FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNITS #1 & #2 ANNUAL REPORT JANUARY 1, 2005 THROUGH DECEMBER 31, 2005

ATTACHMENT B C-200, OFFSITE DOSE CALCULATION MANUAL REVISION 26

\mathbf{P}		
F	P	

ST. LUCIE PLANT

CHEMISTRY OPERATING PROCEDURE

Procedure No.

C-200

Current Revision No.

Effective Date

08/02/05

26

SAFETY RELATED

Title:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

Responsible Department: CHEMISTRY

REVISION SUMMARY:

Revision 26 - Incorporated PCR 05-0822 for CR 04-17054 to delete references to laundry area monitor, delete requirements to sample goat milk, change drinking water, change mangrove to vegitation and change DHRS to BRC. (Frank Gusmano, 07/28/05)

Revision 25 - Revised Action Statements 35 and 45 such that releases via the pathway may continue as long as prior to release, two independent samples of tank's contents are analyzed, and two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup. (Al Locke, 05/14/02)

Revision 24 - Made changes per CR 01-0140 and periodic review. (R. E. Cox, 02/14/02)

Revision 23A - Changed cover page description for revision 23 to read "goat (milk)" instead of "goat (milk)". (Bonnie Gilmour, 05/01/01)

Revision 23 - Specified pressure loss criteria, added actions 37 for the S/G Blowdown Radioactivity Monitor to meet the expectation of the new EPRI industry standard, ensured grab samples will be taken, included Carbon-14 & Nickel-63 in liquid sampling/analysis, changed gaseous continuous vent release pathway, standardized St. Lucie with Turkey Points ODCM wording, included goat (milk) animal to the Radiological Environmental Monitoring Program, and included new dose conversion factors. (R. E. Cox, 01/19/01)

Revision 0	FRG Review Date 04/22/82	Approved By C. M. Wethy	Approval Date 04/27/82	DATE	_OPS
	-	Plant General Manager		DOCT	PROCEDURE
Revision	FRG Review Date	Approved By	Approval Date	DOCN	C-200
26	07/28/05	G. L. Johnston	07/28/05	SYS	
		Plarit General Manager		СОМ	COMPLETED
		N/A		ІТМ –	26
		Authorized Approver N/A			
		Authorized Approver (Minor Correction)			

FOR INFORMATION ONLY Before use, verify revision and change documentation (if applicable) with a controlled index or document. DATE VERIFIED INITIAL

REVISIO	N NO.:	PROCEDURE TITLE:	PAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	2 of 219
PROCED	URE NO.:		201219
	C-200	ST. LUCIE PLANT	
		INDEX	
	SECTION		PAGE
NTRO	DUCTION		9
CONT	ROLS SECTI	ON	
	IITIONS FOR	CONTROLS SECTION	
			14
1.1 1.4	CHANNEI	CALIBRATION	
1.5	CHANNEL	СНЕСК	11
1.6		FUNCTIONAL TEST	
.10		IIVALENT I-131	
.13		CY NOTATION	
.17	MEMBER(S		
l.18 l.19		OSE CALCULATION MANUAL	
.19		NAL MODE - MODE	
.20			
.25		ERMAL POWER	
.27		BLE EVENT	
.30			
1.31		HECK	
1.33	THERMAL	POWER	
.34		D RELEASE	
.35			
.39		ON EXHAUST TREATMENT SYSTEM	
1.40	VENTING	S HOLDUP SYSTEM	
.41	WASTE GA		
3/4	CONTROLS	SAND SURVEILLANCE REQUIREMENTS	17
8/4.0	APPLICABI	LITY	17
<u>NSTR</u>	UMENTATIO	N	
RADIO	ACTIVE LIQU	JID EFFLUENT MONITORING INSTRUMENTATION	18
RADIO	ACTIVE GAS	EOUS EFFLUENT MONITORING INSTRUMENTATIC	N24

REVISION NO.	:	PROCEDURE TITLE:	PAGE:
26	6	OFFSITE DOSE CALCULATION MANUAL (ODCM)	3 of 219
PROCEDURE			001210
C-2	.00	ST. LUCIE PLANT	
		INDEX (continued)	
<u>SE</u>	ECTION		PAGE
	AND SU	RVEILLANCE STATEMENTS FOR CONTROLS SECT	ION
<u>3/4.11 R/</u>	ADIOACT	IVE_EFFLUENTS	
3/4.11.1		EFFLUENTS CONCENTRATION DOSE LIQUID RADWASTE TREATMENT	38
3/4.11.2		US EFFLUENTS DOSE RATE DOSE - NOBLE GAS DOSE - IODINE-131, IODINE-133, TRITIUMS AND RADIONUCLIDES IN PARTICULATE FORM GASEOUS RADWASTE TREATMENT SYSTEM	44 45
3/4.11.3	(NOT US	SED)	
3/4.11.4	TOTAL	DOSE	48
3/4.11.5		CHANGES TO RADIOACTIVE LIQUID, GASEOUS AN TREATMENT SYSTEMS (ADMINISTRATIVE CONTRO	
3/4.11.6		RADIOACTIVE EFFLUENT RELEASE REPORT TO SION (ADMINISTRATIVE CONTROL)	
<u>3/4.12_R</u> A		VE ENVIRONMENTAL MONITORING	
3/4.12.1	ΜΟΝΙΤΟ	RING PROGRAM	54
3/4.12.2	LAND US	SE CENSUS	63
3/4.12.3	INTERLA	ABORATORY COMPARISION PROGRAM	65
3/4.12.4		. RADIOLOGICAL ENVIRONMENTAL OPERATING RI STRATIVE CONTROL)	

REVISION NO	.:	PROCEDURE TITLE:	PAGE:
	6	OFFSITE DOSE CALCULATION MANUAL (ODCM)	4 of 21
PROCEDURE			
C-2	200	ST. LUCIE PLANT	[
		INDEX (continued)	
<u>S</u>	ECTION		<u>PA0</u>
BASES F	OR CONT	ROLS SECTION	
		······································	<u></u>
<u>3/4.11 R</u>	ADIOACT	IVE EFFLUENTS	
3.3.3.9	INSTRU	MENTATION	6
3/4.11.1	LIQUID	EFFLUENTS	6
3/4.11.2	GASEO	US EFFLUENTS	7
3/4.11.3	(NOT US	SED)	
3/4.11.4	TOTAL I	DOSE	7
<u>3/4.12 R</u>	ADIOACT	IVE ENVIRONMENTAL MONITORING	
3/4.12.1	MONITO	DRING PROGRAM	7
3/4.12.2	LAND U	SE CENSUS	7
3/4.12.3	INTERL	ABORATORY COMPARISON PROGRAM	7
<u>LIST OF F</u>	IGURES I	FOR CONTROLS SECTION	
FIGURE			
1.1	SITE AR	EA MAP & ENVIRONMENTAL SAMPLE LOCATIONS	22
1.2	ENVIRO	NMENTAL SAMPLE LOCATIONS (10 MILES)	22

REVISION NO	D.:	PROCEDURE TITLE:	PAGE:
2	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	5 of 219
PROCEDURE			0 01 2 10
C-	200	ST. LUCIE PLANT	
<u>S</u>	PAGE		
CONTRO	LS SECTION	UN	
LIST OF	TABLES F	OR CONTROLS SECTION	
<u>TABLE</u>			
1-1	FREQUE	ENCY NOTATION	16
3.3-12		CTIVE LIQUID EFFLUENT MONITORING MENTATION	19
3.3-13		CTIVE GASEOUS EFFLUENT MONITORING MENTATION	25
3.3-14	RADIOA	CTIVE EFFLUENT MONITORING SETPOINT BASIS	28
3.12-1	RADIOL	OGICAL ENVIRONMENTAL MONITORING PROGRAM	A56
3.12-2		TING LEVELS FOR RADIOACTIVITY CONCENTRATION NMENTAL SAMPLES	
4.3-8		CTIVE LIQUID EFFLUENT MONITORING MENTATION SURVEILLANCE REQUIREMENTS	22
4.3-9		CTIVE GASEOUS EFFLUENT MONITORING MENTATION SURVEILLANCE REQUIREMENTS	32
4.11-1		CTIVE LIQUID WASTE SAMPLING AND ANALYSIS AM	35
4.11-2		CTIVE GASEOUS WASTE SAMPLING AND ANALYSI AM	_
4.12-1		ION CAPABILITIES FOR ENVIRONMENTAL SAMPLE IS LOWER LIMIT OF DETECTION (LLD)	
			Í

REVISIO	NN NO.:		PROCEDURE TITLE:	PAGE:
	26 DURE NO.:		OFFSITE DOSE CALCULATION MANUAL (ODCM)	6 of 219
	C-200		ST. LUCIE PLANT	
			INDEX	
	SECTI	<u>ION</u>	(continued)	PAGE
метн	IODOLOG	GY SE	ECTION	
Glossi	arv for Mi		ology Section	79
1.0	•		EASES METHODOLOGY	
	1.1		lioactive Liquid Effluent Model Assumptions	
	1.2		ermining the Fraction (F) of 10 CFR Part 20 Effluent ncentration Limits (ECL) for a Liquid Release Source	84
	1.3	Dete	ermining Setpoints for Radioactive Liquid Effluent Moni	itors87
	1.4	Dete	ermining the Dose for Radioactive Liquid Releases	91
	1.5	Proje	jecting Dose for Radioactive Liquid Effluents	95
2.0	RADIO	ΑΟΤΙΝ	VE RELEASES OF GASEOUS EFFLUENTS	96
	2.1	Gase	seous Effluent Model Assumptions	97
	2.2		ermining the Total Body and Skin Dose Rates for Noble eases and Establishing Setpoints for Effluent Monitors .	
	2.3		ermining the Radioiodine and Particulate Dose Rate to an From Gaseous Releases	
		2.3.1	1 Inhalation	114
		2.3.2	2 Ground Plane	116
		2.3.3	3 Milk	117
		2.3.4	4 Tritium	119
		2.3.5	5 Total Dose Rate by Release Source	121

REVISION	NO.:	F	PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	7 of 219
PROCED	URE NO.: C-200		ST. LUCIE PLANT	
метн	<u>SECTI</u> ODOLO(INDEX (continued)	PAGE
Glossa	ry for Me	ethodo	ology Section (continued)	
2.0	RADIO	ACTI	VE RELEASES OF GASEOUS EFFLUENTS (continue	ed)
	2.4		ermining the Gamma Air Dose for Radioactive Noble G	
	2.5		ermining the Beta Air Dose for Radioactive Noble Gas	124
	2.6		ermining the Radioiodine and Particulate Dose to Any Aup's Organ From Cumulative Releases	
		2.6.1	Inhalation	128
		2.6.2	2 Ground Plane	129
		2.6.3	3 Milk	130
		2.6.4	4 Meat	131
		2.6.5	5 Vegetation	133
		2.6.6	6 Tritium (All pathways)	135
		2.6.7	7 Total Organ Dose	136
	2.7	Proj€	ecting Dose for Radioactive Gaseous Effluents	137
3.0	40 CFF	r 190 I	DOSE EVALUATION	138
4.0	ANNUA	AL RE	PORT FORMAT	140

REVISION NO .:	PROCEDURE TITLE:		PAGE:
26	OFFSITE DOSE CALCU	LATION MANUAL (ODCM)	8 of 219
PROCEDURE NO.: C-200	ST. LUC	CIE PLANT	
<u>SECTI</u> METHODOLO(PAGE
APPENDIXES			
APPENDIX A	ECL, Dose Factor and Histori	cal Meteorological Tables	154
APPENDIX B	Current R.E.M. Sample Point	Locations	219
APPENDIX C	Description of Meteorological Historical Data and Methodolo Data	ogy for Determining Actual M	ET
APPENDIX D	Description of the Interlaborat	ory Comparison Program	227

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	9 of 219
PROCEDURE NO .:		901219
C-200	ST. LUCIE PLANT	

INTRODUCTION

The ODCM consists of the Controls Section followed by the Methodology Section.

The Controls Section provides the Control Statements, Limits, ACTION Statements, Surveillance Requirements and BASES for ensuring that Radioactive Liquid and Gaseous Effluents released to UNRESTRICTED AREAS and/or the SITE BOUNDARY will be maintained within the requirements of 10 CFR Part 20, 40 CFR Part 190, 10 CFR 50.36.a and 10 CFR Part 50 Appendix-I radioactive release criteria. All Control Statements and most Administrative Control Statements in the ODCM are directly tied to and reference the Plant Technical Specification (TS) Administrative Section. The Administrative Control for Major Changes to Radioactive Liquid, Gaseous and Solid Treatment Systems is as per the guidance of NUREG-1301, April 1991, Supplement No. 1 to NRC Generic Letter 89-01. The numbering sequences of Control Statements also follow the guidance of NUREG-1301 as applicable, to minimize differences. Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment, 6.3.1 and 6.3.2, provide the background for the need to maintain Quality Assurance programs for effluent releases and radiological environmental monitoring.

The Methodology Section uses the models suggested by NUREG-0133, November, 1978 and Regulatory Guide 1.109 to provide calculation methods and parameters for determining results in compliance with the Controls Section of the ODCM. Simplifying assumptions have been applied where applicable to provide a more workable document for implementing the Control requirements. Alternate calculation methods may be used from those presented as long as the overall methodology does not change or as long as most up-to-date revisions of the Regulatory Guide 1.109 dose conversion factors and environmental transfer factors are substituted for those currently included and used in this document.

RECORDS AND NOTIFICATIONS

All records of reviews performed for changes to the ODCM shall be maintained in accordance with QI-17-PSL-1. All FRG approved changes to the ODCM, with required documentation of the changes per TS 6.14, shall be submitted to the NRC in the Annual Effluent Release Report. Procedures that directly implement, administer or supplement the requirements of the ODCM Controls and Surveillances are:

- COP-01.05, Processing Aerated Liquid Waste
- COP-01.06, Processing Gaseous Wastes
- COP-05.02, Conduct of Chemistry Met Tower Data Processing
- COP-05.04, Chemistry Department Surveillances and Parameters
- COP-07.05, Process Monitor Setpoints
- The Radiological Environmental Monitoring Program is performed by the State of Florida as per FPL Juno Nuclear Plant Services Corporate Environmental Procedure Number NPSS-HP-WP-002.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE NO.:		10 of 219
C-200	ST. LUCIE PLANT	
	CONTROLS	
	AND	
	SURVEILLANCE REQUIREMENTS	

-

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	11 of 219
PROCEDURE NO .:		1101219
C-200	ST. LUCIE PLANT	
	INS for CONTROLS SECTION OF ODCM	

The defined terms of this section appear in capitalized type and are applicable throughout these Controls.

<u>ACTION</u>

1.1 ACTION shall be that part of a Control that prescribes remedial measures required under designated conditions.

CHANNEL CALIBRATION

1.4 CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter which the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions and shall include the CHANNEL FUNCTIONAL TEST. The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is calibrated.

CHANNEL CHECK

1.5 CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

CHANNEL FUNCTIONAL TEST

1.6 A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated signal into the channel as close to the primary sensor as practicable to verify OPERABILITY including alarm and / or trip functions.

DOSE EQUIVALENT I-131

1.10 DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microCurie/gram) which alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134 and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be the thyroid dose conversion factors listed in ICRP-30, Supplement to Part 1, Pages 192-212, Tables entitled, "Committed Dose Equivalent in Target Organs or Tissues per Intake of Unit Activity (Sv/Bq)." Reference PLA #98-007, PMAI 99-06-170, PLA #97-005, PMAI 00-01-036.

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	12 of 219
PROCE	DURE NO.:		
	C-200	ST. LUCIE PLANT	
1.0		S for CONTROLS SECTION OF ODCM (continued)	· · · · · · · · · · · · · · · · · · ·
FREC		ATION	
1.13		NCY NOTATION specified for the performance of Surversion Surversion of Surversion Surversion of the intervals defined in Table 1.1.	veillance
MEM	BER (S) OF TH	IE PUBLIC	
1.17	area. Howeve	THE PUBLIC means an individual in a controlled or uner, an individual is not a member of the public during ar vidual receives an occupational dose.	
<u>OFFS</u>	SITE DOSE CA	LCULATION MANUAL	
1.18	methodology a radioactive ga effluent monite Radiological M Radioactive E Programs req should be incl	E DOSE CALCULATION MANUAL (ODCM) shall contain and parameters used in the calculation of offsite doses aseous and liquid effluents, in the calculation of gaseou oring Alarm/Trip Setpoints and in the conduct of the En Monitoring Program. The ODCM shall also contain (1) is fifluent Controls and Radiological Environmental Monitor uired by TS section 6.8.4 and (2) descriptions of the infuded uded in the Annual Radiological Environmental Operat active Effluent Release Reports required by TS 6.9.1.7	resulting from s and liquid vironmental the oring ormation that ing and
OPEF	RABLE - OPER	ABILITY	
1.19	OPERABILIT all necessary water, lubricat subsystem, tra	esystem, train, component or device shall be OPERABL Y when it is capable of performing its specified function attendant instrumentation, controls, electrical power, co ion or other auxiliary equipment that are required for th ain, component or device to perform its function(s) are a their related support function(s).	(s) and when ooling or seal e system,
OPEF	RATIONAL MOI	<u>DE - MODE</u>	
1.20	combination o	DNAL MODE (i.e., MODE) shall correspond to any one f core reactivity condition, power level and average rea pecified in Table 1.2 of the St. Lucie Plant TS.	
PURC	<u> SE - PURGING</u>		
1.24	from a confine	RGING shall be any controlled process of discharging ment to maintain temperature, pressure, humidity, cong condition, in such a manner that replacement air or g	centration or

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM	1) 13 of 219
PROCE	DURE NO.:			15 01 2 15
	C-200		ST. LUCIE PLANT	
1.0	DEFIN	ITIONS	S for CONTROLS SECTION OF ODCM (continued)	
RATE	ED THEF	RMAL F	POWER	
1.25			RMAL POWER shall be a total reactor core heat tran nt of 2700 MWt.	sfer rate to the
REPO	ORTABL	<u>E EVE</u>	<u>NT</u>	
1.27			BLE EVENT shall be any of those conditions specifie FR Part 50.	d in Section
<u>SITE</u>	BOUND	<u>ARY</u>		
1.30			ARY means that line beyond which the land or properwise controlled by the licensee.	erty is not owned,
SOU	RCE CHI	<u>ECK</u>		
1.31			HECK shall be the qualitative assessment of channe ensor is exposed to a radioactive source.	el response when
THEF		<u>DWER</u>		
1.33	THERM coolant		OWER shall be the total reactor core heat transfer rai	te to the reactor
UNPL		RELE	ASE	
1.34	airborne classify	e radio differe	RELEASE is the unintended discharge of a volume activity to the environment. The following guidance incess between unplanned releases and other release an UNPLANNED RELEASE:	is presented to
	ls an U	NPLAN	NED RELEASE if:	
		The wro	ong waste gas decay tank or liquid radwaste release	tank is released
	r a	adioac at the d	of process system to automatically divert a process tive treatment system upon radioactivity being prese letection level or at a certain level of activity, and the ge off site occurs.	nt in the process
	c	of radio	osses from unexpected pipe or valve leaks where the active material to off site such that a 10 CFR Part 50 Part 50.73 report is required.	

DEVIOU			PROCEDURE TITLE:	PAGE:		
REVISION NO.: 26						
PROCE	Z6 DURE NO.:	_	OFFSITE DOSE CALCULATION MANUAL (ODCM)	14 of 219		
	C-200		ST. LUCIE PLANT			
	0-200			1		
1.0	1.0 DEFINITIONS for CONTROLS SECTION OF ODCM (continued)					
1.34	(continued)				
	8 ho wer	ours e d	s Decay Tank, if a Gas Decay Tank loses greater than s for 9 consecutive shifts, or 18 psig in 72 hours, AND t etermined to be to the Reactor Auxiliary Building Atmos the losses as an UNPLANNED RELEASE (reference	he losses sphere, then		
	is not an U	NP	LANNED RELEASE if:			
			ot be shown that the release went off site, i.e., gas wer the system(s) that contained the loss.	it to another		
			l losses through the Plant Vent due to valve and pipe le g activities to make the system safe for maintenance ac			
UNRE	ESTRICTED	AF	REA			
1.35			FED AREA means an area, access to which is neither I the licensee.	imited nor		
VENT	ILATION EX	XH/	AUST TREATMENT SYSTEM			
1.39	and installe form in effle absorbers from the ga system is n Safety Fea	ed t uer anc ase not ture	ON EXHAUST TREATMENT SYSTEM shall be any sy o reduce gaseous radioiodine or radioactive material in its by passing ventilation or vent exhaust gases throug d/or HEPA filters for the purpose of removing iodines or ous exhaust stream prior to the release to the environn considered to have any effect on noble gas effluents. The Atmospheric Cleanup Systems are not considered to N EXHAUST TREATMENT SYSTEM components.	n particulate h charcoal r particulates nent. Such a Engineered		
VENT	ING					
1.40	confinemer operating c	nt to conc du	Il be the controlled process of discharging air or gas from o maintain temperature, pressure, humidity, concentrat dition, in such a manner that replacement air or gas is ring VENTING. Vent, used in system names, does no cess.	ion or other not provided		
WAST	E GAS HO	LDI	JP SYSTEM			
1.41	reduce radio offgases fro	ioa om	S HOLDUP SYSTEM shall be any system designed ar ctive gaseous effluents by collecting Reactor Coolant S the Reactor Coolant System and providing for delay or f reducing the total radioactivity prior to release to the e	System holdup for		

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	15 of 219
PROCEDURE NO.: C-200	ST. LUCIE PLANT	
0-200		
	TABLE 1.1 FREQUENCY NOTATION (Page 1 of 1)	
NOTATION	FREQUENCY	
S	At least once per 12 hours.	
D	At least once per 24 hours.	
W	At least once per 7 days.	
4/M*	At least 4 per month at intervals of no greater than 9 da minimum of 48 per year.	ays and
М	At least once per 31 days.	
Q	At lease once per 92 days.	
SA	At least once per 184 days.	
R	At least once per 18 months.	
S/U	Prior to each reactor startup.	
N.A.	Not Applicable.	
P**	Completed prior to each release	
	re Effluent Sampling re Batch Releases Only	

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	16 of 219
PROCE	DURE NO		ST. LUCIE PLANT	
3/4		CONT	ROLS AND SURVEILLANCE REQUIREMENTS	
3/4.0			CABILITY	
			<u>CADILITT</u>	
	TROLS	; 		
3.0.1	during	g the co	with the Controls contained in the succeeding controls is nditions specified therein; except that upon failure to me associated ACTION requirements shall be met.	
3.0.2	assoo the C	iated A ontrol is	ce with a Control shall exist when the requirements of the CTION requirements are not met within the specified tine restored prior to expiration of the specified time intervation N requirements is not required.	ne intervals. If
SURV	/EILLA	NCE RE	EQUIREMENTS	
4.0.1	indivio		Requirements shall be met during the conditions specifi ntrols unless otherwise stated in an individual Surveillan	
4.0.2		Surveilla al with:	ance Requirement shall be performed within the specific	ed time
	a.	A maxi interva	mum allowable extension not to exceed 25% of the sur I.	veillance
_				

REVISION NO .:	PROCEDURE TITLE:	PAGE:					
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO.:		17 of 219					
C-200	ST. LUCIE PLANT						
INSTRUMENTATIC	<u>N</u>						
RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION							
CONTROLS							
monitoring OPERAB Control 3. shall be d	ance with St. Lucie Plant TS 6.8.4.f.1), the radioactive ling instrumentation channels shown in Table 3.3-12 shall LE with their Alarm/Trip Setpoints set to ensure that the 11.1.1 are not exceeded. The Alarm/Trip Setpoints of t etermined and adjusted in accordance with the methoders in the OFFSITE DOSE CALCULATION MANUAL (OI	be limits of hese channels ology and					
APPLICABILITY:	At all times.						
ACTION:							
Setpoint less suspend the r	ctive liquid effluent monitoring instrumentation channel conservative than required by the above control, immed release of radioactive liquid effluents monitored by the a sclare the channel inoperable or change the setpoint so onservative.	diately Iffected					
instrumentation Restore the in unsuccessful	n the minimum number of radioactive liquid effluent mor on channels OPERABLE, take the ACTION shown in Ta noperable instrumentation to OPERABLE status within 3 explain in the next Annual Radioactive Effluent Releas lity was not corrected in a timely manner.	able 3.3-12. 30 days and, if					
c. Report all devi	ations in the Annual Radioactive Effluent Release Repo	ort.					
SURVEILLANCE RE	EQUIREMENTS						
demonstra SOURCE	pactive liquid effluent monitoring instrumentation channe ated OPERABLE by performance of the CHANNEL CHE CHECK, CHANNEL CALIBRATION and CHANNEL FU he frequencies shown in Table 4.3-8.	ECK,					

REVISION NO .:	PROCEDURE TITLE:	1	PAGE:
26	N MANUAL (ODCM)	18 of 219	
PROCEDURE NO .:		10 01 213	
C-200			
RADIOAC	TABLE 3.3-12 TIVE LIQUID EFFLUENT MONIT (Page 1 of 2)		<u>ATION</u>
	MINIMUM CHANNELS OPERABLE	ACTION	
1. Radioactivity M Termination of	onitors Providing Alarm and Automatic Release		
a) Liquid Rad	Iwaste Effluent Line	1	35
b) Steam Generator Blowdown Effluent Line 1/SG			36, 37
b) Steam Ge	inerator Diowdown Lindent Line	1.00	· ·
	surement Devices	100	
2. Flow Rate Mea		N.A	38
2. Flow Rate Mea	surement Devices Iwaste Effluent Line		

SG - Denotes Steam Generator

ACTION STATEMENTS

ACTION 35 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases may continue provided that prior to initiating a release:

a. At least two independent samples are analyzed in accordance with the Surveillance Requirement for concentration limit of Control 4.11.1.1.

AND

b. At least two technically qualified members of the Facility Staff independently verify the release rate calculations and discharge line valving.

Otherwise, suspend release of radioactive effluents via this pathway.

ACTION 36 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided grab samples are analyzed for gross radioactivity (beta or gamma) at a limit of detection of at least 2.E-07 micro-Curie/ml:

a. At least once per 8 hours⁽¹⁾ when the specific activity of the secondary coolant is greater than 0.01 micro-Curies/gram DOSE EQUIVALENT I-131

OR

b. At least once per 24 hours⁽¹⁾ when the specific activity of the secondary coolant is less than or equal to 0.01 micro-Curies/gram DOSE EQUIVALENT I-131.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	19 of 219
PROCEDURE NO .:		1901219
C-200	ST. LUCIE PLANT	

TABLE 3.3-12 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION (Page 2 of 2)

ACTION STATEMENTS (continued)

ACTION 37 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, isotopic grab samples shall be obtained and analyzed at a Lower Limit of Detection for I-131, Co-58, Co-60, Cs-134, and Cs-137 to achieve detection sensitivity capable of detecting a primary-to-secondary leak rate of 5 gallons per day, provided that the Reactor Coolant System has sufficient activity present.

The applicable frequency shall be:

In MODES 1, 2, 3, 4

a. At least once per day⁽¹⁾ for isotopic activity on the affected Steam Generator, provided that the Air Ejector Gas Activity Monitor is OPERABLE,

OR

b. At least every 8 hours⁽¹⁾ for isotopic activity on the affected Steam Generator, if the Air Ejector Gas Activity Monitor is INOPERABLE.

This requirement is intended to meet EPRI PWR Primary-to-Secondary Leak Guidelines (TR-104788-R2) per reference PMAI 00-08-109.

ACTION 38 - Minimum system design flow of required running pumps shall be utilized for ECL calculations for discharge canal flow and maximum system design flow be utilized for ECL calculations for effluent line flow.

TABLE 3.3-12 Notation

(1) - The initial sample shall be completed prior to the frequency interval specified. Subsequent samples (of the same INOPERABLE condition) may be performed per ODCM surveillance requirement 4.0.2 (a maximum allowable extension not to exceed 25% of the surveillance interval).

	ISION NO .:	PROCEDURE TITLE:			P	AGE:	
	26	OFFSITE DOSE CAL	CULATION	I MANUA	L (ODCM)	20 of 219	
PRC	CEDURE NO.:		UCIE PLA			20 01 210	
	C-200						
	RADIOAC	FIVE LIQUID EFFLUEN		_		ATION	
		SURVEILLANCE	REQUIRE	<u>MENTS</u> ((4)		
		(1 45					
	INS	TRUMENT	CHANNEL CHECK	SOURCE CHECK		CHANNEL FUNCTIONAL TEST	
1.	Radioactivity Monit Automatic Termina	ors Providing Alarm and tion of Release					
	a) Liquid Radwa	ste Effluent Line	D	Р	R (2)	Q (1)	
	b) Steam Genera Line	ator Blowdown Effluent	D	м	R (2)	Q (1)	
2.	Flow Rate Measure	ement Devices					
	a) Liquid Radwa	ste Effluent Line	D (3)	N.A.	R	Q	
	b) Discharge Ca		D (3)	N.A.	R	Q	
	c) Steam Genera Line	ator Blowdown Effluent	D (3)	N.A.	R	Q	
		TABLE I	OTATION	<u>15</u>			
41	The CHANNEL FUNCTIONAL TEST shall also demonstrate automatic isolation of this pathway and control room alarm annunciation occur if any of the following conditions exist:						
U.							
U.	pathway and c		iation occur	if any of t	he following co	onditions exist	
.1)	pathway and c 1. Instrum	ontrol room alarm annunc	iation occur	if any of t	he following co	onditions exist	
J)	pathway and c 1. Instrum 2. Circuit	ontrol room alarm annunc nent indicates measured le	iation occur vels above	if any of t	he following co	onditions exist	
(1)	pathway and c 1. Instrum 2. Circuit 3. Instrum	ontrol room alarm annunc nent indicates measured le failure or	iation occur vels above failure or	if any of t	he following co	onditions exist:	
(1)	pathway and c 1. Instrum 2. Circuit 3. Instrum 4. Instrum The initial CHA reference stand or using standa These standard and rate capab	ontrol room alarm annunc nent indicates measured le failure or nent indicates a downscale	iation occur vels above failure or all be perfor ional Institu ated agains g the syste ormal plant o	med using te of Stand t standard m over its operation.	he following co /trip setpoint or /trip setpoint or dards & Techn s certified by the intended range For subseque	onditions exist: of the ology (NIST) he NIST. e of energy ent CHANNEL	
	 pathway and c 1. Instrum 2. Circuit 3. Instrum 4. Instrum The initial CHA reference standard or using standard and rate capab CALIBRATION used. CHANNEL CH CHANNEL CH 	ontrol room alarm annunc nent indicates measured le failure or nent indicates a downscale nent controls not set in ope NNEL CALIBRATION sha dards traceable to the Nat ards that have been calibratin ds should permit calibratin pilities that are typical of no	iation occur vels above failure or all be perfor ional Institu ated agains g the syste ormal plant of been relat ing indications to nce per	med using the alarm/ te of Stand t standard m over its operation. ed to the in	he following co /trip setpoint or /trip setpoint or /trip setpoint or /trip setpoint or /trip setpoint or /trip setpoint /for subseque /for subseque /itial calibration /during periods	onditions exist of the ology (NIST) he NIST. e of energy ent CHANNEL n may be of release.	

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:					
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCE	DURE NO.:		21 of 219					
	C-200	ST. LUCIE PLANT						
INST	RUMENTAT	ION						
RADI	OACTIVE G	ASEOUS EFFLUENT MONITORING INSTRUMENTATIO	N					
CON	TROLS							
3.3.3.	effluent OPERA Control shall be	rdance with St. Lucie Plant TS 6.8.4.f.1), the radioactive ga monitoring instrumentation channels shown in Table 3.3- BLE with their Alarm/Trip Setpoints set to ensure that the 3.11.2.1.are not exceeded. The Alarm/Trip Setpoints of the determined and adjusted in accordance with the methodo ters in the ODCM.	13 shall be limits of nese channels					
APPL	ICABILITY:	As shown in Table 3.3-13						
ACTI	<u>ON:</u>							
a.	Setpoint lessuspend th channel or	bactive gaseous effluent monitoring instrumentation channess conservative than required by the above control, immed e release of radioactive gaseous effluents monitored by the declare the channel inoperable or change the setpoint so conservative.	liately e affected					
b.	instrumenta Restore the unsuccess	an the minimum number of radioactive gaseous effluent r ation channels OPERABLE, take the ACTION shown in Ta inoperable instrumentation to OPERABLE status within 3 ul, explain in the next Annual Radioactive Effluent Release ibility was not corrected in a timely manner.	ble 3.3-13. 0 days and, if					
с.	Report all c	eviations in the Annual Radioactive Effluent Release Rep	ort.					
SURV	EILLANCE	REQUIREMENTS						
4.3.3.	demons SOURC	dioactive gaseous effluent monitoring instrumentation cha trated OPERABLE by performance of the CHANNEL CHE E CHECK, CHANNEL CALIBRATION and CHANNEL FU the frequencies shown in Table 4.3-9.	ECK,					

REVISION NO.: PR	OCEDURE TITLE:			PAGE:
26 C	FFSITE DOSE	E CALCULATION MANU	IAL (ODCM)	00 of 010
ROCEDURE NO.:				22 of 219
C-200				
		ST. LUCIE PLANT		
		TABLE 3.3-13		
RADIOACTIVE	GASEOUS EF	FLUENT MONITORING		ΙΤΔΤΙΟΝ
RADIOAOTITE	UAULUUU LI	(Page 1 of 3)	MOTIONEN	
		(rage roro)		
		MINIMUM CHANNELS		
INSTRUME	NT	OPERABLE	APPLICABILIT	
1. Waste Gas Holdup S				
a) Noble Gas Activ				
Providing Alarm		1/Rx	*	45
Termination of F				
2. Condenser Evacuation	n System	1/Rx	**	
a) Noble Gas Activ	ity Monitor	1/KX	Modes 1, 2, 3,	4 47
3. Plant Vent System		· ······		4 40
a) Noble Gas Activ	ity Monitor		· · · · · · · · · · · · · · · · · · ·	
(Low Range)	ity monitor	1/Rx	*	47
b) Iodine Sampler	·	1/Rx	*	51
c) Particulate Sam	oler	1/Rx	*	51
d) Flow Rate Monit	or	N.A.	*	53
e) Sampler Flow Ra	ate Monitor	1/Rx	*	46
4. Fuel Storage Area Ve	ntilation			
System				
a) Noble Gas Activi	ty Monitor	1/Rx	•	47
(Low Range)		1/0	*	51
b) Iodine Sampler c) Particulate Samp	alor	1/Rx 1/Rx		51
d) Flow Rate Monit			*	53
e) Sampler Flow Rate		N.A 1/Rx	*	46
5. Steam Generator Blov				
Vent	actin Duliding			
a) Noble Gas Activi	ty Monitor		*	47
(Low Range)		1		47
b) Iodine Sampler		1	*	51
c) Particulate Samp	pier	1	*	51
d) Flow Rate Monitor		N.A.	*	53
e) Sampler Flow Ra	te Monitor	<u> </u>	<u> </u>	46

* - At all times while making releases via this pathway

** - At all times when air ejector exhaust is not directed to plant vent.

Rx - Denotes reactor

ACTION STATEMENTS

ACTION 45 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the tank(s) may be released to the environment provided that prior to initiating a release:

- a. At least two independent samples of the tank's contents are analyzed and
- b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup.

Otherwise, suspend release of radioactive effluents via this pathway.

/R26

	Topor	CEDURE TITLE:	PAGE:				
REVISION NO.:			FAGE.				
26 PROCEDURE NO.:		FSITE DOSE CALCULATION MANUAL (ODCM)	23 of 219				
C-200		ST. LUCIE PLANT					
<u> </u>			l				
TABLE 3.3-13 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION (Page 2 of 3)							
		ACTION STATEMENTS (continued)					
Channels OPER/	BLE re	umber of channels OPERABLE less than required lequirement, effluent releases via this pathway may flow rate is estimated at least once per 4 hours.					
		umber of channels OPERABLE less than required RABLE, effluent releases via this pathway may co					
a. <u>If</u> channel taken at le activity witl	st onc	bility is due to loss of activity indication, <u>Then</u> grab e per 8 hours ⁽¹⁾ and these samples are analyzed fo hours.	samples are or isotopic				
		OR					
discovered following re	during asons	bility is due to loss of Control Room alarm annunci a channel functional test because of any one or m listed, <u>Then</u> channel checks are performed once p cation and current assigned setpoints are NOT exce	ore of the er hour ⁽¹⁾ to				
1. Fail	re to a	nnunciate when testing alarm/trip setpoints.					
2. Circ	iit failu	re.					
3. Dow	nscale	failure.					
4. Con	rols N(OT set in OPERATE mode.					
ACTION 48 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, noble gas isotopic grab samples shall be obtained and analyzed at a Lower Limit of Detection for Ar-41, Kr-88, Xe-133, Xe-133m, and Xe-135 to achieve detection sensitivity capable of detecting a primary-to-secondary leak rate of 5 gallons per day, provided that the Reactor Coolant System has sufficient activity present.							
The applicable fre	quency	/ shall be:					
Exhaust pr							
		OR					
	ither o	8 hours ^{(1),(2)} for noble gas isotopic activity on the Ai f the affected Unit's Steam Generator Blowdown M					

.

REVISION NO .:	PROCEDURE TITLE:	PAGE:						
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	24 of 219						
PROCEDURE NO.:								
C-200	ST. LUCIE PLANT							
RADIOACTI	TABLE 3.3-13 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION (Page 3 of 3)							
	ACTION STATEMENTS (continued)							
ACTION 48 (continu	ied)							
(TR-104788-R2), the	intended to meet EPRI PWR Primary-to-Secondary Lea erefore grab samples shall be taken regardless of the A while in Modes 1, 2, 3, 4. (Reference PMAI 00-08-109.	lignment of the						
Channels OPERABL continue for up to 30	ne number of channels OPERABLE less than required the requirement, effluent releases via the affected pathwer of days provided samples are continuously collected with as required in Table 4.11-2.	/ay may						
	um system flows shall be utilized in the determination on see monitor alarm setpoint.	of the						
TABLE 3.13-13 NOT	<u>TATION</u>							
Subsequent s ODCM survei	nple shall be completed prior to the frequency interval s camples (of the same INOPERABLE condition) may be llance requirement 4.0.2 (a maximum allowable extens rcent of the surveillance interval).	performed per						
<u>Then</u> the sam ejector shall b	steam flow to the air ejector nozzles while the Reactor is ple may be omitted, but the steam flow condition (statu be reverified once per 8 hours to initiate grab samples if nozzles is established.	s) to the air						
· · · · · · · · · · · · · · · · · · ·								

•

REVISION NO .:	PROCEDURE 1	TITLE:			PAGE:		
26	26 OFFSITE			DOSE CALCULATION MANUAL (ODCM)			
PROCEDURE NO.:		25 of 219					
C-200		ST.					
0.200					l		
			BLE 3.3-14				
RAI	DIOACTIVE			R SETPOINT BAS	<u>SIS</u>		
		(P	age 1 of 4)				
ODCM Effluent Gas	Channels	CHANNEL	BASIS	ALERT	HIGH		
		ID	DOCUMENT	SETPOINT®	SETPOINT		
1PV LOW RANGE GAS	5	01-05	C-200 ^ª	5 x Bkg. ^q	Allotted % Of Site Limit ⁹		
1FHB LOW RANGE GA	S	04-05	C-200 ^a	5 x Bkg. ^q	Allotted % Of Site Limit ⁹		
2A PV PIG LOW RANG	E GAS	423	C-200 ^ª	5 x Bkg. ^q	Allotted % Of Site		
2B PV PIG LOW RANG	E GAS	433	C-200ª	5 x Bkg.	Limit ^g For Plant Vent #2		
2FHB LOW RANGE GA	S	413	C-200 ^a	5 x Bkg.	Allotted % Of Site		
SGBDB LOW RANGE	GAS	45-6	C-200ª	5 x Bkg.	Allotted % Of Site Limit ⁹		
1 CONDENSER AIR EJ	ECTOR	35	C-200	2 x Bkg. ^b	3 x Bkg.		
2 CONDENSER AIR EJ	ECTOR	403	C-200	2 x Bkg. ^b	3 x Bkg.		
1 BATCH GAS EFFLUE	42	C-200 ^a	As Per COP-01.06	As Per COP-01.06 ^{a,h}			
2 BATCH GAS EFFLUE	203	C-200 ^a	As Per COP-01.06	As Per COP-01.06 ^{a,h}			
2PV WRGM	Chan	·					
Low Range Gas	621	an dP	0.000	E DI POV	Allotted % Of Site		
Mid Range Gas	622	624 ^P	C-200 ^ª	5 x Bkg. ^P uCi/sec	Limit ^P uCi/sec		
High Range Gas	623						
2A ECCS WRGM	Chan						
Low Range Gas	601	604 ^P	C-200 ^ª	0.75 x High ^P	Allotted % Of Site		
Mid Range Gas	602	004	C-200	uCi/sec	Limit ^P uCi/sec		
High Range Gas	603						
2B ECCS WRGM	<u>Chan</u>						
Low Range Gas	611	614 ^P	C-200ª	0.75 x High ^P	Allotted % Of Site		
Mid Range Gas	612	014	0-200	uCi/sec	Limit ^P uCi/sec		
High Range Gas	613						
ODCM Related Particula	ate Channels	CHANNEL	BASIS		HIGH		
1PV PARTICULATE		ID 01-01	DOCUMENT FUSAR	SETPOINT [®] 5000 CPM	<u>SETPOINT[®]</u> 10,000 CPM ^c		
1FHB PARTICULATE		01-01	FUSAR & TS ^d	5000 CPM	10,000 CPM ^c		
2A PV PIG PARTICULA	TE	421	FUSAR	5000 CPM	10,000 CPM°		
2B PV PIG PARTICULA		431	FUSAR	5000 CPM	10,000 CPM ^c		
2FHB PARTICULATE		411	FUSAR & TS ^d	5000 CPM	10,000 CPM ^c		
SGBDB PARTICULATE		45-4	FUSAR	5000 CPM	10,000 CPM ^c		

FFSITE [PAGE:
	DOSE CA) 26 of 219		
				20 01 2 19
	ST.			
ACTIVE	EFFLUE	NT MONITOF	R SETPOINT BAS	<u>IS</u>
	(F)	aye 2 01 4)		
annels	CHANNEL ID	BASIS DOCUMENT	ALERT SETPOINT [®]	HIGH SETPOINT [®]
	01-03	FUSAR	5000 CPM	10,000 CPM ^c
	04-03	FUSAR	5000 CPM	10,000 CPM ^c
	422	FUSAR	5000 CPM	10,000 CPM ^c
	432	FUSAR	5000 CPM	10,000 CPM ^c
	412	FUSAR	5000 CPM	10,000 CPM ^c
	45.5	FUSAR	5000 CPM	10,000 CPM ^c
annels	CHANNEL ID	BASIS DOCUMENT	ALERT SETPOINT [®]	HIGH SETPOINT [®]
	44	C-200	2 x Bkg.	2.E-04 uCi/ml ^{f,m}
	45	C-200	2 x Bkg.	2.E-04 uCi/ml ^{f,m}
	121	C-200	2 x Bkg.	2.E-04 uCi/ml ^m
	122	C-200	2 x Bkg.	2.E-04 uCi/ml ^m
NT	R6627	C-200	As Per COP-01.05	As Per COP-01.05 ⁿ
1T	301	C-200	As Per COP-01.05	As Per COP-01.05 ⁿ
	annels	ACTIVE EFFLUEI (P ACTIVE EFFLUEI (P ACTIVE EFFLUEI (P ACTIVE EFFLUEI (P ACTIVE EFFLUEI (D ACTIVE EFFLUEI (D Olional (D) OI-03 O4-03 422 432 412 45-5 annels CHANNEL ID 44 45 121 122 AT R6627	TABLE 3.3-14ACTIVE EFFLUENT MONITOFACTIVE EFFLUENT MONITOF(Page 2 of 4)nannelsCHANNEL IDBASIS DOCUMENT01-03FUSAR04-03FUSAR422FUSAR432FUSAR412FUSAR45-5FUSARannelsCHANNEL IDBASIS DOCUMENT44C-20045C-200121C-200122C-200ITR6627C-200	ACTIVE EFFLUENT MONITOR SETPOINT BAS (Page 2 of 4)hannelsCHANNEL IDBASIS DOCUMENTALERT SETPOINT*01-03FUSAR5000 CPM04-03FUSAR5000 CPM422FUSAR5000 CPM432FUSAR5000 CPM432FUSAR5000 CPM412FUSAR5000 CPM412FUSAR5000 CPM45-5FUSAR5000 CPMannelsCHANNEL IDBASIS DOCUMENTALERT SETPOINT*annelsCHANNEL IDBASIS DOCUMENTALERT SETPOINT*44C-2002 x Bkg.121C-2002 x Bkg.122C-2002 x Bkg.4TR6627C-200As Per COP-01.05

- c ODCM Control 3.11.2.1.b
- d TS Table 3.3-6 required instrument 2.a.ii with setpoint per ODCM
- e Setpoints may be rounded for analog and digital display input limitations.
- f The channel setpoint to be in cprn equivalent to this activity
- g per ODCM Methodology Step 2.2.2
- h Batch Gaseous Release Rate and Maximum activity limits shall be used such that Plant Vent (PV) Release HIGH setpoints should not be exceeded.
- i, j, k, and I not used in notation for clarity

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	27 of 219
PROCEDURE NO.:		
C-200	ST. LUCIE PLANT	
RA	TABLE 3.3-14 DIOACTIVE EFFLUENT MONITOR SETPOINT BASIS (Page 3 of 4)	<u>1</u>
TABLE NOTATION	<u>S</u> (continued)	
m - Continuous Liq	uid setpoint methodology per ODCM 1.3.2	
n - Batch liquid set	tpoint methodology per ODCM 1.3.1	
o - Note "oscar" is	not used in this table notation	
p - The individual	Channel 621, 622 and 623 (Plant Vent No. 2)	
	Channel 601, 602 and 603 (ECCS 2A)	
and	Channel 611, 612 and 613 (ECCS 2B)	
locked in if the internal control will not reset ar respective Skic Alarm" and "Hig information only	lert and High Effluent Channel Alarms are received the release is increasing to higher activity levels. Transfer to Effluent Channel input from the Mid or High Range On alarm, nor provide additional alarms. The Effluent Ch has to be reset to new Setpoints by I&C. References gh Alarm" settings for the Low Mid and High Channels a y. This is why Table 3.3-14 only list Channel 624, 604 Alarm Setpoints. These are the respective Skid's Alarr	of Skid Gas Channels annel on the to "Alert are for display and 614 as the
channels for E0 each have a sir ft3/minute exha set to zero sinc	mber 604 and 614 are the uCi/sec indication and ALER CCS 2A and ECCS 2B respectively. The ECCS exhaus ngle fan. Their Skid's Monitor Item #059 will be set per sust rate. Their Skid's Monitor Item #060 (Accident Flow the there is only one flow rate possible for these ECCS p indicated on ECCS skids should be valid regardless of N tions.	st pathways the measured w rate) will be athways. The
the uCi/sec and by) to the Low (Vent 2's skid M could occur und	0 number 624 (generically called the Plant Vent 2 Skid's d Control Room active ALERT/HIGH Alarm that is Com (621), Mid (622), and High (623) Range Gas Channels. onitor Item #059 will be set for the maximum ft3/minute der all circumstances. The Plant Vent 2 Channel 624's hat is set in Monitor Item #059 and Monitor Item #060 a	mon (shared The Plant flow rate that actual uCi/sec

	10.:	PROCEDURE TITLE:	PAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	28 of 2
PROCEDUR			
	-200	ST. LUCIE PLANT	
	RA	TABLE 3.3-14 DIOACTIVE EFFLUENT MONITOR SETPOINT BASIS (Page 4 of 4)	
TABLE I		<u>S</u> (continued)	
р - (со	ntinued)		
ALI CO	ERT/High Al P-07.05) uC 59 (the MAX	value for the Common Channel 624 uCi/sec indication a larms should be based on the equivalent uCi/sec of the Ci/cc of the Low Range Channel #621 and RIM 26-90 M IMUM process ft3/minute flow rate that could occur in t	5 x Bkg (u onitor Item
swi disj Rai Iter	tching (at a blay a uCi/so nge Channe n #060 6,60	T value for the Common Channel 624's uCi/sec is base preset activity value) input from the Low Range Channe ec value based on receiving activity uCi/cc input from e l 622 (OR from the High Range Channel 623) and RIM 0 ft3/minute (use COP-07.05) flow rate that is expected njection sequence.	el to calcula ither the Mi 26-90 Mon
2-H 2-H flow nev actu the Set	VE-6B, 2-H VE-10B to c v rate that sh v Setpoints f ual Plant Ve Effluent Cha points will ne	IDENT you have to access the running status of 2-HVE VE-7A, 2-HVE-7B, 2-HVE-8A, 2-HVE-8B, 2-HVE-10A a determine actual Plant Vent exhaust flow rate ft3/minute hould be inserted into Plant Vent #2 Skid's Monitor Item for Alert and High Alarms in units of uCi/sec calculated nt exhaust flow during the Accident. If fan operating sta annel 624 uCi/sec indication and existing Alert and High ot be valid for a new flow rate. This is the reason that E annel 624 indication for calculating off-site dose.	and e. This is the #060 with by using the atus change a Alarm
sligi	ntly above o than the Hi	ge, the Low Range gas activity ALERT Alarm Setpoint r utage anticipated activity levels, but shall always be set gh Alarm Setpoint. Examples of outage activities are ir ain Purge and venting the S/G primary side bowls.	to a value
FUSAR -	The setpoi 3.11.2.1.b	sted in fusar, but not required by ODCM Control 3.3.10 ints are used to provide alarm well before exceeding OI Site Dose Rate Limit. The inoperability of a fusar chan nvolve an ACTION statement unless TS (Technical Spe	DCM Contro nel above
2 x Bkg.,		x Bkg. etc., denotes the number of times the normal ch opriate Alarm Setting. These type of setpoints should t	

REVISIO	ON NO.:	PROCEDURE T	ITLE:				PAGE:
	26	OFFSITE	DOSE CA	(ODCM)	29 of 219		
ROCE	DURE NO.:						
	C-200		ST.	LUCIE F	PLANT		
			ТА	BLE 4.3	.9		
	RADIOACTI	/E GASEO			NITORING IN	ISTRUMEN	NTATION
		SURV	EILLANC	E REQU	IREMENTS (4)	
			(P	age 1 of :	2)		
	INSTRUME	NT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTION TEST	
1. W	aste Gas Holdup	System					
a)	Noble Gas Act Providing Alarr Automatic Terr Release	n and	Р	Р	R (3)	Q (1)	*
2. C	ondenser Evacuat	ion System					
a)		ivity Monitor	D	М	R (3)	Q (2)	**
3. PI	ant Vent System						
a)			D	M	R (3)	Q (2)	*
b)			<u> </u>	N.A.	N.A.	N.A.	*
c)			V	N.A.	N.A.	N.A.	*
d)	Flow Rate Mor	nitor	D	N.A.	R	Q	*
e)			D	N.A.	R	N.A.	*
	uel Storage Area V ystem	entilation					
a)	Noble Gas Act	ivity Monitor	D	М	R (3)	Q (2)	*
b)	Iodine Sampler	-	W	N.A.	N.A.	N.A.	*
c)	Particulate Sar	npler	W	N.A.	N.A.	N.A.	*
d)	Flow Rate Mon	itor	D	N.A.	R	Q	*
e)	Sampler Flow I	Rate Monitor	D)	N.A.	R	N.A.	*
	eam Generator Bl uilding Vent	owdown					
a)	Noble Gas Acti	vity Monitor	D	М	R (3)	Q (2)	*
b)	Iodine Sampler		W	N.A.	N.A.	N.A.	*
c)	Particulate San	npler	W	N.A.	N.A.	N.A.	*
d)	Flow Rate Mon	itor	D	N.A.	R	Q	*
e)	Sampler Flow F	Rate Monitor	D	N.A.	R	N.A.	*

/R26

	ON NO.:		PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	00.0040
PROCE	DURE NO).:		30 of 219
	C-20	0	ST. LUCIE PLANT	l
	<u>RAD</u>	IOACTIN	TABLE 4.3-9 /E GASEOUS EFFLUENT MONITORING INSTRUME SURVEILLANCE REQUIREMENTS (4) (Page 2 of 2)	<u>NTATION</u>
			TABLE NOTATIONS	
* -	At all	times w	hen making releases via this pathway.	
** -	At all	times w	hen air ejector exhaust is not directed to plant vent.	
(1)	this p		EL FUNCTIONAL TEST shall also demonstrate automa and control room alarm annunciation occurs if any of th ist:	
	1.	Instrun	nent indicates measured levels above the alarm/trip set	point or
	2.	Circuit	failure or	
	3.	Instrum	nent indicates a downscale failure or	
	4.	Instrum	nent controls not set in operate mode.	
(2)			EL FUNCTIONAL TEST shall also demonstrate that cor occurs if any of the following conditions exist:	trol room alarm
	1.	Instrum	nent indicates measured levels above the alarm/trip set	point or
	2.	Circuit	failure or	
	3.	Instrum	nent indicates a downscale failure or	
	4.	Instrum	nent controls not set in operate mode.	
(3)	refere (NIST the N range subse	nce star) or usin IST. The of energed quent C	ANNEL CALIBRATION shall be performed using one on inderds traceable to the National Institute of Standards and ag standards that have been calibrated against standard ese standards should permit calibrating the system ove gy and rate capabilities that are typical of normal plant HANNEL CALIBRATION, button sources that have bee on may be used.	& Technology ds certified by r its intended operation. For
4)	the IN	STRUM	ents to perform the surveillances is not applicable, if Ta ENT MINIMUM CHANNELS OPERABLE as not applic R 99-0361, PMAI 99-04-106).	

20		PROCEDURE TITLE:	PAGE:
	6	OFFSITE DOSE CALCULATION MANUAL (ODCM)	31 of 21
PROCEDURE I	NO.:		310121
C-2	.00	ST. LUCIE PLANT	
<u>3/4.11</u>	RADIO	ACTIVE EFFLUENTS	
<u>3/4.11.1</u>		DEFFLUENTS	
CONCENT	<u>FRATION</u>		
CONTROL	_S		
(i r e	(see TS Fi n 10 CFR radionuclic entrained i micro-Curi	e material released in liquid effluents to UNRESTRICTE gure 5.1-1) shall be limited to ten times the concentrati Part 20.1001-20.2401, Appendix B, Table 2, Column 2 des other than dissolved or entrained noble gases. For noble gases, the concentration shall be limited to 2.E-0 e/ml total activity.	ons specifie ? for dissolved o
APPLICAB	BILITY:	At all times.	
ACTION:			
	the eene	antication of rediacetive metaric released in liquid offlue	
UNF	RESTRICT centration	entration of radioactive material released in liquid efflue FED AREAS exceeding the above limits, immediately re to within the above limits.	
UNF	RESTRICT centration ANCE RE Radioa	TED AREAS exceeding the above limits, immediately re to within the above limits. CQUIREMENTS	estore the
UNF cond SURVEILL	RESTRICT centration ANCE RE Radioa	TED AREAS exceeding the above limits, immediately re to within the above limits.	estore the
UNF cond SURVEILL	RESTRICT centration ANCE RE Radioa samplir The res the met concen	TED AREAS exceeding the above limits, immediately re to within the above limits. CQUIREMENTS	estore the ording to the rdance with the
UNF cond SURVEILL 4.11.1.1.1	RESTRICT centration ANCE RE Radioa samplir The res the met concen Control Post-rel perform post-rel ODCM	TED AREAS exceeding the above limits, immediately re to within the above limits. COUIREMENTS ctive liquid wastes shall be sampled and analyzed according and analysis program of Table 4.11-1. Sults of the radioactivity analyses shall be used in accord shodology and parameters in the ODCM to assure that trations at the point of release are maintained within th	estore the ording to the rdance with the e limits of ases shall b previous hods in the

REVISION NO .:	PROCEDURE	TITLE:			PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)				
PROCEDURE NO.:			32 of 219		
				_	
C-200		ST. 1	LUCIE PLAN	ſ	
		TAD	BLE 4.11-1		
				ND ANALYSIS PI	
			ge 1 of 3)	ID ANALISIS FI	
		(ra	ge i bi 5)		
			Minimum		Lower Limit of
Liquid Release	Type	Sampling	Analysis	Type of Activity	Detection
		Frequency	Frequency	Analysis	LLD (1) (µCi/ml)
A. Batch Waste Releas	se Tanks (2)	P	Each Batch	P.G.E. (3)	5.E-07
		Each Batch		I-131	1.E-06
		P	М	Dissolved and	1.E-05
		One Batch/M		Entrained Gases	
				(Gamma Emitters)	
		Р	М	H-3	1.E-05
		Each Batch	Composite (4)	Gross Alpha	1.E-07
		P	Q	Sr-89, Sr-90	5.E-08
		Each Batch	Composite (4)	C-14, Fe-55, Ni-63	1.E-06
B. Continuous Release	es (5, 6)	Daily	4/M	P.G.E.(3)	5.E-07
			Composite	I-131	1.E-06
		Da'ly	4/M	Dissolved and	
		Grab Sample	Composite	Entrained Gases	1.E-05
				(Gamma Emitters) H-3	1.E-05
		Daily	M Composite	Gross Alpha	1.E-05
				Sr-89, Sr-90	5.E-08
		Daily	Composite	C-14, Fe-55, Ni-63	1.E-06
C. Settling Basin (7)		w'	Composite	P.G.E. (3)	5.E-07
C. Setting Dasit (7)		Grab Sample	W	I-131	1.E-06
D. Settling Basin as a I	Batch	Grab Gample		P.G.E. (3)	5.E-07
Release Pathway. (Р		I-131	 1.E-06
(Reference CR 99-1		Each Batch	Each Batch	Dissolved and	
	99-08-084 PMAI-01-04-115			Entrained Gases	1.E-05
		(8)		(Gamma Emitters)	••
				H-3	1.E-05
		Each Batch	Each Batch	Gross Alpha	1.E-07
		Each baich	cach Batch	Sr-89, Sr-90	5.E-08
				C-14, Fe-55, Ni-63	1.E-06

P.G.E. - Denotes Principal Gamma Emitter

KEVISIC	DN NO.:		PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	00 - 5 0 4 0
ROCE	DURE NO.:			33 of 219
	C-200		ST. LUCIE PLANT	
	RADIOA	<u>CTI</u>	TABLE 4.11-1 VE LIQUID WASTE SAMPLING AND ANALYSIS PROVINCE (Page 2 of 3)	OGRAM
			TABLE NOTATIONS	
1)	radioactive backgroun	e ma id, tl	fined for purposes of these controls, as the smallest co aterial in a sample that will yield a net count, above sys hat will be detected with 95% probability with only 5% p ding that a blank observation represents a real signal.	tem
	For a parti	cula	ar measurement system, which may include radiochem	ical separation:
			$LLD = \frac{4.66 S_b}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot exp(-\lambda \cdot \Delta T)}$	
	Where:			
	LLD	=	the a priori lower limit of detection (micro-Curie per u volume),	init mass or
	S₅	=	the standard deviation of the background counting ra counting rate of a blank sample as appropriate (cour minute),	
	Е	=	the counting efficiency (counts per disintegration),	
	v	=	the sample size (units of mass or volume),	
	2.22E+06	=	the number of disintegrations per minute per micro-C	Surie.,
	Y	=	the fractional radiochemical yield, when applicable,	
	λ	=	the radioactive decay constant for the particular radio and	onuclide (sec ⁻¹)
	ΔΤ	=	the elapsed time between the midpoint of sample co the time of counting (sec).	llection and
	Typical val	ues	of E, V, Y and ΔT should be used in the calculation.	
	representir	ng th	cognized that the LLD is defined as an <u>a priori</u> (before ne capability of a measurement system and not as an <u>a</u> limit for a particular measurement.	

REVIS	SION NO.:	PROCEDURE TITLE:	PAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	34 of 219
PROC	EDURE NO .:		
	C-200	ST. LUCIE PLANT	
	RADIOAC	TABLE 4.11-1 TIVE LIQUID WASTE SAMPLING AND ANALYSIS PR (Page 3 of 3)	OGRAM
		TABLE NOTATIONS (continued)	
(2)	sampling for	ease is the discharge of liquid wastes of a discrete volume r analyses, each batch shall be isolated and then thoroug escribed in the ODCM to assure representative sampling	hly mixed by
(3)	following rac Cs-137 and are to be co of the above Radioactive	al gamma emitters for which the LLD control applies includionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Ce-141 and Ce-144. This list does not mean that only the nsidered. Other gamma peaks that are identifiable, toge nuclides, shall also be analyzed and reported in the Ante Effluent Release Report pursuant to Control 3.11.2.6 in Regulatory Guide 1.21, Appendix B, Revision 1, June 197	, Cs-134, nese nuclides ther with those nual the format
(4)	the quantity	e sample is one in which the quantity of liquid sampled is of liquid waste discharged and in which the method of sa esults in a specimen that is representative of the liquids re	ampling
(5)		s release is the discharge of liquid wastes of a nondiscre volume of a systern that has an input flow during the con	
(6)	activity on the less than or	nt Cooling Water activity is > 1.E-5 μ Ci/ml, perform a ween the local probability of the loca	/ity level is ml, perform
(7)		es to be taken when there is confirmed primary to second cated by the air ejector monitor indicating greater than or	
(8)	requirement	independent samples are analyzed in accordance with the for concentration limit of control 4.11.1.1.1 and at least tembers of the facility staff independently verify the release	wo technically
(9)	therefore the secondary le	basin(s) may receive low level activity per the guidance of ese samples shall be taken regardless of the absence of eak (note (7) on liquid release type C. settling. basin does e type D. settling basin as a batch release pathway).	a primary-to-
	11410 1 CICdo		

•

.

REVISION N	10.:	PROCEDURE TITLE:	PAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	05 -6040
PROCEDUR	E NO.:		35 of 219
C.	-200	ST. LUCIE PLANT	
RADIOA	CTIVE EFF		
DOSE			
CONTRO	DLS		
3.11.1.2	commitme liquid efflu	ance with St. Lucie Plant TS 6.8.4.f.4) and 6.8.4.f.5), the ent to a MEMBER OF THE PUBLIC from radioactive ma ents released, from each unit, to UNRESTRICTED ARE -1) shall be limited:	terials in
		ring any calendar quarter to less than or equal to 1.5 mr ble body and to less than or equal to 5 mrems to any or	
		ring any calendar year to less than or equal to 3 mrems ly and to less than or equal to 10 mrems to any organ.	to the whole
APPLICA	BILITY:	At all times.	
ACTION:			
ex da ex rec	ceeding an lys, pursuar ceeding the duce the rel	ulated dose from the release of radioactive materials in y of the above limits, prepare and submit to the Commis at to Plant TS 6.9.2, a Special Report that identifies the e limit(s) and defines the corrective actions that have be leases and the proposed corrective actions to be taken eleases will be in compliance with the above limits.	ssion within 30 cause(s) for en taken to
SURVEIL	LANCE RE	QUIREMENTS	
4.11.1.2	quarter an	e dose contributions from liquid effluents for the current d the current calendar year shall be determined in acco dology and parameters in the ODCM at least once per 3	rdance with

REVISION	NO.:	PROCEDURE TITLE:	PAGE:		
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)			
PROCEDU	RE NO.:		36 of 219		
	-200	ST. LUCIE PLANT			
RADIOA	ACTIVE EFF	LUENTS			
LIQUID	RADWASTI	E TREATMENT SYSTEM			
CONTR	OLS				
3.11.1.3	Treatmen shall be u to the liqu Figure 5.1	ance with St. Lucie Plant TS 6.8.4.f.6), the Liquid Radwa t System shall be OPERABLE and appropriate portions sed to reduce releases of radioactivity when the project id effluent, from each unit, to UNRESTRICTED AREAS -1) would exceed 0.06 mrem to the whole body or 0.2 r 31-day period.	of the system ed doses due (see TS		
APPLIC	ABILITY:	At all times.			
ACTION	<u>l:</u>				
th O	a. With radioactive liquid waste being discharged without treatment and in excess of the above limits and any portion of the Liquid Radwaste Treatment System not in operation, prepare and submit to the Commission within 30 days, pursuant to Plan TS 6.9.2, a Special Report that includes the following information:				
1.	identifi	ation of why liquid radwaste was being discharged with cation of any inoperable equipment or subsystems and perability,			
2.	. Action(and	s) taken to restore the inoperable equipment to OPERA	BLE status		
3.	Summ	ary description of action(s) taken to prevent a recurrenc	e.		
SURVEI	LLANCE RE	QUIREMENTS			
4.11.1.3.	shall be method	due to liquid releases from each unit to UNRESTRICTE e projected at least once per 31 days in accordance wit lology and parameters in the ODCM when Liquid Radw ent Systems are not being fully utilized.	h the		
4.11.1.3.	OPER/ for at le system	stalled Liquid Radwaste Treatment System shall be den ABLE by operating the liquid radwaste treatment system east 30 minutes at least once per 92 days unless the liq has been utilized to process radioactive liquid effluents is 92 days.	n equipment uid radwaste		

REVISION NO	0.:	PROCEDURE TITLE:	PAGE:					
2	6	OFFSITE DOSE CALCULATION MANUAL (ODCM)	ĺ					
PROCEDURE			37 of 219					
C-2	200	ST. LUCIE PLANT						
0-2	200							
RADIOAC	RADIOACTIVE EFFLUENTS							
<u>3/4.11.2</u>	GASE	OUS EFFLUENTS						
DOSE RA	<u>TE</u>							
CONTRO	LS							
	from radio	ance with St. Lucie Plant TS 6.8.4.f.3) and 7), the dose active materials released in gaseous effluents to areas BOUNDARY (see TS Figure 5.1-1) shall be limited to th	at or beyond					
		noble gases: Less than or equal to 500 mrems/yr to the less than or equal to 3000 mrems/yr to the skin and	ne total body					
	par	lodine-131, for lodine-133, for tritium and for all radion ticulate form with half-lives greater than 8 days: Less to 0 mrems/yr to any organ						
APPLICAE	<u>BILITY:</u>	At all times.						
ACTION:								
		rate(s) exceeding the above limits, immediately restore the above limit(s).	e the release					
SURVEILL	ANCE RE	QUIREMENTS						
4.11.2.1.1	to be w	se rate due to noble gases in gaseous effluents shall b ithin the above limits in accordance with the methodolo eters in the ODCM.						
4.11.2.1.2	particul be dete method sample	se rate due to lodine-131, lodine-133, tritium and all rate ate form with half-lives greater than 8 days in gaseous rmined to be within the above limits in accordance with lology and parameters in the ODCM by obtaining repre s and performing analyses in accordance with the sam s program specified in Table 4.11-2.	effluents shall the sentative					

REVISION NO .:	PROCEDURE	PROCEDURE TITLE:							
26 PROCEDURE NO.:	OFFSITE	E DOSE CALO	38 of 219						
C-200	· ·	ST. L	UCIE PLANT						
RADIOACTIV	TABLE 4.11-2 RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM (Page 1 of 3)								
Gaseous Release	е Туре	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection LLD (1) (µCi/ml)				
1. Waste Gas Storage	Tank	P Each Tank Grab Sample	P Each Tank	Noble Gas P.G.E. (2)	1.E-04				
2. Containment Purge			P Each Purge (6)	Noble Gas P.G.E. (2)	1.E-04				
		Grab Sample	(7)	H-3	1.E-06				
3. Vents:		4/M Grab Sample	4/M (7)	Noble Gas P.G.E. (2)	1.E-04				
a. Plant b. Fuel Bldg (5) c. S/G Blowdown	Bldg.			H-3	1.E-06				
 All Release Types a above 	s listed in 3.	Continuous (3)	4/M Charcoal Sample (4)	I-131	1.E-12				
			4/M Particulate Sample (4)	P.G.E.	1.E-11				
			4/M Particulate Sample	Gross Alpha	1.E-11				
			Q Composite Particulate Sample	Sr-89, Sr-90	1.E-11				
			Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1.E-06				

P.G.E. - Denotes Principal Gamma Emitter

/R26

REVIS	ON NO.:	Ī	PROCEDURE TITLE:	PAGE:	
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	39 of 219	
PROCE	EDURE NO.:				
	C-200		ST. LUCIE PLANT		
	RADIOAC	TIVI	TABLE 4.11-2E GASEOUS WASTE SAMPLING AND ANALYSIS P(Page 2 of 3)	ROGRAM	
			TABLE NOTATIONS		
(1)	radioactive backgroun	e ma nd, th	fined for purposes of these controls, as the smallest co Iterial in a sample that will yield a net count, above sys nat will be detected with 95% probability with only 5%	stem	
	For a parti	icula	r measurement system, which may include radiochem	ical separation:	
			$LLD = \frac{4.66 S_b}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot exp(-\lambda \cdot \Delta T)}$		
	Where:				
	LLD	u	the a priori lower limit of detection (micro-Curie per u volume),	init mass or	
	LLD	=	the a priori lower limit of detection (micro-Curie per u volume),	init mass or	
	S _b	=	the standard deviation of the background counting racounting rate of a blank sample as appropriate (cour		
	E	=	the counting efficiency (counts per disintegration),		
	V	=	the sample size (units of mass or volume),		
	2.22E+06	=	the number of disintegrations per minute per micro-C	Curie.,	
	Y	=	the fractional radiochemical yield, when applicable,		
	λ	=	the radioactive decay constant for the particular radio and	onuclide (sec ⁻¹)	
	ΔΤ	=	the elapsed time between the midpoint of sample col the time of counting (sec).	lection and	
	Typical val	ues	of E, V, Y and ΔT should be used in the calculation.		
It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.					

177 410	SION NO.:	PROCEDURE TITLE:	PAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	40 -6 040
PROC	EDURE NO.:		40 of 219
	C-200	ST. LUCIE PLANT	
	RADIOACTI	TABLE 4.11-2 VE GASEOUS WASTE SAMPLING AND ANALYSIS P (Page 3 of 3)	ROGRAM
	·	TABLE NOTATIONS (continued)	
(2)	following rad noble gas rel Cs-137, Ce- mean that or identifiable, t reported in th	I gamma emitters for which the LLD control applies inclu ionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135 and leases and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, 141 and Ce-144 in lodine and particulate releases. This hly these nuclides are to be considered. Other gamma p ogether with those of the above nuclides, shall also be a ne Annual Radioactive Effluent Release Report pursuan .2.6 in the format outlined in Regulatory Guide 1.21, App lune 1974.	I Xe-138 in I-131, Cs-134, list does not beaks that are analyzed and t to
(3)	for the time p	he sample flow rate to the sampled stream flow rate sha period covered by each dose or dose rate calculation ma with Controls 3.11.2.1, 3.11.2.2 and 3.11.2.3.	
(4)	completed w Sampling sha following eac of RATED TH completed w are analyzed requirement I-131 concen	Ill be changed at least four times per month and analyse ithin 48 hours after changing or after removal from samp all also be performed at least once per 24 hours for at le ch shutdown, startup or THERMAL POWER change exc HERMAL POWER within a 1-hour period and analyses s ithin 48 hours of changing. When samples collected for , the corresponding LLDs may be increased by a factor does not apply if: (1) analysis shows that the DOSE EQ tration in the reactor coolant has not increased more that e noble gas monitor shows that effluent activity has not factor of 3.	oler. ast 7 days eeding 15% shall be 24 hours of 10. This UIVALENT an a factor of
5)	•	samples shall be taken at least 4/M from the ventilation I pool area, whenever spent fuel is in the spent fuel poo	
6)	THERMAL P 1 hour unless in the primary	d analysis shall also be performed following shutdown, s OWER change exceeding 15% of RATED THERMAL P s (1) analysis shows that the DOSE EQUIVALENT I-131 y coolant has not increased more than a factor of 3; and nonitor shows that effluent activity has not increased by	OWER within concentration (2) the noble
7)	Tritium analy new counting	sis may be delayed for up to 14 days if the LLD is still at	tainable at the

REVISION N	0.	PROCEDURE TITLE:	PAGE:			
1	0 26		, ,,oe.			
PROCEDUR		OFFSITE DOSE CALCULATION MANUAL (ODCM)	41 of 219			
	-200	ST. LUCIE PLANT				
	200					
RADIOA	CTIVE EFF	LUENTS				
DOSE - I		SES				
CONTRO	DLS					
3.11.2.2	noble gase	ance with St. Lucie Plant TS 6.8.4.f.5) and 8), the air do es released in gaseous effluents, from each unit, to are e SITE BOUNDARY (see TS Figure 5.1-1) shall be limi	as at and			
		ing any calendar quarter: Less than or equal to 5 mrad iation and less than or equal to 10 mrads for beta radiat				
		ing any calendar year: Less than or equal to 10 mrads iation and less than or equal to 20 mrads for beta radiat				
APPLICA	BILITY:	At all times.				
ACTION:						
a. With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to assure that subsequent releases will be in compliance with the above limits.						
SURVEIL	LANCE RE	QUIREMENTS				
4.11.2.2	calendar y	e dose contributions for the current calendar quarter an ear for noble gases shall be determined in accordance gy and parameters in the ODCM at least once per 31 d	with the			

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	42 of 219
PROCEDURE NO.:	ST. LUCIE PLANT	
C-200		
RADIOACTIVE EF	FLUENTS	
	31, IODINE-133, TRITIUM AND RADIOACTIVE MATER	IAL IN
CONTROLS		
OF THE particula released	dance with St. Lucie Plant TS 6.8.4.f.5) and 9), the dose PUBLIC from lodine-131, lodine-133, tritium and all radi te form with half-lives greater than 8 days in gaseous eff , from each unit, to areas at and beyond the SITE BOUN e 5.1-1) shall be limited to the following:	onuclides in luents
	uring any calendar quarter: Less than or equal to 7.5 mr gan and,	ems to any
b. D	uring any calendar year: Less than or equal to 15 mrems	s to any organ.
APPLICABILITY:	At all times.	
ACTION:		
a. With the cal radionuclide effluents exo within 30 da cause(s) for	culated dose from the release of Iodine-131, Iodine-133, s in particulate form with half-lives greater than 8 days, in seeding any of the above limits, prepare and submit to th ys, pursuant to Plant TS 6.9.2, a Special Report that ider exceeding the limit(s) and defines the corrective actions o assure that subsequent releases will be in compliance	n gaseous e Commission ntifies the that have
	EQUIREMENTS	
calendar form with	ve dose contributions for the current calendar quarter any year for lodine-131, lodine-133, tritium and radionuclide half-lives greater than 8 days shall be determined in acc odology and parameters in the ODCM at least once per a	s in particulate cordance with

REVISION	NO.:		PROCEDURE TITLE:	PAGE:
26 PROCEDURE NO.:			OFFSITE DOSE CALCULATION MANUAL (ODCM)	43 of 219
C-200			ST. LUCIE PLANT	
RADIO	ACTI	VE EFF	LUENTS	L
			STE TREATMENT SYSTEM	
CONTR				
3.11.2.	Tr Ol re eff	eatment PERABL leases c fluent re	ance with St. Lucie Plant TS 6.8.4.f.6), the VENTILATIC t System and the WASTE GAS HOLDUP SYSTEM sha LE and appropriate portions of the system shall be used of radioactivity when the projected doses in 31 days due leases, from each unit, to areas at and beyond the SITE igure 5.1-1) would exceed:	II be I to reduce to gaseous
	a.	0.2	mrad to air from gamma radiation or	
	b.	0.4	mrad to air from beta radiation or	
1	c.	0.3	mrem to any organ.	
APPLIC	CABIL	<u>.ITY:</u>	At all times.	
ACTIO	<u>N:</u>			
t C	of the	above I	ive gaseous waste being discharged without treatment imits, prepare and submit to the Commission within 30 lant TS 6.9.2, a Special Report that includes the following	days,
4	1.		cation of any inoperable equipment or subsystems and perability,	the reason for
2	2.	Action(and	s) taken to restore the inoperable equipment to OPERA	ABLE status
3	3.	Summa	ary description of action(s) taken to prevent a recurrenc	e.

REVISION NO .:		PROCEDURE TITLE:	PAGE:						
26		OFFSITE DOSE CALCULATION MANUAL (ODCM)							
PROCEDURE NO			44 of 219						
C-20	0	ST. LUCIE PLANT							
			•						
RADIOACTIVE EFFLUENTS									
GASEOUS	RADWA	STE TREATMENT SYSTEM (continued)							
SURVEILLA	ANCE RE	EQUIREMENTS							
4.11.2.4.1	SITE E accord	due to gaseous releases from each unit to areas at an OUNDARY shall be projected at least once per 31 day ance with the methodology and parameters in the ODC us Radwaste Treatment Systems are not being fully uti	rs in M when						
4.11.2.4.2	WAST operati VENTI minute	stalled VENTILATION EXHAUST TREATMENT SYSTE E GAS HOLDUP SYSTEM* shall be demonstrated OPI ing the WASTE GAS HOLDUP SYSTEM equipment an LATION EXHAUST TREATMENT SYSTEM equipment s, at least once per 92 days unless the appropriate sys to process radioactive gaseous effluents during the pr	ERABLE by d for at least 30 tem has been						
FUN perfo	CTIONAL	GAS HOLDUP SYSTEM is not being fully utilized, an TEST on the WASTE GAS HOLDUP SYSTEM shall a addition to the requirements of 4.11.2.4.2's "at least 30 ays, by performing the following:	also be						
1)	Place a	a Gas Decay Tank (containing less than 30 psi) in servi	ce.						
2)	With a 150 psi	Waste Gas Compressor, charge the Gas Decay Tank t i.	o at least						
3)	Decay	ng appropriate holdup decay time, sample and release Tank with an OPERABLE Waste Gas Holdup System I Monitor (per TABLE 3.3-13).							
4)	SYSTE	epancies exist, repairs shall be made and the WASTE M Administrative FUNCTIONAL TEST shall be repeated ted successfully.							

REVISION NO .:	PROCEDURE TITLE:	PAGE:				
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	45 of 219				
PROCEDURE NO.:		40 01 210				
C-200	ST. LUCIE PLANT					
RADIOACTIVE EFF	RADIOACTIVE EFFLUENTS					
<u>3/4.11.4 TOTA</u>	L DOSE					
CONTROLS						
dose or d	ance with St. Lucie Plant TS 6.8.4.f.10), the annual (cale ose commitment to any MEMBER OF THE PUBLIC due ity and to radiation from uranium fuel cycle sources sha	e to releases of				

less than or equal to 25 mrems to the whole body or any organ, except the

thyroid, which shall be limited to less than or equal to 75 mrems.

APPLICABILITY: At all times.

ACTION:

With the calculated doses from the release of radioactive materials in liquid or la. gaseous effluents exceeding twice the limits of Control 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a or 3.11.2.3.b, calculations shall be made including direct radiation contributions from the units (including outside storage tanks etc.) to determine whether the above limits of Control 3.11.4 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in Subpart M of 10 CFR Part 20, shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits and if the release condition resulting in violation of 40 Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report is considered a timely request and a variance is granted until staff action on the request is complete.

REVISION N	0.:	PROCEDURE TITLE:	PAGE:
26 PROCEDURE NO.:		OFFSITE DOSE CALCULATION MANUAL (ODCM)	46 of 219
	-200	ST. LUCIE PLANT	
RADIOA	CTIVE EFF	LUENTS	
3/4.11.4	ΤΟΤΑΙ	<u>_ DOSE</u> (continued)	
SURVEIL	LANCE RE	EQUIREMENTS	
4.11.4.2	Cumulativ outside sto methodolo	e with the methodology and parameters in the ODCM. e dose contributions from direct radiation from the units prage tanks etc.) shall be determined in accordance wit ogy and parameters in the ODCM. This requirement is r conditions set forth in ACTION a. of Control 3.11.4.	h the

REVISION N	0.:		PROCEDURE TITLE:	PAGE:				
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)					
	PROCEDURE NO.:		OFFSITE DOSE CALCULATION MANUAL (ODCIM)	47 of 219				
C-200			ST. LUCIE PLANT					
RADIOA	RADIOACTIVE EFFLUENTS							
3/4.11.5	м		R CHANGES TO RADIOACTIVE LIQUID, GASEOUS A	ND SOLID				
0,			E_TREATMENT_SYSTEMS*					
		<u>, , , , , , , , , , , , , , , , , , , </u>						
ADMINIS	TRAT	IVE C	CONTROLS					
3.11.2.5			nitiated major changes to the radioactive waste system nd solid):	s (liquid,				
	1)	Sha	III be reported to the Commission in the Annual Radioa	ctive Effluent				
	''	Rele	ease Report for the period in which the evaluation was	reviewed by				
		the	Facility Review Group (FRG). The discussion of each	shall contain:				
		a)	A summary of the evaluation that led to the determine	nation that the				
			change could be made in accordance with 10 CFR					
		۲	Sufficient detailed information to totally support the	raccon for the				
		b)	Sufficient detailed information to totally support the change without benefit of additional or supplementa					
			A detailed description of the equipment component	o ond				
		c)	A detailed description of the equipment, component processes involved and the interfaces with other pla					
			processes involved and the interfaces with other pla	ini systems,				
		d)	An evaluation of the change which shows the predic	ted releases				
		-,	of radioactive materials in liquid and gaseous efflue					
			quantity of solid waste that differ from those previou					
			in the license application and amendments thereto;					
			··· · · · · · · · · · · · · · · · · ·					
		e)	An evaluation of the change which shows the expect					
			exposure to individuals in the UNRESTRICTED AR					
			general population that differ from those previously	estimated in				
			the license application and amendments thereto;					
		f)	A comparison of the predicted releases of radioactiv	e materials, in				
		•,	liquid and gaseous effluents and in solid waste, to the					
			releases for the period when the changes are to be					
		g)	An estimate of the exposure to plant operating perso	onnel as a				
			result of the change; and					
		۲	Desumantation of the fact that the change was saving	wod ond				
		h)	Documentation of the fact that the change was revie					
			found acceptable by the FRG.					
	2)	Sha	Il become effective upon review and acceptance by the	FRG.				
* Lic	ensee	s may	, choose to submit the information called for in this Adr	ninistrativa				
			t of the annual FUSAR update.					

.

26 OFFSITE DOSE CALCULATION MANUAL (ODCM) 48 of 219 PROCEDURE NO: C-200 ST. LUCIE PLANT 48 of 219 ADIOACTIVE EFFLUENTS 3/4.11.6 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT TO THE COMMISSION* 3/4.11.6 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT TO THE COMMISSION* ADMINISTRATIVE CONTROLS	REVISION NO .:		PROCEDURE TITLE:	PAGE:
PROCEDURE NO: ST. LUCIE PLANT 48 of 219 RADIOACTIVE EFFLUENTS 3/4.11.6 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT TO THE COMMISSION* ADMINISTRATIVE CONTROLS COMMISSION* ADMINISTRATIVE CONTROLS 3.11.2.6 As per Technical Specification 6.9.1.7, a Annual Radioactive Effluent Release Report covering the operation of each unit during the previous 12 months of operation shall be submitted within 60 days after January 1 of each year. The report shall include a summary of the quantilies of radioactive liquid and gaseous effluents and solid waste released from each unit. The material provided shall be (1) consistent with the objectives outlined in by items a) through 1) below, using the example report format in the ODCM and (2) be in conformance with 10 CFR 50.36a and Section IV.B.1 of Appendix I to 10 CFR Part 50. a. The Radioactive Effluent Release Reports shall include a summary of the quantilies of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Revision 1, June 1974, with data summary of thereof. b. The Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability and precipitation (if measured) or in the form of joint frequency distributions of wind speed, wind direction	2	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
 RADIOACTIVE EFFLUENTS 3/4.11.6 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT TO THE COMMISSION* ADMINISTRATIVE CONTROLS 3.11.2.6 As per Technical Specification 6.9.1.7, a Annual Radioactive Effluent Release Report covering the operation of each unit during the previous 12 months of operation shall be submitted within 60 days after January 1 of each year. The report shall be submitted within 60 days after January 1 of each year. The report shall be submitted within 60 days after January 1 of each year. The report shall be consistent with the objectives outlined in by items a) through 1) below, using the example report format in the ODCM and (2) be in conformance with 10 CFR 50.36a and Section IV.B.1 of Appendix I to 10 CFR Part 50. a. The Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof. b. The Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability and precipitation (if measured) or in the form of joint frequency distributions of wind speed, wind direction and atmospheric stability and precipitation (if measured) or in the form of joint frequency distributions of wind speed, wind direction and atmospheric stability and precipitation (if measured) or in the form of joint frequency distributions of wind speed, wind direction and the	PROCEDURE	NO.:		48 of 219
 3/4.11.6 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT TO THE <u>COMMISSION*</u> ADMINISTRATIVE CONTROLS 3.11.2.6 As per Technical Specification 6.9.1.7, a Annual Radioactive Effluent Release Report covering the operation of each unit during the previous 12 months of operation shall be submitted within 60 days after January 1 of each year. The report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from each unit. The material provided shall be (1) consistent with the objectives outlined in by items a) through f) below, using the example report format in the ODCM and (2) be in conformance with 10 CFR 50.36a and Section IV.B.1 of Appendix 1 to 10 CFR Part 50. a. The Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof. b. The Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability.** This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. * A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal	C-200		ST. LUCIE PLANT	
COMMISSION* ADMINISTRATIVE CONTROLS 3.11.2.6 As per Technical Specification 6.9.1.7, a Annual Radioactive Effluent Release Report covering the operation of each unit during the previous 12 months of operation shall be submitted within 60 days after January 1 of each year. The report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from each unit. The material provided shall be (1) consistent with the objectives outlined in by items a) through f) below, using the example report format in the ODCM and (2) be in conformance with 10 CFR 50.36a and Section IV.B.1 of Appendix I to 10 CFR Part 50. a. The Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water- Cooled Nuclear Power Plants, Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof. b. The Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability and precipitation (if measured) or in the form of joint frequency distributions of wind speed, wind direction and atmospheric stability.** This same report shall include an assessment of the radiation doese due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year.	RADIOAC	TIVE EFF	LUENTS	· · · · · · · · · · · · · · · · · · ·
 3.11.2.6 As per Technical Specification 6.9.1.7, a Annual Radioactive Effluent Release Report covering the operation of each unit during the previous 12 months of operation shall be submitted within 60 days after January 1 of each year. The report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from each unit. The material provided shall be (1) consistent with the objectives outlined in by items a) through 1) below, using the example report format in the ODCM and (2) be in conformance with 10 CFR 50.36a and Section IV.B.1 of Appendix I to 10 CFR Part 50. a. The Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof. b. The Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability and precipitation (if measured) or in the form foliont frequency distributions of wind speed, wind direction and atmospheric stability.** This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. * A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal sha	<u>3/4.11.6</u>			<u>D THE</u>
 Report covering the operation of each unit during the previous 12 months of operation shall be submitted within 60 days after January 1 of each year. The report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from each unit. The material provided shall be (1) consistent with the objectives outlined in by items a) through f) below, using the example report format in the ODCM and (2) be in conformance with 10 CFR 50.36a and Section IV.B.1 of Appendix I to 10 CFR Part 50. a. The Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof. b. The Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability.** This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. * A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive induit and gaseous effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site 	ADMINIS	TRATIVE	CONTROLS	
 the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof. b. The Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability and precipitation (if measured) or in the form of joint frequency distributions of wind speed, wind direction and atmospheric stability.** This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. * A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit. ** In lieu of submission with the Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site 		Report co operation report sha gaseous e provided s through f) conformar	vering the operation of each unit during the previous 12 shall be submitted within 60 days after January 1 of each Il include a summary of the quantities of radioactive liqu offluents and solid waste released from each unit. The shall be (1) consistent with the objectives outlined in by below, using the example report format in the ODCM a	months of ch year. The uid and material items a) nd (2) be in
 after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability and precipitation (if measured) or in the form of joint frequency distributions of wind speed, wind direction and atmospheric stability.** This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit. In lieu of submission with the Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site 		the rele Eva Rac Coo sun	quantities of radioactive liquid and gaseous effluents a eased from the unit as outlined in Regulatory Guide 1.2 aluating and Reporting Radioactivity in Solid Wastes an dioactive Materials in Liquid and Gaseous Effluents fror oled Nuclear Power Plants, Revision 1, June 1974, with mmarized on a quarterly basis following the format of Ap	nd solid waste 1, Measuring, d Releases of n Light-Water- data
 combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit. ** - In lieu of submission with the Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site 		afte met sun mag pred of w repo radi	er January 1 of each year shall include an annual summ eorological data collected over the previous year. This mary may be either in the form of an hour-by-hour listing gnetic tape of wind speed, wind direction, atmospheric s cipitation (if measured) or in the form of joint frequency vind speed, wind direction and atmospheric stability.** ort shall include an assessment of the radiation doses o oactive liquid and gaseous effluents released from the	ary of hourly annual ng on stability and distributions This same lue to the
has the option of retaining this summary of required meteorological data on site	cc ur	ombine tho hits with se	se sections that are common to all units at the station; parate radwaste systems, the submittal shall specify the	however, for
	ha	as the optic	on of retaining this summary of required meteorological	

).:	PROCEDURE TITLE:	PAGE:
26 PROCEDURE NO.:		OFFSITE DOSE CALCULATION MANUAL (ODCM)	49 of 219
	200	ST. LUCIE PLANT	
RADIOAC		FFLUENTS	
<u>3/4.11.6</u>		NUAL RADIOACTIVE EFFLUENT RELEASE REPORT TO	<u>) THE</u>
	<u>CO</u>	MMISSION* (continued)	
ADMINIS	TRATIV	E CONTROLS	
3.11.2.6	(contin	ued)	
	b. ((continued)	
		This same report shall also include an assessment of the r from radioactive liquid and gaseous effluents to MEMBERS PUBLIC due to their activities inside the SITE BOUNDARY Figure 5.1-1) during the report period. All assumptions use these assessments, i.e., specific activity, exposure time an shall be included in these reports. The meteorological con concurrent with the time of release of radioactive materials effluents, as determined by sampling frequency and measu be used for determining the gaseous pathway doses, or an and conservative method used in lieu of actual meteorolog measurements. The assessment of radiation doses shall be in accordance with the methodology and parameters in the	S OF THE (see TS ed in making d location, ditions in gaseous urement, shall approximate ical be performed
		Every 2 years using the previous 6 months release history determine the controlling age group for liquid pathways. Ev using the previous 1 year or longer interval (to include a rel outage) and historical meteorological data determine the co group for gaseous pathways. If changed from current subr ODCM to reflect new tables for these groups and use the r subsequent dose calculations.	very 2 years fueling ontrolling age nit change to
	(The Radioactive Effluent Release Report to be submitted 6 January 1 of each year shall also include an assessment o doses to the likely most exposed MEMBER OF THE PUBL reactor releases for the previous calendar year. Acceptabl	f radiation IC from

REVISION NO .:			PROCEDURE TITLE:	PAGE:			
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)				
PROCEDUR				50 of 219			
C-200			ST. LUCIE PLANT	,			
RADIOA	CTIVE	EFF	LUENTS				
3/4.11.6	A	NNU	AL RADIOACTIVE EFFLUENT RELEASE REPORT TO	<u>THE</u>			
	<u>C</u>	OMN	IISSION* (continued)				
ADMINIS	TRAT	IVE (CONTROLS				
3.11.2.6	(conti	nued)				
	•						
	e.	info	Radioactive Effluent Release Reports shall include the rmation for each class of solid waste (as defined by 10 oped offsite during the report period:				
		1.	Volume				
		2.	Total Curie quantity (specify whether determined by measurement or estimate)				
		3.	Principal radionuclides (specify whether determined measurement or estimate)	by			
		4.	. Type of waste (e.g., dewatered spent resin, compacted dry waste, evaporator bottoms)				
		5.	Type of container (e.g., LSA, Type A, Type B, Large and	Quantity)			
		6.	Solidification agent or absorbent (e.g., cement, urea formaldehyde).				
	f.	des ARE	Radioactive Effluent Release Reports shall include a licription of unplarined releases from the site to UNRES EAS of radioactive materials in gaseous and liquid effluence the reporting period.	FRICTED			
	g.	mac PRC MAN calc	Radioactive Effluent Release Reports shall include any le during the reporting period to the PROCESS CONTE DGRAM (PCP) and to the OFFSITE DOSE CALCULAT NUAL (ODCM), as well as a listing of new locations for ulations and/or environmental monitoring identified by t sus of ODCM Control 3.12.2.	ROL ION dose			
	h.	prov in ai sinc mete	format for an Annual Radioactive Effluent Release Reprided in ODCM Methodology Section 4.0. The informated annual report shall not apply to any ODCM Control Dete the methodology for the annual report is based on accorological data, instead of historical conditions that the trols and Control required calculations are based on.	ion contained ose Limit(s) tual			

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	51 of 219
PROCEDURE NO.:		5101219
C-200	ST. LUCIE PLANT	
RADIOLOGICAL	ENVIRONMENTAL MONITORING	
<u>3/4.12.1</u> MO	NITORING PROGRAM	
CONTROLS		
	ordance with St. Lucie Plant TS 6.8.4.g.1), the Radiologica ring Program shall be conducted as specified in Table 3.12 At all times.	
ACTION:		
specified in Radiologic descriptior	adiological Environmental Monitoring Program not being on Table 3.12-1, prepare and submit to the Commission, in al Environmental Operating Report required by Control 3.7 of the reasons for not conducting the program as required reventing a recurrence.	the Annual 12.4, a
environme	onfirmed* level of radioactivity as the result of plant effluen ntal sampling medium at a specified location exceeding th able 3.12-2 when averaged over any calendar guarter, pre	e reporting

environmental sampling medium at a specified location exceeding the reporting levels of Table 3.12-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose** to a MEMBER OF THE PUBLIC is less than the calendar year limit of Controls 3.11.1.2, 3.11.2.2 or 3.11.2.3. When more than one of the radionuclides in Table 3.12-2 are detected in the sampling medium, this report shall be submitted if:

 $\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + > \text{ or } = 1.0 \text{ 1}$

** The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.

^{*} A confirmatory reanalysis of the original, a duplicate or a new sample may be desirable, as appropriate. The results of the confirmatory analysis shall be completed at the earliest time consistent with the analysis but in any case within 30 days.

REVISION	NO.:	PROCEDURE TITLE:	PAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDU			52 of 219
(C-200 ST. LUCIE PLANT		
RADIOI	OGICAL EN	VIRONMENTAL MONITORING	
<u>3/4.12.1</u>	MONI	TORING PROGRAM	
Controls	s (continued))	
ACTION	<u>1:</u>		
b. (continued)		
to tr re h	o a MEMBER ne calendar equired if the owever, in s	effluents, this report shall be submitted if the potential a R OF THE PUBLIC from all radionuclides is equal to or year limits of Control 3.11.1.2, 3.11.2.2 or 3.11.2.3. Thi measured level of radioactivity was not the result of pla uch an event, the condition shall be reported and descr logical Environmental Operating Report required by Co	greater than s report is not ant effluents; ibed in the
s re fr f E re s	ample location eplacement se novironmentation om which sate rogram. Pur iffluent Releate evised figure upporting inf	proad leaf vegetation samples unavailable from one or n ons required by Table 3.12-1, identify specific locations samples and add them within 30 days to the Radiologica al Monitoring Program given in the ODCM. The specific amples were unavailable may then be deleted from the re- suant to Control 3.11.2.6, submit in the next Annual Ra ase Report documentation for a change in the ODCM in (s) and table for the ODCM reflecting the new location (s) ormation identifying the cause of the unavailability of sa- selection of the new location(s) for obtaining samples.	for obtaining al locations monitoring dioactive cluding a s) with
SURVE	ILLANCE RE	QUIREMENTS	
4.12.1		gical environmental monitoring samples shall be collect 12-1 from the specific locations given in the table and f	

12.1 The radiological environmental monitoring samples shall be collected pursuant to Table 3.12-1 from the specific locations given in the table and figure(s) in the ODCM and shall be analyzed pursuant to the requirements of Table 3.12-1 and the detection capabilities required by Table 4.12-1.

REVIS	SION NO.:	PROCEDURE TITLE:			PAGE:
	26	OFFSITE DOSE CALCU	JLATION MANUAL (O	DCM)	53 of 219
ROC	EDURE NO .:				00 01 210
	C-200	ST. LU	CIE PLANT	<u> </u>	
	RADIO	TABLE OGICAL ENVIRONMEN		ROGR	AM ^{a)}
		(Page	1 of 3)		
EX	POSURE PATHWA and/or SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ^{b) c)}	SAMPLING AND COLLECTION FREQUENCY ^{d)}	FF	TYPE AND REQUENCY ^{d)} F ANALYSIS
1.	Direct Radiation ^{e)}	27 Monitoring Locations	Continuous monitoring with sample collection quarterly ¹⁾	Gamma quarter	a exposure rate - ly
2. Airborne Radioiodine and Particulates		ne 5 Locations	Continuous sampler operation with sample collection weekly or more frequently if required by dust loading	Radioiodine filter: I-131 analysis weekly Particulate Filter: Gross beta radioactivity analysis ≥24 hours following a filter change Gamma isotopic ^{h)} analysis of composite ⁹ (by location) quarterly	
3.	Waterborne				
	a. Surface ^{k)}	1 Location ^{m)}	Weekly		a isotopic ^{h)} & analyses weekly
		1 Location ⁿ⁾	Monthly		a isotopic ^{h)} & analyses monthly
_	b. Sediment from shoreline	2 Locations	Semiannually	Gamma analyse	a isotopic ^{h)} s semiannually
4.	Ingestion				
;	a. Fish and Invertebrates				
	1. Crustacea	2 Locations	Semiannually		a isotopic ^{h)} s semiannually
	2. Fish	2 Locations	Semiannually	Gamma analyse	a isotopic ^{h)} es semiannually
1	b. Food Products				
	1. Broad leaf vegetation	3 Locations ^{p)}	Monthly when available		a isotopic ^{h)} and nalyses monthly

/R26

REVIS	SION NO.:	PROCEDURE TITLE:	PAGE:				
_	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	54 of 219				
PROC	EDURE NO .:		54 01 2 15				
	C-200	ST. LUCIE PLANT					
	TABLE 3.12-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ^{a)} (Page 2 of 3)						
		TABLE NOTATIONS					
а.	unobtainable automatic sar unobtainable taken prior to schedule sha	e permitted from the required sampling schedule if spec due to hazardous conditions, seasonal unavailability, m npling equipment or other legitimate reasons. If specim due to sampling equipment malfunction, corrective action the end of the next sampling period. All deviations from I be documented in the Annual Radiological Environme ant to Control 3.12.4.	alfunction of iens are on shall be n the sampling				
b.	reactor and a	neters of distance and direction sector from the centerli Iditional description where pertinent, shall be provided on required by Table 3.12-1, in Appendix-B and applica	for each				
c.	media of choi alternative me question and	ay not be possible or practicable to continue to obtain sace at the most desired location or time. In these instance adia and locations may be chosen for the particular path appropriate substitutions made within 30 days in the race monitoring program.	ces suitable way in				
d.	The following	definition of frequencies shall apply to Table 3.12-1 onl	y:				
	Weekly	 Not less than once per calendar week. A maximum 11 days is allowed between the collection of any tw consecutive samples. 					
	Semi-Monthly	 Not less than 2 times per calendar month with an ir not less than 7 days between sample collections. A interval of 24 days is allowed between collection of consecutive samples. 	A maximum				
	Monthly	 Not less than once per calendar month with an inte less than 10 days between sample collections. 	rval of not				
	Quarterly	- Not less than once per calendar quarter.					
	Semiannually	 One sample each between calendar dates (Januar and (July 1 - December 31). An interval of not less will be provided between sample collections. 					
	The frequency	of analyses is to be consistent with the sample collection	on frequency.				

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	

EVISION NO .:	PROCEDUR	E TITLE:			PAGE:
26	OFFSIT	OFFSITE DOSE CALCULATION MANUAL (ODCM)			
C-200		et Luc	CIE PLANT		
<u> </u>					
REF		TABLE <u>ELS FOR RADIONEN N ENVIRONMEN</u> (Page REPORTIN	OACTIVITY CONTRACT SAMPLE		<u>ONS</u>
ANALYSIS	WATER pCi/l	AIRBORNE PARTICULATE OR GASES pCi/m ³	FISH pCi/kg, wet	MILK pCi/l	FOOD PRODUCTS pCi/kg, wet
H-3	30,000*				
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000		
Zr- Nb-95***	400			· · · · · · · · · · · · · · · · · · ·	
I-131	2**	0.9		3	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba- La-140***	200			300	

 Since no drinking water pathway exists, a value of 30,000 pCi/l is used. For drinking water samples, a value of 20,000 pCi/l is used; this is 40 CFR Part 141 value.

** - Applies to drinking water pathway exists, 2 pCi/l is the limit for drinking water.

*** - An equilibrium mixture of the parent daughter isotopes which corresponds to the reporting value of the parent isotope.

EVISION NO.:	PR	OCEDURE TITLE:				PAGE:
26 OFI		OFFSITE DOSE (FFSITE DOSE CALCULATION MANUAL (ODCM)			
				A		
C-200			ST. LUCIE PL	ANI		
			ABLE 4.12-			(1)(0)
DETECT	ION CAF	PABILITIES FOR	ENVIRONM	IENTAL SA	MPLE ANA	
			(Page 1 of 2)			
		LOWER LIMIT	OF DETEC	TION (LLD) ⁽³⁾	
ANALYSIS	WATEF pCi/l	AIRBORNE PARTICULATE OR GASES pCi/m ³	FISH pCi/kg, wet	MILK pCi/l	FOOD PRODUCT pCi/kg, we	
Gross Beta	4	0.01				
H-3	3000*					
Mn-54	15		130			
Fe-59	30		260			
Co-58, Co-60	15		130			
Zn-65	30		260			
Zr-95, Nb-95 ⁽⁴⁾	15					
I-131	1**	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-140, La-140 ⁽⁴⁾	15			15		

No drinking water pathway exists, a value of 2000 pCi/l is for drinking water.

** LLD for drinking water samples. If no drinking water pathway exists, a value of 15 pCi/l may be used.

TABLE NOTATIONS

(1) This list does not mean that only these nuclides are to be considered. Other peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.

(2) Required detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13.

/R26

REVISION	<u></u>		PROCEDURE TITLE:	PAGE:
REVISION	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDUF		:		58 of 219
C	-200	00 ST. LUCIE PLANT		
DE	TEC	TION	TABLE 4.12-1 CAPABILITIES FOR ENVIRONMENTAL SAMPLE AN (Page 2 of 2)	ALYSIS (1)(2)
			TABLE NOTATIONS (continued)	
ra bi	adioa ackg	ctive rounc	defined for purposes of these controls, as the smallest or material in a sample that will yield a net count, above sy I, that will be detected with 95% probability with only 5% cluding that a blank observation represents a real signal.	stem probability of
F	ora	partic	ular measurement system, which may include radiocher	nical separation:
			$LLD = \frac{4.66 S_b}{E \cdot V \cdot 2.22 \cdot Y \cdot \exp(-\lambda \cdot \Delta T)}$	
Whe	ere:			
LI	LD	= tł	e a priori lower limit of detection (pico-Curie per unit ma	ss or volume),
S	b		ne standard deviation of the background counting rate or a blank sample as appropriate (counts per minute)	
E		= tł	e counting efficiency (counts per disintegration),	
V		= tł	e sample size (units of mass or volume),	
2.	22	= tł	e number of disintegrations per minute per pico-Curie,	
Y		= tł	e fractional radiochemical yield, when applicable,	
λ		= tł	e radioactive decay constant for the particular radionuc	ide (sec ⁻¹) and
Δ.	Т		e elapsed time between the midpoint of sample collection for the collection of the c	on and the time
Турі	cal va	alues	of E, V, Y and ΔT should be used in the calculation.	
re (a su ס pr th id	pres fter t ich a ccasi resen ese l entifi	enting he fa man ionall ice of LDs ed ar	recognized that the LLD is defined as an <u>a priori</u> (before the capability of a measurement system and not as an ct) limit for a particular measurement. Analyses shall be ner that the stated LLDs will be achieved under routine of background fluctuations, unavoidable small sample size interfering nuclides or other uncontrollable circumstance unachievable. In such cases, the contributing factors sl id described in the Annual Radiological Environmental Co uant to Control 3.12.4.	<u>a posteriori</u> performed in conditions. ces, the es may render nall be
	•		Im mixture of the parent and daughter isotopes which co of the parent isotope.	prresponds to

REVISION NO .:	PROCEDURE TITLE:	PAGE:				
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	50 6040				
PROCEDURE NO .:		59 of 219				
C-200	ST. LUCIE PLANT					
RADIOLOGICAL ENVIRONMENTAL MONITORING						
3/4.12.2 LAND	USE CENSUS					
CONTROLS						
conducted each of the residence	ance with St. Lucie Plant TS 6.8.4.g.2), a Land Use Cer I and shall identify within a distance of 8 km (5 miles) th e 16 meteorological sectors of the nearest milk animal, and the nearest garden* of greater than 50 square met et) producing broad leaf vegetation.	e location in the nearest				
APPLICABILITY:	At all times.					
ACTION:						
dose commitm 4.11.2.3, purs	Jse Census identifying a location(s) that yields a calculated nent greater than the values currently being calculated suant to Control 3.11.2.6, identify the new location(s) in active Effluent Release Report.	in Control				
dose commitm from which sa 3.12.1, add th Monitoring Pro control station via the same of after October Pursuant to TS Report docum table(s) for the	Jse Census identifying a location(s) that yields a calculation nent (via the same exposure pathway) 20% greater that imples are currently being obtained in accordance with the new location(s) within 30 days to the Radiological Entogram given in the ODCM. The sampling location(s), enclocation, having the lowest calculated dose or dose corresposure pathway, may be deleted from this monitoring 31 of the year in which this Land Use Census was condenses 6.14, submit in the next Annual Radioactive Effluent I bentation for a change in the ODCM including a revised a ODCM reflecting the new location(s) with information hpling locations.	n at a location Control vironmental excluding the ommitment(s), g program ducted. Release figure(s) and				
of two different of census. Contro	tation sampling may be performed at the SITE BOUND direction sectors with the highest predicted D/Qs in lieu Is for broad leaf vegetation sampling in Table 3.12-1, P luding analysis of control samples.	of the garden				

REVISION N	10.:	PROCEDURE TITLE:	PAGE:
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	60 of 219
PROCEDUR	RE NO.:		00 01 2 19
С	-200	ST. LUCIE PLANT	
RADIOL	OGICAL EI	NVIRONMENTAL MONITORING	
<u>3/4.12.2</u>	LAND	USE CENSUS (Continued)	
SURVEI	LLANCE R	EQUIREMENTS	
4.12.2	once per such as b agricultur	Use Census shall be conducted during the growing sea 12 months using that information that will provide the be y a door-to-door survey, aerial survey or by consulting l e authorities. The results of the Land Use Census shall al Radiological Environmental Operating Report pursuar	est results, ocal be included in

.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	61 of 219
PROCEDURE NO.: C-200	ST. LUCIE PLANT	
RADIOLOGICAL EN	VIRONMENTAL MONITORING	
3/4.12.3 INTER	LABORATORY COMPARISON PROGRAM	
CONTROLS		
on all radio	nce with St. Lucie Plant TS 6.8.4.g.3), analyses shall b pactive materials, supplied as part of an Interlaboratory hat correspond to samples required by Table 3.12-1.	
APPLICABILITY:	At all times.	
ACTION:		
taken to preve	not being performed as required above, report the content a recurrence to the Commission in the Annual Radio I Operating Report pursuant to Control 3.12.4.	
SURVEILLANCE RE	QUIREMENTS	
Compariso Environme Interlabora	y of the results obtained as part of the above required in on Program shall be included in the Annual Radiologica ontal Operating Report pursuant to Control 3.12.4. If the tory Comparison Program is other than the program co nen the Interlaboratory Comparison Program shall be d	l e inducted by

•

26 PROCEEDURE NO: C-200 OFFSITE DOSE CALCULATION MANUAL (ODCM) ST, LUCIE PLANT 62 of 219 RADIOLOGICAL ENVIRONMENTAL MONITORING 3/4.12.4 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT (AREOR)* ADMINISTRATIVE CONTROLS 3.12.4 In accordance with St. Lucie Plant TS 6.9.1.8, an Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations and information based on trend analysis of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided in the AREOR shall be consistent with the objectives outlined below and with Sections IV.B.2, IV.B.3 and IV.C of Appendix I to 10 CFR Part 50. The Annual Radiological Environmental Operating Reports shall include summaries, interpretations and information based on trend analysis of the results of the radiological environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. The report period, including a comparison, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessement of the observed impacts of the plant operation on the environmental Operating Reports shall include the results of analysis of all radiological Environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the Table and Figures in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individuel results of are not available for inclusion with thre report, shell be submitted noting and expla	REVISION NO .:	PROCEDURE TITLE:	PAGE:
PROCEDURE NO: C-200 ST. LUCIE PLANT RADIOLOGICAL ENVIRONMENTAL MONITORING 3/4.12.4 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT (AREOR)* ADMINISTRATIVE CONTROLS 3.12.4 In accordance with St. Lucie Plant TS 6.9.1.8, an Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations and information based on trend analysis of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided in the AREOR shall be consistent with the objectives outlined below and with Sections IV.B.2, IV.B.3 and IV.C of Appendix I to 10 CFR Part 50. The Annual Radiological Environmental Monitoring reorparation, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environmental Operating Reports shall include the results of land use census required by Control 3.12.2. The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental coperating Reports shall include the results of analysis of all radiological Environmental Operating Reports shall include the results of analysis of all radiological Environmental Previous appropriate previous and to the locations specified in the Table and Figures in the ODCM, as well as summarized and fabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch technical Position, Revision 1, November 1979. In the event that some individual r	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	00 (010
 RADIOLOGICAL ENVIRONMENTAL MONITORING 3/4.12.4 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT (AREOR)* ADMINISTRATIVE CONTROLS 3.12.4 In accordance with St. Lucie Plant TS 6.9.1.8, an Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations and information based on trend analysis of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided in the AREOR shall be consistent with the objectives outlined below and with Sections IV.B.2, IV.B.3 and IV.C of Appendix 1 to 10 CFR Part 50. The Annual Radiological Environmental Operating Reports shall include summaries, interpretations and information based on trend analysis of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the Table and Figures in the ODCM, as well as summarized and tabulated results of the table and results of the resons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report. The reports shall also include the following: a summary description of the radiological environmentary report. The reports shall also include the following: a summary description of the radiological environmentary report. The reports shall also include the following: a summary description of the radiological results of and environmentary report. The reports shall also include the following: a summary descript	PROCEDURE NO .:	· · · · · · · · · · · · · · · · · · ·	62 of 219
 3/4.12.4 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT (AREOR)* ADMINISTRATIVE CONTROLS 3.12.4 In accordance with St. Lucie Plant TS 6.9.1.8, an Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations and information based on trend analysis of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided in the AREOR shall be consistent with the objectives outlined below and with Sections IV.B.2, IV.B.3 and IV.C of Appendix I to 10 CFR Part 50. The Annual Radiological Environmental Operating Reports shall include summaries, interpretations and information based on trend analysis of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use census required by Control 3.12.2. The Annual Radiological Environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the Table and Figures in the ODCM, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report. The reports shall also include the following: a summary description of the radiological environment	C-200	ST. LUCIE PLANT	
(AREOR)* ADMINISTRATIVE CONTROLS 3.12.4 In accordance with St. Lucie Plant TS 6.9.1.8, an Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations and information based on trend analysis of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided in the AREOR shall be consistent with the objectives outlined below and with Sections IV.B.2, IV.B.3 and IV.C of Appendix I to 10 CFR Part 50. The Annual Radiological Environmental Operating Reports shall include summaries, interpretations and information based on trend analysis of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use census required by Control 3.12.2. The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the Table and Figures in the ODCM, as well as summarized and tabulated results of these analyses are not available for inclusion with the report, the report shall be submitted anditing and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report. The reports shall also include the following: a summary description of the radiological environmental monitoring program; at least two legible maps** covering all sampling locations keyed to a table giving distances and dir	RADIOLOGICAL EN	IVIRONMENTAL MONITORING	
 3.12.4 In accordance with St. Lucie Plant TS 6.9.1.8, an Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations and information based on trend analysis of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided in the AREOR shall be consistent with the objectives outlined belcw and with Sections IV.B.2, IV.B.3 and IV.C of Appendix I to 10 CFR Part 50. The Annual Radiological Environmental Operating Reports shall include summaries, interpretations and information based on trend analysis of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environmental Samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the Table and Figures in the ODCM, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report. The reports shall also include the following: a summary description of the radiological environmentary report. The reports shall also include the following: a summary description of the radiological environmentary report. The reports shall also include the following: a summary description of the radiological environmentary report. The reports of all deviations from the sampling schedule of Table 3.12-1; and discussion of all deviations from the sampling schedule of Table 3.12-1; and dis	· · · · · · · · · · · · · · · · · · ·		REPORT
Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations and information based on trend analysis of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided in the AREOR shall be consistent with the objectives outlined below and with Sections IV.B.2, IV.B.3 and IV.C of Appendix I to 10 CFR Part 50. The Annual Radiological Environmental Operating Reports shall include summaries, interpretations and information based on trend analysis of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessment of the observed impacts of the loant operation on the environment. The reports shall also include the results of land use census required by Control 3.12.2. The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the Table and Figures in the ODCM, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Fechnical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report. The reports shall also include the following: a summary description of the radiological environmental monitoring program; at least two legible maps** covering all sampling ocations keyed to a table giving distances and directions from the centerline of one eactor; the results of the Interlaboratory Comparison Program, required by Control 8.12.3; discussion of all deviations from the sampling schedule of Table 3.12-1; and d	ADMINISTRATIVE (CONTROLS	
 Interpretations and information based on trend analysis of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use ensus required by Control 3.12.2. The Annual Radiological Environmental Operating Reports shall include the results of inalysis of all radiological environmental samples and of all environmental radiation neasurements taken during the period pursuant to the locations specified in the Table ind Figures in the ODCM, as well as summarized and tabulated results of these analyses ind measurements in the format of the table in the Radiological Assessment Branch 'echnical Position, Revision 1, November 1979. In the event that some individual results re not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as oon as possible in a supplementary report. The reports shall also include the following: a summary description of the radiological nvironmental monitoring program; at least two legible maps** covering all sampling ocations keyed to a table giving distances and directions from the centerline of one eactor; the results of the Interlaboratory Comparison Program, required by Control .12.3; discussion of all deviations from the sampling schedule of Table 3.12-1; and iscussion of all analyses in which the LLD required by Table 4.12-1 was not achievable. A single submittal may be made for multiple unit station. * One map shall cover stations near the SITE BOUNDARY; a second shall include 	Environme previous c shall inclue of the resu reporting p the objecti	ental Operating Report covering the operation of the un alendar year shall be submitted before May 1 of each y de summaries, interpretations and information based of lits of the Radiological Environmental Monitoring Progra beriod. The material provided in the AREOR shall be co ves outlined below and with Sections IV.B.2, IV.B.3 and	it during the /ear. The report n trend analysis am for the onsistent with
nalysis of all radiological environmental samples and of all environmental radiation neasurements taken during the period pursuant to the locations specified in the Table nd Figures in the ODCM, as well as summarized and tabulated results of these analyses nd measurements in the format of the table in the Radiological Assessment Branch echnical Position, Revision 1, November 1979. In the event that some individual results re not available for inclusion with the report, the report shall be submitted noting and xplaining the reasons for the missing results. The missing data shall be submitted as oon as possible in a supplementary report. The reports shall also include the following: a summary description of the radiological nvironmental monitoring program; at least two legible maps** covering all sampling beator; the results of the Interlaboratory Comparison Program, required by Control .12.3; discussion of all deviations from the sampling schedule of Table 3.12-1; and iscussion of all analyses in which the LLD required by Table 4.12-1 was not achievable.	nterpretations and ir nvironmental surve ppropriate, with pre nvironmental surve lant operation on th	nformation based on trend analysis of the results of the illance activities for the report period, including a compa operational studies, with operational controls and with illance reports and an assessment of the observed imp e environment. The reports shall also include the resu	radiological arison, as previous acts of the
 nvironmental monitoring program; at least two legible maps** covering all sampling beatons keyed to a table giving distances and directions from the centerline of one eactor; the results of the Interlaboratory Comparison Program, required by Control .12.3; discussion of all deviations from the sampling schedule of Table 3.12-1; and iscussion of all analyses in which the LLD required by Table 4.12-1 was not achievable. A single submittal may be made for multiple unit station. * - One map shall cover stations near the SITE BOUNDARY; a second shall include 	nalysis of all radiolo neasurements taker nd Figures in the O nd measurements i echnical Position, F re not available for xplaining the reaso	ogical environmental samples and of all environmental in during the period pursuant to the locations specified in DCM, as well as summarized and tabulated results of t in the format of the table in the Radiological Assessmer Revision 1, November 1979. In the event that some ind inclusion with the report, the report shall be submitted r hs for the missing results. The missing data shall be su	radiation n the Table hese analyses nt Branch ividual results noting and
* - One map shall cover stations near the SITE BOUNDARY; a second shall include	nvironmental monito ocations keyed to a eactor; the results o .12.3; discussion of	oring program; at least two legible maps** covering all s table giving distances and directions from the centerline f the Interlaboratory Comparison Program, required by all deviations from the sampling schedule of Table 3.1	sampling e of one Control 2-1; and
	** - One map shal	I cover stations near the SITE BOUNDARY; a second s	shall include

.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	00 (010
PROCEDURE NO.:		63 of 219
C-200	ST. LUCIE PLANT	
0-200		
	BASES	
	FOR THE	
	CONTROLS	
	AND	
	SURVEILLANCE REQUIREMENTS	
·]
The PASE	<u>NOTE</u> S contained in succeeding pages summarize the reasons	for the
Controls in	Section 3.0 and 4.0, but are not part of these Controls.	
[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	64 of 219
PROCEDURE NO .:		04 01 213
C-200	ST. LUCIE PLANT	
INSTRUMENTAT	ΓΙΟΝ	

BASES

3.3.3.9 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluent during actual or potential releases of liquid effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50.

3.3.3.10 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluent during actual or potential releases of gaseous effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50.

REVISION NO .:	PROCEDURE TITLE:	PAGE:		
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	65 of 219		
PROCEDURE NO .:		05 01 2 1 3		
C-200	ST. LUCIE PLANT			
3/4.11 RADIOACTIVE EFFLUENTS				
BASES				

3/4.11.1 LIQUID EFFLUENTS

3/4.11.1.1 CONCENTRATION

This control is provided to ensure that the concentration of radioactive materials released in liquid waste effluents to UNRESTRICTED AREAS will be less than the concentration levels specified in 10 CFR Part 20, Appendix B, Table 2, Column 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water in UNRESTRICTED AREAS will result in exposures within: (1) the Section II.A design objectives of Appendix I, 10 CFR Part 50, to a MEMBER OF THE PUBLIC and (2) the limits of 10 CFR Part 20. The concentration limit for dissolved or entrained noble gases is based upon the assumption that Xe-135 is the controlling radioisotope and its ECL in air (submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP) Publication 2.

This control applies to the release of radioactive materials in liquid effluents from all units at the site.

The required detection capabilities for radioactive materials in liquid waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD and other detection limits can be found in Currie, L.A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

<u>3/4.11.1.2 DOSE</u>

This control is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. The Control implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	66 of 219
PROCEDURE NO .:		00 01 21 3
C-200	ST. LUCIE PLANT	
<u>3/4.11 RADIC</u>	DACTIVE EFFLUENTS (Continued)	
BASES		

3/4.11.1 LIQUID EFFLUENTS (Continued)

<u>3/4.11.1.2 DOSE</u> (Continued)

The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.113, Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I, April 1977.

This control applies to the release of radioactive materials in liquid effluents from each unit at the site. For units with shared Radwaste Systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.

3/4.11.1.3 LIQUID RADWASTE TREATMENT SYSTEM

The OPERABILITY of the Liquid Radwaste Treatment System ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the Liquid Radwaste Treatment System were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50 for liquid effluents.

This control applies to the release of radioactive materials in liquid effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	67 of 219
PROCEDURE NO.:		0701213
C-200	ST. LUCIE PLANT	
RADIOACTIVE EFF	LUENTS	
BASES		

3/4.11.2 GASEOUS EFFLUENTS

3/4.11.2.1 DOSE RATE

This control is provided to ensure that the dose at any time at and beyond the SITE BOUNDARY from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR Part 20 to UNRESTRICTED AREAS. The annual dose limits are the doses associated with the concentration of 10 CFR Part 20, Appendix B, Table 2, Column I. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in an UNRESTRICTED AREA, either within or outside the SITE BOUNDARY, to an annual average concentration exceeding the limits specified in Appendix B, Table 2 of 10 CFR Part 20 (Subpart D of 10 CFR Part 20). For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the total body or to less than or equal to 3000 mrem/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/vear.

This control applies to the release of radioactive materials in gaseous effluents from all units at the site.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	68 of 219
PROCEDURE NO .:		00 01 2 19
C-200	ST. LUCIE PLANT	
RADIOACTIVE E	EFFLUENTS	
BASES		

3/4.11.2.1 DOSE - NOBLE GASES

This control is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The control implements the guides set forth in Section I.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors, Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are to be proportioned among the units sharing that system.

3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM AND RADIOACTIVE MATERIAL IN PARTICIJLATE FORM

This control is provided to implement the requirements of Sections II.C, III.A and IV.A of Appendix I, 10 CFR Part 50. The Controls are the guides set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. The ODCM calculational methods specified in the Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

REVISION NO .:	PROCEDURE TITLE:	PAGE:	
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	69 of 219	
PROCEDURE NO .:		0901219	
C-200	ST. LUCIE PLANT		
RADIOACTIVE EFFLUENTS			
BASES			
3/4.11.2.1 DOS	E - NOBLE GASES (Continued)		

3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM AND RADIOACTIVE MATERIAL IN PARTICULATE FORM (Continued)

The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject material are consistent with the methodology provided in Regulatory Guide 1.109. Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors, Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate controls for lodine-131, lodine-133, tritium and radionuclides in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of the calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man and (4) deposition on the ground with subsequent exposure of man.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	70 of 219
PROCEDURE NO .:		1001219
C-200	ST. LUCIE PLANT	
RADIOACTIVE E	EFFLUENTS	

BASES

3/4.11.2.4 GASEOUS RADWASTE TREATMENT SYSTEM

The OPERABILITY of the WASTE GAS HOLDUP SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensure that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Section II.B and II.C of Appendix I, 10 CFR Part 50 for gaseous effluents.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.

3/4.11.2.5 NOT USED

3/4.11.2.6 NOT USED

3/4.11.3 NOT USED

3/4.11.4 TOTAL DOSE

This control is provided to meet the dose limitations of 10 CFR Part 190 that have been incorporated into 10 CFR Part 20 by 46 FR 18525. The control requires the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. For sites containing up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the units (including outside storage tanks, etc.) are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits.

PROCEDURE TITLE:	PAGE:
OFFSITE DOSE CALCULATION MANUAL (ODCM)	71 of 219
	710/219
ST. LUCIE PLANT	
FLUENTS	
	OFFSITE DOSE CALCULATION MANUAL (ODCM)

3/4.11.4 TOTAL DOSE (Continued)

For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 kilometers must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11 and Subpart M of 10 CFR Part 20, is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in Controls 3.11.1.1 and 3.11.2.1. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	72 of 219
PROCEDURE NO .:		1201213
C-200	ST. LUCIE PLANT	
<u>3/4.12 RADIO</u>	DLOGICAL ENVIRONMENTAL MONITORING	

BASES

3/4.12.1 MONITORING PROGRAM

The Radiological Environmental Monitoring Program required by this control provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of MEMBERS OF THE PUBLIC resulting from the plant operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the Radiological Effluent Monitoring Program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979. The initially specified monitoring program will be effective for at least the first three years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs). The LLDs required by Table 4.12-1 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

3/4.12.2 LAND USE CENSUS

This control is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the Radiological Environmental Monitoring Program given in the ODCM are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26 PROCEDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	73 of 219
C-200	ST. LUCIE PLANT	
RADIOLOGICAL EN	IVIRONMENTAL MONITORING	
BASES		
This census satisfies Restricting the censu	ID USE CENSUS (Continued) s the requirements of Section IV.B.3 of Appendix I to 10 us to gardens of greater than 50 square meters provide	s assurance
since a garden of thi kilograms/year) of le by a child. To deterr made: (1) 20% of th	sure pathways via leafy vegetables will be identified and s size is the minimum required to produce the quantity afy vegetables assumed in Regulatory Guide 1.109 for mine this minimum garden size, the following assumption e garden was used for growing broad leaf vegetation (i.) and (2) a vegetation yield of 2 kilograms per square m	(26 consumption ons were .e., similar to
<u>3/4.12.3 INTE</u>	ERLABORATORY COMPARISON PROGRAM	
provided to ensure the measurements of rac as part of the quality	participation in an approved Interlaboratory Comparison nat independent checks on the precision and accuracy dioactive materials in environmental sample matrices an assurance program for environmental monitoring in ord results are valid for the purposes of Section IV.B.2 of A	of the re performed der to

REVISION NO .:		PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	74 of 219
ROCEDURE NO .:		14 01 210
C-200	ST. LUCIE PLANT	
	METHODOLOGY SECTION	
	METHODOLOGY	
	for the	
	CONTROLS	
	AND	
	SURVEILLANCE REQUIREMENTS	

REVISION NO .:		PROCEDURE TITLE:	PAGE:		
26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	75 -6040		
PROCEDURE NO .:			75 of 219		
C-200		ST. LUCIE PLANT			
<u>GLOSS/</u>	ARY	METHODOLOGY SECTION OF COMMONLY USED TERMS IN METHODOLOGY 3 (Page 1 of 3)	SECTION		
D _B	-	Dose from Beta Radiation			
CC or cc	-	Cubic centimeter			
Ci	-	Curies - a unit of radioactivity see μ Ci			
Ci	 Activity or concentration of a nuclide in the release source. Units of μCi, μCi/cc or μCi/ml 				
CFR	- Code of Federal Regulations				
Control(s)		Regulations for operating, controlling, monitoring and re radioactive effluent related activity as indicated by the C Section of the ODCM.			
Dose		The exposure, in mrem or mrad, the organ or the individ from radioactive effluents	dual receives		
Dose Factor		Normally, a factor that converts the effect of ingesting radioactive material into the body, to dose to a specific organ. Body elimination, radioactive decay and organ uptake are some of the factors that determine a dose factor for a given nuclide			
Dose Pathway		A specific path that radioactive material physically travels through prior to exposing an individual to radiation. The Grass-Cow-Milk- Infant is a dose pathway			
Dose Rate	-	The dose received per unit time			
(D/Q)	1	A long term D over Q - a factor with units of $1/m^2$ which describes the deposition of particulate matter from a plume at a point downrange from the source. It can be thought of as what part of the cloud is going to fallout and deposit over one square meter of ground. (See Appendix C).			
ECL	- i	Effluent Concentration Limit			
FUSAR	-	Final Updated Safety Analysis Report.			
Y	- /	A gamma photon - The dose from Gammas in air, etc.			

REVISION NO .:		PROCEDURE TITLE:	PAGE:	
26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	76 of 219	
PROCEDURE NO .:			7001213	
C-200		ST. LUCIE PLANT		
<u>GLOSS</u>	ARY	METHODOLOGY SECTION OF COMMONLY USED TERMS IN METHODOLOGY (Page 2 of 3)	SECTION	
Ground Plane	-	Radioactive material deposited uniformly over the grou radiation that produces an exposure pathway when an standing, sitting, etc., in the area. It is assumed that ar receives the same exposure as an infant, regardless of height differences. Only the whole body is considered	individual is n adult f the physical	
Н-3	-	Hydrogen-3 or Tritium, a weak Beta emitter		
I&8DP	an 8 days			
m ³ - Cubic Meters				
m²	-	Square Meters		
nuclide - For the purposes of this manual, a radioactive isotope. signifies a specific nuclide, the 1st, 2nd, 3rd one under of If nuclide (i) is I-131, then the Mi (dose factor) under con should be M _{I-131} for example.			consideration.	
Organ	-	For the ODCM either the bone, liver, thyroid, kidney, lung, GI-LLI or the Whole Body. Whole Body is considered an organ for ease of writing the methodology in the ODCM.		
pCi	-	1 pico-Curie = 1.E-12 Curies.		
(Q Dot) _i	-	(Q Dot) _i - Denotes a release rate in μ Ci/sec for nuclide	(i).	
Qi	-	Denotes μ Ci of nuclide (i) released over a specified tim	e interval.	
Radioiodines	-	Iodine-131 and Iodine I-133 for gaseous release pathw	ays.	
Receptor	 The individual receiving the exposure in a given location or who ingests food products from an animal for example. A receptor can receive dose from one or more pathways. 			
Release Source	(s)	 A subsystem, tank or vent where radioactive material can be released independently of other radioactive release points. 		
TS		- The St. Lucie Plant Standard Technical Specifications		
Total Body		- Same as Whole Body in Control Statements		
μCi	- micro Curies. $1 \mu \text{Ci} = 10^{-6}$ Curies. The μCi is the standard unit of radioactivity for all dose calculations in the ODCM.			

26 OFFSITE DOSE CALCULATION MANUAL (ODCM) 77 of 2 PROCEDURE NO:: C-200 ST. LUCIE PLANT 77 of 2 METHODOLOGY SECTION GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 3 of 3) (X/Q) A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Nob Gases are inert, they do not tend to settle out on the ground. (See Appendix C). (X/Q) A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates as the cloud travels downrange. Since lodines and particulates as the cloud travels downrange. Since lodines and particulates as the cloud travels downrange. Since lodines and particulates as the cloud travels downrange. Since lodines and particulates as the cloud travels downrange. Since lodines and particulates as the cloud travels downrange. Since lodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) the ground, the (X/Q) _D represents what physically remains of the cloud and its dispersion qualities at a given location downrange from the release point. (See Appendix F). dt, Δt or delta t A specific delta time interval that corresponds with the release interval data etc.	REVISION NO .:	PROCEDURE TITLE:	PAGE:
PROCEDURE NO.: ST. LUCIE PLANT METHODOLOGY SECTION GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 3 of 3) (X/Q) A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Nob Gases are inert, they do not tend to settle out on the ground. (See Appendix C). (X/Q)D A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Sinc lodines and particulates tend to settle out (fallout of the cloud) the ground, the (X/Q)D represents what physically remains of t cloud and its dispersion qualities at a given location downrang from the release point. (See Appendix F). dt, Δt or delta t A specific delta time interval that corresponds with the release	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	77 of 2
METHODOLOGY SECTION GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 3 of 3) (X/Q) - A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Nob Gases are inert, they do not tend to settle out on the ground. (See Appendix C). (X/Q) _D - A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Sinc lodines and particulates tend to settle out (fallout of the cloud) the ground, the (X/Q) _D represents what physically remains of t cloud and its dispersion qualities at a given location downrang from the release point. (See Appendix F). dt, Δt or delta t	PROCEDURE NO .:		11012
 GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 3 of 3) (X/Q) - A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Nob Gases are inert, they do not tend to settle out on the ground. (See Appendix C). (X/Q)_D - A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) the ground, the (X/Q)_D represents what physically remains of t cloud and its dispersion qualities at a given location downrang from the release point. (See Appendix F). dt, Δt or delta t 	C-200	ST. LUCIE PLANT	
 characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Nob Gases are inert, they do not tend to settle out on the ground. (See Appendix C). A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) the ground, the (X/Q)_D represents what physically remains of the cloud and its dispersion qualities at a given location downrang from the release point. (See Appendix F). dt, Δt or delta t 	GLOSSAR	Y OF COMMONLY USED TERMS IN METHODOLOGY	SECTION
 dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) the ground, the (X/Q)_D represents what physically remains of the cloud and its dispersion qualities at a given location downrang from the release point. (See Appendix F). dt, Δt or delta t 	(X/Q)	characteristics of a semi-infinite cloud of noble gase cloud traverses downrange from the release point. Gases are inert, they do not tend to settle out on the	es as the Since Nobl
	(X/Q) _D	dispersion characteristics of a semi-infinite cloud of iodines and particulates as the cloud travels downra lodines and particulates tend to settle out (fallout of the ground, the (X/Q) _D represents what physically re cloud and its dispersion qualities at a given location	radioactive inge. Since the cloud) emains of th
	dt, ∆t or delta t		he release

REVIS	ION NO.:	PROCEDURE TITLE:	PAGE:			
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	78 of 219			
PROCE	EDURE NO.:		7001219			
	C-200	ST. LUCIE PLANT				
		METHODOLOGY SECTION				
1.0	LIQUID RELI	EASES METHODOLOGY				
1.1	Radioactive L	iquid Effluent Model Assumptions				
	The FUSAR contains the official description of the site characteristics. The description that follows is a brief summary for dose calculation purposes:					
	Norma Circula approx for sub of radi wind a are su	c Ocean and the Indian River, an estuary of the Atlantic ally, all radioactive liquid releases enter the Atlantic Oce ating Water Discharge Pipe terminates on the ocean flow kimately 1200 feet offshore (Figure 1-1 Point "L"). No can be sequent mixing of the discharge flume with the ocean. oactive material into the ocean is dependent on the con and some eddy currents caused by the Gulf Stream. Th fficiently random enough to distribute the discharges ov to concentrating effects are assumed.	an where the or at a point redit is taken The diffusion ditions of tide, e conditions			
	or sour Indian to prov Water No rad Water no bac charac	are no direct discharge paths for liquid effluents to either th private property boundary lines. The Big Mud Creek River) does connect to a normally locked shut dam, that vide an emergency supply of circulating water to the Inter- Canal in the event a Hurricane causes blockage of the lioactive water could be discharged directly into the Inter- Canal because all plant piping is routed to the discharg k flow can occur. Consult the FUSAR for a detailed de- teristics of the water bodies surrounding the plant site.	(part of the at is intended ake Cooling Intake Canal. ke Cooling e canal and scription of			
		nose nuclides that appear in the Liquid Dose Factor Tab ered for dose calculation.	les will be			

REVISI	ION NO.:		PROCEDURE TITLE:	PAGE:			
ļ	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	79 of 219			
PROCE	EDURE NO.:		ST. LUCIE PLANT				
	C-200		ST. LUCIE PLANT				
			METHODOLOGY SECTION				
1.2	<u>Determining the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid Release</u> <u>Source</u>						
	Discussion - Control 3.11.1.1 requires that the sampling and analysis results of liquid waste (prior to discharge) be used with calculation methods in the in-plant procedures to assure that the concentration of liquid radioactive material in the unrestricted areas will not exceed ten times the concentrations specified in 10 CFR Part 20, Appendix B, Table 2. COP-01.05, Processing Aerated Liquid Waste, provides instruction for ensuring batch release tanks will be sampled after adequate mixing. This section presents the calculation method to be used for this determination. This method only addresses the calculation for a specific release source. The in-plant procedures will provide instructions for determining that the summation of each release source's F values do not exceed the site's 10 CFR Part 20 ECL. The values for release rate, dilution rate, etc., will also have to be obtained from in-plant procedures. The basic equation is:						
$F_{L} = \frac{R}{D} \sum_{i=1}^{n} \frac{C_{i}}{(ECL)_{i}}$							
	Where						
	FL		the fraction of 10 CFR Part 20 ECL that would result if th source was discharged under the conditions specified.	e release			
R = The undiluted release rate in gpm of the release source. Liquid Rad Waste = 170 gpm for Waste Monitor Tank Steam Generator = 125 gpm/Steam Generator Liquid Rad Waste = 60 gpm for AWST #2 Liquid Rad Waste = 60 gpm for Laundry Drain Pumps 2A/2B							
	D	1	The dilution flow in gpm of Intake Cooling Water or Circu Pumps Intake Cooling flow is 14,500 gpm/pump Circulating Water flow is 121,000 gpm/pump	lating Water			
	Ci	= .	The undiluted concentration of nuclide (i) in μ Ci/ml from s	sample assay			
	(ECL) _i	I	The Effluent Concentration Limit of nuclide (i) in μ Ci/ml fr For dissolved or entrained noble gases the ECL value is for the sum of all gases.				

REVIS	ION NO.:		PROCEDURE TITLE:	PAGE:			
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	80 of 219			
PROCE	EDURE N			0001213			
	C-20	00	ST. LUCIE PLANT				
			METHODOLOGY SECTION				
1.2	Determining the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid Release Source (continued)						
	nucli cum 3 X cum gros conc calcu	de-by-nu ulative a 10 ⁻⁸ µCi/u ulative co s concer entratior ulation is following	of the 10 CFR Part 20 ECL limit may be determined by a uclide evaluation or for purposes of simplifying the calcu- ctivity evaluation. If the simplified method is used, the v ml (unidentified ECL value) should be substituted for (Ev oncentration (sum of all identified radionuclide concentra- tration should be substituted for C _i . As long as the dilur n (C _{total} R/D) is less than 3 X 10 ⁻⁸ μ Ci/ml, the nuclide-by- not required to demonstrate compliance with the 10 CF section provides a step-by-step procedure for determin	ilation by a ralue of CL) _i and the ations) or the ted •nuclide FR Part 20 ECL.			
	1.	Calcul	ation Process for Solids				
		Α.	Obtain from the in-plant procedures, the release rate vagpm for the release source.	alue (R) in			
		В.	Obtain from the in-plant procedures, the dilution rate (C credit is taken for any dilution beyond the discharge ca				
		C.	Obtain (C_i), the undiluted assay value of nuclide (i), in μ simplified method is used, the cumulative concentration used.				
		D.	From Table L-1, obtain the corresponding (ECL) for numLi/ml. The value of $3 \times 10^{-8} \mu$ Ci/ml should be used for method.				
		E.	Divide C _i by (ECL) _i and write down the quotient				
			If the simplified method is used, proceed to the next ste determining the ECL fraction by the nuclide-by-nuclide repeat steps 1.2.1.C through 1.2.1.E for each nuclide re assay, for H ₃ from previous month composite and for S Fe55 from previous quarter composite with known resu	evaluation, eported in the R89/90 and			

ource (cont	OFFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT <u>METHODOLOGY SECTION</u> the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid	
etermining ource (cont	ST. LUCIE PLANT METHODOLOGY SECTION the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid tinued) lation Process for Solids (continued) Add each C _i /(ECL) quotient from step 1.2.1.E and solve follows:	d Release
etermining ource (cont . Calcu	METHODOLOGY SECTION the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid tinued) lation Process for Solids (continued) Add each C _i /(ECL) quotient from step 1.2.1.E and solve follows:	
<u>ource</u> (cont . Calcu	the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid tinued) lation Process for Solids (continued) Add each C _i /(ECL) quotient from step 1.2.1.E and solve follows:	
<u>ource</u> (cont . Calcu	tinued) lation Process for Solids (continued) Add each C _i /(ECL) quotient from step 1.2.1.E and solve follows:	
	Add each C _i /(ECL) quotient from step 1.2.1.E and solve follows:	for F_L as
G.	follows:	for F_L as
	$F_{L} = \frac{R}{D} \sum_{i=1}^{n} \frac{C_{i}}{(ECL)i}$	
	$F_L = a$ unit-less value where:	
	the value of F_L could be \leq or >1. The purpose of the call determine what the initial value of F_L is for a given set of conditions.	
H.	The F_L value just obtained is for one release pathway. TODCM control 3.11.1.1 allow for a site limit of F_L less that 10. Chemistry Procedure COP-01.05 administratively corpathway's allocation. Compare your F_L result with the accontrol for the release pathway in COP-01.05.	an or equal to ontrols each
Calcul	lation Process for Gases in Liquid	
Α.	Sum the $\mu\text{Ci/ml}$ of each noble gas activity reported in the	e release.
В.	The values of R and D from 1.2.1 above shall be used in calculations below:	n the
	$F_g = \frac{(\text{sum of } 1.2.2.A)\mu\text{Ci/ml}}{1} X \frac{R}{D}$	
C.	F_g shall be less than 2 X 10 ⁻⁴ µCi/ml for the site for all reprogress. Each release point will be administratively conconsult COP-01.05 procedure for instructions.	
	Calcu A. B.	determine what the initial value of F_L is for a given set of conditions. H. The F_L value just obtained is for one release pathway. The ODCM control 3.11.1.1 allow for a site limit of F_L less that 10. Chemistry Procedure COP-01.05 administratively capathway's allocation. Compare your F_L result with the a control for the release pathway in COP-01.05. Calculation Process for Gases in Liquid A. Sum the μ Ci/ml of each noble gas activity reported in the B. The values of R and D from 1.2.1 above shall be used in calculations below: $F_g = \frac{(\text{sum of } 1.2.2.\text{A})\mu\text{Ci/ml}}{1} \times \frac{R}{D}$ C. F_g shall be less than 2 X 10 ⁻⁴ μ Ci/ml for the site for all reprogress. Each release point will be administratively compared to the site for all reprogress.

REVIS	ION NO.:	PROCEDURE TITLE:	PAGE:				
PROCI	26 EDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	82 of 219				
	C-200	ST. LUCIE PLANT					
		METHODOLOGY SECTION					
1.3	.3 Determining Setpoints for Radioactive Liquid Effluent Monitors						
	301 or	nts for Batch Liquid Release Monitors channel numbers 1 Table 3.3-14, Radioactive Effluent Monitor Setpoint Ba Liquid Effluent Monitors.					
	instrumentation radioactivity c concentration	Control 3.3.3.9 requires that the liquid effluent monitorir on alarm / trip setpoints be set to initiate an alarm or trip concentration in water in the unrestricted area does not of 10 CFR Part 20, Appendix B, Table 2 as a result of s (Control 3.11.1.1).	so that the exceed the				
	Monitors base gross cpm an in the dischar reports was u These concer discharge car 121,000 gpm	total liquid activity curves are available for Batch Liquid ed on a composite of real release data. A direct correlated d the concentrations that would achieve 10 CFR Part 2 ge canal can be estimated. The 1978 liquid release dated sed to determine the average undiluted release concer- netrations were then projected to a diluted concentration hal assuming a 1 gpm release rate and a constant diluti- from 1 circ. water pump. This diluted activity was divid ective 10 CFR Part 20 ECL value (Table L-1) to obtain hat follows:	tion between 0 ECL levels ta from annual tration. in the on flow of ed by the				

REVISI	ION NO.:	PROCEDURE TI	TLE:		PAGE:
	26	OFFSITE	DOSE CALCULATION MANU	JAL (ODCM)	00 -6 040
ROCE	EDURE NO.:				83 of 219
	C-200		ST. LUCIE PLANT		
		<u></u>	METHODOLOGY SECTION		
.3	Determining S	Setpoints for	Radioactive Liquid Effluent I	<u>Monitors</u> (conti	nued)
	NUCLIDE SY	MBOL	1978 UNDILUTED µCi/ml ¹	M _i ² (no	units)
	I-131		4.43 E-5	3.66	
			2.23 E-7	1.84	
	I-133		3.17 E-6	3.74	
	I-135		1.31 E-6	3.61	
-	Na-24		1.72 E-7	2.84	
	Cr-51		2.51 E-5	4.15	
\vdash			5.64 E-6	1.55	
-	Mn-56		1.11 E-9	1.31 E	
	Co-57		3.69 E-7	5.08	
	Co-58		1.51 E-4	6.24	
-	Fe-59		2.92 E-6	2.41	
	Co-60		3.66 E-5	1.01	
	Zn-65		4.55 E-7	7.52	
	Ni-65		8.23 E-7	6.8 E	
-	Ag-110	1	1.96 E-6	2.70	
			5.75 E-7	1.58	
-			2.15 E-6	1.78	
			8.40 E-6	9.92	
			3.51 E-6	9.67	
	Np-239		1.57 E-7	6.49	
\vdash	Br-82		3.64 E-7	7.52	
	Zr-95		2.82 E-5	1.17	
-	Zr-97		4.05 E-6		
			3.24 E-6	1.34	
			<u> </u>	1.06	
			2.26 E-6	6.23	
-	Cs-134		2.14 E-5	1.97	
\vdash	Cs-136		7.82 E-7	1.08	
-	Cs-137		4.85 E-5	4.01	
\vdash	Ba-140		6.44 E-7	6.65	
	Ce-141		3.04 E-8	8.38	
	Ce-144		2.37 E-6	6.53	
\vdash	A _{tot} =				
	M _{Total} =			1.18	

(1) 1978 Undiluted Release Volume = 7 E 9 ml.

(2) $M_{i} = \frac{1978 \text{ Undil. Act Nuclide (i)}}{\text{ECL}_{i} (\text{from Table L}-1)} \times \frac{1 \text{gpm (release rate)}}{121000 \text{ gpm (dil rate)}}$

REVIS	ION NO .:		PROCEDURE TITLE:	PAGE:						
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)							
ROCE	EDURE NO	D.:	· · · · ·	84 of 219						
	C-20	0	ST. LUCIE PLANT							
			METHODOLOGY SECTION							
.3	Deter	rmining S	Setpoints for Radioactive Liquid Effluent Monitors (conti	nued)						
	the fr A _{Tot} b equiv disch	action of by M _{Tot} yi alent to arges. T	al average μ Ci/ml concentration of the reference mixture f the MPC of all nuclides for the release conditions speci ields A _{Max} , which is the maximum total activity concentra the ECL limit for the nuclide distribution typical of radwa The Technical Specifications allow 10 times the ECL lim 0 times A _{Max} as follows:	sified. Dividing ation aste						
		A	$_{Max} = \frac{A_{Tot}}{M_{Tot}} = \frac{4.01E - 4}{1.18E - 3} = 0.34 \mu\text{Ci/ml} = \text{ECL Limit}$							
	Site Limit = 10 x A _{Max} = 10 x 0.34 = 3.4 µCi/ml									
	To provide conservative administrative control, A_{Max} of 0.34 $\mu\text{Ci/ml}$ should be used as follows:									
	1. If the effluent monitor requires counts per minute units, a (C_{max}) value in cpm should be obtained for the A_{max} (0.34 µCi/ml) from the release sources radioactive liquid effluent monitor curve of cpm vs. µCi/ml.									
	This s flow.	setpoint	NOTE is for a specified release of 1 gpm into 121000 gpm dilu	ition						
	 For establishing the setpoint prior to liquid radwaste discharges, the A_{max} (or C_{max}) will be adjusted as needed to account for actual release conditions (i.e., actual design maximum discharge flow rate, dilution flow rate and the contribution of dissolved and entrained Nobles Gas Activity to the Monitor Activity Level). 									

REVISION NO .:			PROCEDURE TITLE:	PAGE:	
26			OFFSITE DOSE CALCULATION MANUAL (ODCM)	85 of 219	
PROCE	EDURE NO.: C-200		ST. LUCIE PLANT		
			METHODOLOGY SECTION		
1.3	Determ	nining S	Setpoints for Radioactive Liquid Effluent Monitors (conti	inued)	
	1.3.2	Setpoi	nts for Continuous Liquid Release Monitors		
		Monito Genera Reacto exist a Site Lio be bas with 1 ODCM of solic control remain for solic therefo admini Since s monito	sion - The activity mixture described in 1.3.1 for Liquid rs cannot be used for Continuous Liquid Pathways sind ator (S/G) Blowdown Secondary Side is subject to what or Coolant System (RCS) activity and primary-to-second t any time. Although S/G blowdown is not normally alig quid Radwaste Release Point (Figure 1-1), the monitor ed on the ODCM maximum design S/G blowdown rate Circulating Water Pump (CWP) 121,000 gpm in operation and COP-01.05, Processing Liquid Waste assume that is entering the Discharge Canal to the site release point led less than or equal to 1.0, with batch release using 8 ing 20% allocated to continuous sources on site. The a ds is 10 times the concentration specified in 10 CFR Pa re a conservation factor of 10 is already included in the strative site limit.	the Steam the current dary leakage ned to the setpoints will of 125 gpm ion. The the fraction the fraction the fraction the fraction the limit art 20, alarm the discharge	
	([9	(F _L) as Dissolv gaseou	suming all the gross solid activity is I-131. The contributed and Entrained Gases is assumed to be zero with all us activity going to the Steam Condenser and Air Ejector $0\% = 0.2$ = Design blowdown rate x I-131 uCi/ml 1 CWP Dilution rate I-131 uCi/ml (Table	ution from I of the or pathway.	
				-	
	F	F_L at 20	0% = <u>0.2</u> = <u>125 gal/min</u> x <u>I-131 uCi/ml (S/0</u> 1 121,000 gal/min 1.E-06 uCi/ml (I-131 Tabl	<u>3)</u> e L-1ECL)	
	5	Solving	for the S/G High Alarm Setpoint I-131 Activity,		
		that	1 uCi/ml (S/G) = ~2E-04 uCi/ml I-131 is the maximum could be allowed such that 20 percent of the administr harge canal limit would not be exceeded.		
			G Monitor High Alarm Setpoint activity may be converted iquid Monitor uC/ml to cpm conversion constants.	ed to cpm	
	f F t	actor c ourpos hat it is	etpoint is conservative given that the actual Liquid Site of ten times higher than the administrative limit used for es, that I-131's ECL is conservative vs other isotope miss on unlikely that more than one S/G would be allowed to co on per day primary-to-secondary leak rate.	calculation ixtures, and	

REVIS	ION NO.:		PRO	CEDURE TITLE:	PAGE:					
26		OF	FSITE DOSE CALCULATION MANUAL (ODCM)							
PROCEDURE NO.:		1	() ,	86 of 219						
	C-20	0		ST. LUCIE PLANT						
			-	METHODOLOGY SECTION						
1.4	Deter									
	<u>Discussion</u> - Control 3.11.1.2 requires calculations be performed at least once per 31 days to verify that cumulative radioactive liquid effluents do not cause a dose in excess of 1.5 mrem to the whole body and 5 mrem to any organ during any calendar quarter and not in excess of 3 mrem to the whole body and 10 mrem to any organ during any calendar year. This section presents calculational method t be used for this verification.									
	NUR both pathw can a are u at St. which 3.11.	EG-0133 the fish a vay for v Ilso be c sed for t Lucie si n age gro	B Rev and s which alcul he o ince oup i	sed on the methodology suggested by sections 4.3 vision 1, November, 1978. The dose factors are a shellfish pathways so that the fish-shellfish pathway dose will be calculated. The dose for adult, child lated by this method provided that their appropriate rgan of interest. An infant is excluded from Liquid I they do not eat fish-shellfish. The effluent supervis s the controlling (most restrictive) age group (see of those nuclides that appear in the Tables of this ma	composite of y is the only and teenager dose factors Dose Pathway sor will track control					
	1.	for a g	iven	d provides for a dose calculation to the whole body age group based on real release conditions during al for radioactive liquid release sources. The equat	a specified					
		Where								
		D _{1T}		$D_{1T} = \frac{A_{1T} dt_1 Q_{11}}{(DF)_1}$						
			=	dose commitment in mrem received by organ T o (to be specified) during the release time interval o						
		A _{iT}	=	the composite dose factor for the fish-shellfish pa nuclide (i) for organ T of age group (to be specifie values listed in the Tables in this manual are inde any site specific information and have the units	ed). The A _{rr}					
				<u>mrem - ml</u> μCi - hr						
		dt ₁	=	the number of hours that the release occurs.						
		Q _{il}	=	The total quantity of nuclide (i) release during dt_1	(μCi)					
		(DF) ₁	=	The total volume of dilution that occurred during t time period dt_1 (i.e., the circulating water flow time						

REVISION NO .:			PROCEDURE TITLE:		PAGE:					
26			OFFSITE DOSE CAL	87 of 219						
PROCE	EDURE NO	D.:								
	C-20	0	ST.I		l					
			METHODO	LOGY SECTION						
1.4	Dete	Determining the Dose for Radioactive Liquid Releases (continued)								
	1.	(conti	nued)							
		the cu	mulative dose over a de	ach release may then be summe esired time period (e.g., sum all o d, calendar quarter or a year).						
			D _{total}	$T_{T} = \Sigma D_{T}$						
		Where	e:							
		D _{TT}		ommitment to organ _T due to all r ed time interval (mrem)	eleases					
		A.	Determine the time interval dt _i in hours that the release took place. For once per 31 day dose calculations dt _i would be for the entire month's hours.							
			culations dt _l would be the hours in Alculations dt _l would be the hours ours of duration of a single releas	in the year. If						
		В.	Obtain (DF) _i for the tim Records for the release	e period dt _l from Liquid Waste N e source(s) of interest.	lanagement					
		C.	Obtain Q _i for nuclide (i) for the time period dt ₁ from the Liquid Waste Management Records							
		D.	Obtain A_{iT} from the app	propriate Liquid Dose Factor Tab	ble					
		Г	Age Group	Dose Factor Table						
			Infant	N/A						
			Child	L-4						
				L-3						
			Teen	L-0						

F

REVISION NO .:	PROCEDURE TITLE:		PAGE:
26	OFFSITE DOSE CALCULATION	MANUAL (ODCM)	88 of 219
PROCEDURE NO.:			00 01 2 19
C-200	ST. LUCIE PLAN	IT	
	METHODOLOGY SECT	<u>rion</u>	
1.4 Determining	he Dose for Radioactive Liquid Rel	eases (continued)	
1. (contir	ued) TABLE 1.4		
	FISH AND SHELLFISH PA	THWAY	
TIME/DATE START:_		STOP::	/
TOTAL DILUTION VC	LUME:mis ORGAN:	DOSE FACTOR TA	BLE #:
NUCLIDE (i)	C _i (µCi) A _{iT}	DOSE (i) mr	em
	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·			
L	TOTAL DOSE	ε _T =	mrem
E.	Solve for Dose (i)		
L			
	$Dose(i) = \frac{Q_{i1} dt_1 A_{iT}}{(DF)_1}$		
	For the age group(s) of interest, rep for each nuclide reported and each		rough 1.4.1.E
	For the age group(s) of interest, sur total dose to organ T from the fish-s		s to obtain the

REVIS	ION NO.:		PROCEDURE TITLE:	PAGE:					
26									
PROCE			ST. LUCIE PLANT	89 of 219					
	C-20	0	ST. LUCIE PLANT						
			METHODOLOGY SECTION						
1.5	<u>Proje</u>	cting Do	se for Radioactive Liquid Effluents						
	radwa efflue UNRI whole meth	aste trea ents whe ESTRIC e body of od is pro	Control 3.11.1.3 requires that appropriate subsystems of tment system be used to reduce radioactive material in n the projected doses due to the liquid effluent, from ea TED AREAS (see TS Figure 5.1-1) would exceed 0.06 r 0.2 mrem to any organ in a 31 day period. The follow vided for performing this dose projection. The method lated in section 1.4 with the adult as the bases for proje	liquid ich unit, to mrem to the ing calculation is based on					
	1.	For the controlling age group obtain the latest result of the monthly calculation of the whole body dose and the highest organ dose. These doses can be obtained from the in-plant records.							
	2.		de each dose by the number of days the reactor plant was operational ng the month.						
	3.	project project needeo	y the quotient of each dose by the number of days the r ed to be operational during the next month. The produ ed dose for the next month. These values should be a d to account for any changes in failed fuel or other iden ng conditions that could significantly alter the actual rel	cts are the djusted as tifiable					
	4.	than 0.	rojected dose is greater than 0.06 mrem to the whole b 2 mrem to the adults highest exposed organ, the liquid shall be used.						

REVISION NO .:		PROCEDURE TITLE:	PAGE:							
PROCE	26 DURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	90 of 219							
	C-200	ST. LUCIE PLANT								
	METHODOLOGY SECTION									
2.0	GASEOUS R	ELEASES METHODOLOGY								
2.1	Gaseous Efflu	uent Model Assumptions								
	.1 <u>Gaseous Effluent Model Assumptions</u> <u>Description of Site</u> - (The FUSAR contains the official description of the site characteristics. The description that follows is a brief summary for dose calculation purposes only). The St. Lucie Plant is located on an island surrounded on two sides by the Atlantic Ocean and the Indian River, an estuary of the Atlantic Ocean. Private property adjoins the plant site in the north and south directions. A meteorological tower is located north of the plant near the site property line. There are 16 sectors, for dose calculation purposes, divided into 22.5° each. The MET tower is calibrated such that a zero degree bearing coincides with TRUE NORTH. A bearing of zero degrees dissects the north sector such that bearings of 348.75° and 11.25° define the boundaries of the north sector. The nearest distance to private property occurs in the north sector at approximately 0.97 miles. For ease of calculation, this 0.97 mile radius is assumed in all directions, although the real Unrestricted Area Boundary is defined in Figure 5.1-1 of the TS. Doses calculated over water areas do not apply to Controls or the annual report and may be listed as O.W. (over water) in lieu of performing calculations. The 0.97 mile range in the NW sector is O.W., but it was chosen as the worst sector for conservative dose calculations using the historical MET data.									
	from the St. Lucie MET Tower was analyzed by Dames & Moore of Washington, D.C. The methodology used by Dames & Moore was consistent with methods suggested by Regulatory Guide 1.111, Revision 1. Recirculation correction factors were also calculated for the St. Lucie Site and are incorporated into the historical MET tables (Tables M5, M6 and M7) in Appendix A of this manual. It was determined that these two years are representative data for this locale.									
	<u>Dose Calculations</u> - Dose calculations for Control dose limits are normally calculated using historical MET data and receptor location(s) which yield calculated doses no lower than the real location(s) experiencing the most exposure. Actual MET data factors are calculated and are normally used in dose calculations for the annual reports. Approximate and conservative methods may be used in lieu of actual meteorological measurements.									
	manual. Histo used for ease limits may be dose calculation the annual rep with Regulator	a and hour-by-hour dose calculations are beyond the so prical information and conservative receptor locations, e of Control dose limit calculations. Dose calculations for performed using actual MET data and real receptor loc cons performed with actual data should note the source port. Actual MET data reduction should be performed in ry Guide 1.111, Revision 1 and should incorporate Rec ctors from Table M-4 of this manual.	etc., are only or Control dose ations. Any of the data in n accordance							

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:							
26 PROCEDURE NO.:		OFFSITE DOSE CALCULATION MANUAL (ODCM)	91 of 219							
FROCE	C-200 ST. LUCIE PLANT									
		METHODOLOGY SECTION								
2.1	Gaseous Effli	uent Model Assumptions (continued)								
	Dose Calculations - (continued)									
	The St. Lucie site uses the long term ground release model for all gaseous effluents. Only those radionuclides that appear in the gaseous effluent dose factor tables will be considered in any dose calculations. Radioiodines are defined as lodine-131 and I-133 for application to Controls. Other nuclides of lodine may be included in dose calculations for ease of performing calculations, but their dose contribution does not have to be included in the Control requirements. Land Census information will apply to the calendar year following the year that the census was taken in to avoid splitting quarters, etc.									
2.2		he Total Body and Skin Dose Rates for Noble Gas Rele Setpoints for Effluent Monitors	eases And							
<u>Discussion</u> - Control 3.11.2.1 limits the dose rate from noble gases in ai releases to <500 mrem/yr - total body and <3000 mrem/yr - skin. Control requires that the gaseous radioactive effluent monitoring instrumentation operable with alarm/trip setpoints set to ensure that these dose rate limi exceeded. The results of the sampling and analysis program of Control Table 4.11-2 are used to demonstrate compliance with these limits.										
	The following calculation method is provided for determining the dose rates to the total body and skin from noble gases in airborne releases. The alarm/trip setpoints are based on the dose rate calculations. The Controls apply to all airborne releases on the site but all releases may be treated as if discharged from a single release point. Only those noble gases appearing in Table G-2 will be considered. The calculation methods are based on Sections 5.1 and 5.2 of NUREG-0133, November 1978. The equations are:									
	For TOTAL B	ODY Dose Rate:								
		n DR _{TB} = Σ _{Ki} (X/Q) (QDOT) _i i								
	For TOTAL SI	KIN Dose Rate:								
	Dł	n $R_{skin} = \Sigma [L_i + 1.1_{M_i}] (X/Q) (Q D O T)_i$ i								

REVIS	ION NO.:		PROCEDURE TITLE:	PAGE:					
26		26 OFFSITE DOSE CALCULATION MANUAL (ODCM)							
PROCEDURE NO .:		DURE NO.:							
	C-200		ST. LUCIE PLANT						
			METHODOLOGY SECTION						
2.2	Determining the Total Body and Skin Dose Rates for Noble Gas Releases And Establishing Setpoints for Effluent Monitors (continued)								
	Where:								
	DR _{TB}	=	total body dose rate from noble gases in airborne rele	eases (mrem/yr)					
	DR _{skin}	=	skin dose rate from noble gases in airborne releases	(mrem/yr)					
	ŗΣ	=	a mathematical symbol to signify the operations to the symbol are to be performed for each noble gas nuclic and the individual nuclide doses are summed to arrive dose rate for the release source.	le (i) through (n)					
	Ki	Ξ	the total body dose factor due to gamma emissions for each noble gas nuclide reported in the release source. (mrem-m ³ / μ Ci-yr)						
	Li	=	the skin dose factor due to beta emissions for each noble gas nuclide (i) reported in the assay of the release source. (mrem-m ³ / μ Ci-yr)						
	Mi	the air dose factor due to gamma emissions for each nuclide (i) reported in the assay of the release source 1.1 converts mrad to mrem since the units of M_i are ir (mrad-m ³ /µCi-yr)	. The constant						
	(X/Q)	=	for ground level, the highest calculated annual long term historic relative concentration for any of the 16 sectors, at or beyond the exclusion area boundary (sec/m ³)						
	(Q DOT) _i	=	The release rate of noble gas nuclide (i) in $\mu\text{Ci}/\text{sec}$ from source of interest	om the release					

REVISI	ON NO.:		PROCEDURE TITLE:		PAGE:						
26			OFFSITE DOSE CALC	93 of 219							
PROCEDURE NO.: C-200			ST. LU	90 01 219							
	l										
			METHODOL	OGY SECTION							
2.2	2.2 Determining the Total Body and Skin Dose Rates for Noble Gas Releases And Establishing Setpoints for Effluent Monitors (continued)										
	1.	Setpoi	nt Determination								
			established to ensure th exceed the ODCM Cont the site. Using pre-ODC determined to be more li- therefore the site release mrem/yr has been deter being released from the equivalent of 100 percer may be allotted a portior release point portions all percent. The release point account the physical relevant volume release rate and point since uCi/sec is pro-	8.3.3.10, the alarm/trip setpoin at all noble gas releases in pro- rol 3.11.2.1 noble gas release M Revision 0 data, the total be miting than the calculated skin e rate limit of total body dose ra- mined to be equivalent to 3.5E site. Using 3.5E+05 uCi/sec a of the site limit, each release of the 100 percent, such that lotted shall be less than or equint's actual monitor setpoint shall be set characteristics of maximu- its percent allotment for a sing oportional to volume rate. The cample of percent allotments is	ogress do not rate limit for ody dose was a dose, ate of 500 +05 uCi/sec as the point on site the sum of all al to 100 hall take into im expected gle release ODCM actual						
			Site Limit in uCi/sec = 3.	5E+05 uCi/sec							
			(Exa	imple)							
		<u>ODC</u>	<u>M Release Point</u>	Percent <u>Allotment</u>							
		Unit 1 ECCS ECCS Unit 2 Unit 2 ECCS Blowd	5 1B Plant Vent Fuel Bldg. Vent 5 2A	40 5 1 1 40 5 1 1 + 5 99 or 1 percent below the Site Limit							

REVIS	ON NO.:		PROCE	DURE TITLE:	PAGE:
	26			SITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE NO.:					94 of 219
	C-20	0		ST. LUCIE PLANT	
				METHODOLOGY SECTION	
2.2	<u>Deter</u> Estat	eleases And			
	1.	(contin	ued)		
		A.	(contir	nued)	
		oint, but the se Points shall Reactor onitored release ach to cover controlled per etpoints where 05 provides ate Setpoint release point's pint's indicating e allocated			
				Obtain the release point's <u>maximum expected</u> release rate (V) in Cubic Feet per Minute (cfm) Effluent Supervisor.	
				Obtain the release point's percent of site limit a from the Chemistry Supervisor.	llotment (PA)
				Substitute the release point's V and PA values equation(s) to obtain the Release Point's Setpo desired engineering unit (uCi/cc or uCi/sec).	
					PA_ 100%
			SP = uCi/cc	uCi/cc which is the TABLE 3.3-14 SETPOINT for ODCM Eff Channels that have a "Alle Limit" declared as their HI	uent Gas otted % of Site
			SP = uCi/cc	<u>3.5E+05 uCi x PA</u> sec 100%	
			SP = uCi/cc	uCi/cc	

REVISI	ION NO.:		PROCEDURE					PAGE:
00000	26			DOSE CA	LCULATION	N MANUAL (OD	CM)	95 of 219
PROCE	EDURE N C-2			ст	LUCIE PLA	NT		
	0-20		<u> </u>	····				
				METHODO	DLOGY SEC	CTION		
2.2			the Total Bo Setpoints fo			<u>es for Noble Ga</u> ntinued)	s Rele	ases And
	1.	(conti	nued)					
		A.	(continued)				
			Channels M HIGH SET GAS and 2 uCi/sec ba rate. Since	Monitoring t POINT in u B PIG LOW sed on the they are n	he Plant Ve Ci/sec is eq V RANGE G uCi/cc at the nonitoring th	ere are 3 ODCI ent. The wide ra uivalent to 2A F GAS channel 62 e maximum exp ne same release their own allotte	ange ch PV PIG 4 uses pected p e point	annel 624 LOW RANGE the equivaler process flow (i.e., each of
			"Allo disc	otted % of S	ite Limit" H I and High N	CM Effluent Gas IGH Setpoint re Noble Gas Accio	quires	further
			a.	"Allotted allow for Containn COP-01. instructio such tha	% of Site L Batch Rele nent Ventin 06, Process on for admin t the radioa	ase Points on e imit" needs to b ases from Gas g Operations, a sing Gaseous W istratively contr ctive concentrat o exceed the sit	e high Decay nd at th Vaste s olling E	enough to Tank and he same time hall provide Batch Release d release rate
			b.	where th is approx not mear	e ODCM Lo kimately equin the site lin atration that	d HIGH Alarm o ow Range Gas (ual to the HIGH nit has been exo is equivalent to	Channe Alarm ceeded	el's radioactivi setpoint does , rather it is a
			setpoint in	uCi/cc	V or Vma	x ft3/minute <u>ver</u>	<u>nt flow</u>	
		uCi/se	SP = c (equivaler	nt)	<u>uCi</u> x <u>2</u> cc	8317 cc x Vma ft3 min		<u>minute</u> 60 second
			SP = (uCi/sec)		sec u	quivalent to a cl Ci/cc concentra blume release ra	tion as	suming a
		(% of \$	SP = Site Limit)	(above)	<u>uCi</u> x sec 350	<u> 100 </u>	of Sit	% e Limit

REVISI	ION NO.:		PROCE	DURE TIT	LE:			<u> </u>			PAGE:
	26		OFF	SITE	oos		CULATIO		ANUAL (C	DDCM)	00.000
PROCEDURE NO.:			1						•	•	96 of 219
	C-20	0				ST. L	UCIE PL	ANT			
				N	IETI	IODOL	OGY SI	ECTIC	<u>DN</u>		
2.2							Dose Ra onitors (c			<u>Gas Rel</u>	eases And
	1.	(contin	ued)								
		Α.	(contii	nued)							
			4.	(conti	nueo	d)					
				С.	wh rad	ere the lioactiv	ODCM ity is gre	Low F ater th	Range Ga	s Chanı IGH Ala	elease point nel's rm setpoint
			F _{SL} =	RP _{SL} +	· (Su	ım of <u>a</u> i	<u>ll other</u> F	leleas	e Point's	RP _{SL} or	n site)
			RP _{SL} :		nnel			эхо	volume conv. x const.	time conv. const	x 1/(site limit)
			RP _{SL} =	= <u>uCi</u> cc		<u>V ft³</u> min	x <u>283</u> ft	17 cc 3	x <u>min</u> 60 sec	x	<u>sec</u> E+05 uCi
				Where	e:						
				F _{SL}	=	Fracti	on of the	Site	Limit		
				RP _{SL}	=	limit (Sum of <u>a</u> m ally le:	ll othe	<u>er</u> Releas	e Point'	ution to the site s RP _{SL} on site) mal operating
				V	=		nin, the l ne flow re		se Point's e rate	actual	process

.

REVISI	ION NO.:	· · · ·	PROCE	DURE TI	TLE:	PAGE:		
	26		OFF	SITE	DOSE CALCULATION MANUAL (ODCM)	97 of 219		
PROCE	EDURE NO	D.:		97 01 2 19				
	C-20	0			ST. LUCIE PLANT			
				N	IETHODOLOGY SECTION			
2.2					dy and Skin Dose Rates for Noble Gas Rel Effluent Monitors (continued)	eases And		
	1.	(contir	nued)					
		A.	(conti	nued)				
			4.	(continued)				
				c.	(continued)			
				Site L Proce Point	ue of RP _{SL} >1.0 or a F _{SL} >1.0 would be exc imit Based on the above <u>estimate</u> . Off No edure allow 1 hour to obtain a grab sample so that the actual site limit situation may b method is discussed in the following step.	rmal of the Release		
			5.		antify the Release Point's <u>actual Noble Ga</u> Ilowing would need to be performed:	<u>s Dose Rate</u> ,		
				a.	A Noble Gas Activity Grab Sample would and analyzed to determine each Noble G concentration.			
				b.	The results would be used to perform cal ODCM Step 2.2.2 for Noble Gas Total Bo and Skin Dose Rate.			
				C.	If the Release Point's HIGH Alarms were the Table 3.3-14 ODCM Related Particula lodine Channel, then ODCM Step 2.3 cal should be performed as soon as possible continuous collection medium(s) and a Tu can be pulled and analyzed to evaluate co ODCM Control 3.11.2.1.b.	ate and/or culations after the itium Sample		

•

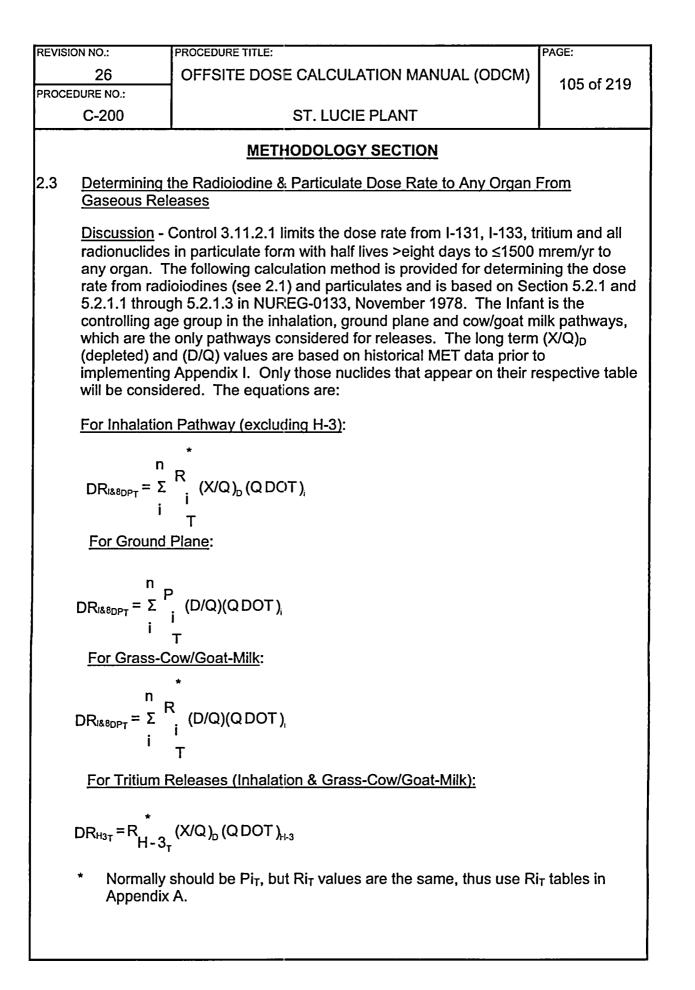
REVISION NO .:	;	PROCEDURE TITLE:	PAGE:
26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	98 of 219
PROCEDURE			0001210
C-2	00	ST. LUCIE PLANT	-
		METHODOLOGY SECTION	
		the Total Body and Skin Dose Rates for Noble Gas Rele Setpoints for Effluent Monitors (continued)	eases And
1.	(contir	nued)	
		No Particulate or Iodine Radioactivity Channels are record ODCM. Table 3.3-13 requires Iodine and Particulate Si Technical Specification Table 3.3-6 requires a Fuel Bui Particulate Channel (the bases for the setpoint on the F Vent Particulate Channel is described in 2.2.1.C). The describe Particulate and Iodine Radioactivity Channels Channels are listed in ODCM Table 3.3-14 and ALERT Setpoints are provided. The intent of providing these s provide early warning that the effluent pathway condition increased such that a grab sample should be obtained Alarm Setpoint is reached or exceeded. The Particulate HIGH Alarm Setpoint bases is that the collection medium filter where continuing deposition of radioactivity would increase in the channel count rate up to the setpoint lev resulting dose rate can be shown to be less than 1 pero limit for ODCM Control 3.11.2.1.b for Iodine-131, Iodine radionuclides in particulate from with half-lives greater of that these channel detectors are gross activity monitors scintillation type where the count rate is not dependent threshold) on the energy of the isotope entrained on the medium, and that these channels are qualitative trend i since the channel count rate cannot be corrected for the sample collection volume. Plant historical trends have Noble Gas Activity may contribute to the count rate of the Auxiliary Building (Plant) Vent Particulate and Iodine Cl In this event the Noble Gas contribution may be added Table 3.3-14 Alert and High Setpoints for Plant Vents o The sampling mediums associated with the Particulate Channels in Table 3.3-14 are also controlled by the req ODCM Table 4.11-2 which requires 4/M Minimum Anally Frequency of the sampling mediums. These analysis a confirm and quantify the isotopic composition of the rad- being monitored by these channels. The presence of N collection medium would be confirmed by these analysis	amplers only. Iding Vent Fuel Building FUSAR does These and HIGH etpoints is to ons have if a HIGH e and Iodine ms are fixed cause a vel(s), the cent of the site e-133, and all than 8 days, is of the (above e collection ndicators e accrued shown that he Reactor hannel(s). to the nly. and Iodine uirements of ysis re used to ioactivity Ioble Gas on

ł

REVISI	ON NO.:	• •	PROCEDURE TITLE:	PAGE:			
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	99 of 219			
PROCE	DURE N			99 01 2 1 9			
	C-20	00	ST. LUCIE PLANT				
			METHODOLOGY SECTION				
2.2	Determining the Total Body and Skin Dose Rates for Noble Gas Releases And Establishing Setpoints for Effluent Monitors (continued)						
	1.	(contin	ued)				
		В.	(continued)				
			If an alarm occurs, Channel Check(s) should be performed or channel(s), an ALERT Alarm should be investigated and a H Alarm shall require isotopic analysis of particulate and/or iod channel medium of the affected channel(s). The Isotopic and the medium shall be used to evaluate particulate and/or iodir rate levels per the methodology of ODCM 2.3.				
		C. To comply with Technical Specification 3.3.3.1, Table 3.3 Monitoring Instrumentation, "Instrument 2.a.ii. Particulate with Alarm/Trip Setpoint determined and set in accordance requirements of the Offsite Dose Calculation Manual, the the BASES for Fuel Building Particulate Channel High Ala Setpoints for Unit 1 and Unit 2:					
			<u>Unit 1 Fuel Building:</u>				
			The 10,000 cpm High Setpoint is based on an Infant's I Exposed Organ Dose Rate (Liver) from Inhalation of Cs Site Boundary. The value of 10,000 cpm is very conse to the site dose rate limit of 1500 mrem/yr. The method based on measured particulate channel count rates wh detector was calibrated with a known source activity of on default assumptions as follows:	s-137 at the rvative relative lology is en the			
			 The particulate channel read 32,385 ccpm when 7.67 uCi source of Cs-137. 	exposed to a			
		:	 Assuming that 7.67 uCi of Cs-137 were collected 1 hour of skid sample collection (fixed filter), the volume would yield ~3.3E+06 cc's. Greater than filter efficiency is assumed. 	typical sample			
		:	3. The maximum building process flow exhaust is ~	-24,576 cfm.			
		•	 Q(dot) for Cs-137 uCi/sec release rate is approx uCi/sec as follows: 	imately 27			
		<u>7.67 uCi</u> hour	x hour x 28317 cc's x 24576 ft3 x min 3.3E+06cc.s ft3 min 60 sec	= <u>27 uCi</u> sec			

REVIS	SION NO.:		PROCE	DURE TITLE:				PAGE:		
				OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO.:			-1				100 of 219			
C-200				ST. LUCIE PLANT						
	METHODOLOGY SECTION									
2.2 <u>Determining the Total Body and Skin Dose Rates for Noble Gas Releases And</u> Establishing Setpoints for Effluent Monitors (continued)										
	1.	(cont	linued)							
		C.	(conti	nued)						
			5.	The default h site boundar			orst sector	(NW) at the		
			6.	The dose rat ODCM Secti resulting dos	on 2.3 Inhala	ation Dose R				
	Bone mrem/y 7.4E+00		Liver hrem/yr .9E+00	Thyroid mrem/yr 0.0E+00	Kidney mrem/yr 4.2E-01	Lung mrem/yr 1.0E+00	GI-LLI mrem/yr 1.5E-02	W.Body mrem/yr 4.8E-01		
			7.	The ODCM 3 1500 mrem/y Liver is the m site dose rate	vr. From the naximum exp	preceding c	alculation t	he Infant's		
			8.	A particulate conservative activity on a t product press sample colled adequate wa were being re Cs-137 activit	setpoint given fixed filter, C ent at all time ction interval rning respore eleased, i.e.	en that this c s-137 is a ty es with spen is shorter that ise if signific the above a	channel ana pical long-l t fuel in the an 1 hour w ant particul	alyzes gross ived fission pool, and that rould provide ate activity		
			9.	channel is ca compliance v performed to with real high	detection/al ons are prov pable of det vith the ODC accurately of alarm even	arm of a pro ided to docu ection sensit M site limit. calculate actu ts as per the	blem. The iment that t livities to in Grab sam ual release ODCM me	above dose he particulate sure ples should be		

REVISI	ION NO.:		PROCE	DURE TITLE:				PAGE:
	26		OFF	SITE DOSE (CALCULATI	ON MANUAI	L (ODCM)	101 of 219
PROCEDURE NO.:								101 01 219
	C-200				ST. LUCIE P	LANT		
				<u>METHO</u>	DOLOGYS	ECTION		
2.2 Determining the Total Body and Skin Dose Rates for Noble Gas Releases And Establishing Setpoints for Effluent Monitors (continued)								eases And
	1. ((contin	ued)					
	(C.	(contir	nued)				
			<u>Unit 2</u>	Fuel Building	<u>1:</u>			
			Expos Site B to the based detect	10,000 cpm High Setpoint is based on an Infant's Maximum osed Organ Dose Rate (Liver) from Inhalation of Cs-137 at the Boundary. The value of 10,00 cpm is very conservative relative e site dose rate limit of 1500 mrem/yr. The methodology is of on measured particulate channel count rates when the ctor was calibrated with a known source activity of Cs-137, and efault assumptions as follows:				
			1.	The particula 7.59 uCi sou		•		exposed to a 1996 data).
		:	2.	Assuming th hour of skid volume woul sample filter	sample colle d yield ~5.3	ection (fixed f 2E+06 cc's.	ilter), the ty	pical sample
		;	3.	The maximu	m building p	rocess flow e	exhaust is -	-31,584 cfm.
		4	4.	Q(dot) for Cs 21 uCi/sec a		c release rat	e is approx	imately
1		<u>59 uCi</u> hour		<u>hour</u> x 2E+06cc.s	<u>28317 cc's</u> ft3	x <u>31584 ft3</u> min	x <u>min</u> 60 sec	= <u>21.26 uCi</u> sec
		į	5.	The default h			orst sector	(NW) at the
		(The dose rat ODCM Secti resulting dos	on 2.3 Inhal	ation Dose R		
	Bone mrem/yr 1.8E+00	mre	ver em/yr E+00	Thyroid mrem/yr 0.0E+00	Kidney mrem/yr 2.7E-01	Lung mrem/yr 7.0E+01	GI-LLI mrem/yr 1.0E-02	W.Body mrem/yr 3.1E-01


.

.

REVIS	ION NO.:		PROCEDURE	TITLE:	PAGE:				
PROCI	26 EDURE N		102 of 219						
	C-20								
METHODOLOGY SECTION									
2.2	Determining the Total Body and Skin Dose Rates for Noble Gas Releases And Establishing Setpoints for Effluent Monitors (continued)								
	1.	(contin	ued)						
		C.	(continued))					
			mre the	ODCM 3.11.2.1.b dose rate limit to any organized organized by the preceding calculation the Information and the Information and the Information and the Information and the precent of the limit.	ant's Liver is				
			con acti proc san ade wer	articulate channel setpoint of 10,000 cpm pro servative setpoint given that this channel and vity on a fixed filter, Cs-137 is a typical long- duct present at all times with spent fuel in the ple collection intervals shorter than 1 hour w quate warning response if significant particu e being released, i.e., the above assumption 137 activity of ~1.4E-06 uCi/cc.	alyzes gross lived fission pool, and that rould provide late activity				
			prov rate cha com perf with	e setpoint of 10,000 cpm was administratively vide early detection/alarm of a problem. The calculations are provided to document that is nnel is capable of detection sensitivities to in ppliance with the ODCM site limit. Grab sam formed to accurately calculate actual release real high alarm events as per the ODCM me forming dose rate calculations.	above dose the particulate sure ples should be s associated				

	ION NO.:		PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	103 of 219
PROCE	EDURE NO			103 01 2 13
	C-20	0	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.2			he Total Body and Skin Dose Rates for Noble Gas Rele Setpoints for Effluent Monitors (continued)	eases And
	2.	Total E	Body and Skin Nuclide Specific Dose Rate Calculations	
		body d compli	llowing outline provides a step-by-step explanation of he ose rate is calculated on a nuclide-by-nuclide basis to e ance with Control 3.11.2.1. This method is only used if as exceed the value of 3.5 X $10^5 \mu$ Ci/sec.	evaluate
			The (X/Q) value =sec/m ³ andi limiting sector at the exclusion area. (See Table M-1 fo sector.)	s the most r value and
			Enter the release rate in ft ³ /min of the release source a to:	nd convert it
			$= \frac{()\text{ft}^{3}}{\text{min}} \times \frac{2.8317 \times 10^{4} \text{ cc}}{\text{ft}^{3}} \times \frac{\text{min}}{60 \text{ sec}}$	
			= cc/sec volume release rate	
			Solve for(Q DOT) _i for nuclide (i) by obtaining the μ Ci/cc of the release source and multiplying it by the product c above.	
			(Q DOT) _i = (nuclide [i])	
			(assay) μCi χ (2.2.2.B value) cc cc sec	
			(Q DOT) _i = μ Ci/sec for nuclide (i)	
			To evaluate the total body dose rate obtain the K _i value from Table G-2.	for nuclide (i)
			Solve for DR _{TBi}	
			$DR_{TBi} = K_i (X/Q) (Q DOT)_i = \frac{mrem - m^3}{\mu Ci - yr} X \frac{sec}{m^3} X \frac{\mu Ci}{sec}$	
			$DR_{TBi} = \frac{mrem}{yr}$ total body dose from nuclide (i) for the s release source	specified

REVIS	ION NO.:		PROCEDURE TITLE:	PAGE:				
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	104 of 219				
PROCE	OCEDURE NO.:		E NO.:					
	C-20	0	ST. LUCIE PLANT					
			METHODOLOGY SECTION					
2.2		etermining the Total Body and Skin Dose Rates for Noble Gas Releases And stablishing Setpoints for Effluent Monitors (continued)						
	2.	(contir	nued)					
		F.	To evaluate the skin dose rate, obtain the L_i and M_i val Table G-2 for nuclide (i).	ues from				
		G.	Solve for DR _{skin i}					
			$DR_{skin i} = [L_i + 1.1 M_i] (X/Q)(Q DOT)_i$					
			$DR_{skin i} = \frac{mrem}{yr}$ skin dose from nuclide (i) for the specific	fied release				
		Н.	Repeat steps 2.2.2.D through 2.2.2.G for each noble gas nuclic reported in the assay of the release source.					
			The Dose Rate to the Total Body from radioactive nobl radiation from the specified release source is:	e gas gamma				
			п					
			$DR_{TB} = \Sigma DR_{TBi}$					
			The Dose Rate to the skin from noble gas radiation from release source is:	m the specified				
			п					
			$DR_{skin} = \Sigma DR_{skin i}$					
			i					
			The dose rate contribution of this release source shall other gaseous release sources that are in progress at terest. Refer to in-plant procedures and logs to deter Dose Rate to the Total Body and Skin from noble gas e	he time of mine the Total				

Releases (cor	<u>he Ra</u> ntinue e Rate	e from I & 8DP and H-3 To An Infant Organ T:	106 of 219 From Gaseous
$\frac{Determining tille}{Releases}$ (cor For Total Dos DRT = $\frac{\Sigma}{Z}$ [DR1	ntinue <u>e Rat</u> i	METHODOLOGY SECTION Idioiodine & Particulate Dose Rate to Any Organ I Id) e from I & 8DP and H-3 To An Infant Organ T:	
$\frac{Determining til}{Releases}$ (cor For Total Dos DRT = $\frac{\Sigma}{Z}$ [DR1	ntinue <u>e Rat</u> i	METHODOLOGY SECTION Idioiodine & Particulate Dose Rate to Any Organ I Id) e from I & 8DP and H-3 To An Infant Organ T:	From Gaseous
$\frac{\text{Releases}}{\text{Cor Total Dos}}$	ntinue <u>e Rat</u> i	<u>idioiodine & Particulate Dose Rate to Any Organ I</u> d) e from I & 8DP and H-3 To An Infant Organ T:	From Gaseous
$\frac{\text{Releases}}{\text{Cor Total Dos}}$	ntinue <u>e Rat</u> i	d) e from I & 8DP and H-3 To An Infant Organ T:	From Gaseous
$\frac{\overline{For Total Dos}}{DR_T} = \frac{\Sigma}{Z} [DR_T]$	<u>e Rat</u>	e from I & 8DP and H-3 To An Infant Organ T:	
-	&8DPT	+ DR _{н-эт}]	
Vhere:			
-	=	The organ of interest for the infant age group	
:	=	The applicable pathways	
DR _{I&8DPT} = Dose Rate in mrem/yr to the organ T from iodir particulates			es and 8 day
^{OR} ∺³T	=	Dose Rate in mrem/yr to organ T from Tritium	
DRT	=	Total Dose Rate in mrem/yr to organ T from all p under consideration	pathways
ζ	=	A mathematical symbol to signify the operations the symbol are to be performed for each nuclide and the individual nuclide dose rates are summe the total dose rate from the pathway.	(i) through (n)
	=	A mathematical symbol to indicate that the total to organ T is the sum of each of the pathways do	
Ri	=	The dose factor for nuclide (i) for organ T for the specified (units vary by pathway)	pathway
ĥ	=	The dose factor for instantaneous ground plane units of $\underline{mrem} \cdot \underline{m^2 \ sec}_{\mu Ci-yr}$	pathway in
	PR _{H-3} T PRT Σ	eR _{H-3T} = eR _T = Σ = i =	 particulates pR_{H-3T} = Dose Rate in mrem/yr to organ T from Tritium pR_T = Total Dose Rate in mrem/yr to organ T from all p under consideration Σ = A mathematical symbol to signify the operations the symbol are to be performed for each nuclide and the individual nuclide dose rates are summer the total dose rate from the pathway. = A mathematical symbol to indicate that the total to organ T is the sum of each of the pathways do organ T is the sum of each of the pathways do organ T is the sum of each of the pathway of the specified (units vary by pathway) = The dose factor for instantaneous ground plane units of mrem-m² sec

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:				
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	407 -6040				
PROCE	DURE NO.:	1	107 of 219				
	C-200	ST. LUCIE PLANT	l				
		METHODOLOGY SECTION					
2.3	<u>Determining</u> <u>Releases</u> (co	the Radioiodine & Particulate Dose Rate to Any Organ I ontinued)	From Gaseous				
	grass-cow/go the infant's th >90% of the contribute es compliance v particulates to radioiodines Section 2.3.3 used, the dos pathways ne	luation of the radioactive releases and environmental pa bat-milk pathway has been identified as the most limiting hyroid being the critical organ. This pathway typically co total dose received by the infant's thyroid and the radioid sentially all of this dose. Therefore, it is possible to den with the release rate limit of Control 3.11.2.1 for radioiod by only evaluating the infant's thyroid dose for the releas via the grass-cow/goat-milk pathway. The calculation m is used for this determination. If this limited analysis ap se calculations for other radioactive particulate matter ar ed not be performed. Only the calculations of Section 2 need be performed to demonstrate compliance with the	y pathway with ontributes odine nonstrate ines and se of nethod of oproach is nd other .3.3 for the				
	The calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 may be omitted. The dose rate calculations as specified in these sections are included for completeness and are to be used only for evaluating unusual circumstances where releases of particulate materials other than radioiodines in airborne releases are abnormally high. The calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 will typically be used to demonstrate compliance with the dose rate limit of Control 3.11.2.1 for radioiodines and particulates when the measured releases of particulate material (other than radioiodines and with half lives >8 days) are >10 times the measured releases of radioiodines.						
	1. <u>The In</u>	halation Dose Rate Method:					
	[NOTE The H-3 dose is calculated as per 2.3.4.					
	Α.	The controlling location is assumed to be an Infant loca sector at themil X/Q) _D for this location issec/m ³ . Th common to all nuclides. (See Table M-2 for value, sect	e range. The iis value is				
	В.	Enter the release rate in ft ³ /min of the release source an cc/sec.	nd convert to				
		$= \frac{\text{ft}^{3}}{\text{min}} \times \frac{2.8317 \times 10^{4} \text{ cc}}{\text{ft}^{3}} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/sec}$					

	ON NO.:	PROCEDURE TITLE:	PAGE:
POC	26 EDURE NO.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	108 of 219
C-200		ST. LUCIE PLANT	
		METHODOLOGY SECTION	
.3	<u>Determining</u> <u>Releases</u> (c	the Radioiodine & Particulate Dose Rate to Any Organ ontinued)	From Gaseous
	1. (cont	inued)	
	C.	Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/c of the release source activity and multiplying it by the p 2.3.1.B above.	
		$(Q DOT)_i = \frac{(nuclide[i]assay) \mu Ci}{cc} X \frac{(Value 2.3.1.B) cc}{sec}$	
		$(Q DOT)_i = \mu Ci/sec$ for nuclide (i)	
	D.	Obtain the R_i value from Table G-5 for the organ T.	
	E.	Solve for DR _i	
		$DR_{\pi} = R_{\pi} (X/Q)_{D} (Q DOT)_{i} = \frac{mrem - m^{3}}{\mu Ci - yr} X \frac{sec}{m^{3}} X \frac{\mu Ci}{sec}$	
		DR _{iτ} = <u>mrem</u> The Dose Rate to organ T from nuclide yr	e (i)
	F.	Repeat steps 2.3.1.C through 2.3.1.E for each nuclide the assay of the release source.	(i) reported in
	G.	The Dose Rate to the Infants organ T from the Inhalation	on Pathway is:
		$DR_{Inhalation_T} = DR_1 + DR_2 + \ + DR_n$	
		for all nuclides except H-3. This dose rate shall be add other pathways as per 2.3.5 - Total Organ Dose.	led to the
	Steps 2.3.1. Infant.	<u>NOTE</u> C through 2.3.1.G need to be completed for each organ	T of the

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:						
	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)							
PROCE	DURE NO.:		109 of 219						
	C-200	ST. LUCIE PLANT							
		METHODOLOGY SECTION							
2.3	<u>Determining</u> <u>Releases</u> (co	the Radioiodine & Particulate Dose Rate to Any Organ I ontinued)	From Gaseous						
	2. <u>The Ground Plane Dose Rate Method</u> :								
		<u>NOTE</u> Tritium dose via the ground plane is zero.							
	A.	The controlling location is assumed to be an Infant loca sector at themile range. The location is1/m ² . This value is common to (See Table M-2 for sector, range and value.)							
	В.	Enter the release rate in ft ³ /min of the release source a cc/sec.	nd convert to						
	= mir	$\frac{ft^{3}}{ft^{3}} \times \frac{2.8317 \times 10^{4} \text{ cc}}{ft^{3}} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/sec}$							
	C.	Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/c from the release source activity and multiplying it by the 2.3.2.B above.							
	(Q DOT	$r_{i} = \frac{(\text{nuclide [i] assay}) \mu \text{Ci}}{\text{cc}} \times \frac{(\text{Value 2.3.2.B}) \text{cc}}{\text{sec}}$							
	(Q DOT	$_{i} = \mu Ci/sec$ for nuclide (i)							
	D.	Obtain the P _i value from Table G-3							
	E.	Solve for DR _i							
	DR _i =P	$\pi (D/Q) (Q DOT)_i = \frac{mrem - m^2 - sec}{\mu Ci - yr} X \frac{1}{m^2} X \frac{\mu Ci}{sec}$							
	DR _i =	<u>mrem</u> The Dose Rate to organ T from nuclide (i) yr							
	F.	Repeat steps 2.3.2.C through 2.3.2.E for each nuclide (the assay of the release source.	i) reported in						

REVISION NO.: PROCEDURE TITLE: PAGE	:
26 OFFSITE DOSE CALCULATION MANUAL (ODCM) 1 PROCEDURE NO.:	10 of 219
C-200 ST. LUCIE PLANT	·
METHODOLOGY SECTION	
2.3 <u>Determining the Radioiodine & Particulate Dose Rate to Any Organ From</u> <u>Releases</u> (continued)	<u>n Gaseous</u>
2. (continued)	
G. The Dose Rate to the Infant's Whole Body from the Ground Pathway is:	l Plane
$DR_{GrPl} = DR_1 + DR_2 + ___ + DR_n$	
for all nuclides. This dose rate shall be added to the other as per 2.3.5.	pathways
3. <u>The Grass-Cow/Goat-Milk Dose Rate Method</u> :	
NOTE H-3 dose is calculated as per 2.3.4.	
H-3 dose is calculated as per 2.3.4.	
A. The controlling animal was established as a lo the sector at miles. The (D/Q) fo location is 1/m ² . This value is common to all r (See Table M-3 for sector, range and value.)	ocated in or this nuclides.
B. Enter the anticipated release rate in ft ³ /min of the release se convert to cc/sec.	ource and
$= \frac{1}{\min} \frac{\text{ft}^3}{\text{min}} \times \frac{2.8317 \times 10^4 \text{ cc}}{\text{ft}_3} \times \frac{\min}{60 \text{ sec.}} = \text{cc/se c}$	
C. Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/cc associated of the release source activity and multiplying it by the produ 2.3.3.B above.	
$(QDOT)_i = \frac{(nuclide[i]assay) \mu Ci}{cc} \times \frac{(value 2.3.3.B) cc}{sec}$	
(Q DOT) _i = μ Ci/sec for nuclide (i)	
D. Obtain the R _i value from Table G-6(7) (whichever is the con animal, cow/goat, for infant).	ntrolling
If the limited analysis approach is being used, limit the calcuthe the infant thyroid.	ulation to

PROCED	26			PAGE:	
	URE NO	D.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	111 of 219	
C-200			ST. LUCIE PLANT		
			METHODOLOGY SECTION		
			the Radioiodine & Particulate Dose Rate to Any Organ I ontinued)	From Gaseous	
	3.	(contir	nued)		
		E.	Solve for DR _{iT}		
			$DR_{\pi} = R_{\pi} (D/Q) (Q DOT)_{i} = \frac{mrem - m^{2} - sec}{\mu Ci - yr} X \frac{1}{m^{2}} X \frac{\mu Ci}{sec}$	l -	
			$DR_{iT} = \underline{mrern}$ the Dose Rate to organ T from nucleyr	lide (i)	
		F.	Repeat steps 2.3.3.C through 2.3.3.E for each nuclide the assay of the release source.	e (i) reported in	
			Only the radioiocines need to be included if the limited approach is being used.	analysis	
		G.	The Dose Rate to the Infant's organ T from Grass pathway is:	Milk	
			$DR_{grass}-\Milk_T = DR_1 + DR_2 + _\ + DR_n$		
			for all nuclides. This dose rate shall be added to the ot as per 2.3.5 - Total Organ Dose.	other pathways	
	Infant	t. Limit	NOTE C through 2.3.3.G need to be completed for each organ the calculation to the infant thyroid if the limited analysis being used.		

REVIS	ION NO .:		PROCEDURE TITLE:		PAGE:
	26		OFFSITE DOSE CALCU	LATION MANUAL (ODCM)	110 -5 010
PROC	EDURE N	0.:	1	· · · ·	112 of 219
	C-20)0	ST. LUC		
			METHODOLO	GY SECTION	
2.3			the Radioiodine & Particula ontinued)	ate Dose Rate to Any Organ I	From Gaseous
	4.	<u>The H</u>	-3 Dose Rate Method:		
		А.	The controlling locations a are:	and their $(X/Q)_D$ values for each	ch pathway
			Inhalation - Infant at	range in the	sector.
			$(X/Q)_D = sec/m^3$ (S	see Table M-2 for range, sect	or and value)
			Ground Plane - Does not a	apply to H-3	
			at miles with an Infa sector drinking the milk. T	located in the Int at the exclusion area in the The (X/Q) _D for the /m ³ . (From Table M-6 at the e location of the Milk Animal	e location is
		В.	Enter the anticipated relea convert it to cc/sec.	use rate in ft ³ /min of the releas	se source and
			$= \frac{\text{ft}^{3}}{\text{min}} \times \frac{2.8317 \times 10^{4} \text{ cm}^{3}}{\text{ft}^{3}}$	$\frac{\text{cc}}{60} \times \frac{\text{min}}{60 \text{ sec.}}$	
			= cc/sec: volume r	release rate	
		C.		ritium, by obtaining the μCi/co multiplying it by the product o	
			$(Q DOT)_{H-3} = \frac{(H-3) \ \mu Ci}{cc} X$	(2.3.4.B value) cc	
			66	360	
			(Q DOT) _{H-3} = μCi/sec		
		D.	(Q DOT) _{H-3} = μCi/sec		m:
		D.	(Q DOT) _{H-3} = μCi/sec	activity release rate	m:
		D.	(Q DOT) _{H-3} = μCi/sec Obtain the Tritium dose fac	activity release rate ctor (R _i) for Infant organ T fro	m:

<u>eleases</u> (c	OFFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT <u>METHODOLOGY SECTION</u> the Radioiodine & Particulate Dose Rate to Any Organ F ontinued) inued) Solve for D_{H-3} (Inhalation) using the (X/Q) _D for inhalation and R_{H-3} (Inhalation) from 2.3.4.D. $DR_{H-3_{InhT}} = R_{H-3}$ (X/Q) _D (QDOT) _{H-3}	
-200 etermining eleases (c (conti	METHODOLOGY SECTION the Radioiodine & Particulate Dose Rate to Any Organ F ontinued) inued) Solve for D _{H-3} (Inhalation) using the (X/Q) _D for inhalation and R _{H-3} (Inhalation) from 2.3.4.D.	
<u>eleases</u> (c (conti	<u>the Radioiodine & Particulate Dose Rate to Any Organ F</u> ontinued) inued) Solve for D _{H-3} (Inhalation) using the (X/Q) _D for inhalation and R _{H-3} (Inhalation) from 2.3.4.D.	
<u>eleases</u> (c (conti	ontinued) inued) Solve for D _{H-3} (Inhalation) using the (X/Q) _D for inhalation and R _{H-3} (Inhalation) from 2.3.4.D.	
•	Solve for D_{H-3} (Inhalation) using the (X/Q) _D for inhalation and R_{H-3} (Inhalation) from 2.3.4.D.	n from 2.3.4.A
E.	and R _{H-3} (Inhalation) from 2.3.4.D.	n from 2.3.4.A
	$DR_{H-3_{lobr}} = R_{H-3} (X/Q)_{D} (Q DOT)_{H-3}$	
	$DR_{H-3_{InhT}} = mrem/yr$ from H - 3 Infant Inhalation for organ	т
F.	Solve for D _{H-3} (GrassMilk) using the (X/Q) GrassMilk from 2.3.4.A and R _{H-3} (GrassMilk) from 2.3.4.D) _D for
	DR _{H-3GMT} = R _{H-3GMT} (X/Q) _D (Q DOT) _{H-3}	
	DR _{H-3GMT} = mrem/yr from H - 3 Infant	
G.	Repeat steps 2.3.4.D through 2.3.4.F for each Infant or interest.	gan T of
Н.	The individual organ dose rates from H-3 shall be added organ pathway dose rates as per 2.3.5.	d to the other
	G.	 F. Solve for D_{H-3} (GrassMilk) using the (X/Q GrassMilk from 2.3.4.A and R_{H-3} (GrassMilk) from 2.3.4.D DR_{H-3GMT} = R_{H-3GMT} (X/Q)_D (Q DOT)_{H-3} DR_{H-3GMT} = mrem/yr from H - 3 Infant G. Repeat steps 2.3.4.D through 2.3.4.F for each Infant or interest. H. The individual organ dose rates from H-3 shall be added

REVIS	ION NO.:	PROCEDURE TITLE:			PAGE:			
	26	OFFSITE DOSE CA	LCULATION MANUAL (C	DCM)	114 of 219			
PROCEDURE NO .:				114 01 219				
	C-200	ST.	LUCIE PLANT					
		METHOD	DLOGY SECTION					
2.3	<u>Determining t</u> <u>Releases</u> (co		liculate Dose Rate to Any	Organ I	From Gaseous			
		nining the Total Organ m Release Source(s)	Dose Rate from lodines,	8D-Parl	liculates, and			
			escribes all the pathways t ose rate to an organ T:	hat mus	st be summed			
	[PATHWAY	DOSE RATE	STE	EP # REF.			
		nhalation (I&8DP)			2.3.1.G			
		ound Plane (I&8DP)	(Whole Body only)	2	2.3.2.G			
	Gr	Milk (1&8DP)		2	2.3.3.G			
		Inhalation (H-3)		2	2.3.4.E			
	Gr-	-Milk (H-3)		2	2.3.4.F			
		DR _T =	(sum of above)					
	C.	The DR _T above shall I site that will be in prog	nmation for each Infant or be added to all other relea gress at any instant. Refe o determine the Total DR	ase sour er to in-p	lant			
.4	Determining t	he Gamma Air Dose f	or Radioactive Noble Gas	Releas	e Source(s)			
	<u>Discussion</u> - Control 3.11.2.2 limits the air dose due to noble gases in gaseous effluents for gamma radiation to <5 mrads for the quarter and to <10 mrads in any calendar year. The following calculation method is provided for determining the noble gas gamma air dose and is based on section 5.3.1 of NUREG-0133, November 1978. The dose calculation is independent of any age group. The equation may be used for Control dose calculation, the dose calculation for the annual report or for projecting dose, provided that the appropriate value of (X/Q) is used as outlined in the detailed explanation that follows. The equation for gamma air dose is:							
	n D _Y - air = Σ3. i	17 X 10 ⁻⁸ M _i (X/Q) Q _i						

ILEVI3	ION NO.:		ROCEDURE TITLE:	PAGE:
	26	C	OFFSITE DOSE CALCULATION MANUAL (ODCM)	115 of 219
PROCE	EDURE NO.:			
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.4	<u>Determining</u> (continued)	the	Gamma Air Dose for Radioactive Noble Gas Releas	se Source(s)
	Where:			
	D _Y -air	=	gamma air dose in mrad from radioactive noble gas	ses.
	Σ	=	A mathematical symbol to signify the operations to of the symbol are to be performed for each nuclide and summed to arrive at the total dose, from all nuc during the interval. No units apply.	(i) through (n)
	3.17 X 10 ⁻⁸	Ξ	the inverse of the number of seconds per year with year/sec.	units of
	Mi	=	the gamma air dose factor for radioactive noble gas units of $\frac{mrad-m^3}{\mu Ci-yr}$; nuclide (i) in
	(X/Q)	=	the long term atmospheric dispersion factor for group releases in units of \sec/m^3 . The value of (X/Q) is the nuclides (i) in the dose calculation, but the value of vary depending on the Limiting Sector the Control is etc.	e same for all (X/Q) does
	Qi	=	the number of micro-curies of nuclide (i) released (o during the dose calculation exposure period. (e.g., r or year)	

REVISI	ION NO.:		PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	116 of 219
PROCE	EDURE NO			11001213
	C-20	0	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.4		<u>rmining t</u> inued)	he Gamma Air Dose for Radioactive Noble Gas Releas	se Source(s)
		ollowing is calcul	uclide specific	
	1.	the typ	ermine the applicable (X/Q) refer to Table M-1 to obtain be of dose calculation being performed. (i.e., Quarterly Projection for examples). This value of (X/Q) applies to e (i).	Control or
	2.	Detern	nine (M _i) the gamma air dose factor for nuclide (i) from	Table G-2.
	3.		the micro-Curies of nuclide (i) from the in-plant radioac management logs for the sources under consideration I.	
	4.	Solve f	for D _i as follows:	
		$D_i = \frac{3.7}{3}$	$\frac{17 \times 10^{-8} \text{ yr}}{\text{sec}} \times \frac{\text{M}_i \text{ mrad} - \text{m}^3}{\mu \text{Ci} - \text{yr}} \times \frac{(\text{X/Q}) \text{sec}}{\text{m}^3} \times \frac{\text{Q}_i \ \mu \text{Ci}}{1}$	
		D _i = n	nrad = the dose from nuclide (i)	
	5.		n steps 2.4.2 through 2.4.4 for each nuclide (i) reported terval in the source.	during the
	6.		al gamma air dose for the pathway is determined by su f each nuclide (i) to obtain D _Y -air dose.	imming the D _i
		D _{Y-air} =	$D_1 + D_2 + \ + D_n = mrad$	
	7.		o in-plant procedures for comparing the calculated dos ble limits that might apply.	e to any

REVISI	ON NO.:	PR	ROCEDURE TITLE:	PAGE:		
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	117 of 219		
PROCE	DURE NO.:			117 01 219		
	C-200		ST. LUCIE PLANT			
			METHODOLOGY SECTION			
2.5	<u>Determining</u>	the	Beta Air Dose for Radioactive Noble Gas Releases			
	<u>Discussion</u> - Control 3.11.2.2 limits the quarterly air dose due to beta radiation from noble gases in gaseous effluents to <10 mrads in any calendar quarter and <20 mrads in any calendar year. The following calculation method is provided for determining the beta air dose and is based on Section 5.3.1 of NUREG-0133, November 1978. The dose calculation is independent of any age group. The equation may be used for Control dose calculation, dose calculation for annual reports or for projecting dose, provided that the appropriate value of (X/Q) is used as outlined in the detailed explanation that follows.					
	The equation	n fo	r beta air dose is:			
	n D _{B-air} $\Sigma = 3.17 \times 10^{-8} N_i (X/Q) Q_i$ i					
	Where:					
	D _{B-air}	=	beta air dose in mrad from radioactive noble gases	s.		
	ŗΣ	=	a mathematical symbol to signify the operations to of the symbol are to be performed for each nuclide (n) and summed to arrive at the total dose, from all reported during the interval. No units apply.	(i) through		
	3.17 X 10 ⁻⁸	=	the inverse of the number of seconds per year with year/sec.	units of		
	Ni	=	the beta air close factor for radioactive noble gas number units of $\underline{mracl-m^3}_{\mu}$ µCi-yr	uclide (i) in		
	(X/Q)	=	the long term atmospheric dispersion factor for gro releases in units of sec/m ³ . The value of (X/Q) is the nuclides (i) in the dose calculation, but the value of vary depending on the Limiting Sector the Control is etc.	he same for all (X/Q) does		
	Qi	=	the number of micro-Curies of nuclide (i) released (during the dose calculation exposure period	(or projected)		
_			·			

REVIS	ION NO.:		PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	118 of 219
PROCI				110 01 210
	C-20	0	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.5	<u>Deter</u>	(continued)		
	The f	ollowing	steps provide a detailed explanation of how the dose is	calculated.
	1.	the typ	ermine the applicable (X/Q) refer to Table M-1 to obtain e of dose calculation being performed (i.e., quarterly Co ion for examples). This value of (X/Q) applies to each i	ontrol or Dose
	2.	Detern	nine (N _i) the beta air dose factor for nuclide (i) from Tab	le G-2.
	3.		the micro-curies of nuclide (i) from the in-plant radioact management logs for the source under consideration du l.	
	4.	Solve f	for D _i as follows:	
		$D_i = \frac{3.7}{2}$	$\frac{17 \times 10^{-8} \text{ yr}}{\text{sec}} \times \frac{\text{N}_{i} \text{ mrad} - \text{m}^{3}}{\mu \text{Ci} - \text{yr}} \times \frac{(\text{X}/\text{Q}) \text{sec}}{\text{M}^{3}} \times \frac{\text{Q}_{i} \mu \text{Ci}}{1}$	
		D _i = mi	rad = the dose from nuclide (i)	
	5.		n steps 2.5.2 through 2.5.4 for each nuclide (i) reported terval in the release source.	during the
	6.		al beta air dose for the pathway is determined by sumn f each nuclide (i) to obtain D _{B-air} dose.	ning the D _i
		D _{B-air} =	$D_1 + D_2$ + D_n = mrad	
	7.		o in-plant procedures for comparing the calculated dose ble limits that might apply.	e to any

2.6	26 URE NO.: C-200 Determining 1	PROCEDURE TITLE: OFFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT <u>METHODOLOGY SECTION</u>	PAGE: 119 of 219				
2.6	URE NO.: C-200 Determining 1	ST. LUCIE PLANT	119 of 219				
2.6	Determining 1	······································					
		METHODOLOGY SECTION					
		<u>he Radioiodine and Particulate Dose_To Any Age Grou</u> <u>tive Releases</u>	p's Organ				
	resulting from days to \leq 7.5 r year. The fol organ dose d Section 5.3.1 any age group dose reflects Effluent Supe age group (se (X/Q) which is the loss of I&8 given distance cloud that affe I&8DP and H and Tritium. included (see is to calculate age group. T pathways that	Control 3.11.2.3 limits the dose to the whole body or an the release of I-131, I-133, tritium and particulates with mem during any calendar quarter and \leq 15 mrem during lowing calculation method is provided for determining the to releases of radioiodines and particulates and is bas of NUREG-0133, November 1978. The equations can provided that the appropriate dose factors are used a only those pathways that are applicable to the age grou- rvisor will track which age group is the controlling (mos- econtrol 3.11.2.6.c). The (X/Q) _D symbol represents a different from the Noble Gas (X/Q) in that (X/Q) _D takes BDP and H-3 from the plume as the semi-infinite cloud to e. The (D/Q) dispersion factor represents the rate of fa- tes a square meter of ground at various distances from 3 notations refer to I-131, I-133 Particulates having hal For ease of calculations, dose from other Iodine nuclide 2.1). Tritium calculations are always based on (X/Q) _D . the I&8DP and H-3 dose for each pathway that applies the total dose to an organ can then be determined by su tapply to the receptor in the sector. The infant age grous s-Cow-Meat or Vegetation pathway dose since they are	h half-lives >8 g any calendar he critical ased on be used for nd the total up. The t restrictive) DEPLETED- s into account travels over a llout from the h the site. The f-lives >8 days es may be The first step s to a given umming the up does not				
-	The equations are:						
I		Pathway (excluding H-3):					
ļ	n D _{I&8DPT} = Σ3.* i	17 X 10 ⁻⁸ R _i (X/Q) ₂ Q _i					
ſ	For Ground P	lane, Grass-Cow/Goat-Milk, Grass-Cow/Goat-Milk, or \	egetation				
ľ	n D _{i&8DPT} = Σ3.1 i	7 X 10 ⁻⁸ R _i (D/Q) Q _i					
ł	For each path	way above (excluding Ground Plane) For Tritium:					
ſ	D _{H-3T} = 3. ⁻	17 X 10 ⁻⁸ R _{H-3T} (X/Q) _D Q _i					

REVIS	ION NO.:	PROCI	EDURE TITLE:	PAGE:
	26	OF	FSITE DOSE CALCULATION MANUAL (ODCM)	120 of 219
PROCI	EDURE NO.:			
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.6			adioiodine and Particulate Dose To Any Age Grou <u>Releases</u> (continued)	p's Organ
	For Total Dos group:	se froi	m Particulate Gaseous effluent to organ T of a spe	cified age
	$D_{T} = \frac{\Sigma}{Z} [D_{i\&BDF}]$	• + Dн-	٤.	
	Where:			
	Т	=	the organ of interest of a specified age group	
	z	=	the applicable pathways for the age group of inte	erest
	DI&BDP	=	Dose in mrem to the organ T of a specified age radioiodines and 8D Particulates	group from
	D _{H-3}	Ξ	Dose in mrem to the organ T of a specified age Tritium	group from
	DT	=	Total Dose in mrem to the organ T of a specified from Gaseous particulate Effluents	l age group
	ŗΣ	=	A mathematical symbol to signify the operations the symbol are to be performed for each nuclide and the individual nuclide doses are summed to total dose from the pathway of interest to organ	e (i) through (n) arrive at the
	Σ Z	=	A mathematical symbol to indicate that the total organ T is the sum of each of the pathway dose and H-3 from gaseous particulate effluents.	
	3.17 X 10 ⁻⁸	=	The inverse of the number of seconds per year year year/sec.	with units of
	Ri	=	The dose factor for nuclide (i) (or H-3) for pathw T of the specified age group. The units are eithe	
		mren yr -	$\frac{n-m^3}{\mu Ci}$ for pathways OR $\frac{mrem-m^2-sec}{yr-\mu Ci}$ for pathweight using (X/Q) _D OR $\frac{mrem-m^2-sec}{yr-\mu Ci}$ using (I	ways D/Q)

REVIS	ION NO.:		PROCEDURE TITLE:		PAGE:		
	26		OFFSITE DOS	E CALCULATION MANUAL (ODCM)	404 -5040		
PROCEDURE NO.:			1		121 of 219		
C-200			ST. LUCIE PLANT				
			MET	HODOLOGY SECTION			
2.6			the Radioiodine a ative Releases (c	and Particulate Dose To Any Age Grou continued)	p's Organ		
	(X/Q)) о		eted-(X/Q) value for a specific location is located (see discussion). The units a			
	(D/Q)		sition value for a specific location where I (see discussion). The units are 1/m ² s.			
	Qi			ber of micro-Curies of nuclide (i) releas) during the dose calculation exposure	•		
	Q _{Н-3}	2	= the numb	er of micro-Curies of H-3 released (or	projected)		
	11-0	,	during the	e dose calculation exposure period.			
	1.	The Inh	alation Dose Pathway Method:				
	Ir						
			The H-3 dose s	NOTE hould be calculated as per 2.6.4.			
		A.		pplicable (X/Q) _D from Table M-2 for the tor is located. This value is common to			
		В.		up(s) of interest, determine the R _i facto and age group from the appropriate tab			
		A	ge Group	Inhalation Dose Factor Table Numb	er		
			Infant	G-5			
			Child	G-8			
			Teen	G-13			
	1		Adult	G-18			
			waste managem	-Curies (Q _i) of nuclide (i) from the radi lent logs for the release source(s) unde lring the time interval.			
		D.	Solve for D _I				
			D _i = 3.17 X 10 ⁻⁸ F	Ri(X/Q) _D Q _I			
			D _i = n	nrem from nuclide (i)			

REVISIO			PROCEDURE TITLE:	PAGE:
ALVIOR				
PROCE	26 DURE N		OFFSITE DOSE CALCULATION MANUAL (ODCM)	122 of 219
C-200			ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.6			the Radioiodine and Particulate Dose To Any Age Grou ative Releases (continued)	p's Organ
	1.	(contir	nued)	
		E.	Perform steps 2.6.1.B through 2.6.1.D for each nuclide during the time interval for each organ.	(i) reported
		F.	The Inhalation dose to organ T of the specified age ground determined by summing the D _i Dose of each nuclide (i)	
			$D_{inhalation} = D_1 + D_2 + \ + D_n = mrem$ (Age Group)	
			Refer to 2.6.5 to determine the total dose to organ T from radioiodines & 8D Particulates	om
	2.	The Gro	ound Plane Dose Pathway Method:	
			<u>NOTE</u> via the ground plane is zero. The Whole Body is the or ered for the Ground Plane pathway dose.	ıly
		A.	Determine the applicable (D/Q) from Table M-2 for the the receptor is located. This (D/Q) value is common to (i)	
			Determine the Ri factor of nuclide (i) for the whole body Table G-4. The ground plane pathway dose is the sam groups.	
			Obtain the micro-Curies (Q _i) of nuclide (i) from the radio waste management logs for the source under consider	
		D.	Solve for D _I	
			$D_i = 3.17 \times 10^{-8} R_i (D/Q) Q_i$	
			D _i = mrem for nuclide (i)	
			Perform steps 2.6.2.B through 2.6.2.D for each nuclide during the time interval.	(i) reported

*10	ION NO.		PROCEDURE TITLE	:		PAGE:
oc	20 EDURE	-	OFFSITE DO	SE CALCULATION MA	ANUAL (ODCM)	123 of 219
C-200			ST. LUCIE PLANT			
			ME	THODOLOGY SECTIO	<u>DN</u>	
.6			the Radioiodine ative Releases	and Particulate Dose (continued)	To Any Age Grou	ip's Organ
	2.	(conti	nued)			
		F.		ane dose to the whole each nuclide (i)	body is determine	ed by summing
			D _{Gr.PlWBody} = D	$D_1 + D_2 + ___ + D_n =$	mrem	
			Refer to step 2	.6.5 to calculate total d	ose to the Whole	Body.
	3.	<u>The Gra</u>	ass-Cow/Goat-N	<u> Milk Dose Pathway Met</u>	hod:	
				NOTE		
	l		Tritium do	ose is calculated as per	2.6.4.	
		Α.	the sum of eac	it, will be the controlling h animal), as the huma	in receptor is ass	umed to drink
		А. В.	the sum of eac milk from only determine whice For the age gro	h animal), as the huma the most restrictive ani ch animal is controlling pup(s) of interest, deter organ T, from the appro	in receptor is ass mal. Refer to Tat based on its (D/C mine the dose fac	umed to drink ole M-3 to 2). ctor R _i for
		В.	the sum of eac milk from only determine whic For the age gro nuclide (i), for o	h animal), as the huma the most restrictive ani ch animal is controlling pup(s) of interest, deter organ T, from the appro	in receptor is ass mal. Refer to Tab based on its (D/C mine the dose fac opriate table num	umed to drink ole M-3 to 2). ctor R _i for ber for the se
		В.	the sum of eac milk from only determine whic For the age gro nuclide (i), for o applicable milk	h animal), as the huma the most restrictive ani ch animal is controlling oup(s) of interest, deter organ T, from the appro animal. Cow Milk Dose Factor	in receptor is ass mal. Refer to Tat based on its (D/C mine the dose fac opriate table num Goat Milk Do	umed to drink ole M-3 to 2). ctor R _i for ber for the se
		В.	the sum of eac milk from only determine whic For the age gro nuclide (i), for o applicable milk ge Group	h animal), as the huma the most restrictive anir ch animal is controlling oup(s) of interest, deter organ T, from the appro animal. Cow Milk Dose Factor Table Number	in receptor is ass mal. Refer to Tab based on its (D/C mine the dose fa priate table num Goat Milk Do Factor Table Nu	umed to drink ole M-3 to 2). ctor R _i for ber for the se
		В.	the sum of eac milk from only determine whic For the age gro nuclide (i), for o applicable milk ge Group Infant	h animal), as the huma the most restrictive ani ch animal is controlling oup(s) of interest, deter organ T, from the appro- animal. Cow Milk Dose Factor Table Number G-6	in receptor is ass mal. Refer to Tab based on its (D/C mine the dose fac priate table num Goat Milk Do Factor Table Nu G-7	umed to drink ole M-3 to 2). ctor R _i for ber for the se
		В.	the sum of eac milk from only determine whic For the age gro nuclide (i), for o applicable milk ge Group Infant Child	h animal), as the huma the most restrictive ani ch animal is controlling oup(s) of interest, deter organ T, from the appro animal. Cow Milk Dose Factor Table Number G-6 G-9	in receptor is ass mal. Refer to Tab based on its (D/C mine the dose fac priate table num Goat Milk Do Factor Table Nu G-7 G-10	umed to drink ole M-3 to 2). ctor R _i for ber for the se
		В.	the sum of eac milk from only determine which For the age gro nuclide (i), for of applicable milk ge Group Infant Child Teen Adult	h animal), as the huma the most restrictive ani ch animal is controlling oup(s) of interest, deter organ T, from the appro- animal. Cow Milk Dose Factor Table Number G-6 G-9 G-14 G-19 ro-Curies (Q _i) of nuclide ment logs for the release	in receptor is ass mal. Refer to Tab based on its (D/C mine the dose fac priate table num Goat Milk Do Factor Table Nu G-7 G-10 G-15 G-20 e (i) from the radio	umed to drink ole M-3 to 2). ctor R _i for ber for the se mber
		B.	the sum of eac milk from only determine which For the age gro nuclide (i), for o applicable milk ge Group Infant Child Teen Adult Obtain the mich waste manage	h animal), as the huma the most restrictive ani ch animal is controlling oup(s) of interest, deter organ T, from the appro- animal. Cow Milk Dose Factor Table Number G-6 G-9 G-14 G-19 ro-Curies (Q _i) of nuclide ment logs for the release	in receptor is ass mal. Refer to Tab based on its (D/C mine the dose fac priate table num Goat Milk Do Factor Table Nu G-7 G-10 G-15 G-20 e (i) from the radio	umed to drink ole M-3 to 2). ctor R _i for ber for the se mber
		B.	the sum of eac milk from only determine which For the age gro nuclide (i), for of applicable milk ge Group Infant Child Teen Adult Obtain the mich waste managed during the time	h animal), as the huma the most restrictive anii ch animal is controlling oup(s) of interest, deter organ T, from the appro- animal. Cow Milk Dose Factor Table Number G-6 G-9 G-14 G-19 ro-Curies (Q _i) of nuclide ment logs for the releas interval.	in receptor is ass mal. Refer to Tab based on its (D/C mine the dose fac priate table num Goat Milk Do Factor Table Nu G-7 G-10 G-15 G-20 e (i) from the radio	umed to drink ole M-3 to 2). ctor R _i for ber for the se mber

REVISI	ION NO.:		PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	124 of 219
PROCEDURE NO.:) .:		
	C-20	0	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.6			the Radioiodine and Particulate Dose To Any Age Grou ative Releases (continued)	p's Organ
	3.	(contir	nued)	
		E.	Perform steps 2.6.3.B through 2.6.3.D for each nuclide during the time interval. Only the radioiodines need to the limited analysis approach is used.	
		F.	The Grass-Cow-Milk (or Grass-Goat-Milk) pathway dos is determined by summing the Di dose of each nuclide	-
			D_{G-C-M} (or D_{G-G-M}) = $D_1 + D_2 + \ + D_n = mrem$	ı
	4.	The Gra	The dose to each organ should be calculated in the sat with steps 2.6.3.B through 2.6.3.F. Refer to step 2.6.5 the total dose to organ T from radioiodines &8D Particu limited analysis approach is being used the infant thyro grass-cow(goat)-milk pathway is the only dose that nee determined. Section 2.6.5 can be omitted.	to determine Ilates. If the id dose via the
				n
			<u>NOTE</u> Tritium dose is calculated as per 2.6.6.	
		A.	Determine the controlling herd location by:	
			 For dose calculations (other than the annual rep historical herd was determined to be located in S at miles. This herd shall be used for Control required dose calculations. 	Sector
			2. For annual report dose calculations the herd from Use Census having the highest (D/Q) at its local reporting herd. The Land Use Census for 1978 shall apply to the calendar year 1979 (for examp locate the nearest herd in each sector over land (D/Q) will be determined from actual met data the during the reporting period.	tion will be the (for example) ble) and will . The real
			Determine the applicable (D/Q) from Table M-3 for the the herd as determined in 2.6.4.A above.	location(s) of

	ON NO.:		PROCEDURE TITLE:		PAGE:
26 PROCEDURE NO.: C-200				SE CALCULATION MANUAL (ODCM)	125 of 219
	C-20	0		ST. LUCIE PLANT	
			MET	HODOLOGY SECTION	
2.6			<u>the Radioiodine</u> ative Releases (c	and Particulate Dose To Any Age Grou continued)	<u>p's Organ</u>
	4.	(conti	nued)		
		C.	Determine the d Table specified	lose factor Ri for nuclide (i) for organ ta below:	u from the
		Γ	Age	Meat Dose Factor Table No.	
		F	Infant	N/A *	
		ĺ	Child	G-11	
		F	Teen	G-16	
		ſ	Adult	G-21	
		D.	to this path Obtain the micro waste managen nuclide (i) to be consideration du from a single rel	does not eat meat and therefore dose of way. D-Curies (Qi) of nuclide (i) from the radi ment logs (for projected doses - the mice projected) for the release source(s) und uring the time interval. The dose can be lease source, but the total dose for OD reports shall be from all gaseous relea	oactive gas ro-Curies of der e calculated CM Control
		E.	Solve for Di		
			Di = 3.17 X 10 F	Ri (D/Q) Qi	
			Di =	mrem from nuclide (i)	
		F.	Perform Steps 2 during the time i	2.6.4.C through 2.8.4.E for each nuclide nterval.	(i) reported
		G.		-Meat pathway dose to organ tau is det dose of each nuclide (i).	ermined by
			Dose	= D1 + D2 + D3 + + Dn =	mrem
			Grass-Cow-Mea Excluding Tritiur		

REVISI	ON NO.:	PROCEDURE TITLE:		PAGE:			
	26	OFFSITE DO	SE CALCULATION MANUAL (ODCM)	100 6010			
PROCEDURE NO.:		1	126 of 219				
	C-200		ST. LUCIE PLANT	<u>]</u>			
		MET	THODOLOGY SECTION				
2.6			the Radioiodine and Particulate Dose To Any Age Group's Organ ative Releases (continued)				
	5. The Ve	egetation (Garder	n) Dose Pathway method:				
	Α.	Determine the	controlling garden location by:				
		garden v	e calculations (other than annual reports vas determined to be located in Sector miles. This garden shall be used fo lose calculations.	<i></i> at			
	2	having th reporting example and will I (D/Q) wil during th	al report dose calculations the Land Ce ne highest real (D/Q) at its location will l garden. The Land Use Census for 19) shall apply to the calendar year 1979 ocate the nearest garden in each secto I be determined from actual met data the reporting period.	be the 78 (for (for example) fr. The real nat occurred			
	В.		applicable (D/Q) from Table M-3 for the s determined above.	location(s) of			
	C.	Determine the of Table specified	dose factor Ri for nuclide (i) for organ ta below:	u from the			
	Γ	Age	Vegetation Dose Factor Table No.				
	-	Infant	N/A *				
	-	Child	G-12				
	F	Teen	G-17				
	ŀ	Adult	G-22				
	L		e infant does not eat vegetation and the other the pathway.	erefore does			
	D.	waste managen nuclide (i) to be consideration du from a single re	o-Curies (Qi) of nuclide (i) from the radi nent logs (for projected doses - the mic projected) for the release source(s) un uring the time interval. The dose can b lease source, but the total dose for OD I reports shall be from all gaseous relea	ro-Curies of der e calculated CM Control			

26 OFFSITE DOSE CALCULATION MANUAL (ODCM) 127 of 219 PROCEDURE NO:: ST. LUCIE PLANT 127 of 219 METHODOLOGY SECTION 2.6 Determining the Radiolodine and Particulate Dose To Any Age Group's Organ From Cumulative Releases (continued) 5. (continued) 5. (continued) E. Solve for Di DI = 3.17 X 10 ⁻⁸ Ri (D/Q) Qi DI = mrem from nuclide (i) F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn = mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. The Gaseous Tritium Dose (Each Pathway) Method: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Group Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q) ₀ instead of (D/Q). Table M-2 describes where the (X/Q) ₀ value should be obtain	REVIS	ION NO.:		PROCEDURE TITLE:	PAGE:
PROCEDURE NO.: C-200 ST. LUCIE PLANT METHODOLOGY SECTION 2.6 Determining the Radioiodine and Particulate Dose To Any Age Group's Organ From Cumulative Releases (continued) 5. (continued) E. Solve for Di Di = 3.17 X 10 ⁻⁸ Ri (D/Q) Qi Di = mrem from nuclide (i) F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn = mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. The Controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q) ₀ instead of (D/Q). Table M-2 describes where the (X/Q) ₀ value should be obtained		26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	107 (010
METHODOLOGY SECTION 2.6 Determining the Radioiodine and Particulate Dose To Any Age Group's Organ From Cumulative Releases (continued) 5. (continued) E. Solve for Di Di = 3.17 X 10 ⁻⁸ Ri (D/Q) Qi Di = mrem from nuclide (i) F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn = mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. The Gaseous Tritium Dose (Each Pathway) Method: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk Grass-Cow/Goat-Milk - as per 2.6.3.A Vegetation (Garden) B. Tritium dose calculations use the depleted (X/Q) _D instead of (D/Q). Table M-2 describes where the (X/Q) _D value should be obtained	PROCE	EDURE NO	0.:		127 of 219
 2.6 Determining the Radiolodine and Particulate Dose To Any Age Group's Organ From Cumulative Releases (continued) 5. (continued) E. Solve for Di Di = 3.17 X 10⁻⁸ Ri (D/Q) Qi Di = mrem from nuclide (i) F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn =mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. The Gaseous Tritium Dose (Each Pathway) Method: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Grass-Cow/Goat-Milk - as per 2.6.3.A B. Tritium dose calculations use the depleted (X/Q)_D instead of (D/Q). Table M-2 describes where the (X/Q)_D value should be obtained 		C-200		ST. LUCIE PLANT	
 From Cumulative Releases (continued) 5. (continued) E. Solve for Di Di = 3.17 X 10⁻⁸ Ri (D/Q) Qi Di = mrem from nuclide (i) F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn = mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. The Gaseous Tritium Dose (Each Pathway) Method: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.4.A Vegetation (Garden) - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q)_D instead of (D/Q). Table M-2 describes where the (X/Q)_D value should be obtained 				METHODOLOGY SECTION	
 E. Solve for Di Di = 3.17 X 10⁻⁸ Ri (D/Q) Qi Di = mrem from nuclide (i) F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn = mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. The Caseous Tritium Dose (Each Pathway) Method: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.4.A Vegetation (Garden) - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q)_D instead of (D/Q). Table M-2 describes where the (X/Q)_D value should be obtained 	2.6				ip's Organ
Di = 3.17 X 10 ⁻⁸ Ri (D/Q) Qi Di = mrem from nuclide (i) F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn = mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. 6. The controlling locations for the pathway) Method: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.4.A Vegetation (Garcien) - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q) _D instead of (D/Q). Table M-2 describes where the (X/Q) _D value should be obtained		5.	(contir	ued)	
 Di = mrem from nuclide (i) F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn =mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. The Gaseous Tritium Dose (Each Pathway) Method: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q)_D instead of (D/Q). Table M-2 describes where the (X/Q)_D value should be obtained 			E.	Solve for Di	
 F. Perform Steps 2.6.5.C through 2.6.5.E for each nuclide (i) reported during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn =mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. <u>The Gaseous Tritium Dose (Each Pathway) Method</u>: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q)_D instead of (D/Q). Table M-2 describes where the (X/Q)_D value should be obtained 				Di = 3.17 X 10 ⁻⁸ Ri (D/Q) Qi	
 during the time interval. G. The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn =mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. The Gaseous Tritium Dose (Each Pathway) Method: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q)_D instead of (D/Q). Table M-2 describes where the (X/Q)_D value should be obtained 				Di = mrem from nuclide (i)	
summing the Di dose of each nuclide (i). Dose = D1 + D2 + D3 + + Dn =mrem Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. <u>The Gaseous Tritium Dose (Each Pathway) Method</u> : A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.4.A Vegetation (Garclen) - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q) _D instead of (D/Q). Table M-2 describes where the (X/Q) _D value should be obtained					e (i) reported
Vegetation (Excluding Tritium) (Child, Teen, or Adult) 6. <u>The Gaseous Tritium Dose (Each Pathway) Method</u> : A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.4.A Vegetation (Garden) - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q) _D instead of (D/Q). Table M-2 describes where the (X/Q) _D value should be obtained					ed by
 (Excluding Tritium) (Child, Teen, or Adult) 6. <u>The Gaseous Tritium Dose (Each Pathway) Method</u>: A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.4.A Vegetation (Garden) - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q)_D instead of (D/Q). Table M-2 describes where the (X/Q)_D value should be obtained 				Dose = D1 + D2 + D3 + + Dn =	mrem
 A. The controlling locations for the pathway(s) has already been determined by: Inhalation - as per 2.6.1.A Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.4.A Vegetation (Garden) - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q)_D instead of (D/Q). Table M-2 describes where the (X/Q)_D value should be obtained 				(Excluding Tritium)	
determined by:Inhalation- as per 2.6.1.AGround Plane- not applicable for H-3Grass-Cow/Goat-Milk- as per 2.6.3.AGrass-Cow/Goat-Milk- as per 2.6.4.AVegetation (Garden)- as per 2.6.5.AB.Tritium dose calculations use the depleted (X/Q) _D instead of (D/Q). Table M-2 describes where the (X/Q) _D value should be obtained		6.	<u>The Ga</u>	aseous Tritium Dose (Each Pathway) Method:	
 Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.4.A Vegetation (Garclen) - as per 2.6.5.A B. Tritium dose calculations use the depleted (X/Q)_D instead of (D/Q). Table M-2 describes where the (X/Q)_D value should be obtained 					y been
Table M-2 describes where the (X/Q) _D value should be obtained				Ground Plane - not applicable for H-3 Grass-Cow/Goat-Milk - as per 2.6.3.A Grass-Cow/Goat-Milk - as per 2.6.4.A	
				Table M-2 describes where the (X/Q) _D value should be	• •

	ION NO.:		PROCEDURE	PROCEDURE TITLE:				
BOCI	26 EDURE N		OFFSITE	OFFSITE DOSE CALCULATION MANUAL (ODCM) 128				
	C-20			ST. LUCIE	PLANT			
				METHODOLOGY	SECTION	<u></u>		
	. .							
2.6				dine and Particulatises (continued)	<u>e Dose To Any Age G</u>	roup's Organ		
	6.	(con	tinued)					
		C.			est, determine the Path f interest from the Tab			
			AGE	INHALATION	MILK			
			AGE	INFIALATION	COW	GOAT		
			Infant	G-5	G-6	G-7		
			Child	G-8	G-9	G-10		
			Teen	G-13	G-14	G-15		
			Adult	G-18	G-19	G-20		
		D.			of Tritium from the radi			
		E.	(i) to be pro during the release so	bjected) for the rele time interval. The urce, but the total c all be from all gased	ed doses - the micro-(ease source(s) under c dose can be calculate lose for Control limits o ous release sources.	consideration d from a single		
	:	E.	(i) to be pro during the release sou reports sha Solve for D	bjected) for the rele time interval. The urce, but the total c all be from all gased	ease source(s) under c dose can be calculate lose for Control limits o ous release sources.	consideration d from a single		

REVISI	ION NO.:	PROCEDURE	TITLE:		PAGE:	
26 OFFSITE		E DOSE CALCULA	⁽¹⁾ 129 of 219			
C-200			ST. LUCIE	ST. LUCIE PLANT		
		<u> </u>	·····			
			METHODOLOGY	SECTION		
2.6			odine and Particulat ses (continued)	e Dose To Any Age G	roup's Organ	
			Total Organ Dose F Gaseous Release	rom lodines, 8D-Partic	culates and H-3	
	Control dose from the read			r dose from all release	sources	
	L			······································		
-	A. Group: INFAN	organ T fro release so T CHILI	om a release source ources: D TEEN ADU		ntrol, from all	
÷	A. Group: INFAN	organ T fro release so T CHILI	om a release source ources:	e or if applicable to Co LT LUNG GI-LLI W		
÷	A. Group: INFAN	organ T fro release so T CHILI VER TH	om a release source ources: D TEEN ADU	e or if applicable to Co LT	ntrol, from all	
-	A. Group: INFAN In: BONE LI PATHWAY Inhalation (I&8	organ T fro release so T CHILI VER TH / BDP)	om a release source ources: D TEEN ADU IYROID KIDNEY	e or if applicable to Col LT LUNG GI-LLI W Reference to STEP No. 2.6.1.F	HOLE BODY	
-	A. Group: INFAN In: BONE LI PATHWAY	organ T fro release so T CHILI VER TH / BDP)	om a release source ources: D TEEN ADU IYROID KIDNEY	e or if applicable to Cor LT LUNG GI-LLI W Reference to STEP No.	HOLE BODY	
Orgai	A. Group: INFAN In: BONE LI PATHWAY Inhalation (I&8	organ T fro release so T CHILI VER TH VER TH (DP) ium)	om a release source ources: D TEEN ADU IYROID KIDNEY	e or if applicable to Col LT LUNG GI-LLI W Reference to STEP No. 2.6.1.F	HOLE BODY	
Orgai	A. Group: INFAN In: BONE LI PATHWAY Inhalation (I&8 Inhalation (Trit Ground Plane (I& ssMil	organ T fro release so T CHILI VER TH (DP) ium) & 8DP) k (I&8DP)	om a release source ources: D TEEN ADU IYROID KIDNEY	e or if applicable to Con LT LUNG GI-LLI W Reference to STEP No. 2.6.1.F 2.6.6.E 2.6.2.F 2.6.3.F	htrol, from all	
Orgai	A. Group: INFAN In: BONE LI PATHWAY Inhalation (I&8 Inhalation (Trit Ground Plane (I& ssMil	organ T fro release so T CHILI VER TH / BDP) ium) & BDP)	om a release source ources: D TEEN ADU IYROID KIDNEY	e or if applicable to Con LT LUNG GI-LLI W Reference to STEP No. 2.6.1.F 2.6.6.E 2.6.2.F	HOLE BODY	
Organ (Gras Gras	A. Group: INFAN In: BONE LI PATHWAY Inhalation (I&8 Inhalation (I&8 Inhalation (Ital SsMil ssMil ssMil	organ T fro release so T CHILI VER TH (DP) ium) & BDP) ium) & BDP) k (I& BDP) k (I& BDP) k (Tritium) at (I& BDP)	om a release source ources: D TEEN ADU IYROID KIDNEY	e or if applicable to Con LT LUNG GI-LLI W Reference to STEP No. 2.6.1.F 2.6.6.E 2.6.2.F 2.6.3.F 2.6.6.E 2.6.4.G	htrol, from all HOLE BODY Remark	
Organ Organ (Gras Gras Gras	A. Group: INFAN In: BONE LI PATHWAY Inhalation (I&8 Inhalation (I&8 Inhalation (Implementation) SsMillon SsMentation SsMentation SsMentation	organ T fro release so T CHILI VER TH (BDP) ium) & BDP) ium) & BDP) ium) & CHILI VER TH (VER TH) (VER	om a release source ources: D TEEN ADU IYROID KIDNEY	e or if applicable to Con LT LUNG GI-LLI W Reference to STEP No. 2.6.1.F 2.6.6.E 2.6.2.F 2.6.3.F 2.6.6.E 2.6.4.G 2.6.6.E	htrol, from all HOLE BODY Remark	
Orgai Orgai (Gras Gras Gras Gras	A. Group: INFAN In: BONE LI PATHWAY Inhalation (I&8 Inhalation (Trit Ground Plane (I& ssMil ssMil ssMe ssMe ssMe	organ T fro release so T CHILI VER TH (VER TH (VER TH (VER TH (VER TH (VER TH (VER) (I&8DP) (I&8DP) (I&8DP)	om a release source ources: D TEEN ADU IYROID KIDNEY	e or if applicable to Con LT LUNG GI-LLI W Reference to STEP No. 2.6.1.F 2.6.6.E 2.6.2.F 2.6.3.F 2.6.6.E 2.6.6.E 2.6.4.G 2.6.6.E 2.6.5.G	HOLE BODY Remark N/A for INFANT N/A for INFANT N/A for INFANT	
Orgai Orgai (Gras Gras Gras Ve	A. Group: INFAN In: BONE LI PATHWAY Inhalation (I&8 Inhalation (I&8 Inhalation (Implementation) SsMillon SsMentation SsMentation SsMentation	organ T fro release so T CHILI VER TH (VER TH (VER TH (VER TH (VER TH (VER TH (VER) (I&8DP) (I&8DP) (I&8DP)	om a release source ources: D TEEN ADU IYROID KIDNEY	e or if applicable to Con LT LUNG GI-LLI W Reference to STEP No. 2.6.1.F 2.6.6.E 2.6.2.F 2.6.3.F 2.6.6.E 2.6.4.G 2.6.6.E	HOLE BODY Remark N/A for INFANT N/A for INFANT	

B. The dose to each of the applicable age group's ORGANS shall be calculated:

BONE, LIVER, THYROID, KIDNEY, LUNG, WHOLE BODY, & GI-LLI

The age group organ receiving the highest exposure relative to its Control Limit is the most critical organ for that age group resulting from the radioiodine & 8D Particulates gaseous effluents.

REVISI	ION NO.:		PROCEDURE TITLE:	PAGE:
	26		OFFSITE DOSE CALCULATION MANUAL (ODCM)	130 of 219
PROCEDURE NO.: C-200			ST. LUCIE PLANT	
			METHODOLOGY SECTION	•
2.7	<u>Proje</u>	cting Do	se for Radioactive Gaseous Effluents	
	to rec gased BOUI and 0 deter	luce rele ous efflu NDARY 0.4 mrad mining tl	Control 3.11.2.4 requires that the waste gas holdup systeases of radioactivity when the projected doses in 31 date ont releases, from each unit, to areas at and beyond the (see TS Figure 5-1-1) would exceed 0.2 mrad for game for beta radiation. The following calculation method is the projected doses. This method is based on using the performed in Sections 2.4 and 2.5.	ays due to e SITE na radiation provided for
	1.	(Sectio	the latest results of the monthly calculations of the gan on 2.4) and the beta air dose if performed (Section 2.5). obtained from the in-plant records.	
	2.	Divide the mo	these doses by the number of days the plant was operanth.	ational during
	3.	operati next m change	y the quotient by the number of days the plant is projectional during the next month. The product is the project onth. The value should be adjusted as needed to accord to accor	ed dose for the ount for any
	4.		rojected doses are >0.2 mrads gamma air dose or > 0. e, the appropriate subsystems of the waste gas holdup d.	
3.0	<u>40 CF</u>	-R 190 E	Dose Evaluation	
	cycle thyroid The fo	sources d, which ollowing	Dose or dose commitment to a real individual from all up be limited to ≤ 25 mrem to the whole body or any organ is limited to ≤ 75 mrem) over a period of 12 consecutive approach should be used to demonstrate compliance w his approach is based on NUREG-0133, Section 3.8.	n (except e months.
3.1	<u>Evalu</u>	ation Ba	ses	
	be per twice 3.11.2 whole gamm from r	rformed the dose 2.3a and body (lio a air dos adioiodi	ons to demonstrate compliance with the above dose lin if the quarterly doses calculated in Sections 1.4, 2.4 ar e limits of Controls 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2a, 3.1 3.11.2.3b respectively; i.e., quarterly doses exceeding quid releases), 10 mrem to any organ (liquid releases), se, 20 mrads beta air dose or 15 mrem to the thyroid o nes and particulates (atmospheric releases). Otherwis e required and the remainder of this section can be om	nd 2.6 exceed 1.2.2b, 3 mrem to the 10 mrads r any organ e, no

REVIS	ION NO.:	PROCEDURE TITLE:	PAGE:
26 PROCEDURE NO.:		OFFSITE DOSE CALCULATION MANUAL (ODCM)	131 of 219
FROUD	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	· ···
3.2	Doses From I	<u>_iquid Releases</u>	
	calculation me realistic assur shellfish by in Radiological E more realistic	ation of doses to real individuals from liquid releases, the ethod as employed in Section 1.4 will be used. However mptions will be made concerning the dilution and ingest dividuals who live and fish in the area. Also, the results Environmental Monitoring program will be included in de dose to these real people by providing data on actual r t related radionuclides in the environment.	er, more lion of fish and s of the etermining
3.3	Doses From A	Atmospheric Releases	
	same calculat Section 2.4, the dose factor (M sequence app the actual loca consumption of (Control 3.12, the results of in determining	ation of doses to real individuals from the atmospheric r tion methods as employed in Section 2.4 and 2.6 will be the total body dose factor (K_i) should be substituted for the A_i) to determine the total body dose. Otherwise the same objes. However, more realistic assumptions will be mad ation of real individuals, the meteorological conditions a of food (e.g., milk). Data obtained from the latest land to 2) should be used to determine locations for evaluating the Radiological Environmental Monitoring program will a more realistic doses to these real people by providing els of radioactivity and radiation at locations of interest.	e used. In the gamma air ne calculation e concerning and the use census doses. Also, l be included data on actual

REVISION NO.: 26				PAGE:				
PROCEDURE NO.:		+	OFFSITE DOSE CALCULATION MANUAL (ODCM)					
C-200				ST. LUCIE PLANT	}			
<u> </u>	<u></u>			METHODOLOGY SECTION	L			
4.0	<u>Annı</u>	ual Rad	ioactiv	ve Effluent Report				
	Conf histo dose ECL man St. L exan if the	trol. Th prical co e limits a s in iten ual. Th ucie Pla nple in ey conta	e repo indition are the n 2 of e aven ant. T Tables iin equ	information contained in a annual report shall not a orted values are based on actual release conditions ins that the Control dose calculations are based on. erefore included in item 1 of the report, for informati the report shall be those listed in Tables L-1 and G rage energy in item 3 of the report is not applicable the format, order of nuclides and any values shown is 3.3 through 3.8 are samples only. Other formats invalent information. A table of contents should also llowing format should be used:	instead of The Control ion only. The -1 of this to the as an are acceptable			
		RADI	<u>DACT</u>	IVE EFFLUENTS - SUPPLEMENTAL INFORMATI	<u>ON</u>			
	1.	Regu	gulatory Limits:					
		1.1	For I	Radioactive liquid waste effluents:				
			a.	The concentration of radioactive material release site (see TS Figure 5.1-1) shall be limited to ten concentrations specified in 10 CFR Part 20.1001 Appendix B, Table 2, Column 2 for radionuclides dissolved or entrained noble gases. For dissolve entrained noble gases, the concentration shall b $2 \times 10^{-4} \mu$ Ci/ml total activity.	times the I-20.2401, s other than ed or			
			b.	The dose or dose commitment to a MEMBER Of from radioactive materials in liquid effluents relea reactor unit to unrestricted areas (See TS Fig. 5. limited during any calendar quarter to \leq 1.5 mrem body and to \leq 5 mrem to any organ and \leq 3 mrem body and \leq 10 mrem to any organ during any cal	ased from each 1-1) shall be n to the whole n to the whole			
		1.2	For I	Radioactive Gaseous Waste Effluents:				
			a.	The dose rate resulting from radioactive material gaseous effluents to areas at or beyond the SITE (See TS Figure 5.1-1) shall be limited to the follo	E BOUNDARY			
				The dose rate limit for noble gases shall be <500 the total body and <3000 mrem/yr to the skin and				

REVIS	ION NO.:		PROC	EDURE TITLE:	PAGE:						
	26 PROCEDURE NO.: C-200			FSITE DOSE CALCULATION MANUAL (ODCM)	133 of 219						
PROC				ST. LUCIE PLANT							
	METHODOLOGY SECTION										
4.0	<u>Annı</u>	ual Radio	<u>activ</u>	e Effluent Report (continued)							
	1.	(contir	nued)								
		1.2	(cont	linued)							
			b.	The air dose (see TS Figure 5.1-1) due to noble released in gaseous effluents, from each reacto at and beyond the SITE BOUNDARY shall be lin following:	r unit, to areas						
				During any calendar quarter, to ≤ 5 mrad for gan and ≤ 10 mrad for beta radiation and during any to ≤ 10 mrad for gamma radiation and ≤ 20 mrad radiation	calendar year						
			C.	The dose to a MEMBER OF THE PUBLIC from Tritium and all radionuclide in particulate form, v >8 days in gaseous effluents released from each to areas at and beyond the SITE BOUNDARY (s 1 in the TS-A) shall be limited to the following:	vith half-lives n reactor unit						
				During any calendar quarter to \leq 7.5 mrem to an during any calendar year to \leq 15 mrem to any or							
	2.	Effluer	luent Limiting Concentrations:								
		Air - as	s per a	attached Table G-1							
		Water	- as p	per attached Table L-1							
	3.			ergy of fission and activation gases in gaseous eff o the St. Lucie Plant.	luents is not						

REVIS	ION NO .:		PROCEDURE T	PA	AGE:				
	26		OFFSITE	OFFSITE DOSE CALCULATION MANUAL (ODCM)					134 of 219
PROC	EDURE NO	D.:							104 01 2 13
	<u>C-20</u>	0		ST	. LUCIE	PLANT			
			Ī	METHOD	OLOGY	SECTION	l		
4.0	<u>Annu</u>	ial Radio	active Efflue	ent Repo	<u>rt (</u> contin	ued)			
	4.	Measu	rements and	d Approx	imations	of Total R	adioactivit	y:	
		A sum	mary of liqui	id effluen	taccoun	ting metho	ds is desc	ribed in	Table 3.1.
		A sum Table 3	mary of gase 3.2.	eous efflu	ient acc	ounting me	thods is d	escribe	d in
		Estima	te of Errors:	:					
					LIQ	UID	GASE	EOUS	
		Erroi	· Topic		Avg. %	Max. %	Avg. %	Max. %	0
	R	elease P	oint Mixing	-	2	5	NA	NA	_
	S	ampling			1	5	2	5	
	-				4	5	1	5	
		ample Pr	reparation		1	5	•		
	Sa	ample Pr ample Ar	-		3	10	3	10	
	Sa Sa	•	nalysis		1 3 2	-	3 4	10 15	
	Sa Sa	ample Ar	nalysis	Total %		10			.

The predictability of error for radioactive releases can only be applied to nuclides that are predominant in sample spectrums. Nuclides that are near background relative to the predominant nuclides in a given sample could easily have errors greater than the above listed maximums.

REVISION NO .:	PROCEDURE TITLE:	PROCEDURE TITLE:								
26	OFFSITE DOSE CAL	CULATION MANUAL (ODCM)	135 of 219							
PROCEDURE NO .:			155 01 2 19							
C-200	ST. L	UCIE PLANT								
	METHODO	LOGY SECTION								
4.0 <u>Annual Ra</u>	adioactive Effluent Report (continued)								
4. (co	ntinued)									
RAD	TABLE 3.1 RADIOACTIVE LIQUID EFFLUENT SAMPLING AND ANALYSIS									
LIQUID SOURCE	SAMPLING FREQUENCY	TYPE OF ANALYSIS	METHOD OF ANALYSIS							
	EACH BATCH	PRINCIPAL GAMMA EMITTERS	p.h.a.							
MONITOR		TRITIUM	L.S.							
TANK RELEASES	MONTHLY COMPOSITE	GROSS ALPHA	A.I.C.							
	QUARTERLY COMPOSITE	Sr-89, Sr-90, Fe-55	C.S.							
STEAM	FOUR PER MONTH	PRINCIPAL GAMMA EMITTERS AND DISSOLVED GASES	p.h.a.							
GENERATOR BLOWDOWN		TRITIUM	L.S.							
RELEASES	MONTHLY COMPOSITE	GROSS ALPHA	A.I.C.							

TABLE NOTATION:

p.h.a. - gamma spectrum pulse height analysis using Lithium Germanium detectors. All peaks are identified and quantified.

L.S. - Liquid Scintillation counting

C.S. - Chemical Separation

A.I.C. - Air Ion Chamber

REVISION NO .:	PAGE:								
26	OFFSITE DOSE CAI	OFFSITE DOSE CALCULATION MANUAL (ODCM)							
PROCEDURE NO .:			" 136 of 219						
C-200									
METHODOLOGY SECTION									
4.0 <u>Annual Rad</u>	ioactive Effluent Report	(continued)							
4. (cont	inued)								
	ТА	ABLE 3.2							
RADIO		ASTE SAMPLING AND ANA	ALYSIS						
GASEOUS SOURCE	SAMPLING FREQUENCY	TYPE OF ANALYSIS	METHOD OF ANALYSIS						
Waste Gas									
Decay Tank Releases	Each Tank	Principal Gamma Emitters	G, p.h.a.						
-	Each Tank Each Purge	Principal Gamma Emitters Principal Gamma Emitters	G, p.h.a. G, p.h.a.						
Releases									
Releases Containment		Principal Gamma Emitters	G, p.h.a.						
Releases Containment	Each Purge	Principal Gamma Emitters H-3	G, p.h.a. L.S.						
Releases Containment Purge Releases	Each Purge	Principal Gamma Emitters H-3 Principal Gamma Emitters	G, p.h.a. L.S. (G, C, P) - p.h.a. L.S.						
Releases Containment	Each Purge Four per Month	Principal Gamma Emitters H-3 Principal Gamma Emitters H-3	G, p.h.a. L.S. (G, C, P) - p.h.a.						
Releases Containment Purge Releases	Each Purge Four per Month Monthly Composite	Principal Gamma Emitters H-3 Principal Gamma Emitters H-3 Gross	G, p.h.a. L.S. (G, C, P) - p.h.a. L.S.						

TABLE NOTATION:

- G Gaseous Grab Sample
- C Charcoal Filter Sample
- P Particulate Filter Sample
- L.S. Liquid Scintillation Counting
- C.S. Chemical Separation
- p.h.a. Gamma spectrum pulse height analysis using Lithium Germanium detectors. All peaks are identified and quantified.
- A.I.C. Air Ion Chamber

ION NO.:		PROC	CEDURE TITLE:	PAGE:
26			FSITE DOSE CALCULATION MANUAL (ODCM)	137 of 219
OCEDURE NO.: C-200			ST. LUCIE PLANT	137 01 213
		•	METHODOLOGY SECTION	··
<u>Annι</u>	ual Rad	ioactiv	ve Effluent Report (continued)	
5.	Batch	n Rele	ases	
	A.	Liqu	id	
		1.	Number of batch releases:	
		2.	Total time period of batch releases:	minutes
		3.	Maximum time period for a batch release: _	minutes
		4.	Average time period for a batch release:	minutes
		5.	Minimum time period for a batch release:	minutes
		6.	Average dilution stream flow during the period (see Note 1 on Table 3.3):	GPM
		ŀ	All liquid releases are summarized in tables	
	В.	Gase	eous	
		1.	Number of batch releases:	
		2.	Total time period for batch releases:	minutes
		3.	Maximum time period for a batch release: _	minutes
		4.	Average time period for batch releases:	minutes
		5.	Minimum time period for a batch release:	minutes
		All ga	seous waste releases are summarized in tables	
	EDURE N C-20	26 EDURE NO.: C-200 Annual Rad 5. Batch A. B.	26 OF C-200 OF Annual Radioactive 5. Batch Release A. Lique 1. 2. 3. 4. 5. 6. B. Gase 1. 2. 3. 4. 5. 5. Lique 1. 2. 3. 4. 5. 6. 7 B. Gase 1. 2. 3. 4. 5. 5.	26 OFFSITE DOSE CALCULATION MANUAL (ODCM) C-200 ST. LUCIE PLANT METHODOLOGY SECTION Annual Radioactive Effluent Report (continued) 5. Batch Releases A. Liquid 1. Number of batch releases: 2. Total time period of batch releases: 3. Maximum time period for a batch release: 4. Average time period for a batch release: 5. Minimum time period for a batch release: 6. Average dilution stream flow during the period (see Note 1 on Table 3.3): All liquid releases are summarized in tables B. Gaseous 1. Number of batch releases: 2. Total time period for batch releases: 3. Maximum time period for batch release:

REVIS	ION NO.:	·	PRO	CEDURE TITLE:	PAGE:					
26 PROCEDURE NO.:			OFFSITE DOSE CALCULATION MANUAL (ODCM) 13							
C-200				ST. LUCIE PLANT						
			<u>l</u>	METHODOLOGY SECTION	L					
4.0	Annu	ual Rad	ioactiv	ve Effluent Report (continued)						
	6.	Unplanned Releases								
	0.	А.	Liqu							
			1.	Number of releases:						
			2.	Total activity releases:	Curies					
		В.		eous	0uilou					
		Β.	1.	Number of releases:						
			 2.	Total activity released:	Curies					
		C.		attachments (if applicable) for:	Ounco					
		0.	1.	A description of the event and equipment involve	he					
			ı. 2.	Cause(s) for the unplanned release.	<i>.</i>					
			2. 3.	Actions taken to prevent a recurrence						
	_	-	4.	Consequences of the unplanned release						
	7.	to the	gene	n of dose assessment of radiation dose from radioa eral public due to their activities inside the site are re inual report.						
	8.			e calculation manual revisions initiated during this i e Control 3.11.2.6 for required attachments to the <i>i</i>						
	9.			e and irradiated fuel shipments as per requirements 1.2.6.	s of					
	10.	Proce	ess Co	ontrol Program (PCP) revisions as per requirement	s of TS 6.13.					
	11.			ges to Radioactive Liquid, Gaseous and Solid Was s per requirements of Control 3.11.2.5.	te Treatment					

REV	ISION NO.:		PROCEDURE TITLE:			PAGE:						
PRO).:	OFFSITE DOSE CALCULA	139 of 219								
	C-20		ST. LUCIE									
			METHODOLOGY	SECTION								
	FLORIDA POWER & LIGHT COMPANY											
			ST. LUCIE UNIT	Г #								
		ANNUA	L REPORT//	THROUGH								
ļ	T.	ABLE 3.	3: LIQUID EFFLUENTS - SU		F ALL RELE	ASES						
Α.	Fissi	on and A	ctivation Products	UNIT	QUARTER	# QUARTER #						
	1.		Release - (Not including Tritiu , Alpha)	m, Ci	E	E						
	2.	Averag Period	ge Diluted Concentration Duri	ng μCi/ml	E	E						
В.	Tritiu	m										
	1.	Total F	Release	Ci	E	E						
	2.	Averag Period	e Diluted Concentration Duri	ng μCi/ml	E	E						
C.	Disso	lved and	d Entrained Gases									
	1.	Total F	Release	Ci	E	E						
	2.	Averag Period	e Diluted Concentration Duri	ng μCi/ml	E	E						
D.	Gross	s Alpha I	Radioactivity									
	1.	Total F	elease	Ci	E	E						
E.		ne of Wa to Diluti	aste Released on)	LITERS	E	E						
F.		ne of Dil During I	ution Water ² eriod ¹	LITERS	E	E						
1 -	during	release i	orted should be for the entire ntervals. This volume should flow during the period.									

REVISION NO .:	PROCEDUR	E TITLE:			F	AGE:					
26	OFFSIT	E DOSE CALCULATION MANUAL (ODCM)									
PROCEDURE NO.:			140 of 219								
C-200											
C-200 ST. LUCIE PLANT											
	METHODOLOGY SECTION										
	FLORIDA FOWER & LIGHT COMPANY										
		ST I	UCIE UNIT #	ŧ							
					, ,						
			<u>//</u>			<u> </u>					
TA	BLE 3.4:	LIQUID	EFFLUENTS	(EXAMPLE I	FORMAT)						
			CONTINUC	OUS MODE	BATC	HMODE					
NUCLIDES RELE	ASED"	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #					
I-131		CI	E	E	E	E					
I-133		CI	E	E	E	E					
I-135		CI	E	E	E	E					
NA-24		CI	E	E	E	E					
CR-51		CI	E	E	E	E					
MN-54		CI	E	E	E	E					
CO-57		CI	E	E	E	E					
CO-58		CI	E	E	E	E					
FE-59		CI	E	E	E	E					
CO-60		CI	E	E	ш	E					
ZN-65		CI	E	E	E	E					
NI-65		CI	E	E	E	E					
AG-110		CI	E	E	E	E					
SN-113		Cl	E	E	E	E					
SB-122		Cl	E	E	E	E					
SB-124		Cl	E	E	ш	E					
W-187		CI	E	E	E	E					
NP-239		CI	E	E	E	E					
ZR-95		CI	E	E	E	E					
MO-99		CI	E	E	E	E					
RU-103		CI	E	E	E	E					
CS-134		CI	E	E	E	E					
CS-136		CI	E	E	E	E					
CS-137		CI	E	E	E	E					
BA-140		CI	E	E	E	E					
CE-141		CI	E	E	E	E					
BR-82		CI	E	E	E	E					
ZR-97		CI	E	E	E	E					
SB-125		CI	E	E	E	E					

* All nuclides that were detected should be added to the partial list of the example format.

REVISION NO.:	PROCEDUF	RE TITLE:			F	PAGE:
26	re dose	. (ODCM)	141 of 219			
PROCEDURE NO .:						141 01 2 19
C-200			ST. LUCIE P	LANT		
		METH	ODOLOGY S	ECTION		
TAI	BLE 3.4:	LIQUID	EFFLUENTS (continued)		FORMAT)	
			CONTINUC	OUS MODE	BATC	H MODE
NUCLIDES RELE	LASED	UNIT	QUARTER #	QUARTER #	QUARTER #	#QUARTER #
CE-144		CI	E	E	E	E
SR-89		CI	E	E	E	E
SR-90		CI	E	E	E	E
UNIDENTIFIE	ED	CI	E	E	Е	E
TOTAL FOR PE (ABOVE)	RIOD	CI	E	E	E	E
			·			<u> </u>
NUCLIDES RELE		UNIT	CONTINUC	OUS MODE	BATC	H MODE
NUCLIDES RELE	ASED	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #
AR-41		Cl	E	E	E	E
KR-85		Cl	E	E	E	E
XE-131M		Cl	E	E	E	E
XE-133		CI	E	E	E	E
XE-133M		Cl	E	Е	E	E
XE-135	CI	E	E	E	Е	

		PROCEDURE TITLE:		PAGE:
26 OFFSITE DOSE CALCU			ATION MANUAL (ODCM)	142 of 219
PROCEDURE NO .:				142 01 219
C-200		ST. LUC	IE PLANT	
		METHODOLOG	GY SECTION	
		FLORIDA POWER &	LIGHT COMPANY	:
		ST. LUCIE UI	NIT #	
	TA	BLE 3.5: LIQUID EFFLUE	NTS - DOSE SUMMATION	
	Age	e Group: Lo	ocation:	
Ехро	sure lr	nterval: From	Through	
[Fish &	Shellfish Pathway to Organ	CALENDAR YEAR DOSE (m	rem)
		BONE		
		LIVER		
		THYROID		
		KIDNEY		
		LUNG		
		GI-LLI		
		WHOLE BODY		

REVISION NO	D.:	PROCEDURE TITLE:	· · · ·		PAGE:
	26	OFFSITE DOSE CALCULA	ATION MANUAL	(ODCM)	143 of 219
PROCEDURE	200	ST. LUCIE	E PLANT		
		<u>METHODOLOG</u> FLORIDA POWER & L			
		ST. LUCIE UNI		Ĩ	
	ANNI	UAL REPORT//_			/
	TABLE 3.	.6: GASEOUS EFFLUENTS	- SUMMATION	of all re	ELEASES
			1 15 11		
A. Fis	sion and A	Activation Gases		JUARTER	# QUARTER #
1.		Release	Ci	E	Е
2.		ge Release Rate For Period			
	-	ye Release Rale For Feriod	μοισευ	E	C
				_	_
1.		odine-131	Ci	E	E
	-	ge Release Rate for Period	μCi/SEC	E	E
C. Pa	rticulates				
1.	Particu	ulates T-1/2 > 8 Days	. Ci	E	Е
2.	Averag	ge Release Rate for Period	μCi/SEC	E	E
3.	Gross	Alpha Radioactivity	Ci	E	E
D. Trit	ium				
1.	Total F	Release	Ci	E	E
2.	Averag	ge Release Rate for Period	μCi/SEC	E	E

REVISION NO .:		PROCEDUF	RE TITLE:	<u> </u>			PAGE:			
26		OFFSI		CALCULATI	ON MANUAL	(ODCM)	111 - 5010			
PROCEDURE NO .:						· /	144 of 219			
C-200				ST. LUCIE P	LANT					
			METH	ODOLOGY S	ECTION					
		FI (OWER & LIGI		V				
				LUCIE UNIT #		•				
	A K 1 K 17 1					, ,				
IAB	LE 3.	7: GASE		FLUENTS - C AMPLE FOR		VEL RELEA	SES			
NUCLIDES BELEASED* LINIT CONTINUOUS MODE BATCH MODE										
NUCLIDES	NUCLIDES RELEASED* UNIT QUARTER # QUARTER # QUART									
1. Fission Ga	ases									
AR	-41		CI	E	E	E	E			
KR	-85		CI	E	E	E	E			
KR-	85M		CI	E	E	E	E			
KR	-87		CI	E	E	E	E			
KR	-88		CI	E	E	E	E			
XE-1	31M		CI	E	E	E	E			
XE-	133		CI	E	E	E	E			
XE-1	33M		CI	E	E	E	E			
XE-	135		CI	E	E	E	E			
XE-1	35M		CI	E	E	E	E			
XE-	138		Cl	E	E	E	E			
UNIDEN	ITIFIE	D	Cl	E	E	E	E			
TOTAL FO (ABC		RIOD	CI	E	E	E	E			
2. Iodines										
I-1	31		CI	E	E	E	E			
I-1	33		CI	E	E	E	E			
	1-135 CI E E E E									
TOTAL FOR PERIOD (ABOVE) CI E E E E										
3. Particulate						·				
CO	-58		Cl	E	E	E	E			
SR-	-89		CI	E	E	E	E			
SR	-90		CI	E	Е	E	E			

All nuclides that were detected should be added to the partial list of the example format.

REVISION NO .:	PROCEDURE TIT	rle:							PAGE:
26 PROCEDURE NO.:		0	FFSITE DOS	SE CALCULA	TION MANU	AL (ODCM)			145 of 219
C-200				ST. LUCIE	PLANT				
			MET	HODOLOGY	SECTION				
			FLORIDA	POWER & LI	IGHT COMP/	ANY			
			ST	. LUCIE UNI	T #				
	TABL	-E 3.8: GASI	EOUS EFFLI	JENTS - DOS		ION - CALEN	DAR YEAR		
F	AGE GROUF	: <u>INFANT</u>	EXPOSUR	E INTERVAL	.: FROM	THF	ROUGH		
PATI	HWAY	BONE (mrem)	LIVER (mrem)	THYROID (mrem)	KIDNEY (mrem)	LUNG (mrem)	GI-LLI (mrem)	WHOLE (mre	
Ground Plan									
Grass- Inhalation	-Milk (B) (A)	<u> </u>						-{	
TOTAL									
A) SECT	FOR:	RANGE:	miles] (<u>B)</u> [CO	W/GOAT	SECTOR:	RAN	NGE:	miles
		NOBLE GA	SES	CALEND	AR YEAR (m	irad)			
		Gamma Air							
	Sector:	Beta Air Do		Range:			0.97 mile	25	
ļ				interige.		······	0.07 11110	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				<u>NOTE</u> d using actua s per Reg. Gu	I meteorologi	ical data durir arch 1976.	ng the specif	ïed	

PROCEDURE TITLE:	PAGE:
OFESITE DOSE CALCULATION MANUAL (ODCM)	
	146 of 219
ST. LUCIE PLANT	
APPENDIX A ECL, DOSE FACTOR AND HISTORICAL METEOROLOGICAL TABLES	
	OFFSITE DOSE CALCULATION MANUAL (ODCM) ST. LUCIE PLANT

REVISION NO .:	PROCEDURE	TITLE:	<u></u>		PAGE:
26	OFFSITE	E DOSE CALC	ULATION MAN	UAL (ODCM)	447 5040
PROCEDURE NO.:				· · ·	147 of 219
C-200		ST. LU	ICIE PLANT		
EFFLUEN			LE L-1 IN WATER IN	UNRESTRICT	ED AREAS
		NO	TE		
			10 CFR Part 20		
		Column 2 and	use the most c	onservative EC	
listed for	the nuclide.				
Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/ml)
H-3	1 E-3	Sr-92	4 E-5	Te-129	4 E-4
C-14	3 E-5	Y-90	7 E-6	Te-131m	8 E-6
Na-24	5 E-5	Y-91m	2 E-3	Te-131	8 E-5
P-32	9 E-6	Y-91	8 E-6	Te-132	9 E-6
Cr-51	5 E-4	Y-92	4 E-5	I-130	2 E-5
Mn-54	3 E-5	Y-93	2 E-5	I-131	1 E-6
Mn-56	7 E-5	Zr-95	2 E-5	I-132	1 E-4
Fe-55	1 E-4	Zr-97	9 E-6	I-133	7 E-6
Fe-59	1 E-5	Nb-95	3 E-5	I-134	4 E-4
Co-57	6 E-5	Nb-97	3 E-4	I-135	3 E-5
Co-58	2 E-5	Mo-99	2 E-5	Cs-134	9 E-7
Co-60	3 E-6	Tc-99m	1 E-3	Cs-136	6 E-6
Ni-63	1 E-4	Tc-101	2 E-3	Cs-137	1 E-6
Ni-65	1 E-4	Ru-103	3 E-5	Cs-138	4 E-4
Cu-64	2 E-4	Ru-105	7 E-5	Ba-139	2 E-4
Zn-65	5 E-6	Ru-106	3 E-6	Ba-140	8 E-6
Zn-69	8 E-4	Ag-110	6 E-6	Ba-141	3 E-4
Br-82	4 E-5	Sn-113	3 E-5	Ba-142	7 E-4
Br-83	9 E-4	In-113m	7 E-4	La-140	9 E-6
Br-84	4 E-4	Sb-122	1 E-5	La-142	1 E-4
Rb-86	7 E-6	Sb-124	7 E-6	Ce-141	3 E-5
Rb-88	4 E-4	Sb-125	3 E-5	Ce-143	2 E-5
Rb-89	9 E-4	Te-125m	2 E-5	Ce-144	3 E-6
Sr-89	8 E-6	Te-127m	9 E-6	Pr-144	6 E-4
Sr-90	5 E-7	Te-127	1 E-4	W-187	3 E-5
Sr-91	2 E-5	Te-129m	7 E-6	Np-239	2 E-5

EVISION NO .:	PROCEDURE TITLE:						PAGE:
26		OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		148 of 21
C-200			ST. LU	ICIE PLANT			
				LE L-2 RSION FACTO	RS FOR LIQUID		
	PAINW		OSE FACTOR	(MREM/HR PE			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	3.60E-01	3.60E-01	3.60E-01	3.60E-01	3.60E-01	3.60E-01
C-14	1.45E+04	2.91E+03	2.91E+03	2.91E+03	2.91E+03	2.91E+03	2.91E+03
NA-24	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01
P-32	1.67E+07	1.05E+06	0.	0.	0.	1.88E+06	6.47E+05
CR-51	0.	0.	3.34E+00	1.23E+00	7.42E+00	1.41E+03	5.59E+00
MN-54	0.	7.07E+03	0.	2.10E+03	0.	2.17E+04	1.35E+03
MN-56	0.	1.78E+02	0.	2.26E+02	0.	5.68E+03	3.17E+01
FE-55	1.15E+05	5.19E+05	0.	0.	6.01E+05	2.03E+05	1.36E+05
FE-59	8.08E+04	1.92E+05	0.	0.	5.32E+04	6.33E+05	7.29E+04
CO-57	0.	1.42E+02	0.	0.	0.	3.60E+03	2.36E+02
CO-58	0.	6.05E+02	0.	0.	0.	1.22E+04	1.35E+03
CO-60	0.	1.74E+03	0.	0.	0.	3.26E+04	3.83E+03
Ni-63	4.97E+04	3.45E+03	0.	0.	0.	7.19E+02	1.67E+03
NI-65	2.02E+02	2.63E+01	0.	0.	0.	6.65E+02	1.20E+01
CU-64	0.	2.15E+02	0.	5.41E+02	0.	1.83E+04	1.01E+02
ZN-65	1.62E+05	5.13E+05	0.	3.43E+05	0.	3.23E+05	2.32E+05
ZN-69	3.43E+02	6.60E+02	0.	4.27E+02	0.	9.87E+01	4.57E+01

REVISION NO .:	PROCEDURE TITLE:	:					PAGE:
26	_	OFFSI	TE DOSE CALC	ULATION MAN	JAL (ODCM)		149 of 219
PROCEDURE NO .:							
C-200			ST. LL	ICIE PLANT			
			TAB	LE L-2			
	ENVIRONMEN	TAL PATHWA			RS FOR LIQUI	D DISCHARGES	i
			ER FISH AND		AGE GROUP		•
		ORGAN E	DOSE FACTOR	(MREM/HR P	'ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
BR-82	0.	0.	0.	0.	0.	4.68E+00	4.08E+00
BR-83	0.	0.	0.	0.	0.	1.05E-01	7.26E-02
BR-84	0.	0.	0.	0.	0.	7.38E-07	9.42E-02
BR-85	0.	0.	0.	0.	0.	0.	3.86E-03
RB-86	0.	6.25E+02	0.	0.	0.	1.23E+02	2.91E+02
RB-88	0.	1.79E+00	0.	0.	0.	0.	9.50E-01
RB-89	0.	1.19E+00	0.	0.	0.	0.	8.38E-01
SR-89	5.01E+03	0.	0.	0.	0.	8.01E+02	1.44E+02
SR-90	1.23E+05	0.	0.	0.	0.	1.65E+03	3.02E+04
SR-91	9.43E+01	0.	0.	0.	0.	4.75E+02	4.15E+00
SR-92	3.50E+01	0.	0.	0.	0.	6.91E+02	1.51E+00
Y-90	6.07E+00	0.	0.	0.	0.	6.43E+04	1.63E-01
Y-91M	5.74E-02	0.	0.	0.	0.	1.68E-01	2.23E-03
Y-91	8.89E+01	0.	0.	0.	0.	4.89E+04	2.38E+00
Y-92	5.34E-01	0.	0.	0.	0.	9.33E+03	1.56E-02

VISION NO .:	PROCEDURE TITLE:						PAGE:
26		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		150 of 21
ROCEDURE NO .:							100 01 21
C-200			ST. LU	ICIE PLANT			
			TAB	LE L-2			
				RSION FACTO			
	PATHW		ER FISH AND		AGE GROUP	- ADULT	
		ORGAN E	OSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
Y-93	1.69E+00	0.	0.	0.	0.	5.36E+04	4.67E-02
ZR-95	1.60E+01	5.13E+00	0.	8.09E+00	0.	1.59E+04	3.47E+00
ZR-97	8.82E-01	1.78E-01	0.	2.69E-01	0.	5.51E+04	8.19E-02
NB-95	4.48E+02	2.49E+02	0.	2.47E+02	0.	1.51E+06	9.79E+01
NB-97	3.76E+00	9.50E-01	0.	1.11E+00	0.	3.51E+03	3.47E-01
MO-99	0.	1.28E+02	0.	2.90E+02	0.	2.97E+02	2.43E+01
TC-99M	1.30E-02	3.67E-02	0.	5.57E-01	1.80E-02	2.17E+01	4.67E-01
TC-101	1.33E-02	1.93E-02	0.	3.47E-01	9.82E-03	0.	1.89E-01
RU-103	1.07E+02	0.	0.	4.09E+02	0.	1.25E+04	4.61E+01
RU-105	8.90E+00	0.	0.	1.15E+02	0.	5.44E+03	3.51E+00
RU-106	1.59E+03	0.	0.	3.08E+03	0.	1.03E+05	2.01E+02
AG-110	1.57E+03	1.45E+03	0.	2.85E+03	0.	5.92E+05	8.62E+02
SB-124	2.78E+02	5.23E+00	6.71E-01	0.	2.15E+02	7.85E+03	1.10E+02
SB-125	2.20E+02	2.37E+00	1.96E-01	0.	2.30E+04	1.95E+03	4.42E+01
TE-125M	2.17E+02	7.89E+01	6.54E+01	8.83E+02	0.	8.67E+02	2.91E+01

EVISION NO .:	PROCEDURE TITLE:			<u>-</u>			PAGE:
26		OFFSI	E DOSE CALC	ULATION MANU	JAL (ODCM)		454 -6 044
ROCEDURE NO.:	-				ι, γ		151 of 21
C-200			ST. LU	CIE PLANT			
			TAB	 LE L-2			
	ENVIRONMEN	TAL PATHWA			RS FOR LIQUID	DISCHARGES	
			ER FISH AND		AGE GROUP		
		ORGAN E	OSE FACTOR	(MREM/HR P	ER μCi/ML)		
				I	······································		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
TE-127M	5.50E+02	1.92E+02	1.40E+02	2.23E+03	0	1.84E+03	6.70E+01
TE-127	8.92E+00	3.20E+00	6.61E+00	3.63E+01	0.	7.04E+02	1.93E+00
TE-129M	9.32E+02	3.49E+02	3.20E+02	3.89E+03	0.	4.69E+03	1.48E+02
TE-129	2.55E+00	9.65E-01	1.95E+00	1.07E+01	0.	1.92E+00	6.21E-01
TE-131M	1.41E+02	6.87E+01	1.09E+02	6.95E+02	0.	6.81E+03	5.72E+01
TE-131	1.60E+00	6.68E-01	1.31E+00	7.00E+00	0.	2.39E-01	5.04E-01
TE-132	2.05E+03	1.33E+02	1.46E+02	1.28E+03	0.	6.25E+03	1.24E+02
I-130	3.98E+01	1.18E+02	1.50E+04	1.83E+02	0.	1.01E+02	4.63E+01
I-131	2.18E+02	3.13E+02	1.02E+05	5.36E+02	0.	8.24E+01	1.79E+02
I-132	1.07E+01	2.85E+01	3.76E+03	4.55E+01	0.	5.36E+00	1.01E+01
I-133	7.51E+01	1.30E+02	2.51E+04	2.27E+02	0.	1.15E+02	3.98E+01
I-134	5.57E+00	1.51E+01	1.96E+03	2.41E+01	0.	1.32E-02	5.41E+00
I-135	2.33E+01	6.14E+01	8.03E+03	9.77E+01	0.	6.88E+01	2.25E+01
CS-134	6.85E+03	1.63E+04	0.	5.29E+03	1.75E+03	2.85E+02	1.33E+04
CS-136	7.17E+02	2.83E+03	0.	1.58E+03	2.16E+02	3.22E+02	2.04E+03

.

EVISION NO.:	PROCEDURE TITLE:						PAGE:
26	-	OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		152 of 219
C-200			ST. LU	ICIE PLANT			
			TAB	 LE L-2			
	ENVIRONMEN	ITAL PATHWA	••••		RS FOR LIQUID	DISCHARGES	
			ER FISH AND		AGE GROUP	اندننك يصر ومستحت ويتقص وسنتمنا	
		ORGAN E	OSE FACTOR	(MREM/HR PI	ER μCi/ML)		
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			······
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	<u> </u>	WHOLE BODY
CS-137	8.79E+03	1.20E+04	0.	4.09E+03	1.36E+03	2.31E+02	7.88E+03
CS-138	6.08E+00	1.20E+01	0.	8.84E+00	8.73E-01	5.12E-05	5.96E+00
BA-139	7.87E+00	5.61E-03	0.	5.24E-03	3.18E-03	1.39E+01	2.30E-01
BA-140	1.65E+03	2.07E+00	0.	7.04E-01	1.18E+00	3.39E+03	1.09E+02
BA-141	0.	2.89E-03	0.	2.68E-03	1.64E-03	1.80E-09	1.29E-01
BA-142	1.73E+00	1.78E-03	0.	1.50E-03	1.01E-03	0.	1.09E-01
LA-140	1.58E+00	7.95E-01	0.	0.	0.	5.83E+04	2.11E-01
LA-142	8.07E-02	3.67E-02	0.	0.	0.	2.68E+02	9.15E-03
CE-141	3.43E+00	2.32E+00	0.	1.08E+00	0.	8.87E+03	2.63E-01
CE-143	6.05E-01	4.47E+02	0.	1.97E-01	0.	1.67E+04	4.95E-02
CE-144	1.79E+02	7.48E+01	0.	4.43E+01	0.	6.05E+04	9.60E+00
PR-144	1.91E-02	7.88E-03	0.	4.45E-03	0.	2.73E-09	9.65E-04
W-187	9.17E+00	7.68E+00	0.	0.	0.	2.51E+03	2.69E+00
NP-239	3.56E-02	3.50E-03	0.	1.08E-02	0.	7.12E+02	1.92E-03

.

SION NO .:	PROCEDURE TITLE:						PAGE:
26	_	OFFSI	E DOSE CALC	JLATION MANU	IAL (ODCM)		153 of 21
CEDURE NO.:							
C-200			ST. LU	CIE PLANT			
	ENVIRONMEN	TAI PATHWAN		E L-3 RSION FACTO	RS FOR LIQUID	DISCHARGES	
			R FISH AND SH		AGE GROUP - 1		
				(MREM/HR P			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BOD
H3	0.	2.17E-01	2.17E-01	2.74E-01	2.17E-01	2.17E-01	2.17E-01
C-14	2.94E+03	2.94E+03	2.94E+03	2.22E+03	2.94E+03	2.94E+03	2.94E+03
NA24	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01
P32	1.27E+07	7.98E+05	0.	0.	0.	1.43E+06	4.93E+05
CR51	0.	0.	2.54E+00	9.38E-01	5.64E+00	1.07E+03	4.25E+00
MN54	0.	5.38E+03	0.	1.60E+03	0.	1.65E+04	1.03E+03
MN56	0.	1.36E+02	0.	1.72E+02	0.	4.32E+03	2.42E+01
FE55	8.78E+04	3.95E+05	0.	0.	4.57E+05	1.54E+05	1.04E+05
FE59	6.14E+04	1.46E+05	0.	0.	4.05E+04	4.81E+05	5.55E+04
CO57	0.	1.08E+02	0.	0.	0.	2.74E+03	1.79E+02
CO58	0.	6.12E+02	0.	0.	0.	8.26E+03	1.39E+03
CO60	0.	1.70E+03	0.	0.	0.	2.04E+04	3.88E+03
Ni-63	3.78E+04	2.63E+03	0.	0.	0.	5.47E+02	1.27E+03
NI65	1.54E+02	2.00E+01	0.	0.	0.	5.07E+02	9.11E+00
CU64	0.	1.64E+02	0.	4.12E+02	0.	1.39E+04	7.69E+01
ZN65	1.23E+05	3.90E+05	0.	2.61E+05	0.	2.46E+05	1.77E+05
ZN69	2.61E+02	5.02E+02	0.	3.24E+02	0.	7.50E+01	3.47E+01
BR82	0.	0.	0.	0.	0.	3.55E+00	3.10E+00
BR83	0.	0.	0.	0.	0.	7.95E-02	5.52E-02
BR84	0.	0.	0.	0.	0.	5.61E-07	7.16E-02
BR85	0.	0.	0.	0.	0.	0.	2.94E-03

VISION NO .:	PROCEDURE TITLE:						PAGE:
26	_	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		154 of 21
OCEDURE NO .:							
C-200	_l		ST. LU	CIE PLANT			
			TABI	LE L-3			
	ENVIRONMEN	ITAL PATHWAY	-DOSE CONVE	RSION FACTO	<u>RS FOR LIQUID</u>	DISCHARGES	•
	PATHWAY		R FISH AND SH		AGE GROUP -	reenager	
		ORGAN E	DOSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
RB86	0.	4.76E+02	0.	0.	0.	9.37E+01	2.22E+02
RB88	0.	1.37E+00	0.	0.	0.	0.	7.23E-01
RB89	0.	9.04E-01	0.	0.	0.	0.	6.38E-01
SR89	5.67E+03	0.	0.	0.	0.	6.15E+02	1.63E+02
SR90	1.28E+05	0.	0.	0.	0.	2.71E+03	3.17E+04
SR91	7.18E+01	0.	0.	0.	0.	3.61E+02	3.16E+00
SR92	2.66E+01	0.	0.	0.	0.	5.25E+02	1.15E+00
Y90	1.58E+01	0.	0.	0.	1.80E+04	5.23E+04	4.25E-01
Y91M	4.36E-02	0.	0.	0.	0.	1.28E-01	1.69E-03
Y91	9.40E+01	0.	0.	0.	0.	3.61E+04	2.51E+00
Y92	4.06E-01	0.	0.	0.	0.	7.10E+03	1.18E-02
Y93	1.29E+00	0.	0.	0.	0.	4.08E+04	3.55E-02
ZR95	1.49E+01	4.96E+00	0.	6.16E+00	0.	1.07E+04	3.46E+00
ZR97	6.72E-01	1.36E-01	0.	2.05E-01	0.	4.20E+04	6.24E-02
NB95	3.97E+02	2.39E+02	0.	1.88E+02	0.	9.76E+05	1.35E+02
NB97	2.87E+00	7.24E-01	0.	8.45E-01	0.	2.67E+03	2.64E-01
MO99	0.	9.74E+01	0.	2.21E+02	0.	2.26E+02	1.85+01
TC-99M	9.87E-03	2.79E-02	0.	4.24E-01	1.37E-02	1.65E+01	3.56E-01
TC-101	1.02E-02	1.47E-02	0.	2.64E-01	7.47E-03	0.	1.44E-01

REVISION NO.:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	E DOSE CALC	ULATION MANU	IAL (ODCM)		155 of 219
ROCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
			TABI	LE L-3			
				RSION FACTO			
	PATHWAY		R FISH AND SH		AGE GROUP -	TEENAGER	
		ORGAN E	OSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
RU-103	1.04E+02	0.	0.	3.11E+02	0.	8.13E+03	4.66E+01
RU-105	6.77E+00	0.	0.	8.74E+01	0.	4.14E+03	2.67E+00
RU-106	1.76E+03	0.	0.	2.34E+03	0.	7.95E+04	2.21E+02
AG110	1.19E+03	1.10E+03	0.	2.17E+03	0.	4.51E+05	6.56E+02
SB-124	2.11E+02	3.99E+00	5.11E-01	0.	1.64E+02	5.98E+03	8.35E+01
SB-125	1.68E+02	1.81E+00	1.49E-01	0.	1.75E+04	1.48E+03	3.37E+01
TE 125M	2.36E+02	8.45E+01	6.66E+01	6.72E+02	0.	6.60E+02	3.13E+01
TE 127M	4.18E+02	1.46E+02	1.07E+02	1.70E+03	0.	1.40E+03	5.09E+01
TE-127	9.31E+00	3.28E+00	6.35E+00	2.76E+01	0.	7.52E+02	1.99E+00
TE 129M	1.02E+03	3.79E+02	3.27E+02	2.96E+03	0.	3.58E+03	1.61E+02
TE-129	1.94E+00	7.34E-01	1.49E+00	8.14E+00	0.	1.46E+00	4.72E-01
TE 131M	1.07E+02	5.22E+01	8.26E+01	5.29E+02	0.	5.18E+03	4.35E+01
TE-131	1.21E+00	5.08E-01	9.99E-01	5.33E+00	0.	1.82E-01	3.83E-01
TE-132	2.19E+02	1.37E+02	1.46E+02	9.74E+02	0.	4.93E+03	1.30E+02
I130	3.03E+01	8.95E+01	1.14E+04	1.39E+02	0.	7.67E+01	3.52E+01
I131	2.23E+02	3.14E+02	9.07E+04	4.08E+02	0.	5.95E+01	1.87E+02
I132	8.11E+00	2.17E+01	2.86E+03	3.46E+01	0.	4.08E+00	7.71E+00
I133	8.11E+01	1.37E+02	2.50E+04	1.73E+02	0.	9.99E+01	4.24E+01
I134	4.24E+00	1.15E+01	1.49E+03	1.83E+01	0.	1.00E-02	4.12E+00

VISION NO.:	PROCEDURE TITLE	:					PAGE:
26 OCEDURE NO.:	-	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		156 of 21
C-200			ST. LU	ICIE PLANT			
							l
				LE L-3			
				RSION FACTO			
	PATHWAY	- SALT WATE			AGE GROUP -	TEENAGER	
		ORGAN L	OSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
I135	1.77E+01	4.68E+01	6.11E+03	7.43E+01	0.	5.23E+01	1.71E+01
CS-134	6.75E+03	1.63E+04	0.	4.03E+03	1.97E+03	1.88E+02	7.60E+03
CS-136	5.46E+02	2.16E+03	0.	1.20E+03	1.65E+02	2.45E+02	1.55E+03
CS-137	8.98E+03	1.21E+04	0.	3.11E+03	1.60E+03	1.61E+02	4.24E+03
CS-138	4.63E+00	9.15E+00	0.	6.73E+00	6.65E-01	3.90E-05	4.54E+00
BA-139	5.99E+00	4.27E-03	0.	3.99E-03	2.42E-03	1.06E+01	1.75E-01
BA-140	1.75E+03	2.15E+00	0.	5.35E-01	1.44E+00	2.55E+02	1.12E+02
BA-141	0.	2.20E-03	0.	2.04E-03	1.25E-03	1.37E-09	9.80E-02
BA-142	1.31E+00	1.35E-03	0.	1.14E-03	7.64E-04	0.	8.26E-02
LA-140	1.67E+00	8.25E-01	0.	0.	0.	4.55E+04	2.18E-01
LA-142	6.14E-02	2.79E-02	0.	0.	0.	2.04E+02	6.95E-03
CE-141	3.51E+00	2.36E+00	0.	8.19E-01	0.	6.38E+03	2.70E-01
CE-143	4.60E-01	3.40E+02	0.	1.50E-01	0.	1.27E+04	3.76E-02
CE-144	2.01E+02	8.25E+01	0.	3.37E+01	0.	4.74E+04	1.07E+01
PR-144	1.45E-02	5.99E-03	0.	3.39E-03	0.	2.08E-09	7.34E-04
W187	6.98E+00	5.85E+00	0.	0.	0.	1.91E+03	2.05E+00
NP-239	2.71E-02	2.67E-03	0.	8.25E-03	0.	5.43E+02	1.46E-03

EVISION NO .:	PROCEDURE TITLE:						PAGE:
26	-	OFFSIT	TE DOSE CALC	ULATION MANU	AL (ODCM)		157 of 21
C-200			ST. LU	ICIE PLANT			
		<u> </u>	TAB	LE L-4			
	ENVIRONMEN	ITAL PATHWA		RSION FACTO	RS FOR LIQUID	DISCHARGES	
			FER FISH AND		AGE GROUP		
		ORGAN E	OSE FACTOR	(MREM/HR PE	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.81E-01	1.81E-01	1.19E-01	1.81E-01	1.81E-01	1.81E-01
C-14	3.82E+03	3.82E+03	3.82E+03	9.61E+02	3.82E+03	3.82E+03	3.82E+03
NA24	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01
P32	5.53E+06	3.47E+05	0.	0.	0.	6.22E+05	2.14E+05
CR51	0.	0.	1.12E+00	4.13E-01	2.48E+00	4.70E+02	1.87E+00
MN54	0.	2.34E+03	0.	6.95E+02	0.	7.15E+03	4.46E+02
MN56	0.	5.88E+01	0.	7.46E+01	0.	1.88E+03	1.05E+01
FE55	3.87E+04	1.74E+05	0.	0.	2.02E+05	6.81E+04	4.58E+04
FE59	2.71E+04	6.43E+04	0.	0.	1.79E+04	2.12E+05	2.45E+04
CO57	0.	4.78E+01	0.	0.	0.	1.21E+03	7.94E+01
CO58	0.	5.05E+02	0.	0.	0.	3.00E+03	1.52E+03
CO60	0.	1.41E+03	0.	0.	0.	7.80E+03	4.23E+03
Ni-63	1.66E+04	1.15E+03	0.	0.	0.	2.39E+02	5.55E+02
NI65	6.73E+01	8.74E+00	0.	0.	0.	2.22E+02	3.98E+00
CU64	0.	7.15E+01	0.	1.80E+02	0.	6.09E+03	3.36E+01
ZN65	5.47E+04	1.74E+05	0.	1.16E+05	0.	1.09E+05	7.86E+04
ZN69	1.16E+02	2.23E+02	0.	1.44E+02	0.	3.34E+01	1.55E+01
BR82	0.	0.	0.	0.	0.	1.59E+00	1.39E+00
BR83	0.	0.	0.	0.	0.	3.55E-02	2.47E-02
BR84	0.	0.	0.	0.	0.	2.51E-07	3.20E-02
BR85	0.	0.	0.	0.	0.	0.	1.31E-03

.

REVISION NO .:	PROCEDURE TITLE:						PAGE:
26		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		158 of 219
C-200			ST. LU				
			TABI	LE L-4			
				RSION FACTO			
	PATHW		TER FISH AND	SHELLFISH (MREM/HR PI	AGE GROUP	- CHILD	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
RB86	0.	2.08E+02	0.	0.	0.	4.09E+01	9.68E+01
RB88	0.	5.96E-01	0.	0.	0.	0.	3.16E-01
RB89	0.	3.95E-01	0.	0.	0.	0.	2.78E-01
SR89	7.53E+03	0.	0.	0.	0.	2.81E+02	2.16E+02
SR90	9.39E+04	0.	0.	0.	0.	1.25E+03	2.38E+04
SR91	3.18E+01	0.	0.	0.	0.	1.60E+02	1.40E+00
SR92	1.18E+01	0.	0.	0.	0.	2.33E+02	5.08E-01
Y90	9.00E+00	0.	0.	0.	0.	2.57E+04	2.42E-01
Y91M	1.95E-02	0	0.	0.	0.	5.71E-02	7.55E-04
Y91	1.25E+02	0.	0.	0.	0.	1.66E+04	3.34E+00
Y92	1.81E-01	0.	0.	0.	0.	3.16E+03	5.28E-03
Y93	5.73E-01	0.	0.	0.	0.	1.82E+04	1.58E-02
ZR95	1.80E+01	4.19E+00	0.	2.67E+00	0.	4.33E+03	3.81E+00
ZR97	2.91E-01	5.87E-02	0.	8.86E-02	0.	1.82E+04	2.70E-02
NB95	4.61E+02	1.97E+02	0.	8.11E+01	0.	3.41E+05	1.45E+02
NB97	1.24E+00	3.12E-01	0.	3.64E-01	0.	1.15E+03	1.14E-01
MO99	0.	4.23E+01	0.	9.59E+01	0.	9.81E+01	8.05E+00
TC-99M	4.34E-03	1.23E-02	0.	1.86E-01	6.01E-03	7.26E+00	1.57E-01
TC-101	4.47E-03	6.45E-03	0.	1.16E-01	3.29E-03	0.	6.33E-02

REVISION NO.:	PROCEDURE TITLE:						PAGE:
26	-	OFFSI	E DOSE CALC	ULATION MANU	IAL (ODCM)		159 of 219
C-200			ST. LU	CIE PLANT			
			TABI				
	ENVIRONMEN	TAL PATHWA		RSION FACTO	RS FOR LIQUID	DISCHARGES	
			FER FISH AND		AGE GROUF		
		ORGAN E	OSE FACTOR	(MREM/HR PI	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
RU-103	1.33E+02	0.	0.	1.39E+02	0.	3.50E+03	5.38E+01
RU-105	3.03E+00	0.	0.	3.91E+01	0.	1.85E+03	1.19E+00
RU-106	2.34E+03	0.	0.	1.05E+03	0.	3.63E+04	2.91E+02
AG110	5.18E+02	4.80E+02	0.	9.43E+02	0.	1.96E+05	2.85E+02
SB-124	9.13E+01	1.72E+00	2.21E-01	0.	7.08E+01	2.58E+03	3.61E+01
SB-125	7.24E+01	7.80E-01	6.43E-02	0.	7.57E+03	6.40E+02	1.46E+01
TE 125M	3.11E+02	8.43E+01	8.73E+01	2.97E+02	0.	3.00E+02	4.15E+01
TE 127M	1.85E+02	6.47E+01	4.72E+01	7.50E+02	0.	6.19E+02	2.25E+01
TE-127	1.23E+01	3.27E+00	8.46E+00	1.22E+01	0.	5.24E+02	2.63E+00
TE129M	1.35E+03	3.77E+02	4.31E+02	1.31E+03	0.	1.63E+03	2.09E+02
TE-129	8.59E-01	3.25E-01	6.58E-01	3.60E+00	0.	6.47E-01	2.09E-01
TE131M	4.75E+01	2.31E+01	3.66E+01	2.34E+02	0.	2.29E+03	1.93E+01
TE-131	5.38E-01	2.25E-01	4.42E-01	2.36E+00	0.	8.05E-02	1.70E-01
TE-132	2.78E+02	1.23E+02	1.81E+02	4.31E+02	0.	2.15E+03	1.48E+02
I130	1.33E+01	3.94E+01	5.01E+03	6.12E+01	0.	3.38E+01	1.55E+01
I131	2.87E+02	2.94E+02	9.55E+04	1.79E+02	0.	2.51E+01	2.22E+02
I132	3.57E+00	9.55E+00	1.26E+03	1.52E+01	0.	1.79E+00	3.39E+00
I133	1.05E+02	1.30E+02	3.13E+04	7.61E+01	0.	5.26E+01	5.10E+01
I134	1.86E+00	5.06E+00	6.58E+02	8.07E+00	0.	4.41E-03	1.81E+00

EVISION NO .:	PROCEDURE TITLE:						PAGE:
26		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		100 -504
ROCEDURE NO.:							160 of 21
C-200			ST. LU				
				LE L-4			
	ENVIRONMEN	TAL PATHWA			RS FOR LIQUID	DISCHARGES	
			FER FISH AND		AGE GROUP		
		ORGAN E	OSE FACTOR	(MREM/HR P	ER μCi/ML)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
I135	7.79E+00	2.06E+01	2.69E+03	3.27E+01	0.	2.30E+01	7.54E+00
<u>CS-134</u>	8.14E+03	1.37E+04	0.	1.75E+03	1.52E+03	7.42E+01	2.92E+03
CS-136	2.37E+02	9.34E+02	0.	5.20E+02	7.13E+01	1.06E+02	6.73E+02
CS-137	1.13E+04	1.10E+04	0.	1.35E+03	1.29E+03	6.69E+01	1.64E+03
CS-138	2.01E+00	3.96E+00	0.	2.92E+00	2.88E-01	1.69E-05	1.97E+00
BA-139	2.65E+00	1.89E-03	0.	1.77E-03	1.07E-03	4.69E+00	7.75E-02
BA-140	2.25E+03	1.98E+00	0.	2.37E-01	1.18E+00	1.15E+02	1.32E+02
BA-141	0.	9.71E-04	0.	9.03E-04	5.51E-04	6.06E-10	4.34E-02
BA-142	5.81E-01	5.98E-04	0.	5.05E-04	3.38E-04	0.	3.66E-02
LA-140	2.16E+00	7.52E-01	0.	0.	0.	2.14E+04	2.54E-01
LA-142	2.74E-02	1.24E-02	0.	0.	0.	9.09E+01	3.10E-03
CE-141	4.67E+00	2.34E+00	0.	3.66E-01	0.	2.93E+03	3.48E-01
CE-143	2.05E-01	1.52E+02	0.	6.69E-02	0.	5.67E+03	1.68E-02
CE-144	2.66E+02	8.33E+01	0.	1.50E+01	0.	2.16E+04	1.42E+01
PR-144	6.46E-03	2.67E-03	0.	1.51E-03	0.	9.26E-10	3.27E-04
W187	3.03E+00	2.54E+00	0.	0.	0.	8.31E+02	8.90E-01
NP-239	1.18E-02	1.16E-03	0.	3.58E-03	0.	2.36E+02	6.34E-04

EVISION NO .:	PROCEDURE	TITLE:			PAGE:
26 PROCEDURE NO.:		DOSE CALC	ULATION MANU	JAL (ODCM)	161 of 219
C-200		ST. LI	JCIE PLANT		
					L
<u>EFFLUI</u>	ENT CONCENT		LE G-1 TS IN AIR IN UN	IRESTRICTE	DAREAS
Effluent		elow, refer to	DTE 0 10 CFR Part 20 d use the most co		
Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/ml)
Ar-41	1 E-8	Co-57	9 E-10	Sb-124	3 E-10
Kr-83m	5 E-5	Co-58	1 E-9	Sb-125	7 E-10
Kr-85m	1 E-7	Fe-59	5 E-10	Te-125m	1 E-9
Kr-85	7 E-7	Co-60	5 E-11	Te-127m	4 E-10
Kr-87	2 E-8	Zn-65	4 E-10	Te-129m	3 E-10
Kr-88	9 E-9	Rb-86	1 E-9	I-130	3 E-9
Kr-89	None	Rb-88	9 E-8	I-131	2 E-10
Kr-90	None	Sr-89	2 E-10	I-132	2 E-8
Xe-131m	2 E-6	Sr-90	6 E-12	I-133	1 E-9
Xe-133m	6 E-7	Y-91	2 E-10	I-134	6 E-8
Xe-133	5 E-7	Zr-95	4 E-10	I-135	6 E-9
Xe-135m	4 E-8	Nb-95	2 E-9	Cs-134	2 E-10
Xe-135	7 E-8	Ru-103	9 E-10	Cs-136	9 E-10
Xe-137	None	Ru-106	2 E-11	Cs-137	2 E-10
Xe-138	2 E-8	Ag-110	1 E-10	Ba-140	2 E-9
H-3	1 E-7	Sn-113	8 E-10	La-140	2 E-9
P-32	1 E-9	In-113m	2 E-7	Ce-141	8 E-10
	3 E-8	Sn-123	2 E-10	Ce-144	2 E-11
Cr-51		Sn-126	8 E-11		

VISION NO.:	PROCEDUF	RE TITLE:			PAGE:
26 OCEDURE NO.:	4	OFFSITE D	OSE CALCULATION MA	NUAL (ODCM)	162 of 21
C-200			ST. LUCIE PLANT		
		DOSE F	TABLE G-2 FACTORS FOR NOBLE G	BASES*	
RADIONUC	CLIDE	TOTAL BODY DOSE FACTOR K _i (mrem/yr per μCi/m ³)	SKIN DOSE FACTOR L _i (mrem/yr per μCi/m ³)	GAMMA AIR DOSE FACTOR M _i (mrad/yr per μCi/m ³)	BETA AIR DOSE FACTOR Ν _ι (mrad/yr per μCi/m ³)
Kr-83m	 ז	7.56E-02**		1.93E+01	2.88E+02
Kr-85m		1.17E+03	1.46E+03	1.23E+03	1.97E+03
Kr-85	=	1.61E+01	1.34E+03	1.72E+01	1.95E+03
Kr-87		5.92E+03	9.73E+03	6.17E+03	1.03E+04
Кг-88		1.47E+04	2.37E+03	1.52E+04	2.93E+03
Kr-89		1.66E+04	1.01E+04	1.73E+04	1.06E+04
Kr-90		1.56E+04	7.29E+03	1.63E+04	7.83E+03
Xe-131	lm	9.15E+01	4.76E+02	1.56E+02	1.11E+03
Xe-133	3m	2.51E+02	9.94E+02	3.27E+02	1.48E+03
Xe-133	3	2.94E+02	3.06E+02	3.53E+02	1.05E+03
Xe-135	ōm	3.12E+03	7.11E+02	3.36E+03	7.39E+02
Xe-135	5	1.81E+03	1.86E+03	1.92E+03	2.46E+03
Xe-137	7	1.42E+03	1.22E+04	1.51E+03	1.27E+04
Xe-138	3	8.83E+03	4.13E+03	9.21E+03	4.75E+03
Ar-41		8.84E+03	2.69E+03	9.30E+03	3.28E+03

The listed dose factors are for radionuclides that may be detected in gaseous effluents.

** 7.56E-02 = 7.56 X 10^{-2}

REVISION NO .:	PROCEDURE TITLE:				PAGE:
26	OF	FSITE DOSE CALC	ULATION MANUAL (ODCM)	162 of 210
PROCEDURE NO .:	7		·		163 of 219
C-200		ST. LU	ICIE PLANT		
		TAB	LE G-3		
E	NVIRONMENTAL PATHWA			OR GASEOUS DISCHARGES	3
		OUND PLANE DEP		GROUP - INFANT	-
	ORGAN DOS	SE FACTOR (SQ.	METER - MREM/YR	PER μCi/Sec)	
		NUCLIDE	WHOLE BODY		
		H-3	0.		
		CR-51	6.68E+06		
		MN-54	1.10E+09		
		FE-59	3.92E+08		
		CO-57	1.64E+08		
		CO-58	5.27E+08		
		CO-60	4.40E+09		
		ZN-65	6.87E+08		
		RB-86	1.29E+07		
		SR-89	3.07E+04		
		SR-90	5.94E+05		
		Y-91	1.53E+06		
		ZR-95	6.94E+08		
		NB-95	1.95E+08	4	
		RU-103	1.57E+08	1	
		RU-106	2.99E+08	4	
		AG-110	3.18E+09	J	

REVISION NO .:	PROCEDURE TITLE:				PAGE:			
26	0	FFSITE DOSE CALC	ULATION MANUAL	(ODCM)	164 of 219			
PROCEDURE NO .:								
C-200		ST. LUCIE PLANT						
		TAR	 LE G-3		····			
E	NVIRONMENTAL PATHWA			FOR GASEOUS DISCHARG	FS			
	PATHWAY - GF	OUND PLANE DEPO	DSITION AGE	GROUP - INFANT				
	ORGAN DO	SE FACTOR (SQ.	METER - MREM/YR	PER µCi/Sec)				
				. ,				
		NUCLIDE	WHOLE BODY	J				
		SN-126	4.80E+09					
		SB-124	8.42E+08	1				
		SB-125	7.56E+08	4				
		TE-125M	2.19E+06					
		TE-127M	1.15E+06					
		TE-129M	5.49E+07					
		I-130	7.90E+06					
		I-131	2.46E+07					
		I-132	1.78E+06					
		I-133	3.54E+06					
		I-134	6.43E+05					
		l-135	3.66E+06					
		<u>CS-134</u>	2.82E+09					
		<u>CS-136</u>	2.13E+08					
		CS-137	1.15E+09					
		BA-140	2.39E+08	1				
		CE-141	1.95E+07	1				
		CE-144	9.52E+07	1				

•

REVISION NO .:	PROCEDURE TITLE:	<u> </u>			PAGE:
26	O	FSITE DOSE CALC	JLATION MANUAL (ODCM)	
PROCEDURE NO .:	-1		·	,	165 of 219
C-200		ST. LU	CIE PLANT		
			E G-4		
E	NVIRONMENTAL PATHWA			OR GASEOUS DISCHARGE	s
	ATHWAY - GROUND PLAN			ILD - TEEN-ADULT & INFAN	
		SE FACTOR (SQ.			-
·		(
			······		
		NUCLIDE	WHOLE BODY		
		H-3	0.		
		CR-51	4.68E+06		
		MN-54	1.38E+09		
		FE-59	2.75E+08		
		CO-57	1.89E+08		
		CO-58	3.80E+08		
		CO-60	2.15E+10		
		ZN-65	7.43E+08		
		RB-86	9.01E+06		
		SR-89	2.17E+04		
		SR-90	5.35E+06		
		Y-91	1.08E+06		
		ZR-95	5.01E+08		
		NB-95	1.36E+08		
		RU-103	1.10E+08	1	
		RU-106	4.19E+08	1	

REVISION NO .:	PROCEDURE TITLE:		<u> </u>		PAGE:
26	OF	FSITE DOSE CALC	ULATION MANUAL (ODCM)	100 - 5040
PROCEDURE NO .:				·	166 of 219
C-200		ST. LU	CIE PLANT		
			_E G-4		
E	NVIRONMENTAL PATHWA			FOR GASEOUS DISCHARGE	s
				IILD - TEEN-ADULT & INFAN	
	ORGAN DOS	SE FACTOR (SQ.	METER - MREM/YR	PER μCi/Sec)	
		NUCLIDE	WHOLE BODY	ן	
		SN-126	5.16E+10		
		SB-124	5.98E+08		
		SB-125	2.30E+09		
		TE-125M	1.55E+06	1	
		TE-127M	8.79E+05	1	
		TE-129M	3.85E+07		
		I-130	5.53E+06		
		I-131	1.72E+07		
		l-132	1.25E+06		
		l-133	2.48E+06		
		I-134	4.50E+05	-	
		I-135	2.56E+06		
		CS-134	6.99E+09	-	
		CS-136	1.49E+08	-	
		CS-137	1.03E+10	4	
		BA-140 CE-141	1.68E+08	4	
		CE-141 CE-144	1.37E+07 1.13E+08	4	
		<u> </u>	1.135+08	ſ	

EVISION NO .:	PROCEDURE TITLE						PAGE:
26	_	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		167 of 21
ROCEDURE NO.:							
C-200			ST. LU	ICIE PLANT			
			TABI	LE G-5			
ENV	IRONMENTAL I	PATHWAY-DOS	E CONVERSIO	N FACTORS R()/P(I) FOR GAS	EOUS DISCHA	RGES
			- INHALATION	AGE GRO	UP - INFANT		
		ORGAN DOS	SE FACTOR (MREM/YR PER	μCi/Cu Meter)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	4.30E+02	4.30E+02	1.88E+02	4.30E+02	4.30E+02	4.30E+02
P-32	2.31E+05	1.35E+04	0.	0.	4.30E+02 0.	<u>4.30E+02</u> 1.51E+04	8.78E+03
CR-51	0.	0.	1.40E+01	3.99E+00	2.52E+03	5.81E+02	1.75E+01
MN-54	0.	6.93E+03	0.	1.72E+03	2.45E+05	1.35E+04	1.10E+03
FE-59	2.06E+03	4.86E+06	0.	0.	1.78E+05	3.29E+04	1.85E+03
CO-57	0.	1.21E+02	0.	0.	6.47E+04	5.50E+03	1.18E+02
CO-58	0.	1.18E+02	0.	0.	8.79E+05	1.21E+04	1.68E+02
CO-60	0.	8.40E+02	0.	0.	5.57E+06	3.28E+04	1.17E+03
ZN-65	5.67E+03	1.81E+04	0.	1.21E+04	1.53E+05	9.35E+03	8.15E+03
RB-86	0.	2.37E+04	0.	0.	0.	2.91E+03	1.03E+04
SR-89	4.31E+04	0.	0.	0.	2.31E+06	6.80E+04	1.24E+03
SR-90	1.32E+07	0.	0.	0.	1.53E+07	1.39E+05	8.06E+05
Y-91	5.98E+04	0.	0.	0.	2.63E+06	7.17E+04	1.60E+03
ZR-95	1.08E+04	2.73E+03	0.	9.48E+03	1.81E+06	1.41E+04	1.95E+03
NB-95	1.28E+03	5.75E+02	0.	1.35E+03	4.77E+05	1.21E+04	3.37E+02
RU-103	1.69E+02	0.	0.	1.02E+03	5.66E+05	1.58E+04	5.85E+01
RU-106	9.31E+03	0.	0.	2.34E+04	1.50E+07	1.76E+05	1.14E+03
AG-110	1.89E+03	1.75E+03	0.	3.44E+03	8.12E+05	5.29E+04	1.04E+03

REVISION NO .:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	TE DOSE CALC	ULATION MANU	AL (ODCM)		168 of 219
C-200			от II	JCIE PLANT			
<u> </u>							<u> </u>
			TAB	LE G-5			
ENV	IRONMENTAL F	PATHWAY-DOS	E CONVERSIO	N FACTORS R(I)/P(I) FOR GAS	EOUS DISCHAI	RGES
		PATHWAY -	INHALATION	AGE GRO	UP - INFANT		
		ORGAN DOS	SE FACTOR ((MREM/YR PER	μCi/Cu Meter)		
		·					
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	3.11E+04	6.45E+02	6.45E+02	0.	3.61E+06	5.99E+04	1.02E+03
SN-126	2.21E+05	5.85E+03	1.72E+03	0.	1.64E+06	2.23E+04	8.40E+03
SB-124	5.46E+03	1.03E+02	1.32E+01	0.	4.34E+05	7.11E+04	2.17E+03
SB-125	1.16E+04	1.25E+02	1.03E+01	0.	3.85E+05	1.76E+04	2.32E+03
TE-125M	4.54E+02	1.95E+02	1.53E+02	2.17E+03	4.96E+05	1.36E+04	6.16E+01
TE-127M	2.21E+03	9.83E+02	5.75E+02	8.01E+03	1.68E+05	2.62E+04	2.74E+02
TE-129M	1.32E+03	5.80E+02	5.08E+02	6.40E+03	1.83E+06	7.32E+04	2.06E+02
I-130	8.02E+02	2.35E+03	3.05E+05	3.65E+03	0.	1.35E+03	9.25E+02
I-131	3.63E+04	4.27E+04	1.41E+07	1.07E+04	0.	1.07E+03	2.51E+04
I-132	2.03E+02	5.70E+02	7.67E+04	9.09E+02	0.	7.11E+01	2.03E+02
I-133	1.34E+04	1.93E+04	4.66E+06	4.55E+03	0.	2.28E+03	5.87E+03
I-134	1.13E+02	3.02E+02	4.02E+04	4.82E+02	0.	1.76E-01	1.08E+02
I-135	4.70E+02	1.22E+03	1.64E+05	1.95E+03	0.	9.18E+02	4.51E+02
CS-134	4.80E+05	8.25E+05	0.	5.04E+04	1.01E+05	1.37E+03	7.32E+04
CS-136	6.85E+03	2.56E+04	0.	1.50E+04	2.10E+03	2.04E+03	1.95E+04
CS-137	6.86E+05	7.31E+05	0.	3.89E+04	9.45E+04	1.32E+03	4.41E+04
BA-140	5.70E+03	4.27E+00	0.	2.93E+00	1.64E+06	3.88E+03	2.95E+02
CE-141	2.52E+03	1.55E+03	0.	1.10E+03	5.24E+05	2.06E+04	1.81E+02
CE-144	4.68E+05	1.82E+05	0.	1.48E+05	1.27E+07	1.61E+05	2.49E+04

EVISION NO.:	PROCEDURE TITLE:						PAGE:
26 ROCEDURE NO.:	-	OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		169 of 219
			07.11				
C-200	<u> </u>		S1. LU	CIE PLANT		·	
			TABI	.E G-6			
ENV	IRONMENTAL P	PATHWAY-DOS)/P(I) FOR GAS	EOUS DISCHA	RGES
			(CONTAMINATI				<u> </u>
	(ORGAN DOSE F	ACTOR (SQ.	METER - MREN	Μ/YR PER μi/Se	c)	
							1
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	2.37E+03	2.37E+03	1.04E+03	2.37E+03	2.37E+03	2.37E+03
P-32	1.82E+10	1.14E+09	0.	0.	0.	2.05E+09	7.05E+08
CR-51	0.	0	1.82E+04	6.72E+03	4.04E+04	7.66E+06	3.05E+04
MN-54	0	8.96E+06	0.	2.67E+06	0.	2.74E+07	1.71E+06
FE-59	3.17E+07	7.52E+07	0.	0.	2.09E+07	2.48E+08	2.86E+07
CO-57	0.	1.36E+06	0.	0.	0.	3.46E+07	2.27E+06
CO-58	0.	2.55E+07	0.	0.	0.	6.60E+07	6.24E+07
CO-60	0.	8.73E+07	0.	0.	0.	2.16E+08	2.09E+08
ZN-65	1.46E+09	4.65E+09	0.	3.11E+09	0.	2.93E+09	2.10E+09
RB-86	0.	2.77E+09	0.	0.	0.	5.45E+08	1.29E+09
SR-89	1.47E+10	0.	0.	0.	0.	2.75E+08	4.22E+08
SR-90	1.65E+11	0.	0.	0.	0.	1.61E+09	4.21E+10
Y-91	8.12E+04	0.	0.	0.	0.	5.37E+06	2.16E+03
ZR-95	2.12E+05	9.41E+04	0.	1.86E+04	0.	7.47E+07	5.56E+04
NB-95	5.49E+05	2.47E+05	0.	4.84E+04	0.	1.98E+08	1.45E+05
RU-103	8.30E+03	0.	0.	4.16E+03	0.	1.04E+05	2.86E+03
RU-106	2.01E+05	0.	0.	4.20E+04	0.	1.56E+06	2.46E+04
AG-110	6.21E+07	5.75E+07	0.	1.13E+08	0.	2.35E+10	3.42E+07

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu \text{Ci}/\text{Cu}.$ Meter)

EVISION NO .:	PROCEDURE TITLE:						PAGE:
26	-	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		170 of 219
C-200			ST. LU	CIE PLANT			
	_1		TABL	.E G-6		<u></u>	l
ENV	IRONMENTAL F						RGES
	0	RGAN DOSE F	ACTOR (SQ.)	METER - MREM	/YR PER µCI/Se	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-126	1.75E+09	3.48E+07	1.01E+07	0.	4.97E+06	1.16E+09	5.25E+07
SB-124	2.75E+07	5.19E+05	6.64E+04	0.	2.13E+07	7.78E+08	1.09E+07
SB-125	3.59E+07	3.27E+06	2.93E+06	3.96E+06	2.83E+09	2.43E+08	6.62E+06
TE-125M	1.57E+08	5.30E+07	5.18E+07	7.05E+07	0.	7.57E+07	2.10E+07
TE-127M	5.54E+07	1.93E+07	1.79E+07	2.00E+08	0.	3.24E+08	7.38E+06
TE-129M	5.87E+08	2.02E+08	2.21E+08	2.70E+08	0.	3.54E+08	8.95E+07
I-130	4.54E+05	1.35E+06	1.71E+08	2.09E+06	0.	1.15E+06	5.29E+05
I-131	2.59E+09	3.09E+09	9.94E+11	7.24E+08	0.	1.16E+08	1.81E+09
I-132	1.78E-01	4.76E-01	6.26E+01	7.58E-01	0	8.93E-02	1.69E-01
I-133	3.75E+07	5.48E+07	1.30E+10	1.29E+07	0.	9.74E+06	1.66E+07
I-134	0.	0.	1.06E-09	0.	0.	0	0.
I-135	1.49E+04	3.94E+04	5.15E+06	6.26E+04	8.07E-02	4.41E+04	1.44E+04
CS-134	4.43E+10	7.97E+10	0.	4.65E+09	9.12E+09	1.90E+08	6.75E+09
CS-136	2.78E+08	1.10E+09	0.	6.11E+08	8.37E+07	1.25E+08	7.90E+08
CS-137	6.44E+10	7.21E+10	0.	3.66E+09	8.69E+09	1.86E+08	4.14E+09
BA-140	2.45E+08	2.47E+05	0.	1.22E+04	1.51E+05	8.13E+06	1.27E+07
CE-141	2.65E+05	1.62E+05	0.	9.72E+03	0.	7.87E+07	1.90E+04
CE-144	2.10E+07	8.29E+06	0.	5.67E+05	0.	8.66E+08	1.13E+06

Note: The units for C-14 and H-3 are (MREM/YR Per μ Ci/Cu. Meter)

SION NO.:	PROCEDURE TITLE:						PAGE:
26	_	OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		171 of 2
EDURE NO.:							
C-200		·	ST. LU	CIE PLANT			
			TABL	E G-7			
<u>ENV</u>	IRONMENTAL P	ATHWAY-DOS)/P(I) FOR GAS	EOUS DISCHA	RGES
			(CONTAMINAT			JP - INFANT	
	0	RGAN DOSE F	ACTOR (SQ. I	METER - MREM	/YR PER µCi/Se	ec)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BOD
H-3		4.84E+03	4.84E+03	2.11E+03	4.84E+03	4.84E+03	4.84E+03
P-32	2.19E+10	1.37E+09	<u>4.04</u> ⊑+03 0.	0.	<u>4.64</u> <u></u> ±+03	2.46E+09	8.46E+08
CR-51	0.	0.	0. 2.19E+03	8.07E+02	4.85E+03	<u> </u>	3.66E+03
MN-54	0.	1.08E+06		3.20E+02		3.29E+06	2.05E+05
FE-59	4.12E+05		0.		0. 2.72E+05	3.29E+06	3.72E+05
		9.78E+05	0.	0.	· · · · · · · · · · · · · · · · · · ·		
CO-57	0.	1.64E+05	0.	0.	0	4.15E+06	2.72E+05
CO-58	0.	3.06E+06	0.	0.	0.	7.92E+06	7.49E+06
CO-60	0.	1.05E+07	0.	0.	0.	2.59E+07	2.51E+07
ZN-65	1.76E+08	5.57E+08	0.	3.73E+08	0.	3.51E+08	2.52E+08
RB-86	0	3.32E+08	0	0.	0	6.54E+07	1.55E+08
SR-89	3.09E+10	0:	0.	0.	0.	5.77E+08	8.87E+08
SR-90	3.46E+11	0.	0.	0.	0	3.35E+09	8.83E+10
Y-91	9.74E+03	0.	0.	0.	0.	6.45E+05	2.60E+02
ZR-95	2.54E+04	1.13E+04	0.	2.23E+03	0.	8.95E+06	6.67E+03
NB-95	6.59E+04	2.97E+04	0.	5.81E+03	0.	2.37E+07	1.75E+04
RU-103	9.96E+02	0.	0.	4.99E+02	0.	1.24E+04	3.43E+02
RU-106	2.41E+04	0.	0.	5.04E+03	0.	1.87E+05	2.96E+03
AG-110	7.45E+06	6.90E+06	0.	1.36E+07	0.	2.81E+09	4.10E+06

Note: The units for C-14 and H-3 are (MREM/YR Per μ Ci/Cu. Meter)

ISION NO .:	PROCEDURE TITLE:						PAGE:
26 DCEDURE NO.:	-	OFFSIT	E DOSE CALC	JLATION MANU	AL (ODCM)		172 of 21
C-200			ST. LU	CIE PLANT			
		·	····				,I
				E G-7			
ENV			(CONTAMINAT	N FACTORS R(I		JP - INFANT	KGES
			•	METER - MREM			
	-				· · · · · · · · · · · · · · · · · · ·	-,	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-126	2.10E+08	4.17E+06	1.22E+06	0.	5.97E+05	1.40E+08	6.30E+06
SB-124	3.30E+06	6.22E+04	7.97E+03	0.	2.56E+06	9.33E+07	1.30E+06
SB-125	4.31E+06	3.92E+05	3.52E+05	4.76E+05	3.40E+08	2.92E+07	7.94E+05
TE-125M	1.89E+07	6.36E+06	6.21E+06	8.46E+06	0.	9.09E+06	2.52E+06
TE-127M	6.64E+06	2.31E+06	2.15E+06	2.40E+07	0.	3.88E+07	8.85E+05
TE-129M	7.05E+07	2.42E+07	2.66E+07	3.23E+07	0.	4.25E+07	1.07E+07
I-130	5.45E+05	1.61E+06	2.05E+08	2.51E+06	0.	1.38E+06	6.35E+05
I-131	3.11E+09	3.70E+09	1.19E+12	9.28E+08	0.	1.39E+08	2.17E+09
I-132	2.13E-01	5.71E-01	7.51E+01	9.10E-01	0.	1.07E-01	2.03E-01
I-133	4.50E+07	6.57E+07	1.55E+10	1.55E+07	0.	1.17E+07	1.99E+07
I-134	0.	0.	1.27E-09	0.	0.	0.	0.
I-135	1.79E+04	4.72E+04	6.18E+06	7.51E+04	2.42E-01	5.29E+04	1.73E+04
<u>CS-134</u>	1.33E+11	2.39E+11	0.	1.39E+10	2.74E+10	5.69E+08	2.02E+10
CS-136	8.34E+08	3.29E+09	0.	1.83E+09	2.51E+08	3.74E+08	2.37E+09
CS-137	1.93E+11	2.16E+11	0.	1.10E+10	2.61E+10	5.59E+08	1.24E+10
BA-140	2.95E+07	2.96E+04	0.	1.47E+03	1.81E+04	9.76E+05	1.52E+06
CE-141	3.17E+04	1.95E+04	0.	1.17E+03	0	9.44+06	2.28E+03
CE-144	2.52E+06	9.95E+05	0.	6.80E+04	0.	1.04E+08	1.36E+05

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu\text{Ci/Cu}.$ Meter)

EVISION NO .:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		173 of 219
ROCEDURE NO.:							
C-200	<u></u>		ST. LU	CIE PLANT			
			TABL	.E G-8			
<u>E</u> 1	NVIRONMENTAL					US DISCHARC	<u>SES</u>
		· · · · · · · · · · · · · · · · · · ·	INHALATION		OUP - CHILD		
		ORGAN DOSE	FACTOR (M	REM/YR PER µ	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	7.51E+02	7.51E+02	4.96E+02	7.51E+02	7.51E+02	7.51E+02
P32	6.11E+05	3.57E+04	0.	0.	0.	4.00E+04	2.32E+04
CR51	0.	0.	2.75E+01	1.06E+01	6.66E+03	1.54E+03	4.63E+01
MN54	0.	1.83E+04	0.	4.55E+03	6.48E+05	3.58E+04	2.91E+03
FE59	5.44E+03	1.28E+07	0.	0.	4.70E+05	8.70E+04	4.88E+03
CO57	0.	3.20E+02	0.	0.	1.71E+05	1.45E+04	3.10E+02
CO58	0.	1.52E+02	0.	0.	1.13E+06	3.62E+04	2.68E+02
CO60	0.	1.07E+03	0.	0.	6.92E+06	9.36E+04	1.88E+03
ZN65	1.50E+04	4.77E+04	0.	3.19E+04	4.03E+05	2.47E+04	2.15E+04
RB86	0.	6.25E+04	0.	0.	0.	7.70E+03	2.73E+04
SR89	5.37E+04	0.	0.	0.	2.24E+06	1.69E+05	1.54E+03
SR90	1.64E+07	0.	0.	0.	1.48E+07	3.45E+05	9.99E+05
Y91	7.44E+04	0.	0.	0.	2.55E+06	1.78E+05	1.98E+03
ZR95	1.41E+04	3.28E+03	0.	2.51E+04	2.12E+06	<u>5.74E+04</u>	2.98E+03
NB95	1.70E+03	7.25E+02	0	3.58E+03	5.85E+05	3.32E+04	5.33E+02
RU-103	2.16E+02	0.	0.	2.70E+03	6.33E+05	4.22E+04	8.73E+01
RU-106	1.15E+04	0	0.	6.18E+04	1.45E+07	4.37E+05	1.44E+03
AG110	5.00E+03	4.63E+03	0.	9.10E+03	2.15E+06	1.40E+05	2.75E+03

REVISION NO .:	PROCEDURE TITLE:						PAGE:
26 ROCEDURE NO.:	_	OFFSIT	TE DOSE CALC	ULATION MANU	AL (ODCM)		174 of 219
C-200		· - · · · · · · · · · · · · · · · · · ·	SI.LU	CIE PLANT			<u> </u>
			ταρι	-E G-8			
E	VIRONMENTA	L PATHWAY-DO			R(I) FOR GASEC	US DISCHARG	SES
			INHALATION		OUP - CHILD		
		ORGAN DOSE	EFACTOR (M	REM/YR PER µ	CI/CU. METER)		
	·		, ,	•	,		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	3.85E+04	6.44E+02	6.81E+02	0.	3.50E+06	1.49E+05	1.27E+03
SN-126	5.85E+05	1.55E+04	4.55E+03	0.	4.33E+06	5.88E+04	2.22E+04
SB-124	1.44E+04	2.72E+02	3.49E+01	0.	1.15E+06	1.88E+05	5.74E+03
SB-125	3.06E+04	3.30E+02	2.72E+01	0.	1.02E+06	4.66E+04	6.14E+03
TE 125M	5.62E+02	1.94E+02	1.61E+02	5.74E+03	4.81E+05	3.38E+04	7.62E+01
TE 127M	5.85E+03	2.60E+03	1.52E+03	2.12E+04	4.44E+05	6.92E+04	7.25E+02
TE 129M	1.64E+03	5.85E+02	5.40E+02	1.69E+04	1.80E+06	1.82E+05	2.60E+02
I130	2.12E+03	6.22E+03	8.07E+05	9.66E+03	0.	3.56E+03	2.45E+03
I131	4.55E+04	4.63E+04	1.54E+07	2.84E+04	0.	2.65E+03	3.50E+04
I132	5.37E+02	1.51E+03	2.03E+05	2.40E+03	0.	1.88E+02	5.37E+02
I133	1.68E+04	2.05E+04	5.03E+06	1.20E+04	0.	5.55E+03	8.03E+03
I134	2.98E+02	7.99E+02	1.06E+05	1.27E+03	0.	4.66E-01	2.85E+02
I135	1.24E+03	3.23E+03	4.33E+05	5.14E+03	0.	2.43E+03	1.19E+03
CS-134	6.22E+05	9.95E+05	0.	1.33E+05	1.19E+05	3.77E+03	2.23E+05
CS-136	1.81E+04	6.77E+04	0.	3.96E+04	5.55E+03	5.40E+03	5.14E+04
CS-137	8.66E+05	7.99E+05	0.	1.03E+05	1.00E+05	3.41E+03	1.25E+05
BA-140	7.14E+03	4.66E+00	0.	7.73E+00	1.74E+06	9.92E+03	4.22E+02
CE-141	3.13E+03	1.57E+03	0.	2.90E+03	5.14E+05	5.44E+04	2.33E+02
CE-144	5.81E+05	1.82E+05	0.	3.92E+05	1.23E+07	4.00E+05	3.10E+04

SION NO.:	PROCEDURE TITLE:						PAGE:
26 EDURE NO.:	-	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		175 of 21
C-200			ST. LU	CIE PLANT			
			TARI	E G-9			
EN	VIRONMENTAL	. PATHWAY-DO			R(I) FOR GASEC	OUS DISCHARC	GES
	PATHWAY -	COWS MILK (CONTAMINATE	D FORAGE)	AGE GRO	DUP - CHILD	
	0	RGAN DOSE F	ACTOR (SQ.)	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BOD
H3	0.	1.57E+03	1.57E+03	1.04E+03	1.57E+03	1.57E+03	1.57E+03
P32	1.82E+10	1.14E+09	0.	0.	0.	2.05E+09	7.05E+08
CR51	0.	0.	1.82E+04	6.72E+03	4.04E+04	7.66E+06	3.05E+04
 MN54	0.	8.96E+06	0.	2.67E+06	0.	2.74E+07	1.71E+06
	3.17E+07	7.52E+07	0.	0.	2.09E+07	2.48E+08	2.86E+07
CO57	0.	1.36E+06	0.	0.	0.	3.46E+07	2.27E+06
CO58	0.	1.25E+07	0.	0.	0.	7.41E+07	3.76E+07
CO60	0.	4.22E+07	0.	0.	0.	2.33E+08	1.27E+08
ZN65	1.46E+09	4.65E+09	0.	3.11E+09	0.	2.93E+09	2.10E+09
RB86	0.	2.77E+09	0.	0.	0.	5.45E+08	1.29E+09
SR89	6.92E+09	0.	0.	0.	0.	2.58E+08	1.98E+08
SR90	1.13E+11	0.	0.	0.	0.	1.52E+09	2.87E+10
Y91	3.80E+04	0.	0.	0.	0.	5.05E+06	1.01E+03
ZR95	1.06E+05	4.47E+04	0.	1.86E+04	0.	7.68E+07	3.29E+04
NB95	2.75E+05	1.18E+05	0.	4.84E+04	0.	2.03E+08	8.63E+04
RU-103	3.99E+03	0.	0.	4.16E+03	0.	1.05E+05	1.61E+03
RU-106	9.39E+04	0.	0.	4.20E+04	0.	1.46E+06	1.17E+04
AG110	6.21E+07	5.75E+07	0.	1.13E+08	0.	2.35E+10	3.42E+07

VISION NO.:	PROCEDURE TITLE:						PAGE:
26 ROCEDURE NO.:	-	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		176 of 21
C-200			ST. LU	CIE PLANT			
				E G-9			!
EN	VIRONMENTAL	PATHWAY-DO	••••		(I) FOR GASEC	US DISCHARGI	ES
		•	CONTAMINATE	-		UP - CHILD	
	0	RGAN DOSE F/	ACTOR (SQ. I	METER-MREM/	/R PER µCI/SE(C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.75E+09	3.48E+07	1.01E+07	0.	4.97E+06	1.16E+09	5.25E+07
SB-124	2.75E+07	5.19E+05	6.64E+04	0.	2.13E+07	7.78E+08	1.09E+07
SB-125	3.13E+07	1.41E+06	1.18E+06	3.96E+06	2.83E+09	2.43E+08	5.99E+06
TE 125M	7.38E+07	2.00E+07	2.07E+07	7.05E+07	0.	7.12E+07	9.84E+06
TE 127M	5.18E+07	1.78E+07	1.46E+07	2.00E+08	0.	2.99E+08	6.60E+06
TE 129M	2.77E+08	7.73E+07	8.85E+07	2.70E+08	0.	3.33E+08	4.28E+07
I130	4.54E+05	1.35E+06	1.71E+08	2.09E+06	0.	1.15E+06	5.29E+05
I131	1.24E+09	1.27E+09	4.12E+11	7.74E+08	0.	1.09E+08	9.56E+08
I132	1.78E-01	4.76E-01	6.26E+01	7.58E-01	0.	8.93E-02	1.69E-01
I133	1.78E+07	2.20E+07	5.30E+09	1.29E+07	0.	8.90E+06	8.63E+06
I134	0.	0.	1.06E-09	0.	0.	0.	0.
I135	1.49E+04	3.94E+04	5.15E+06	6.26E+04	8.07E-02	4.41E+04	1.44E+04
CS-134	2.17E+10	3.65E+10	0.	4.65E+09	4.06E+09	1.97E+08	7.76E+09
CS-136	2.78E+08	1.10E+09	0.	6.11E+08	8.37E+07	1.25E+08	7.90E+08
CS-137	3.08E+10	2.98E+10	0.	3.66E+09	3.49E+09	1.81E+08	4.44E+09
BA-140	1.17E+08	1.02E+05	0.	1.22E+04	6.09E+04	7.75E+06	6.84E+06
CE-141	1.24E+05	6.22E+04	0.	9.72E+03	0.	7.80E+07	9.26E+03
CE-144	1.00E+07	3.14E+06	0.	5.67E+05	0.	8.15E+08	5.34E+05

ISION NO.:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		177 of 21
			OT III	CIE PLANT			
C-200			51.10				
			TABL	E G-10			
E	VIRONMENTAL	PATHWAY-DO	• • • • • • •		R(I) FOR GASE	OUS DISCHARC	GES
			CONTAMINATE			OUP - CHILD	
				METER-MRÉM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	3.20E+03	3.20E+03	2.11E+03	3.20E+03	3.20E+03	3.20E+03
P32	2.19E+10	1.37E+09	0.	0.	0.	2.46E+09	8.46E+08
CR51	0.	0.	2.19E+03	8.07E+02	4.85E+03_	9.19E+05	3.66E+03
MN54	0.	1.08E+06	0.	3.20E+05	0.	3.29E+06	2.05E+05
FE59	4.12E+05	9.78E+05	0.	0.	2.72E+05	3.23E+06	3.72E+05
CO57	0.	1.64E+05	0.	0.	0.	4.15E+06	2.72E+05
CO58	0.	1.50E+06	0.	0.	0.	8.90E+06	4.51E+06
CO60	0.	5.06E+06	0.	0.	0.	2.80E+07	1.52E+07
ZN65	1.76E+08	5.57E+08	0.	3.73E+08	0.	3.51E+08	2.52E+08
RB86	0.	3.32E+08	0.	0.	0.	6.54E+07	1.55E+08
SR89	1.45E+10	0.	0.	0.	0.	5.43E+08	4.16E+08
SR90	2.37E+11	0.	0.	0.	0.	3.16E+09	6.02E+10
Y91	4.56E+03	0.	0.	0.	0.	6.06E+05	1.22E+02
ZR95	1.27E+04	5.37E+03	0.	2.23E+03	0.	9.22E+06	3.96E+03
NB95	3.30E+04	1.41E+04	0.	5.81E+03	0.	2.44E+07	1.04E+04
RU-103	4.79E+02	0.	0.	4.99E+02	0.	1.26E+04	1.94E+02
RU-106	1.13E+04	0.	0.	5.04E+03	0.	1.75E+05	1.40E+03
AG110	7.45E+06	6.90E+06	0.	1.36E+07	0.	2.81E+09	4.10E+06

VISION NO.:	PROCEDURE TITLE:						PAGE:
26	-	OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		178 of 21
OCEDURE NO.:							
C-200	<u></u>		ST. LU	CIE PLANT			
			TABL	E G-10			
EN	VIRONMENTAL						<u>SES</u>
			CONTAMINATE			OUP - CHILD	
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.10E+08	4.17E+06	1.22E+06	0.	5.97E+05	1.40E+08	6.30E+06
SB-124	3.30E+06	6.22E+04	7.97E+03	0.	2.56E+06	9.33E+07	1.30E+06
SB-125	3.75E+06	1.70E+05	1.43E+05	4.76E+05	3.40E+08	2.92E+07	7.19E+05
TE 125M	8.85E+06	2.40E+06	2.49E+06	8.46E+06	0.	8.54E+06	1.18E+06
TE 127M	6.21E+06	2.14E+06	1.75E+06	2.40E+07	0.	3.58E+07	7.92E+05
TE 129M	3.32E+07	9.27E+06	1.06E+07	3.23E+07	0.	4.00E+07	5.15E+06
1130	5.45E+05	1.61E+06	2.05E+08	2.51E+06	0.	1.38E+06	6.35E+05
I131	1.48E+09	1.52E+09	4.94E+11	9.28E+08	0.	1.30E+08	1.15E+09
1132	2.13E-01	5.71E-01	7.51E+01	9.10E-01	0.	1.07E-01	2.03E-01
I133	2.14E+07	2.64E+07	6.36E+09	1.55E+07	0.	1.07E+07	1.04E+07
I134	0.	0.	1.27E-09	0.	0.	0.	0.
I135	1.79E+04	4.72E+04	6.18E+06	7.51E+04	2.42E-01	5.29E+04	1.73E+04
CS-134	6.50E+10	1.10E+11	0.	1.39E+10	1.22E+10	5.92E+08	2.33E+10
CS-136	8.34E+08	3.29E+09	0.	1.83E+09	2.51E+08	3.74E+08	2.37E+09
CS-137	9.23E+10	8.93E+10	0.	1.10E+10	1.05E+10	5.44E+08	1.33E+10
BA-140	1.40E+07	1.23E+04	0.	1.47E+03	7.31E+03	9.30E+05	8.21E+05
CE-141	1.49E+04	7.46E+03	0.	1.17E+03	0.	9.36E+06	1.11E+03
CE-144	1.20E+06	3.76E+05	0.	6.80E+04	0.	9.78E+07	6.41E+04

VISION NO.:	PROCEDURE TITLE:						PAGE:
26	4	OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		179 of 21
C-200			ST 111	CIE PLANT			
	⊥						
			TABL	E G-11			
EN	IVIRONMENTAL	PATHWAY-DC	SE CONVERSI	ON FACTORS R	(I) FOR GASEC	US DISCHARGE	S
	PATHWA	Y - MEAT (COI	NTAMINATED F	ORAGE)	AGE GROUP	- CHILD	_
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
r	·····			rr			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.33E+02	2.33E+02	1.54E+02	2.33E+02	2.33E+02	2.33E+02
P32	1.74E+09	1.09E+08	0.	0.	0.	1.96E+08	6.73E+07
CR51	0.	0.	1.58E+03	5.82E+02	3.50E+03	6.63E+05	2.64E+03
MN54	0.	3.42E+06	0.	1.02E+06	0.	1.05E+07	6.54E+05
FE59	9.95E+07	2.36E+08	0.	0.	6.55E+07	7.79E+08	8.98E+07
CO57	0.	2.10E+06	0.	0.	0.	5.33E+07	3.50E+06
CO58	0.	1.69E+07	0.	0.	0.	1.00E+08	5.10E+07
CO60	0.	6.77E+07	0.	0.	0.	3.75E+08	2.03E+08
ZN65	1.33E+08	4.22E+08	0.	2.82E+08	0.	2.66E+08	1.91E+08
RB86	0.	1.82E+08	0.	0.	0.	3.59E+07	8.50E+07
SR89	5.04E+08	0.	0.	0.	0.	1.88E+07	1.44E+07
SR90	1.05E+10	0.	0.	0.	0.	7.02E+08	2.67E+09
Y91	1.76E+06	0.	0.	0.	0.	2.33E+08	4.69E+04
ZR95	4.62E+06	1.51E+06	0.	7.47E+05	0.	2.22E+09	1.20E+06
NB95	2.68E+06	1.15E+06	0.	4.72E+05	0.	1.98E+09	8.41E+05
RU-103	1.45E+08	0.	0.	1.51E+08	0.	3.81E+09	5.87E+07
RU-106	4.51E+09	0.	0.	2.02E+09	0.	7.01E+10	5.61E+08
AG110	2.50E+06	2.31E+06	0.	4.55E+06	0.	9.44E+08	1.38E+06

ISION NO .:	PROCEDURE TITLE:						PAGE:
26 CEDURE NO.:	4	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		180 of 21
C-200			ST. LU	CIE PLANT			
<u>EN</u>		Y - MEAT (CON	NTAMINATED F	ON FACTORS R	AGE GROUP	- CHILD	ES
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	6.92E+09	1.37E+08	4.02E+07	0.	2.41E+06	2.31E+09	1.98E+08
SB-124	7.40E+06	1.40E+05	1.79E+04	0.	5.74E+06	2.10E+08	2.93E+06
SB-125	7.66E+07	1.84E+07	1.90E+07	6.47E+07	9.26E+08	1.44E+08	1.08E+07
TE 125M	5.69E+08	1.54E+08	1.60E+08	5.44E+08	0.	5.49E+08	7.59E+07
TE 127M	4.40E+08	1.51E+08	1.24E+08	1.70E+09	0.	2.54E+09	5.61E+07
TE 129M	1.84E+09	5.12E+08	5.87E+08	1.78E+09	0.	2.21E+09	2.84E+08
1130	8.87E-07	2.63E-06	3.34E-04	4.08E-06	0.	2.25E-06	1.03E-06
I131	1.58E+07	1.62E+07	5.25E+09	9.86E+06	0.	1.38E+06	1.22E+07
I132	0.	0.	0.	0.	0.	0.	0.
I133	6.86E-01	8.47E-01	2.04E+02	4.97E-01	0.	3.43E-01	3.33E-01
I134	0.	0.	0.	0.	0	0.	0.
I135	3.21E-02	2.96E-02	0.	1.12E-02	3.37E-03	6.92E-04	1.32E-02
CS-134	8.83E+08	1.49E+09	0.	1.89E+08	1.65E+08	8.04E+06	3.16E+08
CS-136	4.41E+06	1.74E+07	0.	9.69E+06	1.33E+06	1.98E+06	1.25E+07
CS-137	1.27E+09	1.23E+09	0.	1.51E+08	1.44E+08	7.50E+06	1.84E+08
BA-140	4.37E+07	3.84E+04	0.	4.59E+03	2.29E+04	6.03E+06	2.57E+06
CE-141	2.10E+04	1.05E+04	0.	1.65E+03	0.	1.32E+07	1.57E+03
CE-144	2.38E+06	7.46E+05	0.	1.35E+05	0.	1.94E+08	1.27E+05

ISION NO.:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		181 of 21
CEDURE NO .:							
C-200	<u></u>		ST. LU	CIE PLANT			
			TABL	E G-12			
EN	VIRONMENTAL	PATHWAY-DO		ON FACTORS F	R(I) FOR GASEC	OUS DISCHARC	GES
	PATHWA	Y - FRESH FRI	JITS AND VEGE	ETABLES	AGE GROU	P - CHILD	
	0	RGAN DOSE F.	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
			TINDOID				
NUCLIDE	BONE		THYROID	KIDNEY		GI-LLI	WHOLE BODY
<u>H3</u>	0.	2.47E+02	2.47E+02	1.63E+02	2.47E+02	2.47E+02	2.47E+02
P32	4.22E+08	2.64E+07	0.	0.	0.	4.74E+07	1.63E+07
CR51	0.	0	4.68E+03	1.73E+03	1.04E+04	<u>1.97</u> E+06	7.83E+03
MN54	0	1.98E+07	0.	5.89E+06	0.	6.07E+07	3.78E+06
FE59	1.48E+07	3.51E+07	0.	0.	9.75E+06	1.16E+08	1.34E+07
CO57	0.	7.53E+05	0.	0.	0.	1.91E+07	1.25E+06
CO58	0.	6.94E+06	0.	0.	0.	4.13E+07	2.09E+07
CO60	0.	2.33E+07	0.	0.	0.	1.29E+08	6.98E+07
ZN65	2.08E+07	6.59E+07	0.	4.41E+07	0.	4.15E+07	2.98E+07
RB86	0.	5.28E+07	0.	0.	0.	1.04E+07	2.46E+07
SR89	4.84E+09	0.	0.	0.	0.	1.81E+08	1.39E+08
SR90	7.79E+10	0.	0.	0.	0.	1.52E+09	1.98E+10
Y91	2.12E+06	0.	0.	0.	0.	2.82E+08	5.65E+04
ZR95	4.06E+05	9.87E+04	0.	6.07E+04	0.	1.08E+08	8.81E+04
NB95	6.20E+04	2.64E+04	0.	1.09E+04	0.	4.58E+07	1.94E+04
RU-103	2.24E+06	0.	0.	2.34E+06	0.	5.88E+07	9.05E+05
RU-106	5.19E+07	0.	0.	2.32E+07	0.	8.07E+08	6.46E+06
AG110	6.87E+05	6.36E+05	0.	1.25E+06	0.	2.59E+08	3.78E+05

EVISION NO.:	PROCEDURE TITLE:						PAGE:
26	4	OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		182 of 219
ROCEDURE NO.:							
C-200	l		ST. LU	CIE PLANT			
			TABL	E G-12			
<u>EN</u>						OUS DISCHARG	<u>ES</u>
			JITS AND VEGE		AGE GROU		
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	1.71E-05	2.14E-07	2.26E-07	0.	0.	8.50E-06	4.21E-07
SN-126	3.87E+08	7.68E+06	2.25E+06	0.	1.75E+06	3.44E+08	1.19E+07
SB-124	1.02E+07	1.93E+05	2.47E+04	0.	7.93E+06	2.89E+08	4.04E+06
SB-125	1.22E+07	6.99E+05	6.22E+05	2.09E+06	1.04E+09	9.02E+07	2.29E+06
TE 125M	4.12E+07	1.12E+07	1.16E+07	3.94E+07	0.	3.97E+07	5.49E+06
TE 127M	2.88E+07	9.90E+06	8.09E+06	1.11E+08	0.	1.65E+08	3.67E+06
TE 129M	1.56E+08	4.35E+07	4.99E+07	1.51E+08	0.	1.88E+08	2.41E+07
I130	1.60E+05	4.73E+05	6.02E+07	7.35E+05	0.	4.05E+05	1.86E+05
I131	1.24E+08	1.27E+08	4.13E+10	7.75E+07	0.	1.09E+07	9.58E+07
I132	2.26E+01	6.05E+01	7.97E+03	9.65E+01	0.	1.14E+01	2.15E+01
I133	3.61E+06	4.46E+06	1.08E+09	2.62E+06	0.	1.81E+06	1.75E+06
I134	4.18E-05	1.14E-04	1.47E-02	1.81E-04	0.	9.89E-08	4.06E-05
I135	1.64E+04	4.33E+04	5.67E+06	6.89E+04	3.51E-03	4.85E+04	1.59E+04
CS-134	9.97E+08	1.68E+09	0.	2.14E+08	1.87E+08	9.08E+06	3.57E+08
CS-136	1.35E+07	5.32E+07	0.	2.96E+07	4.06E+06	6.05E+06	3.83E+07
CS-137	1.41E+09	1.37E+09	0.	1.68E+08	1.60E+08	8.34E+06	2.04E+08
BA-140	1.70E+08	1.56E+05	0.	1.78E+04	8.87E+04	2.08E+08	9.96E+06
CE-141	1.17E+05	5.84E+04	0	9.13E+03	0.	7.33E+07	8.69E+03
CE-144	9.23E+06	2.89E+06	0.	5.22E+05	0.	7.51E+08	4.92E+05

.

VISION NO.:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		183 of 21
			o -				
C-200			ST.LU	CIE PLANT			
			TABL	E G-13			
<u>EN</u>	VIRONMENTAL	PATHWAY-DO			R(I) FOR GASEC	US DISCHARC	<u>SES</u>
		PATHWAY - IN	HALATION	AGE GROU	JP - TEENAGER	2	
		ORGAN DOSE	FACTOR (M	REM/YR PER µ0	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3		8.48E+02	8.48E+02	1.07E+03	8.48E+02	8.48E+02	8.48E+02
P32	0. 1.32E+06	7.72E+04	0. 0.	0.	0.402+02	8.64E+02	5.02E+04
CR51	0.	0.	0. 5.95E+01	0. 2.28E+01	 1.44E+04	3.32E+03	1.00E+02
MN54	0.	3.96E+04	0.	9.84E+03	1.44E+04 1.40E+06	7.74E+04	6.30E+02
FE59	0. 1.18E+04	2.78E+07	0.	9.84E+03	1.02E+06	1.88E+05	1.06E+04
CO57	0.	6.92E+02	0.	0.	3.70E+05	3.14E+04	6.71E+02
CO58	0.	1.76E+02	0.	0.	1.37E+06	9.52E+04	2.34E+02
CO60	0.	1.24E+03	0.	0.	8.56E+06	2.35E+05	1.65E+03
ZN65	3.24E+04	1.03E+05	0.	6.90E+04	8.72E+05	5.34E+04	4.66E+04
	0.	1.35E+05	0.	0.	0.	1.66E+04	5.90E+04
SR89	3.87E+04	0.	0.	0.	2.50E+06	3.54E+05	1.11E+03
SR90	1.18E+07	0.	0.	0.	1.66E+07	7.24E+05	7.23E+05
Y91	5.38E+04	0.	0.	0.	2.86E+06	3.74E+05	1.44E+03
ZR95	1.09E+04	3.63E+03	0.	5.42E+04	2.56E+06	1.33E+05	2.54E+03
NB95	1.36E+03	8.24E+02	0.	7.74E+03	7.17E+05	8.80E+04	4.62E+02
RU-103	1.63E+02	0.	0.	5.83E+03	7.51E+05	9.44E+04	7.32E+01
RU-106	8.40E+03	0.	0.	1.34E+05	1.64E+07	9.28E+05	1.06E+03
AG110	1.08E+04	1.00E+04	0.	1.97E+04	4.64E+06	3.02E+05	5.94E+03

REVISION NO.:	PROCEDURE TITLE:						PAGE:
26	-	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		184 of 219
C-200			ST. LU	CIE PLANT			
			TARI	E G-13			
EN	VIRONMENTA	_ PATHWAY-DO			R(I) FOR GASEC	US DISCHARG	ES
		PATHWAY - INI			JP - TEENAGEF		
		ORGAN DOSE	FACTOR (M	REM/YR PER μ	CI/CU. METER)		
·····							
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	2.79E+04	6.14E+02	4.92E+02	0.	3.91E+06	3.13E+05	9.20E+02
SN-126	1.26E+06	3.34E+04	9.84E+03	0.	9.36E+06	1.27E+05	4.80E+04
SB-124	3.12E+04	5.89E+02	7.55E+01	0.	2.48E+06	4.06E+05	1.24E+04
SB-125	6.61E+04	7.13E+02	5.87E+01	0.	2.20E+06	1.01E+05	1.33E+04
TE 125M	4.07E+02	1.86E+02	1.17E+02	1.24E+04	5.36E+05	7.08E+04	5.53E+01
TE 127M	1.26E+04	5.62E+03	3.29E+03	4.58E+04	9.60E+05	1.50E+05	1.57E+03
TE 129M	1.19E+03	5.64E+02	3.90E+02	3.66E+04	2.03E+06	3.84E+05	1.92E+02
I130	4.58E+03	1.34E+04	1.74E+06	2.09E+04	0.	7.69E+03	5.29E+03
I131	3.37E+04	4.72E+04	1.39E+07	6.14E+04	0.	5.96E+03	2.82E+04
I132	1.16E+03	3.26E+03	4.38E+05	5.19E+03	0.	4.06E+02	1.16E+03
I133	1.23E+04	2.06E+04	3.83E+06	2.60E+04	0.	1.00E+04	6.34E+03
I134	6.45E+02	1.73E+03	2.30E+05	2.75E+03	0.	1.01E+00	6.16E+02
I135	2.69E+03	6.99E+03	9.36E+05	1.11E+04	0.	5.25E+03	2.58E+03
CS-134	4.83E+05	1.10E+06	0.	2.88E+05	1.44E+05	8.96E+03	5.44E+05
CS-136	3.91E+04	1.46E+05	0.	8.56E+04	1.20E+04	1.17E+04	1.11E+05
CS-137	6.42E+05	8.24E+05	0.	2.22E+05	1.18E+05	7.68E+03	3.03E+05
BA-140	5.30E+03	4.85E+00	0.	1.67E+01	2.02E+06	2.12E+04	3.42E+02
CE-141	2.27E+03	1.52E+03	0.	6.26E+03	5.83E+05	1.14E+05	1.74E+02
CE-144	4.19E+05	1.74E+05	0.	8.48E+05	1.38E+07	8.40E+05	2.24E+04

VISION NO .:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	E DOSE CALC	JLATION MANU	AL (ODCM)		185 of 21
C-200			ST. LU	CIE PLANT			
El	NVIRONMENTAL		SE CONVERSI				
			NTAMINATED ACTOR (SQ.	F ORAGE) METER-MREM/ [^]		P - TEENAGER C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	9.93E+02	9.93E+02	1.26E+03	9.93E+02	9.93E+02	9.93E+02
P32	2.21E+10	1.38E+09	0.	0.	0.	2.48E+09	8.54E+08
CR51	0.	0.	2.21E+04	8.15E+03	4.90E+04	9.29E+06	3.69E+04
MN54	0.	1.09E+07	0.	3.23E+06	0.	3.33E+07	2.07E+06
FE59	3.84E+07	9.12E+07	0.	0.	2.53E+07	3.01E+08	3.47E+07
CO57	0.	1.65E+06	0.	0.	0.	4.19E+07	2.75E+06
CO58	0.	8.10E+06	0.	0.	0.	1.10E+08	1.85E+07
CO60	0.	2.73E+07	0.	0.	0.	3.27E+08	6.23E+07
ZN65	1.77E+09	5.63E+09	0.	3.77E+09	0.	3.55E+09	2.55E+09
RB86	0.	3.35E+09	0.	0.	0.	6.61E+08	1.56E+09
SR89	2.80E+09	0.	0.	0.	0.	3.03E+08	8.03E+07
SR90	8.29E+10	0.	0.	0.	3.38E+06	1.76E+09	2.05E+10
Y91	1.54E+04	0.	0.	0.	0.	5.93E+06	4.12E+02
ZR95	4.78E+04	2.84E+04	0.	2.25E+04	0.	1.15E+08	1.60E+04
NB95	1.24E+05	7.46E+04	0.	5.87E+04	0.	3.05E+08	4.21E+04
RU-103	1.69E+03	0.	0.	5.04E+03	0.	1.32E+05	7.56E+02
RU-106	3.83E+04	0.	0.	5.09E+04	0.	1.73E+06	4.81E+03
AG-110	7.53E+07	6.97E+07	0.	1.37E+08	0.	2.84E+10	4.14E+07

REVISION NO .:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		186 of 219
C-200				CIE PLANT			
			TARI	E G-14			
E	VIRONMENTAL	_ PATHWAY-DO		• •	R(I) FOR GASEC	US DISCHARG	SES
			NTAMINATED			P - TEENAGER	
				METER-MREM/	YR PER µCI/SE	C)	
					•	•	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.12E+09	4.21E+07	1.24E+07	0.	6.03E+06	1.41E+09	6.37E+07
SB-124	3.33E+07	6.29E+05	8.05E+04	0.	2.59E+07	9.43E+08	1.32E+07
SB-125	3.45E+07	9.58E+05	5.05E+05	4.80E+06	3.43E+09	2.95E+08	6.82E+06
TE 125M	3.00E+07	1.08E+07	8.47E+06	8.55E+07	0.	8.39E+07	3.98E+06
TE 127M	6.02E+07	2.11E+07	1.59E+07	2.43E+08	0.	3.02E+08	7.45E+06
TE 129M	1.13E+08	4.18E+07	3.61E+07	3.27E+08	0.	3.93E+08	1.78E+07
I130	5.51E+05	1.63E+06	2.07E+08	2.53E+06	0.	1.40E+06	6.41E+05
I131	5.12E+08	7.24E+08	2.09E+11	9.38E+08	0.	1.37E+08	4.31E+08
I132	2.16E-01	5.76E-01	7.59E+01	9.19E-01	0.	1.08E-01	2.05E-01
I133	7.33E+06	1.24E+07	2.26E+09	1.56E+07	0.	9.02E+06	3.83E+06
1134	0.	0.	1.29E-09	0.	0.	0.	0.
1135	1.81E+04	4.77E+04	6.24E+06	7.58E+04	9.79E-02	5.34E+04	1.75E+04
CS-134	9.44E+09	2.28E+10	0.	5.63E+09	2.76E+09	2.63E+08	1.06E+10
CS-136	3.37E+08	1.33E+09	0.	7.41E+08	1.02E+08	1.51E+08	9.58E+08
CS-137	1.28E+10	1.72E+10	0.	4.43E+09	2.28E+09	2.29E+08	6.04E+09
BA-140	4.84E+07	5.95E+04	0.	1.48E+04	3.98E+04	9.16E+06	3.11E+06
CE-141	5.05E+04	3.39E+04	0.	1.18E+04	0.	9.18E+07	3.89E+03
CE-144	4.10E+06	1.68E+06	0.	6.87E+05	0.	9.65E+08	2.17E+05

EVISION NO.:	PROCEDURE TITLE:						PAGE:
26 ROCEDURE NO.:	_	OFFSI	TE DOSE CALC	JLATION MANU	AL (ODCM)		187 of 219
C-200			ST. LU	CIE PLANT			
<u></u>		OATS MILK (CO	DSE CONVERSI		AGE GROU	P - TEENAGER	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.03E+03	2.03E+03	2.56E+03	2.03E+03	2.03E+03	2.03E+03
P32	2.65E+10	1.66E+09	0.	0.	0.	2.98E+09	1.03E+09
CR51	0.	0.	2.65E+03	9.78E+02	5.88E+03	1.11E+06	4.43E+03
MN54	0.	1.30E+06	0.	3.88E+05	0.	3.99E+06	2.49E+05
FE59	4.99E+05	1.19E+06	0.	0.	3.29E+05	3.91E+06	4.51E+05
CO57	0.	1.98E+05	0.	0.	0.	5.03E+06	3.30E+05
CO58	0.	9.72E+05	0.	0.	0.	1.31E+07	2.22E+06
CO60	0.	3.28E+06	0.	0.	0.	3.93E+07	7.48E+06
ZN65	2.13E+08	6.76E+08	0.	4.52E+08	0.	4.26E+08	3.06E+08
RB86	0.	4.02E+08	0.	0.	0.	7.93E+07	1.88E+08
SR89	5.87E+09	0.	0.	0.	0.	6.37E+08	1.69E+08
SR90	1.74E+11	0.	0.	0.	4.05E+05	3.68E+09	4.30E+10
Y91	1.85E+03	0.	0.	0.	0.	7.11E+05	4.94E+01
ZR95	5.74E+03	3.41E+03	0.	2.70E+03	0.	1.38E+07	1.93E+03
NB95	1.49E+04	8.96E+03	0.	7.05E+03	0.	3.66E+07	5.05E+03
RU-103	2.03E+02	0.	0.	6.05E+02	0.	1.58E+04	9.08E+01
RU-106	4.59E+03	0.	0.	6.11E+03	0.	2.08E+05	5.78E+02
AG110	9.04E+06	8.36E+06	0.	1.64E+07	0.	3.41E+09	4.97E+06

VISION NO.:	PROCEDURE TITLE	:					PAGE:
26	4	OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		188 of 21
C-200			SI.LU	ICIE PLANT		<u></u>	
			TARI	E G-15			
El	VIRONMENTA	L PATHWAY-DO			R(I) FOR GASE	OUS DISCHARG	ES
			ONTAMINATED			P - TEENAGER	
				METER-MREM/	YR PER µCI/SE	C)	
······································	<u></u>	· · · · · · · · · · · · · · · · · · ·					
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.54E+08	5.05E+06	1.48E+06	0.	7.23E+05	1.69E+08	7.64E+06
SB-124	4.00E+06	7.54E+04	9.66E+03	0.	3.10E+06	1.13E+08	1.58E+06
SB-125	4.14E+06	1.15E+05	6.06E+04	5.77E+05	4.12E+08	3.54E+07	8.19E+05
TE 125M	3.61E+06	1.29E+06	1.02E+06	1.03E+07	0.	1.01E+07	4.78E+05
TE 127M	7.23E+06	2.52E+06	1.91E+06	2.92E+07	0.	3.63E+07	8.94E+05
TE 129M	1.35E+07	5.02E+06	4.34E+06	3.92E+07	0.	4.72E+07	2.13E+06
1130	6.61E+05	1.96E+06	2.49E+08	3.04E+06	0.	1.68E+06	7.69E+05
I131	6.15E+08	8.68E+08	2.50E+11	1.13E+09	0.	1.64E+08	5.17E+08
I132	2.59E-01	6.92E-01	9.11E+01	1.10E+00	0.	1.30E-01	2.46E-01
I133	8.79E+06	1.49E+07	2.71E+09	1.88E+07	0.	1.08E+07	4.59E+06
I134	0.	0.	1.55E-09	0.	0.	0.	0.
I135	2.17E+04	5.73E+04	7.49E+06	9.10E+04	2.94E-01	6.41E+04	2.10E+04
CS-134	2.83E+10	6.83E+10	0.	1.69E+10	8.27E+09	7.88E+08	3.19E+10
CS-136	1.01E+09	3.99E+09	0.	2.22E+09	3.05E+08	4.54E+08	2.87E+09
CS-137	3.84E+10	5.16E+10	0.	1.33E+10	6.85E+09	6.88E+08	1.81E+10
BA-140	5.81E+06	7.14E+03	0.	1.78E+03	4.78E+03	1.10E+06	3.73E+05
CE-141	6.06E+03	4.07E+03	0.	1.41E+03	0	1.10E+07	4.66E+02
CE-144	4.92E+05	2.02E+05	0.	8.24E+04	0.	1.16E+08	2.61E+04

SION NO.:	PROCEDURE TITLE:						PAGE:
26		OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		189 of 21
CEDURE NO .:							
C-200	<u> </u>		ST. LU	CIE PLANT			
			TABL	E G-16			
EN	IVIRONMENTAL	PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASEC	US DISCHAR	GES
	PATHWAY	- MEAT (CONT	AMINATED FOR	RAGE)	AGE GROUP - "	TEENAGER	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.93E+02	1.93E+02	2.44E+02	1.93E+02	1.93E+02	1.93E+02
P32	2.76E+09	1.73E+08	0.	0.	0.	3.10E+08	1.07E+08
CR51	0.	0.	2.50E+03	9.22E+02	5.55E+03	1.05E+06	4.18E+03
MN54	0.	5.42E+06	0.	1.61E+06	0.	1.66E+07	1.04E+06
FE59	1.58E+08	3.74E+08	0.	0	1.04E+08	1.24E+09	1.42E+08
CO57	0.	3.33E+06	0.	0.	0	8.45E+07	5.54E+06
CO58	0.	1.44E+07	0.	0.	0.	1.94E+08	3.27E+07
CO60	0.	5.73E+07	0.	0.	0.	6.87E+08	1.31E+08
ZN65	2.11E+08	6.69E+08	0.	4.47E+08	0.	4.21E+08	3.03E+08
RB86	0.	2.89E+08	0.	0.	0.	5.69E+07	1.35E+08
SR89	2.66E+08	0.	0.	0.	0.	2.89E+07	7.64E+06
SR90	1.01E+10	0.	0.	0.	2.79E+08	1.02E+09	2.49E+09
Y91	9.34E+05	0.	0.	0.	0.	3.59E+08	2.49E+04
ZR95	2.67E+06	1.24E+06	0.	1.18E+06	0.	4.20E+09	7.61E+05
NB95	1.58E+06	9.51E+05	0.	7.48E+05	0.	3.88E+09	5.37E+05
RU-103	8.05E+07	0.	0.	2.40E+08	0.	6.28E+09	3.60E+07
RU-106	2.40E+09	0.	0.	3.20E+09	0.	1.09E+11	3.02E+08
AG110	3.97E+06	3.67E+06	0.	7.21E+06	0.	1.50E+09	2.18E+06

EVISION NO .:	PROCEDURE TITLE:						PAGE:
26 ROCEDURE NO.:	4	OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		190 of 219
C-200			et III	CIE PLANT			
<u> </u>		<u> </u>					
			TABL	E G-16			
EN	IVIRONMENTAL	PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASEC	OUS DISCHARC	<u>SES</u>
	PATHWAY	- MEAT (CONT.	AMINATED FOR	RAGE)	AGE GROUP -	TEENAGER	
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0	0.	0	0.
SN-126	1.10E+10	2.18E+08	6.38E+07	0	3.82E+06	3.66E+09	3.14E+08
SB-124	1.17E+07	2.21E+05	2.84E+04	0.	9.11E+06_	3.32E+08	4.64E+06
SB-125	5.01E+07	1.31E+07	1.02E+07	1.03E+08	1.47E+09	2.25E+08	7.60E+06
TE 125M	3.03E+08	1.08E+08	8.55E+07	8.63E+08	0.	8.47E+08	4.02E+07
TE 127M	6.68E+08	2.34E+08	1.77E+08	2.69E+09	0.	3.35E+09	8.28E+07
TE 129M	9.78E+08	3.63E+08	3.13E+08	2.83E+09	0.	3.41E+09	1.53E+08
I130	1.41E-06	4.16E-06	5.30E-04	6.47E-06	0.	3.57E-06	1.64E-06
I131	8.54E+06	1.21E+07	3.48E+09	1.56E+07	0.	2.28E+06	7.19E+06
I132	0.	0.	0.	0.	0.	0.	0.
I133	3.69E-01	6.26E-01	1.14E+02	7.88E-01	0.	4.55E-01	1.93E-01
I134	0.	0.	0.	0.	0.	0.	0.
I135	5.08E-02	4.69E-02	0.	1.78E-02	5.34E-03	1.10E-03	2.08E-02
CS-134	5.03E+08	1.21E+09	0.	3.00E+08	1.47E+08	1.40E+07	5.66E+08
CS-136	6.99E+06	2.76E+07	0.	1.54E+07	2.11E+06	3.14E+06	1.99E+07
CS-137	6.92E+08	9.31E+08	0.	2.40E+08	1.24E+08	1.24E+07	3.27E+08
BA-140	2.37E+07	2.93E+04	0.	7.28E+03	1.95E+04	9.19E+06	1.53E+06
CE-141	1.12E+04	7.51E+03	0.	2.61E+03	0.	2.03E+07	8.61E+02
CE-144	1.28E+06	5.23E+05	0.	2.14E+05	0.	3.00E+08	6.76E+04

ISION NO.:	PROCEDURE TITLE:						PAGE:
26	-	OFFSIT	TE DOSE CALC	ULATION MANU	AL (ODCM)		191 of 21
C-200			ST. LU	CIE PLANT			
			TABL	E G-17			
EN	VIRONMENTAL	PATHWAY-DO			R(I) FOR GASEC	US DISCHARC	<u>SES</u>
			S AND VEGET		AGE GROUP -		
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.09E+02	2.09E+02	2.64E+02	2.09E+02	2.09E+02	2.09E+02
P32	6.81E+08	4.27E+07	0.	0.	0.	7.66E+07	2.64E+07
CR51	0.	0.	7.56E+03	2.79E+03	1.68E+04	3.18E+06	1.27E+04
MN54	0.	3.20E+07	0.	9.52E+06	0.	9.80E+07	6.11E+06
FE59	2.39E+07	5.67E+07	0.	0.	1.57E+07	1.87E+08	2.16E+07
CO57	0.	1.22E+06	0.	0.	0.	3.09E+07	2.02E+06
CO58	0.	6.01E+06	0.	0.	0.	8.12E+07	1.37E+07
CO60	0.	2.01E+07	0.	0.	0.	2.41E+08	4.58E+07
ZN65	3.35E+07	1.06E+08	0.	7.12E+07	0.	6.70E+07	4.82E+07
RB86	0.	8.52E+07	0.	0.	0.	1.68E+07	3.97E+07
SR89	2.61E+09	0.	0.	0.	0.	2.83E+08	7.48E+07
SR90	7.61E+10	0.	0.	0.	2.41E+08	2.31E+09	1.88E+10
Y91	1.15E+06	0.	0.	0.	0.	4.41E+08	3.06E+04
ZR95	2.35E+05	8.19E+04	0.	9.81E+04	0.	1.92E+08	5.61E+04
NB95	3.72E+04	2.24E+04	0.	1.76E+04	0.	9.14E+07	1.26E+04
RU-103	1.27E+06	0.	0.	3.77E+06	0.	9.87E+07	5.66E+05
RU-106	2.82E+07	0.	0.	3.75E+07	0.	1.28E+09	3.54E+06
AG110	1.11E+06	1.03E+06	0.	2.02E+06	0.	4.19E+08	6.10E+05

EVISION NO.:	PROCEDURE TITLE:						PAGE:
26	-	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		192 of 219
C-200			ST I U	CIE PLANT			
0-200		······	01.20				<u>I</u>
			TABL	E G-17			
EN					R(I) FOR GASEC		<u>SES</u>
			S AND VEGET		AGE GROUP -		
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	TUVDOID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
			THYROID				
SN-123	9.25E-06	1.53E-07	1.22E-07	0.	0.	1.33E-05	2.28E-07
SN-126	6.25E+08	1.24E+07	3.64E+06	0.	2.83E+06	5.55E+08	1.94E+07
SB-124	1.65E+07	3.12E+05	3.99E+04	0	1.28E+07	4.67E+08	6.53E+06
SB-125	1.73E+07	5.97E+05	3.48E+05	3.38E+06	1.68E+09	1.45E+08	3.40E+06
TE 125M	2.23E+07	7.99E+06	6.30E+06	6.36E+07	0.	6.24E+07	2.96E+06
TE 127M	4.46E+07	1.55E+07	1.18E+07	1.80E+08	0.	2.23E+08	5.51E+06
TE 129M	8.46E+07	3.14E+07	2.71E+07	2.45E+08	0.	2.95E+08	1.33E+07
I130	2.58E+05	7.64E+05	9.72E+07	1.19E+06	0.	6.55E+05	3.00E+05
1131	6.84E+07	9.66E+07	2.79E+10	1.25E+08	0.	1.83E+07	5.76E+07
I132	3.65E+01	9.77E+01	1.29E+04	1.56E+02	0.	1.84E+01	3.47E+01
1133	1.98E+06	3.36E+06	6.10E+08	4.23E+06	0.	2.44E+06	1.04E+06
I134	6.75E-05	1.83E-04	2.38E-02	2.92E-04	0.	1.60E-07	6.56E-05
I135	2.65E+04	7.00E+04	9.15E+06	1.11E+05	5.67E-03	7.84E+04	2.57E+04
CS-134	5.79E+08	1.40E+09	0.	3.45E+08	1.69E+08	1.61E+07	6.52E+08
CS-136	2.18E+07	8.60E+07	0.	4.78E+07	6.56E+06	9.77E+06	6.19E+07
CS-137	7.83E+08	1.05E+09	0.	2.72E+08	1.40E+08	1.41E+07	3.70E+08
BA-140	9.38E+07	1.21E+05	0.	2.88E+04	7.73E+04	3.19E+08	6.04E+06
CE-141	6.32E+04	4.24E+04	0.	1.47E+04	0.	1.15E+08	4.86E+03
CE-144	5.03E+06	2.06E+06	0.	8.43E+05	0.	1.19E+09	2.67E+05

REVISION NO.:	PROCEDURE TITLE:						PAGE:
26 PROCEDURE NO.:	-	OFFSI	TE DOSE CALC	JLATION MANU	IAL (ODCM)		193 of 21
C-200			ST. LU	CIE PLANT			
							l
				E G-18			
Er	NVIRONMENTAI		<u>DSE CONVERSI</u> INHALATION			DUS DISCHARC	<u>SES</u>
		ONGAN DOSE	EFACTOR (M	אבואוו זה רבה שי	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
Н3	0.	1.07E+03	1.07E+03	1.07E+03	1.07E+03	1.07E+03	1.07E+03
P32	1.32E+06	7.72E+04	0.	0.	0.	8.64E+04	5.02E+04
CR51	0.	0.	5.95E+01	2.28E+01	1.44E+04	3.32E+03	1.00E+02
MN54	0.	3.96E+04	0.	9.84E+03	1.40E+06	7.74E+04	6.30E+03
FE59	1.18E+04	2.78E+07	0.	0.	1.02E+06	1.88E+05	1.06E+04
CO57	0.	6.92E+02	0.	0.	3.70E+05	3.14E+04	6.71E+02
CO58	0.	1.58E+03	0.	0.	9.28E+05	1.06E+05	2.07E+03
CO60	0.	1.15E+04	0.	0.	5.98E+06	2.85E+05	1.48E+04
ZN65	3.24E+04	1.03E+05	0.	6.90E+04	8.72E+05	5.34E+04	4.66E+04
RB86	0.	1.35E+05	0.	0.	0.	1.66E+04	5.90E+04
SR89	3.04E+05	0.	0.	0.	1.40E+06	3.50E+05	8.72E+03
SR90	9.92E+07	0.	0.	0.	9.60E+06	7.22E+05	6.10E+06
Y91	4.62E+05	0.	0.	0.	1.70E+06	3.85E+05	1.24E+04
ZR95	1.07E+05	3.44E+04	0.	5.42E+04	1.78E+06	1.50E+05	2.33E+04
NB95	1.41E+04	7.82E+03	0.	7.74E+03	5.06E+05	1.04E+05	4.21E+03
RU-103	1.53E+03	0.	0.	5.83E+03	5.06E+05	1.10E+05	6.58E+02
RU-106	6.91E+04	0.	0.	1.34E+05	9.44E+06	9.12E+05	8.72E+03
AG110	1.08E+04	1.00E+04	0.	1.97E+04	4.64E+06	3.02E+05	5.94E+03

REVISION NO .:	PROCEDURE TITLE:						PAGE:
26	4	OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		194 of 219
ROCEDURE NO .:							
C-200			ST. LU				
			TABL	E G-18			
<u>E</u> !	NVIRONMENTAL					OUS DISCHARC	<u>SES</u>
			INHALATION		OUP - ADULT		
		ORGAN DOSE	EFACTOR (M	REM/YR PER μ	CI/CU. METER)		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	2.42E+05	5.33E+03	4.53E+03	0.	2.30E+06	3.14E+05	7.86E+03
SN-126	1.26E+06	3.34E+04	9.84E+03	0.	9.36E+06	1.27E+05	4.80E+04
SB-124	3.12E+04	5.89E+02	7.55E+01	0.	2.48E+06	4.06E+05	1.24E+04
SB-125	6.61E+04	7.13E+02	5.87E+01	0.	2.20E+06	1.01E+05	1.33E+04
TE 125M	3.42E+03	1.58E+03	1.05E+03	1.24E+04	3.14E+05	7.06E+04	4.67E+02
TE 127M	1.26E+04	5.62E+03	3.29E+03	4.58E+04	9.60E+05	1.50E+05	1.57E+03
TE 129M	9.76E+03	4.67E+03	3.44E+03	3.66E+04	1.16E+06	3.83E+05	1.58E+03
I130	4.58E+03	1.34E+04	1.74E+06	2.09E+04	0	7.69E+03	5.29E+03
I131	2.52E+04	3.58E+04	1.19E+07	6.14E+04	0.	6.28E+03	2.05E+04
I132	1.16E+03	3.26E+03	4.38E+05	5.19E+03	0.	4.06E+02	1.16E+03
I133	8.64E+03	1.49E+04	2.93E+06	2.60E+04	0.	8.72E+03	4.54E+03
I134	6.45E+02	1.73E+03	2.30E+05	2.75E+03	0.	1.01E+00	6.16E+02
I135	2.69E+03	6.99E+03	9.36E+05	1.11E+04	0.	5.25E+03	2.58E+03
CS-134	3.74E+05	8.48E+05	0.	2.88E+05	9.76E+04	1.04E+04	7.29E+05
CS-136	3.91E+04	1.46E+05	0.	8.56E+04	1.20E+04	1.17E+04	1.11E+05
CS-137	4.78E+05	6.22E+05	0.	2.22E+05	7.53E+04	8.40E+03	4.29E+05
BA-140	3.90E+04	4.90E+01	0.	1.67E+01	1.27E+06	2.18E+05	2.57E+03
CE-141	1.99E+04	1.35E+04	0.	6.26E+03	3.62E+05	1.20E+05	1.53E+03
CE-144	3.43E+06	1.43E+06	0.	8.48E+05	7.78E+06	8.16E+05	1.84E+05

VISION NO.:	PROCEDURE TITLE:				· · · · · · · · · · · · · ·		PAGE:
26	_	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		195 of 21
OCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
			TABL	E G-19			
<u>EN</u>	IVIRONMENTAL	PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASEC	DUS DISCHARC	BES
	PATHWAY -	COWS MILK (CONTAMINATE	D FORAGE)	AGE GRO	OUP - ADULT	
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	TUVDOID		LUNG	GI-LLI	
	0.		THYROID	KIDNEY			WHOLE BODY
H3		9.73E+02	9.73E+02	9.73E+02	9.73E+02	9.73E+02	9.73E+02
P32	1.71E+10	1.07E+09	0.	0.	0.	1.92E+09	6.62E+08
CR51	0	0.	1.71E+04	6.32E+03	3.80E+04	7.20E+06	2.86E+04
MN54	0.	8.41E+06	0.	2.50E+06	0.	2.58E+07	1.61E+06
FE59	2.98E+07	7.06E+07	0.	0.	1.96E+07	2.33E+08	2.69E+07
CO57	0	1.28E+06	0	0	0.	3.25E+07	2.13E+06
CO58	0.	4.72E+06	0.	0.	0	9.56E+07	1.06E+07
CO60	0.	1.65E+07	0.	0.	0	3.08E+08	3.62E+07
ZN65	1.37E+09	4.36E+09	0.	2.92E+09	0.	2.75E+09	1.98E+09
RB86	0.	2.60E+09	0.	0.	0.	5.12E+08	1.21E+09
SR89	1.46E+09	0.	0.	0.	0.	2.33E+08	4.17E+07
SR90	4.70E+10	0.	0.	0.	0.	6.37E+08	1.15E+10
Y91	8.60E+03	0.	0.	0.	0.	4.73E+06	2.31E+02
ZR95	3.18E+04	1.75E+04	0.	1.75E+04	0.	1.05E+08	6.95E+03
NB95	8.26E+04	4.59E+04	0.	4.55E+04	0.	2.79E+08	1.80E+04
RU-103	1.02E+03	0.	0.	3.91E+03	0.	1.19E+05	4.41E+02
RU-106	2.04E+04	0.	0.	3.95E+04	0.	1.32E+06	2.58E+03
AG110	5.84E+07	5.40E+07	0.	1.06E+08	0.	2.20E+10	3.21E+07

REVISION NO.:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		196 of 219
C-200			ST. LU				
			TABL	E G-19			
<u>E1</u>	VIRONMENTAL						<u>SES</u>
			CONTAMINATE			OUP - ADULT	
	Ŭ	RGAN DUSE F.	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	()	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.65E+09	3.27E+07	9.56E+06	0.	4.67E+06	1.09E+09	4.94E+07
SB-124	2.58E+07	4.87E+05	6.24E+04	0.	2.00E+07	7.31E+08	1.02E+07
SB-125	2.64E+07	6.06E+05	2.99E+05	3.72E+06	2.66E+09	2.29E+08	5.23E+06
TE 125M	1.63E+07	5.91E+06	4.91E+06	6.63E+07	0.	6.50E+07	2.18E+06
TE 127M	4.63E+07	1.63E+07	1.21E+07	1.88E+08	0.	2.11E+08	5.72E+06
TE 129M	6.06E+07	2.27E+07	2.09E+07	2.53E+08	0.	3.04E+08	9.61E+06
I130	4.27E+05	1.26E+06	1.61E+08	1.96E+06	0.	1.08E+06	4.97E+05
I131	2.96E+08	4.25E+08	1.39E+11	7.27E+08	0.	1.12E+08	2.43E+08
I132	1.67E-01	4.47E-01	5.88E+01	7.12E-01	0.	8.39E-02	1.59E-01
I133	4.00E+06	6.94E+06	1.33E+09	1.21E+07	0.	6.10E+06	2.12E+06
I134	0.	0.	9.98E-10	0.	0.	0.	0.
I135	1.40E+04	3.70E+04	4.84E+06	5.88E+04	7.58E-02	4.14E+04	1.36E+04
CS-134	5.66E+09	1.35E+10	0.	4.36E+09	1.45E+09	2.36E+08	1.10E+10
CS-136	2.61E+08	1.03E+09	0.	5.74E+08	7.87E+07	1.17E+08	7.43E+08
CS-137	7.39E+09	1.01E+10	0.	3.44E+09	1.14E+09	1.95E+08	6.62E+09
BA-140	2.69E+07	3.38E+04	0.	1.15E+04	1.93E+04	5.70E+07	1.78E+06
CE-141	2.91E+04	1.97E+04	0.	9.13E+03	0.	7.52E+07	2.23E+03
CE-144	2.15E+06	8.97E+05	0.	5.32E+05	0.	7.26E+08	1.15E+05

ISION NO.:	PROCEDURE TITLE:						PAGE:
26	4	OFFSI	E DOSE CALC	JLATION MANU	AL (ODCM)		197 of 21
DCEDURE NO .:							
C-200		<u> </u>	ST. LU	CIE PLANT			<u>_l</u>
			TABL	E G-20			
E	VIRONMENTAL	PATHWAY-DO			R(I) FOR GASEC	OUS DISCHARC	GES
	PATHWAY -	GOATS MILK (CONTAMINATE	D FORAGE)	AGE GRO	DUP - ADULT	
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3		1.99E+03	1.99E+03	1.99E+03	1.99E+03	1.99E+03	1.99E+03
P32	2.05E+10	1.29E+03	0.	0.	0.	2.31E+09	7.94E+08
 CR51	0.	0.	2.05E+03	7.58E+02	4.56E+03	8.64E+05	3.43E+03
MN54	0.	1.01E+06	0.	3.00E+02	4.50 <u></u> ±+05	3.09E+06	1.93E+05
FE59	3.87E+05	9.18E+05	0.	0.	2.55E+05	3.03E+06	3.50E+05
CO57							2.55E+05
	0.	1.54E+05	0.	0.	0.	3.90E+06	
<u> </u>	0.	5.67E+05	0.	0.	0.	1.15E+07	1.27E+06
CO60	0.	1.98E+06	0.	0.	0.	3.70E+07	4.34E+06
ZN65	1.65E+08	5.24E+08	0.	3.50E+08	0.	3.30E+08	2.37E+08
RB86	0.	3.12E+08	0	0.	0.	6.15E+07	1.45E+08
SR89	3.06E+09	0.	0	0.	0.	4.89E+08	8.76E+07
SR90	9.87E+10	0.	0	0.	0.	1.32E+09	2.41E+10
Y91	1.03E+03	0.	0.	0.	0	5.68E+05	2.77E+01
ZR95	3.82E+03	2.10E+03	0	2.10E+03	0.	1.26E+07	8.34E+02
NB95	9.92E+03	5.51E+03	0.	5.46E+03	0.	3.34E+07	2.17E+03
RU-103	1.23E+02	0.	0	4.69E+02	0.	1.43E+04	5.30E+01
RU-106	2.45E+03	0.	0.	4.73E+03	0.	1.58E+05	3.10E+02
AG110	7.00E+06	6.48E+06	0.	1.27E+07	0.	2.64E+09	3.85E+06

EVISION NO .:	PROCEDURE TITLE:						PAGE:
26	_	OFFSIT	E DOSE CALC	JLATION MANU	AL (ODCM)		198 of 21
C-200			ст III	CIE PLANT			
<u> </u>	_I						
			TABL	E G-20			
EN	IVIRONMENTAL	PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASEC	OUS DISCHARC	<u>ES</u>
			CONTAMINATE			OUP - ADULT	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0	0.	0.	0	0	0
SN-126	1.97E+08	3.92E+06	1.15E+06	0.	5.61E+05	1.31E+08	5.92E+06
SB-124	3.10E+06	5.85E+04	7.49E+03	0.	2.40E+06	8.77E+07	1.22E+06
SB-125	3.16E+06	7.28E+04	3.58E+04	4.47E+05	3.19E+08	2.74E+07	6.29E+05
TE 125M	1.96E+06	7.10E+05	5.89E+05	7.95E+06	0	7.81E+06	2.62E+05
TE 127M	5.57E+06	1.94E+06	1.47E+06	2.26E+07	0.	2.52E+07	6.86E+05
TE 129M	7.27E+06	2.72E+06	2.51E+06	3.04E+07	0.	3.65E+07	1.15E+06
I130	5.12E+05	1.52E+06	1.93E+08	2.36E+06	0.	1.30E+06	5.96E+05
I131	3.56E+08	5.10E+08	1.67E+11	8.72E+08	0.	1.34E+08	2.92E+08
I132	2.00E-01	5.36E-01	7.06E+01	8.55E-01	0.	1.01E-01	1.91E-01
I133	4.80E+06	8.32E+06	1.60E+09	1.45E+07	0.	7.32E+06	2.54E+06
I134	0.	0.	1.20E-09	0.	0.	0.	0.
I135	1.68E+04	4.44E+04	5.80E+06	7.05E+04	2.28E-01	4.97E+04	1.63E+04
CS-134	1.70E+10	4.04E+10	0.	1.31E+10	4.34E+09	7.06E+08	3.30E+10
CS-136	7.84E+08	3.09E+09	0.	1.72E+09	2.36E+08	3.52E+08	2.23E+09
CS-137	2.22E+10	3.03E+10	0.	1.03E+10	3.42E+09	5.83E+08	1.99E+10
BA-140	3.23E+06	4.05E+03	0.	1.38E+03	2.32E+03	6.84E+06	2.13E+05
CE-141	3.49E+03	2.36E+03	0.	1.10E+03	0.	9.02E+06	2.68E+02
CE-144	2.58E+05	1.08E+05	0.	6.39E+04	0.	8.71E+07	1.38E+04

VISION NO.:	PROCEDURE TITLE:						PAGE:
26	4	OFFSIT	E DOSE CALC	JLATION MANU	AL (ODCM)		199 of 21
ROCEDURE NO .:							
C-200			ST. LU	CIE PLANT			
			TABL	E G-21			
EN	VIRONMENTAL	. PATHWAY-DO	SE CONVERSI	ON FACTORS F	R(I) FOR GASEC	OUS DISCHARC	SES
	PATHWA	Y - MEAT (CON	ITAMINATED F	ORAGE)	AGE GROUP	- ADULT	
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
	DONE		TU 10 (D Q ID				
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	4.13E+02	4.13E+02	4.13E+02	4.13E+02	4.13E+02	4.13E+02
P32	4.67E+09	2.93E+08	0.	0.	0.	5.25E+08	1.81E+08
CR51	0.	0.	4.23E+03	1.56E+03	9.38E+03	1.78E+06	7.07E+03
MN54	0.	9.18E+06	0.	2.73E+06	0.	2.81E+07	1.75E+06
FE59	2.67E+08	6.33E+08	0.	0.	1.76E+08	2.09E+09	2.41E+08
CO57	0.	5.64E+06	0.	0.	0.	1.43E+08	9.38E+06
CO58	0.	1.83E+07	0.	0.	0.	3.70E+08	4.09E+07
CO60	0.	7.55E+07	0.	0.	0.	1.41E+09	1.66E+08
ZN65	3.56E+08	1.13E+09	0.	7.57E+08	0.	7.13E+08	5.12E+08
RB86	0.	4.89E+08	0.	0.	0.	9.64E+07	2.28E+08
SR89	3.03E+08	0.	0.	0.	0.	4.84E+07	8.67E+06
SR90	1.25E+10	0.	0.	0.	0.	1.45E+09	3.05E+09
Y91	1.14E+06	0.	0.	0.	0.	6.26E+08	3.05E+04
ZR95	3.78E+06	1.67E+06	0.	2.01E+06	0.	8.30E+09	8.26E+05
NB95	2.30E+06	1.28E+06	0.	1.27E+06	0.	7.75E+09	5.02E+05
RU-103	1.06E+08	0.	0.	4.06E+08	0.	1.24E+10	4.59E+07
RU-106	2.80E+09	0.	0.	5.41E+09	0.	1.81E+11	3.54E+08
AG110	6.71E+06	6.21E+06	0.	1.22E+07	0.	2.53E+09	3.69E+06

EVISION NO .:	PROCEDURE TITLE:						PAGE:
26		OFFSIT	E DOSE CALCI	JLATION MANU	AL (ODCM)		200 of 219
OCEDURE NO .:							200 01 21
C-200			ST. LU	CIE PLANT			
			TABI	E G-21			
EN	VIRONMENTAL	. PATHWAY-DO			R(I) FOR GASEC	US DISCHAR	GES
			NTAMINATED F		AGE GROUP		
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
						0.	
SN-123		0.		0.	0.		
SN-126	1.86E+10	3.69E+08	1.08E+08	0.	6.46E+06	6.19E+09	5.33E+08
SB-124	1.99E+07	3.75E+05	4.80E+04	0.	1.54E+07	5.62E+08	7.85E+06
SB-125	6.65E+07	1.58E+07	1.29E+07	1.74E+08	2.49E+09	3.80E+08	1.05E+07
TE 125M	3.59E+08	1.30E+08	1.08E+08	1.46E+09	0.	1.43E+09	4.81E+07
TE 127M	1.13E+09	3.93E+08	2.96E+08	4.56E+09	0.	5.11E+09	1.39E+08
TE 129M	1.14E+09	4.29E+08	3.95E+08	4.79E+09	0	5.76E+09	1.82E+08
I130	2.38E-06	7.05E-06	8.96E-04	1.10E-05	0	6.04E-06	2.77E-06
I131	1.08E+07	1.55E+07	5.06E+09	2.65E+07	0.	4.07E+06	8.85E+06
I132	0.	0.	0.	0.	0.	0.	0.
1133	4.40E-01	7.63E-01	1.47E+02	1.33E+00	0.	6.71E-01	2.33E-01
1134	0.	0.	0.	0.	0.	0.	0.
I135	8.60E-02	7.94E-02	0.	3.01E-02	9.04E-03	1.86E-03	3.53E-02
CS-134	6.58E+08	1.57E+09	0.	5.08E+08	1.68E+08	2.74E+07	1.28E+09
CS-136	1.18E+07	4.67E+07	0.	2.60E+07	3.56E+06	5.31E+06	3.36E+07
CS-137	8.73E+08	1.19E+09	0.	4.06E+08	1.35E+08	2.30E+07	7.82E+08
BA-140	2.88E+07	3.63E+04	0.	1.23E+04	2.07E+04	6.87E+07	1.90E+06
CE-141	1.41E+04	9.52E+03	0.	4.41E+03	0.	3.63E+07	1.08E+03
CE-144	1.46E+06	6.10E+05	0.	3.62E+05	0.	4.93E+08	7.83E+04

EVISION NO.:	PROCEDURE TITLE:						PAGE:
26 OCEDURE NO.:	4	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		201 of 21
C-200			ST. LU	CIE PLANT			
EN		Y - FRESH FRU	DSE CONVERSI	TABLES	AGE GROUP	P - ADULT	SES
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	4.02E+02	4.02E+02	4.02E+02	4.02E+02	4.02E+02	4.02E+02
P32	1.04E+09	6.51E+07	0.	0.	0.	1.17E+08	4.02E+07
CR51	0.	0.	1.15E+04	4.25E+03	2.56E+04	4.85E+06	1.93E+04
MN54	0.	4.87E+07	0.	1.45E+07	0.	1.49E+08	9.31E+06
FE59	3.64E+07	8.64E+07	0.	0.	2.40E+07	2.85E+08	3.29E+07
CO57	0.	1.85E+06	0.	0.	0.	4.70E+07	3.08E+06
CO58	0.	6.89E+06	0.	0.	0.	1.40E+08	1.54E+07
CO60	0.	2.38E+07	0.	0.	0.	4.46E+08	5.23E+07
ZN65	5.11E+07	1.62E+08	0.	1.09E+08	0.	1.02E+08	7.34E+07
RB86	0.	1.30E+08	0.	0.	0.	2.56E+07	6.06E+07
SR89	2.67E+09	0.	0.	0.	0.	4.26E+08	7.64E+07
SR90	8.49E+10	0.	0.	0.	0.	2.14E+09	2.07E+10
Y91	1.26E+06	0.	0.	0.	0.	6.92E+08	3.37E+04
ZR95	2.93E+05	9.82E+04	0.	1.49E+05	0.	3.34E+08	6.38E+04
NB95	4.87E+04	2.71E+04	0.	2.68E+04	0.	1.64E+08	1.06E+04
RU-103	1.50E+06	0.	0.	5.75E+06	0.	1.76E+08	6.49E+05
RU-106	2.95E+07	0.	0.	5.71E+07	0.	1.91E+09	3.74E+06
AG110	1.69E+06	1.56E+06	0.	3.08E+06	0.	6.38E+08	9.30E+05

VISION NO .:	PROCEDURE TITLE:						PAGE:
26 DCEDURE NO.:	-	OFFSIT	E DOSE CALCU	JLATION MANU	AL (ODCM)		202 of 21
			OT III				
C-200			51. LU	CIE PLANT			l
			TABI	E G-22			
EN	IVIRONMENTAL	- PATHWAY-DO		ON FACTORS F	R(I) FOR GASEC	OUS DISCHARG	SES
· · · · ·			JITS AND VEGE		AGE GROUP		<u>_</u>
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
			· · · · · · · · · · · · · · · · · · ·			·	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	1.00E-05	1.66E-07	1.41E-07	0.	0.	2.04E-05	2.45E-07
SN-126	9.52E+08	1.89E+07	5.54E+06	0.	4.31E+06	8.46E+08	2.94E+07
SB-124	2.52E+07	4.75E+05	6.08E+04	0.	1.95E+07	7.12E+08	9.94E+06
SB-125	2.58E+07	7.23E+05	4.03E+05	5.14E+06	2.56E+09	2.22E+08	5.10E+06
TE 125M	2.38E+07	8.65E+06	7.17E+06	9.69E+07	0.	9.51E+07	3.19E+06
TE 127M	6.75E+07	2.36E+07	1.77E+07	2.73E+08	0.	3.06E+08	8.32E+06
TE 129M	8.93E+07	3.34E+07	3.08E+07	3.73E+08	0.	4.49E+08	1.42E+07
I130	3.93E+05	1.16E+06	1.48E+08	1.81E+06	0.	9.98E+05	4.58E+05
I131	7.78E+07	1.12E+08	3.65E+10	1.91E+08	0.	2.94E+07	6.38E+07
I132	5.57E+01	1.49E+02	1.96E+04	2.38E+02	0.	2.80E+01	5.29E+01
I133	2.13E+06	3.69E+06	7.10E+08	6.44E+06	0.	3.24E+06	1.13E+06
I134	1.03E-04	2.79E-04	3.63E-02	4.45E-04	0.	2.43E-07	9.99E-05
I135	4.04E+04	1.07E+05	1.40E+07	1.70E+05	8.65E-03	1.19E+05	3.91E+04
CS-134	6.82E+08	1.62E+09	0.	5.26E+08	1.74E+08	2.84E+07	1.33E+09
CS-136	3.32E+07	1.31E+08	0.	7.29E+07	9.99E+06	1.49E+07	9.43E+07
CS-137	8.90E+08	1.22E+09	0.	4.14E+08	1.37E+08	2.34E+07	7.98E+08
BA-140	1.03E+08	1.35E+05	0.	4.39E+04	7.38E+04	6.65E+08	6.77E+06
CE-141	7.16E+04	4.85E+04	0.	2.25E+04	0.	1.85E+08	5.49E+03
CE-144	5.19E+06	2.17E+06	0.	1.29E+06	0.	1.75E+09	2.78E+05

REVISION NO .:	PROCEDURE TITLE:	PAGE:							
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	203 of 219							
PROCEDURE NO .:		203 01 2 19							
C-200	ST. LUCIE PLANT								
	TABLE M-1								
Selecting the Appropriate Long Term (X/Q) for Dose Calculations Involving Noble Gases									

(1) Total Body dose from instantaneous releases

- (2) Skin dose from instantaneous releases
- (3) Gamma air dose (cumulative)
- (4) Beta air dose (cumulative)

for:

TYPE OF DOSE CALCULATION	LIMITING RANGE (miles)	LIMITING Sector	(X/Q) VALUE sec/m ³
Instantaneous	0.97	NW	1.6 X 10 ⁻⁶
1/31 days	0.97		
Quarterly Yearly	0.97	1. Normally (X/Q) =	= 1.6 X 10° sec/m° of actual meteorological
12 Consecutive months	0.97	data for time of o	
Annual Report	0.97	N/A	Note-1

NOTE 1

The (X/Q) has to be calculated based on actual meteorological data that occurred during the period of interest. The sector of interest is N/A because the limiting (X/Q) will be determined from the actual meteorological data and may occur in any sector.

0.97 miles Corresponds to the minimum site boundary distance in the north direction and 0.97 miles was chosen for all other sectors for ease of calculations when the averaging is done for quarterly reports.

REVISION NO .:	PROCEDURE TITLE:			PAGE:
26	OFFSITE DOSE	E CALCULATION MA	NUAL (ODCM)	204 of 219
PROCEDURE NO.:				204 01 2 13
C-200		ST. LUCIE PLANT		
		TABLE M-2		
Selecting the Appro	priate Long Term	(X/Q) _D or (D/Q) for Do	ose	
Calculations Involvir	ng Radioiodines &	8 D Particulates for:		
(1) Inhalation				
(2) Tritium (All g	gas pathways)			
(3) Ground Plar	ne			
TYPE OF DOSE CALCULATION	LIMITING RANGE (miles)	LIMITING SECTOR (OL)	(X/Q) _D sec/m ³	(D/Q) 1/m ²
Instantaneous	0.97	NW	B 1.3 X 10 ⁻⁶	
		WNW		8.2 X 10 ⁻⁹
Annual Depart	0.97	А	A, B	* ••*\$
Annual Report	0.97	A		A
1/31 days, Qtr. yearly,	0.97	NW	B 1.3 X 10 ⁻⁶	?
Annual Total Dose	0.97	WNW		8.2 X 10 ⁻⁹

(OL) Over land areas only

(A) To be determined by reduction of actual met data occurring during each quarter

(B) For Tritium in the Milk Animal Pathway, the (X/Q)_D value should be that of the respective controlling sector and range where the Milk Animal is located as per Table M-3. Example: If a cow was located at 4.25 miles in NW sector, use the (X/Q)_D for 4.25 miles NW.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
26	OFFSITE DOSE CALCULATION MANUAL (ODCM)	205 of 219
PROCEDURE NO .:		200 01 219
C-200	ST. LUCIE PLANT	

TABLE M-3

Selecting the Appropriate Long Term (D/Q) for Dose Calculations Involving Radioiodines and 8D Particulates for Grass-Cow-Milk or Grass-Goat-Milk:

TYPE OF DOSE CALCULATION	LIMITING RANGE	LIMITING SECTOR	(D/Q) Value 1/m ²
Release Rate	A	A	A
1/31 Days	B	В	В
Quarteriy - Yearly	B	В	В
Annual (Calendar Year)	В	В	В
Annual Report	С	С	С

A. The worst cow or goat as per locations from land census. If no milk animal in any sector, assume a cow at 4.25 miles in the highest (D/Q) sector over land.

- B. The historical (D/Q) of all land sectors with the worst cow or goat from each sector as reported in the Land Census. A 4.25 mile cow should be assumed in the worst sector over land when no milk animal is reported.
- C. The highest (D/Q) at a milk animal location of all milk animals reported in the Land Census Report. (If no milk animals within 5 miles a 4.25 mile cow should be assumed in the sector having the highest (D/Q) at 4.25 miles over land). Actual Met Data should be used for the selection of the worst case milk animal and for the dose calculations. If both goat and milk animals are reported inside 5 miles, dose calculations should be performed on each animal and the higher dose animal contribution should be used.

The historical wind frequency fractions for each sector are listed in Table M-8.

VISION NO .:	PR	OCEDURE TITLE:										PAGE:	
26 OCEDURE NO.:			C	OFFSITE	DOSE CA	ALULATIO	ON MANU	IAL (ODC	:M)			206 of 21	
C-200			ST. LUCIE PLANT										
				TERR	TA AIN COF	ABLE M-4 RRECTIO		DRS					
St. Luci Hutchir	ie Unit 1 Ison Isla	Light Compaind, Florida Dre Job No: 4	•	2		Perio	n Correct d of Reco Distance	rd: 8/29/7	77 to 8/31	/78	GHT LINI	Ξ)	
	ECTED CTOR	DESIGN DISTANCE MILES	.25 .40	.75 1.21	1.25 2.01	1.75 2.82	2.25 3.62	2.75 4.42	3.25 5.23	3.75 6.03	4.25 6.84	4.75 7.64	
1	INE	0.	1.906	1.576	1.465	1.404	1.338	1.318	1.334	1.386	1.346	1.338	
	NE	0.	1.887	1.581	1.461	1.391	1.310	1.259	1.164	1.128	1.101	1.116	
E	INE	0.	1.452	1.230	1.122	1.081	1.047	1.033	.941	.941	.906	.902	
	E	0.	1.662	1.425	1.277	1.193	1.151	1.123	1.097	1.121	1.123	1.122	
E	ESE	0.	1.690	1.483	1.328	1.260	1.246	1.190	1.134	1.094	1.032	.968	
	SE	0.	1.818	1.691	1.470	1.427	1.435	1.361	1.366	1.331	1.279	1.239	
	SSE	0.	1.812	1.586	1.370	1.302	1.270	1.263	1.229	1.193	1.171	1.151	
	S	0.	1.398	1.321	1.125	1.083	1.108	1.127	1.073	1.063	1.047	1.024	
	SW	0.	<u>1.534</u>	1.411	1.296	1.192	1.205	1.132	1.135_	1.116	1.077	1.060	
	SW	0.	1.685	1.492	1.294	1.233	1.200	1.222	1.160	1.160	1.198	1.196	
	<u>vsw</u>	0.	1.620	1.333	1.210	1.173	1.082	1.091	1.099	1.056	1.034	1.004	
	W	0.	1.651	1.415	1.290	1.218	1.154	1.099	1.081	1.067	1.093	1.083	
	/NW	0.	1.720	1.430	1.267	1.185	1.150	1.133	1.125	1.085	1.033	1.045	
	NW	0.	1.681	1.407	1.257	1.173	1.119	1.078	1.063	.995	.998	.978	
N	INW	0.	1.739	1.488	1.316	1.212	1.172	1.122	1.135	1.080	1.099	1.091	
	Ν	0.	1.816	1.524	1.389	1.285	1.257	1.263	1.285	1.267	1.231	1.213	

Note 1: Any interpolations between stated mileages will be done by log-log

EVISION NO.:	PROCEDURE T	TTLE:								PA	GE:
26			OFFSI	TE DOSE	CALULAT		JAL (ODC	M)			007 . 6044
ROCEDURE NO .:							•	·			207 of 219
C-200				S	T. LUCIE	PLANT					
					TABLE M	-5				A	
		HIS	TORICAL		<u>ERM - (X/G</u>		ncy corre	cted)			
	Те	errain / Red	circulation	Adjusted	Prog	am ANNX	OQ9 Ver	sion - 11/1	8/76		
Florida Pov	ver & Light Co	ompany									
St. Lucie U	nit 1	•••			Aver	age Annu	al Relative	Concentra	ation (sec/	cubic me	ter)
Hutchinsor	n Island, Florid	la					ord: 9/1/76			-	
Dames and	d Moore Job N	lo: 1.4598	- 112				in Miles/K				
AFFECTED	DESIGN										
SECTOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
	MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
NNE	0.	1.1E-05	1.7E-06	7.8E-07	4.5E-07	3.1E-07	2.2E-07	1.7E-07	1.5E-07	1.2E-07	1.0E-07
NE	0	1.3E-05	2.1E-06	8.9E-07	5.1E-07	3.4E-07	2.4E-07	1.7E-07	1.4E-07	1.1E-07	9.8E-08
ENE	0.	9.3E-06	1.4E-06	6.2E-07	3.7E-07	2.5E-07	1.9E-07	1.3E-07	1.1E-07	8.8E-08	7.5E-08
E	0.	9.8E-06	1.6E-06	6.5E-07	3.7E-07	2.5E-07	1.8E-07	1.4E-07	1.2E-07	9.9E-08	8.4E-08
ESE	0.	1.2E-05	1.9E-06	8.1E-07	4.8E-07	3.2E-07	2.4E-07	1.8E-07	1.4E-07	1.1E-07	9.0E-08
	0.										1.2E-07
SE	U.	1.4E-05	2.4E-06	9.7E-07	5.7E-07	4.0E-07	2.9E-07	2.3E-07	1.9E-07	1.4E-07	1 1.25 01
SSE	0.	1.4E-05 1.1E-05	2.4E-06 1.7E-06	9.7E-07 7.3E-07	5.7E-07 4.3E-07	4.0E-07 2.9E-07	2.9E-07 2.1E-07	2.3E-07 1.6E-07	1.9E-07 1.3E-07	1.4E-07	9.1E-08
SSE S		ł									
SSE	0.	1.1E-05	1.7E-06	7.3E-07	4.3E-07	2.9E-07	2.1E-07	1.6E-07	1.3E-07	1.1E-07	9.1E-08
SSE S	0. 0.	1.1E-05 6.2E-06	1.7E-06 1.0E-06	7.3E-07 4.2E-07	4.3E-07 2.5E-07	2.9E-07 1.8E-07	2.1E-07 1.4E-07	1.6E-07 1.0E-07	1.3E-07 8.0E-08	1.1E-07 6.6E-08	9.1E-08 5.5E-08
SSE S SSW	0. 0. 0.	1.1E-05 6.2E-06 5.7E-06	1.7E-06 1.0E-06 9.0E-07	7.3E-07 4.2E-07 4.0E-07	4.3E-07 2.5E-07 2.3E-07	2.9E-07 1.8E-07 1.6E-07	2.1E-07 1.4E-07 1.1E-07	1.6E-07 1.0E-07 8.9E-08	1.3E-07 8.0E-08 7.0E-08	1.1E-07 6.6E-08 5.7E-08	9.1E-08 5.5E-08 4.8E-08
SSE S SSW SW	0. 0. 0. 0.	1.1E-05 6.2E-06 5.7E-06 6.1E-06	1.7E-06 1.0E-06 9.0E-07 9.4E-07	7.3E-07 4.2E-07 4.0E-07 3.9E-07	4.3E-07 2.5E-07 2.3E-07 2.2E-07	2.9E-07 1.8E-07 1.6E-07 1.6E-07	2.1E-07 1.4E-07 1.1E-07 1.1E-07	1.6E-07 1.0E-07 8.9E-08 8.6E-08	1.3E-07 8.0E-08 7.0E-08 7.0E-08	1.1E-07 6.6E-08 5.7E-08 6.0E-08	9.1E-08 5.5E-08 4.8E-08 5.1E-08 5.4E-08
SSE S SSW SW WSW	0. 0. 0. 0. 0.	1.1E-05 6.2E-06 5.7E-06 6.1E-06 7.3E-06	1.7E-06 1.0E-06 9.0E-07 9.4E-07 1.1E-06	7.3E-07 4.2E-07 4.0E-07 3.9E-07 4.6E-07	4.3E-07 2.5E-07 2.3E-07 2.2E-07 2.7E-07	2.9E-07 1.8E-07 1.6E-07 1.6E-07 1.7E-07	2.1E-07 1.4E-07 1.1E-07 1.1E-07 1.3E-07	1.6E-07 1.0E-07 8.9E-08 8.6E-08 1.0E-07	1.3E-07 8.0E-08 7.0E-08 7.0E-08 8.0E-08 8.4E-08	1.1E-07 6.6E-08 5.7E-08 6.0E-08 6.5E-08	9.1E-08 5.5E-08 4.8E-08 5.1E-08 5.4E-08 6.1E-08
SSE S SSW SW WSW W	0. 0. 0. 0. 0. 0. 0.	1.1E-05 6.2E-06 5.7E-06 6.1E-06 7.3E-06 7.6E-06	1.7E-06 1.0E-06 9.0E-07 9.4E-07 1.1E-06 1.2E-06	7.3E-07 4.2E-07 4.0E-07 3.9E-07 4.6E-07 5.2E-07	4.3E-07 2.5E-07 2.3E-07 2.2E-07 2.7E-07 2.9E-07	2.9E-07 1.8E-07 1.6E-07 1.7E-07 2.0E-07 3.4E-07	2.1E-07 1.4E-07 1.1E-07 1.3E-07 1.3E-07 2.6E-07	1.6E-07 1.0E-07 8.9E-08 8.6E-08 1.0E-07 1.0E-07 2.0E-07	1.3E-07 8.0E-08 7.0E-08 7.0E-08 8.0E-08 8.4E-08 1.5E-07	1.1E-07 6.6E-08 5.7E-08 6.0E-08 6.5E-08 7.2E-08 1.2E-07	9.1E-08 5.5E-08 4.8E-08 5.1E-08 5.4E-08 6.1E-08 1.0E-07
SSE SSW SW WSW WSW WNW	0. 0. 0. 0. 0. 0. 0. 0.	1.1E-05 6.2E-06 5.7E-06 6.1E-06 7.3E-06 7.6E-06 1.4E-05	1.7E-06 1.0E-06 9.0E-07 9.4E-07 1.1E-06 1.2E-06 2.1E-06	7.3E-07 4.2E-07 4.0E-07 3.9E-07 4.6E-07 5.2E-07 9.1E-07	4.3E-07 2.5E-07 2.3E-07 2.2E-07 2.7E-07 2.9E-07 5.2E-07	2.9E-07 1.8E-07 1.6E-07 1.6E-07 1.7E-07 2.0E-07	2.1E-07 1.4E-07 1.1E-07 1.1E-07 1.3E-07 1.3E-07	1.6E-07 1.0E-07 8.9E-08 8.6E-08 1.0E-07 1.0E-07	1.3E-07 8.0E-08 7.0E-08 7.0E-08 8.0E-08 8.4E-08	1.1E-07 6.6E-08 5.7E-08 6.0E-08 6.5E-08 7.2E-08	9.1E-08 5.5E-08 4.8E-08 5.1E-08 5.4E-08 6.1E-08

Number of Valid Observations = 17135 Number of Invalid Observations = 385 Note 1 - Any interpolations between stated mileages will be done by log-log

Number of Calms Lower Level = 95 Number of Calms Upper Level = 0

REVISION NO .:	PROCEDURE T	ITLE:								P	AGE:
26			OFFSI	TE DOSE	CALULAT	ION MANU	JAL (ODC	M)			000 -5040
PROCEDURE NO .:											208 of 219
C-200				S	T. LUCIE	PLANT					
					TABLE M	-6					
		HISTORIC	AL LONG				Frequency	<u>correcte</u>	<u>d)</u>		
	Te	errain / Rec	circulation	Adjusted	Prog	ram ANNX	OQ9 Vers	sion - 11/1	8/76		
Florida Pov	wer & Light Co	ompany									
St. Lucie U	•			A	verage Ar	nnual Rela	tive Conce	entration D	epleted (s	ec/cubic	meter)
	Island, Florid	la			Period of R						
	d Moore Job N		112		Base Dista						
			· · -	-							
AFFECTED	DESIGN			<u> </u>							
SECTOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
	MILES	40	<u> 1.21 </u>	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
NNE	0.	1.1E-05	1.6E-06	6.6E-07	3.8E-07	2.4E-07	1.7E-07	1.3E-07	1.1E-07	9.2E-08	7.6E-08
NE	0.	1.2E-05	1.7E-06	7.6E-07	4.3E-07	2.8E-07	1.9E-07	1.4E-07	1.1E-07	8.6E-08	7.4E-08
ENE	0.	8.9E-06	1.2E-06	5.3E-07	3.0E-07	2.0E-07	1.4E-07_	1.0E-07	8.4E-08	6.6E-08	5.6E-08
E	0.	9.1E-06	1.3E-06	5.6E-07	3.1E-07	2.1E-07	1.5E-07	1.1E-07	9.1E-08	7.5E-08	6.3E-08
ESE	0.	1.2E-05	1.6E-06	6.9E-07	3.9E-07	2.6E-07	1.9E-07	1.4E-07	1.1E-07	8.5E-08	6.7E-08
SE	0.	1.3E-05	2.0E-06	8.2E-07	4.7E-07	3.3E-07	2.3E-07	1.8E-07	1.3E-07	1.1E-07	9.0E-08
SSE	0.	1.1E-05	1.6E-06	6.3E-07	3.5E-07	2.4E-07	1.8E-07	1.4E-07	1.0E-07	8.2E-08	6.8E-08
S	0.	5.9E-06	9.1E-07	3.6E-07	2.1E-07	1.4E-07	1.1E-07	7.7E-08	6.2E-08	5.0E-08	4.1E-08
SSW	0.	5.4E-06	8.0E-07	3.4E-07	1.9E-07	1.3E-07	8.9E-08	6.9E-08	5.5E-08	4.3E-08	3.6E-08
SW	0.	5.7E-06	8.4E-07	3.4E-07	1.8E-07	1.2E-07	9.2E-08	6.7E-08	5.3E-08	4.6E-08	3.8E-08
WSW	0.	7.0E-06	9.6E-07	4.0E-07	2.2E-07	1.4E-07	1.0E-07	8.0E-08	6.1E-08	5.0E-08	4.0E-08
W	0.	7.3E-06	1.1E-06	4.4E-07	2.4E-07	1.6E-07	1.1E-07	8.2E-08	6.4E-08	5.5E-08	4.4E-08
WNW	0.	1.3E-05	1.9E-06	7.9E-07	4.4E-07	2.9E-07	2.0E-07	1.6E-07	1.2E-07	9.3E-08	
	0.	1.5E-05	2.1E-06	8.9E-07	4.9E-07	3.1E-07	2.3E-07	1.7E-07	1.3E-07	1.0E-07	8.5E-08
NW	v,			+	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			1	
NW NNW	0.	1.4E-05	2.1E-06	8.3E-07	4.5E-07	2.9E-07	2.0E-07	1.6E-07	1.2E-07	1.0E-07	8.6E-08

Number of Valid Observations = 17135 Number of Invalid Observations = 385 Note 1 - Any interpolations between stated mileages will be done by log-log

Number of Calms Lower Level = 95 Number of Calms Upper Level = 0

EVISION NO .:	PROCEDURE T	TITLE:						-		P.	AGE:
26 ROCEDURE NO.:			OFFSI	TE DOSE	CALULAT	ION MANU	JAL (ODC	M)			209 of 219
				-							
C-200				S	T. LUCIE	PLANT					
		HIS			TABLE M ERM - (D/G		ncy corre	cted)			
	TERRAIN						ANNXOQ		N - 11/18/	76	
Florida Pov	wer & Light Co	vneanv									
St. Lucie U	~				Aver	ade Annu	al Relative	Depositio	n Rate (so	uare me	ter - 1)
Hutchinsor	Island, Florid	la					ord: 9/1/76				.,
	d Moore Job N		112				in Miles/K				
			••=								
AFFECTED	DESIGN DISTANCE	05	75	4.05	4.75	0.05	0.75	0.05	0.75	4.05	475
SECTOR	MILES	.25 .40	.75 1.21	1.25 2.01	1.75 2.82	2.25 3.62	2.75 4.42	3.25 5.23	3.75 6.03	4.25 6.84	4.75 7.64
NNE	0.	6.5E-08	9.3E-09	3.7E-09	2.1E-09	1.3E-09	9.0E-10	6.8E-10	5.5E-10	4.3E-10	3.5E-10
NE	0.	6.0E-08	8.9E-09	3.5E-09	1.9E-09	1.2E-09	8.1E-10	5.6E-10	4.3E-10	3.3E-10	2.8E-10
ENE	0.	3.2E-08	4.8E-09	1.9E-09	1.0E-09	6.6E-10	4.6E-10	3.2E-10	2.4E-10	1.9E-10	1.5E-10
E	0.	3.0E-08	4.6E-09	1.8E-09	9.5E-10	6.0E-10	4.2E-10	3.1E-10	2.5E-10	2.0E-10	1.6E-10
ESE	0.	3.7E-08	5.8E-09	2.3E-09	1.2E-09	8.0E-10	5.4E-10	3.9E-10	3.0E-10	2.2E-10	1.7E-10
SE	0.	6.4E-08	1.0E-08	4.0E-09	2.1E-09	1.4E-09	9.7E-10	7.2E-10	5.6E-10	4.3E-10	3.5E-10
SSE	0.	6.2E-08	9.5E-09	3.6E-09	2.0E-09	1.2E-09	8.7E-10	6.4E-10	4.9E-10	3.9E-10	3.1E-10
S	0.	4.2E-08	7.0E-09	2.6E-09	1.4E-09	9.5E-10	6.9E-10	4.9E-10	3.8E-10	3.0E-10	2.5E-10
SSW	0.	3.4E-08	5.4E-09	2.2E-09	1.1E-09	7.5E-10	5.0E-10	3.7E-10	2.9E-10	2.3E-10	1.8E-10
SW	0.	4.5E-08	7.0E-09	2.6E-09	1.5E-09	9.0E-10	6.6E-10	4.6E-10	3.6E-10	3.0E-10	2.5E-10
WSW	0.	5.3E-08	7.7E-09	3.0E-09	1.6E-09	1.0E-09	7.3E-10	5.5E-10	4.1E-10	3.3E-10	2.6E-10
	0.	5.0E-08	7.5E-09	3.0E-09	1.6E-09	9.8E-10	6.7E-10	5.0E-10	3.8E-10	3.2E-10	2.6E-10
W	1 0.		1	4.9E-09	2.6E-09	1.7E-09	1.1E-09	8.7E-10	6.6E-10	5.1E-10	4.2E-10
W WNW	0.	8.8E-08	1.3E-08	4.52-05							
		8.8E-08 8.2E-08	1.3E-08 1.2E-08	4.7E-09	2.5E-09	1.6E-09	1.1E-09	7.9E-10	5.8E-10	4.7E-10	3.8E-10
WNW	0.	÷				1.6E-09 1.5E-09	1.1E-09 1.1E-09	7.9E-10 8.1E-10	5.8E-10 5.9E-10	4.7E-10 4.8E-10	

Number of Valid Observations = 17135 Number of Invalid Observations = 385 Note 1 - Any interpolations between stated mileages will be done by log-log

Number of Calms Lower Level = 95 Number of Calms Upper Level = 0

REVISION NO .:		PROCEDUR	E TITLE:				PA	GE:
26		OFFSIT	E DOSE (CALCULA	TION MAN	IUAL (OD	СМ)	210 of 219
PROCEDURE N	10.:							210 01 219
C-20	00		S	T. LUCIE	PLANT			
				TABLE M	-8			
Joint Wind	Frequend	cy Distribu	ution I	Data Perio	d: Septen	nber 1, 19	76 - Aug	gust 31, 1978
All Winds				St.	Lucie Unit	2		
Data Sourc	e: On-Si	ite		Hu	tchinson Is	sland, Flori	ida	
Vind Sense			eters		rida Powe			
Table Gene								98 - 112 - 27
					leters per		·	
WIND	0.0-	1.5-	3.0-	5.0-	7.5-	>10.0		1 MEAN
SECTOR	1.5	3.0	5.0	7.5	10.0			SPEED
NNE	71	206 1.25	318 1.92	71	3	0 0.00	669 4.05	3.32
	62	292	385	128	02	0.00	867	
NE	.38	1.77	2.33	.77	0.00	0.00	5.25	3.43
	60	334	505	158	0	0	1057	
ENE	.36	2.02	3.06	.96	0.00	0.00	6.40	
Е	69	355	510	76	0	0	1010	3.25
	.42	2.15	3.09	46	0.00	0.00	6.11	
ESE	115	684	744	72		0	1616	
	.70	4.14	4.50	.44	.01	0.00	9.78	
SE	183	660 3.99	749 4.53	28 .17	0.00	0 0.00	1620 9.81	2.88
	129	579	656	93	1	0.00	1458	·
SSE	.78	3.50	3.97	.56	.01	0.00	8.82	3.10
	72	310	407	99	8	1	897	
S	.44	1.88	2.46	.60	.05	.01	5.43	3.36
SSW	84	372	446	105	33	4	1044	3.48
	.51	2.25	2.70	.64	20	.02	6.32	
SW	129	440	336	106	14	0	1025	3.10
	.78	2.66	2.03	.64	.08	0.00	6.20	
WSW	155 .94	320 1.94	186 1.13	29 .18	5 .03	0 0.00	695 4.21	2.59
	174	267	119	37	2	0.00	599	
W	1.05	1.62	.72	.22	.01	0.00	3.63	2.43
	203	304	172	17	0	0	696	0.24
WNW	1.23	1.84	1.04	.10	0.00	0.00	4.21	2.34
NW	143	518	424	50	0	0	1135	2.85
	.87	3.14	2.57	.30	0.00	0.00	6.87	
NNW	85	379	535	70	1	0	1070	3.22
	.51	2.29	3.24	.42	.01	0.00	6.46	
Ν	91 .55	194 1.17	531	148 .90	5 .03	0 0.00	969 5.86	3.69
	<u>.55</u> 95	<u> '.''</u>	3.21	.30		0.00	<u>5.86</u> 95	
CALM	.57						.57	CALM
	1920	6214	7023	1287	73	5	16522	
TOTAL	11.62	37.61	42.51	7.79	.44	.03	100.00	

NUMBER OF VALID OBSERVATIONS16522NUMBER OF INVALID OBSERVATIONS988TOTAL NUMBER OF OBSERVATIONS17520

94.30 PCT. Key 5.70 PCT. 100.00 PCT. XXX Number of Occurrences XXX Percent Occurrences

¹ - Totals below are given in <u>hours</u> & percent for wind frequency by sectors

100.00 PCT.

VISION NO.:	ROCEDURE TITL	E:				PAGE:
26		OFFSITE DOSE CALULATIO	N MANUAL (ODCM)		211 of 21
OCEDURE NO.:						
C-200		ST. LUCIE PL	ANT		· - · · · · · · · · · · · · · · · · · ·	
		APPENDIX E RADIOLOGICAL ENVIRONMENT (Page 1 of 4)	AL SURVEIL	LANCE		
		ST. LUCIE PLA Key to Sample Loc				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Direct Radiation	N-1	North of Blind Creek	TLD	Quarterly	1	N
Direct Radiation	NNW-5	South of Pete Stone Creek	TLD	Quarterly	5	NNW
Direct Radiation	NNW-10	C. G. Station	TLD	Quarterly	9	NNW
Direct Radiation	NW-5	Indian River Drive at Rio Vista Drive	TLD	Quarterly	6	NW
Direct Radiation	NW-10	Intersection of SR 68 and SR 607	TLD	Quarterly	10	NW
Direct Radiation	WNW-2	Cemetery South of 7107 Indian River Drive	TLD	Quarterly	3	WNW
Direct Radiation	WNW-5	US-1 at SR 712	TLD	Quarterly	5	WNW
Direct Radiation	WNW-10	SR 70, West of Turnpike	TLD	Quarterly	10	WNW
Direct Radiation	W-2	7609 Indian River Drive	TLD	Quarterly	2	W
Direct Radiation	W-5	Oleander and Sager Streets	TLD	Quarterly	5	W
Direct Radiation	W-10	I-95 and SR 709	TLD	Quarterly	9	W
Direct Radiation	WSW-2	8503 Indian River Drive	TLD	Quarterly	2	WSW
Direct Radiation	WSW-5	Prima Vista Blvd. at Yacht Club	TLD	Quarterly	5	WSW
Direct Radiation	WSW-10	Del Rio and Davis Streets	TLD	Quarterly	10	WSW
Direct Radiation	SW-2	9207 Indian River Drive	TLD	Quarterly	2	SW
Direct Radiation	SW-5	US 1 and Village Green Drive	TLD	Quarterly	5	SW
Direct Radiation	SW-10	Port St. Lucie Blvd. and Cairo Road	TLD	Quarterly	10	SW
Direct Radiation	SSW-2	10307 Indian River Drive	TLD	Quarterly	3	SSW

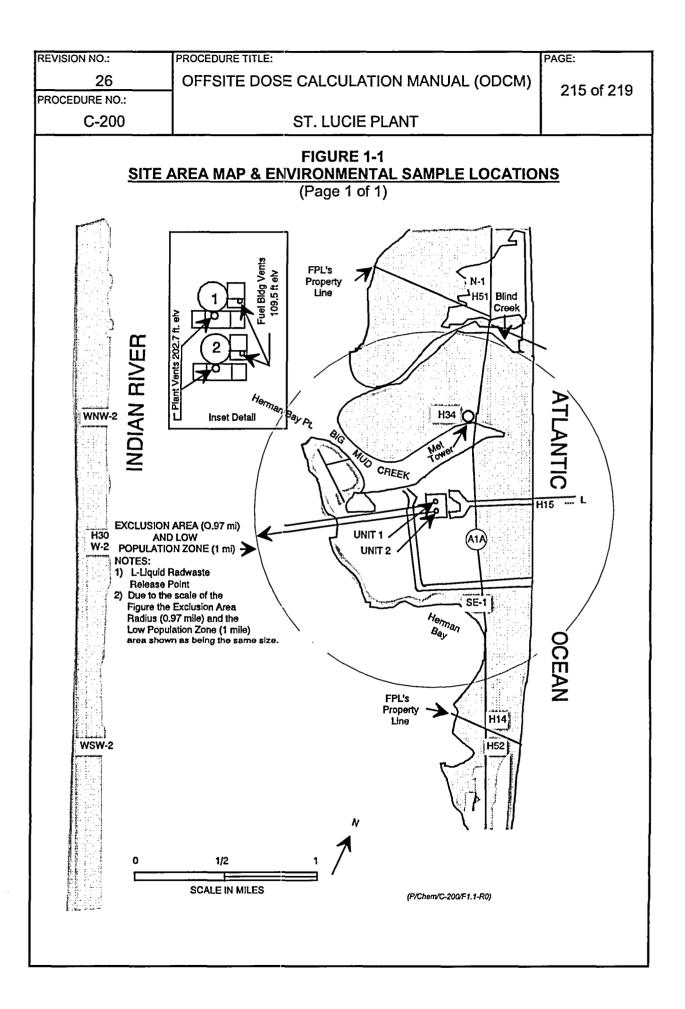
VISION NO.:	PROCEDURE TITL	E:				PAGE:
26		OFFSITE DOSE CALULATIO	N MANUAL (ODCM)		212 of 219
C-200		ST. LUCIE PL	ANT			
		APPENDIX E RADIOLOGICAL ENVIRONMENT (Page 2 of 4)	TAL SURVEIL	LANCE		
		ST. LUCIE PLA Key to Sample Loc				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Direct Radiation	SSW-5	Port St. Lucie Blvd. and US 1	TLD	Quarterly	6	SSW
Direct Radiation	SSW-10	Pine Valley and Westmoreland Roads	TLD	Quarterly	8	SSW
Direct Radiation	S-5	13179 Indian River Drive	TLD	Quarterly	5	S
Direct Radiation	S-10	US 1 and SR 714	TLD	Quarterly	10	S
Direct Radiation	S/SSE-10	Indian River Drive and Quail Run Lane	TLD	Quarterly	10	SSE
Direct Radiation	SSE-5	Entrance of Nettles Island	TLD	Quarterly	5	SSE
Direct Radiation	SSE-10	Elliot Museum	TLD	Quarterly	10	SSE
Direct Radiation	SE-1	South of Cooling Canal	TLD	Quarterly	1	SE
Direct Radiation	*H-32	U. of Florida - 1FAS Entomology Lab Vero Beach	TLD	Quarterly	19	NNW
Airborne	H08	FPL Substation - Weatherbee Road	Radioiodine & Particulates	Weekly	6	WNW
Airborne	*H12	FPL Substation - SR 76, Stuart	Radioiodine & Particulates	Weekiy	12	S
Airborne	H14	Onsite - near south property line	Radioiodine & Particulates	Weekly	1	SE
Airborne	H30	Power Line - 7609 Indian River Drive	Radioiodine & Particulates	Weekly	2	w

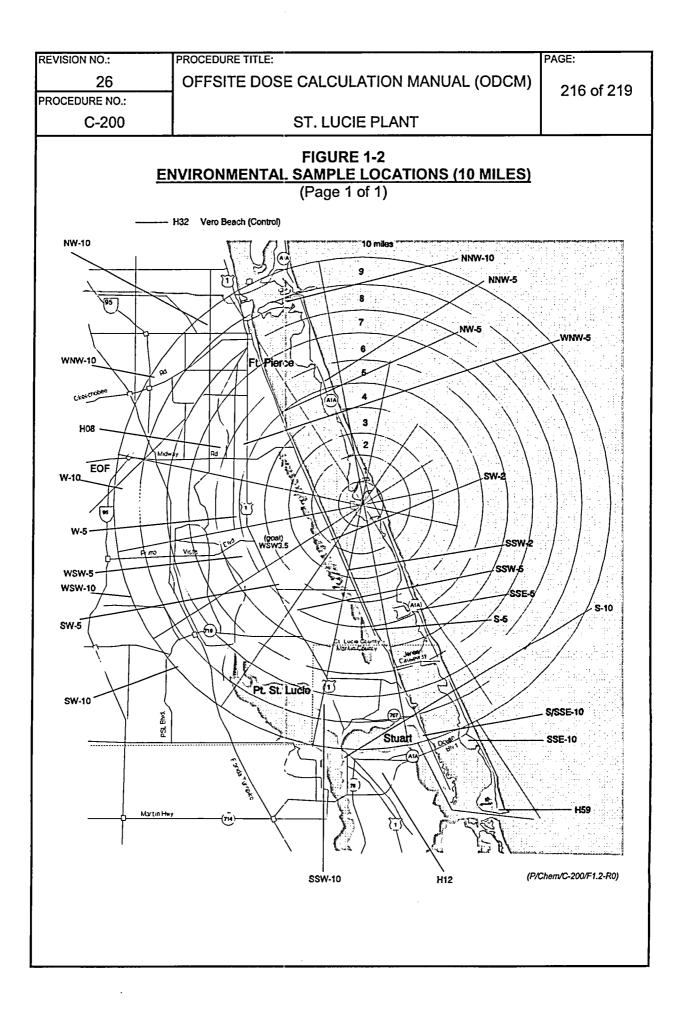
* Denotes Control Sample

EVISION NO .:	PROCEDURE	TITLE:			P	AGE:
26 ROCEDURE NO.:	_	OFFSITE DOSE CALULATION	n Manual (oi	DCM)		213 of 219
C-200		ST. LUCIE PL	ANT			
	· · · · ·	APPENDIX B RADIOLOGICAL ENVIRONMENT (Page 3 of 4)	AL SURVEILL	ANCE	·	
		ST. LUCIE PLA Key to Sample Loc				
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Airborne	H34	Onsite - At Meteorological Tower	Radioiodine & Particulates	Weekly	0.5	N
Waterborne	H15	Atlantic Ocean vicinity of public beaches east side of Route A1A	Surface Water (ocean) Sediment from shoreline	Weekly Semi-Annually	< 1	ENE/E/ESE
Waterborne	*H59	Near south end of Hutchinson Island	Surface Water (ocean) Sediment from shoreline	Monthly Semi-Annually	10-20	S/SSE
Food Products	H15	Ocean side vicinity of St. Lucie Plant (NOTE 1)	Crustacea Fish	Semi-Annually Semi-Annually	<1	ENE/E/ESE
Food Products	H51	Offsite near north property line	Broad Leaf vegetation	Monthly (when available)	1	N/NNW

* Denotes Control Sample

.


EVISION NO .:	PROCEDURE	TITLE:			P	AGE:
26 ROCEDURE NO.:		OFFSITE DOSE CALULATIO	NANUAL (ODCM)			214 of 219
C-200		ST. LUCIE PLANT				
		APPENDIX E RADIOLOGICAL ENVIRONMENT (Page 4 of 4)	AL SURVEILL	ANCE		
ST. LUCIE PLANT Key to Sample Locations						
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Food Products	H52	Offsite near south property line	Broad leaf vegetation	Monthly (when available)	1	S/SSE
Food Products	*H59	Near south end of Hutchinson Island	Crustacea Fish Broad leaf vegetation	Semi-Annually Semi-Annually Monthly	10-20	S/SSE
Food Products	WSW 3.5	Goat Milk per land use census (2000) off east end of Tilton Road	Milk	Quarterly (when available)	3.5	wsw


* Denotes control sample

It is the policy of Florida Power & Light Company (FPL) that the St. Lucie 1 & 2 Radiological Environmental Monitoring Programs are conducted by the State of Florida Department of Health (DOH) and Bureau of Radiation Control (BRC), pursuant to an Agreement between FPL and DOH and; that coordination of the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Program Controls are the responsibility of the Nuclear Plant Support Services Department.

NOTE 1

These samples may be collected from or supplemented by samples collected from the plant intake canal if the required analyses are unable to be performed due to unavailability or inadequate quantity of sample from the ocean side location.

REVISION NO:
26
PROCEDURE NO:
C -200
C -200
C -200
C -200
OFFSITE DOSE CALCULATION MANUAL (ODCM)
C -200
ST. LUCIE PLANT
APPENDIX C
METEOROLOGICAL DISPERSION FORMULAS'
(Page 1 of 1)
Eor X/Q:

$$X/Q = \frac{2.032}{(u)D}\sqrt{(\sigma_z^2 + \frac{CV^2}{\pi})}$$
EQ (1)
 $X/Q = \frac{2.032}{\sqrt{3} \sigma z(u)D}$
EQ (2)
Where:
C = .5
V = 207.5 ft. (63.2 meters)
(u) = a name for one term
X/Q was calculated using each of the above EQs for each hour. The highest X/Q from
EQ (2) was selected. The total integrated relative concentration at each sector
and distance was then divided by the total number of hours in the data base.
* Terrain correction factors given by Table M-4 were also applied to Dispersion
Formulas
For Depleted X/Q:
(X/Q)_D = (X/Q) X (Depletion factor of Figure 2 of R.G. 1.111-R1)
For Deposition (D/Q):
D/Q = Ground deposition rate
X = Calculation distance
RDep = Relative ground deposition rate from Figure 6 of R.G. 1.111, R1

REVISIO	ON NO.:		PROCEDURE TITLE:	PAGE:				
ROCE	26 DURE N	D.:	OFFSITE DOSE CALCULATION MANUAL (ODCM)	218 of 219				
	C-20	0	ST. LUCIE PLANT					
<u>[</u>	DESCI	RIPTION	APPENDIX D OF THE INTERLABORATORY COMPARISON PROC (Page 1 of 2)	GRAM (ICP)				
			, Department of Health-Bureau of Radiation Control (BF n INTERLABORATORY COMPARISON PROGRAM.	RC) Laboratory				
۱.	The	sample n	natrices and analytical methods shall be:					
	A. Gamma isotopic on a filter sample simulating airborne radioiodine and particulate collection.							
	В.	Gamm	a isotopic on a water sample simulating a surface wate	r grab sample.				
	C.	Gamm	a isotopic on either sediment (or soil) or broad leaf veg	etation.				
		Step	<u>NOTE</u> s D, E and F reference NRC IR 99-04, PMAI 99-0716.					
	D.	Gross	Beta on an Air Filter matrix.					
	E.	Tritium	in water, using method employed in REMP.					
	F.	Gamma isotopic on a water sample (above) is used for milk matrix if milk samples are being obtained per land use census identified milk animals within 5 miles of the plant site.						
2.	The s	ource of	samples for this program:					
	A.		eral Government Laboratory Program (e.g., DOE-LAP, l g Water Program)					
	В.	A State, Federal, or private (commercial) laboratory capable of provid NIST traceable samples. To be eligible, a Commercial Laboratory sh meet the FPL Quality Assurance criteria of "Quality Related".						
	C.	sample provide vendor. FPL pe	mma Analysis only, a FPL Nuclear Site Laboratory may matrices using known quantities of radioactivity from is d by a FPL Contract Laboratory currently approved as . These prepared matrices may be prepared by the ver rsonnel, but shall not exceed the participant(s) form an es for allowed radioactivity.	sotopes PC-1 Level ndor, or by				
•			atrix samples shall be capable of achieving ODCM Tab Ds on a blank sample.	le 4.12-1				

REVI	SION NO .:	PROCEDURE TITLE:	PAGE:					
Í	26	OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PRO	CEDURE NO.:		219 of 219					
	C-200	ST. LUCIE PLANT						
	APPENDIX D DESCRIPTION OF THE INTERI_ABORATORY COMPARISON PROGRAM (ICP) (Page 2 of 2)							
4.	4. Results within 20% of expected shall be considered acceptable. Results exceeding 20% but within 35% require a description of probable cause and actions performed to bring the analysis into conformance. Results exceeding 35% are considered Not Acceptable; the Matrix shall be replaced and reanalyzed.							
5.		y for performing the interlaboratory comparison program a maximum of 15 months between comparisons of sim						

FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNITS #1 & #2 ANNUAL REPORT JANUARY 1, 2005 THROUGH DECEMBER 31, 2005

ATTACHMENT C C-200, OFFSITE DOSE CALCULATION MANUAL REVISION 25 MARKED UP PAGES

•

.

ST. LUCIE PLANT CHEMISTRY OPERATING PROCEDURE

Procedure No. C-200

Current Rev. No. 25

SAFETY RELATED

Effective Date: 05/14/02

Title:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

Responsible Department: CHEMISTRY

Revision Summary

Revision 25 - Revised Action Statements 35 and 45 such that releases via the pathway may continue as long as prior to release, two independent samples of tank's contents are analyzed, and two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup. (AI Locke, 05/14/02)

Revision 24 - Made changes per CR 01-0140 and periodic review. (R. E. Cox, 02/14/02)

Revision 23A - Changed cover page description for revision 23 to read "goat (milk)" instead of "gaot (milk)". (Bonnie Gilmour, 05/01/01)

Revision 23 - Specified pressure loss criteria, added actions 37 for the S/G Blowdown Radioactivity Monitor to meet the expectation of the new EPRI industry standard, ensured grab samples will be taken, included Carbon-14 & Nickel-63 in liquid sampling/analysis, changed gaseous continuous vent release pathway, standardized St. Lucie with Turkey Points ODCM wording, included goat (milk) animal to the Radiological Environmental Monitoring Program, and included new dose conversion factors. (R. E. Cox, 01/19/01)

Revision 22 - Unit 2 Tech Spec Amendment 105 adopting the same Dose Equivalent Iodine-131 definition as Unit 1. (R.E. Cox, 04/20/00)

Revision	FRG Review Date	Approved By	Approval Date	SOPS
0	04/22/82	C. M. Wethy Plant General Manager	04/27/82	DATE DOCT PROCEDURE DOCN C-200
Revision	FRG Review Date	Approved By	Approval Date	SYS COMP_COMPLETED
25	05/14/02	D. Rose	05/14/02	ITM25
		Plant General Manager <u>N/A</u>	<u></u>	·
		Designated Approver		
		Designated Approver (minor correction)		1 <i>34</i> 4 3645.

INTRODUCTION

The ODCM consists of the Controls Section followed by the Methodology Section.

The Controls Section provides the Control Statements, Limits, ACTION Statements, Surveillance Requirements and BASES for ensuring that Radioactive Liquid and Gaseous Effluents released to UNRESTRICTED AREAS and/or the SITE BOUNDARY will be maintained within the requirements of 10 CFR Part 20, 40 CFR Part 190, 10 CFR 50.36.a and 10 CFR Part 50 Appendix-I radioactive release criteria. All Control Statements and most Administrative Control Statements in the ODCM are directly tied to and reference the Plant Technical Specification (TS) Administrative Section. The Administrative Control for Major Changes to Radioactive Liquid, Gaseous and Solid Treatment Systems is as per the guidance of NUREG-1301, April 1991, Supplement No. 1 to NRC Generic Letter 89-01. The numbering sequences of Control Statements also follow the guidance of NUREG-1301 as applicable, to minimize differences. Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment, 6.3.1 and 6.3.2, provide the background for the need to maintain Quality Assurance programs for effluent releases and radiological environmental monitoring.

The Methodology Section uses the models suggested by NUREG-0133, November, 1978 and Regulatory Guide 1.109 to provide calculation methods and parameters for determining results in compliance with the Controls Section of the ODCM. Simplifying assumptions have been applied where applicable to provide a more workable document for implementing the Control requirements. Alternate calculation methods may be used from those presented as long as the overall methodology does not change or as long as most up-to-date revisions of the Regulatory Guide 1.109 dose conversion factors and environmental transfer factors are substituted for those currently included and used in this document.

RECORDS AND NOTIFICATIONS

All records of reviews performed for changes to the ODCM shall be maintained in accordance with QI 17-PSL-1. All FRG approved changes to the ODCM, with required documentation of the changes per TS 6.14, shall be submitted to the NRC in the Annual Effluent Release Report. Procedures that directly implement, administer or supplement the requirements of the ODCM Controls and Surveillances are:

COP-01.05, Processing Aerated Liquid Waste COP-01.06, Processing Gaseous Wastes COP-05.02, Conduct of Chemistry - Met Tower Data Processing COP-05.04, Chemistry Department Surveillances and Parameters COP-07.05, Process Monitor Setpoints The Radiological Environmental Monitoring Program is performed by the State of Florida as per FPL Juno Nuclear Plant Services Corporate Environmental Procedure Number <u>NBS-NPS-HP-WP-002.-</u> NPSS-HP-WP-002.-

1.0 DEFINITIONS for CONTROLS SECTION OF ODCM

The defined terms of this section appear in capitalized type and are applicable throughout these Controls.

<u>ACTION</u>

1.1 ACTION shall be that part of a Control that prescribes remedial measures required under designated conditions.

CHANNEL CALIBRATION

1.4 A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter which the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions and shall include the CHANNEL FUNCTIONAL TEST. The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is calibrated.

CHANNEL CHECK

1.5 A CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

CHANNEL FUNCTIONAL TEST

1.6 A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated signal into the channel as close to the sensor as practicable to verify ORERABILITY of alarm, interlock and/or trip functions. The CHANNEL FUNCTIONAL TEST shall include adjustments, as necessary, of the alarm, interlock and/or Trip Setpoints such that the setpoints are within the required range and accuracy.

REPLACE

St. Lucie Plant ODCM Controls

1942 2647

PER 05-0822 INSERT PAGE IOA DEFINITIONS CHANNEL FUNCTIONAL TEST 1.6 A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated signal into the channel as close to the primary sensor as practicable to verify OPERABILITY including alarm and/or trip functions. CONTAINMENT VESSEL INTEGRITY CONTAINMENT VESSEL INTEGRITY shall exist when: All containment vessel penetrations required to be closed during accident conditions are either: Capable of being closed by an OPERABLE containment automatic isolation valve system, cr Closed by manual valves, blind flanges, or deactivated automatic valves 2. secured in their closed position except for valves that are open on an intermittent basis under administrative control. All containment vessel equipment hatches are closed and sealed, b. Each containment vessel air lock is in compliance with the requirements of C. Specification 3.6.1.3. The containment leakage rates are within the limits of Specification 3.6.1.2, and The sealing mechanism associated with each penetration (e.g., welds, e. bellows or O-rings) is OPERABLE. CONTROLLED LEAKAGE CONTROLLED LEAKAGE shall be the seal water flow supplied from the reactor 1.8 coolant pump seals. CORE ALTERATION 1.9 COREXITERATION shall be the movement or manipulation of any fuel, sources, reactivity control components, or other components affecting reactivity within the reactor vessel with the vessel head removed and fuel in the vessel. Exceptions to the above include shared (4 fingered) control element assemblies (CEAs) withdrawn into the upper guide structure (DQS) or evolutions performed with The UGS in place such as CEA latching/unlatching or verification of latching/ unlatching which do not constitute a CORE ALTERATION. Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position. CORE OPERATING UMITS REPORT (COLR) 1.9a THE COLR is the unit-specific document that provides cycle specific parameter limits for the current operating reload cycle. These cycle-specific parameter limits shall be determined for each reload cycle in accordance with Specification 6.9.1.11. Rlant operation within these limits is addressed in individual Specifications. ST. LUCIE - UNIX 1 Amendment No 369, 3446 S 1-2 **A9. 150**

TABLE 3.3-13 (Continued)

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

			MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION	
ſ	5. Lau	Indry Area Ventilation System				
	(a)	Noble Gas Activity Monitor (Low Range)	1/Rx	*	47	Γ{
	b)`	Nodine Sampler	1/Rx		51	X
N	c)	Particulate Sampler	1/Rx	*	51	$ \langle$
5	d)	Flow Rate Monitor	N.A.	*	53	K C
J	_ એ	Sampler Flow Rate Monitor	1/Rx		46	
	6. Ste 5. Buil	am Generator Blowdown Iding Vent				
	a)	Noble Gas Activity Monitor (Low Range)	1	*	47	
	b)	Iodine Sampler	1	*	51	
	c)	Particulate Sampler	1	*	51	
	d)	Flow Rate Monitor	N.A.	*	53	
	e)	Sampler Flow Rate Monitor	1	*	46	

.

TABLE 4.3-9 (Continued)

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS (4)

	INSTRUMENT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	Modes in which surveillance required	
	Indry Area Ventilation		$\overline{\mathbf{n}}$				\square
a)	Noble Gas Activity Monitor	D	м	R (3)	0122		
b	lodine Sampler	W	N.A.	N.A.	N.A.	*	$\left \right\rangle$
) એ	Particulate Sampler	W	N.A.	N.A.	N.A.	$\overline{\ }$	
(b (Flow Rate Monitor	R	N.A.	R	d		
e)	Sampler Flow Pate Monitor	D	N.A.	R	N.A.	•	5
	am Generator wdown Building Vent						
a)	Noble Gas Activity Monitor	D	М	R (3)	Q (2)	*	
b)	Iodine Sampler	W	N.A.	N.A.	N.A.	*	
c)	Particulate Sampler	W	N.A.	N.A.	N.A.	*	
d)	Flow Rate Monitor	D	N.A.	R	Q	*	
e)	Sampler Flow Rate Monitor	D	N.A.	R	N.A.	*	

•••••

ST. LUCIE PLANT CHEMISTRY OPERATING PROCEDURE NO. C-200, REVISION 25 OFFSITE DOSE CALCULATION MANUAL (ODCM)

TABLE 4.11-2 RADIOACTIVE GASEOUS WASTE SAMPLING & ANALYSIS PROGRAM

	seous Release Type	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD) (1) (µCi/cc)
1.	Waste Gas Storage Tank	P Each Tank Grab Sample	P Each Tank	Noble Gas P.G.E. (2)	1.E-04
2.	Containment Purge	P Each Purge (6) Grab Sample	P Each Furge (6) (7)	Noble Gas P.G.E. (2)	1.E-04
		Grab Sample	(7)	H-3	1.E-06
3.	Vents: a. Plant b. Fuel Bldg (5)	4/M Grab Sample	4/M (7)	Noble Gas P.G.E. (2)	1.E-04
C.	-e :-Laundry .et: S/G Blowdown Bldg.			H-3	1.E-06
4.	All Release Types as listed in 3.	Continuous (3)	4/M Charcoal Sample (4)	I-131	1.E-12
	above		4/M Particulate Sample (4)	P.G.E.	1.E-11
			4/M Particulate Sample	Gross Alpha	1.E-11
			Q Composite Particulate Sample	Sr-89, Sr-90	1.E-11
			Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1.E-06

P.G.E. - Denotes Principal Gamma Emitters

St. Lucie Plant ODCM Controls

. • _• • •

TABLE 3.12-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM^{a)}

EXPOSURE PATHWAY and/or SAMPLE 1. Direct Radiation ⁹⁾	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ^{b) c)} 27 Monitoring Locations	SAMPLING AND COLLECTION FREQUENCY ^{d)} Continuous monitoring with sample collection quarterly ⁹	TYPE AND FREQUENCY ^{d)} OF ANALYSIS Gamma exposure rate - quarterly
2. Airborne Radioiodine and Particulates	5 Locations	Continuous sampler operation with sample collection weekly or more frequently if required by dust loading	Radioiodine filter: I-131 analysis weekly Particulate Filter: Gross beta radioactivity analysis ≥24 hours following a filter change ⁰ Gamma isotopic ^{h)} analysis of composite ⁰ (by location) quarterly
3. Waterborne			
a) Surface ^{k)}	1 Location ^{m)}	Weekly	Gamma isotopic ^{h)} & tritium analyses weekly
	1 Location ⁿ⁾	Monthly	Gamma isotopic ^{h)} & tritium analyses monthly
b) Sediment from shoreline	2 Locations	Semiannually	Gamma isotopic ^{h)} analyses semiannually
4. Ingestion			
a) Fish and Invertebrates			
1) Crustacea	2 Locations	Semiannually	Gamma isotopic ^{h)} analyses semiannually
2) Fish	2 Locations	Semiannually	Gamma isotopic ^{h)} analyses semiannually
b) Food Products			
1) Broad leaf vegetation	3 Locations ^{p)}	Monthly when available	Gamma isotopic ^{h)} and I-131 analyses monthly
2)-Milk	Tecation	Quarterly when available	Caroma-isotopie ^{bi}

St. Lucie Plant ODCM Controls

۰.

.

TABLE 4.12-1

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS^{(1) (2)}

LOWER LIMIT OF DETECTION (LLD)⁽³⁾

.

ANALYSIS	WATER pCi/l	AIRBORNE PARTICULATE OR GASES pCi/m ³	FISH pCi/kg, wet	MILK pCi/l	FOOD PRODUCTS pCi/kg, wet	SEDIMENT pCi/kg, dry
Gross Beta	4	0.01				
H-3	3000*					
Mn-54	15		130			
Fe-59	30		260			
Co-58, Co-60	15		130			
Zn-65	30		260			
Zr-95, Nb-95 ⁽⁴⁾	15					
I-131	1**	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-140, La-140 ⁽⁴⁾	15			15		

* No drinking water pathway exists, a value of 2000 pCi/l is for drinking water.

** LLD for drinking water samples. If no drinking water pathway exists, the LLD of gamma isotopic analysis may be used. A VALUE OF 15 pail and be used.

St. Lucie Plant ODCM Controls

IGAL SEES.

Page 223 of 230

ST. LUCIE PLANT CHEMISTRY OPERATING PROCEDURE NO. C-200, REVISION 25 OFFSITE DOSE CALCULATION MANUAL (ODCM)

APPENDIX B RADIOLOGICAL ENVIRONMENTAL SURVEILLANCE

(continued) ST. LUCIE PLANT Key to Sample Locations

PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMAT E DISTANCE (miles)	DIRECTION SECTOR
Airborne	H34	Onsite - At Meteorological Tower	Radioiodine & Particulates	Weekly	0.5	N
Waterborne	H15	Atlantic Ocean vicinity of public beaches east side of Route A1A	Surface Water (ocean) Sediment from shoreline	Weekly Semi-Annually	< 1	ENE/E/ESE
Waterborne	*H59	Near south end of Hutchinson Island	Surface Water (ocean) Sediment from shoreline	Monthly Semi-Annually	10-20	S/SSE
Food Products	H15	Ocean side vicinity of St. Lucie Plant (NOTE 1)	Crustacea Fish	Semi-Annually Semi-Annually	<1	ENE/E/ESE
Food Products	H51	Offsite near north property line	Broad Leaf vegetation (mangrovo) -	Monthly (when available)	1	N/NNW

*Denotes control sample

Page 224 of 230

ST. LUCIE PLANT CHEMISTRY OPERATING PROCEDURE NO. C-200, REVISION 25 OFFSITE DOSE CALCULATION MANUAL (ODCM)

APPENDIX B <u>RADIOLOGICAL ENVIRONMENTAL SURVEILLANCE</u> (continued) ST. LUCIE PLANT Key to Sample Locations

PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMAT E DISTANCE (miles)	DIRECTION SECTOR
Food Products	H52	Offsite near south property line	Broad leaf vegetation (mangrove)	Monthly (when available)	1	S/SSE
Food Products	* H59	Near south end of Hutchinson Island	Crustacea Fish Broad leaf vegetation (mangrovo)	Semi-Annually Semi-Annually Monthly	10-20	S/SSE
Food Products	WSW 3.5	Goat Milk per land use census (2000) off east end of Tilton Road	Milk	Quarteriy (when available)	3.5	wsw

*Denotes control sample

It is the policy of Florida Power & Light Company (FPL) that the St. Lucie 1 & 2 Radiological Environmental Monitoring Programs are conducted by the State of Florida Department of Health (DOH) and Rehabilitative Services (DHRS), pursuant to an Agreement between FPL and DOH and; that coordination of the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Program Controls are the responsibility of the Nuclear Plant Support Services Department.

> <u>NOTE 1</u> These samples may be collected from or supplemented by samples collected from the plant intake canal if the required analyses are unable to be performed due to unavailability or inadequate quantity of sample from the ocean side location.