
GE Energy
Nuclear

NEDO-33246
Class I

eDRF# 0000-0050-2658
January 2006

LICENSING TOPICAL REPORT

ESBWR I&C
SOFTWARE INTEGRATION PLAN

Copyright 2006 General Electric Company

NEDO-33246

INFORMATION NOTICE

This document, NEDO-33246, Rev 0, contains no proprietary information.

IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT
PLEASE READ CAREFULLY

The information contained in this document is furnished as reference to the NRC Staff for the
purpose of obtaining NRC approval of the]ESBWR Certification and implementation. The only
undertakings of General Electric Company with respect to information in this document are
contained in contracts between General Electric Company and participating utilities, and nothing
contained in this document shall be construed as changing those contracts. The use of this
information by anyone other than that for which it is intended is not authorized; and with respect
to any unauthorized use, General Electric Company makes no representation or warranty, and
assumes no liability as to the completeness, accuracy, or usefulness of the information contained
in this document.

NEDO-33246

Table of Contents

I Introduction 5
1.1 Purpose ... 5
1.2 Scope ... 6

1.2.1 Scope of Testing ... 6
1.2.2 Test Boundaries ... 7

1.3 Acronyms, Abbreviations, and Definitions 7
1.3.1 Acronyms and Abbreviations ... 7
1.3.2 Definitions ... 9

1.4 Applicable Documents 14
1.4.1 Supporting Documents .. 14
1.4.2 Supplemental Documents ... 14
1.4.3 Codes and Standards ... 15

1.4.3.1 Electrical Power Research Institute (EPRI) 15
1.4.3.2 Institute of Electrical and Electronic Engineers (IEEE) 15
1.4.3.3 U.S. Nuclear Regulatory Commission (NRC) 16

2 Organization and Management. 16
2.1 Organizational Interfaces .. 16
2.2 Management ... 17

2.2.1 Scheduling and Planning ... 17
2.2.2 Resources .. 17
2.2.3 Training Needs ... 18
2.2.4 Reviews 18
2.2.5 Contingency Planning ... 18

2.3 Roles and Responsibilities ... 18
2.3.1 Test Team .. 18

2.3.1.1 The Responsible Technical Project Engineer (RTPE) 18
2.3.1.2 Responsible Engineer (RE) .. 18
2.3.1.3 Software Module Tester ... 18
2.3.1.4 Integration Test Engineer .. 18
2.3.1.5 Validation Test Designer .. 18
2.3.1.6 Validation Tester .. 19

2.3.2 Software Integration and Test Personnel Qualifications . . 19

3 Procedures 19
3.1 Software Classifications ... 19

3.1.1 Third Party/Vendor Software .. 19
3.1.2 Previously Developed Software .. 19
3.1.3 Commercial off the Shelf Software (COTS) 20

ii

NEDO-33246

3.1.4 Support Software/Tool Acceptance 20
3.2 General Software Test Guidelines 20

3.2.1 Test Preparation Guidelines 20
3.2.2 Test Design Guidelines 21
3.2.3 Test Execution Guidelines 22
3.2.4 Test Summary Guidelines 23

4 Methods 23
4.1 Software Testing 23

4.1.1 Module Testing ... 23
4.1.1.1 Module Teslt Preparation ... 24
4.1.1.2 Module Test: Design ... 24
4.1.1.3 Module Test Execution ... 26
4.1.1.4 Module Test Summary ... 26

4.1.2 Integration Testing ... 26
4.1.2.1 Integration Test Preparation ... 27
4.1.2.2 Integration Test Design ... 28
4.1.2.3 Integration Test Execution ... 30
4.1.2.4 Integration Test Summary ... 30

4.1.3 Validation Testing .. 30
4.1.3.1 Validation lest Preparation ... 30
4.1.3.2 Validation lest Design ... 31
4.1.3.3 Validation Test Execution ... 32
4.1.3.4 Validation Test Summary ... 32

4.2 Documentation and Problem Reporting ... 32
4.2.1 Module Testing ... 32

4.2.1.1 Module Tesit Data Sheet ... 32
4.2.1.2 Module Test: Report ... 33

4.2.2 Integration Testing ... 34
4.2.2.1 Preliminary Build Release Description (BRD) 34
4.2.2.2 Integration Test Data Sheet ... 35

4.2.2.3 Errors Tally Sheet ... 36
4.2.2.4 Integration Test Report ... 36

4.2.3 Validation Testing ... 37
4.2.3.1 Validation lest Procedures and Test Cases Specification 37
4.2.3.2 Validation Test Report ... 38

4.3 Approvals .. 39
4.4 Test Deliverables 39
4.5 Measurement & Use of Metrics .. 40
4.6 Acceptable Defect Levels .. 40

iii

N EDO-33246

Appendices
Appendix A: Figures .. 41

A. 1 Software Testing Responsibility Structure .. 41

Appendix B: Report Format .. 42

B. 1 Module Test Data Sheet (example) .. 42

B.2 Integration Test Data Sheet (example) .. 43

B.3 Errors Tally Sheet (example) .. 44

iv

NEDO-33246

I Introduction
This Software Integration Plan (SIntP) describes the software integration, hardware/software
integration, and system integration test activities to be carried out during the development process of
software based products for the ESBWR or similar projects. This Software Integration Plan (SIntP),
in conjunction with other software plans, addresses and is intended to meet the requirements
specified in Reg. Guide 1.170, "Software Test Documentation for Digital Computer Software used
in Safety Systems of Nuclear Power PlanIs", and Reg. Guide 1.171, "Software Unit Testing for
Digital Computer Software Used in Safety Systems of Nuclear Power Plants." This SIntP is referred
as the Software Test Plan in the Man-Machine Interface System And Human Factors Engineering
Implementation Plan [Ref 1.4.1 (2)].

Software Integration consists of activities that are applied during test and integration phase of the
software product development. These activities encompass:

* A defined software and hardware/software integration test management approach

* A multi-tiered integration and testing strategy

* Development compliance procedures, and

* Measurement and reporting mechanisms

This Software Integration Plan (SIntP) is developed in accordance with the Software Management
Plan (SMP) [Ref 1.4.2(1)] to establish procedures and guidelines necessary to prepare, execute, and
document software testing for Quality Class Q software based products. Quality Class N software
based products may be tested in accordance with this plan or in accordance with standard GENE
procedures.

Software testing carried out in accordance with this test plan satisfies all software test requirements
invoked by the Software Management Plan (SMP) [Ref 1.4.2(1)].

1.1 Purpose

The purpose of this Software Integration Plan (SIntP) is to:

* Describes the test organization defining the responsibilities of individuals or groups
involved in the test and integration process,

* Describes integration and test management, such as (but not limited to) schedule,
resources, security, risks and contingency planning, anomaly and problem reporting, and
training needs,

* Provide a structure for software testing within the Software Coding, Integration Test and
Validation Test life cycle phases,

* Provide the requirements and guidelines necessary to prepare, execute, and document
software tests,

* Provide general acceptance criteria for module and integration tests,

5

NEDO-33246

* Define system validation test boundaries, and

* Define all required software integration and test documentation and the test deliverables,
and

* Defines measurements and metrics for error tracking and resolution, and to assess the
success or failure of the software integration and test effort.

1.2 Scope
The scope of this plan is to outline software integration and test strategy and techniques as required
by the SMP [Ref 1.4.2(1)]. This plan also addresses software test requirements pertaining to Reg.
Guide 1.170, "Software Test Documentation for Digital Computer Software used in Safety Systems
of Nuclear Power Plants", and Reg. Guide 1.171, "Software Unit Testing for Digital Computer
Software Used in Safety Systems of Nuclear Power Plants."

The software quality assurance requirements outlined in the Man-Machine Interface System And
Human Factors Engineering Implementation Plan [Ref 1.4.1 (2)] and pertaining to software
described in 10 CFR 50, Appendix B and conforming to IEEE-730-2002, IEEE Standard for
Software Quality Assurance Plan are defined in the Software Quality Assurance Plan (SQAP [Ref
1.4.2(6)]).

Control of documentation (defined as configurable items) is the scope of the Software Configuration
Management Plan (SCMP [Ref 1.4.2(2)]). The Software Management Plan (SMP) [Ref 1.4.2(1)]
defines the scope of the design documentation requirements. This plan shall define the required
software integration and test documentation.

Verification and Validation scope and requirements are defined in the Software Verification and
Validation Plan (SVVP [Ref 1.4.2(3)]).

Finally, this plan shall define the software integration and test activities (both administrative and
technical), the methods and tools by which to execute these activities, and the metrics by which to
measure each activity. Certain test and procedures will be a subset of the SVVP [Ref 1.4.2(3)])
requirements and executed by the VVT.

1.2.1 Scope of Testing
Because of the nature of software, software tests are type tests. Testing of individual hardware units
belongs under production testing which is carried out in accordance with the Quality Assurance Plan
[Ref 1.4.1 (6)].

The following software test activities are covered by this plan:

1. Software Module Tests,

2. Software Integration Tests,

3. Hardware/Software Integration Tests, and

6

NEDO-33246

4. System Integration Tests.

This test plan shall remain in effect throughout the testing process and may be revised to reflect
improved test methods, procedures and guidelines in order to achieve high functional reliability and
design quality in software used in software based products for ESBWR.

Exceptions from elements in this test plan may be accepted if it is judged that the quality level of the
software test item is maintained. Any deviations from this test plan must be justified and approved
by the Responsible Technical Project Engineer (RTPE) and the Responsible Software Safety
Engineer (RSSE). The justification and app:roval shall be documented in the software project Design
Record File (DRF).

1.2.2 Test Boundaries

This test plan has adopted the system boundaries defined by the system codes' as test boundaries.
However, communication links crossing system boundaries within the procurement package will be
validated. This means that the following high level testing will not be carried out under this plan and
is hence deferred to later system interaction tests, i.e., tests carried out under the Integrated Factory
Acceptance Test (IFAT) program planned by the VVT under V&V plans.

1. Functional testing requiring inter-system communication. For instance, end-to-end
validation testing involving functionality from more than one system, and

2. Validation of communication links crossing procurement package boundaries.

1.3 Acronyms, Abbreviations, and Definitions

1.3.1 Acronyms and Abbreviations

The following Acronyms and Abbreviations are used in this document:

BRT Baseline Review Team (Part of SPE)

DRF Design Record File

EOP Engineering Operating Procedure

FDDR Field Deviation Disposition Request

BRD Build Release Des cription

GE General Electric Company

GEEN GE Energy Nuclear (Previously GENE)

System codes are defined in the Project Design Manual [Ref 1.4.1 (1].

7

-NEDO-33246

HFE Human Factors Engineering

HSS Hardware/Software Specification

IPS Instrument Performance Specification

ITE Integration Test Engineer (Part of Design Team)

MMIS Man-Machine Interface System

MTE Module Test Engineer (Part of Design Team)

RE Responsible Engineer (Part of Design Team)

RETL Responsible Engineering Technical Lead (Part of Design Team)

RSSE Responsible Software Safety Engineer (Part of SPE)

RTPE Responsible Technical Project Engineer (Part of Design Team)

RV Responsible Verifier (Part of PSE)

Reg. Guide Regulatory Guide

SCMP Software Configuration Management Plan

SDS Software Design Specification

SIntP Software Integration Plan

SMP Software Management Plan

SPE Software Project Engineering

SPEL SPE Lead (Part of SPE)

SQA Software Quality Assurance

SQAP Software Quality Assurance Plan

SRP Standard Review Plan

SSA Software Safety Analysis

SSP Software Safety Plan

SST Software Safety Team (Part of SPE)

8

NEDO-33246

SVVP Software Validation and Verification Plan

VTE Validation Test Engineer (Part of PSE)

V&V Verification and Validation

VVTTL V&V Team Task Lead (Part of SPE)

VVT Verification and Validation Team (Part of SPE)

1.3.2 Definitions
The following definitions apply throughout this document:

Acceptance - Formal testing conducted to determine whether or not a system
Testing satisfies its acceptance criteria and to enable the customer to

determine whether or not to accept the system.

Algorithm - A finite set of well-defined rules/mathematical equations for the
solution of a problem in a finite number of steps.

Anomaly - Anything observed in the documentation or operation of software
that deviates from expectations based on previously verified
software products or reference documents.

Application - A collection of software modules brought together to form a
Software single software application, e.g., an instrument (see also System
Package Software Package and Package).

Baseline - A specification or product that has been formally reviewed and
agreed upon, that thereafter serves as the basis for further
development, and that can be changed only through formal
change control procedures.

Baseline - A formal review, conducted at the end of each process step of the
Review software engineering design process, and requested by the Design

Team's Responsible Technical Project Engineer. The baseline
review process is under the control of Software Project
Engineering (SPE). The Baseline Review Team (appointed by the
BRT task lead engineer) performs the review. These reviews are
intended to confirm adherence to the project SMP [Ref 1.4.2(1)]
and SCMP lIRef 1.4.2(2)]. All Baseline Reviews are performed
and documented in accordance with the Software Configuration
Management Plan [Ref 1.4.2(2)], the Software Quality Assurance

9

NEDO-33246

Plan [Ref 1.4.2(6)], and the Software Verification and Validation
Plan [Ref 1.4.2(3)].

Branch Testing - Testing designed to execute each outcome of each decision point
in a computer program.

Classifications - Reference EOP 65-2.10, the Software that performs a nonsafety-
of Safety- related function and its common mode software failure does not
Related (Q) defeat a safety-related function, the software is classified as
and Nonsafety- Nonsafety-Related (N), (IEEE 1012 integrity level 1 and 2). The
Related (N) software that performs a safety-related function or its common
Hardware and mode software will defeat a safety-related function, it is classified
Software as Safety-Related (Q), (IEEE 1012 integrity level 3). See

Appendix A of SQAP for breakdown of software systems, which
are Q class.

Code Review - Software source code presented to project personnel for comment
(Code or approval.
Analysis)

Component - Testing conducted to verify the implementation of the design for
Testing one software element (for example, unit, module) or a collection

of software elements.

Critical - Software used in a nuclear power plant safety system whose
Software failure could have an impact on safety, or could cause large

financial or social loss.

Design Record - A formal controlled information record under the GEEN
File procedures for in-progress and completed engineering work

which is retained and from which work can be retrieved.

Design
Walkthrough

Digital System

Documentation

- An informal review process or inspection to find defects (such as
omissions, unwanted additions, and contradictions) in design
documentation and to consider alternative functionality,
performance objectives, or representations.

- For this SInMP, a digital system is an integrated system of digital
hardware and associated Software (embedded or otherwise) that
together, comprises a complete system or sub-system.

- The formal output generated by a task for a particular case (e.g.,
design output).

10

NEDO-33246

Embedded - A specialized computer system that is part of a larger system or
System machine. Typically, an embedded system is housed on a single

microprocessor board with the programs stored in ROM
(Firmware).

Field - Field Deviation Disposition Request (FDDR) is used for
Deviation documenting and disposition of the technical position for a
Disposition deviation required in the field in supplied hardware, software, or
Request services.

Firmware - Software not running on the main processor of a computer will be
considered as firmware, i.e., as software embedded in a black box
device that can be used and assessed only through the device in
which it is embedded.

Functional - Testing that ignores the internal mechanism of a system or
Testing component and focuses solely on the outputs generated in

response to selected inputs and execution conditions (IEEE
610.12 [2.2.2.1(1)]}.

Instrument - A hardware device used for analytical or control functions and
usually containing an embedded microprocessor(s).

Integration - An orderly progression of testing in which software elements,
Testing hardware elements, or both are combined and tested until the

entire system has been integrated.

Package - A single source file containing one or a group of C functions,
Pascal procedures or PL/M procedures and declarations, which
together perform a particular job or device operation {Software
Conventions and Guidelines [Ref 1.4.2(8)]).

Path Testing - Testing designed to execute all or selected paths through a
computer program.

Regression - Selective re-testing of a software item to verify that modifications
Testing have not caused unintended effects and that the software item

subject to the test still complies with its specified requirements.

Responsible - A person responsible for a given technical item (e.g., the design of
Engineer an instrument).

Responsible - A person with the overall responsibility for a set of DCIS
Engineering software-based products. Each DCIS software-based product is
Technical Lead assigned a RETL, including those developed by vendors.

11

NEDO-33246

Responsible
Software
Safety
Engineer

Responsible
Technical
Project
Engineer

Responsible
Verifier (RV)

Software
Feature

Software Item

- The person with overall responsibility for ensuring the safety
qualities of the software including the integration of the software
with the final hardware platform as defined in the SMP [Ref
1.4.2(1)].

- The person with overall technical responsibility for ensuring that
the hardware and software design of a software-based product
meets the specified requirements.

- The person responsible for design documents verification. A
responsible verifier is a qualified (i.e., by knowledge and
experience) individual who did not participate in the design.

- A distinguishing characteristic of a software item, such as,
performance, portability, or functionality.

- Source code, object code, job control code, control data, or a
collection of these items.

Software Life
Cycle

Software
Module

Software
Package

Software
Source Code

- The period of time that begins when a software product is
conceived and ends when the software is no longer available for
use.

- The smallest segment of code (also called routine, procedure,
function or subprogram).

- A collection of software modules (e.g., subroutines, main control
tasks) brought together to form a single software product.

- Computer instructions and data definitions expressed in a form
suitable for input to an assembler, compiler, or other translator.

Software-based
System

Statement
Testing

Stress Testing

A computer system composed of specified programs that are run
on commercially available hardware and/or operating systems.

Testing designed to execute each statement of a computer
program.

Testing performed to evaluate a software item at or beyond the
limits of its specified.

Structural
Testing

Testing that takes into account the internal mechanism of a system
or component. Types include branch testing, path testing,
statement testing.

12

NEDO-33246

System Testing

Test Case

Test Item

Third Party
Software

Traceability
Matrix

Traceability
Table

Type Test

Validation

- The process of testing an integrated hardware and software
system to verify that the system meets its specified requirements.

- A set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a
particular program path or to verify compliance with a specific
requirement.

- Software item that is an object of testing.

- Software procured from outside sources and incorporated into the
ultimate software-based product.

- A matrix that records the relationship between two or more
product specifications (i.e., design documentation) of the
development process (e.g., a matrix that records the relationship
between the requirements and the design of a given software
component).

- A table that shows the relationship between functional
requirements and tests. The traceability table helps ensure that
all functions have been adequately tested.

- A test that is carried out in order to evaluate the design of the test
item.

- The testing process that ensures the software-based product meets
its intended use and is compliant with system functional,
performance and interface requirements.

Verification

Verification
and Validation

Activities performed by knowledgeable personnel independent of
those responsible for the software design process to ensure that
design and process outputs meet specified requirements. Design
and process outputs may include software development plans,
software specifications and manuals, safety analyses. Verification
activities include audit, inspection, independent verification,
testing, and review of operating experience.

The verification and validation activities performed by software
project engineering (SPE) in accordance with the design process
(this SVVP)i to ensure the quality of the associated documents
produced.

13

NEDO-33246

1.4 Applicable Documents
Applicable documents include supporting, supplemental and reference and are given in this section.
Support documents provide the input requirements to this quality plan. Supplemental documents are
used in conjunction with this quality plan. Reference documents are documents that lend support, but
supply no input requirements.

1.4.1 Supporting Documents

The following supporting documents were used as the controlling documents in the production of
this plan. These documents form the design basis traceability for the requirements outlined in this
plan.

Document Title Document Number

1. Project Design Manual

2. Man-Machine Interface System and Human Factors NEDO-33217
Engineering Implementation Plan

3. Quality Assurance Plan NEDO-33181

4. Project Procurement Manual

5. Project Management Manual NEDC-33216

6. Composite Specification (26A6007) Al 1-5299

1.4.2 Supplemental Documents

Supplemental documents are those documents that are used in conjunction with this document.

Document Title Document Number

1. Software Management Plan NEDO-33226

2. Software Configuration Management Plan NEDO-33227

3. Software Verification and Validation Plan NEDO-33228

4. Software Development Plan NEDO-33229

5. Software Safety Plan NEDO-33230

6. Software Quality Assurance Plan NEDO-33245

7. Engineering Operation Procedures NEDE-21109

14

NEDO-33246

Document Title Document Number

a. 40-7.00 Design Review

b. 42-6.00 Independent Design Verification

c. 42-10.00 Design Record File

d. 55-2.00 Engineering Change Control

e. 40-3.00 Engineering Computer Programs

f. 55-3.00 Field Deviation Disposition Request

g. 45-2.00 Procurement of Engineering Services

h. 25-5.00 Work Planning and Scheduling

8. Software Conventions and Guidelines

1.4.3 Codes and Standards

The following codes and standards are applicable to the Software Integration activity to the extent
specified in this plan. The applicable date/revision of the code or standard is specified in the
Composite Specification [Ref 1.4.1(6)].

1.4.3.1 Electrical Power Research Institute (EPRI)

1. EPRI TR- 106439, Guidelincs on Evaluation and Acceptance of Commercial Grade
Digital Equipment in Nuclear Safety Applications

1.4.3.2 Institute of Electrical and Electronic Engineers (IEEE)

1. IEEE 1012, Standard for Verification and Validation Plans

2. IEEE 1028, Standard for Software Reviews and Audits

3. IEEE 1228, Standard for Soitware Safety Plans

4. IEEE 7-4.3.2, Standard Criteria for Digital Computers in Safety Systems of Nuclear
Power Generating Stations

5. IEEE 829, Standard for Software Test Documentation

6. IEEE 1008, Standard for Sofitware Unit Testing

15

NEDO-33246

7. IEEE 730, Standard for Software Quality Assurance Plans

1.4.3.3 U.S. Nuclear Regulatory Commission (NRC)

1. Regulatory Guide (Reg. Guide) 1. 168, Verification, Validation, Review, and Audits
for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

2. NUREG/CR-6101, Software Reliability and Safety in Nuclear Reactor Protection
Systems

3. Standard Review Plan (SRP), Section 7, Branch Technical Position (BTP) HICB-14,
Guidance on Software Reviews for Digital Computer-Based Instrumentation and
Control Systems, Rev. 4

4. NUREG/CR-6463, Coding Conventions

5. 10 CFR 50, Appendix B

6. Reg. Guide 1. 170, Software Test Documentation for Visual Computer Software

7. Reg. Guide 1.17 1, Software Unit Testing

2 Organization and Management
The software module and integration test activities are performed under the software development
organization, defined in the Software Management Plan (SMP) [Ref 1.4.2(1)], called Software
Design Team.

The software validation test activities are performed by V&V Team under the Software Project
Engineering (SPE) organization, defined in the Software Verification and Validation Plan (SVVP)
[Ref 1.4.2(3)].

The Responsible Engineering Technical Lead (RETL) has the overall responsibility for testing of the
products pertaining to the DCIS procurement.

Each product (system or sub-system) in the procurement package has a Responsible Technical
Project Engineer (RTPE) assigned to it. The RTPE shall establish the responsibility structure
amongst members in the design team, except where independent V&V is performed.

The following sections describe the responsibilities for individuals involved in the software testing
activities.

2.1 Organizational Interfaces
The test results are reported to the Responsible Engineer (RE) and Responsible Engineering
Technical Lead (RETL) via various reports outlined in this document.

16

NEDO-33246

The Software Design Team interfaces to V&V Team under the Software Project Engineering. The
Verification and Validation Team (VVT) is responsible for performing and managing V&V
activities on the design and development and associated supporting documentation of the software-
based product's design process to ensure that the design meets the specified requirements, to confirm
the quality, safety, reliability, and performance of the design, and to ensure that the products meets
its intended use.

Any interface that the Software Design Team would have with vendor organizations that provide
software products to the project design organization but are not part of the software design
organization are through the software design organization. The generic categories describe
organizations that supply input to either software design organization or other organizations
contracted by the design organization to provide part of the design function. For independent
vendors, the SPE's BRT and SQA personnel shall audit that organization for compliance with the
intent of the SQAP [Ref 1.4.2(6)], the SMP [Ref 1.4.2(1)], and all other applicable procedures.

2.2 Management

The Responsible Engineering Technical Lead (RETL) has management responsibility for the
software testing of the set of DCIS software-based products assigned to him or her. The
management tasks described below may be delegated to persons within the project or vendor
organization but the management responsibility remains with the RETL.

2.2.1 Scheduling and Planning
The RTPE has the overall responsibility for scheduling and planning all software integration and test
tasks and activities. Each Test Team (RE, Module Testers, Integration Test Engineers, Validation
Test Designers, and Validation Testers) is responsible for the management, scheduling, and planning
activities for their respective sub-organization.

The schedule for software testing activities shall be integrated in the detailed Work Plans developed
for each work package as required by Section 6.1 of the Software Development Plan [Ref 1.4.2(4)].

2.2.2 Resources

Resource management includes the following elements:

I. Determination of the resources needed. Resources include:

a. Qualified test engineers,

b. Test facilities,

c. Test equipment and tools, and

d. Special procedures if required, for such as, security and access control.

2. Coordination of these resources for each level of software testing.

17

NEDO-33246

2.2.3 Training Needs

The training needs shall be assessed and necessary training shall be carried out to assure the
adequacy of the software testing process.

2.2.4 Reviews

The progress of testing and issues related to testing shall be evaluated on a regular basis, e.g., in
periodic staff meetings. Special attention shall be paid to circumstances that indicate deficiencies in
the testing process. Necessary corrective actions must be taken to improve the test process if a
deficiency is identified. This test plan shall be updated accordingly.

2.2.5 Contingency Planning

It shall be ensured to the extent practical that staffing plans can be reinforced if required. This may
require agreements in advance with other project teams or other organizations to acquire individuals
for temporary project assignment.

2.3 Roles and Responsibilities

2.3.1 Test Team

2.3.1.1 The Responsible Technical Project Engineer (RTPE)

The RTPE, as part of the Design Team, has technical responsibility for the software testing tasks
related to the product he or she is assigned responsibility. This implies responsibility for
coordination of all levels of software testing activities related to the product.

2.3.1.2 Responsible Engineer (RE)

The RE, within the Design Team, is responsible for tasks related to testing of the software item he or
she is assigned responsibility.

2.3.1.3 Software Module Tester

The Software Module Tester, within the Design Team, is responsible for designing, executing and
documenting the portion of the module test he or she is assigned.

2.3.1.4 Integration Test Engineer

The Integration Test Engineer, within the Design Team, is responsible for designing, executing and
documenting the integration test.

2.3.1.5 Validation Test Designer

The Component Validation Test Designer and the System Validation Test Designer, within the SPE,
are responsible for designing the component validation test and the system validation test
respectively.

18

NEDO-33246

2.3.1.6 Validation Tester

The Validation Tester, within the SPE, is responsible for executing and documenting the portion of
the validation test he or she has been assigned.

2.3.2 Software Integration and Test: Personnel Qualifications

The test team shall write and/or execute, in whole or portions, of the Integration and Module testing.
As such team members shall be required to know the system, design, and implementation techniques
(including tools) employed by the design organization.

3 Procedures
The software integration phase tasks include Module Test and Integration Test of new developed
software as well as modifications to any previously developed software. The Hardware/Software
Integration and System Integration tests are applied to all the software including Third Party/Vendor
Software, unmodified Previously Developed Software, and Commercial off the Shelf Software
(COTS). This section outlines strategy and guidelines for Software Integration, Hardware/Software
Integration, and System Integration tests.

3.1 Software Classifications

3.1.1 Third PartyNendor Software

Third Party/Vendor software can include libraries, functions, or vendor applications developed
expressly for the ESBWR project. The software design team prepares evaluation reports:

1. Evaluating technical, quality, and security requirements, and identifying critical
characteristics of commercial digital equipment to be used in safety systems

2. Identifying critical characteristics, accepting digital products from commercial vendors,
and dedicating them for use in nuclear safety-related applications

3. Ensuring the dedication and security basis is maintained to and remains valid over the
operating lifecycle of the equipment

3.1.2 Previously Developed Software

Previously developed software is software developed by GEEN prior to the ESBWR project. The
software design team prepares PDS evaluation reports:

1. Ensuring that any supplemental development or modification to the previously developed
software for the ESBWR project were done in accordance to applicable plans, procedures,
or processes

2. Stating that appropriate methods were identified, and instituted by the design team (e.g.,
auditing, inspection or independenti review) for verifying that original design remains intact
and that critical characteristics of the software have been properly considered for use in
digital products, from commercial vendors or from GEEN, that will be dedicated for use in
nuclear safety-related applications

19

NEDO-33246

3.1.3 Commercial off the Shelf Software (COTS)
Commercial off-the-shelf software can include libraries, functions, or complete applications that are
commercially available to anyone and are used in the software-based applications. The software
design team prepares COTS reports:

1. Determining technical and quality requirements, and identifying critical characteristics of
commercial digital equipment to be used in safety-related systems

2. Identifying critical characteristics, accepting digital products from commercial vendors,
and dedicating them for use in nuclear safety-related applications

3. Ensuring the dedication and security basis is maintained to and remains valid over the
operating lifecycle of the equipment

The examination shall be based on EPRI-Tl- 106439, Guidelines on Evaluation and Acceptance of
Commercial Grade Digital Equipment in Nuclear Safety Applications [Ref 1.4.3.1 (1)].

3.1.4 Support Software/Tool Acceptance
The design team prepares support software tool reports for all support software:

1. Evaluating that the tool is acceptable for the safety classification of the software it is to be
applied to

2. Submitting such reports exists from prior projects

3.2 General Software Test Guidelines

The following is the set of general test tasks to be followed at all levels of testing, from module tests
to validation (system integration) tests:

1. Test preparation,

2. Test design

3. Test execution, and

4. Test summary.

Tasks that are specific to a particular test are described in its respective section.

3.2.1 Test Preparation Guidelines

The purpose of test preparation is to assure that the required test activities can be properly carried
out within the project schedule. This is accomplished by identification of resources required to
support the development, execution, and the documentation of the test. The individual responsible
for test preparation shall carry out the following tasks:

1. Define the scope of the test and identify the software items to be tested,

20

NEDO-33246

2. Design a detailed test schedule aligned with the project plan,

3. Specify test prerequisites,

4. Specify the test environment,

5. Identify equipment, documentation, tools and instrumentation needed for the
accomplishment of the test,

6. Assign qualified2 test designers3(s) and tester(s),

7. Ensure the training needs are satisfied, and

8. Initiate the creation of the Test Report.

3.2.2 Test Design Guidelines

The purpose of this section is to expand on the test approach described in the SMP [Ref 1.4.2(1)], to
help assure completeness of the test. The test designer shall perform the following tasks, where
applicable:

1. Specify the software features to be tested for each software item,

2. Specify the software features not to be tested and justify why it will not to be tested (e.g.,
previously tested unmodified feature),

3. Determine the test approach and specify the test techniques to be used,

4. Specify the test cases,

5. Develop the test procedures and instructions, and

6. Define the pass criteria.

The following software test elements shall be considered when the test approach is determined:

1. White-box testing. White-box testing, also known as structural testing, is a test
methodology in which test steps are based on knowledge of the internal structure of the
software module, or a group of software modules. It may execute all the statements or
branches in the software module to check how the system is implemented. Methods to
be used for white-box testing include:

a. Branch testing: A testing technique to execute each outcome of

each decision point in a computer program.

2 See section SVVP [1.4.2(3)] Section 2.2.1 for qualification requirements.
3 Software Module Tester(s), Integration Test Engineer(s) and Validation Test Designers(s) depending on type of test

(see Section 2.3.1).

21

NEDO-33246

b. Path testing:

c. Statement testing:

A testing technique design to exercise every
independent execution paths through the
computer program.

A testing technique design to execute each
statement of a computer program.

2. Black-box testing. Black-box testing is a test methodology that uses requirements
external to a feature to derive test cases and test procedures. It verifies the end results at
the feature 1/0 level, but does not check on how the feature is realized, nor does it
assume that all statements related to the feature are executed. Methods to be used for
black-box testing include:

a. Module interface
testing:

b. Inter-face testing:

c. Regression testing:

d. Stress testing:

Testing performed to evaluate whether the values
along the interface are correct as they relate to
software modules that call them.

Testing performed to detect errors that may have
been introduced into the system because
misinterpretation of the interface specification.

Selective re-testing of a software item to verify
that modifications have not caused unintended
effects and that the software item subject to the
test still complies with its specified requirements

Testing performed to evaluate a software item at
or beyond the limits of its specified
requirements.

Reviews in the form of design walkthroughs described in the SVVP [Ref 1.4.2(3)], shall be carried
out during the test design process to evaluate the adequacy of the selected test strategy and to assure
that all test features are identified.

3.2.3 Test Execution Guidelines

The purpose of test execution is to expose the software test item to conditions that may reveal
potential implementation errors. Test execution includes the following tasks:

1. Obtain test items including relevant reference documentation,

2. Set the test environment,

3. Document the test results while executing the test procedures, and

22

NEDO-33246

4. Initiate the change control process' to resolve design errors encountered during the test.

3.2.4 Test Summary Guidelines
The purpose of the test summary is to facilitate review and evaluation of adequacy of the test. The
test summary shall include:

1. The test activities,

2. The test results,

3. V&V traceability, and

4. All test incidents and the associated resolutions.

The purpose of the V&V traceability summary is to demonstrate that every functional requirement,
performance requirement, and user interface requirement in a specification has been verified by the
test. A table with all requirements listed along references to appropriate sections in the test report is
an acceptable method to satisfy this purpose.

4 Methods
Methods, tools, software, and hardware used to perform software integration tests are described in
the following sections.

4.1 Software Testing

4.1.1 Module Testing
Module testing is verification of the internal structure of individual software modules, or a group of
modules, to ensure that each software function allocated in the Software Design Specification (SDS)
performs as intended.

Module test preparation must be completed before any other module test activity may commence.
Module test design, execution and summary however, may be carried out in an incremental manner.
In other words, a test step in a test procedure for a certain test case may be executed and documented
before the next test step or test case is defined.

For Quality Class Q software, module testing shall not be considered to be a primary element in the
debugging process. A Quality Class Q software module shall be debugged, code reviewed and
supposedly error free before it is subject to module testing.

Module tests for Quality Class Q functional software can be carried out using a debugger (e.g., in-
circuit-emulator) attached to an instrument with needed hardware and software modules installed
and operating. Module tests carried out in such an environment overlap integration tests since errors
associated with integration issues may be detected during the module test, which represents an
important echelon in the defense in depth approach used for Quality Q software.

4 The change control process is described in Section 3.5.1 of the SCMP [Ref 1.4.2(2)],

23

NEDO-33246

4.1.1.1 Module Test Preparation

The RE shall prepare the module test in accordance with the test preparation guidelines in Section
3.2.1.

The software items to be tested are:

1. New software modules,

2. Modified software modules,

3. Modules required to be tested as a result of a PDS Evaluation, and

4. Third party software modules.

If Quality Class N software is to be tested, the RE shall define the combinations of modules that
form the test items and also decide on the depth of the testing to be performed.

All performed test preparation activities shall be documented in the Module Test Report as described
in Section 4.2.1.2.

4.1.1.2 Module Test Design

The software module tester shall design the module test in accordance with the test design guidelines
in Section 3.2.2.

It is within the Module Test designer's responsibility to:

1. Identify the reference documentation to each test item, such as:

a. Software Design Specification (SDS),

b. Data Communication Protocol Specifications, and

c. For previously developed software:

i) Associated DRF(s) and module test report(s) and

ii) Relevant problem reports (e.g., NUMAC Problem Reports, Field Deviation
Disposition Requests, service requests from customer(s) due to equipment failure
or the result of non-confarmance) and the associated resolution reports.

Quality Class N Software

The software module test designer shall use the RE's directives from the module test preparation
regarding features to be tested and depth of testing to:

1. Identify the functions to be tested,

2. Define test cases necessary to achieve the required coverage,

24

NEDO-33246

3. Determine the appropriate application of white-box and black-box testing techniques to
achieve the required depth of testing, and

4. Define pass criterion for each test case.

The results of the test design activities performed shall be documented in the Module Test Report.

Quality Class Q Software

To assure the completeness of the test, i.e., that all software features and combinations of software
features and associated procedures, states, state transitions, and associated data characteristics
essential to the safety are included in the test, the module test designer shall:

1. Specify the features to be tested. The test features shall include:

a. All module interfaces,

b. All local data structures,

c. All unconditional processing paths,

d. All conditional processing paths, and

e. All loops.

2. Specify test cases and test procedures using the white-box testing techniques or
combinations of white-box testing ;md black-box testing techniques such that:

a. The module interfaces are tested to ensure that information is properly exchanged with
the module under normal and out of range (abnormal) conditions,

b. Every local data structure is validated and examined to ensure that its integrity is
maintained during an algorithm's entire life cycle,

c. All processing paths through the control structure are exercised to ensure that all
statements in a module have been executed at least once,

d. The boundary conditions are tested to ensure that the module operates properly at
boundaries established to limit data or restrict processing,

e. All security functions are tested to ensure that the software is secure and it protects
against undesired accesses,

f. Each loop is tested at its boundaries and within its operational bounds.

g. A diagnostic or error detection feature is tested with faults(s) or error(s) present to the
extent feasible to ensure proper detection and handling,

25

NEDO-33246

h. Processing time is measured, or verified against limits, for time critical software
modules, and

i. An algorithm used for the first time, and fully encompassed by the test item, is
validated unless it is validated elsewhere.

3. Specify pass criterion for each test case.

4. Ensure that every functional requirement in the SDS will be tested and that the test
procedure allows the test results to be documented in a traceable5 manner.

The module tester shall document the test design in the Module Test Data Sheet.

4.1.1.3 Module Test Execution

The software module tester shall execute the module test in accordance with the test execution
guidelines in Section 3.2.3 using the test procedures and test instructions developed during the
module test design.

The module tester shall document the result of the execution of each test step in the Module Test
Data Sheet (described in Section 4.2.1.1) and determine if the software feature passed or failed based
on the defined pass criteria.

If the test reveals an error in module design or implementation, the module tester shall document it
in the Module Test Data Sheet.

Regression testing may be performed on modified software modules if it is justified that such testing
does maintain the integrity of the software item. The software module tester shall document the
justification in the Module Test Data Sheet.

4.1.1.4 Module Test Summary

The module tester shall summarize all module test activities in accordance with the guidelines in
Section 3.2.4.

The summary shall be documented in the Module Test Report as described in Section 4.2.1.2 below.

4.1.2 Integration Testing

Integration testing is an orderly progression of testing to uncover errors associated with software and
hardware interfaces. Integration testing is performed to verify that all software modules perform as
intended after being installed in the instrument and that the instrument conforms to the requirements
in the IPS and the User's Manual.

Integration test preparation must be completed before any other integration test activity may
commence. Integration test design, execution and summary however, may be carried out in an
incremental manner. In other words, a test step in a test procedure for a certain test case may be
executed and documented before the next test step or test case is defined.

Traceable manner is required to facilitate the V&V traceability analysis to be performed in the module test summary.

26

NEDO-33246

Some of the integration test objectives are similar to the validation test objectives
(hardware/software integration) described in Section 4.1.3.2.1 below. The difference is in the way
these tests are performed. An engineer familiar with the detailed design using white-box and
combinations of white-box and black-box testing techniques shall carry out integration testing, while
component validation shall be carried out by an individual less involved in the design using black-
box techniques only.

Like the overlap between module testing and integration testing, the overlap between integration
testing and validation testing represents an important echelon in the defense in depth approach.

4.1.2.1 Integration Test Preparation

The RE shall prepare the integration test in accordance with the test preparation guidelines in
Section 3.2.1.

The software item to be tested is:

1. Baseline source code from the coding phase

The RE shall specify whether the integration test shall be carried out in an incremental or non-
incremental manner. Incremental testing involves testing a small part of the software package and
then incrementing the configuration of the software package under test by adding one component at
a time and testing after each increment.

Non-incremental testing involves assembling all components of the software package and testing
them all at once.

There are two (2) ways of carrying out incremental testing.

* Top-down testing: Top-clown testing is a process of integrating the
Application Software Package under test, progressively,
from the top (i.e., main control module) to the bottom
(i.e., lower level software modules) during testing to
complete. the software package.

* Bottom-up testing: Bottom-up testing is the process of incrementing the
Application Software Package under test, progressively,
from the bottom to the top.

Selection of the test method depends on the characteristic of the software and the quality assurance
requirement classification (Quality Class Q or N). If Quality Class N software is to be tested then
the RE shall also provide guidelines for the integration test designer how to achieve a depth of
testing commensurate with the depth of testing aimed at during the corresponding module test. The
selected test method and possible guidelines shall be documented in the Integration Test Report.

The results of the test preparation activities performed shall be documented in the Integration Test
Report (described in Section 4.2.2.4).

27

NEDO-33246

4.1.2.2 Integration Test Design

The Integration Test Engineer shall design the integration test in accordance with the test design
guidelines in Section 3.2.2. The following specific instructions shall be followed at integration test
design for Quality Class Q software. For Quality Class N software, however, these instructions may
be modified by the guidelines provided by the RE (see Integration Test Preparation above).

To assure the completeness of the integration test, the Integration Test Engineer shall:

1. Observe the test method and guidelines specified by the RE during the integration
test preparation.

2. Specify system build method (Section 4.2.2.1 provides details),

3. Identify the entities to be tested. The test entities include:

a. S1W architecture: It shall be verified that the operating system controls
the application as specified and that the tasks interact
properly.

b. Interfaces: The integration test shall be designed to uncover the

following interface related errors:

i) Module I/O arguments mismatch

ii) Improper global data access,

iii) Stack mismanagement,

iv) Incorrect interrupt or exception handling, and

v) Incorrect external information interchange
(through hardwired I/O, data links and user
interface).

c. Access: Testing shall be performed to verify the protection

against unauthorized and unintended access to the
system. Security tests are performed to help ensure
that the software does not allow unauthorized and
unintended access.

4. Specify test cases and test p rocedures using combinations of white-box and black-
box testing techniques. Each feature shall be evaluated for test relative

28

NEDO-33246

a. Range: Interfaces shall be range tested to ensure that values
are properly passed through the instrument's inputs
and outputs over the entire process range and that
values are limited at the range boundaries as specified.

b. Performance:

c. Stress:

d. Security:

The feature shall be tested to ensure that speed and
accuracy requirements are met.

Stress testing shall be performed to ensure that the
instrument operates under abnormal conditions.

Testing shall be performed to verify the protection
against unauthorized and unintended modification of
user settable parameters is implemented as specified.
Security tests are performed to help ensure the
robustness of the instrument.

e. Screen:

f Help system:

g. Error messages:

h. Self-supervision:

Screen testing shall be performed to help ensure the
user interface is implemented correctly. As a
nminimum, it shall include all functionality necessary
to navigate trough the screens under all possible
conditions.

Testing shall be performed to ensure that the help
system generates the appropriate messages when help
is sought from all possible approaches.

Every condition that will initiate the software to
generate an error message shall be identified. Testing
shall be performed to ensure the appropriateness and
understandability these messages.

The self-supervision functions shall be tested to the
extent feasible to ensure proper processing upon
detection of faults.

5. Specify pass criteria based on the requirements specified in the Instrument
Performance Specification ([PS) and the User's Manual, and

6. Ensure that every functional and performance requirement in the IPS, User's
Manual, and the SDS6 will be tested and that the test procedure allows the test results
to be documented in a traceable7 manner.

6 Requirements that were tested during the module test and are listed in the V&V traceability table in the Module Test
Report do not need to be re-tested.

29

NEDO-33246

The Integration Test Engineer shall document the test design in the Integration Test Data Sheet.

4.1.2.3 Integration Test Execution

The Integration Test Engineer shall execute the integration test in accordance with the test execution
guidelines in Section 3.2.3 using the test procedures and test instructions developed during the
integration test design.

The Integration Test Engineer shall document the execution of each test step in the Integration Test
Data Sheet (described in Section 4.2.2.2) and determine if the software feature passed or failed based
on the defined pass criteria.

If the test reveals an error, the Integration Test Engineer shall document it in the Integration Test
Data Sheet and add a tally mark in the appropriate section of the errors tally sheet (described in
Section 4.2.2.3). The tally marking may be postponed to the Integration Test Summary.

Regression test may be performed on modified software modules if it is justified that such testing
does maintain the integrity of the software item. The Integration Test Engineer shall document the
justification in the Integration Test Data Sheet.

4.1.2.4 Integration Test Summary

The Integration Test Engineer shall summarize the integration test activities in accordance with the
guidelines in Section 3.2.4 and document the result in the Integration Test Report. The Integration
Test Engineer shall also attach the error tally sheet to the Integration Test Report.

4.1.3 Validation Testing

Validation Testing relies entirely on black-box testing techniques and is executed using formally
prepared test procedures. The purpose of validation testing is to demonstrate that:

1. Each individual instrument conforms to all functional and performance requirements
specified in the IPS. This is referred to as instrument level validation, and

2. The software-based product is operational and conforms to all functional and performance
requirements specified in the HSS. This is referred to as system level validation.

Validation testing should be carried out on production units. If this is not feasible, prototype units
may be used with subsequent verification of equivalency between those and the production units.

4.1.3.1 Validation Test Preparation

The RE's and the RTPE shall follow the guidelines in Section 3.2.1 to prepare the instrument level
validation tests and system validation test respectively.

The software items subject to validation testing are:

1. Individual baseline integrated Application Software Packages for all software-based
instruments in the system.

7 Traceable manner is required to facilitate the traceability analysis to be performed in the integration test summary.

30

NEDO-33246

2. Baseline integrated System Software Package, i.e., Application Software Packages for all
software-based instruments combined into a software-based product.

In addition to the test preparation tasks to be performed, RTPE shall also coordinate instrument level
and system level validation testing.

The RE's and the RTPE shall also initiate the development of the Validation Test Report for each
instrument and software-based product respectively.

4.1.3.2 Validation Test Design

The Instrument Level Validation Test Designers and the System Level Validation Test Designer are
responsible for the development of the Validation Test Procedures and Test Cases Specifications
(see Section 4.2.3.1 for details) for the instruments and the software-based product respectively.

A Validation Test Procedures and Test Cases Specification is a formal test document that has to be
reviewed and approved in advance of the test.

4.1.3.2.1 Instrument Level Validation Test Design

The Instrument Level Validation Test Designer shall design the instrument validation test in
accordance with the test design guidelines in Section 4.1.2.2.

In addition to this the Instrument Level Validation Test Designer shall ensure that the Instrument
Level Validation Test Procedures and Test Cases Specification is designed such that:

1. It can be demonstrated that the instrument meets all functional and performance
requirements in the IPS,

2. It can be demonstrated that the instrument performs consistently with the
information in the User's M;mual, and

3. Ensure that the test procedure allows the test results to be documented in a traceable
manner.

4.1.3.2.2 System Level Validation Test Design

The System Level Validation Designer shall design the system validation test in accordance with the
test design guidelines in Section 4.1.2.2.

In addition to this the System Level Validation Test Designer shall:

1. Specify the configuration of the system, and

2. Ensure that the System Level Validation Test Procedures and Test Cases
Specification is designed such that:

a. It can be demonstrated that the system meets all functional and performance
requirements in the HSS,

31

NEDO-33246

b. It can be demonstrated that the system performs consistently with the
information in the User's Manuals, and

c. Ensure that the test procedure allows the test results to be documented in a
traceable manner.

4.1.3.3 Validation Test Execution

The validation tester(s) shall execute the validation test accordance with the procedures defined in
the Validation Test Procedures and Test Cases Specification (see Section 4.2.3.1).

The validation tester(s) shall create an anomaly list and a detailed anomaly report if a deviation from
a specification is found during validation testing.

The test results shall be documented in the space provided in the Validation Test Procedures and
Test Cases Specification and any generated anomaly documentation shall be attached to the
Validation Test Report (see Section 4.2.3.2).

4.1.3.4 Validation Test Summary

The RE and the RTPE shall summarize validation test activities, for component and system
validation respectively, in accordance with the guidelines in Section 3.2.4. The summary shall be
documented in the Validation Test Report

4.2 Documentation and Problem Reporting

This section specifies requirements for the documentation generated during the testing governed by
this plan. Additional information about software test documentation may be found in IEEE
829[1.4.3.2(5)].

Please refer to the SVVP [1.4.2(3)] for document verification requirements and the SCMP [1.4.2 (2)]
for document repository.

4.2.1 Module Testing

4.2.1.1 Module Test Data Sheet

Test results for each software module shall be documented on individual Module Test Data Sheets.

For Quality Class N software, the test results for each software item shall be documented on
individual Module Test Data Sheets to a depth at the discretion of the module tester. However, the
results must be documented in sufficient detail to allow the reviewer to judge the adequacy of the
test.

A sample form of a Module Test Data Sheet is shown in Appendix B. 1. It is not required that this
format is followed, provided that the following information is included:

1. The identity of the software module tester with signature and date fields,

2. Test item identification:

32

NEDO-33246

a. Module name including revision level,

b. Software package name including revision level, and

c. Quality Assurance requirement classification (i.e., Quality Class Q or N).

3. Test design, execution activities, and results (described in Section 4.1.1.3)

a. Test cases and pass criteria,

b. Test procedures and test instructions,

c. For Quality Class Q modules: the execution of each test step,

d. For Quality Class N items: a summary of the test execution,

e. Findings,

f. Justification of regression testing if such testing is used, and

g. Any incidents pertinent to the test.

All Module Test Data Sheets for the module test shall be attached to the Module Test Report.

4.2.1.2 Module Test Report

The Module Test Report shall document the test activities and test summary to demonstrate that the
required module testing activities have been completed. A Module Test Report shall include the
following information:

1. Module Test Preparation (details in Section 4.1.1.1),

a. Scope of the module test,

b. Identity of the individual responsible for the test preparation (name, signature
and date),

c. Detailed module test schedule,

d. Test prerequisites,

e. Equipment, tools and instrumentation used to accomplish the testing, and

f. Module test guidelines and test item definitions (for Quality Class N)

2. Module Test Design (details in Section 4.1.1.2),

a. Software features subject to test,

33

NEDO-33246

b. Software features not subject to test,

c. Test approach and test techniques

d. Test cases, test procedures and test instructions, and

e. The pass criteria

Item 2c, 2d, and 2e may be references to the module test data sheets below.

3. Module Test Execution (details Section 4.1.1.3),

a. The individual Module Test Data sheets (Section 4.2.1. 1),

b. Testing logs if used.

4. Module Test Summary (details in Section 4.1.1.4),

a. Code review data sheets (see SMP [Ref 1.4.2(1)]]).

b. Summary of the findings and their resolutions.

c. V&V traceability analysis

The Module Test Report shall also include the following information:

1. The identity of the individual responsible for approving this report (name, signature
and date),

2. A verification statement signed and dated by the verifier,

3. A reference to this test plan.

4.2.2 Integration Testing

4.2.2.1 Preliminary Build Release Description (BRD)

A preliminary8 Build Release Description (BRD) shall be prepared for each instrument to
describe the actual construction of the Application Software Package from packages
and/or libraries. The preliminary BRD shall be tailored to the particular development
system used. The BRD shall include the following information:

1. Identity of the Integration Test Engineer

2. Identity of instrument and the project name,

8 The final Build Release Description will be issued together with the software at completion of the Validation Test
phase.

34

NEDO-33246

3. All required software programs, including source files, command files, data and
library files, that are part of the build and their revision level,

4. The requirement specification documents (i.e., IPS and User's Manual),

5. Procedure to build the software or make file name,

6. The location in the configuration management system where the identified files are
stored,

7. Tools used in the build activity, and

8. A verification statement signed and dated by the verifier.

The BRD shall be attached to the Integration Test Report.

4.2.2.2 Integration Test Data Sheet

Individual Integration Test Data Sheets shall be prepared for each feature tested.

For Quality Class N software, the depth of documentation is at the discretion of the
Integration Test Engineer. However, the results must be documented in sufficient detail
to allow the reviewer to judge the adequacy of test execution.

A sample form of an Integration Test Data Sheet is shown in Appendix B.2. It is not
required that this format is followed, provided that the following information is included:

1. The identity of the Integration Test Engineer with signature and date fields,

2. Test feature identification:

a. Name or a description of the feature

b. Software package name including revision level, and

c. Quality Assurance requirement classification (i.e., Quality Class Q or N).

3. Test design, execution activities, and results (described in Section 4.1.2.3)

a. Test cases and pass criteria,

b. Test procedures and test instructions,

c. For Quality Class Q features: the execution of each test step,

d. For Quality Class N features: a summary of the test execution,

e. Findings,

f. Justification of regression testing if such testing is used, and

35

NEDO-33246

g. Any incidents pertinent to the test.

The Integration Test Data Sheet shall be included as part of the Integration Test Report.

4.2.2.3 Errors Tally Sheet
The errors tally sheet provides means for detecting significant deficiencies in the code development
process. This sheet shall be prepared for each integration test and may be filled out during the
integration test execution or at the integration test summary.

The following classes of errors have been defined and shall be counted to facilitate evaluation of the
performance of the code development process.

Declaration, definition, and Conflicts between actual use and intended use of
resources reference errors: (e.g., constants, variables, functions etc.).

Control flow errors: Errors in the inter-module calling structure.

Computational errors: Errors causing analysis faults.

Task interaction errors: Errors in software architecture implementation.

Other errors: Errors, which are not in the classes above.

A sample form of an Errors Tally Sheet is shown in Appendix B.3. It is not required that
this format is followed, provided that the error types above are included.

4.2.2.4 Integration Test Report
The Integration Test Report shall document the test activities and test summary to
demonstrate that the required integration testing activities have been completed.

An Integration Test Report shall include the following information:

1. Integration Test Preparation (details in Section 4.1.2.1),

a. Scope of the integration test,

b. Identity of the individual responsible for the test preparation (name, signature
and date),

c. Detailed integration test schedule,

d. Test prerequisites,

e. Equipment, tools and instrumentation used to accomplish the testing, and

f. Integration test guidelines

2. Integration Test design (details in Section 4.1.2.2),

36

NEDO-33246

a. Software features subject to test,

b. Software features not subject to test,

c. Test approach and test techniques

d. Test cases, test procedures and test instructions, and

e. The pass criteria

f. Preliminary Build Release Description (Section 4.2.2.1), and

Item 2c, 2d, and 2e may be references to the integration test data sheets below.

3. Test execution (details Section 4.1.2.3),

a. The individual Integration Test Data sheets (Section 4.2.2.2),

b. Testing logs if used.

4. Test summary (details in Section 4.1.2.4),

a. Summary of the findings and their resolutions,

b. The errors tally sheet (Section 4.2.2.3)

c. V&V traceability analysis

The Integration Test Report shall be also include the following information:

1. The identity of the individual responsible for approving this report (name, signature
and date),

2. An independent verifier's statement of conformance signed and dated,

3. A reference to this test plan.

4.2.3 Validation Testing

4.2.3.1 Validation Test Procedures and Test Cases Specification

The Validation Test Procedures and Test Cases Specification shall include the following
information:

1. Description of the purpose of each test case and the associated procedure(s),

2. Methods for logging observations.

3. Description of each test procedure in detail.

37

NEDO-33246

Each procedure shall contain information about:

a. What to document before the execution of a test case, e.g., date, time of day,
responsible tester etc.

b. How to set up the equipment and the environment (test configuration) for the
test case,

c. Actions necessary to deal with anomalous events that may occur during test
execution.

d. Prerequisites and actions for each test step,

i) Conditions to be met before proceeding with the test step

ii) How to make a measurement (e.g., response time) if required,

iii) What to document

Each procedure may also contain information about:

a. Steps necessary to suspend (shut down) testing in the middle of a procedure,

b. Identify possible restart points after a shut down and describe the actions
required to restart the procedure at each of these points.

The Validation Test Procedures and Test Cases Specification shall provide space for documentation
of the test result for each test step and a reference to an anomaly report.

4.2.3.2 Validation Test Report

The Validation Test Report shall document the test activities and the test summary to demonstrate
that the required validation testing activities have been completed.

A Validation Test Report Test Report shall include the following information:

1. Test Preparation (Section 4.1.3. 1),

a. Scope of the validation test,

b. Detailed validation test schedule,

c. Test Environment, such as system configuration,

d. Equipment, tools and instrumentation used to accomplish the testing,

e. Identity of the responsible test designer (name, signature and date), and

f. Identity of the responsible tester (name, signature and date).

38

NEDO-33246

2. Test design (Section 4.1.3.2),

a. A reference to the Validation Test Procedures and Test Cases Specification
(details in Section 4.2.3.1).

3. Test execution (Section 4.1.3.3),

a. The Validation Test results (a reference to the Validation Test Procedures and
Test Cases Specification),

b. Testing logs if used.

4. Test summary (Section 4.1.3.4),

a. Summary of test activities,

b. Summary of the test results, including all resolved incidents and their
resolutions,

c. Traceability analysis (e.g., traceability table).

5. The identity of the individual responsible for approving this report (name, signature
and date),

6. A verification statement signed and dated by the verifier, and

7. A reference to this test plan.

4.3 Approvals

All test documentation produced must be approved by the RETL.

4.4 Test Deliverables

The following items constitute the test deliverables:

1. Module Test Reports,

2. Integration Test Reports,

3. Validation Test Procedures and Test Cases Specifications,

4. Validation Test Reports, and

5. Test code and data supporting the above reports.

39

NEDO-33246

4.5 Measurement & Use of Metrics
The test coverage measurements and metrics should be designed to measure performance of
software in both abnormal conditions as well as mishaps. These measurements and metrics are
defined in the Software Verification and Validation Plan (SVVP [Ref 1.4.2(3)]).

4.6 Acceptable Defect Levels

Acceptable defect level targets shall be established for various phases of software integration. The
number of acceptable defects should be lower for Quality Class Q software compared to Quality
Class N software. A significant effort shall be expanded on Quality Class Q software and this effort
shall not be diluted on nonsafety-related (Quality Class N) software. The acceptable defect level
targets should be lower in each subsequent software integration phase. The number of acceptable
defects should be lower during integration test phase compared to module test phase. The number of
acceptable defects should be lower during validation test phase compared to integration test phase
and should practically reach zero. If the number of defects is not lower in each subsequent phase, the
software development process should be re-examined to find the causes for poor software quality
and adjusted to fix the problems.

40

NEDO-33246

Appendix A: Figures

A.1 Software Testing Responsibility Structure

RETL: Design team SPE
Responsible Engineering Technical Lead * Resjonsible Engineers

RTPE; * Software Module Testers Validation Test Engineers
Responsible Technical Project Engineer * Integration Test Engineers

Figure 4-1: Software Testing Responsibility Structure

Quality Class Q Only

Figure 4-2: Software Product Related Testing Responsibility Structure

41

NEDO-33246

Appendix B: Report Format

B.1 Module Test Data Sheet (example)

42

NEDO-33246

B.2 Integration Test Data Sheet (example)

INTEGRATION TEST DATA SHEET DRF#

Page: of

Responsible Engineer: Page: of

Integration Test Engineer: jSign: Date:

Application S/W Package: Rev: Quality Class:

Location: Instrument:

Test Entity:

Test Description I Finding I Status

1 I

+ 4

lI

.1- 4

*1- I

*1- *

4. f I

43

NEDO-33246

B.3 Errors Tally Sheet (example)

INTEGRATION ERRORS TALLY SHEET DRF#

Page: 1 of 1

Application Software Package: Revision:

Instrument: Quality Class:

Total Errors Error Type ITP
Major Minor SECTION

0 0 Declaration, Definition and Reference Errors
0 0 Control Flow Errors
0 0 Computational Errors
0 0 Task Interaction Errors
0 0 Other Errors
0 0 Totals

Notes

44

