

Radioactivity Releases From PBMR Fuel

Stanley Ritterbusch

1

Overview of German experience

- Manufacturing and testing experience
- Comparison of PBMR operating conditions to German data
- Analysis of German data applicable to PBMR
- Fuel failure fraction vs. temperature correlation
- Method of predicting releases of radioactive fission products from the fuel for an accident
 - Fuel burn-up accrued during normal operation
 - Fuel temperature during transients -- failure fraction
 - Fission product release from fuel spheres

German Experience Overview

Manufacturing

Material test reactors

- Phase 1 irradiation and heatup tests that would be applicable to a variety of reactor designs.
- Phase 2 irradiation tests aimed at the HTR-Modul reactor design.

AVR test reactor

- ➤ Fuel design: GLE 4/2
- Irradiation under in-reactor conditions

Accident simulation heat-up March 15-16, 2006
PBMR Safety and Design Familiarization © Copyright 2006 by PBMR (Pty) Ltd.

AVR (1967-88) 15 MWe

- Releases from PBMR fuel include contributions from
 - Manufacturing deficiencies
 - Normal operation irradiation
 - Heat-up tests (simulating transients and accidents)

Manufacturing Experience

- Post-1985 manufacturing –fuel design and manufacturing process was well-established
- Burn-leach tests on 528,200 fresh-fuel coated particles measured the quantity of fissionable isotopes not within intact particles
 - Detects contamination and defective particles
 - Converted to equivalent "failed" particles
- Results:
 - Six equivalent failed particles
 - Nominal, calculated failure fraction: 1x10-5

March 15-16, 2006 One-sided upper limit failure fraction: 3x10-5 © Copyright 2006 by PBMR (Pty) Ltd.

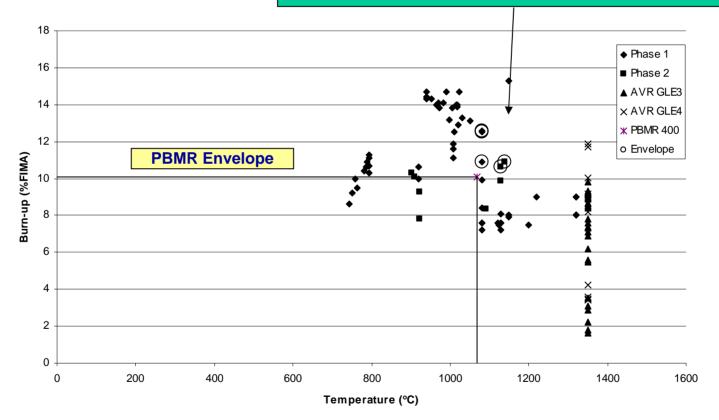
Phase	Temperature (°C)	Burn-up (%FIMA)	Fast Neutron Dose E>0.1 MeV (x 10 ²⁵ m ⁻²)	Duration (EFPD)
1	880/1320	7.2/15.3	0.1/8.0	232/682
2	903/1140	7.81/10.88	3.2/5.9	565/634

Phase 1: 211,936 coated particles

Phase 2: 145,320 coated particles

Total: 357,256 coated particles simulating normal operation irradiation

PBMR Nominal Operation Envelope


- Temperature 1068°C
- Burn-up 10.1% FIMA (maximum)
- Fast Neutron Dose 2.72 x 1021 cm-2
- Fuel Sphere Power 2.76 kW

Data may change slightly as analyses are finalized.

Operating Envelope Comparison

Circled data envelope PBMR conditions simultaneously.

- Fuel failure fraction vs. temperature
- Full range of temperatures:
 - ➢ Normal operation (800°C − 1200°C)
 - Transients and accidents (1200°C 1800°C)
- The number of "failed" particles is not counted/ measured directly during a test
 - Number of "failed" coated particles is deduced from the release-to-birth ratio observed for a nuclide during tests
- Correlation covers releases during
 - Normal operation irradiation

March 15-20 Pansient and acoident ane arization © Copyright 2006 by PBMR (Pty) Ltd.

Normal operation

- Fission product release from coated particles damaged during manufacture
- Fission reactions in enriched uranium contamination on surface of OPyC layer
- Fission reactions in trace uranium and thorium contamination in natural graphite matrix material
- Migration of fission products through coated particle layers

Transients and accident heat-ups

- Fission product release from coated particles damaged during manufacture
- Fission product release from coated particles that fail (e.g., opening of a crack) due to higher temperatures
- Migration of fission products through coated particle layers due to higher temperatures

German Irradiation Data Representative of PBMR Conditions

Test	Sample Number	Irradiation Time (efpd)	Centre Temperature (°C)	Burn-up (%FIMA)	Fast Neutron Dose E>0.1 MeV (x 10 ²⁵ m ⁻ ²)	Number of Coated Particles
HFR- P4	3	351	1010-1082	9.9-14.7	5.5-8.0	19 572
HFR- K3	4	359	1220	9.0	4.9	16 400
HFR- K6	2		1130	10.64	4.6	14 580
	3		1140	10.88	4.8	14 580
	4		1130	9.89	4.5	14 580
Total Number of Coated Particles in selected MTR Tests						79712

No failures observed during irradiation

Prediction of Normal Operation "Failures"

 One-sided, binomial statistical analysis performed for "no observed failures"

Confidence Level	Failure Fraction	
50%	8.70 x 10 ⁻⁶	
95%	3.76 x 10 ⁻⁵	

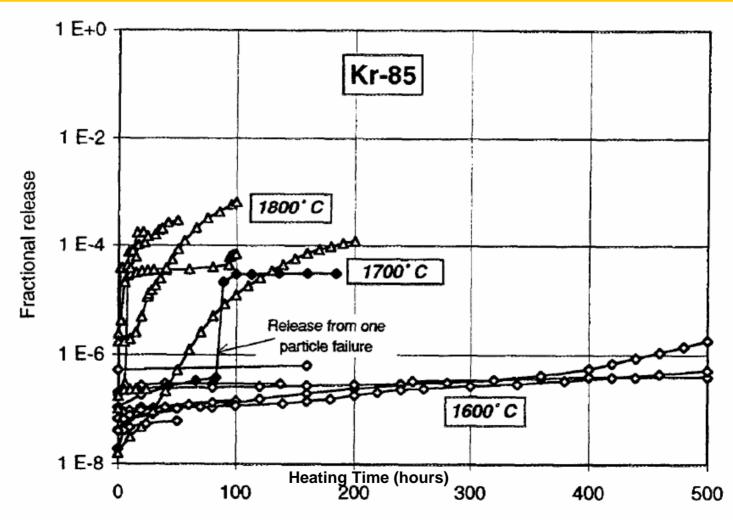
- Core contains a mix of new and irradiated fuel
- Therefore, failure fraction for core-average burn-up is taken conservatively as 50% of that for the fully irradiated fuel spheres

Total is combination of "failures" due to manufacturing and irradiation.

Confidence	Failure Fraction	Core Average	Total Failure
Level	Due to	Failure Fraction	Fraction During
	Manufacturing	Due to	Irradiation
	Deficiencies	Irradiation	
Nominal	1.0E-05	4.35E-06	1.44E-05
95%	3.0E-05	1.88E-05	4.88E-05
		<u> </u>	

50% of values on previous slide

- For conservatism, the German fuel specification imposed a "free" uranium fraction of 6x10⁻⁵ as a design limit on fuel sphere manufacturing lots. The same lot limit is used by PBMR.
- For the "design" failure fraction, the predicted coreaverage failure fraction was based on a conservative 97.5% confidence level for fully irradiated fuel.


Confidence	Failure Fraction	Average Core	Total Failure
Level	Due to	Failure Fraction	Fraction During
	Irradiation of	Due to	Irradiation
	Manufacturing	Irradiation	
	Deficiencies		
Design	6.0E-05	4.63E-05	1.06E-04

• Total failure fraction is sum of components from

- Normal operation
- Transient and accident heat-up
- Heat-up "failures" are based on German data
 - Releases occur over many hours
 - Release rate depends on the test temperature

Time-at-Temperature Coated Particle B M R Performance for Different Heat-up Tests

5

P

German Heat-up Data Used for PBMR

Phase	Temperature (°C)	Burn-up (%FIMA)	Fast Neutron Dose E>0.1 MeV (x 10 ²⁵ m ⁻²)
MTR	794/1120	7.6/13.9	0.2/7.5
AVR	Cycles<1400	1.6/9.8	0.4/2.9

Irradiated Particles Subsequently Heated to Simulate DBA Heat-up:

MTRs: 42,586 particles

AVR: 213,200 particles

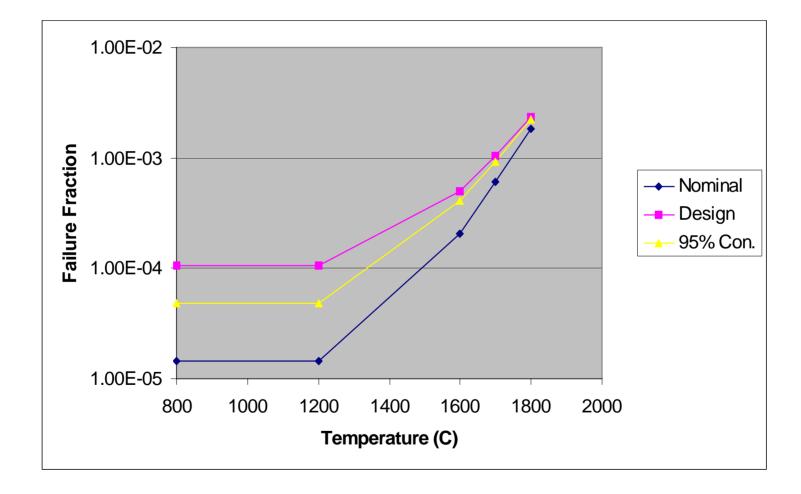
Total: 255,786 particles

Summary of Heat-up Test Results

Heating Temperature (°C)	Number of Coated Particles	Number of Failed Coated Particles	Expected Failure Fraction (Average)	95% One- sided Upper Confidence Limit	Design Limit
1 600	86 893	7	8.06 x 10 ⁻⁵	1.51 x 10 ⁻⁴	1.66 x 10 ⁻⁴
1 700	36 062	20	5.55 x 10 ⁻⁴	8.06 x 10 ⁻⁴	8.56 x 10 ⁻⁴
1 800	132 831	108	8.13 x 10 ⁻⁴	9.54 x 10 ⁻⁴	9.82 x 10 ⁻⁴

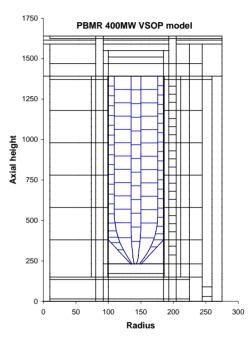
 Failure fractions at each confidence level were assumed to be an exponential function of temperature

- Based on the statistical distribution of material properties as a function of load on the SiC coating layer
- The above data were fitted to an exponential correlation
 - A factor of 2 was added to ensure that the resulting correlation would bound the above data


March 15-16, 2006

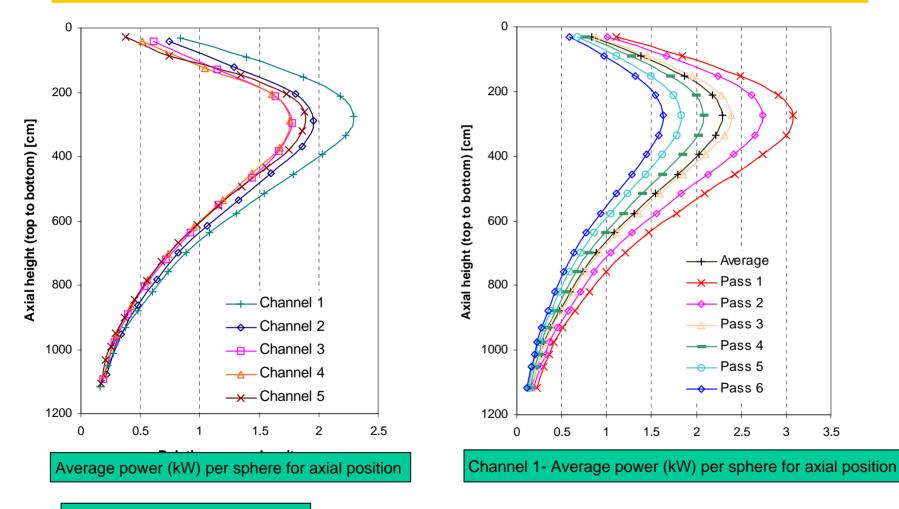
Fitted Correlation

Temperature (°C)	Nominal Failure Fraction	95% Confidence Failure Fraction	Design Failure Fraction
800	1.44 X 10 ⁻⁵	4.88 x 10 ⁻⁵	1.06 x 10 ⁻⁴
1200	1.44 X 10 ⁻⁵	4.88 x 10 ⁻⁵	1.06 x 10 ⁻⁴
1600	2.08 x 10 ⁻⁴	4.11 x 10 ⁻⁴	5.04 x 10 ⁻⁴
1700	6.12 x 10 ⁻⁴	9.31 x 10 ⁻⁴	1.04 x 10 ⁻³
1800	1.85 x 10 ⁻³	2.21 x 10 ⁻³	2.33 x 10 ⁻³



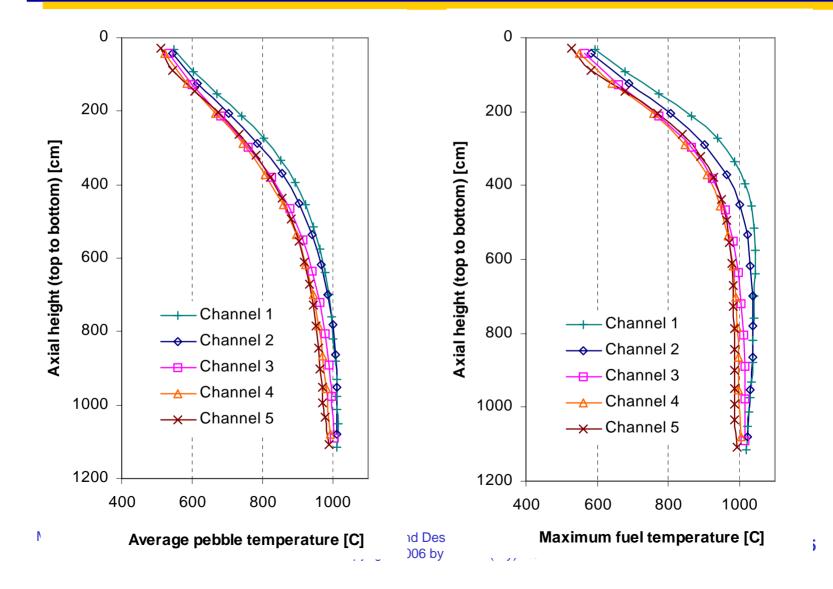
Overview of Use of Release of Fission Products From the Fuel in Accident Analysis

Release Process Overview

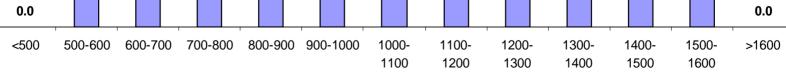

- Fission product content of coated particles is based on burn-up accrued during normal operation
 - Flow of spheres through core
 - Steady-state fuel power, burnup, and temperatures
 - Core divided into radial channels and vertical layers

- TINTE used to predict fuel temperatures during transients
- Temperatures used with the "failure fraction vs. temperature" correlation to predict quantity of failed particles throughout the core
- Mechanistic code is used to predict releases from the fuel spheres

Typical Axial Power Profiles (Normal Operations)

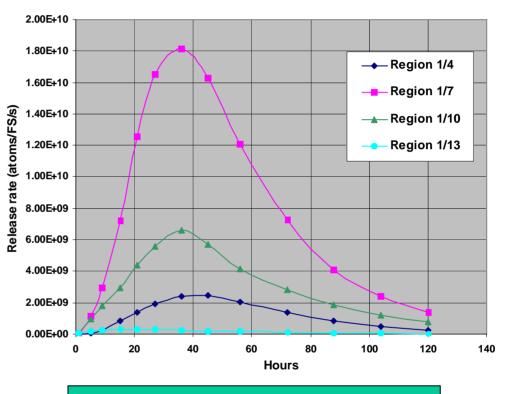

Core average: 0.88 kW/sphere

Ma


PBMR Safety and Design Familiarization © Copyright 2006 by PBMR (Pty) Ltd.

Typical Fuel Temperature Distributions (Normal Operations)

Typical DLOFC Fuel Temperature Histogram < at Time of Peak Fuel Temperature P R B M 14 13 12.5 12.0 11.6 12 10.9 11 10.4 10 9.5 9.4 9 8.0 % of fuel spheres 8 7.3 6.9 7 6 **Preliminary Results:** 5 0.35% of spheres at temp of 1592°C 6.9% of spheres at temps > 1500°C 4 3 2 1.5 1


0

PBMR Safety and Design Familia Ization © Copyright 2006 by PBMR (Pty) Ltd.

Activity Release From Fuel Spheres

- Inputs: normal operation burn-up, transient fuel temperatures, and failure-fraction correlation
- Mechanistic code is used to predict the number of failed particles over the core and the diffusion of fission products to the surface of the fuel spheres

Cs137 – higher release rate only in limited fraction of core volume

- Failure fraction as a function of temperature based on manufacturing failures, normal operation irradiation and heat-up test data
- Core-wide fuel temperatures during transients used to calculate the fraction of equivalent failed particles in a sphere for the range of burn-ups in the core
- Mechanistic model used to predict fission product releases from the spheres