# 1.1 FACILITY AND PROCESS DESCRIPTION

The NEF, a state-of-the-art process plant, is located in southeastern New Mexico in Lea County approximately 0.8 km (0.5 mi) west of the Texas state border. This location is approximately 8 km (5 mi) due east of Eunice and 32 km (20 mi) south of Hobbs.

The geographic location of the facility is shown on Figures 1.1-1, State Map, and 1.1-2, County Map.

This uranium enrichment plant is based on a highly reliable gas centrifuge process. The plant is designed to separate a feed stream containing the naturally occurring proportions of uranium isotopes into a product stream - enriched in the uranium-235 (<sup>235</sup>U) isotope and a tails stream - depleted in the <sup>235</sup>U isotope. The process, entirely physical in nature, takes advantage of the tendency of materials of differing density to segregate in the force field produced by a centrifuge. The chemical form of the working material of the plant, uranium hexafluoride (UF<sub>6</sub>), does not require chemical transformations at any stage of the process. This process enriches natural UF<sub>6</sub>, containing approximately 0.711% <sup>235</sup>U to a UF<sub>6</sub> product, containing <sup>235</sup>U enriched up to 5 <sup>w</sup>/<sub>0</sub>.

The nominal capacity of the facility is 3 million separative work units (SWU) per year. The maximum gross output of the facility is slightly greater than 3 million SWU thus allowing for a production margin for centrifuge failures and occasional production losses during the operational lifetime of the facility.

Feed is received at the plant in specially designed cylinders containing up to 12.7 MT (14 tons) of UF<sub>6</sub>. The cylinders are inspected and weighed in the Cylinder Receipt and Dispatch Building (CRDB) and transferred to the main process facility, the Separations Building. Separation operations are divided among three Separations Building Modules, each capable of handling approximately one-third of plant capacity. Each Separations Building Module is divided into two Cascade Halls, and each Cascade Hall is comprised of eight cascades. Therefore, the total plant is comprised of 48 cascades. Each Cascade Hall produces enriched UF<sub>6</sub> at a specified assay ( $^{w}/_{o}$ <sup>235</sup>U), so up to six different assays can be produced at one time.

The enrichment process, housed in the Separations Building, is comprised of four major elements: a UF<sub>6</sub> Feed System, a Cascade System, a Product Take-off System, and a Tails Take-off System. Other product related functions include the Product Liquid Sampling and Product Blending Systems. Supporting functions include sample analysis, equipment decontamination and rebuild, liquid effluent treatment and solid waste management.

The major equipment used in the UF<sub>6</sub> feed process are Solid Feed Stations. Feed cylinders are loaded into Solid Feed Stations; vented for removal of light gases, primarily air and hydrogen fluoride (HF), and heated to sublime the UF<sub>6</sub>. The light gases and UF<sub>6</sub> gas generated during feed purification are routed to the Feed Purification Subsystem where the UF<sub>6</sub> is desublimed

The major pieces of equipment in the Feed Purification Subsystem are UF<sub>6</sub> Cold Traps, a Vacuum Pump/Chemical Trap Set, and a Low Temperature Take-off Station (LTTS). The Feed Purification Subsystem removes any light gases such as air and HF from the UF<sub>6</sub> prior to introduction into the cascades. The UF<sub>6</sub> is captured in UF<sub>6</sub> Cold Traps and ultimately recycled as feed, while HF is captured on chemical traps.

のないので、「ない」というないない。

**OVED** and a second sec

A STATE

an and the second second

1

SECY-02

Exhibi

Ś

December 2003

Page 1.1-1

NEF Safety Analysis Report

Template= secy-028

|                                          | IUCLEAR REGU       |                 |                 |
|------------------------------------------|--------------------|-----------------|-----------------|
|                                          |                    |                 | Services, L.P.  |
| Dochet No. 2                             | 0-3103.ML          | Official Editor | 4 <u>ES124</u>  |
| OFFEHED by Applicant/Licensee Intervenor |                    |                 |                 |
|                                          | NRC Staff          | _Other          |                 |
| <b>(DENTIFIED</b> o                      | n <u>alislae</u> v | (Itness/Panel_  | Krich           |
| Action Taken:                            | ADMITTED           | REJECTED        | WITHDRAMM       |
| <b>Reporten/Clark</b>                    | Betha              | MI EN           | 2001            |
|                                          |                    | 1               | f <sup>or</sup> |
|                                          |                    | V               |                 |

•

.

2.1

.

1

ł

•

•

.

, .i



2006 MAR 13 PM 3: 25

ADJUDICATIONS STAFF

-

r

After purification,  $UF_6$  from the Solid Feed Stations is routed to the Cascade System. Pressure in all process lines is subatmospheric.

Gaseous UF<sub>6</sub> from the Solid Feed Stations is routed to the centrifuge cascades. Each centrifuge has a thin-walled, vertical, cylindrically shaped rotor that spins around a central post within an outer casing. Feed, product, and tails streams enter and leave the centrifuge through the central post. Control valves, restrictor orifices, and controllers provide uniform flow of product and tails.

Depleted UF<sub>6</sub> exiting the cascades is transported from the high vacuum of the centrifuge for desublimation into Uranium Byproduct Cylinders (UBCs) at subatmospheric pressure. The primary equipment of the Tails Take-off System is the vacuum pumps and the Tails Low Temperature Take-off Stations (LTTS). Chilled air flows over cylinders in the Tails LTTS to effect the desublimation. Filling of the cylinders is monitored with a load cell system, and filled cylinders are transferred to an outdoor storage area (UBC Storage Pad).

Enriched UF<sub>6</sub> from the cascades is desublimed in a Product Take-off System comprised of vacuum pumps, Product Low Temperature Take-off Stations (LTTS), UF<sub>6</sub> Cold Traps, and Vacuum Pump/Chemical Trap Sets. The pumps transport the UF<sub>6</sub> from the cascades to the Product LTTS at subatmospheric pressure. The heat of desublimation of the UF<sub>6</sub> is removed by cooling air routed through the LTTS. The product stream normally contains small amounts of light gases that may have passed through the centrifuges. Therefore, a UF<sub>6</sub> Cold Trap and Vacuum Pump/Trap Set are provided to vent these gases from the product cylinder. Any UF<sub>6</sub> captured in the cold trap is periodically transferred to another product cylinder for use as product or blending stock. Filling of the product cylinders is monitored with a load cell system, and filled cylinders are transferred to the Product Liquid Sampling System for sampling.

Sampling is performed to verify product assay level ( $^{w}/_{o}$ <sup>235</sup>U). The Product Liquid Sampling Autoclave is an electrically heated, closed pressure vessel used to liquefy the UF<sub>6</sub> and allow collection of a sample. The autoclave is fitted with a hydraulic tilting mechanism that elevates one end of the autoclave so that liquid UF<sub>6</sub> pcurs into a sampling manifold connected to the cylinder valve. After sampling, the autoclave is brought back to the horizontal position and the cylinder is indirectly cooled by water flowing through coils located on the outer shell of the autoclave.

LES customers may require product at enrichment levels other than that produced by a single Cascade Hall. Therefore, the plant has the capability to blend enriched UF<sub>6</sub> from two donor cylinders of different assays into a product receiver cylinder. The Product Blending System is comprised of Blending Donor Stations for the two donor cylinders and a Blending Receiver Station for the receiver cylinder. The Donor Stations are similar to the Solid Feed Stations described earlier. The Receiver Station is similar to the Low-Temperature Take-off Stations described earlier.

Support functions, including sample analysis, equipment decontamination and rebuild, liquid effluent treatment and solid waste management are conducted in the Technical Services Building (TSB). Decontamination, primarily of pumps and valves, uses solutions of citric acid. Sampling includes a Chemical Laboratory for verifying product UF<sub>6</sub> assay, and an Environmental Monitoring Laboratory. Liquid effluent is collected and treated and monitored before discharge to the Treated Effluent Evaporation Basin, a double-lined evaporative basin with leak detection.

NEF Safety Analysis Report

December 2003 Page 1.1-2

# 1.1.1 Facility Location, Site Layout, And Surrounding Characteristics

Site features are well suited for the location of a uranium enrichment facility as evidenced by its favorable conditions of hydrology, geology, seismology and meteorology as well as good transportation routes for transporting feed and product by truck.

The facility is located on approximately 220 ha (543 acres) of land in Section 32 of Lea County, New Mexico. The Separations Building Modules, Administration Building, Cylinder Receipt and Dispatch Building, Centrifuge Assembly Building, Central Utilities Building, Technical Services Building, and UBC Storage Pad are located approximately in the center of the Section on 73 ha (180 acres) of developed area. A Plot Plan of the facility is shown in Figure 1.1-3, Plot Plan (1 Mile Radius). The Facility Layout (Site Plan) depicting the Site Boundary and Controlled Area Boundary is shown in Figure 1.1-4, Facility Layout (Site Plan) with Site Boundary and Controlled | Access Area Boundary.

The site lies along the north side of New Mexico Highway 234. It is relatively flat with slight undulations in elevation ranging from 1,033 to 1,061 m (3,390 to 3,430 ft) above mean sea level (msl). The overall slope direction is to the southwest. A barbed wire fence runs along the east, south and west property lines. The fence along the north property line has been dismantled. A 254-mm (10-in) diameter, underground carbon dioxide pipeline owned by Trinity Pipeline LLC, traverses the site from southeast to northwest. A 406-mm (16-in) diameter, underground natural gas pipeline, owned by the Sid Richardson Energy Services Company, is located along the south property line, paralleling New Mexico Highway 234.

The nearest community is Eunice, approximately 8 km (5 mi) from the site. There are no residences, schools, stores or other population centers within a 1.6 km (1 mi) radius of the site.

Additional details of proximity to nearby populations are provided in the Environmental Report.

## **1.1.2** Facilities Description

The major structures and areas of the facility are outlined below.

## Separations Building Modules

The overall layout of a Separations Building Module is presented in Figures 1.1-5 through 1.1-7 and the UF<sub>6</sub> Handling Area is shown in Figure 1.1-8, UF<sub>6</sub> Handling Area Equipment Location. The facility includes three identical Separations Building Modules. Each module consists of two Cascade Halls, each having eight cascades with each cascade having hundreds of centrifuges. Each Cascade Hall is capable of producing approximately 500,000 SWU per year. The major functional areas of the Separations Building Modules are:

- Cascade Halls (2)
- Process Services Area
- UF<sub>6</sub> Handling Area

Source material and special nuclear material (SNM) are used or produced in this area. Additional details of the Separations Building Modules are provided in Chapter 3, Integrated Safety Analysis Summary.

## **Technical Services Building**

The overall layout of the Technical Services Building (TSB) is presented in Figures 1.1-9, Technical Services Building First Floor, and 1.1-10, Technical Services Building Second Floor. The TSB contains support areas for the facility. It also acts as the secure point of entry to the Separations Building Modules and the Cylinder Receipt and Dispatch Building (CRDB). The major functional areas of the TSB are:

- Solid Waste Collection Room
- Vacuum Pump Rebuild Workshop
- Decontamination Workshop
- Ventilated Room
- Cylinder Preparation Room
- Mechanical, Electrical and Instrumentation (ME&I) Workshop
- Liquid Effluent Collection and Treatment Room
- Laundry
- TSB Gaseous Eff uent Vent System (GEVS) Room
- Mass Spectrometry Laboratory
- Chemical Laboratory
- Environmental Monitoring Laboratory
- Truck Bay/Shipping and Receiving Area
- Medical Room
- Radiation Monitoring Control Room
- Break Room
- Control Room
- Training Room
- Security Alarm Center

Source material and SNM are found in this area. Additional details of the TSB are provided in Chapter 3, Integrated Safety Analysis Summary.

## Centrifuge Assembly Building

This building is used to assemble centrifuges before they are moved into the Separations Building and installed in the cascades. The overall layout of the Centrifuge Assembly Building (CAB) is presented in Figures 1.1-11 through 1.1-13. The Centrifuge Assembly Building is located adjacent to the Cylinder Receipt and Dispatch Building. The major functional areas of the CAB are:

- Centrifuge Component Storage Area
- Centrifuge Assembly Area

NEF Safety Analysis Report

Revision 2, July 2004 Page 1.1-4

- Assembled Centrifuge Storage Area
- Centrifuge Test Facility
- Centrifuge Post Mortem Facility

Source material and SNM are used and produced in this area. Additional details of the Centrifuge Assembly Building are provided in Chapter 3, Integrated Safety Analysis Summary.

### Administration Building

The general office areas and Entrance Exit Control Point (EECP) are located in the Administration Building, Figure 1.1-14, Administration Building. All personnel access to the facility occurs at this location. Vehicular traffic passes through a security checkpoint before being allowed to park. Parking is located outside of the Controlled Access Area (CAA) security fence. Personnel enter the Administration Building and general office areas via the main lobby.

Personnel requiring access to facility areas or the CAA must pass through the EECP. The EECP is designed to facilitate and control the passage of authorized facility personnel and visitors.

Entry to the facility area from the Administration Building is only possible through the EECP. Additional details of the Administration Building are provided in Chapter 3, Integrated Safety Analysis Summary.

### Security Building

The main site Security Building is located at the entrance to the plant. It functions as a security checkpoint for incoming and outgoing vehicular traffic. Employees, visitors and trucks that have access approval are screened at this location.

A guard house is located at the secondary site entrance on the west side of the site. Common carriers, such as mail delivery trucks, are screened at this location.

Additional details of the Security Building are provided in Chapter 3, Integrated Safety Analysis Summary.

### Cylinder Receipt and Dispatch Building

The overall layout of the Cylinder Receipt and Dispatch Building (CRDB) is presented in Figures 1.1-15, Cylinder Receipt and Dispatch Building First Floor Part A, and 1.1-16, Cylinder Receipt and Dispatch Building First Floor Part B. The CRDB is located between two Separations Building Modules, adjacent to the Blending and Liquid Sampling Area. This building contains equipment to receive, inspect, weigh and temporarily store cylinders of feed UF<sub>6</sub> sent to the plant; temporarily store, inspect, weigh, and ship cylinders of enriched UF<sub>6</sub> to facility customers; receive, inspect, weigh, and temporarily store clean empty product and UBCs prior to being filled in the Separations Building; and inspect, weigh, and transfer filled UBCs to the UBC Storage Pad. The functions of the Cylinder Receipt and Dispatch Building are:

- Loading and unloading of cylinders
- Inventory weighing
- Storage of protective cylinder overpacks

NEF Safety Analysis Report

- Storage of clean empty and empty UBCs
- Buffer storage of feed cylinders

Source and SNM are used in this area. Additional details of the Cylinder Receipt and Dispatch Building are provided in Chapter 3, Integrated Safety Analysis Summary.

### Blending and Liquid Sampling Area

The Blending and Licluid Sampling Area is adjacent to the CRDB and is located between two Separations Building Modules. The Blending and Liquid Sampling Area is shown in Figure 1.1-17, Blending and Liquid Sampling Area First Floor.

The primary function of the Blending and Liquid Sampling Area is to provide means to fill ANSI N14.1 (ANSI, applicable version) Model 30B cylinders with UF<sub>6</sub> at a required <sup>235</sup>U enrichment level and to liquefy, homogenize and sample 30B cylinders prior to shipment to the customer. The area contains the major components associated with the Product Liquid Sampling System and the Product Blending System.

SNM is used in this area. Additional details on these systems are provided in Chapter 3, Integrated Safety Analysis Summary.

### UBC Storage Pad

The facility utilizes an area outside of the CRDB, the UBC Storage Pad, for storage of cylinders containing UF<sub>6</sub> that is depleted in <sup>235</sup>U. The cylinder contents are stored under vacuum in corrosion-resistant AINSI N14.1 (ANSI, applicable version) Model 48Y cylinders. The UBC Storage Pad is described in detail in Chapter 3, Integrated Safety Analysis Summary.

The UBC storage area layout is designed for moving the cylinders with a small truck and a crane. A flatbed truck moves the UBCs from the CRDB to the UBC Storage Pad entrance. A double girder gantry crane removes the cylinders from the flatbed truck and places them in the UBC Storage Pad. The gantry crane is designed to double stack the cylinders in the storage area.

Source material is used in this area.

### **Central Utilities Building**

The Central Utilities Building (CUB) is shown on Figure 1.1-18, Central Utilities Building. The Central Utilities Building houses two diesel generators, which provide the site with standby power. The rooms housing the diesel generators are constructed independent of each other with adequate provisions made for maintenance, equipment removal and equipment replacement, by including roll-up access doors. The Standby Diesel Generator System is discussed in Chapter 3.5.10. The building also contains Electrical Rooms, an Air Compressor Room, a Boiler Room and Cooling Water Facility.

### **Visitor Center**

A Visitor Center is located outside of the Controlled Access area.

**NEF Safety Analysis Report** 

Revision 2, July 2004 Page 1.1-6

## **1.1.3 Process Descriptions**

This section provides a description of the various processes analyzed as part of the Integrated Safety Analysis. A brief overview of the entire enrichment process is provided followed by an overview of each major process system. Additional details are provided in Chapter 3, Integrated Safety Analysis Summary.

## 1.1.3.1 Process Overview

The enrichment process at the NEF is basically the same process described in the SAR for the Claiborne Enrichment Center (LES, 1991). The Nuclear Regulatory Commission (NRC) staff documented its review of the Claiborne Enrichment Center license application and concluded that LES's application provided an adequate basis for safety review of facility operations and that construction and operation of the Claiborne Enrichment Center would not pose an undue risk to public health and safety (NRC, 1993). The design of the NEF incorporates the latest safety improvements and design enhancements from the Urenco enrichment facilities currently operating in Europe.

The primary function of the facility is to enrich natural uranium hexafluoride (UF<sub>6</sub>) by separating a feed stream containing the naturally occurring proportions of uranium isotopes into a product stream enriched in <sup>235</sup>U and a tails stream depleted in the <sup>235</sup>U isotope. The feed material for the enrichment process is uranium hexafluoride (UF<sub>6</sub>) with a natural composition of isotopes <sup>234</sup>U, <sup>235</sup>U, and <sup>238</sup>U. The enrichment process is a mechanical separation of isotopes using a fast rotating cylinder (centrifuge) based on a difference in centrifugal forces due to differences in molecular weight of the uranic isotopes. No chemical changes or nuclear reactions take place. The feed, product, and tails streams are all in the form of UF<sub>6</sub>.

## 1.1.3.2 **Process System Descriptions**

An overview of the four enrichment process systems and the two enrichment support systems is discussed below.

Numerous substances associated with the enrichment process could pose hazards if they were released into the environment. Chapter 6, Chemical Process Safety, contains a discussion of the criteria and identification of the chemicals of concern at the NEF and concludes that uranium hexafluoride (UF<sub>6</sub>) is the only chemical of concern that will be used at the facility. Chapter 6, Chemical Process Safety, also identifies the locations where UF<sub>6</sub> is stored or used in the facility and includes a detailed discussion and description of the hazardous characteristics of UF<sub>6</sub> as well as a detailed listing of other chemicals that are in use at the facility.

Additional details on each of the enrichment process systems are provided in Chapter 3, Integrated Safety Analysis Summary.

The enrichment process is comprised of the following major systems:

## UF<sub>6</sub> Feed System

The first step in the process is the receipt of the feed cylinders and preparation to feed the  $UF_6$  through the enrichment process.

Natural UF<sub>6</sub> feed is received at the NEF in 48Y or 48X cylinders from a conversion plant. Pressure in the feed cylinders is below atmospheric (vacuum) and the UF<sub>6</sub> is in solid form.

The function of the UF<sub>6</sub> Feed System is to provide a continuous supply of gaseous UF<sub>6</sub> from the feed cylinders to the cascades. There are six Solid Feed Stations per Cascade Hall; three stations in operation and three on standby. The maximum feed flow rate is 187 kg/hr (412 lb/hr) UF<sub>6</sub> based on a maximum capacity of 545,000 SWU per year per Cascade Hall.

#### Cascade System

The function of the Cascade System is to receive gaseous UF<sub>6</sub> from the UF<sub>6</sub> Feed System and enrich the <sup>235</sup>U isotope in the UF<sub>6</sub> to a maximum of 5  $^{\text{w}}/_{o}$ .

Multiple gas centrifucies make up arrays called cascades. The cascades separate gaseous UF<sub>6</sub> feed with a natural uranium isotopic concentration into two process flow streams – product and tails. The product stream is the enriched UF<sub>6</sub> stream, from 2 - 5  $^{w}/_{o}^{235}$ U, with an average of 4.5  $^{w}/_{o}^{235}$ U. The tails stream is UF<sub>6</sub> that has been depleted of  $^{235}$ U isotope to 0.20 – 0.34  $^{w}/_{o}^{235}$ U, with an average of 0.32  $^{w}/_{o}^{235}$ U.

### Product Take-off System

The function of the Product Take-off System is to provide continuous withdrawal of the enriched gaseous  $UF_6$  product from the cascades and to purge and dispose of light gas impurities from the enrichment process.

The product streams leaving the eight cascades are brought together into one common manifold from the Cascade Hall. The product stream is transported via a train of vacuum pumps to Product L1TS in the UF<sub>6</sub> Handling Area. There are five Product LTTS per Cascade Hall; two stations in operation and three stations on standby.

The Product Take-off System also contains a system to purge light gases (typically air and hydrogen fluoride) frcm the enrichment process. This system consists of UF<sub>6</sub> Cold Traps which capture UF<sub>6</sub> while leaving the light gas in a gaseous state. The cold trap is followed by product vent Vacuum Pump/Trap Sets, each consisting of a carbon trap, an alumina trap, and a vacuum pump. The carbon trap removes small traces of UF<sub>6</sub> and the alumina trap removes any hydrogen fluoride (HF<sup>2</sup>) from the product gas.

#### Tails Take-off System

The primary function of the Tails Take-off System is to provide continuous withdrawal of the gaseous  $UF_6$  tails from the cascades. A secondary function of this system is to provide a means for removal of  $UF_6$  from the centrifuge cascades under abnormal conditions.

The tails stream exits each Cascade Hall via a primary header, goes through a pumping train, and then to Tails LTTS in the UF<sub>6</sub> Handling Area. There are ten Tails LTTS per Cascade Hall. Under normal operation, seven of the stations are in operation receiving tails and three are on standby.

In addition to the four primary systems listed above, there are two major support systems:

### Product Blending System

The primary function of the Product Blending System is to provide a means to fill 30B cylinders with UF<sub>6</sub> at a specific enrichment of <sup>235</sup>U to meet customer requirements. This is accomplished

by blending (mixing)  $UF_6$  at two different enrichment levels to one specific enrichment level. The system can also be used to transfer product from a 30B or 48Y cylinder to another 30B cylinder without blending.

This system consists of Blending Donor Stations (which are similar to the Solid Feed Stations) and Blending Receiver Stations (which are similar to the Product LTTS) described under the primary systems.

## Product Liquid Sampling System

The function of the Product Liquid Sampling System is to obtain an assay sample from filled product 30B cylinders. The sample is used to validate the exact enrichment level of  $UF_6$  in the filled product cylinders before the cylinders are sent to the fuel processor.

This is the only system in the NEF that changes solid  $UF_6$  to liquid  $UF_6$ .

## **1.1.4** Raw Materials, By-Products, Wastes, And Finished Products

The facility handles Special Nuclear Material of <sup>235</sup>U contained in uranium enriched above natural but less than or equal to  $5.0 \text{ w/}_{\circ}$  in the <sup>235</sup>U isotope. The <sup>235</sup>U is in the form of uranium hexafluoride (UF<sub>6</sub>). The facility processes approximately 690 feed cylinders (Model 48Y or 48X), 350 product cylinders (Model 30B), and 625 UBCs (Model 48Y) per year.

LES does not propose possession of any reflectors or moderators with special characteristics.

### Solid Waste Management

Solid waste generated at the NEF will be grouped into industrial (non-hazardous), radioactive, hazardous, and mixed waste categories. In addition, solid radioactive and mixed waste is further segregated according to the quantity of liquid that is not readily separable from the solid material. The solid waste management systems are comprised of a set of facilities, administrative procedures, and practices that provide for the collection, temporary storage, processing, and transportation for disposal of categorized solid waste in accordance with regulatory requirements. All solid radioactive wastes generated are Class A low-level wastes (LLW) as defined in 10 CFR 61 (CFR, 2003a).

Radioactive waste is collected in labeled containers in each Radiation Area and transferred to the Solid Waste Collection Room for processing. Suitable waste will be volume-reduced, and all radioactive waste will be disposed of at a licensed LLW disposal facility.

Hazardous waste and a small amount of mixed waste are generated at the NEF. These wastes are also collected at the point of generation and transferred to the Solid Waste Collection Room. Any mixed waste that may be processed to meet land disposal requirements may be treated in its original collection container and shipped as LLW for disposal.

Industrial waste, including miscellaneous trash, filters, resins and paper is shipped offsite for compaction and then sent to a licensed waste landfill.

### Effluent Systems

The following NEF systems handle wastes and effluent. The effectiveness of each system for effluent control is discussed in detail in Chapter 3, Integrated Safety Analysis Summary.

Separations Building Gaseous Effluent Vent System

- TSB Gaseous Effluent Vent System
- Liquid Effluent Collection and Treatment System
- Centrifuge Test and Post Mortem Facilities Exhaust Filtration System
- Septic System

з. ` С

- Solid Waste Collection System
- Decontamination System
- Fomblin Oil Recovery System
- Laundry System

### Effluent Quantities

Quantities of radioactive and non-radioactive wastes and effluent are estimated and shown in the tables referenced in this section. The tables include quantities and average uranium concentrations. Portions of the waste considered hazardous or mixed are identified.

The following tables address plant effluents:

- Table 1.1-1, Estimated Annual Gaseous Effluent
- Table 1.1-2, Estimated Annual Radiological and Mixed Wastes
- Table 1.1-3, Estimated Annual Liquid Effluent
- Table 1.1-4, Estimated Annual Non-Radiological Wastes

Radioactive concentration limits and handling for liquid wastes and effluents are detailed in the Environmental Report.

The waste and effluent estimates described in the tables listed above were developed specifically for the NEF. Each system was analyzed to determine the wastes and effluents generated during operation. These values were analyzed and a waste disposal path was developed for each. LES considered the facility site, facility operation, applicable Urenco experience, applicable regulations, and the existing U.S. waste processing/disposal infrastructure during the development of the paths. The Liquid Effluent Collection and Treatment System and the Solid Waste Collection System were designed to meet these criteria.

### **Construction Wastes**

During construction, efforts are made to minimize the environmental impact. Erosion, sedimentation, dust, smoke, noise, unsightly landscape, and waste disposal are controlled to practical levels and applicable regulatory limits. Wastes generated during site preparation and construction will be varied, depending on the activities in progress. The bulk of the wastes will consist of non-hazardous materials such as packing materials, paper and scrap lumber. These wastes will be transported off site to an approved landfill. It is estimated that the NEF will generate a non-compacted average waste volume of 3,058 m<sup>3</sup> (4,000 yd<sup>3</sup>) annually.

Hazardous type wastes that may be generated during construction have been identified and annual quantities estimated are shown in Table 1.1-5, Annual Hazardous Construction Wastes.

NEF Safety Analysis Report

Any of these wastes that are generated will be handled by approved methods and shipped off site to approved disposal sites.

Management and disposal of all wastes from the NEF site will be performed by personnel trained to properly identify, store, and ship wastes, audit vendors, direct and conduct spill cleanup, provide interface with state agencies, maintain inventories and provide annual reports.

A Spill Prevention, Control and Countermeasure Plan (SPCC) will be implemented during construction to minimize the possibility of spills of hazardous substances, minimize environmental impact of any spills and ensure prompt and appropriate remediation. The SPCC plan will identify sources, locations and quantities of potential spills and response measures. The plan will identify individuals and their responsibilities for implementation of the plan and provide for prompt notifications of state and local authorities.