ADDENDUM

U.S. Environmental Protection Agency Western Ecology Division

Final Status Summary Report for Decommissioning the Corvallis and Newport Research Facilities and the Termination of NRC Radioactive Materials License No. 36-12343-02

December 27, 2005

Docket No: 030-05974 License No: 36-12343-02 Mail Control No: 470287

			uCi			
Isotope	Begin Balance	Rec'd	Use/ Dispsd	Trans/ Decay	End	Possession Indicies < 1
Americium-241 Chk	1.00	0.00	0.00	1.00	0.00	000.0E+0
Carbon-14	4.30	0.00	0.00	0.00	4.30	43.0E-6
Cesium-137 Chk	3.60	0.00	0.00	0.64	2.96	exemp
Hydrogen-3	1.80	0.00	0.00	0.00	1.80	36.0E-6
Hydrogen-3 Sources	131,070.00	0.00	0.00	20,380.00	110,690.00	exemp
Nickel-63	1.00	0.00	0.00	0.08	0.92	3.7E-6
Radium-226 Chk	2.00	0.00	0.00	2.00	0.00	exempt
Totals	131,083.70	0.00	0.00	20,383.71	110,699.99	82.7E-6
License Posession Indie <u>PMMAC</u> P.A. Monaco, Health & F	cies: : Radiation Safety	All 12/21/1	< 1.0? / ? <u>5</u> Date	H Yes		

				<u></u>				Swipe			mCi		
Manufacturer	Serial #	Date	NUCL	mCi	LOC	User	Inventory	Activity <0.005uC	Begin i Balance	Rec'd	Use/ Dispsd	Trans/ Decay	End
IPL	R-499	10/91	Am-241	0.0000	N/A	N/A		*Exempt	0.0010	0.0000	0.0000	0.0010	0.000
LUDLUM	77146	8/90	Cs-137	0.0007	CSB-1	RSO	V	*Exempt	- 0,0009	0.0000	0.0000	1.5940E-04	0.000
LUDLUM	77222	8/90	Cs-137	0.0007	CSB-1	RSO		*Exempt	0.0009	0.0000	0.0000	1.5940E-04	0.000
LUDLUM	77207	8/90	Cs-137	0.0007	CSB-1	RSO		*Exempt	0.0009	0.0000	0.0000	1.5940E-04	0.000
LUDLUM	77176	8/90	Cs-137	0.0007	CSB-1	RSO	V	*Exempt	0.0009	0.0000	0.0000	1.5940E-04	0.000
NEN		9/82	C-14	0.0002	CSB-1	RSO		*Exempt	0.0002	0.0000	0.0000	0.0000	0.000
SCIENTECH	ST95-420	7/95	H-3	110.6900	CSB-1	RSO		*Exempt	131.0700	0.0000	0.0000	20.3800	110.690
IPL	405-92	9/92	Ni-63	0.0009	CSB-1	RSO		*Exempt	0.0010	0.0000	0.0000	7.5570E-05	0.000
N-C			Ra-226	0.0000	N/A	N/A		*Exempt	0.0010	0.0000	0.0000	0.0010	0.000
N-C			Ra-226	0.0000	N/A	N/A		*Exempt	0.0010	0.0000	0.0000	0.0010	0.000
									131.0778	0.0000	0.0000	20.3837	110,694

SEALED SOURCE SUMMA	NRY				
	<u></u>				
			uCi	<u></u>	
Isotope	Begin Balance	Rec'd	Use/ Dispsd	Trans/ Decay	End
Ameriicium-241	1.0	0.0	0.0	1.0	0.0
Carbon-14	0.2	0.0	0.0	0.0	0.2
Cesium-137	3.6	0.0	0.0	0.6	3.0
Hydrogen-3	131,070.0	0.0	0.0	20,380.0	110,690.0
Nickel-63	1.0	0.0	0.0	0.1	0.9
Radium-226	2.0	0.0	0.0	2.0	0.0
Totals	131,077.8	0.0	0.0	20,383.7	110,694.

{

.

TRACER INVENTORY	SUMMARY				
			uCi		
Isotope	Begin	Rec'd	Use/	Trans/	End
	Balance		Dispsd	Decay	Balance
Carbon-14	4.1	0.0	0.0	0.0	4.1
Hydrogen-3	1.8	0.0	0.0	0.0	1.8
Nickel-63	0.0	0.0	0.0	0.0	0.0
Totals	5.9	0.0	0.0	0.0	5.9

RADIO-TRACER INVER									
15-Dec-05				1					
			Quantit	y (uCi)					
Chemical Form	Isotope	Begin	Rec'd	Used/	Trans	Present	Location	User	
				Waste	/Decay				
Toluene 697-089	C-14	4.1	0.0	0.0	C.0	4.1	CSB-1	RSO	
Total Carbon-14		4.1	0.0	0.0	0.0	4.1			
Water	H-3	1.8	0.0	0.0	0.000	1.8	CSB-1	RSO	
Total Hydrogen-3		1.8	0.0	0.0	0.000	1.8			
Nickel	NI-63	0.0	0.0	0.0	0.0	0.0		1	
Total Nickel-63		0.0	0.0	0.0	0.0	0.0			

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY WESTERN ECOLOGY DIVISION 200 S.W. 35TH STREET • CORVALLIS, OR 97333

> OFFICE OF RESEARCH AND DEVELOPMENT

December 14, 2005

Mr. Rainier Farmer Radiation Safety Officer Oregon State University 127 Oak Creek Building 30th and Western Corvallis, Oregon 97331-7404

Dear Mr. Farmer:

As per your conversations with Mr. Phil Monaco, Radiation Safety Specialist at our facility, we are transferring to your custody three (3) radioactive sources. The sources are two (2) radium 226 sources (Nuclear Chicago check sources) of less than 1 micro curie each and one (1) americium 241 source of 616 Bq (37,000 DPM). The americium source is an NIST traceable reference standard and a calibration certificate is attached.

It is our understanding that these sources will be used for safety/training purposes.

Thank you for agreeing to take these sources. Please sign and return the attached Radioactive Shipping Certificate.

Cordially.

William L. Griffis Chemist Environmental Compliance Manager

UNITTES STATES ENVIRONMENTAL PROTECTION AGENCY WESTERN ECOLOGY DIVISION NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY 200 SW 35TH STREET CORVALLIS, OREGON 97333

RADIOACTIVE SHIPPING CERTIFICATE

US NRC Materials License No. 36-12343-02

Isotope 1
Chemical/Physical Form: plated Source Radionuclide:Am SW R-499
Radioactivity (Total): 6/6 Bg Date: 10/1/9/ Specific Activity: N/A
Isotope 2
Chemical/Physical Form: Check Sources Radionuclide: 226 RA
Radioactivity (Total): $\leq 66 \text{ kBg}$ Date:Specific Activity:N/A $2 \times 33.3 \text{ kBg}$
Leak Test: <u>LXCmpt</u> Package Survey: <u>See Attache</u>
Shipped To: Radiation Safety OFFICE
Ovegon State University
127 OAK Creek Building
CONTALLAS OR 97331 - 7404
Altr: Rainier Farmer /Dan Harlan
541-737-7080 /541-1737-7082
·

Acknowledgement of Receipt:
I, Dan Haclan Assist- RSO, acknowledge receipt of the above material
Print name/Title
on the $l^{\prime}_{\rm day of}$ dec , 2005.
Signature

Please return to Phil Monaco, Radiation Safety, Dynamac Corporation, 541-754-4787, U.S. EPA Western Ecology Division, 200 SW 35th Street, Corvallis, Oregon 97333

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 20, 2005Subject:Room Survey:Main Building 126 Final Contamination Survey.

Description and Historic Use:

Small double lab (350 ft^2). Potentially hydrogen-3 and carbon-14 tracers, and nickel-63 and hydrogen-3:scandium sealed sources. No isotope use since prior to 1983. There is no record of leakage of any sealed sources used in this area.

Surveys:

Total (fixed or static) and removable contamination surveys were conducted in MB 126 in November 2004. This room was an unrestricted area since prior to 1986.

All points surveyed (16 total and 16 removable) demonstrated no significant contamination. Seven points indicated very low levels of removable contamination from tritium $(0.10 - 0.92 \text{ Bq}/100 \text{ cm}^2)$. All other sampling points were less than the lower limits of detection for contamination. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities. A HVAC duct swipe was made in November 2004 which detected 0.37 Bq/100 cm² of hydrogen-3.

Records for this room clearly demonstrate that contamination surveys were regularly performed, the area was not subject to any significant contamination events, and the room was maintained as a contaminate-free area. We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. Records of the most recent historic surveys (i.e. prior to the final decommissioning surveys) of MB 126 are included in this report.

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 20, 2005Subject:Room Survey:Main Building 129 Final Contamination Survey.

Description and Historic Use:

Triple lab (MB 125) converted to an office (225 ft^2). Carbon-14 tracers, and nickel-63 and hydrogen-3:scandium sealed sources. No isotope use since 1981. There is a record of a contamination event due to a tritium:scandium detector that was not properly vented. A record of the event and remediation is enclosed.

Surveys:

A total (fixed or static) contamination survey was conducted in MB 129 in November 2004. This room has been an unrestricted area since prior to 1982.

All points surveyed (6 total) were less than the lower limits of detection for contamination. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities.

We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. A record of the most recent historic surveys (i.e. prior to the final decommissioning survey) of MB 129 is included in this report.

The survey for total contamination was conducted using a Ludlum Model 2000 Scaler equipped with a Ludlum Model 44-9, 12-cm² thin-window Geiger-Muller pancake detector.

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 20, 2005Subject:Room Survey:Main Building 130 Final Contamination Survey.

Description and Historic Use:

Single lab (225 ft²). Potentially hydrogen-3, carbon-14, and chromium-51 tracers, and nickel-63 and hydrogen-3:scandium sealed sources. Hydrogen-3 and chromium-51 were used as tracers in the 1990's. This room was decommissioned as an unrestricted area on May 11, 1994. No isotope use since1994. There is no record of leakage of any sealed sources used in this area.

<u>Surveys</u>:

Total (fixed or static) and removable contamination surveys were conducted in MB 130 at the time of restricted use decommissioning. All points surveyed demonstrated there was no significant contamination present. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities. A HVAC duct swipe was made in November 2004 which detected $0.47 \text{ Bq}/100 \text{ cm}^2$ of carbon-14.

Records for this room clearly demonstrate that contamination surveys were regularly performed, the area was not subject to any significant contamination events (a small tritium contamination event from a sealed source in MB 125 was reported in 1979), and the room was maintained as a contaminate-free area. We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. Records of the most recent historic surveys (i.e. prior to the final decommissioning surveys) of MB 130 are included in this report.

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 20, 2005Subject:Room Survey:Main Building 131 Final Contamination Survey.

Description and Historic Use:

Triple lab (MB 125) converted to single office (225 ft²). Carbon-14 tracers, and nickel-63 and hydrogen-3:scandium sealed sources. No isotope use since prior to1986. There is a record of a contamination event due to a tritium:scandium detector that was not properly vented. A record of the event and remediation is found under MB 129.

Surveys:

A total (fixed or static) contamination survey was conducted in MB 131 in November 2004. This room has been an unrestricted area since prior to 1986; radioactive materials were not used in this area since 1984.

All points surveyed (6 total) were less than the lower limits of detection for contamination. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities.

We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. A record of the most recent historic surveys (i.e. prior to the final decommissioning survey) of MB 131 is included in this report.

The survey for total contamination was conducted using a Ludlum Model 2000 Scaler equipped with a Ludlum Model 44-9, 12-cm² thin-window Geiger-Muller pancake detector.

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 20, 2005Subject:Room Survey:Main Building 133 Final Contamination Survey.

Description and Historic Use:

Triple lab (MB 125) converted to single office (225 ft²). Carbon-14 tracers, and nickel-63 and hydrogen-3:scandium sealed sources. No isotope use since 1983. There is a record of a contamination event due to a tritium:scandium detector that was not properly vented. A record of the event and remediation is found under MB 129.

Surveys:

A total (fixed or static) contamination survey was conducted in MB 131 in November 2004. This room has been an unrestricted area since 1984.

All points surveyed (6 total) were less than the lower limits of detection for contamination. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities.

We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. A record of the most recent historic surveys (i.e. prior to the final decommissioning survey) of MB 133 is included in this report.

The survey for total contamination was conducted using a Ludlum Model 2000 Scaler equipped with a Ludlum Model 44-9, 12-cm² thin-window Geiger-Muller pancake detector.

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 20, 2005Subject:Room Survey: Main Building 150 Final Contamination Survey.

Description and Historic Use:

Single lab converted to single office (225 ft²). Nickel-63 and hydrogen-3:Scandium sealed sources. No tracer isotopes use since 1981. There is no record of leakage of any sealed sources used in this area.

Surveys:

Total (fixed or static) and removable contamination surveys were conducted in MB 150 in November 2004. This room has been an unrestricted area since prior to 1986.

The four points surveyed (4 total and 4 removable) demonstrated no significant contamination. One swipe indicated very low levels of removable contamination from tritium (0.35 Bq/100 cm²). This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities.

We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. A record of the most recent historic surveys (i.e. prior to the final decommissioning survey) of MB 150 is included in this report.

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 21, 2005Subject:Room Survey:Main Building 190 Final Contamination Survey.

Description and Historic Use:

Single Lab (225 ft²). This is the Radiation Safety Laboratory/Office. All radioisotopes tracers and sealed sources used at the Western Ecology Division were stored and/or handled in MB 190. Only references and standards are presently stored in this area pending final decommissioning approval and license termination. No sealed sources were used in this area.

Surveys:

Total (fixed or static) and removable contamination surveys were conducted in MB 190 in November 2004. All total contamination surveys (38 total) demonstrated no contamination. Six swipes indicated very low levels of removable contamination from tritium $(0.14 - 1.73 \text{ Bq}/100 \text{ cm}^2)$ and/or carbon-14 $(0.25 - 1.85 \text{ Bq}/100 \text{ cm}^2)$. The swipe of the exhaust plenum of a portable ventilation cabinet indicated both tritium and carbon-14 contamination (3.98 – 5.08 Bq/100 cm²). This ventilation cabinet and the connecting duct work was disassembled in stages. Removal was completed in April 2005. The ventilation cabinet body and the duct work was free of any significant contamination. The connecting exhaust hose indicated minor contamination (13 Bq/100 cm²). The swiped to demonstrate a contamination level of 1.1 Bq/100 cm².

The sanitary sewer drain line indicated contamination of the iron tail piece $(3.47 \text{ and } 12.25 \text{ Bq}/100 \text{ cm}^2 \text{ of tritium and carbon-14 respectively})$. This piece was removed, further decontaminated, and disposed in April 2005. Surveys of the drain line indicated the level of contamination was below the detection limits.

Both the ventilation cabinet and the drain tail piece are less than the NRC criteria for contamination in an unrestricted area. All other sampling points were at background. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities. A HVAC duct swipe was made in November 2004 which detected contamination of 0.37 Bq/100 cm² of carbon-14.

Records for this room clearly demonstrate that contamination surveys were regularly performed, the area was not subject to any significant contamination events, and the room was maintained as a contaminate-free area. We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. Records of the most recent historic surveys (i.e. prior to the final decommissioning surveys) of MB 190 are included in this report.

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 21, 2005Subject:Room Survey:Main Building 232 Final Contamination Survey.

Description and Historic Use:

Single instrument lab (225 ft²). Hydrogen-3 and carbon-14 tracers, and nickel-63 and hydrogen-3:scandium sealed sources. This room was decommissioned as a unrestricted area on February 10, 1999. No isotope use since1999. There is no record of leakage of any sealed sources used in this area.

Surveys:

Total (fixed or static) and removable contamination surveys were conducted in MB 232 at the time of restricted use decommissioning. The decommissioning records are enclosed. Initial decommissioning survey indicated contamination (185 Bq/100cm²⁾ on the counter top surrounding the sink. The area was cleaned and resurveyed. The final survey indicated that any contamination was less than the lower detection limits (LLD). Therefore all points surveyed demonstrated no significant contamination. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities.

Records for this room clearly demonstrate that contamination surveys were regularly performed, the area was not subject to any significant contamination events, and the room was maintained as a contaminate-free area. We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. Records of the most recent historic surveys (i.e. prior to the final decommissioning surveys) of MB 232 are included in this report.

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 21, 2005Subject:Room Survey:Main Building 236 Final Contamination Survey.

Description and Historic Use:

Double lab (450 ft²). Hydrogen-3 and carbon-14 tracers, and nickel-63 sealed sources. This room was decommissioned as an unrestricted area on April 22, 1999. No isotope use since1999. There is no record of leakage of any sealed sources used in this area.

Surveys:

Total (fixed or static) and removable contamination surveys were conducted in MB 236 at the time of restricted use decommissioning. The decommissioning records are enclosed. Initial decommissioning surveys indicated minor contamination (3.7 Bq/100 cm²) in one spot on the floor in front of the east counter. The area was cleaned and reswiped to demonstrate any contamination was less than the lower limits of detection (LLD). Minor fixed contamination (680 Bq/100 cm²) was indicted in the north fume hood. This portion of the hood was removed in 2003 and appropriately disposed. All other points surveyed demonstrated no significant contamination. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities.

Records for this room clearly demonstrate that contamination surveys were regularly performed, the area was not subject to any significant contamination events, and the room was maintained as a contaminate-free area. We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. Records of the most recent historic surveys (i.e. prior to the final decommissioning surveys) of MB 236 are included in this report.

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 21, 2005Subject:Room Survey: Main Building 246 Final Contamination Survey.

Description and Historic Use:

Double Lab (450 ft²). Hydrogen-3 and carbon-14 tracers, and nickel-63 sealed sources. Used for radioactive materials handling in 2004. There is no record of leakage of any sealed sources used in this area.

Surveys:

Total (fixed or static) and removable contamination surveys were conducted in MB 246 in November 2004. One piece of equipment (a small fiberglass containment tray) indicted minor contamination. This portion of the tray was cutout and disposed as contaminated waste. All non-equipment points surveyed (46 total and 60 removable) demonstrated no significant contamination. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities. A HVAC duct swipe was made in November 2004 which detected no contamination.

Records for this room clearly demonstrate that contamination surveys were regularly performed, the area was not subject to any significant contamination events, and the room was maintained as a contaminate-free area. We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area. Records of the most recent historic surveys (i.e. prior to the final decommissioning surveys) of MB 246 are included in this report.

Addendum to Room Survey L123

.

.....

Historical Survey

1 1 1 2 3 7-0/6/ 1 1 1 1 1 1 1 1 1 1 mutiple suives & Contam Area (Phine) Fune 5 Hood 6 5 LFVEC LFVEC 5 1. Phone Reciver before Clemy 2. "" " AFEn Clemiz NEP DPM 0 Beg 20.5 \mathbf{Z} 0.34 Ø 0.0 CLLD 0,0 \mathcal{O} ZLLD Phone Budy 0,0 CLLD 5 CONTER TOP AT MORE 0.0 < LLD 4 3 LFVEC LFVEC Sink 40= 5.2 DPM= 0.086 BEP Emerg Safety ٢ Shower Low Form LFVEC vented exposure 0 Bench Chamber (LFVEC) 1. ce) then 7/12/01 ↑ Door

Ł

- 1 Lild' 750, Suins 1 1. HODD FLOOL - 0.0 GLLD (2-Fune 2. HOOD BACK, WALL - 0.0 LLLD 3 Floor @ Hood - 0.0 <LLD Hood 1. Flouis 2,14 Spike MA- 0.0 CLLD Ì 6 5 Ð E) LFVEC LFVEC 6 0/51 5 0 5, COURTE TO C SPILO ALPY - 0.0 - LLLA Z Co - (Nonet 5 TOP - 0.0 - 6461 7. Phone - 68.4 - 1.14 Bea 0 8. POOR HAAR-0.0 < LID 4 3 Sink 1_ FVEC LFVEC 11 9, Flore @ Door - 0, 0 LLD 10. Cohivet 3 - 0, 0 < 141) H Emerg Safety Shower لد Low Form vented exposure LFVEC \mathcal{O} Ŵ Chamber (LFVEC) Bench LLD = 5.3 DPM = 0.089 Beq Door

Anna) these

1

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 22, 2005Subject:Room Survey:Newport L-142 Final Contamination Survey.

Description and Historic Use:

Double lab (250 ft^2). Carbon-14 tracers. No isotopes present in this area since 1999. There is no record of a leaking sealed source or major spill in this area.

Surveys:

Total (fixed or static) and removable contamination surveys were conducted in L-142 in December 2005. The five points for the fixed survey indicated that any contamination was below the lower limits of detection. Likewise, the removable contamination survey demonstrates that the area is clean and free from any significant contamination. Ten swipes were taken and counted for hydrogen-3 and carbon-14. One swipe indicated a contamination level of 10 dpm (0.17 Bq/100 cm²). All other points were below the lower limits of detection. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities.

Records for this room clearly demonstrate that the area was not subject to any significant contamination events. We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area.

Removable contamination swipes were counted in a Packard 2200 CA dual channel Liquid Scintillation Counter.

LOG NO. 05-05 NHEERL-WED RADIATION AREA SURVEY

DATE 12/13/05

LOCATION <u>2142</u> ROOM <u>2-142</u>

ACTIVITY

Bq/100 CM² ND*

0.17 NDt

103%

INSTRUMENT PACKARD SERIAL NO.

22000

	SWIPE GROSS NET ACTIV
SWIPE GROSS NET ACTIVITY # CPM DPM $B_{\alpha}/100 \text{ CM}^2$	# CPM DPM Bq/100
$\frac{1}{2}$ $\frac{1}{12}$ $\frac{1}{10}$	26 LUD NI
$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$	$-\frac{2}{26}$
$\frac{12}{12}$ $\frac{12}{12}$ $\frac{12}{12}$	26
	$-\frac{1}{2l_1}$
24 18	$-\frac{-}{34}$ $-\frac{-}{10}$ $-\frac{-}{012}$
25 16	$-\frac{0}{\sqrt{27}} \frac{10}{\sqrt{10}} \frac{0.11}{\sqrt{10}}$
26 13	$-\frac{\alpha}{28}$ $-\frac{\lambda}{1}$ $-\frac{\lambda}{1}$
27 11	
28 13	
29 75	
30 79	<u>29</u>
······	
$(\)$	
$\int (\sqrt{19}) \int (24)$	
$LLD_{95} = \{ \{ -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \} \\ X 2.96 \} + = CPM$	$110 = (26) \times 296 + - CPM$
19	
BACKGROUND //	BACKGROUND 26
STANUARU (S8,710 0FM) 66,560 0M	STANDARD (8400) 186511
255,200 dam Source 11/79 113%	N/EA / ///.30

COMMENTS: #ND = NOT DETERMINED, BELOW THE DETECTION Limits

Nona RADIATION SPCL.

LOG NO. <u>05-06</u>

NHEERL-WED RADIATION AREA SURVEY

DATE <u>12/13/05</u>

RADIATION SPCL.

REA SURVEY IXED LOCATION <u>L 142</u> ROOM <u>L-142</u>

INSTRUMENT Technical Associates TBM-3 GM SERIAL NO. # 11434

$\begin{array}{c} A & 75 \\ \hline B & 75 \\ \hline C & 50 \\ \hline 7 & 75 \\ \hline \hline \hline 7 & 75 \\ \hline \hline \hline 7 & 75 \\ \hline \hline \hline \hline \hline \hline 7 & 75 \\ \hline $	ROSS CPM	NET DPM	ACTIVITY Bq/100 CM ²
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$LLD_{ss} = \left\{ \left(\sqrt{150} \right)^{sk} \times 2.96 \right\}^{s} + = CPM$ $LLD_{ss} = \left\{ \left(\sqrt{150} \right)^{sk} \times 2.96 \right\}^{s} + = CPM$ $LLD_{ss} = \left\{ \left(\sqrt{150} \right)^{sk} \times 2.96 \right\}^{s} + = CPM$ $LLD_{ss} = \left\{ \left(\sqrt{150} \right)^{sk} \times 2.96 \right\}^{s} + = CPM$ $LLD_{ss} = \left\{ \left(\sqrt{150} \right)^{sk} \times 2.96 \right\}^{s} + = CPM$			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			·
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
= = = = = = = = = = = = = = = = = = =			
$LLD_{95} = \left\{ \left(\sqrt{150} \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} \times 2.96 \right\}^{X} + = CPM$ $LLD_{95} = \left\{ \left(VISO \right)^{X} + \left(VI$			
$LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/4} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/4} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + ISO = NL$			
$LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/4} \times 2.96 \right\}^{3/6} + 159 = 136$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + = CPM$ $LLD_{95} = \left\{ \left(\frac{150^{3/4} CPM}{STANDARD} \right)^{3/6} + \frac{150^{3/4} CPM}{STANDARD} \right\}$			
$LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/4} \times 2.96 \right\}^{3/6} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/6} \times 2.96 \right\}^{3/6} + = CPM$ $LLD_{95} = \left\{ \left(CPM \right)^{3/6} \times CPM \right\}$ $BACKGROUND = \frac{150^{3/6} CPM}{5TANDARD} $ $BACKGROUND = \frac{150^{3/6} CPM}{5TANDARD}$			
$LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + \left\{ \sqrt{150} \right\}^$			
$LLD_{95} = \left\{ \left(\sqrt{150} \right)^{**} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{**} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{**} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{**} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{*} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{*} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{*} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{*} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{*} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{*} \times 2.96 \right\}^{*} + = CPM \qquad LLD_{95} = \left\{ \left(ULD_{95} \right)^{*} \times 2.96 \right\}^{*} + \left\{ ULD_{95} \right\}^{$			
$LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/4} \times 2.96 \right\}^{3/6} + 150^{-10} = 186 \right\}$ $LLD_{95} = \left\{ \left(\sqrt{150} \right)^{3/4} \times 2.96 \right\}^{3/6} + 150^{-10} = 186 \right\}$ $BACKGROUND = \frac{150^{3/4} \text{ CPM}}{150^{3/4} \text{ CPM}}$ $BACKGROUND = \frac{150^{3/4} \text{ CPM}}{10^{3/4} \text{ CPM}}$ $BACKGROUND = \frac{150^{3/4} \text{ CPM}}{10^{3/4} \text{ CPM}}$			
BACKGROUND /50° CPM BACKGRO STANDARD () BACKGRO STANDARD	() x 2.96	} + = CPM
STANDARD () BACKGRU STANDARD () STANDAR			
STANDA	RD ()
			/
COMMENTS: NOX = NOT DETERMINED. Below Detection.	i He i	lower	limits of
- Baulyon historical backgrown	A.		

DATE

Sampler's Sample des	Init: sc: C-14 D, Sc Sc Sc JL	And some	En Sur		 Backgr Refere Operat	Machin ound CPM: nce Stand or Initia	e Q.A. <u>20,19</u> ard: <u>45</u> 1:	Sample Control 96 Collected: 6/22/97 Received: 1 Analyzed: 1 Returned P.I.: 1
PROT #	SAMPLE #	 	SLOT#	 SAMPLE VOLUME	SAMPLE SOLVENT	FLUOR VOLUME	FLUOR	DPM/CPM REMARKS
			 2 3 4 5 6 7 6 7 8 9 10 10					323 BLMA 323 BLMA 322 Source 322 Source 178-1 Freeze LIOB 327 ReFee LIOB 305 Floore DooR LIOB 305 Floore NEAR 132 6 FEOOR in HACH 312 7 Floore NEAR 132 9-1 Floore NEAR 132 9-1 Floore NEAR 139 9-1 HAZ WARK

mpler's mple des	Init 1/ sc: C-14 Jc	ily Sw,			Backgro Backgro Referen Operato	Machine ound CPM: nce Standa or Initial	172,85 ard: <u>94</u> 8	Collected:	$\frac{6/9/94}{6/9/94}$	
ROT #	SAMPLE #	SLOT#	SAMPLE VOLUME	 SAMPLE SOLVENT	FLUOR VOLUME	FLUOR TYPE	DPM/CPM	 REMARKS		
I I	060	2900				 		38,8	3 BLANK ,	•.
- 1		101	2		1	 		38.8	3 axidize	in
		02	3	 	 	 		35,9	Floor	$\langle 0 \rangle$
		03	14	 	· 	 	 	36.	F 1100 d Lif	9
 		04	15	1		 		39.	Since	
		05	6	1				38	9 Refer	ζ
I		06	7					36.8	3 FLOOR	2
ł 		07	9					36.	Floor	\backslash
l		08	9	1		1		36.2	5 Varted Pox	
<u>l</u>		109	1 1/0) 	 	1		351	55 SiNK	2
<u> </u>		110		 	 			3 Z.	7 Flax	2
				4	1	no	Done		Itaad	\searrow
<u> </u>				 	1					
<u> </u>				- <u>1</u>	<u>-</u>					
<u> </u>				 	 1	 				
<u>l</u>					 					

٢ -[]-A Com ٧., CLI 7 O.D. \bigcirc \bigcirc О 8 0.0 (LLI) 9 0.0 aug 10 0.0 CU) Ó \bigcirc \bigcirc $\mathbf{0}$ \bigcirc $(\underline{\partial})$ 3 0 Ł Bioaccumulation Exposure / L142 (M16) Date of Survey: 6/9/94 LLD = 6 Net DPM = 2.7*10 ⁻⁶ Surveyor: B² 96) RSO Signature: Bund Pre

ample desc: C-14 MAY SwiPes //2 XCAR SURUKY										Machine Q.A. Background CPM: 2/3 Reference Standard: 93 % Operator Initial: β ²						Sample Control Collected: 5-70-95 Received: 7 Analyzed: 7 Returned P.I.: 7			
PROT #	OT # SAMPLE # SLOT# SAMPL VOLUM						MPLE	SAMPLE SOLVENT		 Fluor Volume	FLUOR TYPE		DPM/CPM		REMARKS				
l		-	1				<u> </u> 	1 1 1	N	1A	PA	m	18ml	OPT;			371	BLANK	
		05	11	0	0	01	ĺ	12	 		 	1					3516	LIOO Lip	
			1			2	1	3									3612	1LIOB OKidize	
		1				3		4	1					1			392	1LIOB Sink	
1			1	1		14	1	15	1								371	12108 Reter	
		1		1		5		4			1				1		365	Counter	
		Î		1	 	6	Ī	17			 				1 1		360	1 L16: 1 OX floor	
<u> </u>		Î	Î	1		X		8			 						351	12108 Floor AT	Doon
		Î	1	1				1 19	1		 						36.8	16142- Hoon AT Doo	٨
		1		Ì	 	9	1	110	Ì		1						338	16142 1 Um 7 Cabo	vet
A	<u> </u>		Î	1	 	110	 . _ 1	11/			 		1			1	345	1L/42- 1 Nu Conta	
I		 	Î		 	1/1/		1/12				1				 	343	LIY Thank CI	
 		<u> </u>	Ì	Î		1/12	 ~	1/3			1					· 	336	1/4A1/ LI42	
 		1		1			 /	119	/ 								379	ITTALL CTC	8
	• 		1		1	1/14		115	7		1	1				<u> </u>	3116	ILSC BArrel	TOP
			i	1		1/15	+	116	1	T	1	V			<u></u>		354	WAV behind	Jbre

l	١		A L	3	1		1	S	CIN	I TILLA	ا T10	N C	I OUNTER DA	TA SHEET	page	 /of/	1	ł		l	۱.	1 1
Sa ple Sample	r's de PE)	In sc: ci	it: C-	14 (- 1	42	7	- B	~	ŧ×	Pinir	ner			 Backgr	Machin	e Q.A.			ampl	e Co	ntrol	
														Refere Operat	nce Stand or Initia	ard: 1:32_	8	Coll Rece Anal Retu	ived yzed rned	d: <u>3</u> : <u>3</u> : <u>3</u> P.I	12/95	. . .
PROT #			SA	MPL	E #					 SLA 	OT#		SAMPLE VOLUME	 SAMPLE SOLVENT	FLUOR VOLUME	FLUOR TYPE		DPM/C	PM		REMARKS	_
2	0	3	0	2	10	10	0					1	NA	PAPEN	18-1	OPTI			318	3	CH2BL	- 412
2	0	3	0	12	0	0	1					2	11	l u	~	u			36	8	LIUN	-
2	6	3	0	2	0	10	12					3	11		w _	1 ~			31	17	1.	
?	6	3	0	2	10	0	3					4	N	l ' u	~	u			35	13	1.	-
2	0	3	0	2	0	0	4					5	"		~				34	14	11	-
1-	0	3	0	2	10	0	5					6	u		5	ى ب			3 5	1	11	-
2	0	3	10	2	0	0	6					2	~	۰ ۱	~				33	4	11	-
	0	3	0	2	0	0	7					8	~	~	-	~			33	3	11	-
	<u> </u>		<u> </u>	 	ļ		8					9	11	<i>'</i> ;	4	4			3/5	16	6108 11	- 100 D
	ļ	 	<u> </u>	1	ļ	 	19				I	10	11	11	۲ ₁	;			3/2	15	2108 Flo	- OR_
	 	ļ			 	1	0		 			//	1.	"	y	;			3 9	16	(108 Sin	- IK
	 	 	1	 	ļ	1/	1				 t	12	1'	"1	٤ _ل	۰,			3 19	10	LIOS LSO	
	 	1 1 1	 	 	 	/			 		 	13	1	"	:	1.			33	17	QC Scale	J Som
	 	I I		 	 	 	 													· 		-
	 	 	 			 												1				- \

Sample Sample	r's de:	(In: sc:	it: C-1	14	ĨŦ	-		so	CINT	TLLAT	TION C	OUN	TER DAT	ra shi Ba	SET	P Ma ound	age .chin CPM:	/ e Q.A	_ of	_/		54 Co114	ampl	e Con d:/-	ntrol - 5-95
Swifts		· R	00~	L-	172		Post	- 12	XPEI	RIMEN	55			_ Re _ _ Op	perat	nce S or In	tand.	ard: <u>-</u> 1: _7	Ē		H 4 H	Rece: Analy Retur	ved zed	P.I	.:
PROT #	 		SA	(PL)	E #				-	ទា	DT#	 S V	AMPLE	SAMI SOLV	PLE VENT	 FLU VOL	IOR UME	 FI TYI	UOR E		Ø		PM		REMARKS
2	0	1	0	2	0	0	0					1	NA	PAR	Jer	181	ne	00	7;		1	.	30	12	Blank
_2	0		0	5	0	0					2	 	h			1	1				1		37	1	Nood
2	0		0	2	0	0	2				3	 				1					1		3/9	-1-	Counter Top
2	0		0	5	0	0	3	 			4												38	16	conter top
2	10	1	0	5	0	0	1 1				15					l I							35	1.00	Verted Box
2	0		0	5	0	0	5				1 16						\sum	 			1		3¦x	,1	F/00R A1 140011
_2				1		0					7		¥		¥ 	 	\$		Ł				3 6	: <u> </u>] 	FLOOR AT BOX
	i I I	i 		i 			 			 				 		 		 					 	 	
	 	 		 	 	1 ! 	 			 				 		 		i ! !						 	
	 	 	 	 	 		 			 				 		 		I I I					 	 	
		i		i 	i			i		 				 		 		 			 		 	 	

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 22, 2005Subject:Room Survey:Newport L-143 Final Contamination Survey.

Description and Historic Use:

Double lab (250 ft^2). Carbon-14 tracers. No isotopes present in this area since 2003. There is no record of a leaking sealed source or major spill in this area.

Surveys:

Total (fixed or static) and removable contamination surveys were conducted in L-143 in December 2005. The five points for the fixed survey indicated that any contamination was below the lower limits of detection. Likewise, the removable contamination survey demonstrates that the area is clean and free from any significant contamination. Ten swipes were taken and counted for hydrogen-3 and carbon-14. Two swipes indicated a contamination level of 9 and 11 dpm (0.15 and 0.18 Bq/100 cm²). All other points were below the lower limits of detection. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities.

Records for this room clearly demonstrate that the area was not subject to any significant contamination events. We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area.

Removable contamination swipes were counted in a Packard 2200 CA dual channel Liquid Scintillation Counter.

NBPN LOG NO. 05-04

LOCATION $\angle 143$ room $\angle 143$

NHEERL-WED RADIATION AREA SURVEY REMOUABLE

DATE 12/13/06

INSTRUMENT PACKARD 2200CA

SERIAL NO.

34	14 (
	SWIPE GROSS NET ACTIVITY
SWIPE GRUSS NET ACTIVITY $P_{\pi}(400 \text{ CM}^2)$	# CPM DPM Bq/100 CM ²
	27 LUD AD
19 Luns Not	<u>A6</u> 1
2 20	
3. 15	- 47
	23V
	33 9 0,15
	26 (4D AD
<u> </u>	$-\frac{29}{110}$
7. 22	<u></u>
8 17 1	
9 78 1	ZUD ND
	23 LUD ND
······································	
\bigcap	
(179) (24)	
$LLD_{os} = \{ (-ll_{2}^{7},,) \times 2.96 \} + = CPM $	$\left(\int \frac{1}{26} \right) \left(\int \frac{1}{21} \right)$
	LLD ₉₅ = { (x) X 2.96 } +
BACKGROUND 19	
STANDARD (58, 978 Jana) 666 560 Jours	BACKGROUND 26
childred objild and 1 we we child	STANDARD (84,000 Jon) 86.511
255,200 dom (11/79) 11.307.	NEN/ 10307.
Mc(ast 1)	100 /0
+	

COMMENTS: ND = NOT DETERMINED. BELOW THE DETECTION Limits.

ON SPCL.

04 fm LOG NO. <u>05-05</u> NHEERL-WED RADIATION AREA SURVEY L-143 DATE 12/3/05 LOCATION Technical Associates TBM-3 6M # 11434 INSTRUMENT SERIAL NO. SWIPE GROSS NET ACTIVITY SWIPE GROSS NET ACTIVITY # CPM DPM Bq/100 CM² Bq/100 CM² DPM 🗶 CPM Ħ 75 100 LUDGE ND+ $LLD_{95} = \left\{ \left(\sqrt{150} \right) \times 2.96 \right\}^{36 + 150 - 186}_{+ = CPM}$ $LLD_{95} = \{ (..., X 2.96 \} + = CPM \}$ CPm ++ BACKGROUND BACKGROUND STANDARD (STANDARD () COMMENTS: * NO = NOT DETERMINED. Below He lower Limits Of detection. M. M. Kased upon Mistorical background. 12-21-05 DATE

DIATION SPCL.

12/13/05-Brone J Bou

-1421

1 1		I Scinti	I I	I DUNTER DA	I I		l / of	
Sampler's Sample des IV:00 CPA/CP IVA-72 OX:11 = IAA/C	Init: β^2 c: c-14 $\overline{\sigma}$ -s7 [] $2 \le 0 \le 5$ $2 \ge 0 \ge 5$ $2 \ge 0$ $2 \ge$	XC 2003	- 1-5		 _ Backgro _ Refere Operato	Machin D ound CPM: nce Stand	e Q.A. <u>19.88</u> ard: <u>97</u> 1: <u>B</u>	Sample Control Collected: $\frac{12}{23}$ Received: $\frac{12}{23}$ Analyzed: $\frac{12}{23}$ Returned P.I.: $\frac{12}{23}$
 PROT # 	SAMPLE #		SLOT# 	SAMPLE VOLUME	 SAMPLE SOLVENT	 FLUOR VOLUME	FLUOR TYPE	DPM CPM REMARKS
			2 3 4 5 6 7 8 9 7 9 7 9	~ A	PAPer 			27.41/36m/k 27.39 LSC [108 28.6.1 Floor By Door LIOB 28.6.1 Floor By Door LIOB 24.6.9 Freeder Nutt 127.1.1 ReFrig N. WAL 23.2.5 Hood HOOR 138.2.8 Hood LIP 10 26.9.3 Floor @ Hood 11 26.9.3 Floor @ Hood 11 30.01/ Oxidizer PT Coil II 39.5.9 Oxidizer WAL MATER 10 29.5.9 Oxidizer WAL MATER 10 29.5.9 Oxidizer WAL MATER 10 29.5.9 Oxidizer WAL MATER 10 20.9.3 DXID: 201 UNI MATER 10 20.9.9 DXID: 201 UNI MATER 10 20.9 DXID: 201 UNI 20.9 DXID:
		1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1	1 3 1 4 1 4 1 6 1 6 77					25,9,2-80 Freeze 25,9,2-80 Freeze 26,6,7 Froor by 443 25,6,9 Las white Barrier 25,6,9 Las white Barrier 26,32 Wall and Mark Barrier

Sampler's Ir	(it:	Y	ا ا المرابع		I LLATIO	N CON	I UNTER DAT	A SHEET	 page Machine	 /of 2 Q.A.		 Sar	 aple Con	trol
Sample desc:	<u>UV</u>	Cha	mber	joir	k+1	Coc	era	Backgro Referer Operato	ound CPM: nce Standa or Initial	23.45 ard: 97 1: <u>K</u> QQ	8 7	Colled Receiv Analy: Return	rted: <u>05</u> ved: zed: ned P.I.	-12-92 : B2
PROT #	SAMP	LE #			SLOT	≠ [SAMPLE VOLUME	SAMPLE SOLVENT	 FLUOR VOLUME	 FLUOR TYPE		DPH CP	M	REMARKS
05	5//6	200	00				Pap	 £1	18ml	Opti- flavor				LAB 143
			2			13							0.0	Right "
			3			4	1	 					0.0	floor
0	511	20	05			16							0.0	floor
 		1		 			 	 		 				
								1	 				 <u> .</u> 	
														·

ñ

.

ł		I I SCIN	I I I TILLATION COUNTER	DATA SHEET	 page_	 of	2	1 1	
Sample Sample	r's Init: desc: C-14 N	LONTHLY	SWIPES	I	Machine	e Q.A.	1	Sample Cor	ntrol
	108 + L	143-A	KDR	Backgr Refere Operat	ound CPM: nce Standa or Initia	ard: <u>97</u> 1: <u>KRR</u>	8	Collected: O Received: Analyzed: Returned P.I.	<u>3-24-92</u>
prot #	↓ ↓ SAMPLE	#	 SLOT# SAMP VOLU	LE SAMPLE ME SOLVENT	 FLUOR VOLUME	FLUOR TYPE		DPM CPM	REMARKS
	03240		I I PA	PER	18ML	IOPTI- IFLUOR			BLANK
			2	}				7!5	ILABIO8 IHOOD LIP
			3					1.0.6	L WALL
			4			<u> </u>		0.0	RWALL
			1 5			<u> </u>		0.0	REAR WALL
			6	+				3.2	FLOOR
			+			1		2.3	OXIDIZER
					<u> </u>			0.0	FLOOR
			9	+				0.0	FLOOR
		9	10			<u> </u>		0.0	FLOOR
		10)		<u> </u>		0.5	FLOOR
			12					I.Z	FLOOR
		12	13			1		2.4	SINK
		13	14					0.0	ILAB 143-A
		14	15					6.0	CHAMBER
	0324	015	16		$$			00	2) E S 2 4 1

and the second second second

.....

Bun I Bren

J Sampler Sampl	 s 	[Ini c:	t: C-1	1 	Y ha	I U.C.	~ Ve	1 sci 4 <u>2</u>	NT I	I LLAT	ION ip fe	CO CO CO	I UNTER 14 2 24	DAT (A SHEET (Backgr Refere	Found ance tor :	 page laching d CPM: Stand Initia	 e Q.A. 23 4 ard: 7 1: 4	 of _/ 	 	l Sa Colle Rece Anal Retu	ample ected ived: yzed: rned	 : <u>05</u> 	trol $\frac{-12-92}{}$
PROT #	 		SAM	IPLE	; #				1	SLO)T#		SAMP VOLU	LE ME	SAMPLE SOLVENT	 F: V(LUOR DLUME	 FLUOH TYPE	R 	Ć	DPM/C	PM		REMARKS
	0	5		2	0	0	0					1	Pa	R	21.	1/8	ml	OPte-	-					
	1						1					2					1	Y		 			0	LAB 143
	 						2	 				3							Î			· 10	$\mathcal{O}^{\dagger}\mathcal{O}$	Richt "
	1	 	 				3					4										10)!0	floor
	 	 	 [! !	4					5			 							C)!0	Sink
	0	15		2	0	0	5		 !			6	\downarrow		 	, 	V						5.0	floor
	1	 	 	 		 <u> </u>			 						 			1	 l				1	
	 	1	 	1	 	 	 				 		l !									1	1	
		1	 	1	 	 	 			·	 	 	 !	·	 	 		 _!	 l				 	l 1
		 	 	 		 	 				 	 	 				<u> </u>		 {				 	·
	 	 		 	 	1	 	1 					 						l		 	 	1	
	1		 				 	 	 	 	 	 	 		 	1			 i					
	 	<u> </u>	 	1	1	 		 	! [1	
	 	1			 	 	 	 	 	 					 								I	
				 	 		1		 	 		 	 						1				1	
							1		1	 	1		1						1				I	

1	I	(j.	ļ	l	1	SCINT	l LILLA	l TION	CO	I UNTER	DAT	I I A SHEET		age _	ו 	ا of	2	 -		1	l	1	
Sampler Sample	's des 10	Ini c: 8	t: C-1	.4 1	<u>1</u>	<u>NT</u>	HL		SW		<u>s</u>	P,		 _ Backgro _ Referer _ _ Operato	Ma ound nce S or In	chine CPM: tanda ítia	e Q.A.	77 R.K.	&		Col Rec Ana Ret	Samp lect eive lyze	le Co ed: <u>O</u> ed: ed: ed P.I	ntrol 3-24-9 " " .:_B2	<u>2</u> - -
prot #			SAN	1PL	E #		-		 SL 	OT#		SAMPI VOLUM	LE IE	SAMPLE SOLVENT	FLU VOL	OR UME	 FLI TYPI	JOR E		(DPM	CPM		REMARKS	
	0	3	2	4	0	0	0	 			1	PA	PE	R	18	ML	IOPT IFLU	I- OR			 			BLANK	
<u> </u>		 	 	i I	 		<u> </u> 2!		 	<u> </u>	2			l			 			 		<u> </u> .	7.5	1400D L	ie i
	 	! 	L 	 	1 	 	3¦	[1	4			l l l	 		<u> </u> 						0.0	R WAL	<u>. </u>
		 	 	 	1		4		1	1	5			 	 		 			 			0.C	REAR	<u>IALL</u>
<u> </u>		 	 	 	 	1	5			 	6			 	1 		 				 		32	FLOOF	<u> </u>
			 	 		 _1	7		 		8	l 1		<u> </u>	<u> </u> 		 				[[FLOC	<u>LER</u>
	 					 	8	 	 		9						 				1	 	10.0	FLOO	R
		 	 		 	 !]	9 0		 	1				 	 		<u> </u> 							FLOOI	<u>~</u>
			 					<u> </u>	 		2			 	 		 		<u> </u> 		<u> </u> 	<u> </u> 		FLOO	<u>े</u> २
							2				3				1								2.4	1 SINK	
	1	 	 		- <u> </u>		3	 	 	<u> </u> 	4	- /			 		 					 	0.0		<u></u> V
			512	2/2	1¦C		5		 		16		/	1	 、 	\bigvee		\downarrow				 	0		<u>ser</u> "

 \sum

NRC Radioactive Materials License No. 36-12343-02 Termination and Facility Decommissioning

Date:December 22, 2005Subject:Room Survey:Newport CT 2-3 Final Contamination Survey.

Description and Historic Use:

Walk-in Cold Room (80 ft^2). Hydrogen-3 and/or Carbon-14 tracers. We could not find a historical record when isotopes were last used or stored in the area. There is no record of a leaking sealed source or major spill in this room.

Surveys:

Total (fixed or static) and removable contamination surveys were conducted in CT 2-3 in December 2005. The five points for the fixed survey indicated that any contamination was below the lower limits of detection. Likewise, the removable contamination survey demonstrates that the area is clean and free from any significant contamination. Ten swipes were taken and counted for hydrogen-3 and carbon-14. One swipe indicated a contamination level of 10 dpm (0.17 Bq/100 cm²). All other points were below the lower limits of detection. This area meets the contamination criteria for unrestricted use based upon the isotopes used at our facilities.

Records for this room clearly demonstrate that the area was not subject to any significant contamination events. We determined it was unnecessary to conduct further contamination surveys in this area given these survey results and the Western Ecology Division's historic management of radioactive material use in this area.

Removable contamination swipes were counted in a Packard 2200 CA dual channel Liquid Scintillation Counter.

LOG NO. 05-07 NHEERL-WED **RADIATION AREA SURVEY** REMOVABLE DATE 12/13/05 LOCATION CT 2-3 ROOM CT-2-3 PACKARD ZZOOCA INSTRUMENT SERIAL NO. SWIPE GROSS NET ACTIVITY SWIPE GROSS NET ACTIVITY Bq/100 CM² # CPM DPM Bq/100 CM² DPM CPM Ħ ND* ZUD 30 NOT LUD 15 26 12 15 24 23 22 13 15 30 24 34 0.17 10 ZЦO 25 ND LUD 31 ND 20 $LLD_{95} = \left\{ \left(\sqrt{\frac{9}{3}} \right) \times 2.96 \right\} + = \left(\begin{array}{c} \sqrt{\frac{9}{3}} \\ CPM \end{array} \right)$ $LLD_{95} = \left\{ \left(\frac{126}{2} \right) \times 2.96 \right\} + = \left(\begin{array}{c} 31 \\ CPM \right) \\ \end{array}$ BACKGROUND 19 STANDARD (58,978 dpm) BACKGROUND <u>26</u> STANDARD (84,000 dpm) <u>86571</u>) 66,560 d AM 255,200 dan Sauce 11/79 113% REN 103% COMMENTS: ND* = NOT DETERMINED, BELOW the Detection Limits

(H)	No	m	
RADIAT	ION	SPCL.	

LOG NO. 05-08 NHEERL-WED RADIATION AREA SURVEY DATE <u>12/13/05</u> room <u>CT</u> 2-3 LOCATION Associates TBM-3 GM INSTRUMENT Technica # 114.3 SERIAL NO. SWIPE GROSS NET ACTIVITY SWIPE GROSS NET ACTIVITY # CPM DPM Bq/100 CM² Bq/100 CM² CPM DPM LUDS 75 100 100 5Ĉ 36+ بالار LLD₉₅= X 2.96 CPM = $LLD_{95} = \{ (....) \times 2.96 \} + =$ CPM BACKGROUND 150 cpm BACKGROUND STANDARD (STANDARD (COMMENTS: * ND = NOT DETERMINED. Below He buer limit Of detection. RADIATION SPCL.

1 = SURVEY METEr CPM O = su:pcs

12/13/05 Brund me

1 (1 2+] 1

	RAD	NHEERL-	NED EA SURVEN	(LOC	з NO. <u>05-0</u>
те_5	13/05 LOCATION MB ROOM 190	INSTRUM	MENT <u>6-14</u>	1 # 3		SN _	77176
		lso	otope <u>F</u>	XED	lsc	otope	
iwipe Io.	Description	Gross CPM	Net DPM	Activity Bq/100 cm²	Gross CPM	Net DPM	Activity Bq/100 cm ²
1	An Duct - West)	70	LUDDS	NOX			
2	An Duct - Middle inside	65	LUDgr	NDF			
3	An Duit - EAST	65	LUUN	NDX			
<u> </u>					·		
						-	
		LLD ₉₅ ={(1	65) X 2.96} +	65 (89 CPM	LLD ₉₅ ={() X 2.96} +	= CPM
		BACKGR(COUNT T STANDAF	DUND IME RD (137 CS = /	65 CPM	BACKGRC COUNT TI STANDAR	DUND ME D ()

-

NHEERL-WED **RADIATION AREA SURVEY**

sn <u>Ø36755</u>

LOG NO.04-24

1

DATE 11-15-04 LOCATION _____ ROOM _____ INSTRUMENT PACKARD LSC 2200CA

		lso	tope		lso	tope ¹⁴ C	
Swipe No.	Description	Gross CPM	Net DPM	Activity Bq/100 cm²	Gross CPM	Net DPM	Activity Bq/100 cm ²
	190 Sink, Tailpiece	1634	6202	163,4	4923	7321	122
	190 Vent, Cxhaust	8	LILU35-	ND	38	22	0.37
	CSB I Vent, Exhaust	5	Liv95	Ŭ Į	24	LLUD95	~ -
	TERF 113 VENT EXAMUST	1	Livon-		31	22	0.37
	WRS 10 VENT, Exhaust	9	Lugs		35	13	0.22
	10 11 VENTS Exhaust	7	<lldys-< td=""><td></td><td>37</td><td>10</td><td>9.32</td></lldys-<>		37	10	9.32
	WRS 12 VENT, Exhaust	2	240,5		36	21	935
	MB 126 VENT, Exhaust	10	<lld95< td=""><td></td><td>36</td><td>22</td><td>0.37</td></lld95<>		36	22	0.37
	MB 130 VENTS Exhaust	8	ZLLDg5-	V	41	28	047
	MB 132 VENT, Exhaust	12	Ø	ND	54	50	Q. E
	MIB 138 VENT EXhaust	13	89	1.48	41	33	0.55
	MB 228 VENT Exhaust	7	LLLD95	ND	38	25	0.42
		LLD ₉₅ ={(-19) X 2.96} +	= (12 CPM/	LLD95={(12)	Z) X 2.96} + =	(32 CPM
		BACKGROU COUNT TIME STANDARD	ND = <u>3</u> (64,179 DPN	9 CPM min n) 56,106 87 0/6 eff	BACKGROUN COUNT TIME STANDARD (ND 27 3 Min 84,000 DPM) <u>85,392</u> 102% eff

11/2400

Comments:

Radiation Safety Specialist

Date

NHEERL-WED RADIATION AREA SURVEY

DATE 11-15-04 LOCATION _____ ROOM _____ INSTRUMENT _____

1

SN _____

log no. <u>04-04</u> 2/z

		lso	tope		Isot	tope	
Swipe No.	Description	Gross CPM	Net DPM	Activity Bq/100 cm ²	Gross CPM	Net DPM	Activity Bq/100 cm ²
	MB 246 VENT. Exhaust	17.	<1.W75	DUN	31	LULD 95	ND
	MB 256 VENT. Exhaust	4	LLD,5	ł	39	27	0.45
	NB 258 Vent, Schuust	5	LLLD95		27	(LLD95	ND
	MB 266 VENT, Exhaust	8	LLW95	\checkmark	31	1.11.55	ND
	MB 270 Vent. Exhaust	10	LLW95	V	47	41	0.68
							1
		LLD ₉₅ ={(BACKGROL COUNT TIM STANDARD) X 2.96} + JND IE	= CPM	LLD ₉₅ ={(BACKGROU COUNT TIME STANDARD) X 2.96} + = ND E	= CPM
			、 	/ <u></u>			

Mon 11-29-04

Radiation Safety Specialist

Date

Comments:

АТЕ <u>///</u> /	RAD	IATION AR	ea surve Ment <u>Pack</u>	AND 22.0	04	SN _	Ø36702		
		lso	Isotope 34			Isotope			
Swipe No.	Description	Gross CPM	Net DPM	Activity Bq/100 cm ²	Gross CPM	Net DPM	Activity Bq/100 cm ²		
	Plexistance plenum MB190	4	LLLO,5	NO¥	21	20075	NOX		
		8	/4	0.23	23	1	0.17		
	Vent Hose MG190	7	8	0.13	28	16	0.27		
	VENT DUCT MB 190	112	364	6	317	428	7		
	MAIN DUCT MG190	48	113	1.9	140	163	27		
	Vent Duct Reswipe MS190								
	After Cleaning	/3	<i>i</i> :5	0.42	46	40	0.67		
		LLD ₉₅ ={(BACKGROU COUNT TIN STANDABL	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	$= \begin{pmatrix} 6 \\ CPM \\ CPM \\ \end{pmatrix}$	LLD ₉₅ ={	(12) (12) (12) (12) (12) (12) (12) (12) (12)	$\frac{(13)}{(CPM)}$		

* ND = NOT DETERMINED Below the delector Counts.

Comments:

.

SA. Mara -- 12/6/1-1 Radiation Safety Specialist Date

ATE <u>//-</u>	RAD	NHEERL-N IATION ARI INSTRUM	NED EA SURVEN MENT <u>Pack</u>	nt 2200	CA	LOC SN &	3 NO. <u>04</u> 193675
		Isotope 3H			Isotope <u>14C</u>		
Swipe	Description	Gross	Net DPM	Activity Bq/100 cm ²	Gross CPM	Net DPM	Activity Bq/100 cm
No.	105	5	L4095	ND	36	3	0.05
2	HUAC Exhaust TEIC 100 HUAC Exhaust MB 284 Background	3	L 11095	ND	33	Ø	
	ND= NOT DETERMINED. Below He	LLD ₉₅ ={(-	<u> </u>	= (9) CPM	LLD ₉₅ ={(24x3 3 × 2.96} +	= (32 CPM) 74

Radiation Safety Specialist Date

4	1-14-05 RADIA	NHEERL-V	EERL-WED ON AREA SURVEY			LOG NO. <u>05-0</u>			
ге <u>4</u>	-13-05 LOCATION MB ROOM 190	INSTRUM	ENT <u>Ludi</u>	un 73		SN	77176		
<u></u>		Isotope <u>FixeD</u>			lsotope				
wipe lo.	Description	Gross CPM	Net DPM	Activity Bq/100 cm ²	Gross CPM	Net DPM	Activity Bq/100 cm ²		
.7	Floor by South Draw	125	LUDgy	ND*					
2	Monen sipe	125	Lung	NOK					
4-1	4-05								
1	Pipes Section 1-east	150	LUNDS	T NOF					
2	" " I - allt	125	LUDOS	NOT					
3	Pine Section 2- east	125	L LWas	NDX					
4	11 11 2- wist	125	L 11095	NO¥					
Ø	Background & Sheck Source								
	same as 4-13-05 m					_			
				100-					
	ND* = NOT DETERMINED Bolow He Defection Limits	$LLD_{95}=\{(\sqrt{125}) \times 2.96\} + (=\sqrt{58}) LLD_{95}=\{() \times 2.96\} + = BACKGROUND (25 CPM) BACKGROUND (000000000000000000000000000000000000$					= CPM		
			LS 5 ful			-			

Comments:

4

.

NHEERL-WED RADIATION AREA SURVEY

DATE 11-17-04 LOCATION MB ROOM 190 INSTRUMENT PACKAND LSC 2200 CA SN \$36755

		Isotope <u>3H</u>			Isotope <u>IYC</u>		
Swipe No.	Description	Gross CPM	Net DPM	Activity Bq/100 cm ²	Gross CPM	Net DPM	Activity Bq/100 cm ²
/	190 DRAINS PIPE - SINK						
RZ	190 DRAIN PIPE - Sink	2.58	357	5.95	1,124	1,695	28.25
R3	190 DRAIN PIPE - Sink	125	208	3.47	522	735	12.25
				<u> </u>	 		
						+	<u> </u>
		<u> </u>	<u> </u>		 		
						<u> </u>	ļ
						<u> </u>	
		LLD ₉₅ ={(27-) X 2.96} + 9	2=(14) CPM	LLD ₉₅ ={(1/0)	5) X 2.96} +	(45 CPM
		BACKGROUND 9 CPM BACKGROUND 35 CPM					CPM
		STANDARD	(3H 64,179 d	(m) 56,084 c/m 87%.11	STANDARD	("t 81,000 dp.	m) 25,310 com 107 9. 014
	1	- 1			<u> </u>		10010 -11

~ 11-29-04 Radiation Safety Specialist

Date

. 04-

log no. <u>24-</u>

Comments:

1