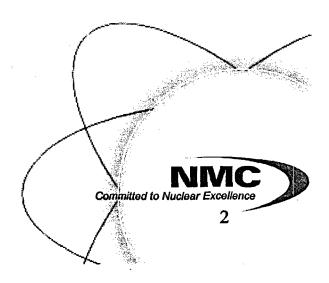


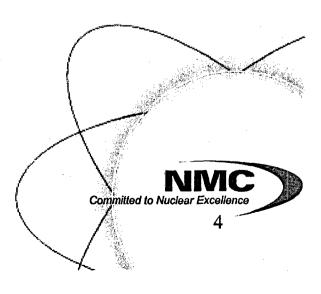
Safe - Reliable - Predictable - Leader

NRC Briefing


HPCI

December 2005

Duane Arnold NRC Briefing HPCI


- Operability Determination
- Interim Corrective Actions & Results
- Root Cause Evaluation
- Further Analysis

- Issues Identified:
 - Existence of a steam void at the top of the discharge pipe.
 - Identified non-conformances associated with HPCI discharge pipe temperatures higher than design.
 - Discharge piping should not have been insulated.
 - September 29 venting done at lower CST level.

• Actions Taken:

- Established Event Response Team
 - Around-the-clock Engineering support.
 - Obtained additional resources from Monticello and MPR.
- Successfully vented HPCI several times with higher CST level.
- Completed OE review:
 - Internal
 - External
 - Operating Modes



Actions Taken:

- Evaluated Non-Conformances (insulation and high pipe temperatures).
- Reviewed Transient Recorder data.
- Completed thorough system walkdown.
 - Note: Operations performs quarterly leakage detection walkdowns.
- Static and dynamic testing performed.
 - Static with pressure transducer.
 - Dynamic with accelerometer.
- Conducted three NMC challenge boards,

- Potential Causes of Steam Void Formation:
 - Valve leakage.
 - Heat conduction from feedwater line.
 - Lower CST water level.

Conclusions:

- HPCI was capable of performing its safety function.
- Non-conformances do not impact system operability.
- Steam volume near MO-2312 disc does not cause detrimental water hammer.
- Steam volume does not affect HPCI start times.
- Void size collapse similar for both surveillance and injection modes.
- No current or past evidence of water hammer.
- HPCI declared Operable, but degraded & non-conforming on 10/12/05.

NIVIC
Committed to Nuclear Excellence

7

Interim Corrective Actions & Results

- Interim Compensatory Actions:
 - 1. HPCI suction lined up to CST with water level of 15 ft or greater, otherwise HPCI keep fill system in service.
 - 2. Periodic venting of HPCI discharge piping.
 - Started at an increased frequency then extended out to TS SR frequency based on results.
 - Performed to validate conclusions of OPR.
 - 3. Shiftly monitoring of HPCI discharge piping temperatures.
 - Performed to verify void size does not change.

Interim Actions & Results

Results:

- Discharge pipe temperatures monitored shiftly.
 - Acceptance criteria: < 115 °C.
 - Results: Upper pipe temp steady @ ~ 113 °C.
- Table below summarizes venting and temperature monitoring results:

Date	Oct 14	Oct 17	Oct 21	Oct 26	Nov 1	Nov 8	Nov 22	Dec 6
Vent Time	24 sec	8 sec	11 sec	28 sec	21 sec	15 sec	6.3 sec	30 sec
Pipe Temp	113 ° C	113 ° C	113 ° C	113 ° C	113 ℃	113 ℃	111 °C	114 °C

Results support original conclusions in CE 3049.

NINC Committed to Nuclear Excellence

Root Cause Evaluation Root Causes

The effects of "turbulent penetration" were not taken into account in the original HPCI system design.

- Unknown to the site, thermal energy was being delivered to MO-2312 via the phenomenon of turbulent penetration.
 - Thermal energy is being conducted through MO-2312's valve disc.
 - Steam is being produced on the low-pressure side of the MO-2312 valve disc due to higher than designed temperatures existing.

NIVC
Committed to Nuclear Excellence

Root Cause Evaluation

- Turbulent Penetration:
 - Previously un-recognized phenomena.
 - Discussed in:
 - IAEA-TECDOC-1361, Assessment and management of aging of major nuclear power plant components important to safety, dated July 2003.
 - EPRI MRP-32, Thermal Fatigue Monitoring Guidance, dated April 2001.

NINC Committed to Nuclear Excellence

Further Analysis

- Analysis to be performed:
 - Determine bounding void size.
 - Determine minimum CST water level to assure operability.
 - Determine effects of pipe movement with determined void size and collapse under normal and automatic start scenarios.
 - Complete a past operability determination
- Current Schedule.

