Licensing Topical Report

GE14 for ESBWR – Critical Power Correlation, Uncertainty, and OLMCPR Development

S. Congdon
T. Bentley
F. Bolger
NONPROPRIETARY NOTICE

This is a nonproprietary version of the document NEDC-33237P, where the proprietary information of NEDC-33237P has been removed. The portions of NEDC-33237P that have been removed are indicated by double square open and closed brackets as shown here [[]] and figures and large equation objects of NEDC-33237P that have been removed are also identified with double square brackets before and after where the object was to preserve the relative spacing of NEDC-33237P.

IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT

PLEASE READ CAREFULLY

The information contained in this document is furnished as reference material supporting the GE ESBWR Design Control Document Submittal (TAC #MC8168). The only undertakings of Global Nuclear Fuel (GNF) with respect to information in this document are contained in the contracts between GNF and the participating utilities in effect at the time this report is issued, and nothing contained in this document shall be construed as changing those contracts. The use of this information by anyone other than that for which it is intended is not authorized, and with respect to any unauthorized use, GNF makes no representation or warranty, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document.
TABLE OF CONTENTS

1.0 Introduction ... 1-1
2.0 Comparison of Conventional (GE14) and ESBWR (GE14E) Fuel Designs 2-1
3.0 The GEXL Correlation ... 3-1
4.0 Applying GEXL14 ATLAS Critical Power DATA to ESBWR Fuel 4-1
 4.1 The GEXL14 Data Base ... 4-1
 4.2 Modification of the GEXL ATLAS Data for GE14E 4-3
 4.2.1 Change in Active Fuel Length ... 4-3
 4.2.2 Change in Spacer Locations ... 4-4
 4.2.3 Change in Part Length Rod Length ... 4-4
 4.3 Comparison of GEXL14 Correlation with Adjusted GE14 Data 4-5
 4.4 Summary and Conclusions ... 4-8
5.0 Summary of Uncertainties ... 5-1
 5.1 Introduction .. 5-1
 5.2 Feedwater System Flow Measurement Uncertainty 5-2
 5.3 Feedwater Temperature Measurement Uncertainty 5-2
 5.4 Reactor Pressure Measurement Uncertainty .. 5-3
 5.5 Core Inlet Temperature Measurement Uncertainty 5-4
 5.6 Total Core Flow Measurement Uncertainty .. 5-4
 5.7 Channel Flow Area Uncertainty ... 5-4
 5.8 Channel Friction Factor Multiplier Uncertainty 5-4
 5.9 Channel-to-Channel Friction Factor Multiplier Uncertainty 5-5
 5.10 Neutron Monitoring System Bundle Power Uncertainty 5-6
 5.11 R-Factor Uncertainty .. 5-6
 5.12 Transient ΔCPR/ICPR Uncertainty ... 5-7
6.0 Representative Operating Limit MCPR ... 6-1
7.0 References .. 7-1
8.0 Revisions .. 8-1
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-1</td>
<td>Summary of the Major Thermal Hydraulic Parameters for the GE14 ATLAS Test Assembly and GE14E</td>
<td>2-1</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Summary of PLR and Spacer Pitch Effects</td>
<td>4-5</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>Summary of ECPR Distributions</td>
<td>4-6</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Summary of Uncertainties to be Used for ESBWR OLMCPR Analyses</td>
<td>5-3</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Representative OLMCPR Results</td>
<td>6-2</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2-1</td>
<td>The GE14 Fuel Bundle</td>
<td>2-2</td>
</tr>
<tr>
<td>Figure 2-2</td>
<td>The GE14 Fuel Lattice</td>
<td>2-2</td>
</tr>
<tr>
<td>Figure 2-3</td>
<td>GE14 and GE14E Schematic</td>
<td>2-3</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Critical Power Iteration Procedure</td>
<td>3-2</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>Influence of Spacers on Liquid Film Thickness</td>
<td>3-3</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>GE14 ATLAS Axial Power Shapes</td>
<td>4-2</td>
</tr>
<tr>
<td>Figure 4-2</td>
<td>Calculated vs. Measured Critical Powers</td>
<td>4-7</td>
</tr>
<tr>
<td>Figure 4-3</td>
<td>GE14E ECPR Histogram</td>
<td>4-7</td>
</tr>
<tr>
<td>Figure 5-1</td>
<td>Hot Channel ΔCPR/ICPR Descriptive Statistics for LFWH with SCRRI</td>
<td>5-8</td>
</tr>
<tr>
<td>Figure 5-2</td>
<td>Hot Channel % ΔCPR/ICPR Descriptive Statistics for LFWH with SCRRI</td>
<td>5-8</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The passive safety features and natural circulation operating strategy employed in the ESBWR require a reactor core design with minimum resistance to two-phase pressure drop, while still providing sufficient density head to maintain natural circulation flow. ESBWR design optimization studies have resulted in a core bundle design, which is for the most part identical to the standard bundle design used in the BWR4/5/6 and ABWR designs except that the overall fuel bundle length has been reduced by about 27 inches and the active fuel length reduced by about 30 inches.

The GEXL critical power correlation for conventional GE14 10x10 fuel (GEXL14) has been developed using data obtained from the ATLAS critical power test facility. GE14 fuel is currently producing power in BWRs worldwide with successful operating performance. Due to the similarity between the conventional BWR and ESBWR versions of GE14, the GEXL14 correlation can be applied to ESBWR applications, provided appropriate procedures are used and biases are applied. This document discusses the application of the GEXL14 critical power correlation to ESBWR GE14 (GE14E) fuel.
2.0 COMPARISON OF CONVENTIONAL (GE14) AND ESBWR (GE14E) FUEL DESIGNS

Figure 2-1 shows the GE14 fuel bundle specifying the differences between the ESBWR and conventional BWR versions. The major differences are the axial length of the fuel rods and the number of spacer grids in the bundle. Figure 2-2 shows the GE14 fuel lattice, which is the same for GE14E. Table 2-1 below is a summary of the major thermal hydraulic parameters for the GE14 ATLAS test assembly and GE14E.

Table 2-1 Summary of the Major Thermal Hydraulic Parameters for the GE14 ATLAS Test Assembly and GE14E
Figure 2-1 The GE14 Fuel Bundle

Figure 2-2 The GE14 Fuel Lattice
For the purposes of evaluating critical power, the internal channel dimensions are most critical. It can be seen from Table 2-1 that the only differences between GE14 and GE14E are the overall heated length of the fuel, the length of the part length rods and the spacer positions. Figure 2-3 is a schematic illustrating these differences, all of which will be accounted for in the application of GEXL14 to GE14E.

Figure 2-3 GE14 and GE14E Schematic
3.0 THE GEXL CORRELATION

The GEXL critical power correlation was developed in the 1970's to provide a comprehensive model for the prediction of the critical power phenomenon in BWR fuel. GEXL was first applied in GE6 fuel product line and was approved by the NRC staff in 1977 [Reference 1]. An annular flow length term was added to the correlation and the name modified to GEXL-Plus. The GEXL-Plus correlation has been applied to all GE BWR fuel products since GE11 and is now referred to as the GEXL correlation. It has been common practice to develop a new form of the correlation for each new fuel product line containing a major change in the fuel bundle geometry or spacer design. The GE14 GEXL correlation is described in Reference 2. Part of the correlation input is the R-factor, which describes the effect of individual rod power on the critical power. The procedures for R-factor evaluation are described in Reference 3.

The ATLAS facility has been used to develop the correlation data for all GE fuel designs beginning with GE6 and ending with GE14. The ATLAS facility is an electrically heated mockup of a BWR fuel bundle containing prototypical spacers and operating at BWR flows, pressures, and temperatures. For a given bundle flow, pressure, and inlet temperature the bundle power is continually increased until temperature sensors detect a sudden rise in fuel rod surface temperature. This rise indicates that the annular liquid flow near the top of the limiting fuel rod has decreased sufficiently to indicate the onset of boiling transition (dryout). This condition is known as the bundle critical power for a given set of inlet flow, temperature, and pressure conditions.

The GEXL correlation does not evaluate the critical power directly. Rather it evaluates the quality at which critical power conditions occur. The critical quality is expressed as a function of six variables:

\[
\left[\begin{array}{c} \text{variable_1} \\ \vdots \\ \text{variable_6} \end{array} \right]
\]

where

\[
\left[\begin{array}{c} \text{variable_1} \\ \vdots \\ \text{variable_6} \end{array} \right]
\]
A detailed description of these variables can be found in Reference 2.

The bundle critical power is determined through an iterative process for a given set of conditions, as illustrated in Figure 3-1. An initial power is assumed, and the equilibrium quality X and the critical quality X_c are evaluated as functions of axial position. The bundle power is increased until there is an actual point where the X. The dashed lines represent the initial iteration and the solid lines represent the final iteration.

Figure 3-1 Critical Power Iteration Procedure
This procedure also yields a relative estimate, with regards to boiling length, of the axial location of dryout, since the dryout location is a strong function of the spacer position. The dryout phenomenon occurs in the annular flow region, where the fuel rods are coated with a liquid film and rest of the volume between the rods is occupied by steam and liquid droplets. Figure 3-2 shows the influence of spacers on the liquid film. In the annular flow region, the liquid film thickness decreases as the local quality increases. Hence the minimum film thickness occurs.

Figure 3-2 Influence of Spacers on Liquid Film Thickness

It can be seen from the figure above that the critical power effect has been verified experimentally. The axial position of dryout is a function of many parameters, but as the critical quality decreases with increasing flow rate, the location of dryout tends to occur lower in the assembly.
4.0 APPLYING GEXL14 ATLAS CRITICAL POWER DATA TO ESBWR FUEL

4.1 THE GEXL14 DATA BASE

The GEXL14 database was developed for the GE14 product to be placed in the current version of BWR3 though BWR6. It consists of critical power measurements obtained using a axial power shape with rod peaking distributions. An additional database exists for GEXL14 that includes measurements obtained using a axial power shape with rod peaking distributions and measurements obtained using an peaked axial power shape with rod peaking distributions. The total number of critical power measurements that support GEXL14 for GE14 is . The axial power shapes are shown in Figure 4-1. The application range for GEXL14 is

Pressure:]]
Mass Flux:]]
Inlet Subcooling:]]
R-factor:]]
*exception |]]

*exception
Figure 4-1 GE14 ATLAS Axial Power Shapes
4.2 MODIFICATION OF THE GEXL ATLAS DATA FOR GE14E

From a thermal hydraulic standpoint, the GE14 database and the GE14E design differ in three respects:

- The overall heated length of the bundle is shortened from \[\text{[]} \]
- The axial position of the spacers relative to one another have changed (see Figure 2-3)
- The heated length of the part length rod has changed from \[\text{[]} \]
 and the physical length has changed from \[\text{[]} \]

The following sections describe the procedures for adapting the GE14 data to account for the differences listed above.

4.2.1 Change in Active Fuel Length

The critical power process is determined solely by what happens upstream of the point of dryout, as illustrated in Figure 3-1. The difference between the critical quality, \(X_C \), and the equilibrium quality, \(X \), at any point, \(z \), along the axial length continually decreases as \(z \) increases. This behavior allows one to conservatively determine a critical power correlation for a bundle design shorter than the one used in the critical power measurements. This is done by assuming that the critical power behavior is determined solely by the \[\text{[]} \], the length of active fuel for ESBWR. For those critical power points where dryout has occurred at spacers 3 and 4 for GE14 (see Figure 2-3), the data accurately represents a bundle with a heated length of \[\text{[]} \]. For those data where dryout occurs at spacers 1 or 2, we assume that the critical power is limited to the integrated power generated in the first \[\text{[]} \] of heated length. In reality, dryout did not occur until a higher quality, so this assumption is conservative. In order to evaluate the accuracy of the GEXL14 correlation for ESBWR fuel, a reduced critical power is constructed, i.e.,

\[\text{[]} \]
Where $APF(z)$ is the axial power distribution for the data point in question. For the GE14 data base,

\[
CP_{GE14}/CP_{GE14} \approx [[\]]
\]

for [[]] axial power shape

\[
CP_{GE14}/CP_{GE14} \approx [[\]]
\]

for [[]] peak axial power shape.

This conservative procedure postulates that the first [[]] of active fuel length produces dryout, even though the ATLAS data shows dryout occurs at a higher level. The GEXL correlation is applied to the first [[]] of the ATLAS bundle to obtain the overall performance parameters.

4.2.2 Change in Spacer Locations

Changes in axial distance between spacers can affect critical power performance for reasons outlined in Section 3.0. The spacer locations for the GE14 and GE14E designs are shown in Figure 2-3. For spacers 4 and above, the relative position and spacer pitch (distance between spacers) are [[]] between the two designs. For GE14E, the distance between spacer 4 and 5 is [[]] that in the conventional design. Hence, the critical power will be slightly larger in GE14E than measured in ATLAS. This spacer difference effect has been evaluated with the subchannel program COBRAG (see Reference 4), where a subset of the test matrix has been used to compare the GE14E spacer pitch with the GE14 spacer pitch using the GE14E fuel length. These studies show that on average the GE14E spacer configuration yields [[]] critical powers by an average of [[]]. Spacer height differences therefore play a small role, and use of the GEXL correlation for GE14E with no correction for spacer height is conservative.

4.2.3 Change in Part Length Rod Length

Table 2-1 gives the heated length of the part length rod as [[]] for GE14 and [[]] for GE14E. Hence the difference in the heated length is [[]] between the GE14 ATLAS tests and the GE14E design. The GE14 tests therefore have an additional amount of heat generated in the PLR and should indicate a slightly larger critical power than the prototypical GE14E design. The COBRAG subchannel program was used over the same subset
of the test matrix as mentioned in Section 4.2.2 to evaluate the impact of the PLR length. The COBRAG studies performed with the longer length show an average of \[\text{critical power} \] with a standard deviation of \[\text{standard deviation} \]. The critical power for ESBWR will be evaluated by the GEXL correlation. The PLR length is reflected in GEXL through the R-factor, which depends on the bundle peaking pattern. The change in R-factor due to the PLR change yields a critical power difference of \[\text{critical power difference} \].

The combination of the spacer pitch and PLR length change is summarized in Table 4-1. When both effects are combined, the GEXL14 correlation represents a conservative estimate of critical power for ESBWR. The combined results show approximately a \[\text{percent change} \] in GEXL14 predicting the expected critical power of GE14E as compared to GE14. The percent changes in critical power due to the differences in spacer location and PLR length between GE14 and GE14E remain below the correlation uncertainty.

<table>
<thead>
<tr>
<th>GE14E vs. GE14 CP</th>
<th>COBRAG</th>
<th>GEXL14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacer Pitch</td>
<td>[\text{critical power}]</td>
<td>[\text{critical power}]</td>
</tr>
<tr>
<td>PLR Length</td>
<td>[\text{critical power}]</td>
<td>[\text{critical power}]</td>
</tr>
<tr>
<td>Total</td>
<td>[\text{critical power}]</td>
<td>[\text{critical power}]</td>
</tr>
<tr>
<td>(includes interaction effects)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 COMPARISON OF GEXL14 CORRELATION WITH ADJUSTED GE14 DATA

The GEXL14 correlation has been compared with the GE14 ATLAS data as modified in Section 4.2. The original GE14 ATLAS test matrix is designed to cover flow rates one would expect in BWR2 through BWR6 and ABWR, covering mass fluxes up to \[2.0 \text{ Mlbm/hr-ft}^2 \]. The ESBWR flow rates are lower, encompassing core flow rates up to \[\text{mass fluxes up to} \] \[3.0 \text{ Mlbm/hr-ft}^2 \] and transient mass fluxes up to \[\text{mass fluxes up to} \] \[4.5 \text{ Mlbm/hr-ft}^2 \]. Since the ESBWR application concentrates on mass fluxes
less than $[[\text{Mlb}_m/\text{hr-ft}^2]]$, it is appropriate to evaluate the mean ECPR and its associated uncertainty over mass fluxes less than or equal to $[[\text{Mlb}_m/\text{hr-ft}^2]]$; therefore, only those data points that are at mass fluxes of $[[\text{Mlb}/\text{hr-ft}^2]]$ or lower ($[[\text{points of the}}$ $[[\text{Er}}]$ $[[\text{points in the GEXL14 database) are considered for GE14E. It is customary to examine the distribution of calculated to measured ratios for each of the $[[\text{points in the}}$ applicable database. This ratio is the ECPR, defined by

$$[[\text{ }]].$$

ECPRs less than 1.0 represent points for which the correlation is $[[\text{ }] and those greater than 1.0 represent points where the correlation is $[[\text{ }]].$ It is customary to compute the average ECPR and the standard deviation of the set of ECPRs for the entire population or a given part of the population. A summary of average ECPR and standard deviation of the ECPRs are given in Table 4-2. The same data are presented graphically in Figure 4-2 and Figure 4-3.

Table 4-2 Summary of ECPR Distributions

<table>
<thead>
<tr>
<th>Data Description</th>
<th>Number of Data Points</th>
<th>Average ECPR</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data with mass flux less than or equal to $[[\text{Mlb}_m/\text{hr-ft}^2]]$</td>
<td>$[[\text{]}]$</td>
<td>$[[\text{]}]$</td>
<td>$[[\text{]}]$</td>
</tr>
<tr>
<td>Critical power occurring at spacer 3 or 4 and mass flux less than or equal to $[[\text{Mlb}_m/\text{hr-ft}^2]]$</td>
<td>$[[\text{]}]$</td>
<td>$[[\text{]}]$</td>
<td>$[[\text{]}]$</td>
</tr>
</tbody>
</table>
Figure 4-2 Calculated vs. Measured Critical Powers

Figure 4-3 GE14E ECPR Histogram
The first data set in Table 4-2 shows the GEXL14 correlation statistics for GE14E based on the conservative treatment of the GE14 modified data. The second data set consists of only those points where dryout occurred near spacers 3 and 4, or below [[]] in the ATLAS facility. Here the average ECPR is closer to [[]] with a standard deviation of [[]]. One would expect superior agreement for these points because the dryout location closely represents the expected locations in the ESBWR bundle. The average and standard deviation for this data set represent the most accurate part of the GEXL simulation.

For GE14E applications, the average and standard deviation obtained for all of the points with mass flux less than or equal to [[]] Mlb/hr-ft2 will be used for Operating Limit MCPR evaluations.

4.4 SUMMARY AND CONCLUSIONS

The GEXL14 critical power correlation was developed from data collected in the ATLAS test facility for the conventional version of GE14 fuel. The ESBWR version of GE14 (GE14E) is identical to GE14, except for those features related to the axial length of the fuel, i.e.,

- The total fuel axial length
- The number and axial location of the fuel rod spacers
- The axial length of the part length rods

The GEXL14 correlation is an accurate representation of the data obtained from the ATLAS loop where the dryout point occurs at axial heights below [[]], the active length of the GE14E fuel. The part length rod length and spacer locations differ between the GEXL14 ATLAS data and the GE14E design. The impact of these two differences on the critical power is on the order of [[]]. The GEXL formulation represents a conservative model for the net impact of these two differences.

The final accuracy of the GEXL14 correlation is based on a model in which the ATLAS power is truncated at [[]], the axial height of the GE14E fuel, which includes the conservative application of those data where dryout occurs above [[]] to formulate the average ECPR and associated uncertainty.
The recommended average ECPR and associated standard deviation to be used for GE14E in ESBWR Operating Limit calculations are based on all data with mass flux less than or equal to [\text{Mlb}_{\text{m}}/\text{hr-ft}^2]. These recommended quantities are

Mean ECPR = [\text{[]}]

ECPR Standard Deviation = [\text{[]}],

for the application range of

Pressure: [\text{[]}]

Mass Flux: [\text{[]}]

Inlet Subcooling: [\text{[]}]

R-factor: [\text{[]}]
5.0 SUMMARY OF UNCERTAINTIES

5.1 INTRODUCTION

The determination of the Operating Limit MCPR (OLMCPR) above the low power setpoint (LPSP) is based on a statistical analysis code utilizing a 3D model of the core. The code produces a critical power ratio (CPR) map of the core based on steady-state uncertainties. This is coupled with the TRACG limiting AOO ΔCPR/ICPR results to determine the OLMCPR. Details of the procedure are documented in Appendix IV of Reference 1 and Section 4.6.3 of Reference 5. Random Monte Carlo selections of operating parameters based on the uncertainty ranges of manufacturing tolerances, uncertainties in measurement of core operating parameters, calculation uncertainties, the uncertainty in the calculation of the transient ΔCPR/ICPR and statistical uncertainty associated with the critical power correlations are imposed on the analytical representation of the core, and the resulting critical power ratios are calculated.

The number of rods expected to avoid boiling transition is determined for each random Monte Carlo trial based on the statistical uncertainty associated with the critical power correlation and the transient ΔCPR/ICPR. The initial MCPR during normal operation corresponds to the OLMCPR when the FCISL (99.9% of the rods are expected to avoid boiling transition) is met for a statistical combination of the trials.

This section contains a summary of uncertainty values to be used for ESBWR Operating Limit MCPR analyses. Table 5-1 contains a summary of the uncertainties to be used in ESBWR OLMCPR analyses, along with references to the section that discusses the uncertainty values. Sections 5.2 through 5.6 contain evaluations of uncertainties associated with reactor instrumentation. These uncertainties are evaluated in accordance with standard instrument channel methodologies as prescribed in Reference 7. The error methodology in Reference 7 considers the following elements:

- The entire instrument channel from primary element through computer input
- Accuracy, calibration, and drift over a realistic 30–month surveillance interval
- Influences resulting from actual plant environments and process effects
All error terms are evaluated and combined in accordance with accepted methodologies and channel errors are determined at the one sigma (1σ) level to allow for direct comparison with Table 4.1 of Reference 8.

Sections 5.7 through 5.9 contain evaluations of thermal hydraulic parameter uncertainties, and are either based on known dimensional tolerances or comparisons of calculated versus measured pressure drop data. Section 5.10 contains evaluations of the ESBWR NMS bundle power uncertainty. Section 5.11 contains evaluations of the R-Factor uncertainty. Section 5.12 contains evaluations of the transient ΔCPR/ICPR uncertainty. All these error terms are determined at the one sigma (1σ) level to allow for direct comparison, except for the critical power and transient ΔCPR/ICPR, with Tables 4.1 and 4.2 of Reference 8.

5.2 FEEDWATER SYSTEM FLOW MEASUREMENT UNCERTAINTY

Since the feedwater system flow measurement instrumentation is not expected to be unique for the ESBWR relative to current BWRs, the description and magnitude of the BWR feedwater system flow measurement uncertainty contained in Section 2.2 of Reference 6 is applicable to ESBWR. A feedwater flow one-sigma uncertainty of [[]] is a design requirement for ESBWR.

5.3 FEEDWATER TEMPERATURE MEASUREMENT UNCERTAINTY

Since the feedwater temperature measurement instrumentation is not expected to be unique for the ESBWR relative to current BWRs, the description and magnitude of the BWR feedwater temperature measurement uncertainty contained in Section 2.3 of Reference 6 is applicable to ESBWR. A feedwater temperature one-sigma uncertainty of [[]] is a design requirement for ESBWR.
Table 5-1 Summary of Uncertainties to be Used for ESBWR OLMCPR Analyses

<table>
<thead>
<tr>
<th>Uncertainty Parameter</th>
<th>Uncertainty ±σ (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedwater System Flow Measurement</td>
<td></td>
<td>Section 5.2</td>
</tr>
<tr>
<td>Feedwater Temperature Measurement</td>
<td></td>
<td>Section 5.3</td>
</tr>
<tr>
<td>Reactor Pressure Measurement</td>
<td></td>
<td>Section 5.4</td>
</tr>
<tr>
<td>Core Inlet Temperature Measurement</td>
<td></td>
<td>Section 5.5</td>
</tr>
<tr>
<td>Total Core Flow Measurement</td>
<td></td>
<td>Section 5.6</td>
</tr>
<tr>
<td>Core Neutron Monitoring System Bundle Power</td>
<td></td>
<td>Section 5.10</td>
</tr>
<tr>
<td>Channel Flow Area</td>
<td></td>
<td>Section 5.7</td>
</tr>
<tr>
<td>Channel Friction Factor Multiplier Uncertainty</td>
<td></td>
<td>Section 5.8</td>
</tr>
<tr>
<td>Channel to Channel Friction Factor Multiplier</td>
<td></td>
<td>Section 5.9</td>
</tr>
<tr>
<td>R-Factor</td>
<td></td>
<td>Section 5.11</td>
</tr>
<tr>
<td>GE14E Critical Power Correlation</td>
<td></td>
<td>Section 4.4</td>
</tr>
<tr>
<td>Transient ΔCPR/ICPR</td>
<td></td>
<td>Section 5.12</td>
</tr>
</tbody>
</table>

5.4 REACTOR PRESSURE MEASUREMENT UNCERTAINTY

Since the reactor pressure measurement instrumentation is not expected to be unique for the ESBWR relative to current BWRs, the description and magnitude of the BWR reactor pressure measurement uncertainty contained in Section 2.4 of Reference 6 is applicable to ESBWR. A reactor pressure one-sigma uncertainty of [[]] is a design requirement for ESBWR.
5.5 **CORE INLET TEMPERATURE MEASUREMENT UNCERTAINTY**

Core inlet temperature is measured by redundant core inlet temperature sensors located in each LPRM assembly below core plate elevation. A core inlet temperature one-sigma uncertainty of \[\text{[]} \] is a design requirement for ESBWR.

5.6 **TOTAL CORE FLOW MEASUREMENT UNCERTAINTY**

The total core flow is calculated by the heat balance core flow methodology, using the core inlet temperature measurement as inputs to determine core inlet enthalpy. A total core flow one-sigma uncertainty of \[\text{[]} \] is a design requirement for ESBWR.

5.7 **CHANNEL FLOW AREA UNCERTAINTY**

The uncertainty in the channel flow area can be determined from the inner dimensions of the channel and the outer diameter of the fuel and water rods along with the associated manufacturing tolerances as defined by Equation 2-6 of Reference 6. Since these dimensions are identical for the GE14E 10x10 and GE12 10x10 fuel design and the manufacturing tolerances are not expected to be unique for GE14E relative to GE12, the description and magnitude of the GE12 channel flow area uncertainty contained in Reference 6 Section 2.7 is applicable to GE14E. This uncertainty may be revised utilizing GE14E design specification manufacturing tolerances.

5.8 **CHANNEL FRICTION FACTOR MULTIPLIER UNCERTAINTY**

The channel friction factor is used to calculate the two-phase friction pressure loss in the BWR channel. The friction factor is determined from full scale tests performed in the ATLAS test loop. These tests are described in Reference 15. These tests cover the full range of bundle power and flow expected during ESBWR operation. The pressure drop correlation has been
compared to the experimental data. As described in Reference 6, the standard deviation between the ATLAS experimental data and the correlation varies with mechanical design, but is less than [[]]. The results in Reference 15 Section 2.1 and 2.2 support this conclusion for the ESBWR GE14 components. In addition to the two-phase pressure drop uncertainty there is a single-phase component, which covers the pressure drop between the side entry orifice and the active channel above the lower tie plate. The Reference 6 basis includes comparison of the predicted pressure drop with the plant measure pressure drop. The ESBWR side entry orifice configuration is consistent with ABWR. Comparison of measured versus predicted pressure drop for ABWR shows less bias and uncertainty than the values reported in Reference 6. The Reference 6 uncertainty of [[]] is bounding for ESBWR.

5.9 **CHANNEL-TO-CHANNEL FRICTION FACTOR MULTIPLIER UNCERTAINTY**

In addition to the total pressure drop uncertainty, a channel-to-channel pressure drop uncertainty of [[]] is employed to simulate non-uniformity in channel pressure drop characteristics. Originally this non-uniformity was attributed to corrosion product deposition. The total impact of corrosion products on the pressure drop is estimated to be [[]]. A [[]] variability in the corrosion product effect yields a [[]] uncertainty in the channel-to-channel pressure drop. In addition to the corrosion uncertainty, there is variability in the orifice loss from bundle to bundle due to changes in flow patterns below the core plate. A [[]] variability in the orifice loss amounts to a [[]] bundle to bundle uncertainty. The RMS sum of the [[]] corrosion product uncertainty and the [[]] orifice uncertainty leads to a total bundle to bundle uncertainty of [[]], or a [[]] uncertainty in total pressure drop. It is therefore conservative to assume a [[]] uncertainty in OLMCPR uncertainty analyses.
5.10 Neutron Monitoring System Bundle Power Uncertainty

The ESBWR Neutron Monitoring System (NMS) is improved over previous BWR NMSs through the replacement of the conventional source range monitor (SRM) and intermediate range monitor (IRM) with the startup range neutron monitor (SRNM), the optimization of the local power range monitor (LPRM) instrument configuration, and the replacement of the conventional traversing in-core probe (TIP) system with a fixed in-core calibration system. This system utilizes Gamma Thermometers (GT) installed within the individual LPRM assemblies to provide an independent and stable indication of the local core power levels. Such local power data are then provided as input to the core monitoring system for the three-dimensional core power calculation and LPRM calibration.

The GT bundle power uncertainty for the ESBWR NMS based on gamma scan comparisons was determined to be \[\text{[value]} \] as described in Table 9-15 of Reference 10. \[\text{[value]} \], as documented in Section 4 of Reference 8, bounds this value and is therefore appropriate for use in ESBWR OLMCPR calculations. The performance of the nuclear models to high enrichment and high discharge exposure applications has been routinely monitored (see Reference 9).

5.11 R-Factor Uncertainty

The current BWR approved process for evaluating the R-factor uncertainty is documented in Section 3 of Reference 6. The Reference 6 R-factor uncertainty is \[\text{[value]} \]. The Reference 6 infinite lattice peaking model uncertainty of \[\text{[value]} \] was confirmed for ESBWR in Reference 14. The ESBWR value was only slightly higher: \[\text{[value]} \]. Other components of the R-factor uncertainty (manufacturing uncertainty and channel bow uncertainty) are expected to be no higher for ESBWR as compared to current BWRs. The R-factor uncertainty employed for ESBWR applications has been \[\text{[value]} \], which is consistent with current BWR applications.
5.12 **TRANSIENT ΔCPR/ICPR UNCERTAINTY**

A TRACG statistical study was performed to determine the ESBWR transient bias and uncertainty in ΔCPR/ICPR for the limiting CPR Anticipated Operational Occurrence provided in Reference 12. The data are utilized to determine the bias and standard deviation in the transient ΔCPR/ICPR. This process is described in Reference 5 and is fully consistent with the NRC approved process defined by Reference 11. The limiting event for the ESBWR is Loss Of Feedwater Heating With Failure of Selected Control Rod Run-In (LFWH with SCRRRI), see Section 15.2.1.1.3 of Reference 12. The results of the statistical analysis, which is consistent with the process demonstrated in Section 8 of Reference 11, for the LFWH with SCRRRI event are presented in Figure 5-1 and Figure 5-2.

The nominal ΔCPR/ICPR is [[]] for the hot channel. The % ΔCPR/ICPR distribution is normal for the hot channel. The percent change in the ΔCPR/ICPR is the key output from the statistical analysis. In the OLMCPR analysis, a bias of [[]] and a standard deviation of [[]] are applied to the ΔCPR/ICPR distribution.
Figure 5-1 Hot Channel ΔCPR/ICPR Descriptive Statistics for LFWH with SCRRI

Figure 5-2 Hot Channel % ΔCPR/ICPR Descriptive Statistics for LFWH with SCRRI
6.0 REPRESENTATIVE OPERATING LIMIT MCPR

The representative OLMCPR evaluations for the ESBWR were performed using NRC approved methodology in References 1 and 5. Table 5-1 summarizes the uncertainty input parameters. Table 6-1 summarizes the ESBWR results. In general, the calculated operating limit is dominated by two key steady state parameters: (1) flatness of the core bundle-by-bundle MCPR distributions as measured by MIP, and (2) flatness of the bundle pin-by-pin power/R-factor distributions as measured by RIP. Greater flatness in either parameter yields more rods susceptible to boiling transition and thus a higher calculated OLMCPR. The ESBWR core loading information is described in Section 3.1.1 Reference 14. The limiting OLMCPR case was at EOC at minimum core flow (71.7 Mlb/hr from Table 4.4-1b of Reference 13). The calculated MIP value for the ESBWR core using a limiting rod pattern is \[
\text{[]}
\]. Pin-by-pin power distributions are characterized in terms of R-factors using the NRC approved methodology (Reference 3). For the ESBWR limiting case the RIP value, considering the participation of the contributing bundles, was calculated to be \[
\text{[]}
\].

The representative OLMCPR value calculated for ESBWR is shown in Table 6-1. The calculated 1.28 OLMCPR for ESBWR is consistent with expectations given the ratios for MIP and RIP that have been calculated, the axial power shapes in the core, and the methodology and uncertainties applied. Based on the information and discussion presented above, it is concluded that the assumed representative OLMCPR of 1.30 (Section 15.2.6 of Reference 12) is conservative for ESBWR.

As stated in Section 15.2.1.1.3 of Reference 12, the LFHW with SCRRI event sets the OLMCPR and will be reanalyzed for each core design and SCRRI rod pattern, for the initial core and reload cores. The COL applicant will provide a reanalysis of this event for the specific initial and reload core designs.
Table 6-1 Representative OLMCPR Results

<table>
<thead>
<tr>
<th>QUANTITY, DESCRIPTION</th>
<th>ESBWR value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Exposure at Limiting Point (MWd/ST)</td>
<td>16,000</td>
</tr>
<tr>
<td>MCPR Importance Parameter, MIP</td>
<td>[]</td>
</tr>
<tr>
<td>R-factor Importance Parameter, RIP</td>
<td>[]</td>
</tr>
<tr>
<td>MIP/RIP</td>
<td>[]</td>
</tr>
<tr>
<td>Calculated Operating Limit MCPR</td>
<td>1.28</td>
</tr>
<tr>
<td>ESBWR assumed OLMCPR</td>
<td>1.30</td>
</tr>
</tbody>
</table>
7.0 REFERENCES

8.0 REVISIONS
I, Andrew A. Lingenfelter, state as follows:

(1) I am Manager, Engineering, Global Nuclear Fuel – Americas, L.L.C. (“GNF-A”) and have been delegated the function of reviewing the information described in paragraph (2) which is sought to be withheld, and have been authorized to apply for its withholding.

(2) The information sought to be withheld is contained in the attachment, NEDC-33237P, GE14 for ESBWR – Critical Power Correlation, Uncertainty, and OLMCPR Development, March 2006. GNF proprietary information is indicated by enclosing it in double brackets. In each case, the superscript notation \(^{3}\) refers to Paragraph (3) of this affidavit, which provides the basis for the proprietary determination.

(3) In making this application for withholding of proprietary information of which it is the owner or licensee, GNF-A relies upon the exemption from disclosure set forth in the Freedom of Information Act (“FOIA”), 5 USC Sec. 552(b)(4), and the Trade Secrets Act, 18 USC Sec. 1905, and NRC regulations 10 CFR 9.17(a)(4) and 2.390(a)(4) for “trade secrets and commercial or financial information obtained from a person and privileged or confidential” (Exemption 4). The material for which exemption from disclosure is here sought is all “confidential commercial information,” and some portions also qualify under the narrower definition of “trade secret,” within the meanings assigned to those terms for purposes of FOIA Exemption 4 in, respectively, Critical Mass Energy Project v. Nuclear Regulatory Commission, 975F2d871 (DC Cir. 1992), and Public Citizen Health Research Group v. FDA, 704F2d1280 (DC Cir. 1983).

(4) Some examples of categories of information which fit into the definition of proprietary information are:

a. Information that discloses a process, method, or apparatus, including supporting data and analyses, where prevention of its use by GNF-A’s competitors without license from GNF-A constitutes a competitive economic advantage over other companies;

b. Information which, if used by a competitor, would reduce his expenditure of resources or improve his competitive position in the design, manufacture, shipment, installation, assurance of quality, or licensing of a similar product;

c. Information which reveals cost or price information, production capacities, budget levels, or commercial strategies of GNF-A, its customers, or its suppliers;

d. Information which reveals aspects of past, present, or future GNF-A customer-funded development plans and programs, of potential commercial value to GNF-A;

e. Information which discloses patentable subject matter for which it may be desirable to obtain patent protection.
The information sought to be withheld is considered to be proprietary for the reasons set forth in paragraphs (4)a. and (4)b., above.

(5) To address the 10 CFR 2.390 (b) (4), the information sought to be withheld is being submitted to NRC in confidence. The information is of a sort customarily held in confidence by GNF-A, and is in fact so held. Its initial designation as proprietary information, and the subsequent steps taken to prevent its unauthorized disclosure, are as set forth in (6) and (7) following. The information sought to be withheld has, to the best of my knowledge and belief, consistently been held in confidence by GNF-A, no public disclosure has been made, and it is not available in public sources. All disclosures to third parties including any required transmittals to NRC, have been made, or must be made, pursuant to regulatory provisions or proprietary agreements which provide for maintenance of the information in confidence.

(6) Initial approval of proprietary treatment of a document is made by the manager of the originating component, the person most likely to be acquainted with the value and sensitivity of the information in relation to industry knowledge, or subject to the terms under which it was licensed to GNF-A. Access to such documents within GNF-A is limited on a “need to know” basis.

(7) The procedure for approval of external release of such a document typically requires review by the staff manager, project manager, principal scientist or other equivalent authority, by the manager of the cognizant marketing function (or his delegate), and by the Legal Operation, for technical content, competitive effect, and determination of the accuracy of the proprietary designation. Disclosures outside GNF-A are limited to regulatory bodies, customers, and potential customers, and their agents, suppliers, and licensees, and others with a legitimate need for the information, and then only in accordance with appropriate regulatory provisions or proprietary agreements.

(8) The information identified in paragraph (2) is classified as proprietary because it contains details of GNF-A’s fuel design and licensing methodology. The development of the methods used in these analyses, along with the testing, development and approval of the supporting methodology was achieved at a significant cost, on the order of several million dollars, to GNF-A or its licensor.

(9) Public disclosure of the information sought to be withheld is likely to cause substantial harm to GNF-A’s competitive position and foreclose or reduce the availability of profit-making opportunities. The fuel design and licensing methodology is part of GNF-A’s comprehensive BWR safety and technology base, and its commercial value extends beyond the original development cost. The value of the technology base goes beyond the extensive physical database and analytical methodology and includes development of the expertise to determine and apply the appropriate evaluation process. In addition, the technology base includes the value derived from providing analyses done with NRC-approved methods.

The research, development, engineering, analytical, and NRC review costs comprise a substantial investment of time and money by GNF-A or its licensor.
The precise value of the expertise to devise an evaluation process and apply the correct analytical methodology is difficult to quantify, but it clearly is substantial.

GNF-A's competitive advantage will be lost if its competitors are able to use the results of the GNF-A experience to normalize or verify their own process or if they are able to claim an equivalent understanding by demonstrating that they can arrive at the same or similar conclusions.

The value of this information to GNF-A would be lost if the information were disclosed to the public. Making such information available to competitors without their having been required to undertake a similar expenditure of resources would unfairly provide competitors with a windfall, and deprive GNF-A of the opportunity to exercise its competitive advantage to seek an adequate return on its large investment in developing and obtaining these very valuable analytical tools.

I declare under penalty of perjury that the foregoing affidavit and the matters stated therein are true and correct to the best of my knowledge, information, and belief.

Executed at Wilmington, North Carolina, this 2nd Day of March, 2006

Andrew A. Lingenfelter
Global Nuclear Fuel – Americas, LLC