Public Meeting – NRC & DOE				
Location – NRC Headquarters, Rockville, MD				
One White Flint North, Room O13-B4				
Date	Time			
Wednesday	9:00 a.m. – 2:00 p.m.			
February 1, 2006				

Session Time	Торіс	
	Registration at One White Flint North, Room O13-B4	
9:00 a.m.	Welcome and Introductions	NRC
9:10 a.m.	Discussion of RAI 17 on implementation of the draft NRC guidance on concentration averaging to determine TFF final waste form (Slides 2—13)	DOE/NRC
9:40 a.m.	Discussion and clarification of RAI 2 related to tank inventories (Slides 14—15)	DOE/NRC
10:00 a.m.	Discussion and clarification of RAI 5 related to tank and tank system cleaning effectiveness (Slides 16—19)	DOE/NRC
10:30 a.m.	Break	
10:45 a.m.	Discussion and clarification of assumptions and information related to the modeling presented in the TFF Performance Assessment (RAIs 10—15) (Slides 20—30)	DOE/NRC
12:00 p.m.	Break	
1:00 p.m.	Discussion and clarification of sandpad inventories and modeling (RAIs 1, 3, 4) (Slides 31—41)	DOE/NRC
1:45 p.m.	Public Comments	Public
2:00 p.m.	Adjourn	

RAI 17 Classification

Cross-sectional view of 300,000-gal tank.

Cross-sectional view of typical tank and vault. Calculations are based on dimensions of the smallest tank vault and the highest detected amount of radioactivity (from Tank WM-182).

Placements 1 and 2

Grouting Mock-up Results

U.S. Department of Energy Idaho Operations Office

RAI 2

Idaho Cleanup Project

Nuclide	WM-183 post-cleaning solid data (2005) (Ci/kg)	WM-183 post-cleaning solid data (2003) (Ci/kg)	WM-182 Solid (Ci/kg)	WM-183 Solids (Ci/kg)	WM-188 Solids (Ci/kg)	WM-188 Solids (Ci/kg)	WM-188 Solids (Ci/kg)	WM-188 Solids (Ci/kg)
²⁴¹ Am	3.35E-04	3.40E-04	8.50E-04	2.50E-04	1.50E-04	2.20E-04	2.70E-04	
¹³⁷ Cs	7.50E-01	1.20E+00	4.20E-01	8.80E-01	1.30E+00	2.70E+00	2.20E+00	3.70E+00
¹⁵⁴ Eu	9.10E-05	7.90E-05	2.30E-04	7.90E-04				
³Н			1.20E-05	3.40E-05				
⁹⁴ Nb		1.70E-04			8.10E-04	6.30E-03	2.00E-03	5.60E-03
²³⁷ Np	1.00E-05		1.70E-06	1.80E-06	4.70E-06	2.20E-06	1.60E-06	
²³⁸ Pu	9.70E-03	1.00E-02	1.90E-02	4.00E-03	6.90E-03	9.10E-03	7.10E-03	
²³⁹ Pu	3.20E-03	2.80E-03	1.50E-03	1.30E-03	3.30E-04	5.30E-04	4.30E-04	
⁹⁰ Sr	1.50E-02	2.40E-02	2.30E-01	1.90E-01	5.00E+00	8.00E+00	3.50E+00	
⁹⁹ Tc	1.10E-04	6.20E-04	2.60E-03		5.30E-03	3.80E-03	4.40E-03	
²³⁴ U		3.00E-06		3.40E-06				
¹²⁹	8.40E-07	6.20E-07						
¹⁴ C	2.20E-05							
⁶³ Ni	2.00E-04							

No analytical data is decayed

RAI 5

Idaho Cleanup Project

RAIs 10-15

North-south cross-section location (Anderson 1991)

North-south cross-section (Anderson 1991)

East-west cross-section location (Anderson 1991)

East-west cross-section (Anderson 1991)

Model grid superimposed on geologic cross-section for groundwater model (from the TFF Performance Assessment)

Basalt moisture curves (from the TFF Performance Assessment)

Constitutive relationship curves for three representations of fracture basalt

U.S. Department of Energy Idaho Operations Office

Idaho Cleanup Project

Groundwater modeling domain showing ⁹⁹Tc concentrations and location of maximum concentrations (all concentrations based on a unit source inventory) (from the TFF Performance Assessment)

U.S. Department of Energy Idaho Operations Office

Potentiometric map of the regional basalt aquifer (from the TFF Composite Analysis)

INTEC well locations (ICP/EXT-04-00244)

RAIs 1, 3, 4 Sandpads

Nuclide	Highest	Concentration	Source	Number of	Rank of
	Concentration	in WM-185		Detections	Tank
	(pCi/L)	(pCi/L)			Vault
					WM-185
⁶³ Ni	1.26E+05	2.83E+04	WM-183	12(15)	4
²⁴¹ Pu	7.66E+05	8.77E+04	WM-186	11(15)	2
²⁴¹ Am	6.62E+04	3.84E+04	WM-183	13 (15)	2
²³⁹ Pu	4.74E+05	4.74E+05	WM-185	13 (15)	1
²³⁸ Pu	5.32E+06	5.32E+06	WM-185	13 (15)	1
²³⁷ Np	1.01E+03	ND	WM-182	7 (15)	ND
²³⁴ U	2.30E+03	ND	WM-183	7 (15)	ND
¹⁵⁴ Eu	4.53E+05	1.00E+05	WM-186	8 (15)	3
¹³⁷ Cs	7.32E+08	1.64E+08	WM-183	15 (15)	3
¹²⁹	4.88E+02	1.96E+02	WM-183	13 (15)	2
⁹⁹ Tc	4.18E+04	1.08E+04	WM-183	11 (15)	3
⁹⁰ Sr	9.62E+07	3.40E+07	WM-184	14 (15)	4
³ H	5.66E+04	1.88E+04	WM-183	12 (15)	2

Idaho Cleanup Project

U.S. Department of Energy Idaho Operations Office

Idaho Cleanup Project

U.S. Department of Energy Idaho Operations Office