™!.
s variance (second central moment).

s? variance of adsorption coefficient, mol?~2" m%¢~",
sf variance of ensemble average front velocity, m?
yr"z.
s2  variance of ensemble average front, m2.
sé variance of the random fluctuation, mol?>™2" m®"~ V.
s% variance of traveling wave front, m?.
t tme, yr.
v velocity, m yr~'.
v* ensemble average front velocity, m yr~\.
z depth, m.
Az node distance for numerical calculations, m.
Az* distance between generation points for random
columns, m.
«; parameter.
B autocorrelation coefficient for two subsequent nodes.
& random fluctuation of adsorption coefficient k,
mollﬂl m3(n—l).
{ separation distance, m.
7 transformed coordinate, m.
*

n* reference point value of n, m.

7n parameter, equal to 7 — 7*, m.

6 volumetric water fraction.

p first moment.

A correlation scale, m.

p dry bulk density, kg m .
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