

Plant Operations and Maintenance Overview

Hans-Wolfgang Chi

- Introduction to PBMR plant operations and maintenance
- Overview of plant behavior during normal operations

- Plant operating parameters
- Operating modes and states
- Description of key transitions
- Plant behavior during transitions
- Initial criticality and rise to power
- Maintenance approach

Nominal Plant Parameters

- Thermal power ≤ 400 MWt
 Core outlet temperature ≤ 900°C
 Core inlet temperature ~ 500°C
 Core temperature rise ≤ 450°C
 Helium Pressure < 9 MPa
 - Compressor surge margin > 10%
 - RPV pressure-temperature envelope

RPV Pressure-Temperature Envelope

Electrical Power as Function of Site Cooling Water Temperature

Plant Steady States

- Power Operation (Mode 5)
 - > 100% MCR Load
 - ➢ 40% MCR load
- PCU Operational (Controlled Island Operation) (Mode 4)
- Standby (Mode 3)
 - MPS ready
 - Reactor ready

• Shutdown (Mode 2)

- Partial (Control Rods inserted only)
- Intermediate (Control Rods and Shutdown Rods inserted)
- Full (All Rods and Small Absorber Spheres inserted)
- Fueled Maintenance (Mode 1)
 - HPB Closed
 - Open PCU
- Defueled Maintenance (Mode 0)

Operating Modes and States

Operating Modes and States

© Copyright 2006 by PBMR (Pty) Ltd.

Description of Key Transitions and Transients

- Reactor start up
- PCU start up
- 100-40-100 load change
- Reactor rundown with PCU trip
- Loss of load

Reactor Start-up Transition

- The HPB is closed and filled with helium.
- The CCS or PCU is used for circulation.
- The reactor is heated up on Primary Loop Initial Clean-up System (PLICS) or PCU to about 300°C before taken critical.
 - The exact sequence of reactivity withdrawal will depend on the xenon and the temperature of the core.

PCU Start-up Transition

- Plant initially at MPS ready state
 - Reactor is critical.
 - PCU has been conditioned and is operating on SFC.
- There are different transitions depending on initial reactor conditions:
 - From ROT at 600°C (40% MCRI or 100% MCRI)
 - From ROT at 900°C (40% MCRI or 100% MCRI)

PCU Start-up Turbine Speed

PCU Start-up Cycle Pressure Ratio

PCU Start-up Reactor Power

Example Calculation [to be developed]

PCU Operational (Mode 4)

Transition Time Scales

- Fill primary coolant to 40% inventory: ~40 hrs
- Depressurize primary coolant from 40 MCRI to atmospheric condition: ~40 hrs
- PCU start up from turning gear speed to 100% MCR load:
- PCU rundown from 100% MCR load to turning gear:
- Primary coolant clean up from open maintenance to reactor ready to go critical:

~6 hrs

~5 min

24-96 hrs

Power Operation 40% MCR Load (Mode 5)

Power Operation 100%-40%-100% Load Change

- Normal load swing between 100%-40%-100% over a period of ~9 hrs
- Based on inventory control alone
- Reactivity control based on maintaining reactor outlet temperature constant
- Ramp rate used: 10%/15 min

100%-40%-100% Load Change System Pressures

© Copyright 2006 by PBMR (Pty) Ltd.

23

100%-40%-100% Load Change Mass Flow Rates

100%-40%-100% Load Change Control Rod Reactivity

100%-40%-100% Load Change **Reactor Power**

26

March 15-16, 2006

© Copyright 2006 by PBMR (Pty) Ltd.

100%-40%-100% Load Change Core Temperatures

PBMR Safety and Design Familiarization © Copyright 2006 by PBMR (Pty) Ltd.

Reactor Rundown With PCU Trip

- Control rods drive the reactor power down.
- It is assumed that the PCU is tripped by opening the Gas Cycle Bypass Valves and coasts down.
- After the PCU speed drops below ~ 10%, cooling is initiated on CCS.

Reactor Rundown With PCU Trip Reactivity Insertion

Reactor Rundown With PCU Trip Reactor Power

Reactor Rundown With PCU Trip Turbine Speed

Reactor Rundown With PCU Trip Mass Flow Rates

Reactor Rundown With PCU Trip Core Temperatures

Loss of Load Transient

- Loss of off-site grid
- As Turbine Generator speeds up the GBP valves open to limit the speed increase
- PCU transitions to Island operation on house load

100% MCR Load (Mode 5)

Loss of Load Turbine Speed

March 15-16, 2006

Loss of Load Mass Flow Rates

Loss of Load Reactivity

Loss of Load Reactor Power

Loss of Load Reactor Temperature

- The reactor is initially filled with graphite spheres only.
- To achieve initial criticality, a mix of initial enrichment fuel spheres and graphite spheres is then added to the top of the core.
 - The mix is selected to achieve criticality with fuel spheres flowing down to at least 4m from the top of the core.
 - The first full operating temperature is reached prior to the fuel spheres filling no more than ~9m down from the top of the core.

Other limitations:

- Limit peak fuel temperature to 1130°C
- Limit maximum power to 4.5 KW/fuel sphere
- Utilize no more than two enrichments (initial and equilibrium)
- Achieve shortest time to full power

Initial Core Loading

March 15-16, 2006

Transition from Startup to Equilibrium Core

Time

Maintenance Elements

- Maintenance principles and guidelines
- Level of maintenance
- Scheduled major maintenance intervals
- Maintenance during plant at power
- Maintenance requiring plant at shutdown states
- Mid-life maintenance

MAINTENANCE PRINCIPLES AND GUIDELINES

- Apply ALARA principle
- Minimize major planned outage durations to 30 to 50 days
- Minimum use of remotely operated tools or robotics due to potential high cost
- Provide for visual contact for maintenance activities
- Minimize air ingress into the reactor core to reduce production of C14 and to reduce restart time
- Minimize the release of contaminated dust-borne helium into the building environment

Level of Maintenance

On-line maintenance/repair

- Exchange of equipment
- In-situ repair (rare)

• Off-line maintenance/repair

- Removal of equipment
- Repair at
 - On-site
 - Off-site at central facility
 - Off-site at vendor

Major Scheduled Maintenance Intervals

Every 6 full power years

- Replace turbine components
- Inspect generator
- Inspect & maintain PCU compressors
- Inspect & maintain RCSS
- Duration: ~30 days

Every 12 full power years

- Same as 6 full power years
- Duration: 30 to 50 days (due to uncertainty of durability of turbine for DPP)

• After 18 or 24 full power years

- Same as 6 full power years. Additionally, possible replacement of core reflector elements
- Duration: 150 -180 days

- Following systems can be maintained while the plant is at Mode 4 – 5
 - Most components of the FHSS
 - Some components of the CBCS, CCS and RCCS
 - Components of the cooling water systems and HVAC
 - Some components of the HICS

Maintenance Requiring Plant To Be At or Below Shutdown Modes

Maintenance at Mode 1b

- Inspection and service of PCU components (except possibly the Recuperator)
- Inspection and service of Reactor Unit systems and components such as control rod drives, etc.

Maintenance at Mode 0

- Possibly the Recuperator
- Mid-life core internals replacement, should it become necessary after 18 to 24 full power years (requires core unloading) (special case)

Mid-Life Maintenance

- Possible replacement of central and outside reflectors
 - Defuel and empty the core
 - Remove the top head opening
 - Expected to take about 3 months

- Core power determination
- Key PBMR time constants
- Shutdown temperature margins

$$P_{\text{Thermal}} = P_{\text{PCU}} + P_{\text{CBCS}} + P_{\text{RCCS}} + P_{\text{HVAC}}$$

P_{PCU} = Heat transferred to PCU

 (Core outlet temperature- core inlet temperature) x Core outlet flow x Helium specific heat

P_{CBCS} = Heat loss to CBCS

 (CBCS inlet temperature – CBCS outlet temperature) x CBCS flow rate x Helium specific heat

• P_{RCCS} = Heat loss to RCCS

(RCCS inlet temperature – RCCS outlet temperature) X RCCS flow rate x Water specific heat

P_{HVAC} = Heat loss to HVAC in the Citadel

Key Time Constants

Reactor core adiabatic thermal inertia:

Fuel only:	~7x10 ⁷	J/K or ~1K/min/MW
Fuel & Reflector:	~4.8x10 ⁸ J/K or ~0.1 K/min/MW	
MPS coolant transit time:		~30 sec
Primary coolant pur	rification	
time constant:		~1.1%/h

- 12 control rods at mid core (about 3.6% or down to ~100°C, without xenon decay)
- 12 additional shutdown rods to core bottom (about 8% or down to < 100°C, xenon fully decayed)
- 8 reserve shutdown absorber channels filled without control rods inserted (about 12% or down to < 20°C, xenon fully decayed)

