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2 Objectives and Summary 
Within the Amargosa Desert and Fortymile Wash regions adjacent t o  Yucca Mountain, Nevada, vast 
areas exist along the projected radionuclide flow path for which little hydrogeologic and geologic 
data are available. As a result, groundwater flow and mass transport models are poorly constrained 
within this region. 

This study will evaluate the feasibility of implementing a full-Bayesian approach for groundwater 
model parameter estimation using the MODFLOW groundwater modeling software. The initial 
phases of this work will include literature reviews to  evaluate different options for implementing 
this approach, and assistance with the initial development of routines for executing the MODFLOW 
code and updating input files. 

It is the hypothesis of this report that the full-Bayesian techniques mentioned can be successfully 
adapted to  the inverse problem of groundwater flow and mass transport. In the following sections 
the basic concepts of fluid transfer in porous media are reviewed, followed by an adaptation of a 
“full-Bayesian’’ approach for nonlinear inversion of hydraulic head data. 

A program was developed to illustrate the Bayesian solution to the regression of x against y for 
a linear relationship. The correspondence to  least squares is near perfect and shows verification of 
the technique. 

This notebook documents aspects of the work performed by C. Lanczos & Associates Limited 
(Dr. A. Woodbury) and CNWRA staff on this project. 

2.1 Computers, Computer Codes, and Data Files 
The computer codes used in this study are based on a suite of FORTRAN 77 and FORTRAN 90 
codes developed or acquired by Dr. Allan Woodbury. The data analyses were carried out using 
computer versions of Windows 2000 operating system. Processed data files, FORTRAN code and 
output will be included on a floppy disk with the hard copy of this report. 

3 Introduction 
Difficulties associated with direct measurement of the hydrologic parameters needed for physically- 
based mathematical models are well known. Equally well known are the difficulties in the calibration 
procedure when trying to  adjust parameters within preconceived limits until model output at se- 
lected points matches observed values. Quite often questions are raised as to  the uniqueness and 
optimality of these models. A major focus of research over the last decade has been directed to- 
wards inversion techniques and parameter estimation as a way of both automatic calibration and as 
a statistical procedure to  quantify the reliability of parameter estimates (see reviews by Ginn and 
Cushman, 1990; and McLaughlin and Townley, 1996, 1997; Kitanidis, 1997). The understanding 
of the problem has improved, and while it is generally considered as yet unsolved ( in the sense 
that no panacea has yet been developed) there are clear ideas of what the weak points are and 
what might be the remedies. In the inverse approach measurements of hydraulic head, hydraulic 
conductivity (or transmissivity), seepage flux, and the like are inputs t o  an inverse algorithm, and 
fitted hydraulic conductivity (or other parameters) become the output, along with the parameter 
covariance structure. Mathematically, the model takes the form of a vector m which consists of all 
unknown parameters (for instance, hydraulic conductivities, boundary conditions, etc. ). 
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Traditionally, inverse techniques in hydrogeology rely on measurements of hydraulic conductivity 
and hydraulic heads, and they employ the groundwater flow equation for interpretation. Relatively 
few works have gone beyond this approach and introduced additional information such as tracer 
data (cf., Carrera et al., 1993), or geophysical measurements (Woodbury and Smith, 1988; Rubin 
et al., 1992; Hyndman et al., 1994; Copty and Rubin, 1995; Hubbard et al., 1997). The quest for 
diversifying the types of information stems from the recognition that sophistication of inverse algo- 
rithms cannot replace information and data. Along these lines, Abriola et a1 (1992) noted that “for 
most specialties, it was generally felt that the state-of-the-art has surpassed the ability to  utilize the 
results in a practical scenario” and that “..applications of [mathematical models] is hindered by the 
lack of data required to  implement or verify them”. This recognition is well demonstrated in Carrera 
and Neuman (1986) where it is shown that the instability and non-uniqueness of solutions to  the 
inverse problems can only be eliminated by introducing additional measurements and information. 
The challenge of course, is to  find inexpensive and reliable sources of information. 

3.1 Objectives 
The purpose of this work is to: 

1. 

2. 

3. 

4. 

5 .  

6. 

7. 

Review the pertinent literature related to  linear and non-inverse methods, 

Identify gaps in knowledge, 

Identify those methods that may work best in the nuclear regulatory framework of Yucca 
Mountain, 

Set up a series of small test problems in which simple regression methods can be used to  verify 
results, 

Set up a realistic two-dimensional problem with roughly the same number of parameters and 
scale as the Yucca site. Of course, this would be a generic site and therefore would satisfy the 
“control” we would need to  verify techniques, 

Scale up to  a fully three dimensional model of Yucca Mountain flow system and transport of 
radionuclides to  a compliance boundary. 

Apply the inverse approach to  the field site. 

Note that the following features of any inverse method are important: 

1. The objectives and methodology may change depending on the nature of the parameter esti- 
mation problem, or the inversion. 

2. The technique should be flexible enough to  be able to wraparound code or codes that have 
been developed to  solve the forward problem. 

3. Be able to incorporate soft geologic data and other types of constraints. 

4. Handle potentially large numbers of unknowns. 
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5. Be adaptable so that the technique can aid in the selection of alternative models. 

6. Should be publically defensible, understandable, and reliable. 

To do these things as mentioned above, a series of different objective functions need to be 
minimized under a set of parameter constraints. Several powerful optimization techniques are 
detailed that can be utilized to  minimize a complicated nonlinear functional without derivative 
computations. As well, Markov-chain Monte Carlo methods will also be investigated. These inverse 
techniques allows us to solve problems with more than one system of equations, or problems with 
uncertain boundary conditions, such as a free-surface. The methods are similar to the Random 
Search Method (Price, 1977; Silva and Hohmann, 1983), and the Complex Technique (Box, 1965). 
The algorithms produce a simplex figure of an objective function in parameter space by randomly 
distributing a set of search points within constraint boundaries. For each search point, a value of 
the objective function is calculated. These search points are adjusted within the constraints in a 
series of iterations until the expected value of the objective function reaches a threshold value which 
is determined by the level of noise in the data. A statistical analysis involving all the sampled points 
will be carried out when the parameter estimates are found. With the techniques described, the 
parameter space is randomly sampled to produce a covariance matrix; the only assumption being 
that the random sample be representative. The mean of all samples is taken as the best parameter 
estimate. In addition, the covariance structure of the data is also provided, thus avoiding the effort 
of further conditional simulations. 

4 Literature Review 
(These references are by no means exhaustive and serve only to  indicate the importance of the 
overall problem of site characterization). In the inverse approach measurements of hydraulic head, 
hydraulic conductivity or transmissivity, seepage flux, and the like are inputs to the inverse al- 
gorithm, and fitted hydraulic conductivity (or other parameters) become the output, along with 
the parameter covariance structure. Some authors (for instance, Clifton and Neuman, 1982) use 
hydraulic conductivity values ( with their associated covariances ) determined from the inverse in 
conditional simulations. These authors showed that predicted hydraulic-head variances from the 
inverse/conditional simulations are greatly reduced over estimates of the variance obtained from 
kriging alone. 

As mentioned, mathematically, the model takes the form of a vector m which consists of all 
unknown parameters (for example, hydraulic conductivities, boundary conditions) in a functional 
relationship that predicts physical data d (for example, hydraulic heads). By a functional relation- 
ship, we mean some appropriate form of the groundwater flow equation. 

Currently there are two broad classes of inverse methods documented in the hydrogeologic 
literature: a parametric approach, in which a continuous model is replaced by a finite number of 
parameters (e.g., Neuman and Yakowitz, 1979; Neuman et al., 1980; Neuman, 1980; Clifton and 
Neuman, 1982; Carrera and Neuman, 1986a; Cooley, 1977, 1979, 1982, 1983; Yeh et al., 1983), and 
the cokriging-geostatisical approaches (e.g., Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 
1985; Dagan, 1985). Hybrids of both methods have also been developed (de Marsily et al., 1984). 
Fundamental to both of these broad cases of inverse techniques is the adoption of a model with a 
relatively small number of unknown parameters in relation to the number of available data points. 
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The parameters are then determined through some form of maximum likelihood framework and/or 
a weighted least squares minimization. 

In the cokriging approach, a simple functional form for both the drift and the covariance of 
the parameters is adopted, thus yielding a small number of unknown parameters t o  be determined. 
This approach requires a data base in hydraulic head and hydraulic conductivities or transmis- 
sivities sufficient to  establish covariograms and variograms. However, in many geoenvironmental 
problems (for example, stability of landslides, design of open-pit mines) it is usual that few hy- 
draulic conductivity data are available and, as well, most of these problems are conceptualized on 
cross sections. Boundary conditions may also be uncertain. These facts make the application of 
geostatistical (cokriging) approaches difficult for these problems. Therefore, a geostatistically based 
method such as cokriging will not be pursued in this study. 

In the parametric approach it is typical to  determine the parameters in a relatively small number 
of zones to  ensure a mathematically unique solution is found, whether or not there is any physical 
justification for the parameterization (for example see Carrera and Neuman, 1985c, p 233-236 Birtles 
and Morel, 1979). In some applications (for example, cross-sectional problems) the modeler may not 
possess sufficient geologic information to  establish physically-based arguments for zoning sections 
of a finite difference or finite element grid. There are a number of possible methods for resolving 
this problem in particular cases. One approach is to  allow the inverse method to identify zones of 
similar parameter structure. 

In the solution of boundary value problems, one can face uncertanties in assigning a spatial 
representation for the hydraulic conductivity field, K, identifying sources/sinks, major structural 
features (Le. faults) and boundary conditions. This situation requires that an inverse scheme should 
be robust and capable of incorporating these types of conditions as unknowns. 

4.1 Functional Relationships and Governing Equations 
A solution of the inverse problem requires that both the forward and inverse problems must be 
clearly defined. A forward problem is set up by constructing a functional relationship to  predict 
physical data, given a set of input parameters to a physical model. The goal of inverse theory is 
to  use a finite set of inaccurate observations to extract information about the model m (adapted 
from Oldenburg, 1984). For many physical problems the data and the model are related through a 
linear functional. However, in groundwater hydrology, when a parametric approach and a numerical 
scheme are used to solve the governing equations, a non-linear functional results: 

h = S[x, m] (4.1) 

where S is a non-linear functional relating h, the data (the actual values of hydraulic head ), x, a 
vector of grid coordinates in a numerical scheme and m, the actual model parameters, which could 
consist of hydraulic conductivities, boundary fluxes, sources and sinks. 

In applications of the inverse involving observed data, hydraulic heads have uncertainties asso- 
ciated with their values, resulting from interpolation or measurement errors. In these cases (4.1) 
takes the form: 

h* = S[x, m] + v ( 4 4  
where h* is the data (interpolated or measured values of hydraulic head ), and v is a vector of 
residuals. Usually, v is assumed to  have the following properties (a mean of zero and some covariance 
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structure) : 
E(u)  = 0 

E ( V V T )  = 0;Vh 

6 

(4.3) 
where 0; is a scaling factor used in defining the magnitude of the covariances. If kriging is used to  
determine Vh, then 02 is taken as equal to  one. 

In this study the functional S[x,m] is given by the two-dimensional form of the steady-state 
groundwater flow equation: 

V * K . V Q = q  (4.4) 
subject to 

. K .  VQ - n = qf ( 4 . 5 4  

(4.5b) 

on rz. Here V = (a/ax, a/ay), V-  = (ia/az+ja/ay), Q is the hydraulic head, q represents sources 
and sinks, K is the hydraulic conductivity tensor, qf is a specified flux term on boundary I'l, and 
g(z,y)  is a function specifying Dirichet boundary conditions on r2. When a numerical scheme is 
used to  solve (4.4), the functional (4.1) takes the form: 

h = A-lf (4.6) 

where h is the approximate value of Q due to  the discretization, A is a global stiffness matrix 
which is a non-linear function of K, and f represents a loading vector of the appropriate boundary 
conditions. 

The inverse can be posed as an optimization problem. For example J below is a functional to  
be minimized, with respect to other constraints. A generalized L2 norm is introduced as (after 
Neuman and Yakowitz, 1979): 

J = (h - h*)Wil (h  - h*) + A( m - m*)W;l (m - m*) (4.7) 

where the above terms are defined as (Neuman and Yakowitz, 1979): Vh and V, are head and model 
covariance matrices, m is a vector of log conductivities determined by the inverse method, m* is a 
vector of observed or estimated parameters, h* is a vector of observed or estimated hydraulic heads, 
and X is a scaling factor, which may be unknown. Vh and V, are defined based on the characteristics 
of the data set and the finite element mesh. If h* and m* are estimated by kriging, along with Vh 
and V,, then X = 1. With an unknown X we recognize that we may have knowledge about the 
structure of the covariance matrices but not their magnitudes. Equation (4.7) can be derived from 
a maximum likelihood consideration for a Gaussian distribution (Carrera and Neuman, 1986a), but 
one does not have to assume any underlying statistical distributions of h or m to apply the norm 
(Schweppe, 1973). The objective function can also be viewed as a weighted sum of L2 prediction 
error (heads) and L2 solution simplicity. 

4.2 Construction 
Basic to most of the work in groundwater hydrology is the determination of a model which fits 
the data. The mathematical foundation for model identification has been developed in a number 
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of disciplines: control theory in electrical engineering (e.g. Schweppe, 1973) , history matching 
in petroleum reservoir engineering (e.g. Gavals et al., 1976), aquifer simulations in groundwater 
hydrology (e.g. Neuman and Yakowitz, 1977), and in geophysics (e.g. Parker, 1977 Oldenburg, 
1984). 

A fundamental problem in determining a model which fits the data is that the ‘true’ model is 
a continuous function of the data. Unfortunately, there are an infinite number of functions that 
can reproduce a finite number of observations. In the present context, this could be called geologic 
non-uniqueness, in that a decision must be made, based on the available geologic information, as to  
how to represent or parameterize the model. For instance, a decision must be made on the number 
of zones (layers) of similar hydraulic conductivity that exist in the flow domain. 

Work in this area has been carried out by Carrera and Neuman (1986a) using a maximum 
likelihood criterion to  aid in optimal selection of zones to which single values of the parameters 
are assigned. Generally, there is no unique method of resolving this type of non-uniqueness, unless 
strong geologic evidence exists to aid in the parameterization. As Oldenburg (1984) states: “ This 
problem becomes more acute when data are inaccurate and sparse, and models which do not fit the 
data precisely are considered acceptable ”. Woodbury et al. (1987) suggested that a reasonable 
approach to  the inverse problem may be to  construct a variety of acceptable models which fit the 
data under different norms. These norms are based on the L1 and L2 lengths. This approach may 
provide insight into the non-uniqueness of the parameterization, and models which are geologically 
parsimonious, or the ‘simplest’ in some sense, can be selected as best approximations for the model. 

The underlying philosophy proposed in this work is to introduce a series of objective functions 
(norms) which can be used for model construction. The norms are based on Bayesian and Maximum 
Entropy viewpoints of probability. 

In setting up an inverse problem, an interpretational model is formulated for which parameter 
estimates are sought. If insufficient geologic information exists to distinguish zones, a large number 
of parameters is incorporated in the model and the simplest geologic model can be chosen as the best 
estimate of the ‘true’ model. Simplicity can be defined as either the homogeneous-isotropic model, 
the smallest, the shortest deviatoric length from some estimate, the flattest, or the smoothest. The 
smallest model has the shortest Euclidean length of vector m. The SVD method (singular value 
decomposition) can be used to find smoothest and flattest models can be found by minimizing the 
first and second spatial derivatives, respectively between physically adjacent model parameters (see 
Menke, 1984). Assuming that the data are free of gross errors, a difference in model parameters 
estimated using these different norms suggests a possible inconsistency in the model structure. 
Conversely, differences in constructed models may also point to  gross errors in the data if the 
parameterization is correct. Silva and Hohmann (1983) used such an approach in treating a non- 
linear magnetic inversion problem in geophysics. The idea of using different norms for construction 
purposes is well established (see Oldenburg, 1984 for a review). 

5 Optimization Techniques 
Equation (4.2) represents a constrained non-linear optimization problem and a large number of 
optimization techniques can be used to  solve it. Some algorithms use quadratic programming 
techniques to  solve a linearized form of (4.2). These programming techniques involve the solution 
of a set of simultaneous linear equations, and are sensitive to  rank deficiency. Rank deficiency 
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occurs when one or more of the unknown parameters are linearly dependent. This situation can 
occur if a large number of unknown conductivities are estimated in an overparameterized model 
with inadequate prior information. If rank problems are encountered in a conventional quadratic 
programming scheme, the matrix solution routines fail to  yield a solution. Cooley and Naff (1986) 
describe instances of this type of problem. 

Other optimization techniques involve the minimization of an objective function in its original, 
non-linear form. Some methods require that derivatives of the objective function with respect to  
model parameters be calculated, others do not. The derivative or gradient based methods as they 
are called are iterative in nature. These methods are usually faster than non-gradient methods but 
may diverge (fail to find an answer), or converge to  a local rather than a global minimum (Reklaitis, 
et al., 1983). A non-linear inverse problem may have a complex functional surface, and there is no 
guarantee that any technique will converge to a global minimum. Gradient methods work best if the 
initial guess is linearly close to  the solution. To investigate non-uniqueness it would be desirable to  
repeat the procedure many times with different initial guesses. Unfortunately, with gradient based 
methods it is sometimes difficult to  arrive with a new initial guess for the parameters, especially 
if the problem involves constraints. Carrera and Neuman (198613) evaluate several gradient based 
methods and show examples of non-convergence using examples in groundwater hydrology. 

Model covariances are useful end-products of an inverse scheme. However, because the distri- 
bution for mest may be non-Gaussian, the covariance of the estimated model parameters may be 
difficult to  interpret, especially in terms of confidence intervals. The covariance of the parameter 
values can be estimated as (Menke, 1984): 

[cm mest] G i g [ c m  h*]GigT + [ I  - &][cm m*][I - & I T  
where R, = G;gGn, I is the identity matrix, and the final n'th iteration is used. Also: 

d q z ,  rn)i 
[Gnlij = d m j  

G-g is called the generalized inverse of G. The reason for the non-Gaussian nature of the J surface 
has been examined at a theoretical level by Tarantola and Valette (1982). Because (5.1) is non-linear 
the probability distribution function of J will in general be non-Gaussian, although fortunately the 
experience in groundwater hydrology with aquifer inverses is of Gaussian or near-Gaussian behavior 
(e.g.. Cooley, 1977). Nevertheless, the maximum likelihood point of a non-Gaussian objective 
function may not yield the most sensible parameter estimates. Gaussian distributions are symmetric, 
so the maximum likelihood point always coincides with the mean value. For an arbitrary non-linear 
surface (for example, multi-modal, skewed ) the maximum likelihood point can be quite far from 
the mean value. Figure 2 shows schematic diagrams of objective functions for several non-linear 
problems. Figure 2 (after Mosegaard and Tarantola, 2002) shows an objective function that has 
several local minima, or points of non-convexity with a well defined global minimum. 

Plots (a) and (b) of this figure show linear or linearizable problems with one solution, (c) shows 
a finite range of solutions. Plot (d) shows a problem with (possibly) an infinite range of solutions. 
It is the goal of inverse theory to  condition the norm in such away that will yield features like (a), 
with a well defined solution. The techniques proposed in this review sample the objective function 
surface close to  the minimum to find an average value of the model parameters. These values may 
be more appropriate than a single estimate obtained by most algorithms. 
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Exploration - 
Figure 1: Overview of solution methods, after Sambridge and Mosegaard, 2002) 

The inverse procedure produces estimates of the data as: 

hest = S(x, mest) 

9 

(5 .3)  
where hest is the estimated hydraulic head data produced from the inverse-parameter estimates. 
Ordinarily the correlation structure of hest cannot be obtained from the inverse approach even 
though the prior covariance structure of the data may be known. In order to generate this matrix 
( c m  hest) one has to use the Monte Carlo approach (Clifton and Neuman, 1982), or use a per- 
turbation technique (Townley and Wilson, 1983) after obtaining the estimated model covariances, 
( c m  m e s t ) .  

5.1 Constrained Simplex 
In order to deal with solution divergence and false convergence, and to avoid having to compute 
gradients, inflexibility of starting guesses, and linear approximations in covariance calculations, we 
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Linear problem 

A 

Weakly non-linear problen I Non-linear problem 

Figure 2: Illustration of four domains of linearity 

can adopt alternate methods of solution. Silva and Hohmann( 1983) used a controlled random search 
technique to optimize a non-linear functional in magnetic anomaly interpretation. 

A constrained simplex approach can be used (Complex technique: Box,1965) for global op- 
timization. The algorithm easily handles constraints, does not require partial derivatives of the 
functional with respect to the parameters, and can be employed to minimize complicated non-linear 
functionals which may contain more than one system of equations. In addition, convergence to a 
global minimum is enhanced (even in the presence of local minima ) provided the global minimum 
exists within the parameter constraints. Besides finding the global minimum, the algorithm pro- 
duces a sampling of the parameter space around the global minimum. This sampling produces the 
parameter and estimated data covariances matrices. 

The constrained simplex technique is well known in the chemical engineering and optimization 
literature (Reklaitis et al., 1983). The algorithm consists of choosing L search points ( L  2 N + 1 
parameters) randomly within the constraint boundaries. This initial task can be accomplished with 
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a random number generator. These points set up the initial simplex figure. Each search ‘point’ is a 
vector of model parameters. Thus, L points form an N x L matrix P*. The objective function is then 
evaluated at each search point and the search points with the minimum and maximum objective 
function values are identified. The parameter estimates and function value for each point are stored 
in computer memory. At the start of each iteration, the point with the maximum function value is 
reflected and expanded about the centroid of the remaining points according to the relation: 

B = S + a( S - Q )  (5.4) 

where B is a vector of new parameter values, S is a vector of parameter values with each entry 
calculated as the average of the parameter estimates using the other ( L  - 1) search points, Q is 
the previous position vector of the maximum J value, and Q is an expansion factor. Box (1965) 
recommend a value of Q = 1.3, based on experience. If the reflected point violates a constraint for 
one or more of the parameter values it is relocated just slightly within the appropriate constraint 
boundaries. The objective function is then reevaluated at B. If the point B persists in having the 
worst function value it is contracted one-half way towards the center of the remaining points. If the 
point B has a smaller objective function value than before, then new minimum and maximum values 
are sought. This series of steps constitutes one iteration. In this way the centroid of all the values 
proceeds to the global minimum, and is not affected by local minima or saddle shaped troughs in 
the objective function surface (Schwefel, 1981). If the minimum of all trial points remains the same 
for a number of iterations (usually set to loo), then the entire simplex figure is moved one half way 
towards the minimum. This modification to the constrained simplex procedure is made to speed 
convergence. The iteration procedure is terminated when all search points have objective function 
values less than a specified noise level. Under ideal (noise-free) conditions the objective function 
(4.2) behaves as a quadratic surface and the minimum objective function value corresponds to the 
true parameter values. However, when the data are contaminated by noise, the minimum does not 
correspond to the true parameter values. Its expected value is equal to the noise level in the data. 
This behavior is discussed in more detail in a subsequent section. 

5.2 Controlled Random Search 

In order to deal with solution divergence and false convergence, and to avoid having to compute 
gradients, inflexibility of starting guesses, and linear approximations in covariance calculations, we 
can adopt alternate methods of solution. For example, Silva and Hohmann( 1983) used a controlled 
random search technique to optimize a non-linear functional in magnetic anomaly interpretation. 

The basic CRS procedure (Price, 1977), is similar to the CS approach noted above. Here, 
initially a number of points N are chosen at random over some parameter space. Suppose also that 
the dimension of the parameter space is n. For each value chosen and objective function value for 
each is stored in a matrix A. Next, determine the greatest function value of the set. At this point 
n + 1 values of the parameter set are chosen randomly from A. Produce a new trial point by a 
reflection through the centroid of the n + 1 values. If this new value has a greater function value 
than the first found, replace in A the coordinates and function value of those of the newly fund 
point. If not, go back a find n + 1 new values from the set A. 

Price (1977) has numerous examples in his original paper, and the technique works well, par- 
ticular on problems that has a few or many, local minima. Other extensions to the algorithm can 



Information potentially subject to copyright protection was

redacted from this location.  The redacted material is a 

figure from the reference information listed below in the caption.



Allan D. Woodbury SCIENTIFIC NOTEBOOK: Printed: September 30,2004 #6643 13 

case, say if one attempts an inversion to determine hydraulic gradients, hydraulic conductivity, 
porosity and retardation factors from measurements of a tracer cloud. The reader will note that 
the above parameters are all coupled and their unique determination is very difficult. To so called 
‘Bayesians’, inverse problems are problems of inference and this is the philosophy adopted in this 
work to circumvent the aforementioned concern. 

Much has been written on the subject of Bayesian inference and different points of view apply 
(for review see Ulrych et al., 2000). The reader will note that we refer to a “Full-Bayesian ” 
approach and this is to signify that the inference problem will consist of both primary parameter 
and hyperparameter estimation (Mohammad-Djafari, 1996; Woodbury and Rubin, 2000; Woodbury 
and Ulrych, 2000). 

Bayesian inference supposes that an observer can define a prior probability-density function 
(pdf) for some random variable m. This pdf, p(m), can in principle, be defined on the basis of 
personal experience or judgment. However, applications of Bayesian probability theory have been 
hampered by the precise meaning and interpretation of probabilities and controversy surrounding 
the appropriate choice of prior pdfs. An orthodox view of probabilities dictates that frequencies 
measured in an experiment are equated to  probabilities and ‘prior’ information is not allowed. An 
alternative viewpoint of probability, denoted as the Jaynes-Cox viewpoint (Jowitt, 1979), is one in 
which probabilities are equated with the degree of plausibility of a proposition and may have no 
frequency interpretation whatsoever. This viewpoint is essentially Bayesian and is readily applicable 
to the questions that scientists and engineers typically ask. A necessary component of the Jaynes- 
Cox view is the ‘principle of maximum entropy’ (PME) which replaces the need for subjective prior 
information in the Bayesian approach and forces all observers who possess common information to 
produce consistent results (Woodbury and Ulrych, 1998). 

Woodbury and Ulrych (1993), Woodbury et al. (1995) and Woodbury (1997) deal with the 
estimation of appropriate prior pdf ’s for hydrogeologic applications. As shown by Woodbury and 
Ulrych (1993), p(m) may have the form of a multivariate-truncated exponential distribution. This 
pdf preserves the statistical independence of the parameters. That is, if no correlation is known 
beforehand the maximum entropy principle does not inject any correlation into the result. In this 
manner p(m) has the most freedom in assigning realizations of the process. It is important to note 
that the above approach (PME) of determining p(m) is the one which is the most uncommitted 
with respect to unknown information. 

Bayes’ rule (for example; Press, 1989) quantifies how the prior pdf can be changed on the basis 
of measurements. Simply stated, Bayes’ rule is 

Posterior 0: Likelihood x Prior 

Consider a vector of observed data d*. 
information I, is given by p(d* I m, I), then Bayes’ rule states that 

If the conditional pdf of d* given m and some prior 

In the above, p(m I I )  is the prior probability density of the model parameters, given some form 
of prior information, I, and p(d* I m, I) is the likelihood of observing d* given the model parameters 
and the prior information. This latter term is often referred to as a ‘direct’ as opposed to a subjective 
pdf. The term on the left hand side is called the posterior probability (after measurements are 



Allan D. Woodbury SCIENTIFIC NOTEBOOK: Printed: September 30,2004 #664E 14 

taken into account). Finally the term in the denominator is a constant that ensures the posterior is 
normalized, but is also the actual pdf of observing a set of data, with the uncertainty in the model 
parameters taken into account. In the sections below we will outline how the various conditional 
pdfs and the prior information are defined and show how we can use Bayes’ rule to reconstruct a 
vector of model parameters from heads. 

Consider a finite element model for the hydraulic head predictions in an aquifer. Equation (6.1) 
is written in terms of a general non-linear model of the type 

di = f l (Xi)  

for i = 1 . . . N where N is the number of predicted ‘data’ points and x = (z, y). Here, f1 (z) depends 
upon a series of parameters m which could consist of log-transmissivities, flux conditions and the 
like. 

In the case where head measurements are taken, the associated noise-corrupted case is 

dr = fi  ( x i )  + ~i (6.3) 

Where the data d: consist of a collection of discrete values of hydraulic heads and ~i is the noise. 
The inverse problem consists of trying to reconstruct the parameter vector m, based on the 

observed data. As mentioned, the inverse problem is viewed in a Bayesian context; that is the 
inversion is viewed as a problem of inference. In order to solve the inference problem, we will use 
a Bayesian framework to ‘update’ a prior probability based on consideration of measurements. To 
apply Bayes’ Theorem we need to assign a noise probability density which is consistent with the 
available information about the noise. If one could predict the ‘true’ data, the difference between 
di and d: is just ~ i ,  the noise. If it is assumed that the noise has a value E given prior information I ,  
and if the second moment of the noise is known, 01, then an application of the maximum entropy 
principle leads to a Gaussian distribution for E (Bretthorst, 1988; Kapur, 1989): 

Here 01 is taken as the root mean square (RMS) noise level and (6.4) is the least informative 
prior probability density for the noise that is consistent with the given second moment. Even if 
the second-moment of the noise is not known, the central limit theorem leads to the Gaussian form 
(Jaynes, 1983). We can treat the noise explicitly as an unknown in Bayes’ theorem and then proceed 
to integrate its effects out. 

Having a pdf for the noise and adopting the notation that ~i is the noise at distance xi, one can 
apply the product rule of probability theory (assuming independence) to derive the pdf that one 
would obtain a set of noise values (€1, €2,. . . EN): 

Kapur (1989) shows that (6.5) arises naturally in the multivariate case when entropy is maximized 
with correlations unknown. 

A non-linear least-squares approach would proceed by minimizing the combined sums in the 
argument in the exponential of (6.5), and the equivalent maximum likelihood procedure finds the 
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parameter set that maximizes the logarithm of (6.5). Neither approach incorporates prior informa- 
tion about the model parameters. On the other hand, the Bayesian methodology readily lends itself 
to the problem of updating prior probabilities based on uncertain field measurements. For exam- 
ple, Kitanidis (1986) and Woodbury and Sudicky (1992) outlined the Bayesian approach in which 
relevant prior information about the model is incorporated. In the recent work Jiang, Painter and 
Woodbury adopt a similar approach but following the suggestions of Jaynes and others (for example 
Kitanidis, 1986; Loredo, 1990; Rubin and Dagan, 1992; Woodbury and Rubin, 2000) they treated 
the noise variance a: as a ‘nuisance’ parameters that is “removed” from further consideration by 
integration over that parameters (marginalization). 

6.1 Metropolis Algorithm 
This algorithm is of the type called MCMC, or Markov Chain, Monte-Carlo. The idea is to sample 
the posterior pdf (section 6.1) developed from a Bayesian inference approach. It can be shown that 
if the posterior is sampled correctly, then typical Monte-Carlo integrations and parameter inference 
can proceed in a straightforward manner. The following is an algorithm for the sampling of a 
posterior probability function, based on the Latin Hypercube. This is followed by a Metropolis 
algorithm for the sampling of the Likelihood function (see Mosegaard, 1998). 

1. define a model space with i = 1. . . M parameters. For example, these could be transmissivity 
of a particular zone and so on. So, 

m = (ml, r n 2 ,  m3.. . r n M )  

2. for the model space vector m we define a prior probability p(m). So for each model parameter 
there is a marginal pdf and together they form the multivariate prior. These could be assumed 
to be Gaussian (initially) for the transmissivity zones 

3. Using the Latin Hypercube, generate j = 1. . . M C  realizations of m from the prior pdf. 

4. Take the first two realizations ml and m2, and we will call these mcurrent and mnew 

5. Compute 
I N  

S(m) = - C ( d , ’  - g(m))2 

for both the new and current model vectors. Here d5 are the observed data points and there 
are N of these. For example measured heads at observational wells. The g(m) function is the 
result of the MODFLOW (or some other) calculation at each of the data points. 

2 .  2=1 

6. Accept the transition from ‘old’ to ‘new’ with the following transition probability 

Paccept = 1 if S ( m n e w )  5 S(mcurrent )  

or 
Paccept = exp(-AS/a2) where S ( m n e w )  > S(mcurrent )  

Note that 

and a2 is the variance of the observational noise that is assumed to be iid to begin with. 
As = S ( m n e w )  - S ( m c u r r e n t )  
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7. If the transition is accepted, mcUrrent = mnew. If the transition is not accepted (mcurrent)j+l = 

(mcurrent) j 

8. For the current parameter set mcurrent compute the travel time r for the particle tracker to 
move from the repository to a compliance surface. 

9. Store the ‘current’ value of the model parameters, mcurrent at each iteration, and r. Do this 
even if the point repeats, i.e. does not make the transition from ‘current’ to ‘new’. 

10. Pick the next value of mj from the previously generated values (see 3). Call this new value 
mnew. Go to 5. 

6.2 Analysis 
The set of current states (mcurrent)j where j = 1. .  . M C  generated by this algorithm with con- 
verge towards a set of sample from the posterior pdf p(mld*,I). This is essentially the Bayesian 
formulation where a prior pdf is modified according to observed data. 

Now, the full ensemble of the values of m and r that are saved constitute a full independent 
sample out of the entire space of models that satisfy the data. The values of r can simply be 
analyzed with conventional histograms, etc. Values of the say, smallest or least desirable travel time 
can be associated with a parameter set m. 

7 Stopping Criteria 
In the presence of noise, it is important that the data predicted by an inverse does not reproduce 
the observed data exactly. A model generating a data misfit below its expected value will show 
structures that are artifacts of the data. The expected value of the data misfit is related to the noise 
in the data set. This point is discussed in the next paragraph. In the converse situation, if the data 
misfit is too large then information about the model contained in the data will be lost (Schlax, 1984). 
In the constrained simplex procedure (CS) , the centroid of the L search points moves towards the 
global minimum. With each successive iteration the entire simplex figure becomes more compact. 
Ultimately, the centroid would move to the minimum and the entire simplex figure would collapse 
to the centroid value at that point. As mentioned, this maximum likelihood point may not give 
the most sensible estimate of the parameters in all cases. As well, meaningful covariances could 
not be generated due to the clustering effect of the points in parameters space around the objective 
function minimum. Conversely, it is undesirable to underfit the data and arrive at poor covariance 
estimates. Therefore, an appropriate stopping criteria must be defined. As noted by F‘ullagar and 
Oldenburg (1984), the appropriate level of misfit is a subjective choice. Note that no assumptions 
are made regarding the underlying statistical distribution of the functional, the parameters, or the 
data when the parameter space is sampled to compute covariances. However, in order to terminate 
the optimization procedure, it is necessary that some assumptions be made in this regard. When 
working with Lz norm functionals, the assumption is made that the values of the objective function 
are normally distributed about some mean value. In the constrained simplex algorithm, when the 
average value of the L objective function values is below the expected value of noise, the procedure 
is terminated and a sampling of the parameter surface is carried out using all search points. 
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The appropriate measure of misfit is the x2 test when data errors are Gaussian, independent 
with zero-mean. Here the x2 misfit is defined as: 

and di is a computed data point. In the controlled random search method I is replaced by M .  If 
I 2 5 the expected value of x2 is approximately I and the standard error of x2 is nx2 = m. Any 
model is defined as acceptable when 

The most likely model is the one corresponding to x2 = I. Therefore, we may apply this statistical 
test to (4.7). In (4.7) it is recognized that the expected value of the functional (noise level) is equal 
to a i M ,  because the median of x2 is approximately equal to the number of degrees of freedom, 
and the objective function has been implicitly scaled by a factor of ui.  If the L1 norm functionals 
are minimized then a different strategy is adopted. These functionals can be viewed as following 
exponential distributions. For the L1 norm the expected value of x1 is ( : ) iM with a variance of 
(1 - :)M (Parker and McNutt, 1980). 

7.1 Computation of Covariances 

The constrained simplex algorithm produces L acceptable models, each of which satisfies the data, 
and the centroid of the global minimum is expected to be more meaningful then the single estimate 
obtained by most algorithms when the surface of the objective function is non-Gaussian. This 
approach produces equivalent results to a Monte-Carlo solution to the inverse (see Parker, 1997). 

Therefore, the average of all the L search points is taken as the best estimate of the parameters. 
The parameter space can also be sampled to obtain the parameter covariances, without assuming 
linear behavior close to the minimum value. An advantage to this strategy is that covariances of 
model parameters may be established regardless of the norm that is minimized. However, assump- 
tions on the statistical nature of the covariances must be made in order to compute confidence 
intervals (for instance, Gaussian for L2, exponential for Ll), and to choose a stopping criterion. 
Silva and Hohmann (1983) adopt this strategy. Wiggins (1972) also showed that model covari- 
ances can be recovered from repetitive Monte-Carlo samples of parameters. These covariances are 
estimated: 

1 L 

where c m  m:;t is an element of the covariance matrix, r k  is the k’th estimate of the i’th parameter 
and, E is the average value of the i’th parameter such that: 

An advantage of the method is that we may also compute the covariance of hydraulic head 
estimates at data points, ( c m  hest) by storing the computed hydraulic head values in a matrix H* 
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that correspond to each parameter estimate. For each search point ( k  = l....L) there will be a 
vector of length M of hydraulic head values. Then, 

and 

In the results section, only the standard deviations in hest will be examined. We do not consider 
interpretation of the off-diagonal terms. 

8 Verification 
The basic Price (1977) algorithm was programmed (CRS.FOR) with modifications suggested to use 
the worst value in the simplex rather than any random value for reflection. This code was tested 
against ‘TEST2.FOR’, a modified-constrained simplex method (suggested by Guin) for a variety of 
examples given in the Price (1977) paper. CRS was able to  identify local minima much better that 
the Simplex method. 

The MCMC program, METRO.FOR was developed that solves the inverse with the Metropolis 
algorithm (see section 6.1). A program was developed to illustrate the various solution methods to 
the regression of x against y for a linear relationship. This is a very simple but easy example to 
understand and allows for the comparison of the solutions against classical linear regression. The 
revised program to do this is called 1NVMETRO.FOR. 

The first example consists of 50 values of x and y. The actual relationship is y = ax + b where 
a = 1.0 and b = 1.52. Fifty values are sampled randomly from x = 300 to 500 and the corresponding 
y values were corrupted with Gaussian, additive noise N[O, 13. The Metropolis algorithm was checked 
and the slope and intercept calculations were acceptable the variance of the intercept was inaccurate. 
The correct value was 7.922 and metro produced 0.306; the resolution of which is not known and 
will require more investigation. 

The fifty values were input to the CRS code could produce the same, or very similar, regression 
coefficients for a, b. In the simulation below, the algorithm stopped searching when a value of the 
Chi squared misfit dropped to a value of N ,  the number of data. The following table indicates the 
statistics of a sample (size 100) of the entire surface that was sampled. Note that the actual values 
computed by the algorithm ( parameters and minimum function) were actually the same as the 
Least squares results. See the attached code CRSX2.FOR and CRS.OT1. 

This first example illustrates that the CRSX2 code (CRS algorithm) faithfully reproduces the 
expected results when compared to regression. Note that regression automatically assumes that 
there is no prior information, so one can set very non-informative priors. The priors in the above 
simulations were a low of 0 and high of 10 for both parameters. 

The second example consists of (again) the same 50 values of x and y, chosen before. The fifty 
values were input to the program to check if the CRSX2 code, with a t-likelihood could produce 
the same results as the Chi squared likelihood. Note the “t” distribution assumes no knowledge of 
the noise in the data. Results in are in the file CRS.OT2. The priors for the second run are shown 
in Table 2: 
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0.9965 

1.611 

1.0283 

19 

3.5 x 

0.7854 

- 

1 Parameter I CRS I Variance 

a (slope) 

b (intercept) 

o (noise) 

Least Squares 

0.9966 

1.524 

1.0283 

Variance 

3.68 x 

0.79226 

- 

Table 1: Output CRS algorithm (Chi misfit) and comparison to linear regression 

Parameter 

a (slope) 

b (intercept) 

o (noise) 

CRS 

0.9965 

1.5979 

1.0283 

~ 

Variance 

3.96 x 

0.8020 

~ 

Least Squares 

0.9966 

1.524 

1.0283 

Variance 

3.68 x 

0.79226 

Table 2: Output CRS algorithm (t misfit) and comparison to linear regression 
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The priors for the first run are given in Table 3. 

9 Summary to Date 
Program CRSX2 performs well on LS regression problems, at least with the x2 norm is minimized. 
Gaussian minimization performed not as well and the t distribution misfit is the best although more 
thought needs to go into this in terms of the appropriate stopping criterion. 

With regard to the Metropolis algorithm if one uses a symmetric proposal density (that is one 
that the probability of choosing xnew does not depend on x,ld) then it is symmetric. The Metropolis 
algorithm has variants, like the rejection method. This may be useful to explore because many 
realizations are rejected during the random walk. This idea needs further research. 
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Parameter Lower 

a (slope) 0. 

b (intercept) -300. 

Expected Upper 

0.9965 2.0 

0.3939 300. 

G (noise) 

PDF Type 

none - 1.0 - 

Table 3: Parameters and ranges adopted for first verification example. TE refers to truncated 
exponential distribution. 
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No new entries to Scientific Notebook #664E since September 30, 2004. All entries to pages 
1-25 have been made by Allan D. Woodbury. Page 26 added by James Winterle on December 
5, 2005 to add closing statement. This scientific notebook is being closed. 

Closing Statement 

I have reviewed this scientific notebook and find it in compliance with QAP-001. There is 
sufficient information regarding methods developed that another qualified individual could 
repeat the activity. There are not data collections, data analyses, or test activities documented 
in this notebook. 

flames Winterle, Manager 
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