ENCLOSURE 2

TENNESSEE VALLEY AUTHORITY BROWNS FERRY NUCLEAR PLANT (BFN) UNIT 1

RESPONSE TO NRC REQUEST FOR ADDITIONAL INFORMATION INDIVIDUAL PLANT EXAMINATION FOR EXTERNAL EVENTS

TVA CALCULATION NO. CD-Q0000-940339,

"CALCULATION OF BASIC PARAMETERS FOR A46 AND INDIVIDUAL PLANT EXAMINATION OF EXTERNAL EVENTS (IPEEE) SEISMIC PROGRAM,"

REV. 1, JUNE 14, 1996

(SEE ATTACHED)

QA, Red	cord		CULATIONS						
TITLE: CALCULATION OF BA	XTERNAL E	VENTS (IPEEE)	SEISMIC PROC	BRAM BFN Unit 0					
PREPARING ORGANIZATIO		KEY NOUNS (Consult RIMS DESCRIPTORS LIST) A46, IPEEE, SEISMIC, EQUIPMENT							
BRANCH/PROJECT IDENTIFIE		e these calculation on number is filled (for RIMS' use	irı.	parers must ensure that the original (R0) RIMS					
CD-Q0000-940339	R0			R1 4 '95 1016 115					
APPLICABLE DESIGN DOCUMENT	s R1		6	R14 960617 101					
BFN-50-C-7102	R2								
SAR SECTION(S) UNID SYSTEM	/(S) R3								
Revision 0	R1	R2		Safety-related? Yes 🛛 No 🗌					
DCN No. (or indicate N/A)N/A	N/A	1		Statement of Problem					
Prepared PARTHA S. GHOSAL P. S. Short	P.S. Quer	PN		This calculation addresses the basis for certain parameters used for A46 and IPEEE study for cafe					
Reviewed	Ju Beas J. W. BEASO	N		for A46 and IPEEE study for safe shutdown equipments. Calculations are based on					
Approved JOHN B. GLASS	g. Vale to			guidelines given in GIP and IPEEE documents.					
Date 10-16-95	14 / 3 ~ 9	6							
List all pages added by this rev	SEE								
List all pages deleted by this rev	REV								
List all pages changed by this re-	Lou								
Calculation Revision: (A)Entire Calculation (B)Selected Pages	A			ORIGINAL					
Abstract									
These calculations contain ur	nverified assi	umptions that mu	st be verified late	er.Yes 🗋 No 🖾					
	used for for BFNP	A46 and IPEE	•	rs (e.g. "Effective Grade", Seismic seismic qualification of safe					
REV. 1: ABSTRACT TotAL NO			rucj						
				COAD3 PROCESSING					
 Microfilm and store calcul Microfilm and return calcu 			er. EDB AN	ION CONTROL NEX C BFN Microfilm and destroy. Address: BFN-EDB					

¢

----- -

	SHEET 2	OF
ULATION OF BASIC PARAMETERS FOR A46 AND INDIVIDUAL PLANT ION OF EXTERNAL EVENTS (IPEEE) SEISMIC PROGRAM	REVISIO	
DESCRIPTION OF REVISION		Date Approve
Original issue		10-16-9
Calculation revised to incorporate new information.		
Pages added by this revision: 3.1		
Pages changed by this revision: 1, 2, 9, 49		
Pages deleted by this revision: none		
•		
· · ·		
	ON OF EXTERNAL EVENTS (IPEEE) SEISMIC PROGRAM DESCRIPTION OF REVISION Original issue Calculation revised to incorporate new information. Pages added by this revision: 3.1 Pages changed by this revision: 1, 2, 9, 49 Pages deleted by this revision: none	ULATION OF BASIC PARAMETERS FOR A46 AND INDIVIDUAL PLANT ION OF EXTERNAL EVENTS (IPEEE) SEISMIC PROGRAM REVISIC CD-Q0000 DESCRIPTION OF REVISION Original issue Calculation revised to incorporate new information. Pages added by this revision: 3.1 Pages changed by this revision: 1, 2, 9, 49 Pages deleted by this revision: none

- -

.

c

SHEET	3_(O	F
-------	-----	---	---

. . .

CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM

CD-Q0000-940339	0	
Calculation No.	Revision	
Method of design verificatio	n (independent review) used (check method use	ed):
 Design Review Alternate Calculation Qualification Test 	X	
Comments:		
Calculation CD-Q0000-9403	39 Rev.0 has been independently reviewed and	
design verified and is found	t technically adequate in context and analytical	
methodology based on acc	epted engineering practices.	
• •		
	<u></u>	
•	J.O. Dizen	10/15/95
	Design Verifier (Independent Reviewer)	Date

CALCULATION DESIGN VERIFICATION (INDEPENDENT REVIEW) FORM

Calculation CD-Q0000-940339 R1

Method of design verification (independent review) used (check method used):

Design Review

□ Alternate Calculation

□ Qualification Test

Justification (explain below):

- <u>Method 1</u>: In the design review method, justify the technical adequacy of the calculation and explain how the adequacy was verified (calculation is similar to another, based on accepted handbook methods, appropriate sensitivity studies included for confidence, etc.).
- <u>Method 2</u>: In the alternate calculation method, identify the pages where the alternate calculation has been included in the calculation package and explain why this method is adequate.
- <u>Method 3</u>: In the qualification test method, identify the QA documented source(s) where testing adequately demonstrates the adequacy of this calculation and explain.

The above calculation revision so noted has been reviewed by the Design Review Methodology and has been determined to be technically adequate based on the design input information contained herein using accepted handbook and/or computer applications and sound engineering practices and techniques.

Independent Reviewer)

<u>5-31-9</u>6 Date

This sheet added by Revision <u>1</u>

7.4

SHEET <u>4</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>6</u> <u>M</u> DATE <u>10</u> <u>B</u> CHKD <u>0</u> DATE <u>10</u> <u>B</u>

TABLE OF CONTENTS PAGE ITEM **CALCULATION COVER SHEET** 1 **REVISION LOG** 2 INDEPENDENT REVIEW FORM 3 **TABLE OF CONTENTS** 4 1.0 PURPOSE 5 2.0 ASSUMPTION 5 3.0 REFERENCE 5 4.0 DESIGN INPUT DATA 6 5.0 **DOCUMENTATION OF INPUTS** 6 6.0 COMPUTATIONS 7 6.1 EFFECTIVE GRADE DETERMINATION 8 6.2 COMPARING SEISMIC CAPACITY TO SEISMIC DEMAND 11 6.3 IPEEE (SEISMIC) STUDY 32 6.3.1 SCREENING PROCESS 32 6.3.2 CALCULATION OF SEISMIC MARGIN EARTHQUAKE 38 6.3.3 IPEEE DEMAND 49 6.3.4 COMBINED SCALE FACTOR FOR IPEEE 49 SUMMARY OF RESULTS AND CONCLUSION 7.0 51 8.0 PREREQUISITES AND LIMITING CONDITIONS 51 ATTACHMENTS 9.0 (ATTACHMENT A) 52 **10.0 APPENDIXES** N/A

SHEET <u>5</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP<u>est</u> DATE <u>- 19-95</u> CHKD <u>b</u> DATE <u>19/15</u>

1.0 PURPOSE

To calculate basic parameters, which are used in relation to evaluate seismic capacity and seismic demand for qualification of safe shutdown equipments by A46 and IPEEE methodology.

Parameters which have been calculated are:

- a) Effective Grade of different structures of BFNP
- b) Comparing Equipment Seismic Capacity to Seismic Demand and locate exceedence for A46.
- c) Seismic Margin Earthquake (SME) and scale factors to determine higher IPEEE demand.

2.0 ASSUMPTION

There is no unverified assumption in this calculation. All relevant assumptions are documented in the body of the calculation.

3.0 REFERENCES

- 3.1) Generic Implementation Procedure (GIP) For Seismic Verification Of Nuclear Plant Equipment Revision 2.
- 3.2) A Methodology For Assessment Of Nuclear Power Plant Seismic Margin (Revision 1) - EPRI NP-6041-SL.
- 3.3) Browns Ferry Nuclear Plant Master Response Spectra (MARS) Report For Seismic Class I Structures CEB 88-05-C R1.
- 3.4) Browns Ferry Nuclear Plant Final Safety Analysis Report (FSAR) Amendment 11.
- 3.5) Regulatory Guide 1.60 "Design Response Spectra for Seismic Design of Nuclear Power Plants".
- 3.6) NUREG/CR-0098 "Development of Criteria for Seismic Review of Selected Nuclear Power Plants".
- 3.7) Drawings: 10N253, 10N254, 0-41E572, 0-41E576, 41N590-1, 41N703, 41N1001
- 3.8) TVA Nuclear Engineering Civil Design Standard DS-C1.7.1 R7 "General Anchorage to Concrete".

CALCULATION OF BASIC PARAMETERS FOR A46 ANDSHEET _6_OF_INDIVIDUAL PLANT EXAMINATION OF EXTERNAL EVENTSBFN UNIT 0(IPEEE) SEISMIC PROGRAMCD-Q0000-940339

·

- -

3.9)	BFNP Design Criteria BFN-50-C-7100 R9 "Design of Civil Structures".
4.0	DESIGN INPUT DATA
•	Seismic Response Spectra and GERS values are based on reference 3.1 to 3.4.
•	Reactor Building foundation is on rock (Reference 3.9).
•	Diesel Generator Building (unit 1,2 & 3) foundation is on 3+ feet of compacted earth backfill and underlying this earth backfill is approximately 32 feet of crushed stone backfill (Reference 3.9).
•	Standby Gas Treatment Building is buried under earth and founded on 10+ feet of compacted earth backfill (Reference 3.9).
•	Intake Pumping Station structure is founded on bedrock.
•	Concrete Compressive Strengths (f [,] _c) of different class I structures are as follows (Reference 3.9):
	Reactor Building - Inside wall El. 536.92 to El. 557.54000 psi Beams and Slabs at El. 639 & 6644000 psi Columns4000 psi Reactor Support Pedestal and Shield wall4000 psi P - Line wall at steam line compartment4000 psi
	Chimney Shell (excluding foundation & internal structure)4300 psi
	All Other Structures3000 psi
•	Concrete Strength gain for anchorage evaluation (Reference 3.8): As per Appendix D of Reference 3.8,
	1) The maximum estimated concrete strength gain for evaluation of SSD/SDI shall be limited to 600 lb/in2.
	2) The maximum estimated concrete strength gain for evaluation of Wedge Bolt, Ductile and Undercut Anchors shall be limited to 1900 lb/in2 and evaluated in accordance with Section D.4 of Reference 3.8.
5.0	DOCUMENTATION OF INPUT DATA

All input data used has been properly referenced in this calculation.

c

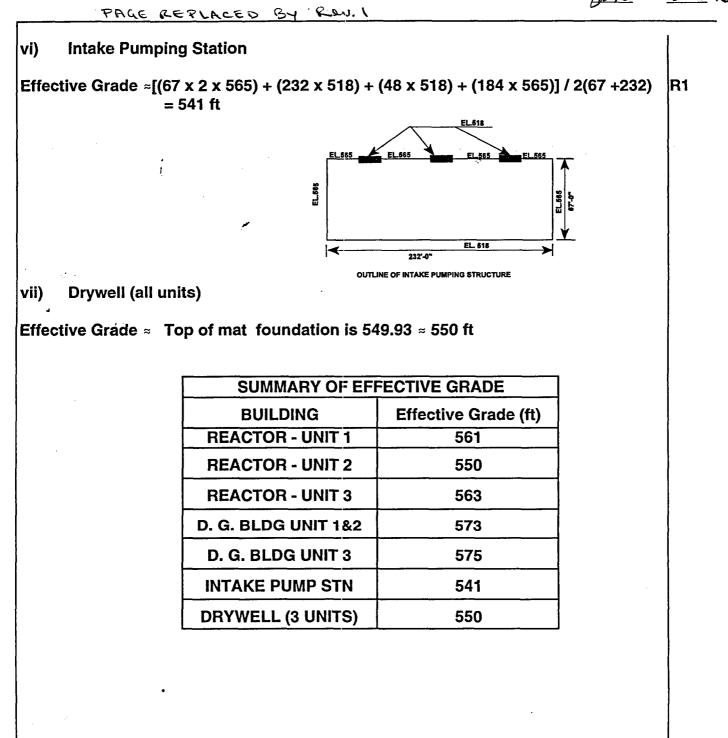
t

.

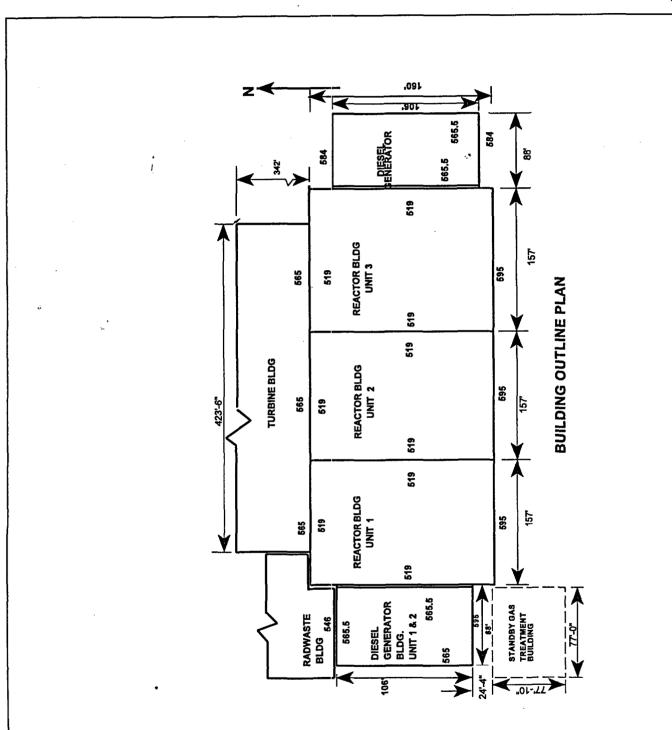
SHEET _7_ OF____ BFN UNIT 0 CD-Q0000-940339 PREP <u>en___</u>DATE <u>10/15</u>5

6.0 COMPUTATIONS

SHEET <u>8</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>612</u> DATE <u>6-14-45</u> CHKD <u>67</u> DATE <u>10/157</u> 55


6.1 EFFECTIVE GRADE DETERMINATION

As per Reference 3.1, "Effective Grade" at a nuclear plant is defined as the average elevation of the ground surrounding the building along its perimeter. If the plant is founded on rock or a very stiff soil site without controlled, compacted backfill, then the "effective grade" is the elevation where the structure receives significant lateral support from the surrounding soil or rock (e.g., the top of the base mat). Similarly, "effective grade" should be taken at the foundation level if crushable foam insulation or other measures are used to isolate the structure from the lateral support of the surrounding soil or rock. If an internal structure of the building is supported primarily at the base mat without significant lateral support from the surrounding structure, then the "effective grade" is the elevation at the top of the base mat.


Based on the above definition, a sketch (see next page) has been prepared showing elevations of building at top of base mat or at foundation level and elevations of significant lateral support (i.e. top of compacted earth fill on the perimeter of the buildings). Effective Grade calculated is based on those elevations.

```
i)
       Reactor Building Unit 1
Effective Grade \approx
                               [(0.17 \times 595 + 0.66 \times 565.5 + 0.17 \times 546) + (0.16 \times 546 + 0.84 \times 10^{-10})]
                               565) + (519) + (595)] / 4 = 560.8 \text{ ft}
ii)
       Reactor Building Unit 2
Effective Grade \approx
                               [(519) + (565) + (519) + (595)] / 4 = 549.5 \text{ ft}
iii)
       Reactor Building Unit 3
Effective Grade \approx
                               [(519) + (565) + (0.17 \times 584 + 0.66 \times 565.5 + 0.17 \times 584) + (595)] /
                               4 = 562.7 ft
iv)
       Diesel Generator Building Unit 1 & 2
Effective Grade \approx
                               [(565.5) + (565.5) + (565.5) + (595)] / 4 = 572.88 \text{ ft}
V)
       Diesel Generator Building Unit 3
Effective Grade \approx
                               [(565.5) + (584) + (565.5) + (584)] / 4 = 574.75 ft
```

SHEET <u>9</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP<u>P SC</u> DATE <u>5-31-96</u> CHKD, <u>MU</u>SDATE <u>5-31-96</u>

SHEET <u>10</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>efs</u> DATE <u>10 - 14</u> - 46 CHKD <u>b</u> DATE <u>10 [15]</u> 5

Refer Drawings: 0-41E572, 0-41E576, 41N590-1, 41N703 and 41N1001 for dimensions and elevations.

SHEET <u>11</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>CHL</u> DATE <u>10-13-13</u> CHKD <u>65</u> DATE <u>10/15/15</u>

6.2 COMPARING EQUIPMENT SEISMIC CAPACITY TO SEISMIC DEMAND

Seismic adequacy of an item of mechanical or electrical equipment can be verified by demonstrating that the seismic capacity of the equipment is greater than or equal to seismic demand imposed on it. The seismic capacity of equipment can be represented by a "Bounding Spectrum" based on earthquake experience data, or a "Generic Equipment Ruggedness Spectrum" (GERS) based on generic seismic test data. These two methods of representing seismic capacity of equipment can only be used if the equipment meets the intent of the caveats for its equipment class.

The seismic capacity of an item of equipment can be compared to a seismic demand which is defined in terms of either a ground response spectrum or an in-structure response spectrum.

There are two methods (Method A and B) for comparing capacity versus demand. Method A is for making a comparison with a SSE Ground Response Spectra. Method A can be used i) when equipment is mounted below about 40 feet above the effective grade which has already been determined and ii) Equipment has natural frequency greater than about 8 HZ. Method B is for comparison with an in-structure response spectrum. Method B can be used for equipment which is mounted at any elevation of plant and/or for equipment with any natural frequency.

To verify seismic adequacy, in general, the seismic capacity spectrum should envelop the seismic demand spectrum at all frequencies with two special exceptions:

- The seismic capacity spectrum needs only to envelop the seismic demand spectrum for frequencies at and above the conservatively estimated lowest natural frequency of the item of equipment being evaluated.
- Narrow peaks in the seismic demand response spectrum may exceed the seismic capacity response spectrum if the average ratio of the demand spectrum to the capacity spectrum does not exceed unity when computed over a frequency range of 10% of the peak frequency (e.g., 0.8 HZ range at 8 HZ).

So for comparison purposes the following methods are to be followed for BFN A46 evaluations:

ITEM / FIGURE NO.	CAPACITY	DEMAND
A.1	Bounding Spectrum ≥	SSE Ground Response Spectrum
A.2 & A.2A	GERS ≥	1.5 X 1.5 X SSE Ground Response Spectrum

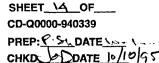
Method A:

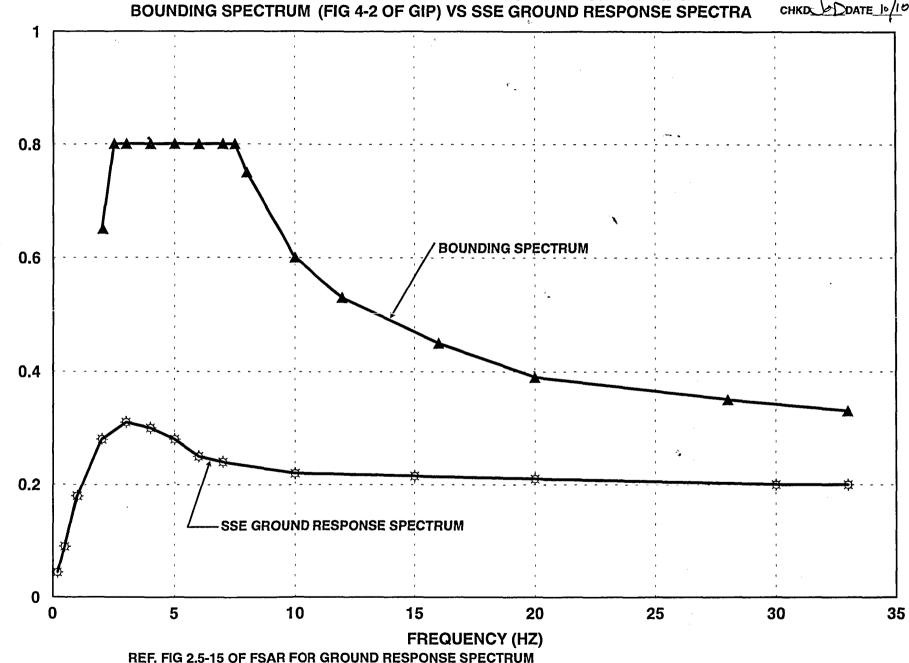
c

SHEET _____ OF____ **BFN UNIT 0** CD-Q0000-940339 PREP of DATE 0-19-95 CHKD JoD DATE 10/15/95

			1)			
Method B:						
ITEM / FIGUR	E NO.	CAPACITY	DEMAND			
B.1 & B.1	.1	1.5 X Bounding Spectrum ≥	In-Structure SSE Response Spectrum			
B.3, B.3.1, B.3A (For Median Ce		GERS ≥	1.5 X In-Structure SSE Response Spectrum			
GERS has been plot 2.5 Reference 3.4) a A.2A, B.1, B1.1, B.3 envelope of North-S	tted against and In-Struc , B.3.1, B.3 outh and Ea		Response Spectrum (Figure rence 3.3) in Figures A.1, A.2, made for 5% damping and			
Following observation	ons are mac	le from plots of Figures for capa	city versus demand:			
0	So capacity	Spectrum always envelops SSE v is greater than demand for equive grade and has fundamental t	ipment located within about 40			
C C	Response	iven mechanical equipment en Spectrum. So capacity for giver ovided caveats are met.	velops 1.5 X 1.5 X SSE Ground a equipment are greater than			
	Response \$	given electrical equipment envelops 1.5 X 1.5 X SSE Ground Spectrum. So capacity for given equipment are greater than ovided caveats are met.				
	Bounding S 519. For el the 1.5 X B rule for narr in-structure So seismic elevation 56 Spectrum, I	is for Reactor Building (outside pectrum envelops in-structure r evation 593, peak in-structure r ounding Spectrum curve and it row band exceedences discusse response to 1.5 times Bounding demands for equipment located 55 and below is less than the ca but equipment located at React enveloped by the 1.5 times Bour	response at elevation 565 and esponse is slightly higher than does not meet the exception ed above (i.e., average ratio of g Spectrum is less than unity). d at Reactor Building floor spacity based on Bounding or Building above elevation			
(IPS) s	tructure on	viesel Generator (DG) Buildings ly. 1.5 Times Bounding Spectru e of DG building and IPS structu	m curve does not envelope in-			

SHEET <u>13</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP & The DATE 16-14-94

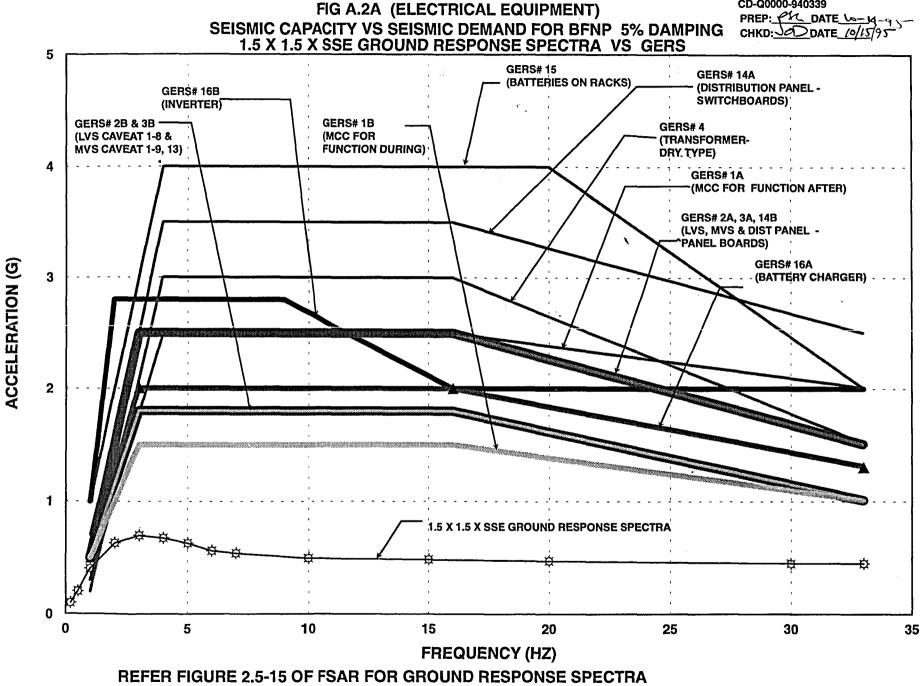

CHKD DD DATE 10/15/55


- Figure B.3: This figure is for Reactor Building (outside Drywell) only. GERS for the given mechanical equipment always envelops 1.5 times SSE in-structure response spectrum. So seismic capacity of equipment based on GERS is always greater than seismic demand provided all the caveats are met.
- Figure B.3.1: This figure is for Diesel Generator Building and Intake Pumping Station (IPS) structure only. GERS for the given mechanical equipment always envelops 1.5 times SSE in-structure response spectrum. So seismic capacity of equipment based on GERS is always greater than seismic demand provided all the caveats are met.
- Figure B.3A: This figure is for Reactor Building (outside Drywell) only. GERS for the given electrical equipment does not always envelops 1.5 times SSE in-structure response spectrum. So it is required to be determined on a case by case basis whether seismic capacity of equipment based on GERS is greater than seismic demand provided all the caveats are met.
- Figure B.3A.1: This figure is for Diesel Generator Building only. GERS for the given electrical equipment does not always envelops 1.5 times SSE in-structure response spectrum. So it is required to be determined on a case by case basis whether seismic capacity of equipment based on GERS is greater than seismic demand provided all the caveats are met. There are no electrical equipment located in IPS structure which is on SSEL.

In Table 1, attempt has been made to determine basis for seismic capacity and demand for Mechanical equipment contained in the SSEL for BFN units 2 & 3. Similarly, Table 2 has been generated for Electrical equipment contained in the SSEL for BFN units 2 & 3. Note that there are no equipment classes 5 (Horizontal Pumps), 11 (Chillers), 12 (Air Compressors) and 19 (Temperature Sensors) in BFN SSEL.

FIGURE A.1

SEISMIC CAPACITY VS SEISMIC DEMAND FOR BFNP 5% DAMPING



ACCELERATION(G)

FIG A.2 (MECHANICAL EQUIPMENT) CD-Q0000-940339 SEISMIC CAPACITY VS SEISMIC DEMAND FOR BFNP 5% DAMPING PREP: PM DATE 10-19-95 1.5 X 1.5 X SSE GROUND RESPONSE SPECTRA VS GERS CHKD: JOD DATE (0/15/95 25 GERS #8A (MOTOR OPERATORS ON VALVES) 20 ACCELERATION (G) 15 GERS.#7 **GERS # 18** (AIR OPERATED VALVE) (INST ON RACKS -TRANSMITTERS) **GERS # 8B** (SOLENOID 10 **OPERATED VALVE)** GERS # 8B (ASCO TYPE 206-381 SOLENOID VALVE) 5 **1.5 X 1.5 X SSE GROUND RESPONSE SPECTRA** 0 10 15 20 25 30 0 5 3! **FREQUENCY (HZ)**

SHEET 15 OF

REFER FIGURE 2.5-15 OF FSAR FOR GROUND RESPONSE SPECTRA

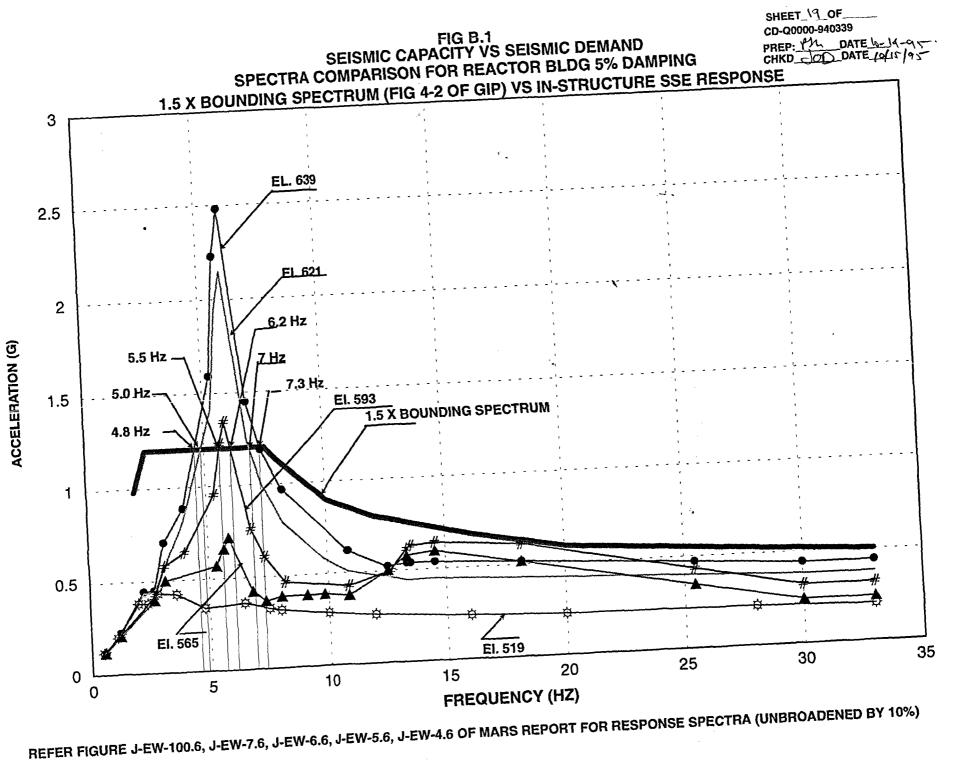
CD-Q0000-940339 PREP: Ph DATE to- 19-91

SHEET 15 OF

SHEET _____ OF___ **BFN UNIT 0** CD-Q0000-940339 PREP M DATE W M-A-CHKD DO DATE 10/5/95

	REACTOR BUILDING RESPONSE SPECTRA													
BROADE	NED RES	PONSE S	PECTRA (S	SSE)	UNBROADENED RESPONSE SPECTRA (SSE)									
FREQUENCY	565	593	621	639	FREQUENCY	565	593	621	639					
0.5	0.1158	0.1164	0.1172	0.1176	0.56	0,1158	0.1164	0.1172	0.1176					
1.1	0.204	0.2116	0.22	0.223	1.22	0.204	0.2116	0.22	0.223					
2	-		0.4336	0.443	2.22			0.4336	0.443					
2.4	0.3944	0.4118	0.4372	0.448	2.67	0.3944	0.4118	0.4372	0.448					
2.5					2.78									
2.8125	0.498	0.5778		0.705	3.13	0.498	0.5778		0.705					
3.6		0.6474	0.8172	0.884	4.00		0.6474	0.8172	0.884					
4.8	0.5674	0.9528	1.4058	1.591	5.33	0.5674	0.9528	1.4058	1.591					
5.1	0.6576	1.2256	1.9358	2.227	5.67	0.6576	1.2256	1.9358	2.227					
5.294	0.7184	1.3444			5.88	0.7184	1.3444							
5.357			2.1462	2.48	5.95			2.1462	2.48					
6.47	0.7184	1.3444			5.88	0.7184	1.3444							
6.5476			2.1462	2.48	5.95			2.1462	2.48					
7.5	0.421	0.7614	1.2332	1.448	6.82	0.421	0.7614	1.2332	1.448					
8					7.27									
8.1	0.3666	0.6068	0.9952	1.187	7.36	0.3666	0.6068	0.9952	1.187					
8.82	0.388				8.02	0.388								
8.82 9		0.4644	0.7894	0.966	8.18		0.4644	0.7894	0.966					
10	0.388				9.09	0.388								
10.8	0.388		0.5838		9.82	0.388		0.5838						
12	0.3756	0.4272	0.5072	0.618	10.91	0.3756	0.4272	0.5072	0.618					
13.8	0.5004		0.466	0.522	12.55	0.5004		0.466	0.522					
13.94		0.4996			12.67		0.4996							
14.7	0.5774	0.612	0.4446	0.537	13.36	0.5774	0.612	0.4446	0.537					

.


.

۰,

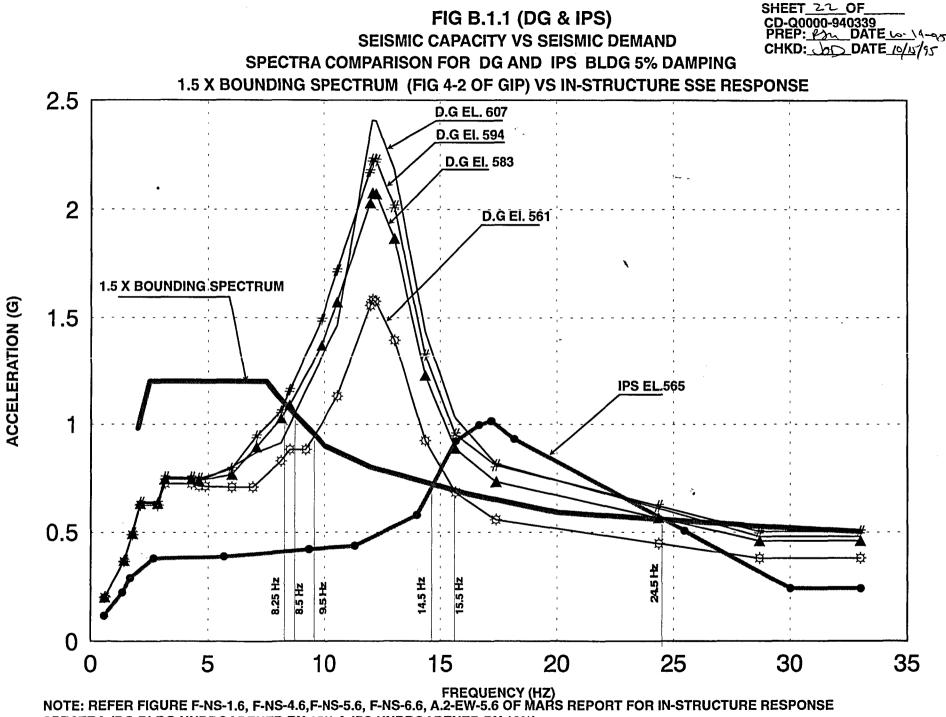
SHEET <u>18</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP #16 DATE w- 14-9

PREP PM DATE W- 19-95 CHKD JOD DATE N/5/95

BROADE	NED RES	PONSE S	PECTRA (S	SSE)	UNBROA	UNBROADENED RESPONSE SPECTRA (SSE)						
FREQUENCY	565	593	621	639	FREQUENCY	565	593	621	639			
14.87		0.6278		0.537	13.52		0.6278		0.537			
16	0.5964	0.6424	0.4476	0.537	14.55	0.5964	0.6424	0.4476	0.537			
20	0.5158	0.6126	0.429	0.517	18.18	0.5158	0.6126	0.429	0.517			
28	0.346	0.433	0.399	0.47	25.45	0.346	0.433	0.399	0.47			
33	0.24	0.32	0.38	0.44	30.00	0.24	0.32	0.38	0.44			

Ň

SHEET <u>20</u> OF BFN UNIT 0 CD-Q0000-940339 PREP 6% DATE <u>- 19</u>-95 CHKD <u>50</u> DATE <u>10/157</u>95


DIESEL GENERATOR & IPS BUILDING RESPONSE SPECTRA

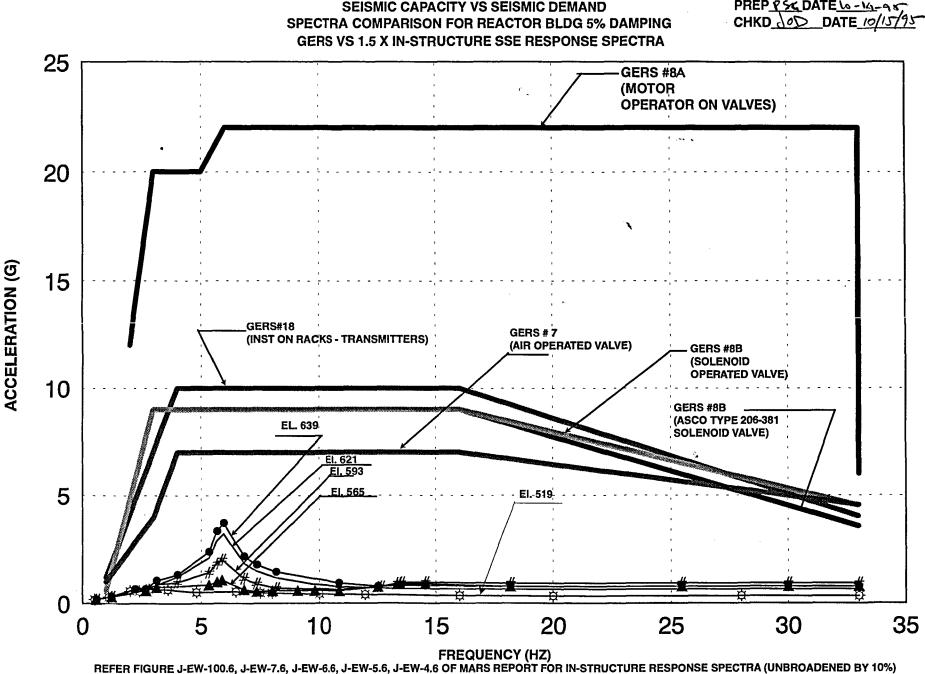
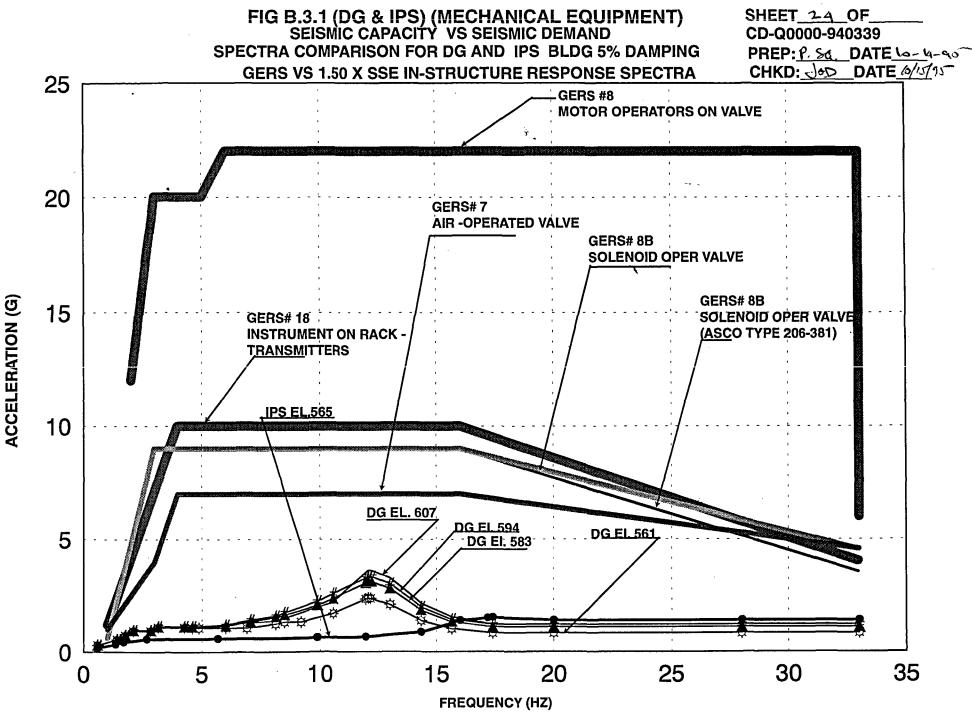
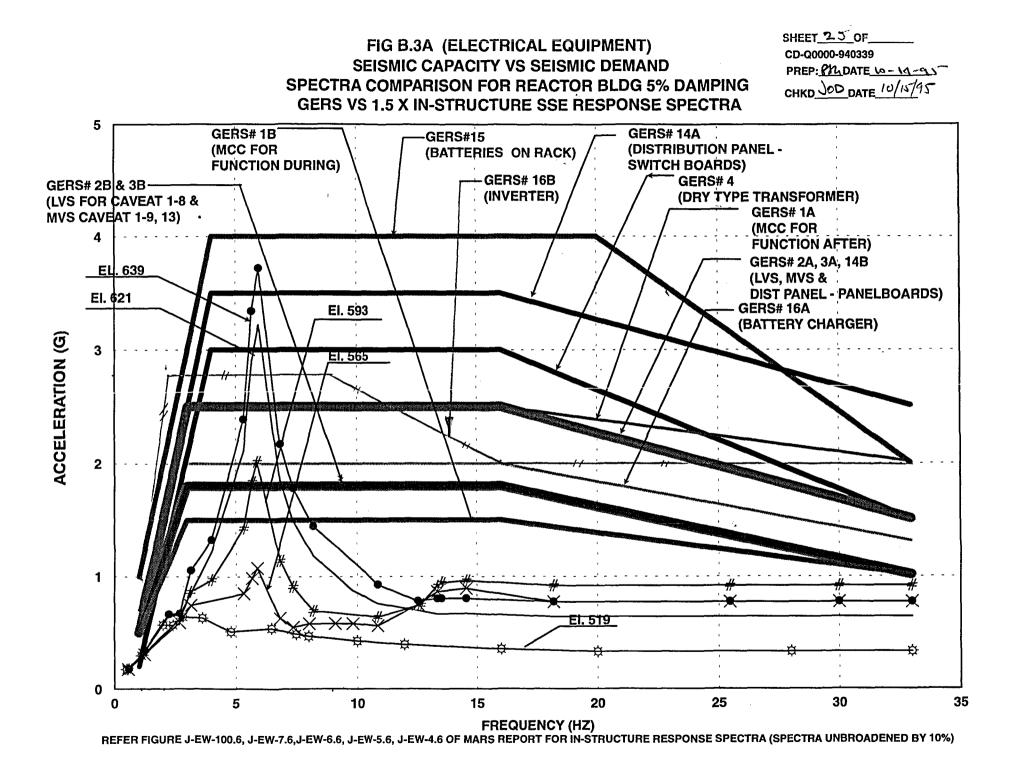
BRG	DADENED	RESPONS	SE SPECT	'RA (SSE)		1	UNBROADENED RESPONSE SPECTRA (SSE)					
FREQUENCY	DG 561	DG 583	DG 594	DG 607	IPS 565	FREQUENCY	DG 561	DG 583	DG 594	DG 607	FREQUENCY	IPS 565
0.5	0.2016	0.2018	0.2018	0.202	0.1159	0.59	0.2016	0.2018	0.2018	0.202	0.56	0.1159
1.2	0.3658	0.3696	0.3698	0.3686	0.2224	1.41	0.3658	0.3696	0.3698	0.3686	1.33	0.2224
1.5	0.4884	0.4930	0.495	0.4946	0.2879	1.76	0.4884	0.4930	0.495	0.4946	1.67	0.2879
1.785	0.624	0.632	0.636	0.638		2.10	0.6 <u></u> 24	0.632	0.636	0.638	1.98	
2.4					0.3792	2.82					2.67	0.3792
2.415	0.624	0.632	0.636	0.638		2.84	0.624	0.632	0.636	0.638	2.68	
2.6775	0.724	0.744	0.752	0.7464		3.15	0.724	0.744	0.752	0.7464	2.98	
3.6225	0.724	0.744	0.752	0.7464		4.26	0.724	0.744	0.752	0.7464	4.03	
3.9	0.7124	0.7388	0.7468	0.7366		4.59	0.7124	0.7388	0.7468	0.7366	4.33	
4.14	0.712					4.87	0.712				4.60	
5.1	0.708	0.766	0.792	0.8004	0.3883	6.00	0.708	0.766	0.792	0.8004	5.67	0.3883
5.8639	0.708					6.90	0.708				6.52	
6.0		0.8936	0.944	0.8684		7.06		0.8936	0.944	0.8684	6.67	
6.9	0.8284	1.028	1.0606	0.9124		8.12	0.8284	1.028	1.0606	0.9124	7.67	
7.225	0.882	1.090	1.16			8.50	0.882	1.090	1.16		8.03	
7.8108	0.882					9.19	0.882				8.68	
8.4		1.3702	1.491	1.3164	0.4214	9.88		1.3702	1.491	1.3164	9.33	0.4214

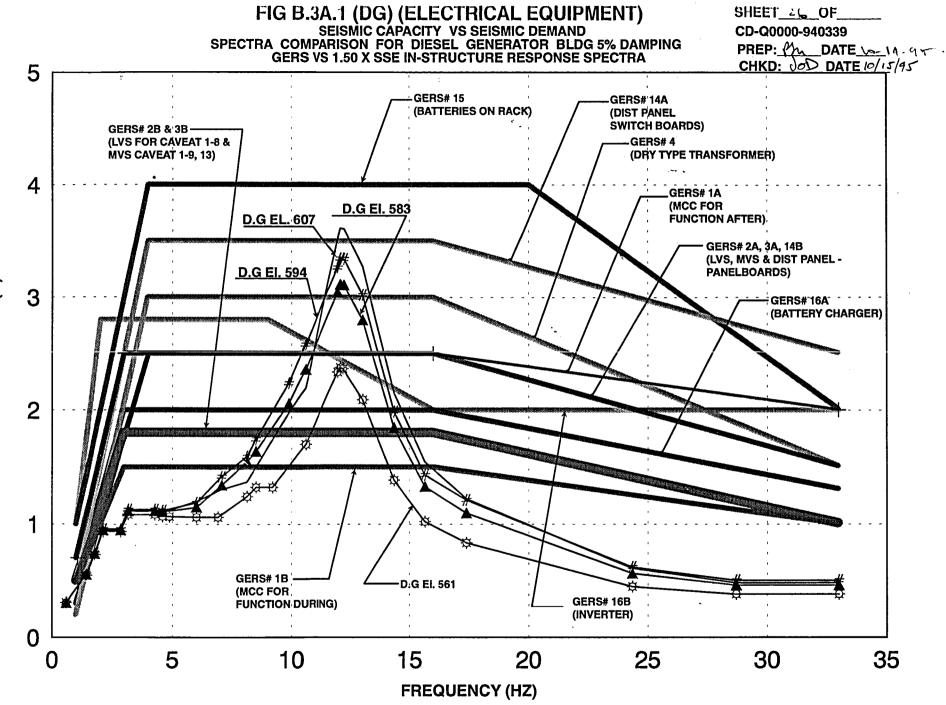
SHEET <u>21</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP Ø10 DATE \s=\\9_5

PREP or DATE 10-19-CHKD DD DATE 10/15/95

BR	DADENED	RESPONS	SE SPECT	'RA (SSE)	<u></u>	UNBROADENED RESPONSE SPECTRA (SSE)						
FREQUENCY	DG 561	DG 583	DG 594	DG 607	IPS 565	FREQUENCY	DG 561	DG 583	DG 594	DG 607	FREQUENCY	IPS 565
9	1.131	1.572	1.7192	1.4632		10.59	1.131	1.572	1.7192	1.4632	10.00	
10.2	1.558	2.03	2.176	2.3484	0.4363	12.00	1.558	2.03	2.176	2.3484	11.33	0.4363
10.2935	1.584	2.076	2.23	2.409		12.11	1.584	2.076	2.23	2.409	11.44	
12.6					0.5781						14.00	0.5781
13.9265	1.584	2.076	2.23	2.409		12.11	1.584	2.076	2.23	2.409	15.47	
14.0386	1.578					12.21	1.578				15.60	
14.1		2.0716	2.2256	2.406	0.9197	12.26		2.0716	2.2256	2.406	15.67	0.9197
15	1.394	1.8658	2.0138	2.1844	0.9955	13.04	1.394	1.8658	2.0138	2.1844	16.67	0.9955
15.4639					1.014	13.45					17.18	1.014
16.5	0.9234	1.2286	1.3246	1.4354		14.35	0.9234	1.2286	1.3246	1.4354		
18	0.6818	0.8852	0.9526	1.0292		15.65	0.6818	0.8852	0.9526	1.0292		
18.9003					1.014	16.44					17.18	1.014
20	0.5570	0.732	0.808	0.8158	0.9295	17.39	0.5570	0.732	0.808	0.8158	18.18	0.9295
28	0.448	0.565	0.62	0.609	0.5058	24.35	0.448	0.565	0.62	0.609	25.45	0.5058
33	0.38	0.46	0.502	0.48	0.24	28.70	0.38	0.46	0.502	0.48	30.00	0.24

SPECTRA (DG BLDG UNBROADENED BY 15% & IPS UNBROADENED BY 10%)


FIG B.3 (MECHANICAL EQUIPMENT) SEISMIC CAPACITY VS SEISMIC DEMAND

SHEET 23_OF CD-Q0000-940339 PREP PSC DATE 10-14-95

REF. FIGURE F-NS-1.6, F-NS-4.6, F-NS-5.6, F-NS-6.6, A.2-EW-5.6 OF MARS REPORT FOR IN-STRUCTURE RESPONSE SPECTRA (UNBROADENED 15% FOR DG & 10% FOR IPS)

REFER FIGURE F-NS-1.6, F-NS-4.6, F-NS-5.6, F-NS-6.6 OF MARS REPORT FOR IN-STRUCTURE RESPONSE SPECTRA (UNBROADENED BY 15%)

ACCELERATION (G)

••

SHEET _____ OF___ **BFN UNIT 0** CD-Q0000-940339 PREP Phi DATE 10-14-95 CHKD of DATE 10/15/95

		SEI	SMIC CAPACITY	AND DE	Table 1 MAND OF I	MECHANICAL EQU	JIPMENT	
EQUIP CLASS	EQUIP TYPE	WITHIN 40 FEET (MI	AT ANY ELEV. & FREQ (METHOD B)		RIENCE DATA BASE	REMARKS		
		CAPACITY	DEMAND	CAPACITY	DEMAND	B. SPECTRA	GERS	
6	VERTICAL PUMPS	BOUNDING SPECTRUM	SSE GROUND RESPONSE SPECTRUM	1.5 X B.S	RESPONSE	PUMPS: DEEP-WELL & CENTRIFUGAL. MOTOR: 5 TO 7000 HP, 95 TO 16000 GPM, IMPELLER SHAFT: ≯ 20 FT CANTILEVER	1	1) ALL VERTICAL PUMPS IN SSEL ARE LOCATED WITHIN 40 FT FROM GROUND ELEVATION.
	FLUID- OPFRATED	BOUNDING	SSE GROUND	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	ACTUATED BY: AIR, WATER OR OIL. VALVE OPERATOR, CANTILEVER	AIR OPERATED GATE OR GLOBE VALVES OF SPRING OPPOSED,	1) MOST EQUIPMENT CLASS 7 IN
7	VALVES	SPECTRUM	RESPONSE SPECTRUM	GERS	1.5 x IN- STRUC SSE RESPONSE SPECTRA	LENGTH AND WEIGHT LIMITS PER FIG.B.7-1 & B.7-2 OF REF. 3.1 (GIP)	DIAPHRAGM TYPE PNEUMATIC ACTUATORS SIZE: 12 TO 40" HT WEIGHT ≤500#	SSEL ARE LOCATED WITHIN 40 FT FROM GROUND ELEVATION.
	MOTOR	BOUNDING	SSE GROUND	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	INCLUDE MOTOR OPERATOR. VALVE MAY BE ANY TYPE, SIZE OR ORIENTATION. VALVE	ELECTRIC MOTOR OPERATORS FOR GATE, GLOBE, PLUG, BALL OR BUTTERFLY TYPE	1) MOST EQUIPMENT CLASS 8A IN
8A	OPERATED VALVES	SPECTRUM	RESPONSE SPECTRUM	GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	OPERATOR, CANTILEVER LENGTH AND WEIGHT LIMITS PER FIG B.8-1 OF REF. 3.1 (GIP)	#. REALISTIC PIPING AMPLIFICATION SHOULD BE INCLUDED AS APPROPRIATE.	SSEL ARE LOCATED WITHIN 40 FT FROM GROUND ELEVATION.
95	SOLENOID	BOUNDING	SSE GROUND	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	INCLUDE SOLENOID OPERATOR. LIGHTER THAN MOV. VALVE	CONSIST OF:SOLENOID ACTUATOR & VALVE CONTAINING AN ORIFICE. WT: UP TO 45 LBS, PIPE DIA < 1", DRESSURE < 600	1) MOST EQUIPMENT CLASS 8B IN SSEL ARE LOCATED WITHIN 40 FT
8B	OPERATED VALVES	SPECTRUM	RESPONSE SPECTRUM	GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	LENGTH AND WEIGHT	PSI. REALISTIC PIPING AMPLIFICATION SHOULD BE INCLUDED AS APPROPRIATE.	FROM GROUND ELEVATION

SHEET <u>28</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP β/2 DATE <u>- 14-45</u>

CHKD DATE 10/15 95

						`		
EQUIP CLASS			EARTHQUAKE EXPE	RIENCE DATA BASE	REMARKS			
			DEMAND	CAPACITY	DEMAND	B. SPECTRA	GERS	
9	FANS	BOUNDING SPECTRUM	SSE GROUND RESPONSE SPECTRUM	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	AXIAL & CENTRIFUGAL FAN. MOTORS 1HP TO 200 HP.FLOW: 1,000 TO 50,000 CFM, WT:100 - 1000 # DIFF PRESSURE: 1/2"TO 5" OF WATER		1) ALL EQUIPMENT CLASS 9 IN SSEL ARE LOCATED IN DG BLDG ONLY (WITHIN 40 FT).
10	AIR HANDLER	BOUNDING SPECTRUM	SSE GROUND RESPONSE SPECTRUM	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	ENCLOSURE SIZE: 2' - 10'. FANS & COIL BOLTED INSIDE.	NO GERS	1) ALL EQUIPMENT CLASS 10 IN SSEL ARE LOCATED IN RB (WITHIN 40 FT). 2) 1.5 TIMES BS > IN-STRUCTURE SSE RESPONSE SPECTRA
	INST ON	BESDONSE		1.5 X BS	IN-STRUC SSE RESPONSE SPECTRA	RACKS: STEEL MEMBERS BOLTED OR WELDED TOGETHER INTO A FRAME. SIZE: 4-8 FT HT X 3-10 FT		1) ALL EQUIPMENT CLASS 18 IN SSEL ARE LOCATED IN RB (WITHIN
18	RACKS		GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	WIDE. COMPONENTS: PRESS SWITCHES, TRANSMITTERS, GAUGES, RECORDERS, HAND SWITCHES, MANIFOLD & SOLENOID VALVES.	TO 40 #. MAX DIMENSION OF A TRANSMITTER IS ≤ 12"	40 FT FROM GROUND ELEVATION). 2) 1.5 TIMES BS > IN-STRUCTURE SSE RESPONSE SPECTRA.	
21	TANK & HEAT EXCHANGER	SE	E SECTION 7 OF GIP (RI	EFERENCE 3.1)	NO B. SPECTRA	NO GERS	SEE TABLES 7-1 & 7-6 FOR APPLICABLE RANGE OF PARAMETERS AND ASSUMPTIONS FOR VERTICAL AND HORIZONTAL TANKS RESPECTIVELY

*

SHEET _____OF___ BFN UNIT 0 CD-Q0000-940339 PREP_{&___DATE _____

CHKD JOD DATE 6/15/95

		SEIS	SMIC CAPAC	ITY AND	Table DEMAND	9 2 9 OF ELECTRICAL E	QUIPMENTS				
EQUIPT EQUIPMENT CLASS TYPE		WITHIN 40 FEET & FREQUENCY > 8 HZ (METHOD A)		AT ANY ELEV. & FREQ (METHOD B)		EARTHQUAKE EXPERIENCE DATA BASE		REMARKS			
CLASS		CAPACITY	DEMAND	CAPACITY	DEMAND	B. SPECTRUM	GERS				
1 MCC LOW 2 VOLTAGE SWITCH GEAR	BOUNDING	SSE GROUND	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	MOTOH: < 600 V. MCC: SINGLE OR DOUBLE SIDED, DIM: 20-24" W X 18-24" D X 90" TALL, WT: , 650 # /		1) 1.5 X BS < IN- STRUCTURE RESPONSE SPECTRA EXCEPT RB EL. 565				
	MCC	SDECTRUM I	RESPONSE SPECTRUM	GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	SECTION, MULTIPLE SECTIONS BOLTED TOGETHER. CONSTRUCTION PER NEMA STANDARDS	OTHER RELAYS, CIRCUIT BREAKERS, DISCONNECT SWITCHES, CONTROL OR DIST TRANSFORMERS & PANEL BOARD. GERS: FUNCTION DURING & FUNCTION AFTER	2) GERS < 1.5 X IN- STRUCTURE RESPONSE SPECTRA EXCEPT RB EL. 565			
	AGE BOUNDING SSE	SSE GROUND	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	< 600 VOLTS, SWITCHGEAR ASSY: 20-36" W X 60" D X 90" HT, WT: 2000 #. MULTIPLE	DIM: 20-30" W X 60" D X 80-90" HT, THICKNESS ≥ 14 GA, WT: 1000-1600 #.	1) 1.5 X BS < IN- STRUCTURE RESPONSE SPECTRA 2) GERS < 1.5 X IN-				
		SPECTRUM RESPONSE SPECTRUM	SPECIRIUM I					GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	SECTIONS BOLTED TOGETHER. CONSTRUCTION PER ANSI STANDARDS.	LIMITED TO ITE/BROWN BOVERI, WESTINGHOUSE OR GE. GERS: MEETS CAVEATS 1-8, AND MEETS ALL CAVEATS 1-10.
3 VOLTAG SWITC	MEDIUM VOLTAGE	AGE BOUNDING SSE GI	SSE GROUND RESPONSE	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	INCLUDES ELEC SWITCHING & FAULT PROTECTION CIRCUIT BREAKERS FOR SYSTEM 2400 -4160 VOLTS. DIM: 90" D X 24-36" W X 90"	LT PROTECTION F BREAKERS FOR 2400 -4160 VOLTS. D X 24-36" W X 90" WT: 3000-5000 L B / CUBICL E FOR	1) 1.5 X BS < IN- STRUCTURE RESPONSE SPECTRA			
	SWITCH GEAR	SWITCH	SPECTRUM	SPECTRUM	GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	HT. WT: 2000-3000 LBS PER SECTION. CIRCUIT BREAKER WT: 600-1200 # EACH. CAPACITY: 1200-3000 AMP. CONSTRUCTION PER	CAVEATS 1-9 & 13; AND MEETS ALL CAVEATS 1-13.	2) GERS < 1.5 X IN- STRUCTURE RESPONSE SPECTRA		

SPECTRA

ANSI STANDARDS,

¥

÷.,

SHEET <u>30</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP (201) DATE 10 10 10

						*			
EQUIPT E		WITHIN 40 FEET & FREQUENCY > 8 HZ (METHOD A)		AT ANY ELEV. & FREQ (METHOD B)		EARTHQUAKE EXPERIENCE DATA BASE		REMARKS	
CLASS	1176	CAPACITY	DEMAND	CAPACITY	DEMAND	B. SPECTRUM	GERS		
4 TRANSFO ER	TRANSFORM		SSE GROUND RESPONSE SPECTRUM	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	INCLUDE: SUBSTATION TYPE 4160/480 VOLTS & DIST TYPE 480 / 120 VOLTS. RANGE FROM 10" X 10" X	INCLUDE ONLY DRY TYPE WITH 7.5 - 225 KVA CAPACITY & VOLTAGE RATING 120-480 VOLTS AC. WALL MOUNTED OR FLOOR MOUNTED.	1) 1.5 X BS < IN- STRUCTURE RESPONSE SPECTRA 2) GERS < 1.5 X IN- STRUCTURE RESPONSE SPECTRA EXCEPT RB EL. 565 AND DG EL.565	
				GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	10" & WT: 50-100# (FOR WALL MOUNTED DIST TYPE) TO 40-100" W X 40-100" D X 60-100" HT & WT: 2000- 15000\$# (FOR SUB).			
13	MOTOR- GENERATOR	BOUNDING SPECTRUM	SSE GROUND RESPONSE SPECTRUM	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	WT: 50 TO 5000 LBS. MOTOR, GENERATOR, FLYWHEEL & CONDUITS INCLUDED IN EQUIP CLASS	NO GERS	1) 1.5 X BS < IN- STRUCTURE RESPONSE SPECTRA 2) ALL EQUIPMENT CLASS 13 ON SSEL LOCATED @ RB621 & 639	
14	IDISTRIBUTIO ROUNDING 1 **	- DESDONSE I	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	RANGE: AC-600V, DC-250V. TYPES: SWITCHBOARD (NORMALLY FLOOR- MOUNTED 20-40" D&W X 90" HT, WT:500 LB) &	RANGE: AC-600V, DC-250V. TYPES:SWITCHBOARD (NORMALLY FLOOR-MOUNTED 20"D X36"W X 90" HT) & PANELBOARDS (NORMALLY	1) 1.5 X BS < IN- STRUCTURE RESPONSE		
N PANELS SPE	SPECTRUM SPECTRUM	GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	PANELBOARDS (NORMALLY WALL-MOUNTED 20-40" HT & W X 6-12" D, WT: 30-200 LB) CONST PER NEMA STANDARDS	WALL-MOUNTED 48" H X 24" W X 12" D). GERS: SWITCHBOARDS & PANELBOARDS	SPECTRA			
15	BATTERIES	BATTERIES BOUNDING SSE GROUND ON RACKS SPECTRUM SPECTRUM	SSE GROUND	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	INCLUDE BATTERIES & SUPPORT STRUC. WT: 50- 450 LB/BATTERY. TYPES: LEAD-ACID STORAGE	INCLUDES STORAGE BATTERY SETS OF LEAD-CALCIUM TYPE. RACKS:	1) 1.5 X BS < IN- STRUCTURE RESPONSE SPECTRA	
	ON RACKS		GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	BATTERYCALCIUM FLAT PLATE & PLANTE OR MANCHEX, ANTIMONY FLAT PLATE OR TUBULAR.	TWO-STEP OR SINGLE-TIER WITH LONGITUDINAL CROSS-BRACES.	2) GERS > 1.5 X IN- STRUCTURE RESPONSE SPECTRA		

÷ .

SHEET <u>31</u> OF BFN UNIT 0 CD-Q0000-940339

PREP P SL DATE - 14 9

EQUIPT CLASS	EQUIPMENT TYPE	WITHIN 40 FEET & FREQUENCY > 8 HZ (METHOD A)		AT ANY ELEV. & FREQ (METHOD B)		EARTHQUAKE EXPERIENCE DATA BASE		REMARKS
CLASS		CAPACITY	DEMAND	CAPACITY	DEMAND	B. SPECTRUM	GERS	
16	BATTERY CHARGERS AND INVERTER (BCI)	BOUNDING SPECTRUM	SSE GROUND RESPONSE SPECTRUM	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA		CHARGER RANGE: 25-600 AMP,24-250V DC & 120-480 V AC. HOUSED IN NEMA TYPE FLOOR OR WALL MOUNTED ENCLOSURE. INVERTER CAPACITY: 0.5 - 15 KVA / 120V DC & 120-480V AC. HOUSED IN NEMA TYPE FLOOR-MOUNTED ENCLOSURE. BCI UNITS OF SOLID STATE TECHNOLOGY	1) 1.5 X BS < IN- STRUCTURE RESPONSE SPECTRA 2) GERS < 1.5 X IN- STRUCTURE RESPONSE SPECTRA EXCEPT RB EL.593
				GERS	1.5 X IN- STRUC SSE RESPONSE SPECTRA	RANGE: AC 120-480 V, DC 24-240 V. INCLUDES SHEET METAL ENCLOSURE (NEMA AND UL STANDARDS), ALL INTERNAL COMPONENTS, JUNCTION BOXES & ATTACHED CABLES OR CONDUITS, BCI UNITS OF SOLID STATE TECHNOLOGY		
17	ENGINE GENERATOR	BOUNDING SPECTRUM	SSE GROUND RESPONSE SPECTRUM	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	AC POWER. 200 - 5000 KVA: OUTPUT: 480V,2400V, 4160V; 400-4000 HP		1) ALL EQUIPMENT CLASS IN SSEL ARE LOCATED IN DG BLDG ONLY (WITHIN 40 FT).
20	INSTR & CONTRL PANELS & CABINETS	BOUNDING SPECTRUM	SSE GROUND RESPONSE SPECTRUM	1.5 X B.S	IN-STRUC SSE RESPONSE SPECTRA	SWITCH BOARD & BENCH BOARDS. FREESTANDING, BRACED AGAINST WALL OR TO EACH OTHER	NO GERS	1)MOST EQUIPMENT CLASS 20 IN SSEL ARE LOCATED IN CONT BAY EL 617 (NOT WITHIN 40 FT). 2 1.5 TIMES BS < IN- STRUCTURE SSE RESPONSE SPECTRA.

SHEET <u>32</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>Pri</u> DATE <u>Place</u> CHKD <u>DATE</u> <u>Place</u>

6.3 IPEEE (SEISMIC) STUDY

6.3.1 SCREENING PROCESS

Based on screening criteria given on EPRI NP-6041-SL (Reference 3.2), type of structures and equipments located at Browns Ferry Nuclear Plant have been evaluated. Table 3 and Table 4 lists the basis of seismic margin evaluation for structures and equipment. Initial screening is accomplished by this method.

Г

.

SHEET <u>33</u> OF BFN UNIT 0 CD-Q0000-940339 PREP <u>Osc</u> DATE <u>to-14-to-</u> CHKD_JOD_DATE <u>10/15/95</u>

Table 3								
SUMMARY OF CIVIL STRUCTURES SCREENING CRITERIA FOR SEISMIC MARGIN EVALUATION (Based on Table 2-3 of Reference 3.2)								
TYPES OF STRUCTURES	EVALUATION REQUIRED (YES/NO)	EXPLANATION						
Concrete Containment (Post-tensioned and Reinforced)	NO	Not required for peak spectral acceleration < 0.8g, Only major penetrations to be evaluated for peak spectral acceleration 0.8- 1.2g.						
Freestanding Steel Containment	YES	Torus should be reviewed and evaluated for earthquakes exceeding the design basis.						
Containment Internal Structures	NO	Design is based on SSE of 0.1g or greater.						
Shear Walls, Footings and Containment Shield Walls	NO	Design is based on SSE of 0.1g or greater.						
Diaphragms	NO	Design is based on SSE of 0.1g or greater.						
Category I Concrete Frame Structures	NO	Design is based on SSE of 0.1g or greater.						
Category I Steel Frame Structures	NO	Design is based on SSE of 0.1g or greater.						
Masonry Walls	YES	Essential block walls should be reviewed for seismic event specified to exceed the SSE (PG 5-15 Ref. 3.2).						
Control Room Ceilings	YES	Inspect for adequacy of bracing and safety wiring. Nothing else required for <0.8g (PG A-7 Ref. 3.2).						
Impact Between Structures	NO	Proper joint material are in place between structures (e.g., Reactor Building and Diesel Generator Building). Nothing required for 0.3 SSE.						
Category II/I Structures NO		There is no safety related equipment located at category II structure.						

.

SHEET <u>34</u> OF BFN UNIT 0 CD-Q0000-940339 PREP (St. DATE - 14-41) CHKD DATE _ 10/10 / 95

	<u> </u>			
TYPES OF STRUCTURES	EVALUATION REQUIRED (YES/NO)	EXPLANATION		
Dams, Levies, Dikes	YES	Establish that Dikes located along the river have been qualified for static and dynamic condition.		
Soil Failure Modes, Soil-liquefaction and Slope Instability	YES	Needs to be addressed separately		

SHEET __35_OF___ BFN UNIT 0 <u>CD-Q0000-940339</u> PREP________DATE_____4_95 CHKD__J&T____DATE____/4_95

Table 4

SUMMARY OF EQUIPMENT AND SUBSYSTEM SCREENING CRITERIA FOR SEISMIC MARGIN EVALUATION (Based on Table 2-4 Reference 3.2)

EQUIPMENT TYPE	EVALUATION	EXPLANATION
	REQUIRED (YES/NO)	
NSSS Primary Coolant System (Piping and Vessels)	NO	No suspected intergranular stress corrosion cracking. No review required for 0.3g sites. (pg A-8 Ref. 3.2)
NSSS Supports	NO	Supports are designed for combined loading determined by dynamic SSE and pipe break analysis. No review required for 0.3g sites. (pg A-8 Ref. 3.2)
Reactor Internals	NO	Generally designed for an envelope of various severe loading conditions similar to other NSSS Systems. Covered by IPE Internal events. (pg A-9 Ref. 3.2)
Control Rod Drive Housings and Mechanisms	NO	CRD Housing has lateral seismic support. (pg A-10 Ref. 3.2)
Category I Piping	YES	Minimal level of walkdown of representative piping required. (pg A-11 Ref. 3.2)
Active Valves	NO	Not required for 0.3g sites. (pg A-12 Ref. 3.2)
Passive Valves	NO	Not required for 0.3g sites. (pg A-12 Ref. 3.2)
Heat Exchangers	YES	Needs to consider only anchorage and support. (pg A-13 Ref. 3.2)
Atmospheric Storage Tanks	YES	Needs to evaluate the tank anchorage. (pg A-14 Ref. 3.2)
Pressure Vessels	YES	Needs to consider only anchorage and support. (pg A-14 Ref. 3.2)

.

SHEET <u>36</u> OF BFN UNIT 0 CD-Q0000-940339 PREP <u>OF DATE 0-14-45</u> CHKD, bO DATE 10/15/45

EQUIPMENT TYPE	EVALUATION REQUIRED (YES/NO)	EXPLANATION
Buried Tanks	YES	Needs to evaluate piping connections. (pg A-14 Ref. 3.2)
Batteries and Racks	YES	Visual inspection to verify if batteries mounted in braced racks designed for seismic loads, rigid spacers between batteries and end restraints exist, batteries tightly supported by side rails.
Diesel Generators (Includes Engine and Skid-mounted Equipment)	YES	Visual inspection of anchorages and attachment of peripheral equipment. (pg A-15 Ref. 3.2)
Horizontal Pumps	NO	No evaluation required for ≤ 0.5g sites
Vertical Pumps	NO No evaluation required for sites	
Fans	YES	Units supported on vibration isolators require evaluation
Air Handlers	YES	Units supported on vibration isolators require evaluation
Chillers	YES	Units supported on vibration isolators require evaluation
Air Compressors	YES	Units supported on vibration isolators require evaluation
HVAC Ducting and dampers	YES	Walkdown of representative ducting system required
Cable Trays	NO	No evaluation required for ≤ 0.3g sites
Electrical Conduit	NO	No evaluation required for ≤ 0.5g sites

C

.

SHEET <u>37</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>05</u> DATE <u>10/17</u>95

EQUIPMENT TYPE	EVALUATION REQUIRED (YES/NO)	EXPLANATION
Active Electrical Power Dist. Panels, Cabinets, Switchgear, MCC	YES	a) Walkdown should verify that the instruments are properly attached to cabinet b) Relays, contactors, switches, and breakers must be evaluated for chatter and trip if functionality during strong shaking is required
Passive Electrical Power Distribution Panels, Cabinets	YES	Walkdown should verify that the instruments are properly attached to cabinet
Transformers	YES	a) Anchorage evaluation required b) Liquid-filled transformers require evaluation of overpressure safety switches. For dry transformers coils should be restrained within the cabinet
Battery Chargers	YES	Solid state units require anchorage checks. Others require evaluation
Inverters	YES	Solid state units require anchorage checks. Others require evaluation
Instrumentation and Control Panels and Racks	YES	a) Walkdown should verify that the instruments are properly attached to cabinet b) Relays, contactors, switches, and breakers must be evaluated for chatter and trip if functionality during strong shaking is required
Temperature Sensors	NO	No evaluation required for acceleration < 0.8g, emphasis should be on attachments for accn 0.8g - 1.2g
Pressure and Level Sensors	NO	No evaluation required for acceleration < 0.8g, emphasis should be on attachments for accn 0.8g - 1.2g

6.3.2 CALCULATION OF SEISMIC MARGIN EARTHQUAKE

Browns Ferry is a 0.3 g focused plant as far as IPEEE seismic evaluation is concerned.

Amplification factor is calculated based on comparison between BFNP Ground Response (based on 0.2g Housner) to 0.3g Review Level Earthquake (RLE) Ground response based on NUREG CR-0098 median spectral shape.

For Rock site:

Ground Acceleration(A) = 0.3gGround Velocity(V) = $0.3 \times 36 = 10.8$ in / sec [V/A = 36 For rock] Ground Displacement(D) = $6V^2$ / A = $6 \times (10.8)^2$ / $0.3 \times 386 = 6.04$ inch [AD/V² = 6]

For median centered 5% damping amplification factors are: Acceleration = 2.12 Velocity = 1.65 Displacement = 1.39

So, amplified displacement = 6.04 x 1.39 = 8.39 in

amplified velocity = $10.8 \times 1.65 = 17.82$ in/sec amplified acceleration = $0.3 \times 2.12 = 0.636g$ (say 0.64g)

For Soil site:

Ground Acceleration(A) = 0.3g Ground Velocity(V) = 0.3 x 48 = 14.4 in / sec [V/A = 48 For Soil] Ground Displacement(D) = $6V^2$ / A = $6 X(14.4)^2$ / 0.3 X 386 = 10.74 inch [AD/V² = 6]

For median centered 5% damping amplification factors are: Acceleration = 2.12 Velocity = 1.65 Displacement = 1.39

So, amplified displacement = $10.74 \times 1.39 = 14.93$ in amplified velocity = $14.4 \times 1.65 = 23.76$ in/sec amplified acceleration = $0.3 \times 2.12 = 0.636g$ (say 0.64g)

Table 5 and Figure C.1 show the response spectra plot from which amplification factor is determined for rock foundation. Maximum acceleration due to 0.3g = 0.64gCorresponding acceleration due to ground response @ 8.333 Hz frequency = 0.249g (say 0.25g)

So, amplification factor = 0.64 / 0.25 = <u>2.56</u> (For rock foundation)

SHEET <u>39</u> OF BFN UNIT 0 CD-Q0000-940339 PREP <u>PS</u> DATE <u>10</u>-14-95 CHKD <u>0</u> DATE <u>10</u>/15/95

 Table 6 and Figures C.2 shows the response spectra plot from which amplification

 factor is determined for soil foundation.

Maximum acceleration due to 0.3g = 0.64g

Corresponding acceleration due to ground response @ 7.692 Hz frequency = 0.2629g So, amplification factor = 0.64 / 0.262 = 2.44 (For soil foundation)

Conservatively amplification factors for rock foundation has been utilized for IPEEE evaluations at BFN.

Table 7 provides a summary of the basic parameters relevant to the implementation of USI A-46 and Seismic IPEEE programs.

SHEET <u>40</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>Ch</u> DATE <u>wiger</u>o

CHKD DATE WIS 95

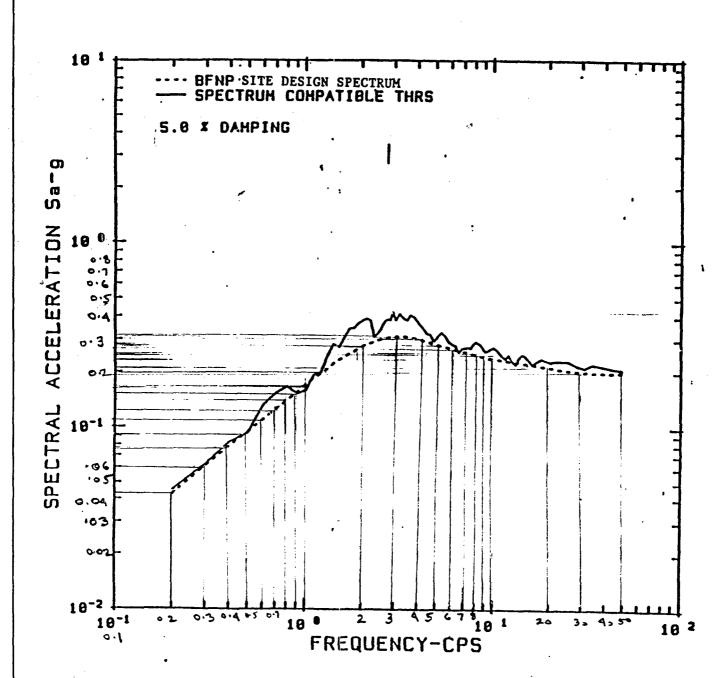
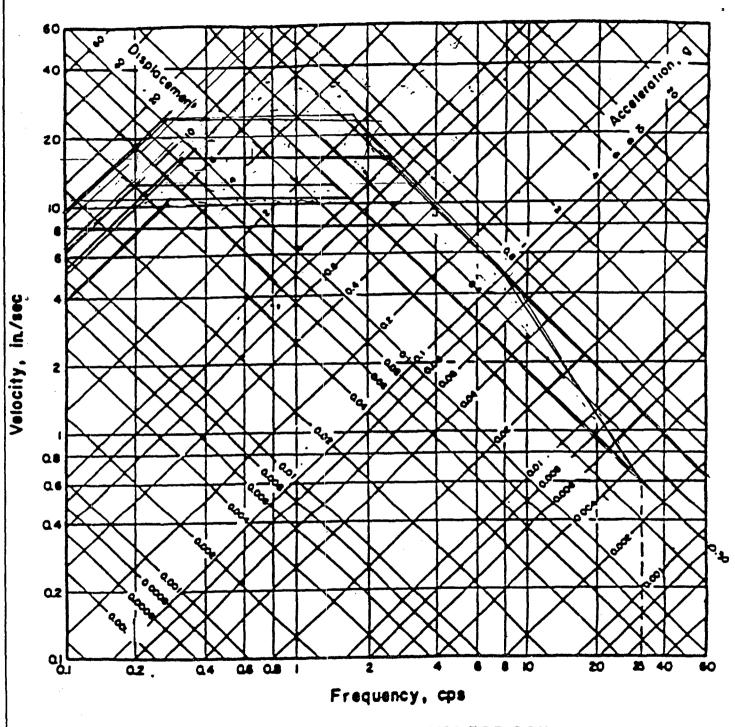


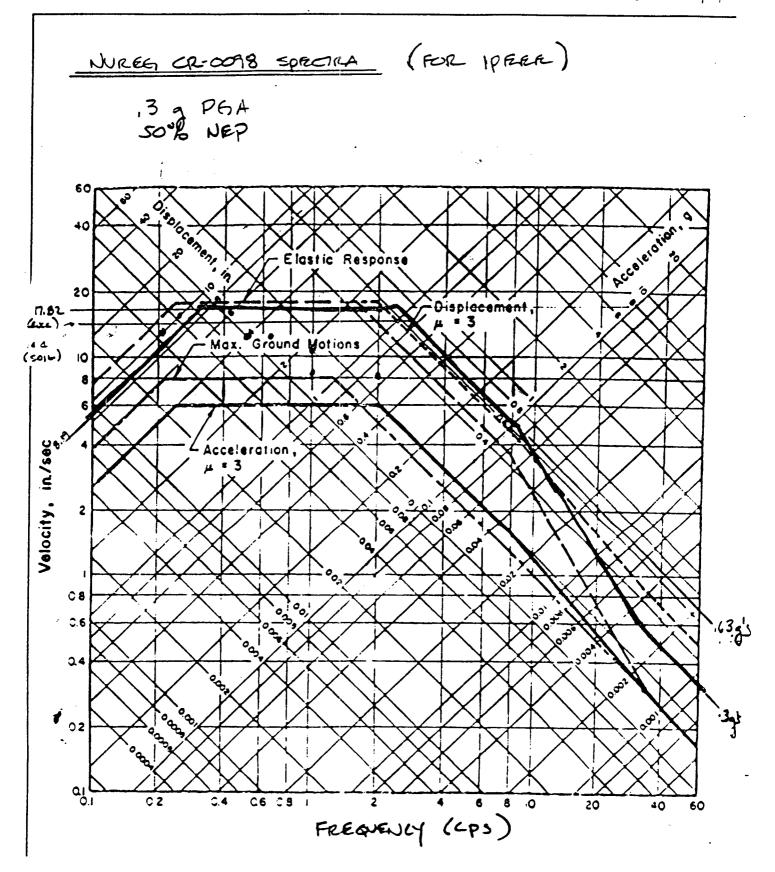
Figure 2.5-15Comparison of Site Spectrum and Spectrum of Acceleration Time History - 5 percent damping


i

ł

Ŀ

SHEET <u>41</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u>


PREP PSL DATE 6-14-05 CHKD OD DATE 10/15/95

RESFONSE SPECTRUM FOR SOIL HORIZONTAL SME (5%, 7% AND 10% DAMPING)

SHEET <u>42</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP Pro DATE - 4 - 4 - 4

PREP Ph DATE 1-4 45 CHKD DATE 10/10/95

.

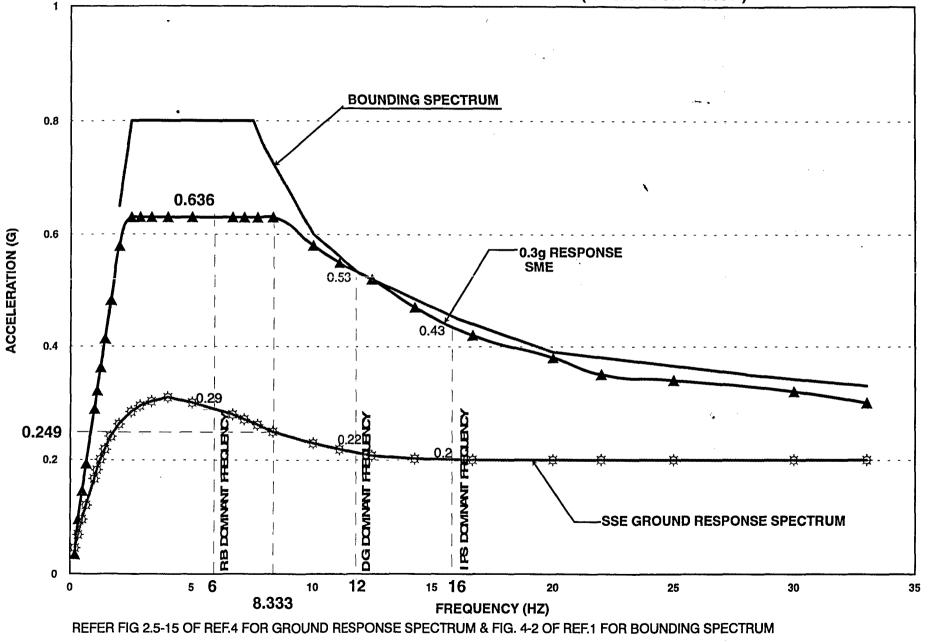
SHEET ______ OF____ **BFN UNIT 0** CD-Q0000-940339 PREP Pro DATE 10-14-95 CHKD_DD DATE 6/15/65

		Table 5	
FREQUENCY	Ground acce	eleration with 5% Dampin	g (Rock Foundation)
(CPS)	0.2g Housner (BFNP Ground Spectra)	0.3g Median Centered (calculated as per , NUREG CR-0098)	Calculation basis A = ω V = ω ² D (V=17.82", D=8.39", ω =2 π f)
0.2	0.04476	0.034	4π ² f ² (8.39)/386.4 =0.034
0.333	0.0681375	0.095	4π ² f ² (8.39)/386.4 =0.095
0.5	0.095125	0.145	2πf(17.82)/386.4 = 0.145
0.666	0.12	0.193	2πf(17.82)/386.4 = 0.193
1	0.16635	0.289	2πf(17.82)/386.4 = 0.289
1.111	0.1815875	0.321	2πf(17.82)/386.4 = 0.321
1.25	0.2	0.362	2πf(17.82)/386.4 = 0.362
1.428	0.2179	0.413	2πf(17.82)/386.4 = 0.413
1.666	0.2409375	0.482	2πf(17.82)/386.4 = 0.482
2	0.262775	0.579	2πf(17.82)/386.4 = 0.579
2.2	0.2845625	0.636	constant acceleration
2.857	0.29455	0.636	constant acceleration
3.333	0.30245	0.636	constant acceleration
4	0.309525	0.636	constant acceleration
5	0.3	0.636	constant acceleration
6.666	0.27968	0.636	constant acceleration
7.142	0.2714375	0.636	constant acceleration
7.692	0.2619	0.636	constant acceleration
8.333	0.24934	0.636	constant acceleration
10	0.22929	0.58	By interpolation
11.111	0.218625	0.55	By interpolation
12.5	0.207325	0.52	By interpolation
14.285	0.2021	0.47	By interpolation
16.666	0.2	0.42	By interpolation

. . .

c

.


SHEET _____44_ OF___ BFN UNIT 0 CD-Q0000-940339 PREP_pm___DATE_____A

FREQUENCY	Ground acceleration with 5% Damping (Rock Foundation)				
(CPS)	0.2g Housner (BFNP Ground Spectra)	0.3g Median Centered (calculated as per NUREG CR-0098)	Calculation basis A = ω V = ω ² D (V=17.82", D=8.39", ω =2 π f)		
20	· 0.2	0.38 **	By interpolation		
22	0.2	0.35	By interpolation		
25	0.2 -	0.34	By interpolation		
30	0.2	0.32	By interpolation		
33	0.2	0.3	By interpolation		

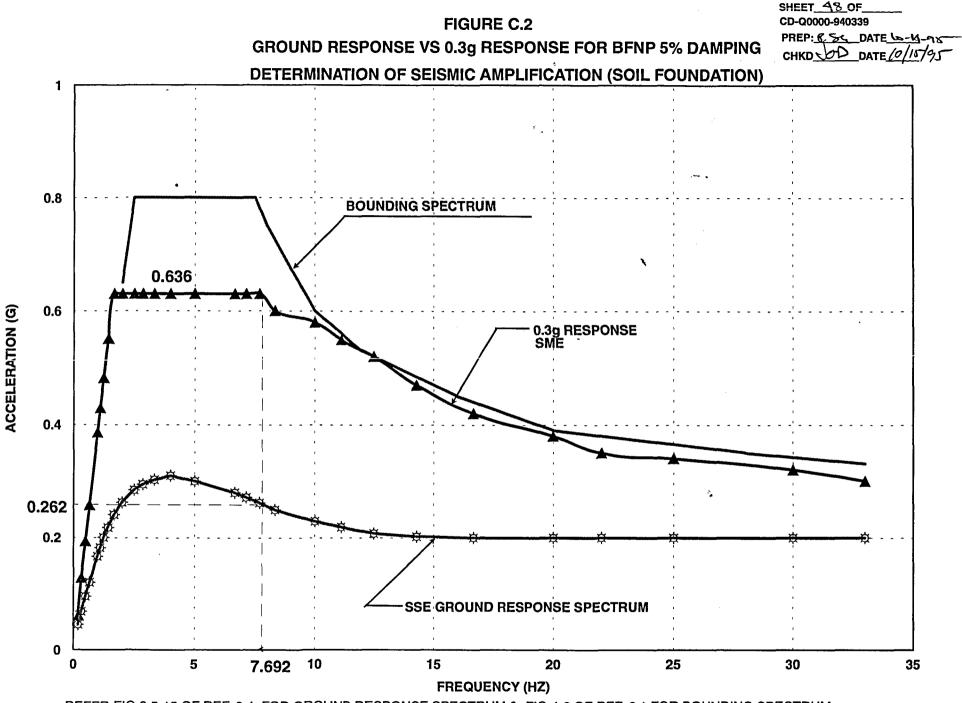
فہ

·

SHEET _______ OF____ **BFN UNIT 0** CD-Q0000-940339 PREP P.S. L DATE 6-14-95 CHKD JOD DATE 10/15/55

		Table 6	
FREQUENCY	Ground acc	eleration with 5% Dampi	ng (Soil Foundation)
(CPS)	0.2g Housner (BFNP Ground Spectra)	0.3g Median Centered (calculated as per _, NIJREG CR-0098)	Calculation basis A =ωV = ω²D (V=23.76", D=14.93", ω=2πf)
0.2	0.04476	0.061	4π²f²(14.93)/386.4=0.061
0.333	.0681375	0.128	2πf(23.76)/386.4 =0.128
0.5	.095125	0.193	2πf(23.76)/386.4 = 0.193
0.666	0.12	0.257	2πf(23.76)/386.4 = 0.257
<u> </u>	0.16635	0.386	2πf(23.76)/386.4 = 0.386
1.111	0.1815875	0.429	2πf(23.76)/386.4 = 0.429
1.25	0.20	0.482	2πf(23.76)/386.4 = 0.482
1.428	0.2179	0.551	2πf(23.76)/386.4 = 0.551
1.666	0.2409375	0.643	2πf(23.76)/386.4 = 0.643
2.0	0.262775	0.579	constant acceleration
2.5	0.2845625	0.636	constant acceleration
2.857	0.29455	0.636	constant acceleration
3.333	0.30245	0.636	constant acceleration
4.0	0.309525	0.636	constant acceleration
5.0	0.30	0.636	constant acceleration
6.666	0.27968	0.636	constant acceleration
7.142	0.2714375	0.636	constant acceleration
7.692	0.2619	0.636	constant acceleration
8.333	0.24934	0.636	By interpolation
10.0	0.22929	0.58	By interpolation
11.111	0.218625	0.55	By interpolation
12.5	0.207325	0.52	By interpolation
14.285	0.2021	0.47	By interpolation
16.666	0.2	0.42	By interpolation

c


- - - -

,

SHEET ______ OF____ **BFN UNIT 0** CD-Q0000-940339 PREP P. S. C. DATE 10-14-05 CHKD JOD DATE 10/15/95

FREQUENCY	Ground acc	eleration with 5% Dampin	ng (Soil Foundation)
(CPS)	0.2g Housner (BFNP Ground Spectra)	0.3g Median Centered (calculated as per NUREG CR-0098)	Calculation basis A =ωV = ω²D (V=23.76", D=14.93", ω=2πf)
20.0	0.2	0.38	By interpolation
22.0	0.2	0.35	By interpolation
25.0	0.2,	0.34	By interpolation
30.0	0.2	0.32	By interpolation
33.0	0.2	0.30	By interpolation

- - - - - . .

REFER FIG 2.5-15 OF REF. 3.4 FOR GROUND RESPONSE SPECTRUM & FIG 4-2 OF REF. 3.1 FOR BOUNDING SPECTRUM

 SHEET _____49__OF____

 BFN UNIT 0

 CD-Q0000-940339

 PREP 7-54 DATE 10-14-95

 CHKD 3-45 DATE 10-16-65

6.3.3 IPEEE DEMAND

P.S. (5-3-96 IRI. INB 5-31.96

As per Reference 3.2, IPEEE seismic demand is defined as a NUREG CR-0098 spectral shape (50% NEP) anchored to a PGA of 0.3g (i.e. SME level).

To derive a scaling factor to apply to the existing SSE in-structure response spectra to get SME level spectra, domoinant mode scaling will be used. The scale factor will be defined as the ratio of SME acceleration over SSE acceleration at the frequency of interest, i.e. the dominant fundamental building response frequency.

Scale Factor = g SME (@dominant frequency) / g SSE (@dominant frequency)

Prior to applying the scale factor, the SME in-structure will be reduced to account for a higher level of structural damping (7%) than that used in the existing building analysis (5%). 7% damping is based on review of existing stress level in the structure (some element stresses are at more than 50% level).

Reduction Factor = $[(5\%) / (7\%)]^{1/2} = 0.85$

Based on review of in-structure response spectra (Reference 3.3) the dominant fundamental frequencies for each buildings are:

Reactor building (outside Drywell) \approx 6 Hz (N-S & E-W) Diesel Generator Building \approx 12 Hz (N-S & E-W) Intake Pumping Station \approx 16 Hz (N-S & E-W)

The above values are based on the peaks of all the floor response spectra for each building. To account for the possibility that 12-16 Hz may be soil modes instead of building modes, conservatively use the worst case ratio of SME/SSE i.e. at 8.33 Hz.

6.3.4 COMBINED SCALE FACTOR FOR IPEEE

Combined scale factor is calculated by multiplying scale factor to reduction factor.

• Reactor Building: 0.85 x (0.64 / 0.29) = 1.88

• Diesel Generator Building: 0.85 x (0.64 / 0.25) = 2.18

Intake Pumping Station: 0.85 x (0.64 / 0.25) = 2.18

In-structure floor spectra should be scaled upward by these factors to define IPEEE demand at a 0.3g (50% NEP) level for a NUREG CR-0098 spectral shape.

SHEET _____ OF____ **BFN UNIT 0** CD-Q0000-940339 PREP P. S. DATE 10-14-95-CHKD Jan DATE 10/1/95

Table 7 SUMMARY OF BASIC PARAMETERS FOR A-46/IPEEE EVALUATIONS								
BLDG ELEV.	SSE (N-S & E-W) SSE (\		SSE (VE	RTICAL)		IPEEE	REMARKS	
. ·	(FT)	Peak	ZPA	Peak	ZPA		SCALE FACTOR	
	519 ^t	0.43	0.20	0.29	0.14	None		Refer FIG B.1
	565	0.72	0.24	0.29	0.16	None		Refer FIG B.1
Reactor	593	1.34	0.32	0.42	0.16	5.5-6.2 Hz	1.88	Refer FIG B.1
	621	2.15	0.38	0.66	0.16	5-7 Hz		Refer FIG B.1
	639	2.48	0.44	0.73	0.18	4.8-7.3 Hz	· · · · · · · · · · · · · · · · · · ·	Refer FIG B.1
Diesel	₋ 561	1.58	0.39	0.42	0.17	9.5-15.5 Hz	2.18	Refer FIG B.1.1
Generator	583	2.13	0.46	0.52	0.18	8.3-24.5 Hz		Refer FIG B.1.1
Intake	518	0.43	0.20	0.21	0.13	None		No equipment located
Pumping Station	565	1.01	0.25	0.21	0.13	14.5-24.5 Hz	2.18	Refer FIG B.1.1

Table 7

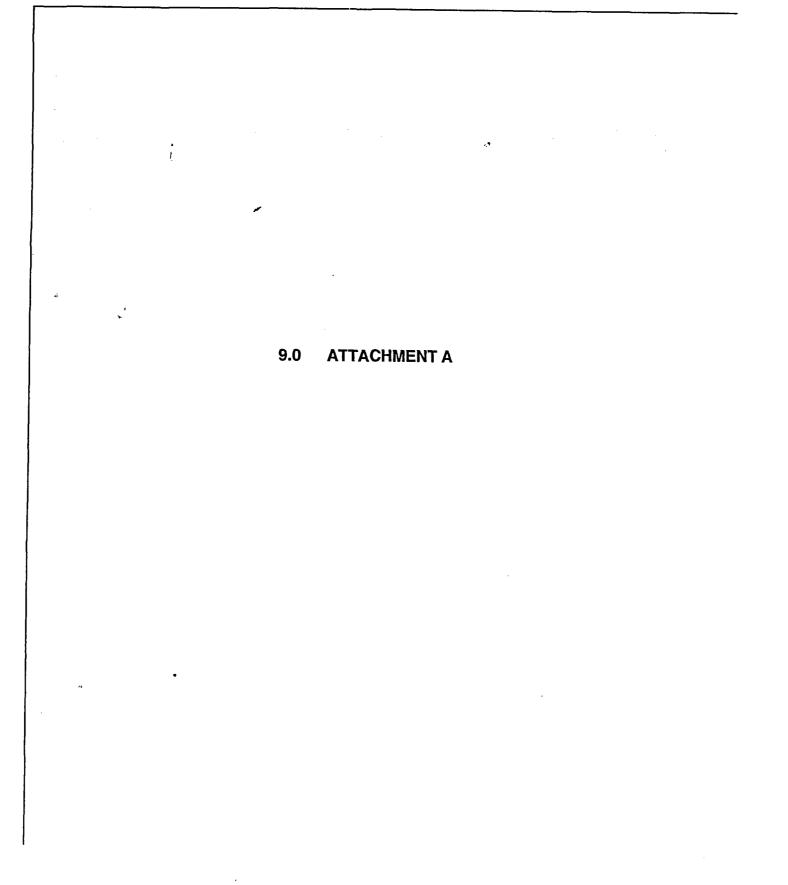
General Notes:

- ZPA values taken from the table of maximum absolute acceleration response values (Refer Table J-1, F-1 and A-1 of MARS report).
- Horizontal Peak & ZPA values shown are the envelopes of N-S & E-W values.
- A-46 exceedence shown are the envelopes of N-S & E-W values.

SHEET <u>51</u> OF BFN UNIT 0 CD-Q0000-940339 PREP <u>616</u> DATE <u>10</u> 15 CHKD <u>50</u> DATE <u>10</u> 15

7.0 SUMMARY OF RESULTS AND CONCLUSION

General observations can be summarized as follows:


- 1. Diesel Generator buildings and Intake Pumping Structures are within 40 feet from effective grade elevation.
- 2. Reactor building up to El. 593' is within about 40 feet from the effective grade elevation.
- 3. Bounding spectrum envelopes both the SSE (A46) & SME (IPEEE) Ground response spectrum, i.e., for equipment located at or below 40 feet from effective grade elevation and having a frequency > 8 Hz, capacity exceeds demand for both A46 and IPEEE.
- 4. GERS for mechanical equipment envelope 1.5 X In-structure response spectra (A46) & IPEEE demand based on scaled response.

8.0 PREREQUISITES AND LIMITING CONDITIONS

None

SHEET <u>52</u> OF BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>P-Sc</u> DATE <u>10/15</u> CHKD <u>D</u> DATE <u>10/15</u>

- -

SHEET <u>53</u> OF___ BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>M</u>. DATE CHKD <u>CD</u> DATE <u>10/15</u>65

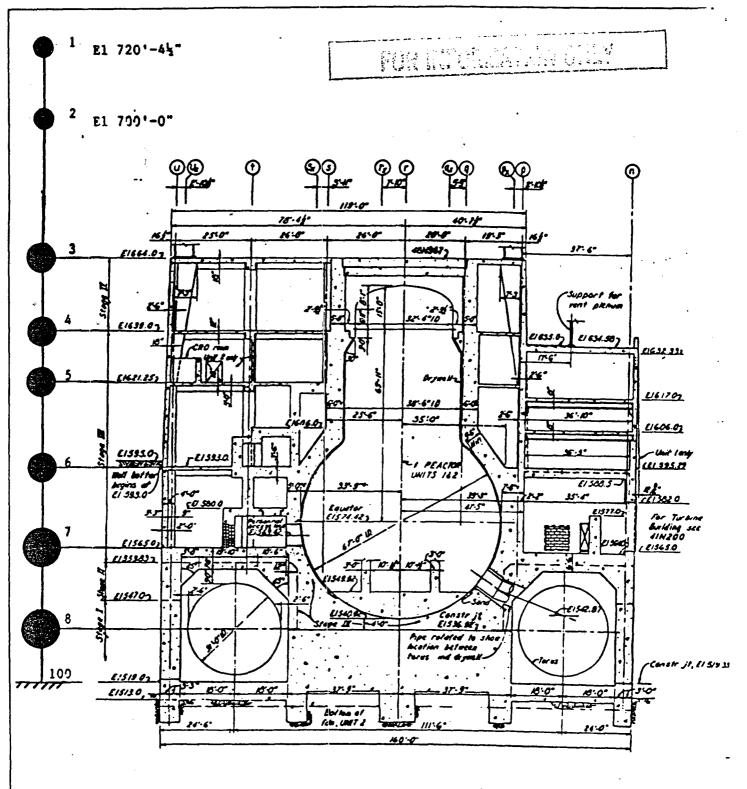


Figure J-1 Reactor Building (Outside Drywell) Model REF: MARS REP=RT. VOL. 4

SHEET <u>54.</u> OF **BFN UNIT 0** CD-Q0000-940339 PREP por DATE-19-95 CHKD DATE 10/15/45

TABLE J-1

OBE MAXIMUM ABSOLUTE ACCELERATION VALUES FOR REACTOR BUILDING (OUTSIDE DRYWELL)

NODE NO.	ELEVATION (FT)	AC	ACCELERATION		
i.		N-S	<u>B-W</u>	VERT	
3	664.00	0.25	0.26	0.10	
4	639.00	0.20	0.22	0.09	
5	621.25	0.17	0.19	0.08	
6	593.00	0.15	0.16	0.08	
, 7	565.00	0.11	0.12	0.08	
8	537.00	0.10	0.10	0.07	
100	519.00	0.10	0.10	0.07	

FOR INFORMATION ONLY

TABLE J-2

OBE MAXIMUM RELATIVE DISPLACEMENT VALUES FOR REACTOR BUILDING (OUTSIDE DRYWELL)

NODE NO.	ELEVATION (FT)	<u>DISF</u>	LACEMEN	<u>r (in)</u> Vert
3	664.00	0.066	0.070	0.005
4		0.057	0.061	
	639.00			0.005
5.	621.25	0.049	0.052	0.005
6	593.00	0.030	0.032	0.003
7	565.00	0.014	0.015	0.002
8	537.00	0.005	0.005	0.001
100	519.00	0.0	0.0	0.0

REF: MARS REBORT NOL 4

C

SHEET <u>55</u> OF____ BFN UNIT 0 <u>CD-Q0000-940339</u> PREP <u>psc</u> DATE <u>10/15/55</u> CHKD <u>bD</u> DATE <u>10/15/55</u>

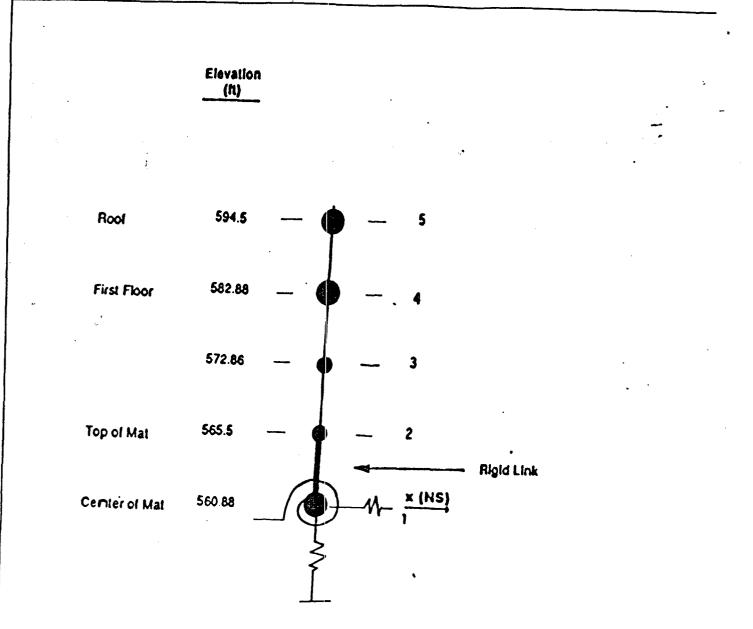


Figure F-1 Lumped-Mass Models for the Units 1 and 2 DGB

REF: MARS REPORT VOL. 2

SHEET 56 OF BFN UNIT 0 CD-Q0000-940339 PREP <u>P. Su</u> DATE 10-14-95 CHKD 0 DATE 10/15795

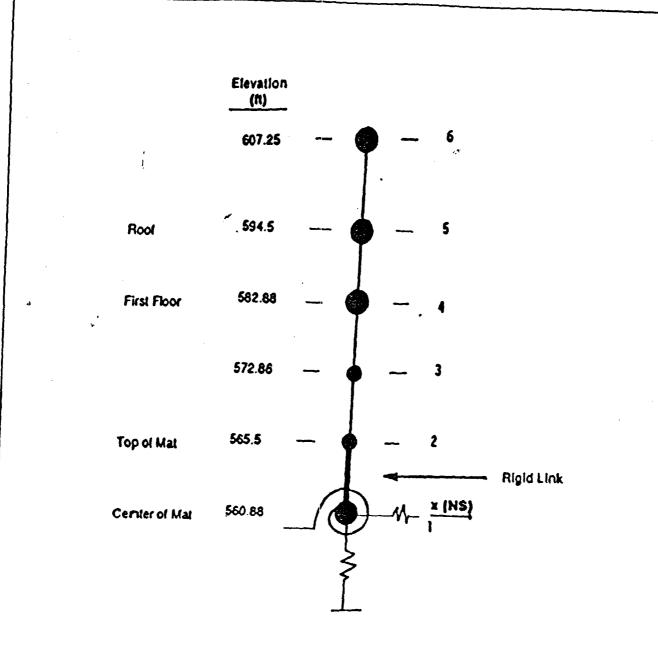
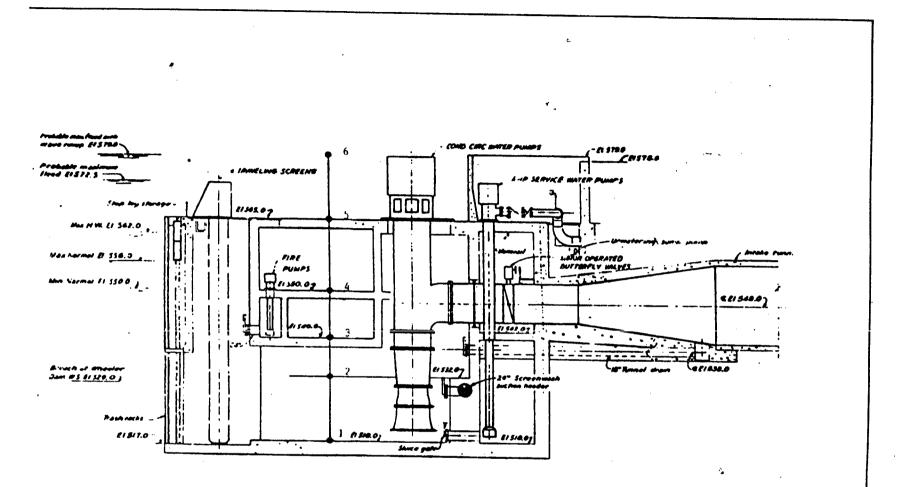


Figure F-2 Lumped-Mass Models for the Unit 3 DGB


REF: MARS REPORT VOL. 2

SHEET <u>57</u> OF BFN UNIT 0 CD-Q0000-940339 PREP <u>P & L</u> DATELO-14-95 CHKD_01DATE <u>10/157</u>95

į

· · · · ·		*	
i i i i i i i i i i i i i i i i i i i	TABLE F-	<u>1</u>	
	Absolute Accelerati	ve (ZPA) Respon	se Values
		ZPA(g)	
	N-S	E-W	Vert
Units 1 and 2 DGB			
E1'594.50'	0.251	0.238	0.093
E1 582.88'	0.230	0.222	0.091
E1 560.88'	0.190	0.186	0 .083
			•••••
Unit 3 DGB			
	0.240	0.245	0.090
E1 607.25'	0.240	0.245	0.090
E1 594.50'	0.230	0.233	0.086
E1 582.88'	0.221	0.220	0.086

REF. MARS REPORT VOL 2

ELEVATION

View Looking West

Figure A-1 Lumped Mass Model of the Intake Pumping Station

REF: MARS GEBORT VOL.1

CALCULATION OF BASIC PARAMETERS FOR A46 AND INDIVIDUAL PLANT EXAMINATION OF EXTERNAL EVENTS (IPEEE) SEISMIC PROGRAM

CHKD DATE WINAS

CD-Q0000-940339

SHEET 58

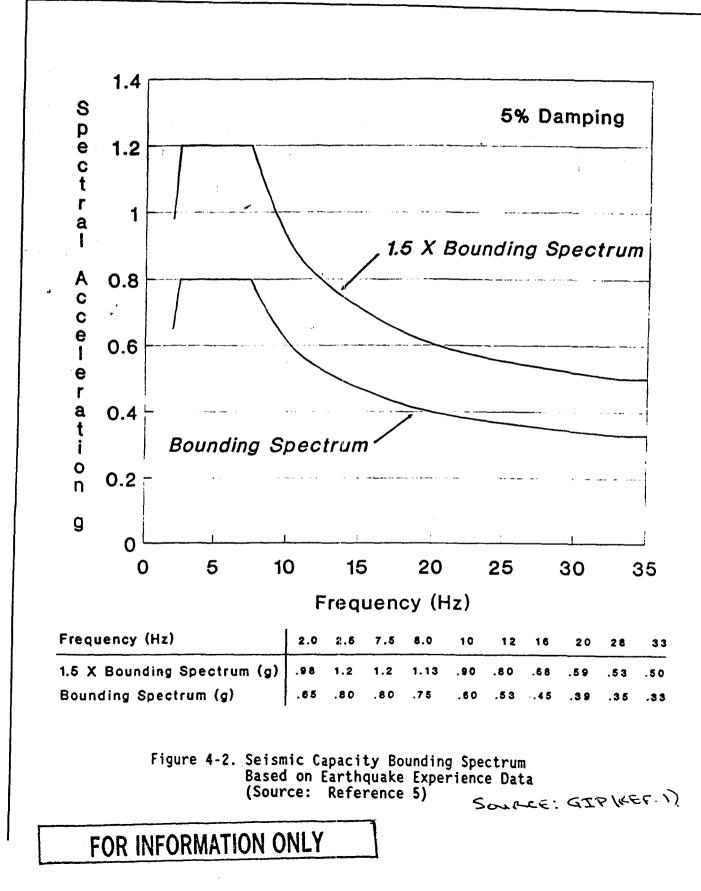
P,

SHEET <u>59</u>_OF___ BFN UNIT 0 <u>CD-Q0000-940339</u> PREP_<u>8</u>, <u>51</u>_DATE<u>10/15</u>/55

TABLE A-3

SSE Maximum Absolute Accelerations Response Values (Water El. 529.0) INTAKE Pumping Structure

	THINKE LANGING SALCAC COME					
			Accelerations (g			
Elevation	•		<u>N-S</u>	<u>B-W</u>	Vert	
518.0*			0.20	0.20	0.13	
532.0	1		0.20	0.20	0.13	
540.0			0.21	0.21	0.13	
550.0		, ⁴	0.22	0.22	0.13	
565.0			0.26	0.25	0.13	
579.0			0.33	0.27	0.13	


TABLE A-4

SSE Maximum Relative Displacements Relative To Base (Water El 529.0)

Elevation	<u>Relative</u> <u>N-S</u>	<u>Displace</u> <u>E-W</u>	ments (10 ⁻² in) <u>Vert</u>
518.0	0.0	0.0	0.0
532.0	0.29	0.31	0.0
540.0	0.48	0.54	0.0
550.0	0.66	0.73	0.0
565.0	0.90	0.92	0.0
579.0	1.15	0.95	0.0
*: Base			

REF: MARS REPORT VOL. 1

SHEET 60 OF BFN UNIT 0 CD-Q0000-940339 PREP PSI DATE 0-19 CHKD 0 DATE 0/15/95

