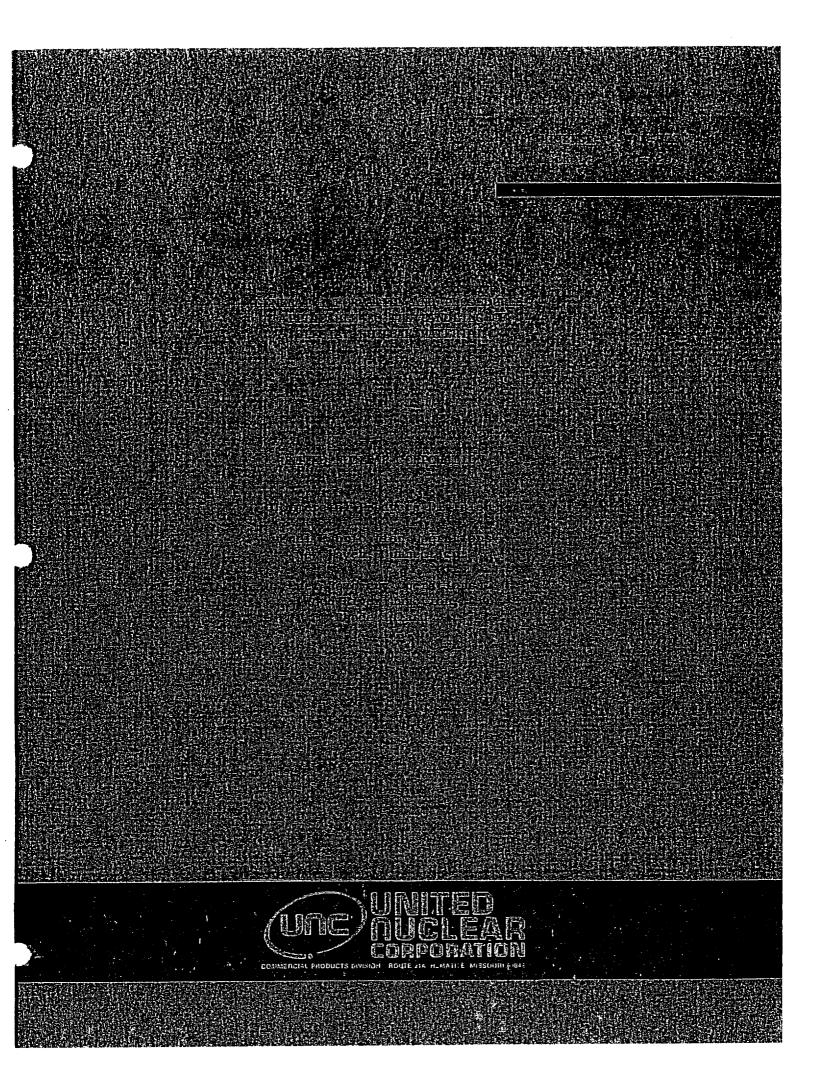
GENERAL INFORMATION AND PROCEDURES APPLICABLE TO THE HANDLING OF SPECIAL NUCLEAR MATERIAL

UNC RECOVERY SYSTEMS

#12

W/h

AA-4


Rec'd w/ 1tr dtd 10/31/68

70-820

-NOTICE-

THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE INFORMATION & REPORTS MANAGEMENT BRANCH. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RE-CORDS & ARCHIVES SERVICES SEC-TION P1-22 WHITE FLINT. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE RE-FERRED TO FILE PERSONNEL.

-NOTICE-

GENERAL INFORMATION AND PROCEDURES APPLICABLE TO THE HANDLING OF SPECIAL NUCLEAR MATERIAL

Applicable to

UNITED NUCLEAR CORP.

4

ï

μ.

 \mathbb{D}

Commercial Products Division

Fuel Fabrication Operations New Haven, Connecticut

Fuel Recovery Operations Wood River Junction, Rhode Island

Date issued October 31, 1968

SPECIAL NUCLEAR MATERIALS LICENSE 777

TABLE OF CONTENTS

SECTION	TITLE
100	GENERAL INFORMATION
200	ORGANIZATION, PERSONNEL AND ADMINISTRATION
300	NUCLEAR CRITICALITY SAFETY STANDARDS
400	HEALTH PHYSICS STANDARDS
500	NUCLEAR MATERIALS MANAGEMENT
600	EMERGENCY CONTROL PLAN
700	TRANSPORTATION
800	FUEL FABRICATION OPERATION
900	RECOVERY OPERATION

۱.-

LICENSE: SNM-777, Docket: 70-82 SECTION: 100 through 900 ISSUED: October 31, 1968 SUPERSEDES: New

N	D NUCLEAR FORATION	PAGE 1 OF 1
SUBJECT: LICENSI SECTION 100: GENERAL	SNM 777, DOCKET 70-820 INFORMATION	Approved: ISSUED October 31, 1968
TABLE (F CONTENTS	SUPERSEDES New
SUBSECTION 101		•
POPPECTION 101	GENERAL	
		•
SUBSECTION 102	LOCATION AND FACILITIES	
•	•	
SUBSECTION 103	SUMMARY OF ACTIVITIES	•
•		•
SUBSECTION 104	SPECIAL NUCLEAR MATERIALS POSS	ESSION LIMITS .
	•	•
•		
	• •	
	•	
. •		
· -	•	•
•	•	
· · ·		
. ·	•	
	4	•
	•	•
•		
• •		
•		
·		
•		•
		•
•		
•		
	•	•
	•	
	•	
, -		· · ·

•

.

- 作う、からが後期で、 読み、 したい かお 事を支持する 読む たいたいた ねいたい

٠

وبن

	CORPORATION	PAGE 1 OF 1
·		Approved:
SUBJECT: SECTION: Subsection:	License: SNM-777, Docket 70-820 100 - GENERAL INFORMATION 101 - General	ISSUED October 31, 1968 SUPERSEDES New

101. General

101.1 Introduction

This manual has been prepared to provide the information required by the Atomic Energy Commission regulations 10 CFR 20, 10 CFR 70, and 10 CFR 71 for renewal of special nuclear material license SNM-777. The manual outlines the United Nuclear Corp., Commercial Products Division practices, guides, proceedures and controls applied to insure the safe handling of special nuclear materials at its facilities at New Haven, Connecticut and Wood River Junction, Rhode Island.

101.2 Corporate Information

The United Nuclear Corporation, a Delaware corporation, maintains headquarter offices at Elmsford, New York. The corporation is in the business of mining and milling Uranium ores, processing of Uranium into fuel for nuclear power reactors, and developing improved reactor systems to utilize nuclear fuel.

The Commercial Products Division includes plants at Hematite, Missouri, Wood River Junction, Rhode Island, and Fuel Fabrication facilities in the New Haven, Connecticut Plant. Headquarters for this Division are located at the Hematite Plant.

A listing of the principal officers, major operating divisions and their locations may be found in the annual report. (A copy of the latest report is attached.)

There is no known ownership or control exercised upon United Nuclear Corporation by any alien, foreign corporation or foreign government.

l	UNITED NUCLEAR	PAGE 1 OF 2
LICENSE:	SNM-777, Docket: 70-820	Approved
SECTION: Subsection:	100 - GENERAL INFORMATION 102 - Location and Facilities	ISSUED October 31, 1968
	102 - Location and Facilities	SUPERSEDES New

102. Location and Facilities

1. Recovery Operation

The Recovery Operations Plant is located on a 1200 acre site in a sparsely populated area of Southwestern Rhode Island. The plant is approximately one mile southeast of Wood River Junction.

The general arrangement of the plant is shown on drawings A-601, A-602, A-603 and Y-601. The general facility arrangement is shown on Sketch 102-I.

The plant consists of a single principal building with office, locker-room, general utilities and maintenance facilities to the front (West End) and storage and processing facilities at the back (East End). A small laboratory is located at the second level above the locker-room area.

Two lagoons with waste discharge control facilities are located within the fenced area and just north of the building.

The building consists of the following areas (defined by bays):

	Bays	Description of Operations
(For Bay desi	gnations, see Drawin	g Y-601) Uranium Process Areas
VIL, VIII		Shipping & Receiving Area
X, XIII, XIV,	XVI, XVII, XIX	Head Ends Processing Area
XX (3 floors)		Purification Processing
		Area
XV, XVIII, XX	L	End Product Processing
		Area
XII, XI		Product Storage Area
IV (Second Flo	oor)	Control Laboratory
		Non-Uranium Storage Area
V, VI		Utility Area
I, II, III, I	(First Floor)	Main Entrance, General
		Plant Office, Lunch
		Room, Clothes-Change
		Locker - Change Room

Outside storage areas are the areas surrounding the plant within the fenced area. These areas are used for storage of uranium materials as received in protective spacing, birdcages and drums.

Empty shipping containers or other material containing unrecoverable amounts of uranium may be so identified and stored outside the security area prior to return to the owner.

.

UNITED NUCLEAR CORPORATION

2 Page Issued 2/6/70

2

of

LICENSE: SECTION: Subsection: Subpart:	SNM-777, Docket 70-820 100 - GENERAL INFORMATION	Supersedes	10/31/68
	102 - Location and Facilities	Approved	
• •		Amendment No) ,

102. Location and Facilities (continued)

2. Fuel Fabrication Operations

The Fuel Fabrications Operations are performed at the United Nuclear Corporation fabrication plant located in New Haven. Connecticut and the assembly plant located at Montville, Connecticut.

The Naval Products Division has control over Buildings 3H, 6H, 7H, 8H, 9H basement, 10H basement, 11H basement, 14H 41H and 24D of the New Haven Facilities and the Montville Assembly Plant. Commercial Products Division controls the first floor of building 9H, the first floor of building 10H except the chem sample storage area, the first floor of building 11H except the experimental welding area, the first floor of building 19H, the 19H basement waste disposal area and all of building 50H (except Navy). The Naval Products Division and the Commercial Products Division are responsible for the nuclear criticality safety and health physics in their buildings.

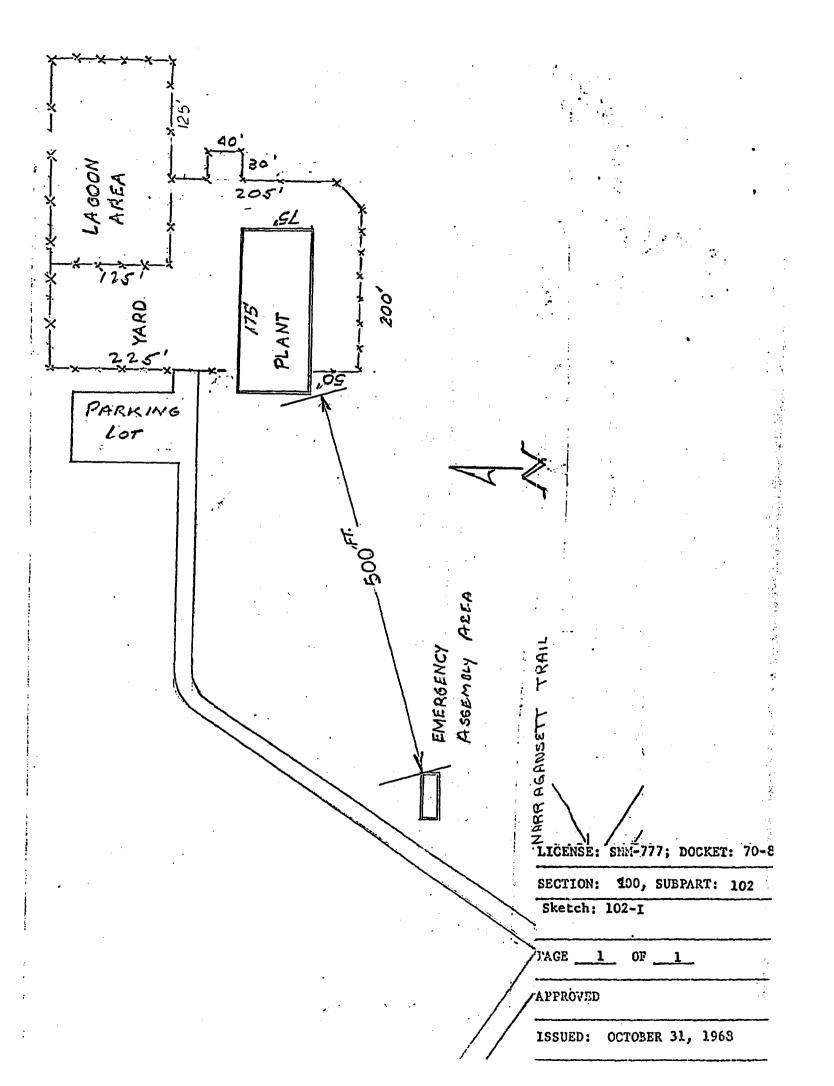
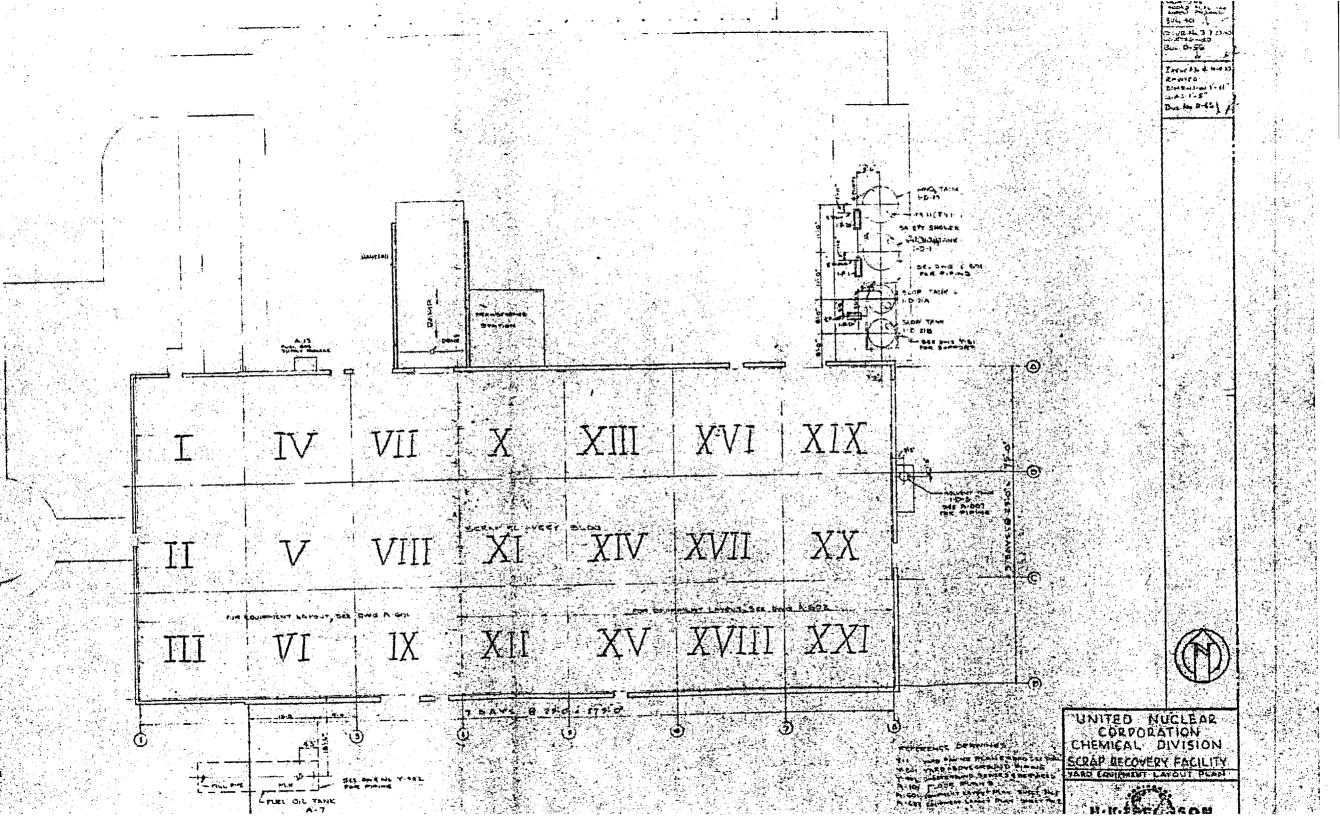
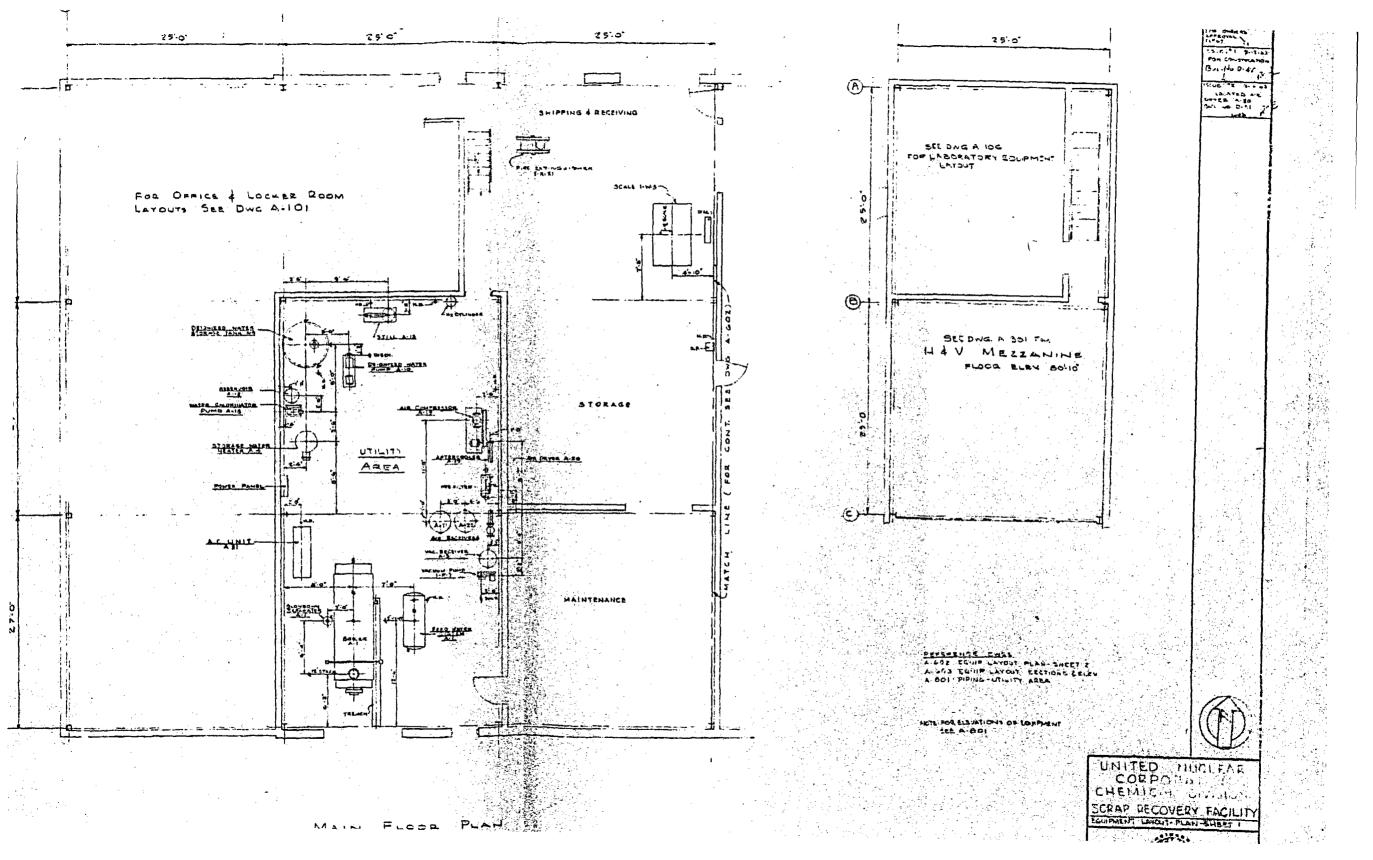
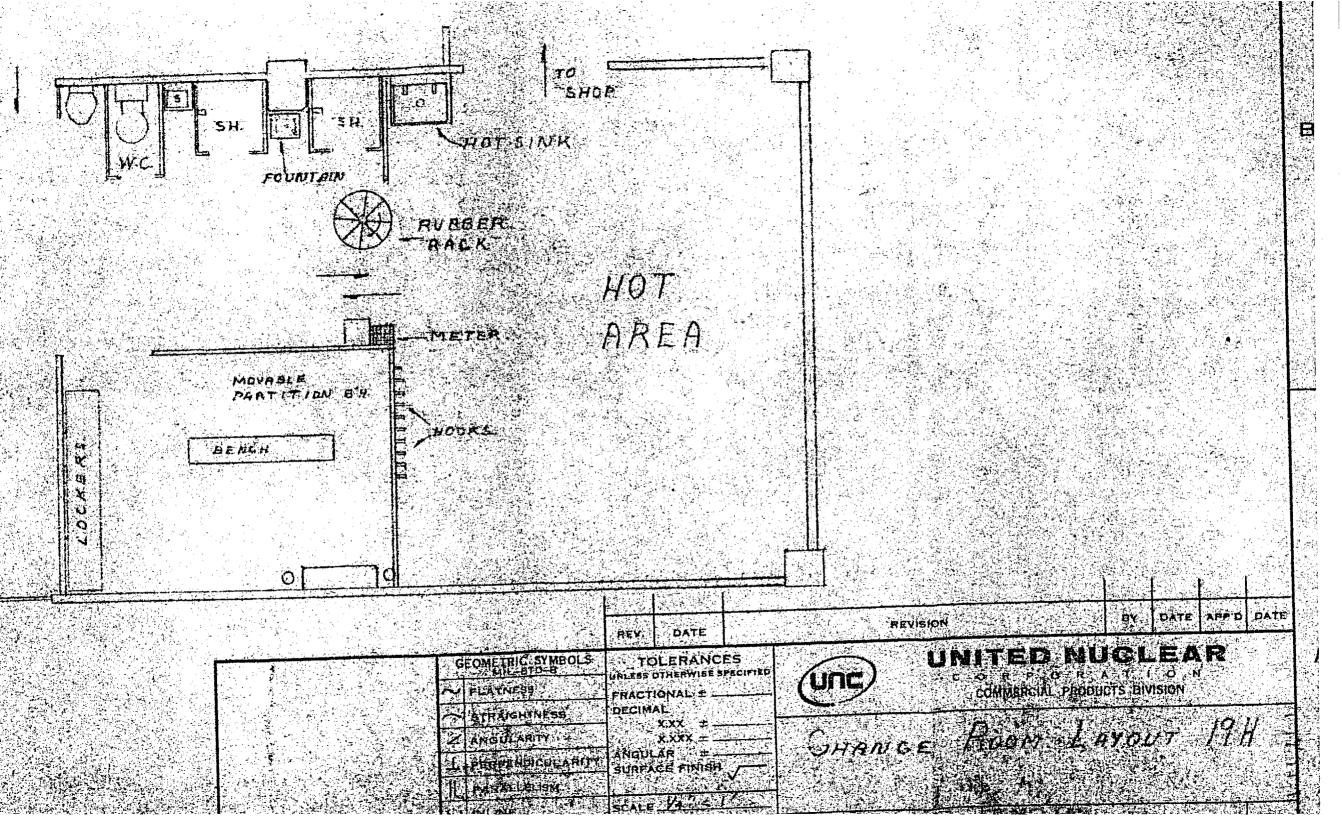
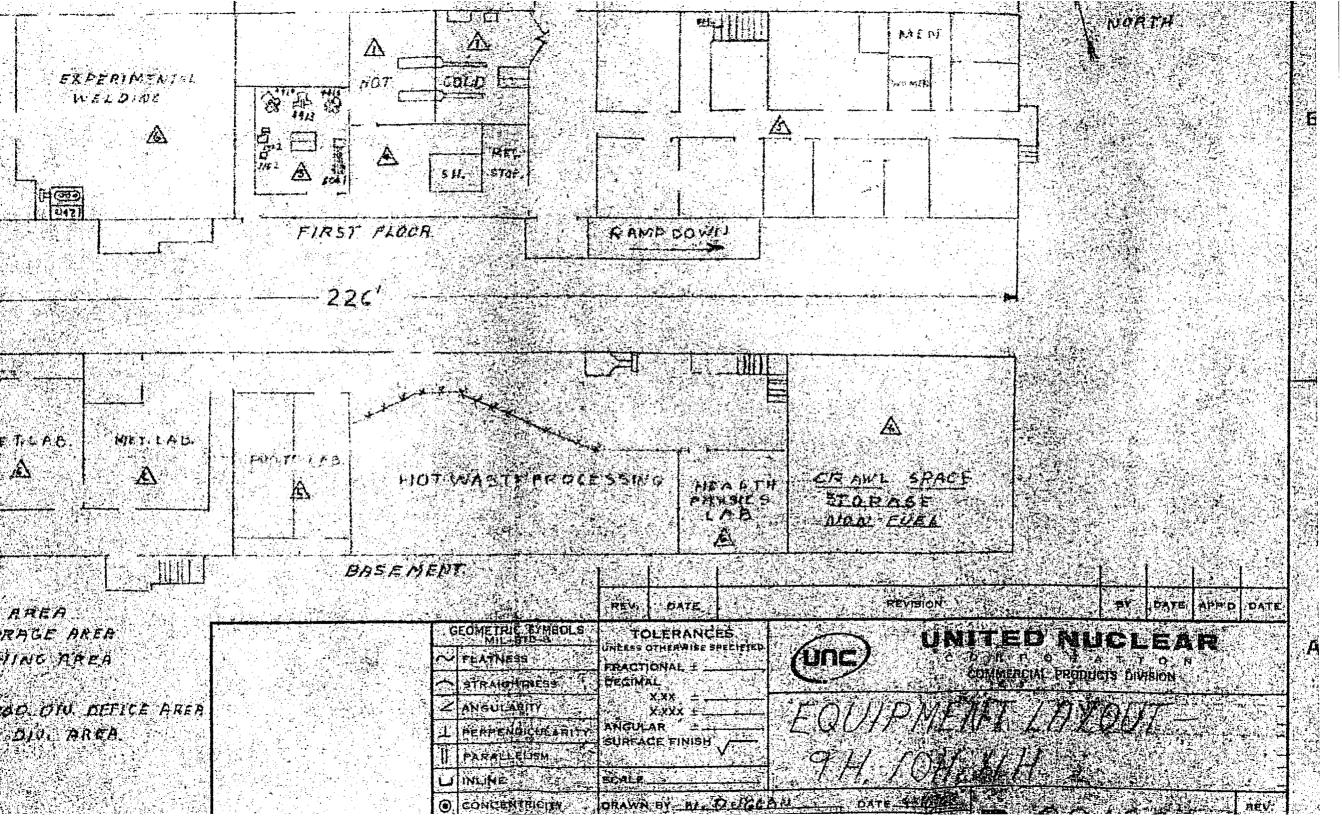

2.1 New Haven Operations

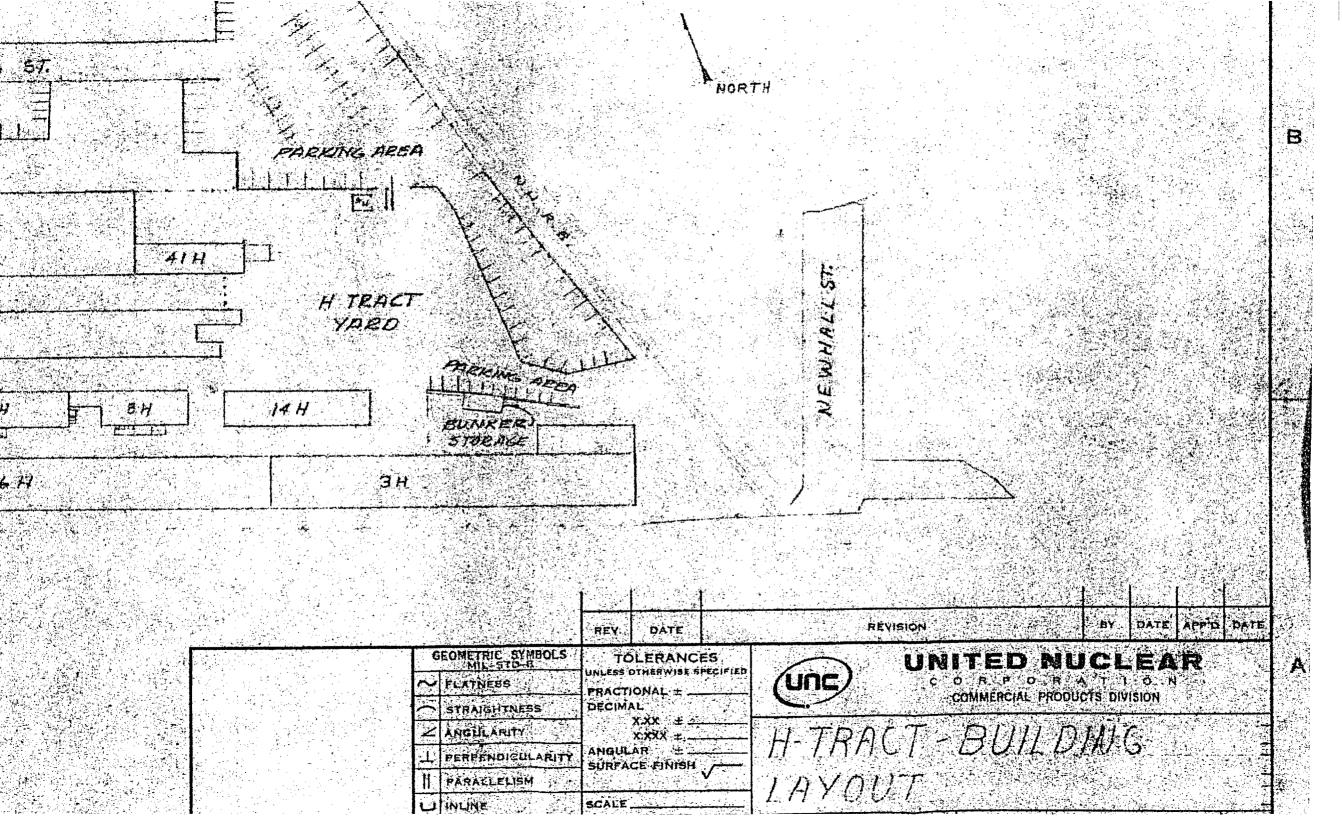
Figure 102-II is a map of the Corporation in New Haven. This property is located in the area generally bounded by Division Street on the north, Munson and Henry Streets on the east. The buildings indicated by the letter "H" on the map, are known as "D" Tract. The remaining buildings on the map marked as "E" Tracts (buildings 5E and 6E) do not comprise any manufacturing operations, but only office, administration, and engineering activities.


Further details on the "H" Tract arrangement and building 9H, 10H, 11H, 19H and 50H are shown in following listed drawings:


B-304 238	Equipment layout 9H, 10H, 11H
B-304 236	Equipment layout 19H
B-304,237	Equipment layout 50H
B-304 23A	Change Room layout 19H
B-304 252	H Tract Building layout


*An area approximately 50 feet x 65 feet on the north side, approximately 100 feet from the entrance.




. • PARKING LOT STREET DIVISION 4 WALKWAY GATE 29G Niell. Thurning the second sec UNO چ د UNC 11 PARKING LOT#3 STREET <u>].</u>5 2 GIBBS STREET ZU ភ្រ **LEAT** 님 > Y ัษ ว < MEDICAL GATE 17 DEPT. GATE "IG GATE L 50 H AVEN MAIN Ы VALUE N NEWHA GE Z -5ミ GATE 4 JOH GATE "19 LGATE 2 240 GATE -13-GATE W 144 / > PARKING LOT TI SH STREET ۵ GATE ! 41 EFFIE GATE 20 ЗH 200 ÷. 6H GATE STREET ARK GATE ARGYLE GATE HI CGATE*8 GATE TER ΞS GATE GATE "10 GATERS MASON STREET TON ŝ B ы I ر υ Figure SECTION: ū ٣ Issued .; ICENSE: Z I ŝ 3 -201 SNM-SNM-100, October STREET II MUNSON STREET Subsection: 777, 368 CRURK 31, IENRY UNITED NUCLEAR CORPORATION Docket: Docke NEW HAVEN, CONN. SCALE: 5 = 100 FT. V 1968 \wedge S, 102 5 70-70-371 CODE: FOR FENCE .820 SECURITY FENCING COMMERCIAL FENCING

4 over sezed drawings

W/h Ex.f

		Page 1 of 1
UNITED NUCLEAR		Issued 2/6/70
LICENSE: SNM-777, Docket 70-820 SECTION: 100 - GENERAL INFORMATION		Şupersedes 10/31/68
Subsection: Subpart:	103 - Summary of Activities	Approved
		Amendment No.

103. Summary of Activities

SNM bearing materials are received, handled, stored, processed and shipped in accordance with Regulations of the Atomic Energy Commission or as provided by this license.

The maximum quantity of slightly irradiated material⁺ at any one time will be less than 2% of the total allowable SNM. The maximum radiation levels acceptable will be 10 mr/hr at one foot.

1. Recovery Operations

These materials may be in the form of uranium metal or its alloys, compounds and solutions. This includes those materials in fabricated reactor component shapes. The U-235 isotopic content of the uranium will be up to and including full enrichment.

2. Fuel Fabrication Operations

Operations under this license are primarily the fabrication of uranium bearing materials into specified shapes, cladding these with corrosion resistant materials such as: zirconium, stainless steel or aluminum, and assembling these into larger components or into cores for reactors.

These materials may be in the form of uranium metal or its alloys, compounds and solutions and plutonium oxide-uranium oxide mixtures. The U-235 isotopic content of the uranium will be up to and including full enrichment. Plutonium oxide-uranium oxide mixtures will be in the form of sintered pellets in sealed rods.

⁺10CFR 50.2.3.ii ----- the material to be processed contains not more than 10⁻⁶ grams of plutonium per gram of U-235 and has fission product activity not in excess of 0.25 millicuries of fission products per gram of U-235. This material is in the form of fuel rods and assemblies and is only non-destructively modified and inspected.

UNITED NUCLEAR	Page 1 of 1
CORPORATION	Issued 2/6/70
LICENSE: SNM-777, Docket 70-820 SECTION: 100 - GENERAL INFORMATION Subsection: 104 - Special Nuclear Material Possession Limits	Supersedes 10/31/68
	Approved
	Amendment No.

104. Source and Special Nuclear Materials Possession Limits

1. <u>Recovery Operations</u>

The maximum quantity on hand at any one time is limited to 4000 kgs of contained U-235.

2. Fuel Fabrication Operations

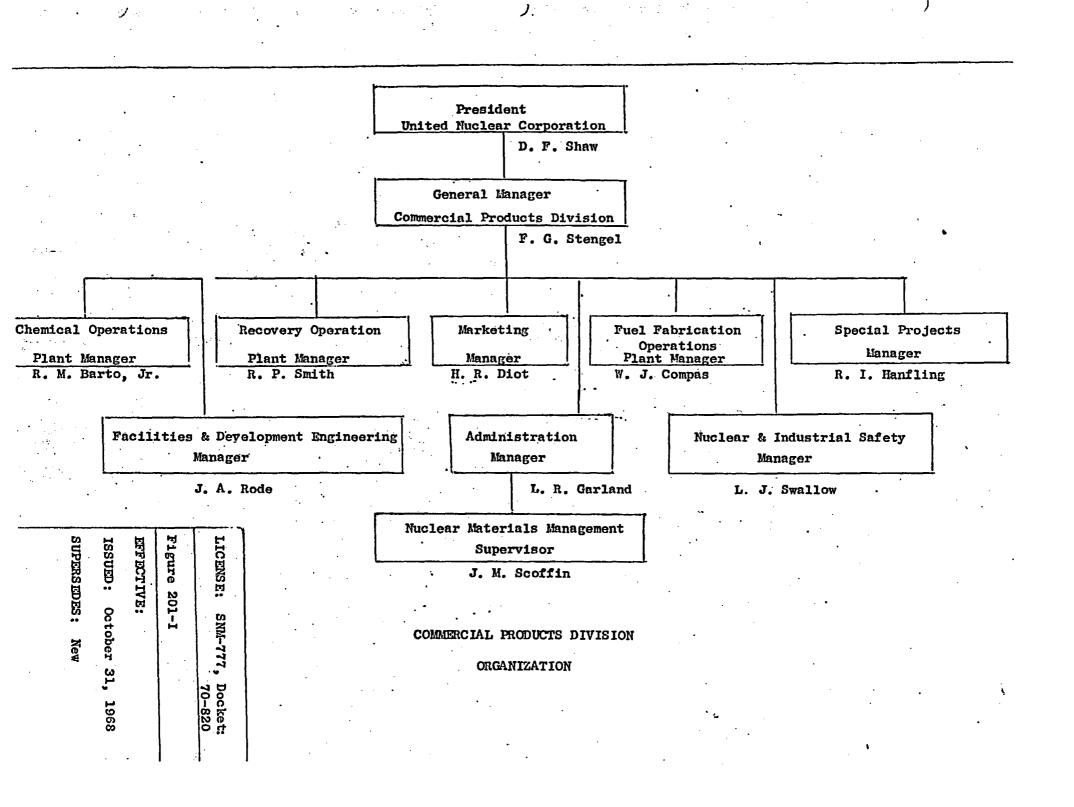
At any one time, the maximum quantity expected to be on hand is limited to 4000 kgs of contained U-235 and 10 kgs contained Plutonium.

÷

SECTION 200

•

	CORP	D NUCLEAR	PAGE 1 OF 1
SUBJECT: SECTION 200:	License: ORGANIZA	SNM-777, Docket: 70-820 TION, PERSONNEL AND ADMINISTRATI	- Approved: ON ISSUED October 31, 1968
	TABLE OF	CONTENTS	SUPERSEDES New
SUBSECTION 201		DIVISION ORGANIZATION	
SUBSECTION 202	•	NUCLEAR AND INDUSTRIAL SAFETY D	epartment
SUBSECTION 203	•	NUCLEAR MATERIALS MANAGEMENT	
SUBSECTION 204	• .	PRODUCTION ORGANIZATION	•
SUBSECTION 205		PROCESS CONTROLS	
SUBSECTION 206		NUCLEAR AND INDUSTRIAL SAFETY CO	ONTROLS
SUBSECTION 207	•	INSPECTIONS AND AUDITS	•
SUBSECTION 208	•	TRA INING	
•			•
	•	•	
•••	•		
.	•		•
	•		
	• •		


	UNITED NUCLEAR	PAGE OF 1
LICENSE:	SNM-777, Docket: 70-820	Approved
SECTION:	200 - ORGANIZATION, PERSONNEL AND ADMINISTRATION	USSUED October 31, 1968
Subsection:	201 - Division Ogranization	SUPERSEDES New

201. Division Organization

,

The Commercial Products Division is organized for efficient management and administration of three independent operations. located in three separate plants. The General Manager, Commercial Products Division reports to the President of United Nuclear Corporation and has the overall responsibility for operation of . the Division Facilities. ۰.

The organization of the Division provides for administration, production, technical support, and nuclear industrial safety functions, and nuclear materials management on a Division wide basis. This is shown on the Division Organization Chart, Figure 201-I.

	CORPORATION	PAGE 1 OF 3
		Approved:
SUBJECT: SECTION:	License SNM 777, Docket 70-820 200 - ORGANIZATION, PERSONNEL AND ADMINISTRATION	ISSUED October 31, 1968
Subsection:	202 - Nuclear and Industrial Safety Department	SUPERSEDES New

202. Nuclear and Industrial Safety Department

1. Organization

The Nuclear and Industrial Safety Department (NIS) is organized to provide nuclear criticality safety, health physics, industrial safety and fire prevention, and medical services for the Division. The Nuclear and Industrial Safety Manager reports to the General Manager, Commercial Products Division, and is responsible for all activities of the Department. The Department activities include:

1.1 Establishment of Division nuclear and industrial safety policy.

- 1.2 Preparation of Regulatory Agency licenses.
- 1.3 On site nuclear criticality safety and health physics control functions independent of, but parallel to the functions of operating personnel.
- 1.4 Technical support services, as related to nuclear criticality safety and health physics for review of proposed additions to or modifications of process equipment.
- 1.5 Systematic auditing of plant operations.

The Department organization is shown on Figure 202-I.

2. Basic Responsibilities

2.1 Nuclear and Industrial Safety Department Manager

The NIS Department Manager is responsible to ensure effective and timely administration of the nuclear and industrial safety control and audit function of the Division. He assists the Division in establishing sound programs in compliance with Division Policy and appropriate Federal and State Regulations and ensures continued compliance of these official programs through regular audits and follow-up with responsible Division management. He must provide competent techincal support services to the Division from either in-house specialists or from specialists outside of the Division on a consulting basis.

2.2 Nuclear and Industrial Safety Representative

The Nuclear and Industrial Safety Representative is responsible for daily surveillance of nuclear criticality/industrial safety and health physics at his assigned plant. He initiates NIS Department Nuclear criticality safety and health physics evaluations of proposed midifications to processes and equipment. He may perform preliminary nuclear criticality safety evaluations of these proposed changes. He performs inspections of operating

	Page 2 of 3
UNITED NUCLEAR	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 200 - ORGANIZATION, PERSONNEL AND	Supersedes 10/31/68
ADMINISTRATION SUBSECTION: 202 - Nuclear and Industrial Safety	Approved
Department	Amendment No.

202. Nuclear and Industrial Safety Department (continued)

procedures and general plant conditions for the benefit of both the Nuclear and Industrial Safety Department and Operating Personnel. These audits may serve as a management tool for joint action to correct any deficiencies noted.

2.3 Nuclear Safety Specialist

The Nuclear Safety Specialist assists the Department Manager in providing a sound program in compliance with Division Policy, Federal and State regulations. He performs Nuclear Criticality Safety evaluations of processes and equipment, plant inspections and follow up with responsible operating management. He also provides competent technical support to other Divisions on a consulting basis.

2.4 Health Physics Specialist

The Health Physics Specialist assists the Department Manager in providing a sound program in compliance with Division Policy, Federal and State regulations. He performs evaluations of radiological safety and plant inspections, and follows up with responsible operating management. He also provides competent technical support to other Divisions on a consulting basis.

2.5 Consultants

Consultants to the Nuclear and Industrial Safety Department, assist the Department Manager through reviews, technical evaluations, etc., within the area of their specialty. Such assistance is at the request of the Department Manager.

3. Personnel Qualifications

The Nuclear and Industrial Safety Department Manager shall hold a degree in science or engineering and have at least ten years experience in a responsible position in the nuclear industry at least three years of which have been in an activity in which he has performed nuclear criticality safety assessments and has developed an understanding of health physics and industrial safety problems and controls.

Nuclear and Industrial Safety Department Specialist shall have a B.S. Degree in Science or Engineering and not less than three years experience in a responsible nuclear engineering or physics position and not less than one year of experience in the area of their speciality. In addition, the Nuclear Safety Specialist will be required to have at least one year experience in performing nuclear safety assessments.

We Nuclear and Industrial Safety Department Representatives shall have a high school diploma and not less than three years experience in the

				P	age 3 of	3	
	U	NITED N CORPOR		I	ssued 2/6/70		
	LICENSE: SNM- SECTION:	33 & SNM-777, D 200 - ORGANIZA	ocket: 70-36 & 70- TION, PERSONNEL ANI	820 s	upersedes 10/	/31/68	
	Subsection:	ADMINIST 202 - Nuclear	RATION and Industrial Safe	A	pproved		
		Departme		· ·	nendment No.	<u></u>	•
13 u	202. <u>Nuclear</u>	and Industrial	Safety Department	(continued)		
			ncluding specific t sics, and industria				
	Nuc san	lear and Indust e requirements	rial Safety Departm as listed for the S	ent Consul pecialist.	tants shall m	eet the	
			lifications of the uded as back up inf		erforming the	ese	
	4. <u>Com</u>	bined Activitie	<u>8</u>			•	
	Div	ision Fuel Fabr	sics control servic ication Operations	at New Have	n will be con	ntracted	
.	con	tamination cont	s Division NIS pers rol monitoring, sam	pling of an	iborne efflue	ents,	
	phy	sics daily check	dling`of liquid rad: ks, etc. This serv:	ice include	s the evaluat	tion of	·
	+ho	سنبلا سميليط محملا	los the conformance	of these t	acke Rocult	- of	
	the	data taken dur:	ing the performance	or these t	eono. Nebuli	.8 UI	
	. the	se services, in	cluding the evaluat: s NIS Representative	ions, will	be furnished	to the	
	the Com	se services, in	cluding the evaluat: s NIS Representative	ions, will	be furnished	to the	÷
	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat s NIS Representative	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	÷
	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	÷
	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
- - -	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
- -	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
· · · · · · · · · · · · · · · · · · ·	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How	se services, in mercial Product ion if required ever, Naval Proc	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How uns	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How uns	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How uns	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
· · · · · · · · · · · · · · · · · · ·	the Com act How uns	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
· · · · · · · · · · · · · · · · · · ·	the Com act How uns	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How uns	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How uns	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How uns	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	
	the Com act How uns	se services, in mercial Product ion if required ever, Naval Pro- afe operations	cluding the evaluat: s NIS Representative • ducts NIS [°] personnel	ions, will e for recor have the a	be furnished d and follow- uthority to a	to the -up	

GENERAL MANAGER . • COMMERCIAL PRODUCTS DIVISION F. G. Stengel STAFF CONSULTANTS luclear Safety Consultant (R. Tomonto) Nuclear Safety Specialist (R. E. Kropp) luclear Safety Consultant (D. F. Cronin) MANAGER, NUCLEAR AND Health Physics Specialist (D. G. Darr) Malth Physics Consultant INDUSTRIAL SAFETY (W. S. Geiger) Medical Specialist (Dr. N. Knowlton) rd. Safety & Fire Prev. Cons. L. J. Swallow (H. L. Jones) ealth Physics Consultant (P. Clemons) . NIS REPRESENTATIVE NIS REPRESENTATIVE NIS REPRESENTATIVE HEMICAL OPERATIONS PLANT RECOVERY OPERATIONS PLANT FUEL FABRICATION OPERATIONS D. G. Darr E. A. Barton R. E. Kropp LICENSE: NO. Figure EFFECTIVE : COMMERCIAL PRODUCTS DIVISION SUPERSEDES: New ISSUED: NUCLEAR AND INDUSTRIAL SAFETY DEPARTMENT ORGANIZATION 202**-**I SNM-777, October 31, Docket; 1968 70-82

L	INITED NUCLEAR	PAGE 1 OF 1		
SUBJECT: SECTION:	License: SNM-777, Docket: 70-820 200 - ORGANIZATION, PERSONNEL AND ADMINISTRATION	ISSUED October 31, 1968		
Subsection:	203 - Nuclear Materials Management	SUPERSEDES NOW		

203. Nuclear Materials Management

The Nuclear Materials Management responsibilities are a function of the Administration Department. The Nuclear Materials Management Section is headed by the Supervisor of Nuclear Materials Management. Each Operation has an SS Materials Control Representative. The SS Materials Control Representative and his delegates are responsible for accounting for all SS Materials, and overall administration of the Nuclear Materials Management Office. He maintains the accounting records of receipts, shipments, inventories, and losses of SS Materials. Details of the Nuclear Materials Management program are set forth in Section 500.

	Page 1 of 2
UNITED NUCLEAR	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 200 - ORGANIZATION, PERSONNEL AND	Supersedes 10/31/68
ADMINISTRATION Subsection: 204 - Production Organization	Approved
Subsection. 204 - Houselion organization	Amendment No.

204. Production Organization

*

*

1. General Description

- 1.1 United Nuclear Corporation's Commercial Products Division is organized for the specific purpose of chemical and ceramic processing SNM for further fabrication of fuel elements, actual fabrication of fuel elements and the recovery of the SNM from unirradiated scrap material. The Organization chart, Figure 201-I shows how this organization is set up to carry out and control the various functions essential for this type of manufacturing operating. The General Manager of the Commercial Products Division reports directly to the President of the Corporation.
- 1.2 Each department is headed by a Department Manager who has full responsibility and authority to carry out the functions of that department in conjunction with contributions of other departments to achieve the overall objectives of the Commercial Products Division. Each Department Manager is directly responsible to the Division General Manager for the conduct of his departmental affairs including implementation of disciplinary action against personnel failing to follow instructions. Further, each Department Manager has line responsibility to the members of his department.

2. Manufacturing Departments

- 2.1 The manufacturing covered by this license will be carried out under the direct responsibility of the respective Manufacturing Department Manager or Superintendent. These departments have the responsibility for manufacture, engineering and shipment applicable to the production of products described in this application.
- 2.2 Specific procedures are set up to insure that the proper quantities of uranium are present in the various products produced. Processing procedures are set up within the responsible department.

Management channels are established as the need for delegation of work arises. Changes at levels below the first line management level reporting to the head of a department are a management prerogative, and therefore, a detailed listing of the present supervisory levels is not provided except for the Nuclear and Industrial Safety Department which is described in a separate subsection.

L	JNITED NUCLEAR	PAGE- 2 OF 3
LICENSE: SECTION:	SNM-777, Docket: 70-820 200 - ORGANIZATION, PERSONNEL AND	Approved
	ADMINISTRATION 204 - Production Organization	ISSUED October 31, 1968
•		SUPERSEDES New

204. Production Organization (continued)

Recovery Operations

3.1 Organization

The Fuels Recovery Plant is organized for the specific purpose of conversion of scrap materials containing uranium into a high-purity compound for sale or re-use. The Organization Chart, Figure 204-I shows how this organization is set up to carry out and control the various functions essential for this operation.

Basic Responsibilities

3.2.1 Plant Manager

The Plant Manager is responsible for the safe efficient operation and maintenance of the plant in conformance with established policies and procedures for required administrative and process development work.

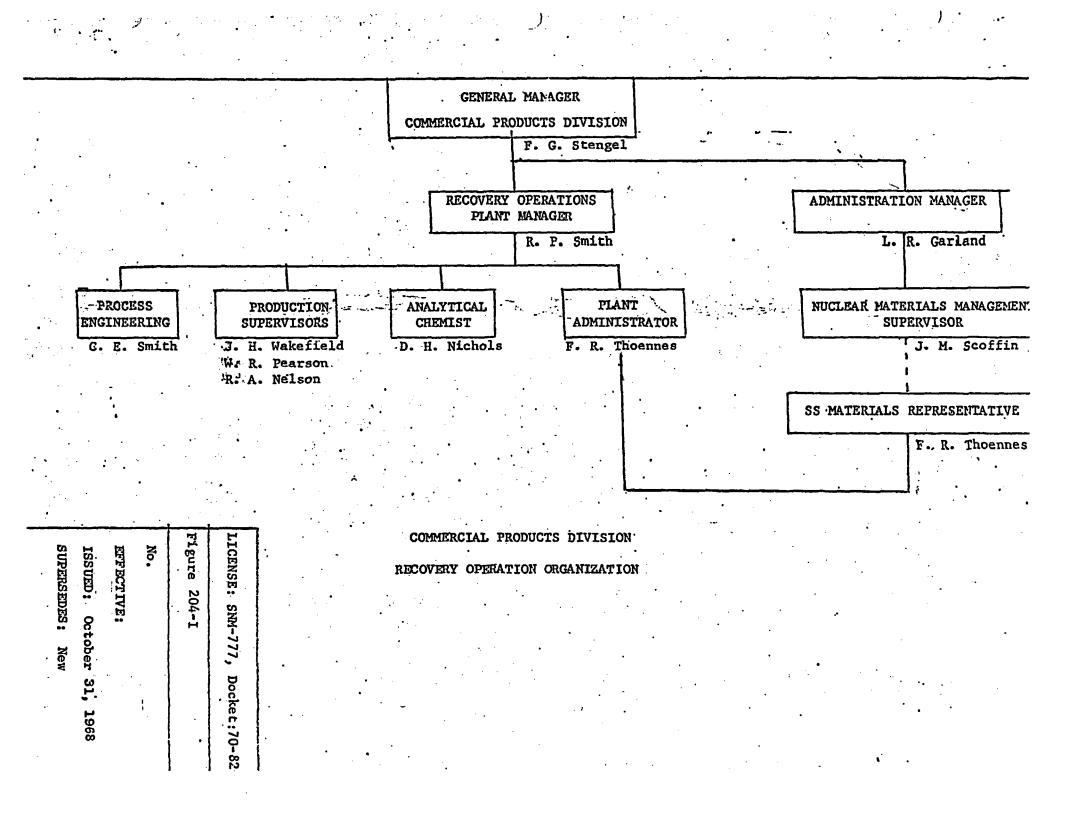
3.2.2 First Line Management

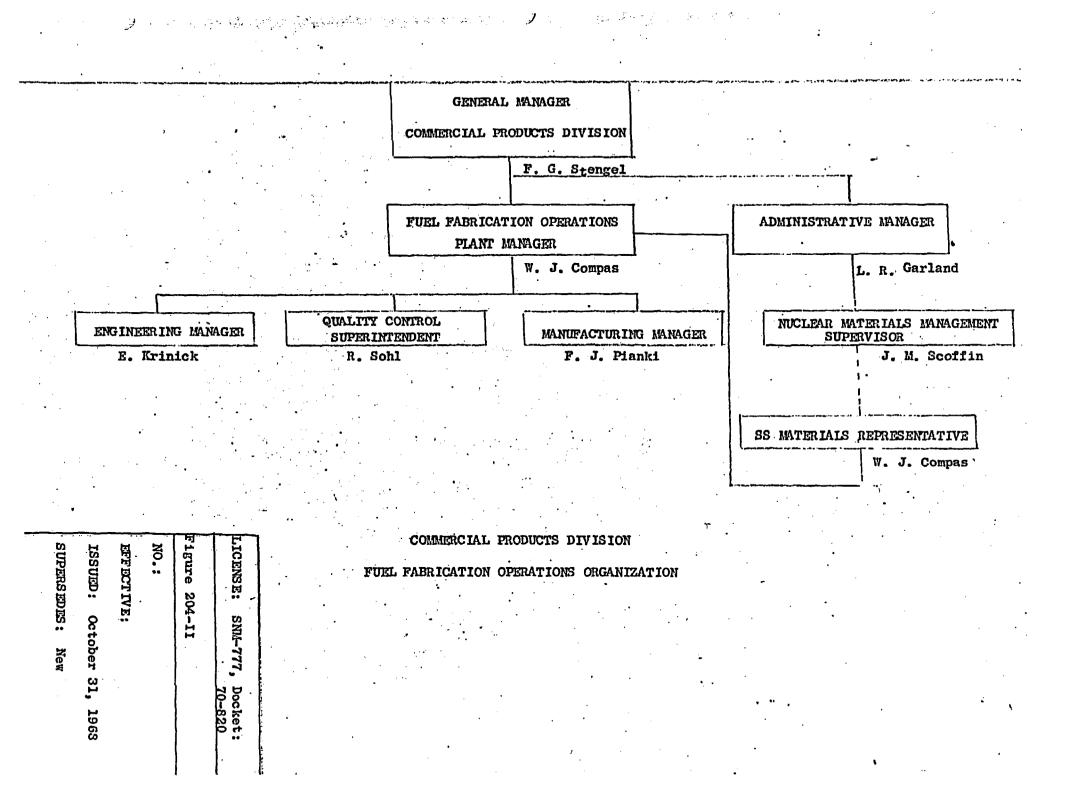
First Line Management reporting to the Plant Manager are responsible for the safe efficient operation of their assigned portions of the facilities. This includes the supervision of any activities assigned to them.

3.3 Personnel Qualifications

The minimum qualifications of the Plant Manager, and first line management shall be a B. S. degree in a technical field with two years experience in Nuclear plants and laboratories; or high school with ten years nuclear industry experience.

Resumes of the qualifications of the personnel performing these functions are included as back up information.


Fuel Fabrication Operations


4.1 Organization

.

The Fuel Fabrication Operation is organized for the purpose of fabricating SNM bearing components for test and power reactors. Figure 204-II shows the organization established to perform these functions.

- [ERINI 6 174 175 157 E 75 E 154 75 555 .	
·· .	UNITED NUCLEAR	PAGE 3 OF 3
	LICENSE: SNM-777, Docket: 70-820	Approved
	SECTION: 200 - ORGANIZATION, PERSONNEL AND : ADMINISTRATION Subsection: 204 - Production Organization	ISSUED October 31, 1968
		SUPERSEDES New
	n n n n n n n n n n n n n n n n n n n	·
•	204. Froduction Organization (continued)	
	4.2 <u>Basic Responsibilities</u>	· · · · · · · · · · · · · · · · · · ·
	4.2.1 <u>Plant Manager</u>	
	The Plant Manager has the overal design, development and operatio is standard practice, he also is all operations are performed saf	ns of the facilities. As responsible to insure that
	4.2.2 <u>Managers</u>	
	Managers reporting to the Plant the safe efficient operation of the facilities. This includes t	their assigned portions of
	activities assigned to them.	······································
	4.3 Personnel Qualifications	
•	The minimum qualifications for Plant Man a B. S. degrees in a technical field way the nuclear industry, or; high school way experience.	ith two years experience in
	Resumes of the qualifications of the per	
•	functions are included as back up inform	nation.
	•	
	4 .	:
	e.	
	•	•
		·
•		, : : · · · · ·
k		

t	JNITED NUCLEAR	PAGE 1 OF 1
LICENSE: · Section:	SNM-777, Docket: 70-820 200 - ORGANIZATION, PERSONNEL AND	Approved
Subsection:	ADMINISTRATION 205 - Process Control	ISSUED 2/6/70
•		SUPERSEDES 10/31/68

205. Process Control

1. General

Commercial Products Division policy requires that supervision at all levels assure themselves that all handling, processing, storing and shipping of SNM, is given prior review and approval by the Nuclear and Industrial Safety Department, that suitable control measures are prescribed, and that all pertinent regulations, controls procedures relative to nuclear criticality safety or radiological safety, are followed by supervision and all operating personnel.

Approval by the Nuclear and Industrial Safety Department shall be in accordnace with criteria established by the license. The mechanism of such approval is described in more detail in Subsection 206.

. Recovery Operations

Control of the process is maintained through a system of standard procedures and parameters, and provisions for reporting and correcting abnormal occurences.

2.1 Operating Procedures

Issued by the Process Engineer, provide detailed instructions for equipment operation and material handling, including specific safety requirements. S.O.P.'s are the basic control document; before issuance or revision they require Engineering, Production, Nuclear and Industrial Safety and SNM Management approval by signature.

.2 Process Parameter Sheets

Issued by Process Engineer, establish and communicate detailed parameters for each job, within limits established by 8.0. P.

2.3 Operating Reports

Operating reports are used and prepared as required for production planning and control.

Fuel Fabrication Operations

Control of the process is maintained through a system of written operating procedures and provisions for reporting and correcting abnormal occurrences. Operations involving SNM require prior written approval by the Nuclear and Industrial Safety Department. This is accomplished by the posting of signs with nuclear criticality safety and health physics control limits. These signs will be prepared and issued in accordance with Sections 300 and 400.

	Page 1 of 1
UNITED NUCLEAR	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 200 - ORGANIZATION, PERSONNEL AND	Supersedes 10/31/68
ADMINISTRATION Subsection: 206 - Nuclear and Industrial Safety	Approved
Controls	Amendment No.

206. Nuclear and Industrial Safety Controls

1. <u>Responsibility</u>

*

*

*

On-site nuclear and industrial safety control is exercised by Operating Supervision with overchecks performed by Process Engineers and the Nuclear and Industrial Safety Representative. Operating Supervision must assure that nuclear criticality safety and health physics control procedures are followed as defined by approved operating procedures or posted control limits.

2. Nuclear and Industrial Safety Department Approval

NIS Department approval on equipment and operating procedures is identified by signature of the NIS Department Representative on the operating procedures and/or criticality signs. This approval shall only be granted when:

- 2.1 Deleted .
- 2.2 (a) Nuclear criticality safety evaluation has been performed by the NIS Representative based on the criteria and standards of Section 300.
 - (b) The NIS Representative's evaluation has been reviewed by the Nuclear Safety Specialist or Nuclear and Industrial Safety Department Manager. This review is based on the criteria and standards of Section 300 and includes verification of each of the following:
 - 1. assumptions
 - 2. correct application of criteria of Section 300
 - 3. completeness and accuracy of the evaluation
 - 4. familiarity of the installation.

(c) Health Physics criteria of Section 400 have been fulfilled.

3. Records

Records of NIS evaluations and approvals will be maintained for a period of at least six (6) months after use of the operation has been terminated.

4. Suspension of Operations

Primary responsibility and authority to suspend unsafe operations is placed with Operating Supervision. Within their respective responsibilities the members of the Nuclear and Industrial Safety Department also have authority to suspend operations not being performed in accordance with approved procedures.

	Page 1 of 2
UNITED NUCLEAR	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 200 - ORGANIZATION, PERSONNEL AND	Supersedes 10/31/68
ADMINISTRATION Subsection: 207 - Inspections and Audits	Approved
-	Amendment No.

207. Inspections and Audits

1. General

A continuous re-appraisal of the safety program is provided through a system of daily checks, regular inspections, and audits. Health physics personnel, thoroughly familiar with regular operations, make daily checks to determine that there has been no change in the parameters or conditions of operations, that may affect the safety of these operations. A planned schedule of regular inspections is established by the Department Manager. Infractions and violations are corrected on the spot with the concurrence of the cognizant Specialist and/or Manager of Industrial Safety. Results of inspections and audits are included in the department monthly report.

2. Daily Checks

Daily checks and visits are observations made routinely by Health Physics Technicians who observe, note, and make general observations in addition to their radiation survey functions.

3. Inspections

Inspections are performed by NIS Department Representative (nonresident), Specialist or NIS Manager. An inspection includes a review of checks to determine the area or areas requiring more detailed observation. Generally, a specific area will be observed for a sufficient time to indicate corrective action if needed. Inspections are documented and maintained as a record for at least one year. These inspections will be performed as follows:

Function

Minimum Frequency#

Health Physics

2 months

Nuclear Criticality Safety

2 months

#The minimum frequency is increased when new operations are in the startup phase.

	Page 2 of 2
UNITED NUCLEAR	Issued 2/6/70
LICENSE: SNM-33 & SMM-777, Docket 70-26 & 70-820 SECTION: 200 - ORGANIZATION, PERSONNEL AND	Supersedes 10/31/68
* ADMINISTRATION Subsection: 207 - Inspections and Audits	Approved
	Amendment No.

207. Inspections and Audits (continued)

4. Audits

An audit is a more thorough inspection in which the results of previous checks, inspections or audits are also reviewed, as an evaluation on the effectiveness of the program. All aspects of the activities involved, including the equipment, facilities and operator's knowledge are covered. A review of the follow-up action taken on previous audits and inspections, the recommended corrective action, and a schedule date which such action will be accomplished are also covered. These audits may also involve a detailed review of non-safety documents such as operating procedures, route cards, etc. It may also include a review of the nuclear materials management program. These audits are documented by a formal report to the Division General Manager. Records of audits are maintained for at least one year. An audit is performed once a year by a team appointed by the General Manager.

Į	JNITED NUCLEAR	PAGE1 OF 1	
License:	SNM-777, Docket: 70-820	Approved	
SECTION:	200 - ORGANIZATION, PERSONNEL AND ADMINISTRATION	ISSUED October 31, 1968].
Subsection:	208 - Training	SUPERSEDES Now	.

203. Training

1. Purpose

The purpose of the training program is to inform and instruct all employees in the policy and programs of the company as they relate to nuclear criticality safety, health physics and industrial safety, and proper and safe performance of their assignments.

2. New Employees

The indoctrination of new employees in the safety aspects of the facility is conducted by, or under the supervision of Specialist in the various topics. The indoctrination topics include but are not limited to:

a) Fundamentals of nuclear criticality safety and controls.

b). Fundamentals of the health physics.program and controls.

c) Emergency Alarms and actions required.

1) A review of the facility operations.

) On the job training, under direct line supervision and/or by experienced personnel.

B. Continued Training

The training and personnel safety program is continued with on the job training supplemented by regularly scheduled meetings conducted by line supervision and specialist in the subjects covered. Included are topics in nuclear safety, health physics and radiation safety, use of personnel protection equipment, industrial safety and accident prevention and other topics applicable to the facility operations.

COMMERCIAL PRODUCTS DIVISION

POSITION General Manager, Commercial Products Division

PERSON Frederick G. Stongel

EXPERIENCE

Mr. Stengel has fifteen years experience in development and fabrication of nuclear core fuel materials, fuel elements, and assemblies. His developmental experience includes several prototype naval réactors, PWR, and HTGR. He has extensive background in the development of uranium alloy, carbide, and ceramic fuel materials, and in management of related technicalprograms.

FORMER POSITIONS

1965 - 1967	Chemical Operations Manager, Fuels Division, Hematite, Missouri
1963 - 1965	Manager, Process Engineering, General Atomic, Fuel Operations Division
1958 - 1963	Supervisor, Westinghouse Electric Corporation, Bettis Atomic Power Division, West Mifflin, Pennsylvania
1952 - 1958	Junior to Senior Engineer, Westinghouse Electric Corporation, Bettis Atomic Power Division, West Mifflin, Pennsylvania.

EDUCATION

B. S., Metallurgical Engineering, Massachusetts Institute of Technology,

Business Administration, University of Pittsburgh, 1959.

COMMERCIAL PRODUCTS DIVISION

POSITION

Chemical Operations Plant Manager

PERSON Robert M. Barto, Jr.

EXPERIENCE

Mr. Barto has 17 years industrial experience in manufacturing industries, ten years of which have been line management. Experience has included Naval reactor fuel and structural fabrication and assembly. Developmental experience has been in the field of mechanical, electromechanical and electronic equipment associated with the electrostatic photocopy industry.

FORMER POSITIONS

•			*
1967 - 1968	•	Director of Research and Development, Copystatics Manufacturing Corporation, Miami, Florida.	•••
1961 - 1967	•	Manager, Quality Assurance and Inspection, Veeder-Root Company, Hartford, Connecticut	
1956 - 1961		Manager, Quality Control and Inspection, Combustion Engineering, Nuclear Division, Windsor, Connecticut	•
1951 - 1956		Process Engineer, Remington Arms Company, Lake City Arsenal, Independence, Missouri	• •

EDUCATION

William Jewell College - A.B. Physics & Mathmatics Cornell University & Mohawk College - Engineering Courses Syracuse University - Graduate Work, Physics

COMMERCIAL PRODUCTS DIVISION

POSITION

Recovery Operations Superintendent

PERSON Russell P. Smith

EXPERIENCE

Mr. Smith has had more than fourteen years experience in various phases of the chemical processing of enriched Uranium. His experience has included Research and Development work, process engineering and management of these and related technical programs.

FORMER POSITIONS

1965 - 1967	Process Engineer, Fuels Recovery Plant, Fuels Division, United Nuclear Corporation, Wood River Junction, Rhode Island	
1955 - 1965	Process Engineer and Supervisor of Enriched Uranium Scrap R covery, Y-12 Plant, Union Carbide Corporation, Oak Ridge, Tennessee	
1953 - 1955	Process Development Engineer, Fuels Conversion Process, Oak Ridge Gaseous Diffusion Plant, Union Carbide Corporation, Oak Ridge, Tennessee	

Ex.6

EDUCATION

B.S., Chemical Engineering, Grove City College, Pennsylvania

5/22/68

COMMERCIAL PRODUCTS DIVISION

POSITION Fuel Fabrication Operations Plant Manager

PERSON William J. Compas

EXPERIENCE

Mr. Compas has had fifteen years experience in technology of nuclear reactor cores and nuclear material fabrication and testing, with particular emphasis on uranium alloys, Zircaloy and hafnium. He has extensive background in quality control and process development. and improvement.

FORMER POSITIONS

1965 - 1967	Quality Control Manager, Naval Products Department, Fuels Division, United Nuclear Corporation, New Haven, Connecticut.
1962 - 1965	Manager, Manufacturing Engineering, Fuels Division, United Nuclear Corporation, New Haven, Connecticut.
1961 - 1962	Superintendent of Engineering, Fuels Division, United Nuclear Corporation, New Haven, Connecticut
1958 - 1961	Technical Project Supervisor, Nuclear Fuel Operation, Olin Mathieson Chemical Corporation, New Haven, Connecticut.
1957 - 1958	Senior Process Engineer, Nuclear Fuel. Operation, Olin Mathieson Chemical Corporation, New Haven, Connecticut.
1956 - 1957	Process Engineer, Nuclear Fuel Operation, Olin Mathieson Chemical Corporation, New Haven, Connecticut.
1954 - 1956	Supervisor, Process Development in Establishing Roll Bond Tube in Sheet Technology, Olin Mathieson Chemical Corporation, East Alton, Illinois.
1952 - 1954	Research Metallurgist, Ames Laboratory (AEC), Iowa State University, Ames, Towa.
EDUCATION B.S., St. Louis	University, Ex. 6

Graduate studies at Iowa State University, 1952-54.

COMMERCIAL PRODUCTS DIVISION

POSITION! Nuclear and Industrial Safety Manager

PERSON Louis J. Swallow

EXPERIENCE

Mr. Swallow has thirteen years experience in the nuclear fuel industry. His experience includes plant design and construction, quality control, production, special nuclear material accountability, and specifically, six years of nuclear safety including criticality evaluations, health physics, and license preparation.

FORMER POSITIONS

1967 - 1968	Construction Manager, SWOPP Task Force, Chemicals Operation, Commercial Products Division, United Nuclear Corporation, Hematite, Missouri
1964 - 1967	Operations Control Manager, Chemicals Operation, Fuels Division, United Nuclear Corporation, Hematite, Missouri
1958 - 1964	Research and Development Engineer, Quality Control Engineer, Nuclear Safety Engineer, Chemicals Operation, Fuels Division, United Nuclear Corporation, Hematite, Missouri
1955 - 1958	Project Engineer, Uranium Division, Mallinckrodt Chemical Works St. Louis and Weldon Springs, Missouri
EDUCATION	F J Ex

В.	s.,	Mechanical	Engineering,	Washington	University,	St.	Louis,	Missouri,		6
М.	s.,	Mechanical	Engineering,	Washington	University,	St.	Louis,	Missouri,	1955	
0a	k Ri	dge National	l Laboratory,	Nuclear Sat	fety School,	Octo	ber 1	959	· . 	

5/22/68

COMMERCIAL PRODUCTS DIVISION

POSITION Special Projects Manager

PERSON Robert I. Hanfling

EXPERIENCE

Mr. Hanfling has seven years experience in the Nuclear Industry. His experience includes production, planning and control, and nuclear reactor design and development.

FORMER POSITIONS

1968 - to present	Special Project Manager, Commercial Products Division, United Nuclear Corporation, New Haven Connecticut
1967 - 1968	Project Manager - KAPL Contract, Naval Products Division, United Nuclear Corporation, New Haven, Connecticut
1967 -	Manager, Operations Control, Naval Products Division, United Nuclear Corporation, New Haven, Connecticut
1966 - 1967	Manager, Planning and Control, Naval Products Department, Fuels Division, United Nuclear Corporation, New Haven, Connecticut
1966 -	Project Director - "136" Contract, Naval Products Depart- ment, Fuels Division, United Nuclear Corporation, New Haven, Connecticut
1962 - 1966	Project Engineer, MCR; NDA and UNC Research and Engineering Center (formerly Development Division)
1962 -	(Temporary Assignment) Supervisory Engineer, Navy Core Assembly, Fuels Division, United Nuclear Corporation
1961 - 1962	Engineer, Reactor Design and Analysis, Nuclear Development Corporation of America

Ex.6

EDUCATION

Rensselaer Polytechnic Institute, B.S., Chemical Engineering, West Virginia University, M.S., Nuclear Engineering, 1961 City College of New York, M.B.A., 1966

COMMERCIAL PRODUCTS DIVISION

POSITION Manager Facilities & Development Engineering, Commercial Products Division

PERSON James A. Rode

EXPERIENCE

Sixteen years experience in refining, production & fabrication of uranium and its compounds. His experience includes production, research & development involving UO_2 , uranium, uranium carbides and mixed oxides of uranium.

FORMER POSITIONS

1965 - 1967	Manager Research & Development Chemicals Operation, Hematite, Missouri
1964 - 1965	Technical Director - Chemicals Operation, Hematite, Missouri
1961 - 1964	Assistant Technical Director - Chemicals Division, Hematite, Missouri
1958 - 1961	Group Leader - Mallinckrodt Nuclear Corporation, Hematite, Missouri
1957 - 1958	Production Engineer & Production Supervisor Special Metals Division, Mallinckrodt, Hematite, Missouri
1955 - 1957	Project Engineer - Mallinckrodt Chemical Works Special Metals
1954 - 1955	Group Leader - Development Group, Mallinckrodt Chemical Works Uranium Division, St. Louis, Missouri
1953 - 1954	Research Chemist, Development Engineer Production Engineer Mallinckrodt Chemical Works, Uranium Division, St. Louis, Missouri

EDUCATION

B. S. Chemical Engineering, University of Texas,

as, Car

Ex6

10-23-68

COMMERCIAL PRODUCTS DIVISION

POSITION Administrative Manager, Commercial Products Division

PERSON Laurence R. Garland

EXPERIENCE

Has extensive background in financial management in manufacturing as well as plant management experience.

FORMER POSITIONS

1964 - 1967	Chemical Operations Administrative Manager
1962 - 1964	Plant Manager - Walworth Company, East St. Louis, Illinois
1958 - 1962	Division Controller - Walworth Company, East St. Louis, Illinois
1942 - 1958	Works Accountant and Cost Accountant - Various Plants, Walworth Company
1937 - 1942	Accountant - Northern Indiana Public Service Co.

EDUCATION

B. S. In Business Administration, University of Notre Dame,

Ex.6

10-23-68

COMMERCIAL PRODUCTS DIVISION

POSITION Nuclear Safety Specialist

PERSON Robert E. Kropp

EXPERIENCE

Mr. Kropp has over fifteen years experience in nuclear safety, reactor hazards analysis, reactor physics and reactor design. His experience covers the design, fabrication and operation of Swimming Pool, Pressurized Water and High Temperature Gas Cooled Reactors. He has extensive background in directing nuclear safety programs, preparing manuals and procedures for criticality control and reactor operations and preparing computer programs for health and safety analysis. Also, Mr. Kropp has been licensed as a reactor operator.

FORMER POSITIONS

1965 - 1968 [.]	Nuclear Safety Specialist, Fuels Division, United Nuclear Corporation, New Haven, Connecticut.		
1963 - 1965	Staff Associate, Nuclear Analysis and Reactor Physics Department and Member, Criticality Safeguard Committee, John J. Hopkins Laboratory for Pure and Applied Sciences, General Atomic, San Diego, California.		
1958 - 1963	Lead Engineer, Criticality Control Standards, Bettis Atomic Power Laboratory, Westinghouse Electric Corporation, Pittsburgh, Pennsylvania.		
1956 - 1957	Test Engineer, Reactor Operations and Hazards Group, Convair, Fort Worth Division, Fort Worth, Texas.		
1952 - 1956	Aerological and Research Officer, U. S. Navy.		
1951 - 1952	Meteorological Aid, U. S. Weather Bureau, Spartanburg, South Carolina.		
EDUCATION			
B.S., Meteorolo	ogy, Florida State University, Ex.6		
Graduate Physics, University of California, 1954-55.			
Graduate Physic	es, Texas Christian University, 1956-57.		
Bettis School of Reactor Engineering, 1958-61.			
Graduate Computing Sciences, Carnegie Institute of Technology, 1962-63.			
	have at some some some some some some some some		

5/22/68

COMMERCIAL PRODUCTS DIVISION

POSITION Health Physics Specialist

PERSON David G. Darr

EXPERIENCE

Mr. Darr has fourteen years' experience in Health Physics involving source and special nuclear materials, by-product materials, x-ray equipment and particle accelerators. His background includes planning and administering Health Physics programs, preparing manuals and procedures for Health Physics controls, equipment and facility design, and environmental sampling and evaluation.

He has for years' experience in nuclear safety involving audit functions for both reactor component fabrication and special nuclear materials processing. One year of this experience included performing basic nuclear safety evaluations and reviewing and preparing manuals and procedures for criticality control.

FORMER POSITIONS

1967 - 1968	Nuclear Licensing and Safety Specialist, Fuels Division, United Nuclear Corporation, Hematite, Missouri.
1964 - 1967	Health Physics and Safety Supervisor, Fuels Division, United Nuclear Corporation, Hematite, Missouri.
1961 - 1964	Health Physics Officer, Member of Isotope Committee and Consulting Industrial Physicist, Nuclear Consultants Corp., St. Louis, Missouri.
1957 - 1961	Health Physics Supervisor, Nuclear Fuels Operation, Olin Mathieson Chemical Corp., New Haven, Connecticut
1956 - 1957	Technician, Health Physics Department, Uranium Division, Mallinckrodt Chemical Works, St. Louis, Missouri.
1954 - 1956	NCOIC, Operations Group, 1st Radiological Safety Support Unit, U. S. Army, Nevada Test Site and Ft. McClellan, Alabama.
EDUCATION	1
Engineering, Ce	ntral Missouri State College, Ex.6
Engineering, Wa	shington University, 1957
Physics, New Ha	ven College, 1960

COMMERCIAL PRODUCTS DIVISION

POSITION Nuclear and Industrial Safety Department Representative

PERSON Elmer A. Barton

EXPERIENCE

Mr. Barton has elevan year experience in Health Physics, Nuclear Materials Management and Nuclear Criticality Safety. His experience includes administering operational health physics, nuclear criticality and nuclear materials management programs at chemical recovery and fuel component fabrication plants. Health physics experience includes implementing policies and procedures, supervising routine health physics operations and actual performance of the routine health physics operations. Nuclear criticality safety experience includes inspection of recovery operations and reviewing operating documents and manuals for conformance with approved licenses. Nuclear Materials Management experience included routine records keeping, auditing and other associated duties.

FORMER POSITIONS

1965 - 1968	Nuclear Licensing and Safety Department Representative, Fuels Division, United Nuclear Corporation, Wood River Junction, Rhode Island.
1963 - 1965	Health Physics and Safety Technician (Senior), Fuels Division, United Nuclear Corporation, Wood River Junction, Rhode Island
1961 - 1963	Health Physics and Safety Technician, Fuels Division, United Nuclear Corporation, New Haven, Connecticut
1960 - 1961	Materials Control Technician, Nuclear Fuels Operation, Olin Mathieson Chemical Corporation, New Haven, Connecticut
1957 - 1960	Accountibility Technician, Nuclear Fuels Operation, Olin Mathieson Chemical Corporation, New Haven, Connecticut

EDUCATION

Education, Lynden (Vermont) Teachers College,

Ex.6

5-22-68

COMMERCIAL PRODUCTS DIVISION

Ex6

1960 - 61.

POSITION Supervisor of Nuclear Materials Management

PERSON James M. Scoffin

EXPERIENCE

Mr. Scoffin has ten years experience in the nuclear fuel industry. His experience includes SS Material Control in production, irradiation test experimentation, and as SS Material Accountability representative.

FORMER POSITIONS

1965 - present	Supervisor of Nuclear Materials Management, United Nuclear Corporation, Hematite, Missouri
1962 - 1965	Production Control Coordinator, General Atomic Fuels Division, San Diego, California
1958 - 1962	Research Assistant, General Atomic, San Diego, California

EDUCATION

B. A., Mathematics, San Diego State College,

Business Administration, San Diego State College,

5-22-68

COMMERCIAL PRODUCTS DIVISION

POSITION Fuel Fabrication Operations Engineering Manager

PERSON Eugene Krinick

EXPERIENCE

Mr. Krinick has fifteen years experience in the fabrication of nuclear fuel elements. Work in this field includes development and production on aluminumuranium alloys, stainless steel UO₂ dispersion plates, rolling, machining and casting of uranium and critical experiments; fabrication of plate type and tubular aluminum fuel elements for research and test reactor use, and the fabrication of UO₂ pellet - Zircaloy tubular clad fuel elements for many utility power reactors.

FORMER POSITIONS

1967 - 1968	Engineering Manager, Fuels Division, United Nuclear Corporation, New Haven, Connecticut.
1965 - 1967	Supervisor of Mechanical Design, Fuels Division, United Nuclear Corporation, New Haven, Connecticut
1961 - 1965	Engineering Specialist, Fuels Division, United Nuclear Corporation, New Haven, Connecticut
1959 - 1961	Engineering Specialist, Nuclear Fuel Operations, Olin Mathieson Chemical Corporation, New Haven, Connecticut
1955 - 1959	Supervisor, Mechanical Engineering, Sylvania-Corning Nuclear Corporation, Hicksville, New York.
1954 - 1955	Project Engineer, Sylvania-Corning Nuclear Corporation, Hicks- ville, New York.
1953 - 1954	Rocket Design Engineer, U. S. Army.
1952 - 1953	Mechanical Engineer, Atomic Energy Division, Sylvania Electric Products, Inc., Hicksville, New York.
1951 - 1953	Mechanical Engineer, Norfolk Navel Shipyard, Portsmouth, Virginia.
EDUCATION	·
B. S., Mechanical	Engineering, Brooklyn Polytechnic Institute, Ex.6
M. S., Industrial	Engineering, New York University, 1958.

COMMERCIAL PRODUCTS DIVISION

POSITION Fuel Fabrication Operations Manufacturing Manager

PERSON Francis J. Pianki

EXPERIENCE

Mr. Pianki has sixteen years experience in the field of fuel element and nuclear materials production and development, and this production and development experience includes aluminum, stainless steel, zirconium and many other special type fuel elements. He has also been engaged in research and development of fabrication methods for nuclear fuel materials.

FORMER POSITIONS

1966 - 1967	Manufacturing Manager, Fuels Division, United Nuclear Corporation, New Haven, Connecticut.
1965 - 1966	Supervisor of Metallurgical Functions Engineering, Fuels Division, United Nuclear Corporation, New Haven, Connecticut.
1964 - 1965	Manufacturing Engineering Superintendent, Fuels Division, United Nuclear Corporation, New Haven, Connecticut
1963 - 1964	Manufacturing Superintendent, Fuels Division, United Nuclear Corporation, New Haven, Connecticut
1961 - 1963	Commercial Development Supervisor, Fuels Division, United Nuclear Corporation, New Haven, Connecticut
1959 - 1961	Commercial Development Supervisor, Nuclear Fuel Operations, Olin Mathieson Chemical Corporation, New Haven, Connecticut.
1957 - 1959	Supervisor of Production Engineering, Sylvania-Corning Nuclear Corporation, Hicksville, Long Island, New York.
1956 - 1957	Senior Engineer, Sylvania-Corning Nuclear Corporation, Bayside New York
1955 - 1956	Senior Engineer, Westinghouse Atomic Power Division, Bettis Field, Pittsburgh, Pennsylvania.
1952 - 1955	Engineer, Atomic Energy Division, Sylvania Electric Products, Inc., Bayside, New York.
1952 - 1952	Metallurgist, Spery Gyroscope Co., Lake Success, Long Island, New York
EDUCATION	· · · · · · · · · · · · · · · · · · ·

Metallurgical Engineering, Purdue University, **Metallurgical Engineering**, Polytechnic Institute of Brooklyn, **Graduate Metallurgy**, Polytechnic Institute of Brooklyn

.

COMMERCIAL PRODUCTS DIVISION

POSITION

Quality Control Superintendent

PERSON Raymond C. Sohl

EXPERIENCE

Mr. Sohl has 21 years experience in quality control including seven years in nuclear fuel fabrication.

FORMER POSITIONS

1961 - 1967 -	Supervisor, Quality Control
•	Commercial Products Department
	Fuels Division, United Nuclear Corp.
	New Haven, Connecticut

1947 - 1931 · Quality Engineer, Thompson Ramo Woolridge, Inc. Cleveland, Ohio

EDUCATION

Graduate, Case Institute of Techonlogy, 1944 B. S. Engineering, Ohio State University,

COMMERCIAL PRODUCTS DIVISION

POSITION Recovery Operations Process Engineer

PERSON Clifford E. Smith, Jr.

EXPERIENCE

Mr. Smith has had eight years experience in laboratory and developmental chemistry, the last four years as Supervisor and Assistant Chemical Process Engineer at the Fuels Recovery Plant. He has assisted in the development and processes now in use and supervision of these operations.

FORMER POSITIONS

1964 - 1967 Operations Supervisor and Process Engineer, Fuels Recovery Plant, Fuels Division, United Nuclear Corporation, Wood River Junction, Rhode Island

1960 - 1964 Quality Control Chemist, Bird & Son, Inc., Walpole, Massachusetts

EDUCATION

5-22-68

B. S., Chemistry, University of Rhode Island

Ex.6

COMMERCIAL PRODUCTS DIVISION

POSITION

Recovery Operations Plant Administrator

PERSON Frederick R. Thoennes

EXPERIENCE

Mr. Thoennes has one year experience in Divisional accounting procedures. He is trained in standard accounting practices and has received on the job training in Nuclear Materials Management.

FORMER POSITIONS

1967 - 1967

Junior Cost Accountant, Fuels Division, United Nuclear Corporation, New Haven, Connecticut

EDUCATION

B. S., Accounting and Business Management, Bob Jones University,

5-22-68

COMMERCIAL PRODUCT3 DIVISION

POSITION Recovery Operations Plent Chemist

PERSON David H. Nichols

EXPERIENCE

Mr. Nichols has five years experience in industrial research and applied chemical analytical techniques. His experience includes three years in the uranium processing industry.

FORMER POSITIONS

1967 - Present	Recovery Operations Plant Chemist, Fuels Division, United Nuclear Corporation, Wood River Junction, Rhode Island			
1965 - 1967	Chemist, Fuels Division, United Nuclear Corporation, Hematite, Missouri.			
1963 - 1965	Research Chemist, Dennis Chemical Company, St. Louis, Missouri			

EDUCATION

B. S., Mathematics, Southeast Missouri State College

Exil

5-22-68

COMMERCIAL PRODUCTS DIVISION

POSITION Recovery Operations Production Supervisor

PERSON James H. Wakefield

EXPERIENCE

Mr. Wakefield has had 17 years experience in industry related to nuclear fuels and uranium processing. This includes 4 years in enriched uranium recovery operations.

FORMER POSITIONS

1965 - Present Recovery Operations Production Supervisor, Commercial Products Division, United Nuclear Corp., Wood River Junction, R. I.


1954 - 1965 Shift Process Foreman, Union Carbide Corp., Oak Ridge, Tennessee.

1951 - 1954 Chemical Operator, Union Carbide Corp., Paducah, Ky.

1949 - 1951 Shift Supervisor, Alabama Power Co., Underground Gasification Projects, Gargas, Alabama.

EDUCATION

B. S., Chemistry and Mathematics, Florence State College

9/25/68

COMMERCIAL PRODUCTS DIVISION

POSITION Recovery Operations Production Supervisor

PERSON Robert A. Nelson

EXPERIENCE

Mr. Nelson has eight years of experience in the chemical and nuclear fuel industry. His experience includes laboratory development in analytical chemistry, research and development in ceremic fuel materials, process engineering and production supervision in the uranium processing industry.

FORMER POSITIONS

1965 - Present Recovery Operations Production Supervisor, Commercial Products Division, United Nuclear Corp., Wood River Junction, Fhode Island

1961 - 1965 Chemist, Fuels Division, United Nuclear Corp., Hematite, Mo.

1960 - 1961 Analytical Chemist, Mallinckrodt Chemical Works, St. Louis, Mo.

EDUCATION

B. A., Chemistry, Wisconsin State College,

M. S., Physical Chemistry, Iowa State University, 1960

COMMERCIAL PRODUCTS DIVISION

POSITION Recovery Operations Production Supervisor

PERSON William R. Pearson

EXPERIENCE

Mr. Pearson has 15 years of experience in the chemical and nuclear fuels industry. Experience includes design and development of a UF6 manufacturing plant, management of a small chemical plant and operation of the utilities operations of a chemical plant. Mr. Pearson has 5 years experience in enriched uranium recovery operations.

FORMER POSITIONS

- 1964 Present Recovery Operations Production Supervisor, Commercial Products Division, United Nuclear Corp., Wood River Junction, R.I.
- 1962 1964 Supervisor, Utilities Operations Production Sub-Division, Goodyear Atomic Corp., Piketon, Ohio.
- 1958 1962 General Foreman, Flouride Generation and Feed Vaporization Facility, Goodyear Atomic Corp., Piketon, Ohio.
- 1953 1958 Foreman, Flouride Generation and Feed Vaporization Facility, Goodyear Atomic Corp., Piketon, Ohio.

EDUCATION

Certificate, Textile Chemistry, New Bedford Textile Institute, 1	
B.S., Chemistry, Northeastern University,	
Graduate Management, Ohio University, 1958 - 1962	و به منهو و الم

9/25/68

• •

•

Ŷ.

·

.

SECTION 200

	ITED NUCLEAR	?AGE <u>1</u> . OF 1	
	777, Docket: 70-820	Approved	
	- NUCLEAR CRITICALITY SAFETY STANDARDS	ISSUED October 31, 1968	<u> </u> .
TABL	E OF CONTENTS	SUPERSEDES New	_
SUBSECTION 301	STATEMENT OF POLICY		-
SUBSECTION- 302	GENERAL REQUIREMENTS		·
SUBSECTION 303	EVALUATIONS		
SUBSECTION 304	STRUCTURAL INTERGRITY		
SUBSECTION 305	NUCLEAR POISONS		
SUBSECTION 306	CRITICALITY ZONES		
SUBSECTION 307	MARKING AND LABELING		•
SUBSECTION 308	EQUIPMENT DESIGN		
SUBSECTION 309	TABLES AND GRAPHS		·
•			

i

7

	UNITED NUCLEAR	PAGÉ- 1 OF 1
LICENSE:	SNM-777, Docket: 70-820	Approved
SECTION:	300 - NUCLEAR CRITICALITY SAFETY STANDARDS	ISSUED October 31, 1968
Subsection:	301 - Statement of Policy	SUPERSEDES New

301. Statement of Policy

)

It is the policy of United Nuclear Corporation to establish management controls, plant facilities and equipment designs, and operating procedures to reduce the possibility of a nuclear criticality accident to a minimum. The standards contained in this section 300, describe the controls and criteria applicable to the implementation of this policy.

UNITED NUCLEAR CORPORATION Issued 2/6/70 LICENSE: SNN-33 & SNN-777, Docket: 70-36 & 70-820 SECTION: 300 - NUCLEAR CRITICALITY SAFETY STANDARDS Supersedes 10/31/68 Subsection: 302 - General Requirements Approved 302. General Requirements Amendment No. 302. General Requirements I.1.1 Design of new plant facilities and equipment, or 1.1.2 Modification of existing facilities and equipment, or I.1.3 UNC Commercial Products Division internal evaluations, reviews and authorizations in lieu of obtaining formal AEC license approval. * 1.2 The type of activities for which these standards are applicable are those described in Sections 700 and 900. 2. Basic Frinciples 2.1 All new and revised plant facilities, and equipment intended for processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present which prevent these conditions under normal and abnormal conditions
SECTION: 300 - NUCLEAR CRITICALITY SAFETY Depresense of the second
STANDARDS Approved Subsection: 302 - General Requirements Amendment No. 302. Internal Requirements Internal State Stat
302. General Requirements 1. Purpose 1.1 These standards provide basic nuclear criticality safety criteria for: 1.1.1 Design of new plant facilities and equipment, or 1.1.2 Modification of existing facilities and equipment, or 1.1.3 UNC Commercial Products Division internal evaluations, reviews and authorizations in lieu of obtaining formal AEC license approval. * 1.2 The type of activities for which these standards are applicable are those described in Sections 700 and 900. 2. Basic Principles 2.1 All new and revised plant facilities, and equipment intended for processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present
 Purpose <u>Purpose</u> These standards provide basic nuclear criticality safety criteria for:
 1.1 These standards provide basic nuclear criticality safety criteria for: 1.1.1 Design of new plant facilities and equipment, or 1.1.2 Modification of existing facilities and equipment, or 1.1.3 UNC Commercial Products Division internal evaluations, reviews and authorizations in lieu of obtaining formal AEC license approval. * 1.2 The type of activities for which these standards are applicable are those described in Sections 700 and 900. 2. Basic Principles 2.1 All new and revised plant facilities, and equipment intended for processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present
 for: 1.1.1 Design of new plant facilities and equipment, or 1.1.2 Modification of existing facilities and equipment, or 1.1.3 UNC Commercial Products Division internal evaluations, reviews and authorizations in lieu of obtaining formal AEC license approval. * 1.2 The type of activities for which these standards are applicable are those described in Sections 700 and 900. 2. Basic Principles 2.1 All new and revised plant facilities, and equipment intended for processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present
 1.1.2 Modification of existing facilities and equipment, or 1.1.3 UNC Commercial Products Division internal evaluations, reviews and authorizations in lieu of obtaining formal AEC license approval. * 1.2 The type of activities for which these standards are applicable are those described in Sections 700 and 900. 2. Basic Principles 2.1 All new and revised plant facilities, and equipment intended for processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present
 1.1.3 UNC Commercial Products Division internal evaluations, reviews and authorizations in lieu of obtaining formal AEC license approval. * 1.2 The type of activities for which these standards are applicable are those described in Sections 700 and 900. 2. <u>Basic Principles</u> 2.1 All new and revised plant facilities, and equipment intended for processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present
 reviews and authorizations in lieu of obtaining formal AEC license approval. * 1.2 The type of activities for which these standards are applicable are those described in Sections 700 and 900. 2. Basic Principles 2.1 All new and revised plant facilities, and equipment intended for processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present
 are those described in Sections 700 and 900. 2. <u>Basic Principles</u> 2.1 All new and revised plant facilities, and equipment intended for processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present
 2.1 All new and revised plant facilities, and equipment intended for processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present
 processing, handling or storing special nuclear material shall be designed for nuclear criticality safety. The nuclear criticality safety evaluation shall be based on principle that at least two unlikely and unrelated events must occur before accidental criticality can result. 2.2 All evaluations shall assume complete water reflection and optimum moderation unless mechanical or physical controls are present
moderation unless mechanical or physical controls are present
which prevent these conditions shall not abhorized conditions
2.3 In cases in which different SNM are present in an area at the same time, the limits for the more reactive SNM will apply to all SNM in the area.

*Indicates Change

				-		_		Page 1 of 2
		U C	NITE : o r	PORA		•	•	Issued 2/6/70
LICEN		SNM-3	300 - 3	NUCLEAR C	cket: 70-3 RITICALITY			Supersedes 10/31/68
Subse	ctio	n:		STANDARDS Evaluatio				Approved
c								Amendment No.
303.	Eva	luati	ons					•
	1.	Purp	ose					•
•					performed the system.			ctors which may affect e:
		1.1	Enricl	ment .		1.6	Volume	•
		1.2	Geomet	try		1.7	Concent	ration
		1.3	Modera	tion		1.8	Interaci	tion
		1.4	Reflec	tion		ï.9	Structu	ral Integrity
		1.5	Mass			1.10	Poisons	(if applicable) .
						1.11	Homogene the Syst	eity and Heterogeneity of tem
	2.	Dete	rminati	on of Sai	fe Values			
		2.1	Indivi	dual Unit	15			•••••
			which	are used	to obtain	operat	ing criti	contain the basic limits icality safety limits. tors incorporated into them.
		2.2	Intera	ction				
								is of an array or group be applied:
		•	2.2.1					of the most reactive ordance with the following:
					Keff valu on page 3	es list 0, K-1(ted in Ta)19, Rev.	n TID-7016, Rev. 1. ble XVII and footnote 6 5, will be utilized
*				2.2.1.3	quoted in	Section Les equ	on 800. Mal to or	es used and explicitly less than 0.005 steradians
			2.2.2		d - Solid a in Y-1272.	angles	shall be	calculated using the
			÷				,	
							1	

.

•

UNITED NUCLEAR	Page 2 of 2
CORFORATION	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket 70-36 & 70-820 SECTION: 300 - NUCLEAR CRITICALITY SAFETY	Supersedes 10/31/68
STANDARDS Subsection: 303 - Evaluations	Approved
	Amendment No.

303. Evaluations (continued)

2.2.3 Criticality Zones

The interaction between criticality zones may not be specifically evaluated if the following are met:

- a) The SNM in each criticality zone is separated from SNM in other criticality zones by at least one (1) foot.
- b) The plant average surface density of SNM does not exceed 175 grams U-235 per square foot of aspect area. The aspect area applies to plant areas where SNM is processed and handled. This value may be used if the SNM in the criticality zone has a fraction critical which does not exceed 0.3. The maximum size units in each zone shall be evaluated as illustrated in attached Nuclear Safety Evaluation.

Storage devices are not considered criticality zones. Interaction between storage devices and criticality zones is considered only when adjacent criticality zones are not isolated in accordance with the criteria of Subpart 303.2.2.4.

2.2.4 Isolation

Individual units or arrays are considered isolated from neutron interaction when separated by one of the following:

- a) Eight (8) inches of solid concrete with a density of 140 pounds per cubic foot. Less dense concrete may be used, provided the thickness is increased in inverse proportion to the concrete density. This is applicable only to units no more reactive than those of Table 309-II (refer to attached Nuclear Safety Evaluation, Concrete Isolation).
- b) Twelve (12) feet or the greatest distance across the orthographic projection of the largest unit or array on a plane perpendicular, to a line joining the center of that unit or array to other units or arrays, whichever is greater.

*Indicates Change

12 pgs ø/kin enterity

. 1	UNITED NUCLEAR	PAGE1 OF 1
LICENSE:	SNM-777, Docket: 70-820	Approved
SECTION:	300 - NUCLEAR CRITICALITY SAFETY STANDARDS	ISSUED October 31, 1968
Subsection:	304 - Structual Integrity	SUPERSEDES New

304. Structural Integrity

1. Purpose

Whenever nuclear criticality safety is directly dependent on the integrity of a fixture, container, storage rack or isolation structure, the fixture, container, storage rack or isolation structure shall be designed in accordance with the following criteria.

2. Specifications

- 2.1 Materials shall be selected to be fire and corrosion resistant.
- 2.2 The safety factor is at least five (5) (applicable to ultimate strength of material at design conditions). Assurance that the conditions of this Section are met will be accomplished by test or design by an engineer knowledgeable in material properties and design.
- 2.3 Records of test results and design calculations will be maintained as provided in Subsection 206.

1. ...

3. Inspections

Fixtures, containers, storage racks, or isolation structures which maintain a safe geometry or spacing will be inspected to assure the continued reliability of such devices.

- 3.1 Fixtures Exposed to Corrosive Enviornments
 - 8.1.1 Fixtures such as pickling fixtures will be visually inspected for defects such as cracks at least monthly. These checks will be performed by operating supervision who will maintain a record of these checks.
 - 3.1.2 Defective fixtures will be withdrawn from service and repaired. Fixtures shall be inspected by operating supervision to insure that original design conditions have been restored.

3.2 Other Devices

. . . .

- 3.2.1 Devices such as storage racks and containers shall be checked by NIS personnel during inspections and audits.
- 3.2.2 Devices requiring repair shall be identified and repaired. Repaired devices shall be inspected by NIS personnel or operating supervision to insure that original design conditions have been restored.

	Page 1 of 2
UNITED NUCLEAR	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 300 - NUCLEAR CRITICALITY SAFETY STANDARDS Subsection: 305 - Nuclear Poisons	Supersedes 10/31/68
	Approved
	Amendment No.

305. Nuclear Poisons

305.1 Use of Nuclear Poisons

Nuclear poisons are used only as secondary nuclear criticality control. The following types may be used.

1.1 Boro-silicate Glass Raschig Rings

Boro-silicate glass raschig rings may be used in vessels containing solutions when primary nuclear criticality safety is maintained by concentration control. Such use shall be as described herein.

- 1.1.1. Boro-silicate glass raschig rings shall be constructed of a low expansion corrosion resistant type glass compatible with the chemical and physical environment.
- 1.1.2. Raschig rings shall be Corning Glass 7740 type or equivalent containing nominal four (4) w/o natural Boron with a range to 11.2 to 13.8 w/o B_2O_3 .
- 1.1.3. Raschig rings are small hollow cylinders with length and diameter approximately equal. Wall thickness is a maximum of 1/4".
- 1.1.4. The raschig rings will be uniformly distributed in the vessel and will occupy at least 22% of the volume.
- 1.1.5. Maximum solution concentration is 10 grams U-235/liter.

1.1.6. Deleted

1.2 Inspections

1.3.1 Samples of the raschig rings from the bottom of the vessels or from a selected sample point typical of the vessel contents will be evaluated at least once each year.

Raschig rings shall be replaced when the material is damaged or the Boro content of the glass is reduced to less than 3 w/o as determined by analysis.

1.3.2 Vessels will be checked monthly to insure that the tank contains the required amount of raschig rings and that the material is intact and in a planned location.

*

UNITED NUCLEAR	NO.
	PAGE 2 OF 2
	Approved:
SUBJECT: LICENSE: SNM-777, Docket: 70-820 SECTION: 300 - NUCLEAR CRITICALITY SAFETY	ISSUED October 25, 1968
STANDARDS Subsection: 305 - Nuclear Poisons	SUPERSEDES New

305. Nuclear Poisons (continued)

2.1 Soluble Salts

Soluble boron or cadmium salts may be added to drums of solutions such as pickle liquids, analytical laaboratory residues or other solutions when primary nuclear criticality safety is based on concentration control. Such use shall be as described herein.

2.1.1 Specifications

Maximum solution concentrations are 10 grams U235 per liter. Quantity of salt shall be established to maintain equal molal quantities of U235 and boron or cadmium . (Reference: TID 7016, Rev. 1, page 32, <u>Soluble Poisons</u>)

	Page 1 of 2
UNITED NUCLEAR	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 300 - NUCLEAR CRITICALITY SAFETY STANDARDS Subsection: 306 - Criticality Zones	Supersedes 10/31/68
	Approved
	Amendment No.

306. Criticality Zones

306.1 General

Nuclear Criticality Safety control may be achieved by subdividing the manufacturing or process area into logical work stations or process regions called criticality zones.

306.2 Criticality Zone Specifications

2.1 Boundary

Criticality zone boundaries are established such that SNM within the zone is a minimum of one foot from the SNM in an adjacent zone except when transferring in or out of the zone.

2.2 Zone Control Limits

Nuclear criticality safety control limits within a zone are established as described in Subsection 303.

2.3 Interaction between Zones

Interaction between zones is controlled as described in Subsection 303.

2.4 Type of Criticality Zones

2.4.1 Wet Zones

Wet zones are established when there are no controls against introduction of moderating materials. In general, wet zones are applicable to chemical and ceramic processing, and chemical laboratories, and pickling, rinsing and degreasing operations in fuel element machining and fabrication areas.

2.4.2 Special Zones

Special zones are established when there are specific controls against introduction and/or use of moderating materials. These controls include:

a) Provision for free drainage of the zone or exclusion of liquids, no water lines connected to the equipment, specific limits and controls on the quantity of water or other moderating materials (such as plastics, wood, paper).

*

	Page 2 of 2
UNITED NUCLEAR	Issued 2/6/70
LICENSE: SNM-36 & SNM-777, Docket: 70-36 & 70-820 SECTION: 300 - NUCLEAR CRITICALITY SAFETY	Supersedes 10/31/68
STANDARDS Subsection: 306 - Criticality Zones	Approved
	Amendment No.

2.4.2 Special Zones (continued)

b) The effect of moderating materials permitted is included in the nuclear criticality safety evaluation performed for the activities within the zone.

In general, special zones are applicable to Fuel Element Fabrication Operations and dry box operations in the Chemical and Ceramic process operations.

*Indicates Change

ł

*

	Page 1 of 1
CORPORATION	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 300 - NUCLEAR CRITICALITY SAFETY STANDARDS Subsection: 307 - Marking and Labeling	Supersedes 10/31/68
	Approved
	Amendment No.

307. Marking and Labeling

1. Criticality Limits

Signs listing approved nuclear criticality safety limits shall be posted so that information is readily discernible to employees. This posting may be for individual pieces of equipment or groups of equipment, depending on the nature of the operations covered.

1.1 Signs are prepared and issued by the NIS Representative.

- 1.2 Signs must be posted prior to use of SNM in the equipment or at the work station.
- 1.3 Criticality limit signs are signed in approval by the Nuclear and Industrial Safety Representative and the Production Manager.

2. Process Containers

Empty containers used for SNM shall be identified or marked as empty.

Process containers will have information readily available to allow identification of their contents.

*Indicates Change

-		NO.
UNITED NUCLEAR		PAGE 1 OF 1
· · · · · · · · · · · · · · · · · · ·		Approved :
SUBJECT: SECTION:	LICENSE: SNM-777, Docket: 70-820 300 - NUCLEAR CRITICALITY SAFETY STANDARDS	ISSUED October 31, 1968
Subsection:	308 - Equipment Design	SUPERSEDES

308. Equipment Design

1. Purpose

Certain criteria apply to the all phases of equipment design. These criteria are considered in the design of all equipment used in the processing of SNM.

2. Specifications

2.1 Vessels of unsafe geometry shall be separated by air breaks or other positive method from safe geometry vessels used for SNM bearing solutions to prevent siphoning the SNM bearing solutions into the unsafe geometry vessels.

- 2.2 Catch pans which are located under some of the equipment are for the purpose of controlling any minor leaks or drips. This improves housekeeping, reduces the spread of contamination, and reduces SNM losses. The depth or volume of the pans shall not exceed the safe slab thickness or volume established for the area.
- 2.3 The diameter or volume of overflow and vent bottles shall not exceed the safe diameter or volume established for the process area.
- 2.4 Insulation on pipes and equipment which contain SNM bearing solutions will be made of impervious materials (e.g., foam glass) and provided with weep holes to prevent the possibility of obtaining greater dimensions (volume, diameter, etc.).

	Page 1 of 1
UNITED NUCLEAR.	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 300 - NUCLEAR CRITICALITY SAFETY STANDAR	Supersedes 10/31/68
Subsection: 309 - Tables and Graphs Subpart:	Approved
	Amendment No.

* 309. Tables and Graphs

1. Purpose

The tables and graphs of this Subsection 309 are used in the nuclear criticality safety evaluation as described in Subsection 303.

2. Safety Factors

As used on the curves of this Subsection, the safety factor is the ratio of the safe unit to the critical unit.

In establishing a particular safety factor, consideration must be given to:

- a) Accuracy of the data used to establish the critical unit.
- b) Operating controls applicable, i.e., degree of administrative control required versus geometry control. In general, a larger safety factor is required when safety is primarily dependent on administrative controls as in the case of mass or batch control.

The safety factors applicable to the safe standards of this Subsection are the same as those in common use in the industry (reference TID-7016, Rev. 1). The critical data from which the standard safe data is developed has been reviewed and determined to be sufficiently accurate as not to warrant a further increase.

*Indicates Change

Safe Limits for Individual Units as Metal, Compound and Solution Systems

		Safe Uranium Limit	·s*
Safe Control Parameter	Metal Systems	Compound Systems	Solution Systems
Mass			الم
Cylinder Diameter			
Cross Sectional Area			
Volume	• ·		
Slab Thickness			
		- E.I	
*Applicable to:		Ex.	4
 Any U-235 enrichmer Full water reflection 			
 b) Smallest indivines c) Densities up to 2. For compounds, a) Total U density than that of UO b) Bulk density up 3. For solutions, a) Total U density 	be Maintained: aces with no re-entr dual piece is 4 kg and including full vs. H/U ratio is n 2 as per Figure 309 to and including 4 vs. H/U ratio is n 2^{F}_{2} as per Figure 3	U. density. ot greater -XXIV. kg U/liter. ot greater	•
Source of Data:	1 / TTD 7016 Dem	1	
· · · · · · · · · · · · · · · · · · ·	1-4, TID-7016, Rev ures 309-XXV thru		NM-33 NM-777 DOCKET: 70-820
XXVIII and Nucl 4.8 liter spher	ear Safety Evaluation	on, SECTION: 3	
	ures 1-4, TID-7016,	Rev.1. Table 309-	I, Safe Limits for and Solution Systems
	· · · · · · · · · · · · · · · · · · ·	Page 1	of 1
			/6/70
	· · · · ·	SUPERSEDES :	
		APPROVED:	

- I. DESCRIPTION
 - As The maximum sized container for U compound hand ling well storage will be 408 lifens
 - B. The maximum density (bulk) of material to be placed in these container will not exceed 4 Kg 4/liter.

II, ASSUMPTIONS

- A. The maximum "caystal" density of material to be placed in these containers will not exceed that of HO2 (9.66 Kg U /liter). B. The HO2 - Water data of LA - 3612 is applicable.
- L. The culculational method set forth in Section 2.2, NOEO-1050, will be used to determine reflector savings (5) met keff values.
- D. The density VS. H/4 natio relationship will be per Fig. 309-XXIV.

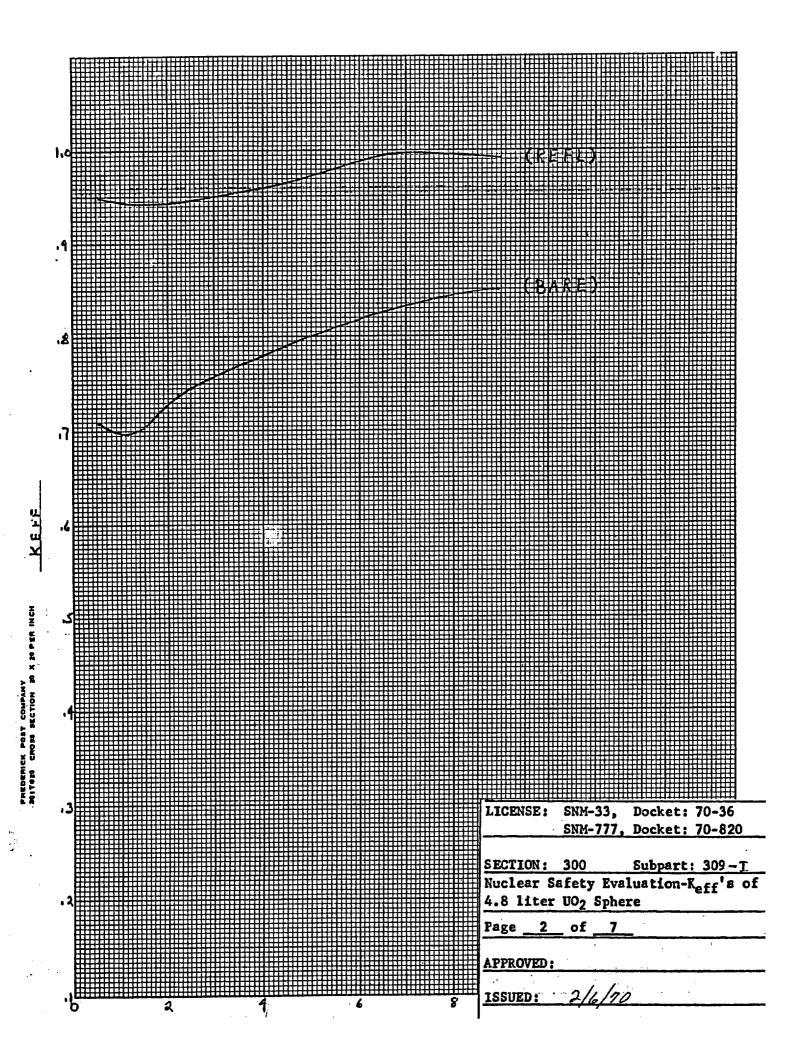
I. CALCULATIONS

See attached tables

CONCLUSIONS

:

This volume is sub chitical when moderated and Reflected for motorials with densities not exceeding 4 Kg U/liter, The keff values at a density of 4 Kg U/liter are;


Ex. 4

keff(he flected)=

Keff (bune) =

1.

LICENSE! SNM-33, DOCKET : 70.36
LICENSE: SNM-777, DOCKET: 70-82
SECTION: 300, SUB PART: 309-
NUCLEAR SAFETY EVALUATION-
KEFF'S OF 48 LITES NO SPHE
PAGE) OF 7
APPROVED
155 HED 2/6/70

-

5 pgs w/k enerety

•

Ex. 4

Safe Limits for Individual Units of Metal and Compounds

	of Moders Than	ation H/ Not Mor			Limits* <u>U-235</u>)	Keff <u>Reflected</u>	Keff <u>Bare</u>	í	
	,	ng the Constant of Long to the Constant		· .		****			
				· .					_
ł		·							Ex II
			·						7
						,			

*Applicable to:

- 1. Any U-235 enrichment.
- 2. Full water reflection.

*Specific Conditions to be Maintained:

- 1. Interspersed moderation does not exceed listed H/U atom ratio.
- 2. Total U density vs. H/U atom ratio is not greater than that of metal or compound per Figure 309-XXIV.

Source of Data:

- TID-7016, Rev. 1., Table IV (modified)
 Nuclear Safety Evaluation, Table 309-II.

SNM-33 70-36
LICENSE: SNM-777 DOCKET: 70-820
SECTION: 300 SUBPART: 309
Table 309-II, Maximum Size of Individual Units
Page <u>1</u> of <u>1</u>
ISSUED: 2/6/70
SUPERSEDES: 10/31/68
APPROVED: AMENDMENT NO.:

7pgs w/k enlinety Ex.4

LIMITS FOR WET ZONES

	CONTROL	PARAMETER	
--	---------	-----------	--

Safe Linear Density*

Safe Mass

Ex.4		÷
	•	•

LIMIT

т тита

LIMITS FOR DRY ZONES

Ex.4

CONTROL PARAMETER

Safe Mass

Safe Linear Density*

*NOTE: The safe linear density limits will be maintained irrespective of the arrangement of fuel pieces.

Applicable to:

11

1. Fuel fabrication operations for purpose of establishing safe piece count.

2. Any U-235 enrichment.

3. Full water reflection.

4. Wet zone limits for:

Uranium solutions; alloys of U-A1& U-SS, up to 50 weight % U-235; and U-Zr up to 25 weight % U-235.

5. Dry zone limits for:

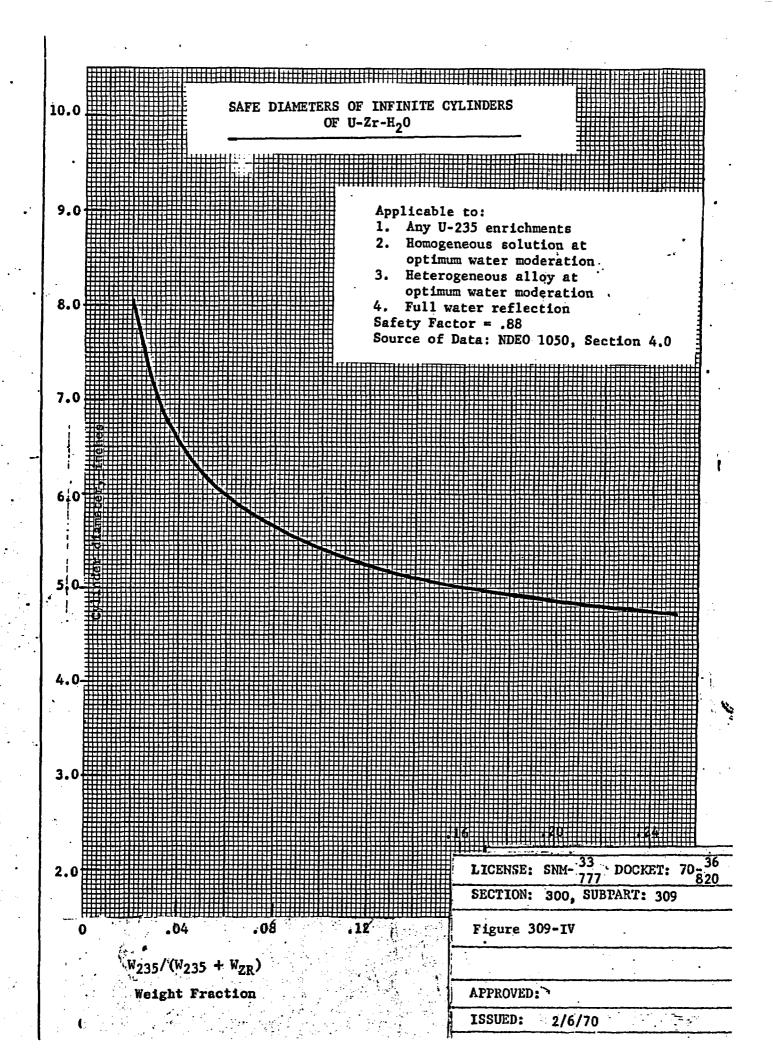
Alloys of: U-Al and U-SS up to 50 weight % U-235, U-Zr up to 25 weight % U-235.

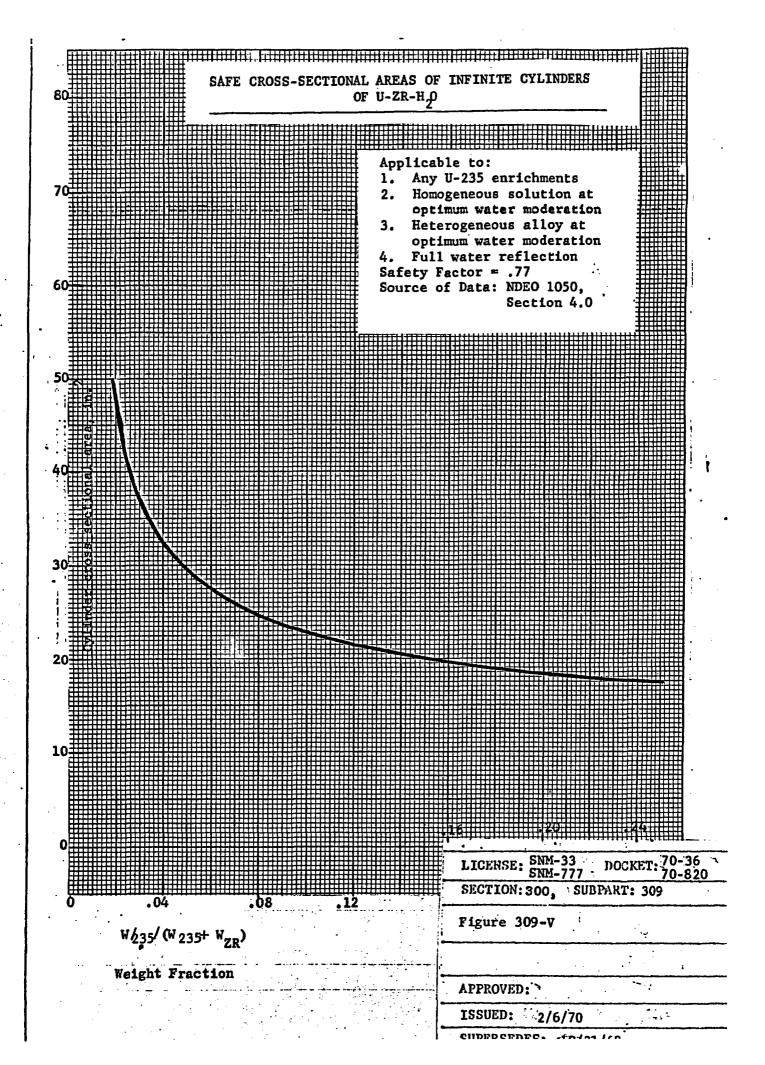
Specific conditions to be maintained:

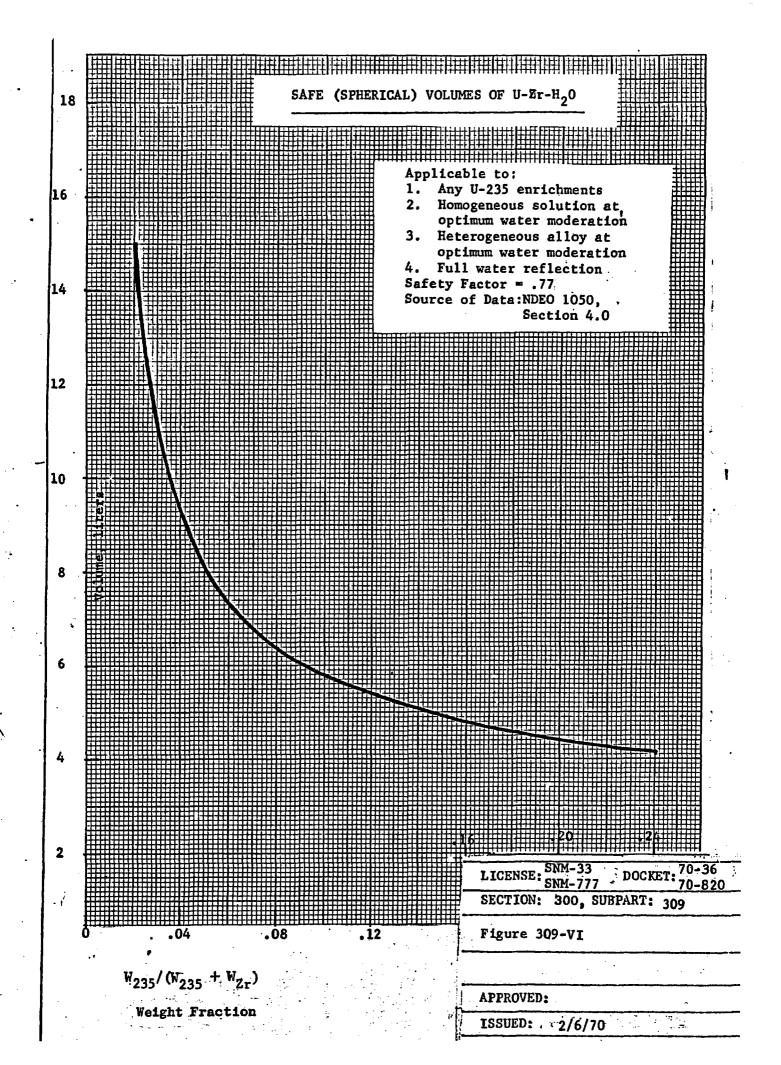
1. Wet and dry zone controls specified in Subsection 306.2.4.1.

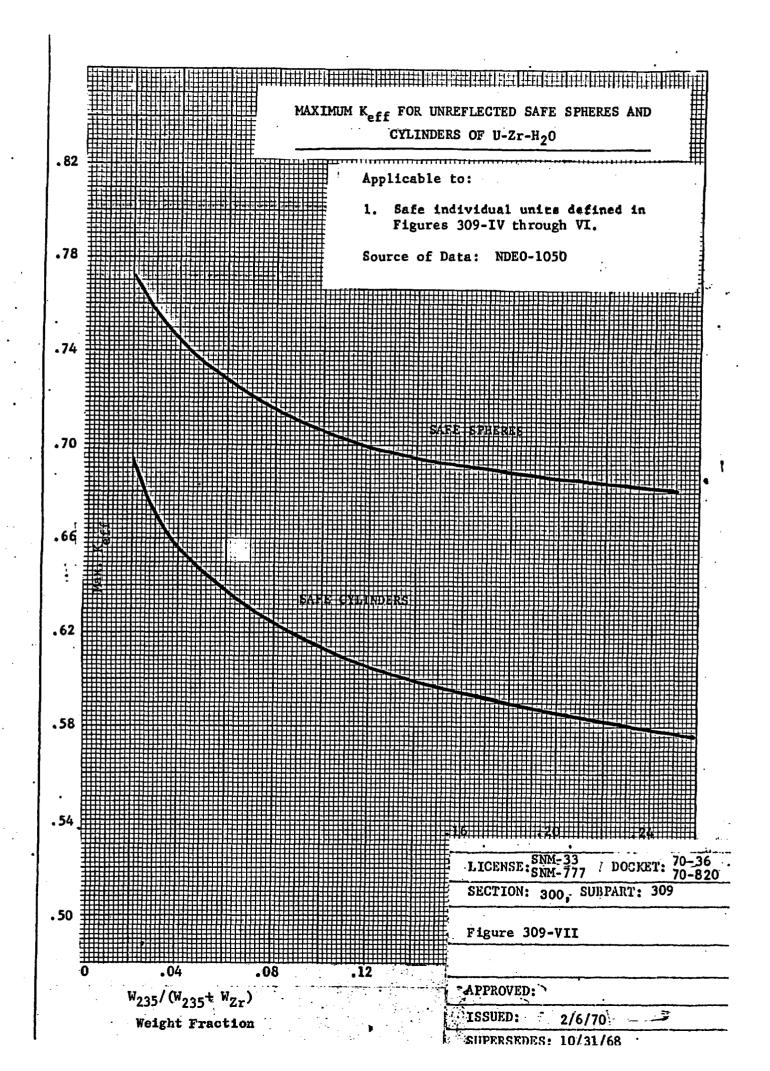
Source of Data:

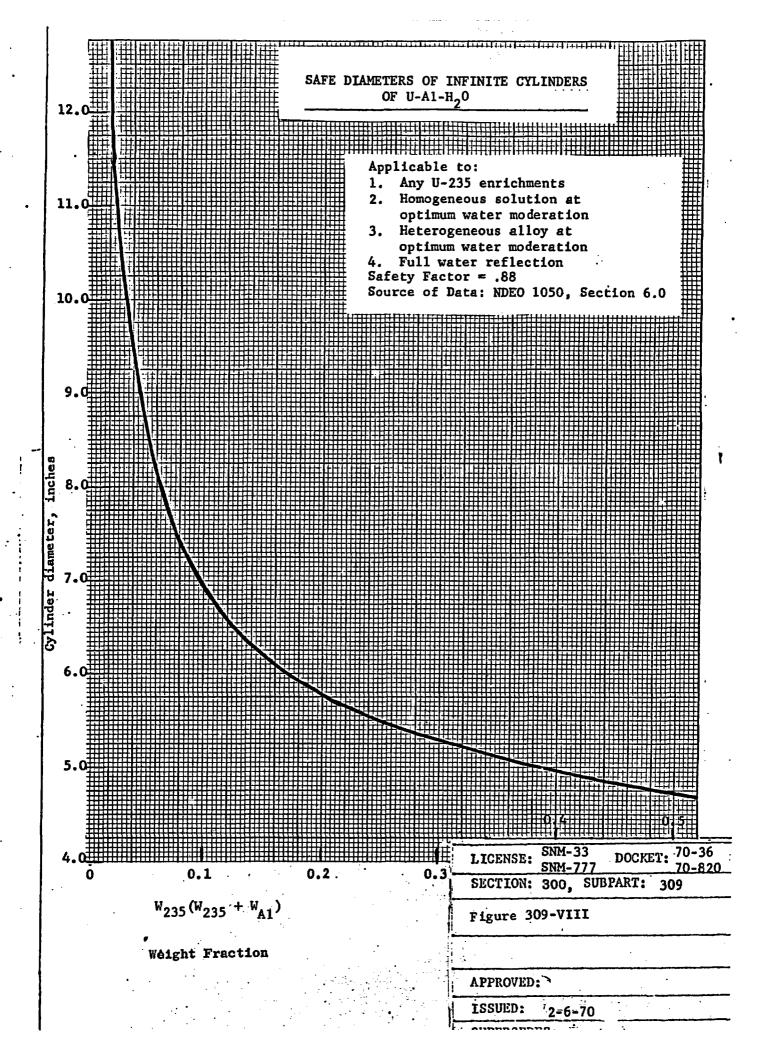
- 1. Wet Zone Safe Mass for Table 309-I Safe Linear Density NDE0-1050.
- 2. Dry Zone Twice wet zone limits.

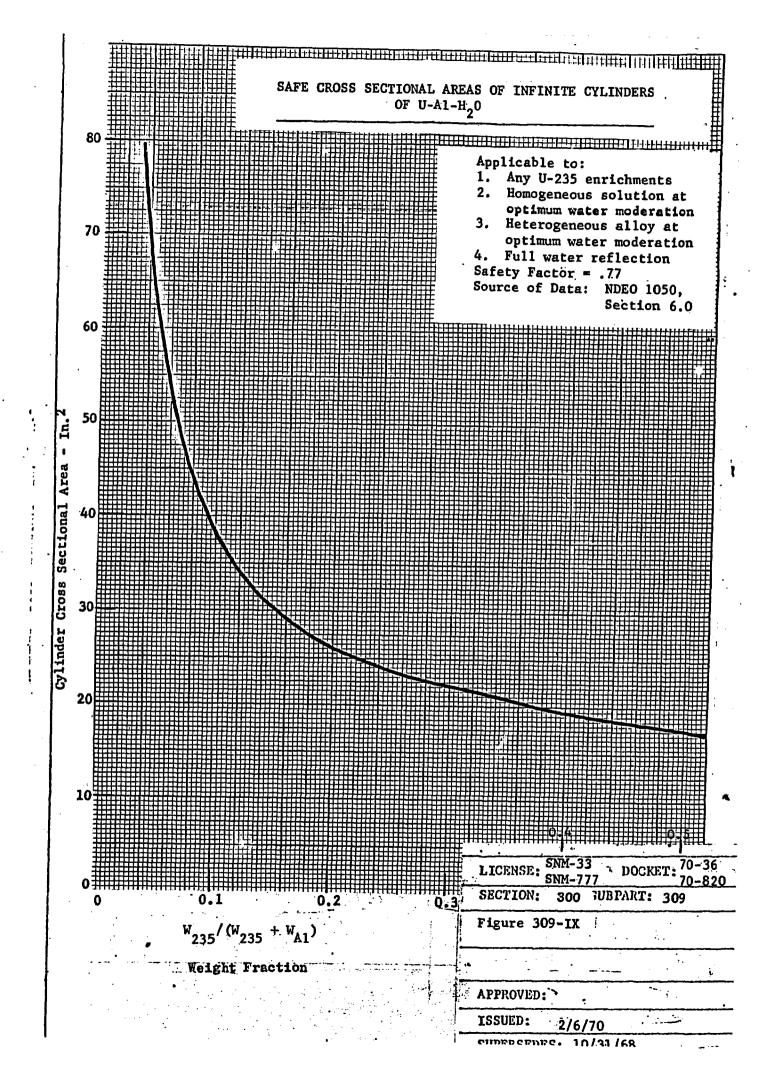

SNM-33 LICENSE: SNM-777 DOCKET: 70-820
SECTION: 300 SUBPART: 309
Table III, Special Limits

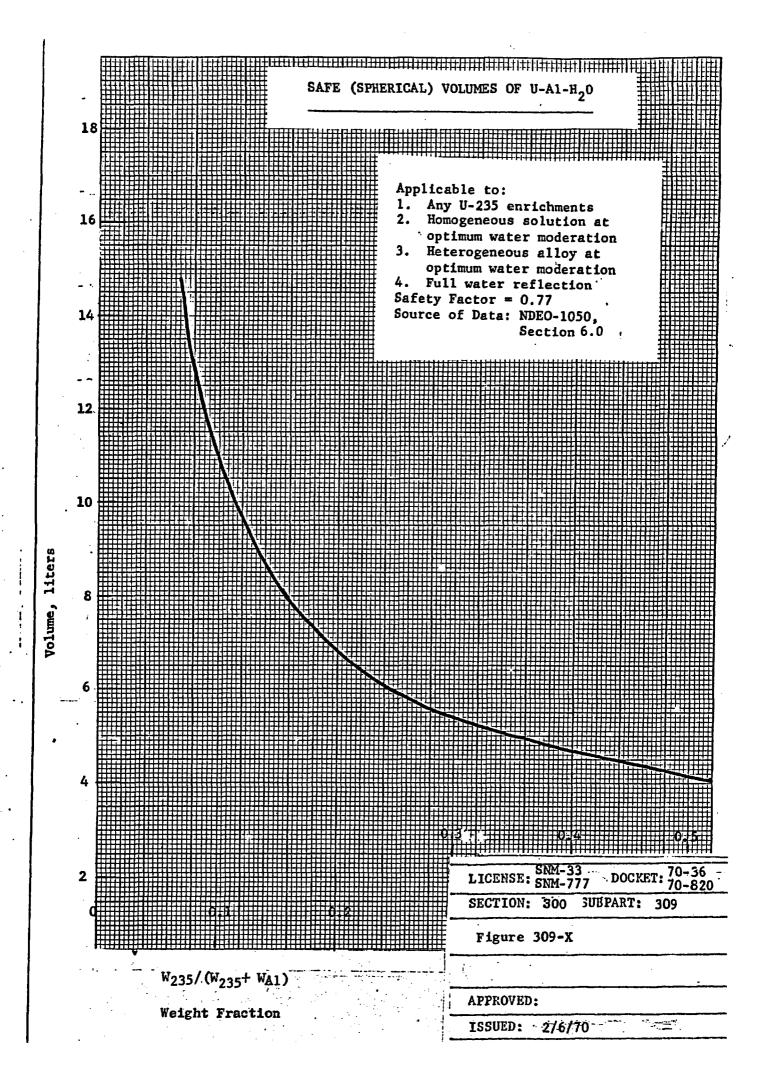

Page 1 of 1

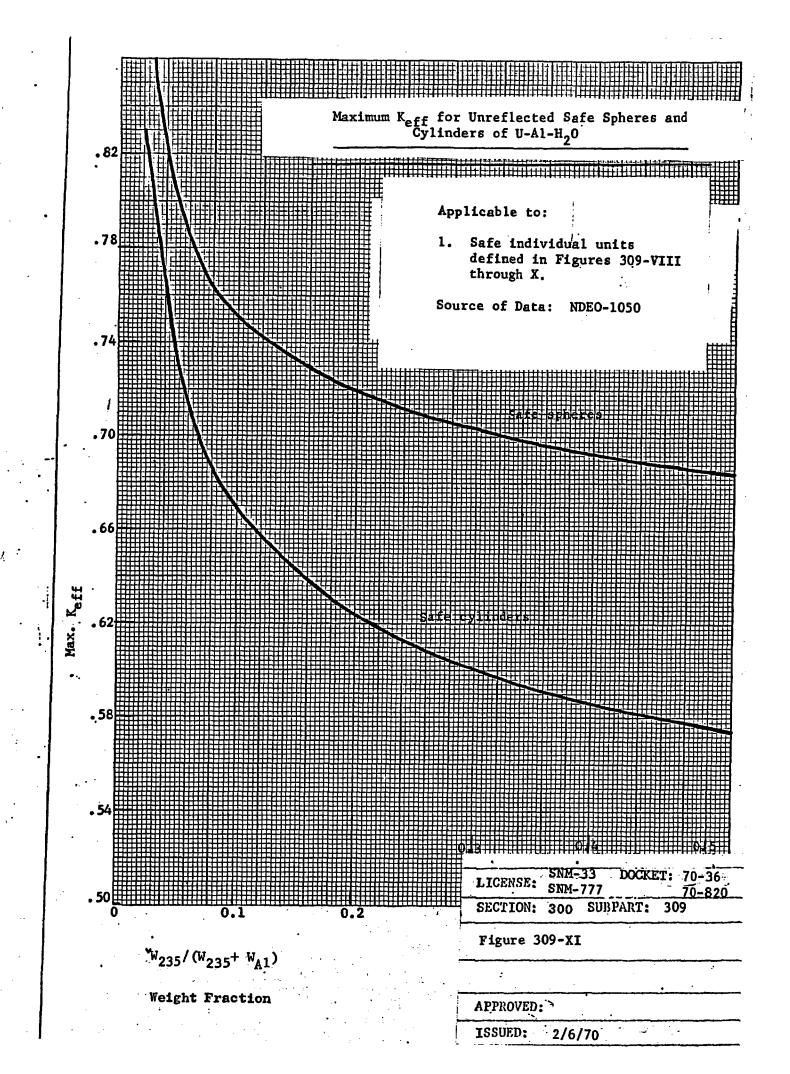

ISSUED: 2/6/70

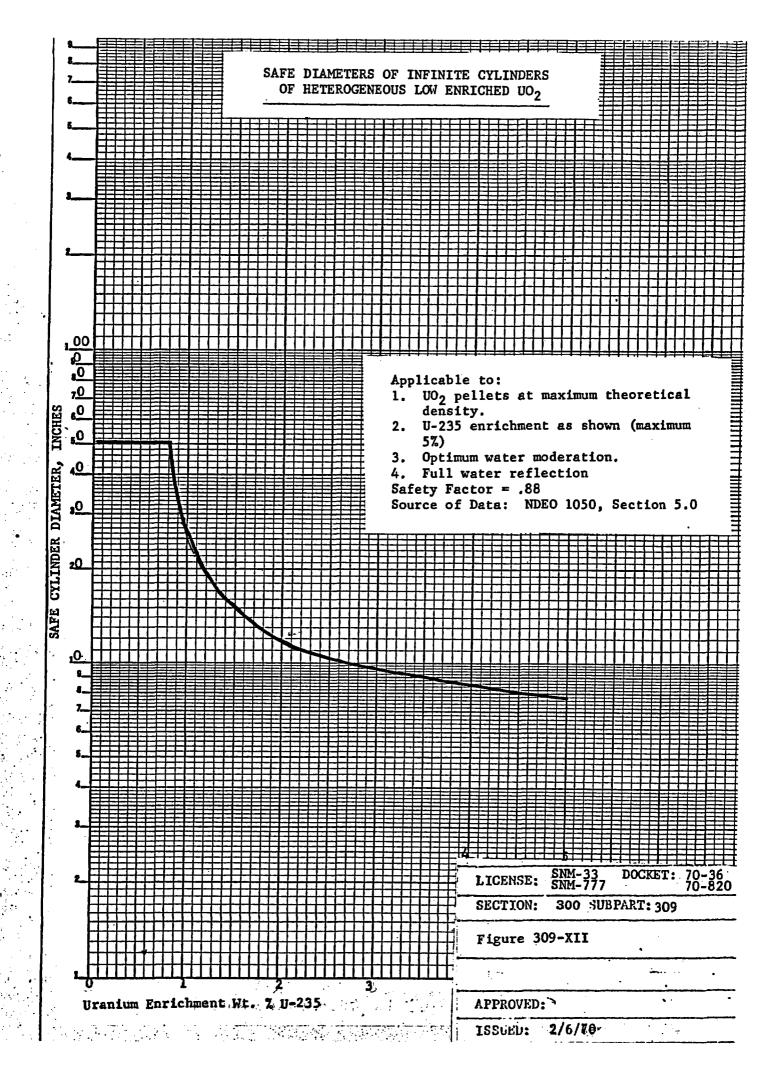

SUPERSEDES: 10/31/68

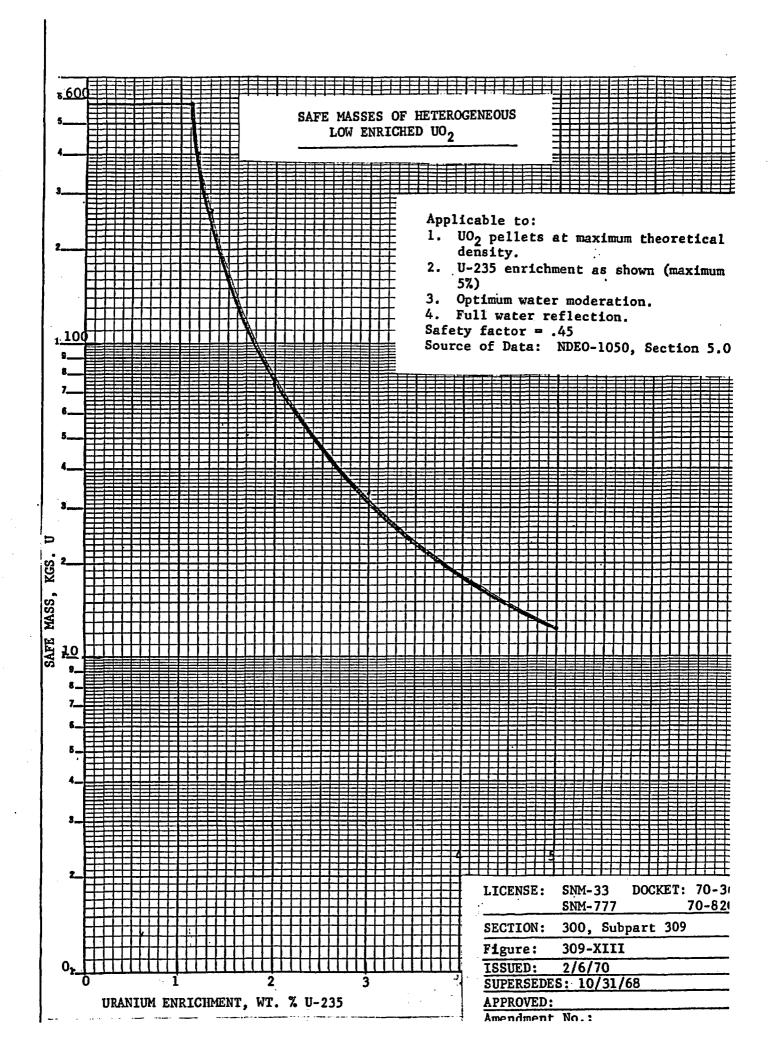

APPROVED: AMENDMENT NO.:

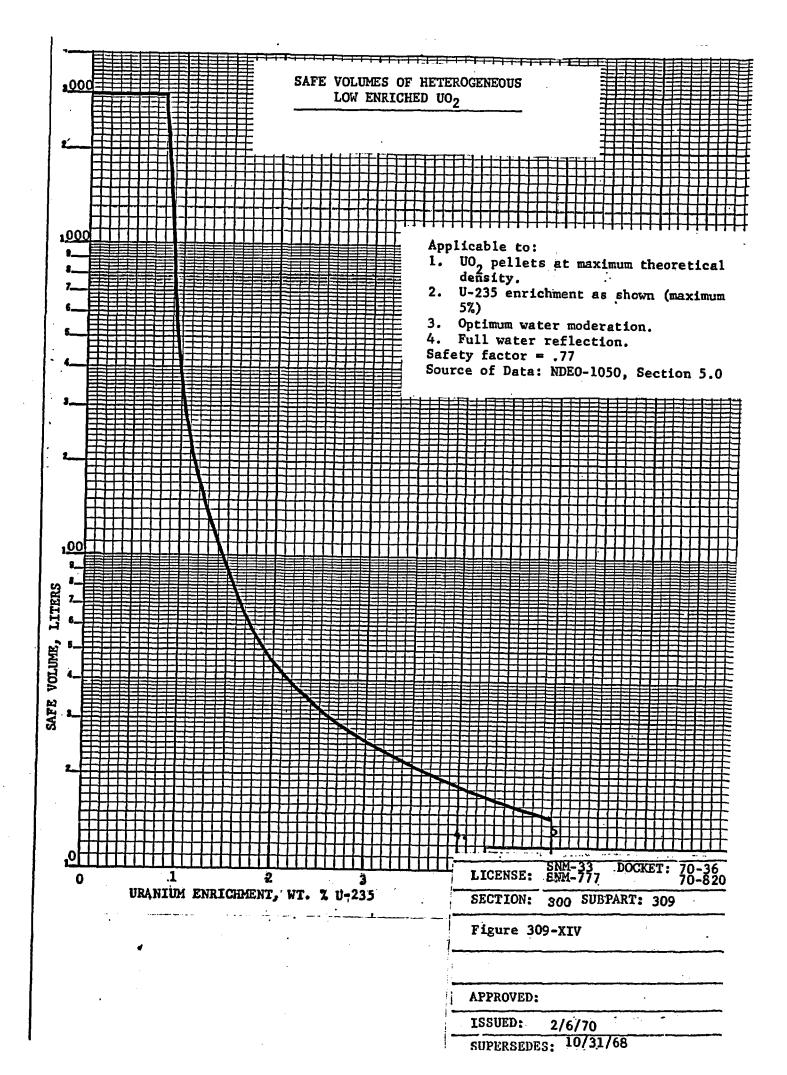


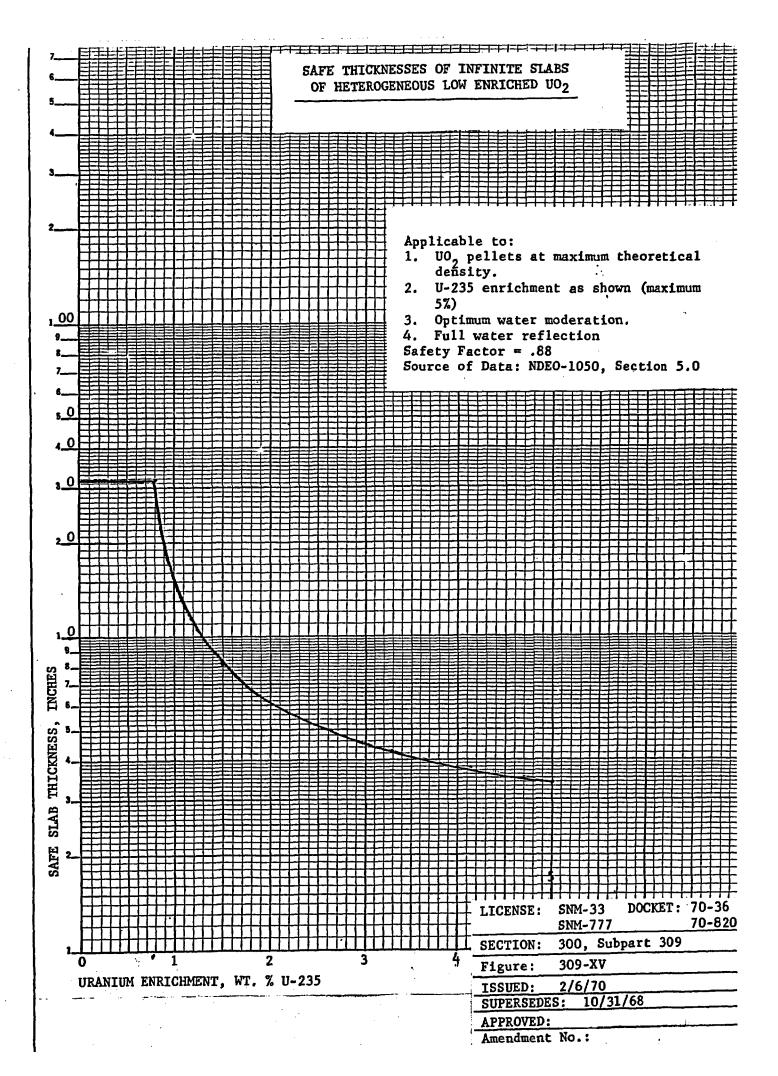


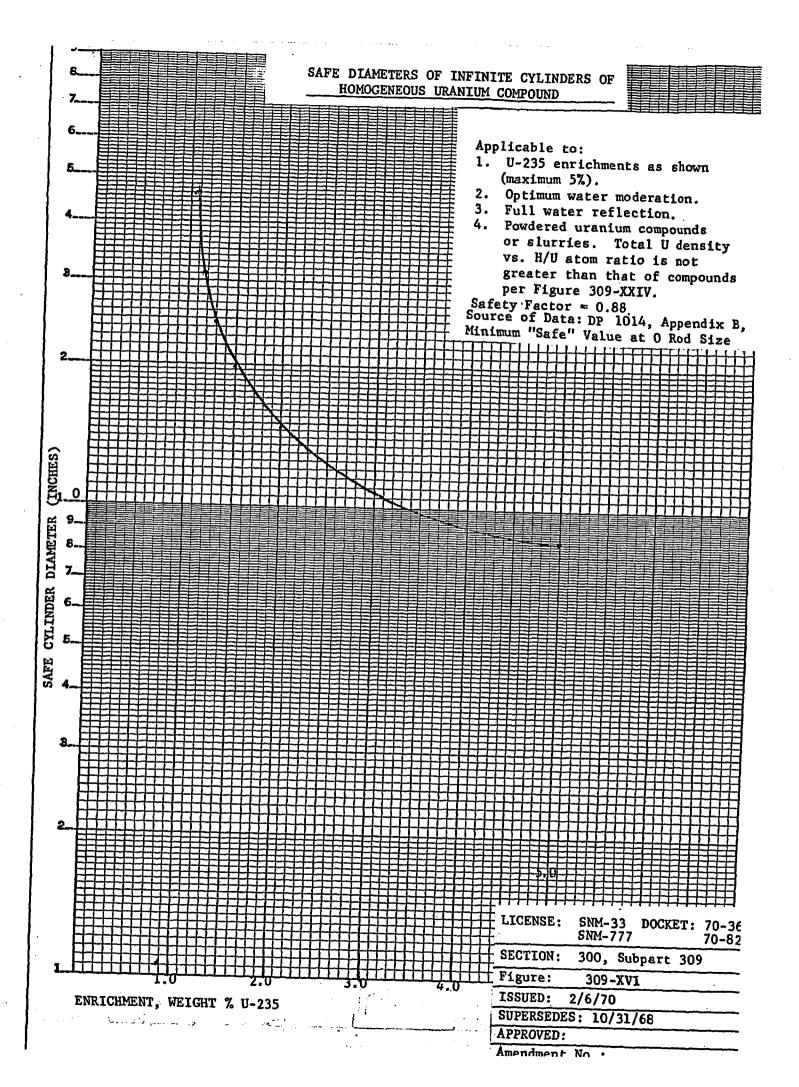


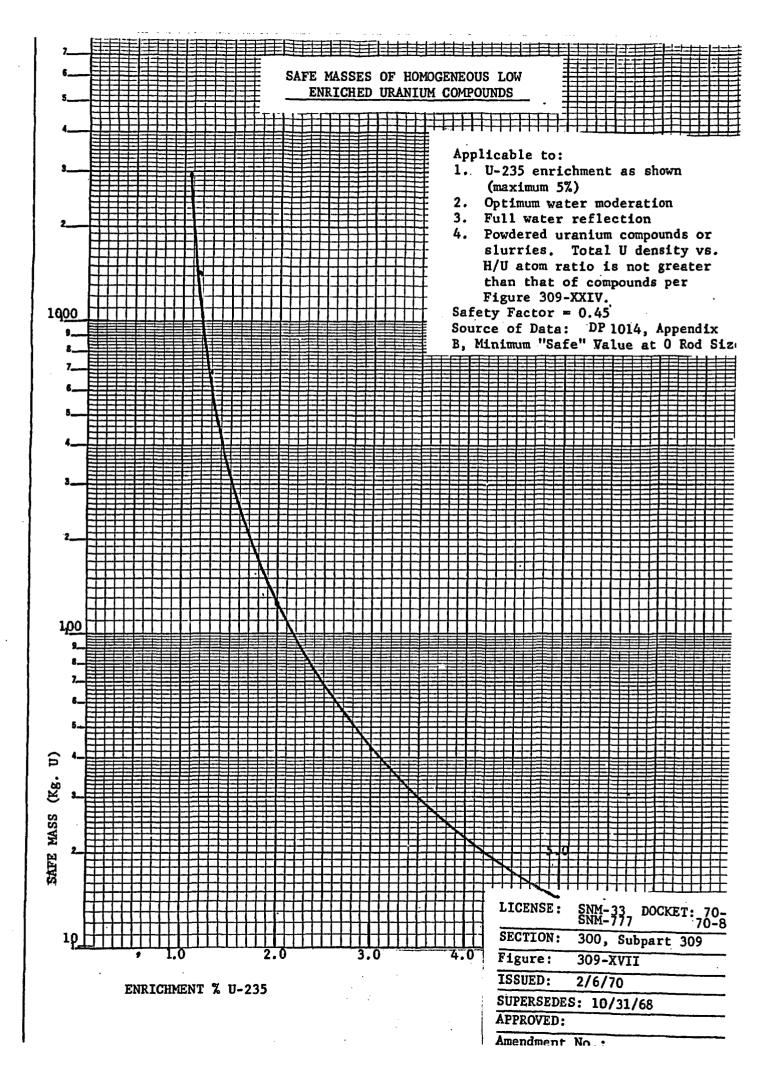


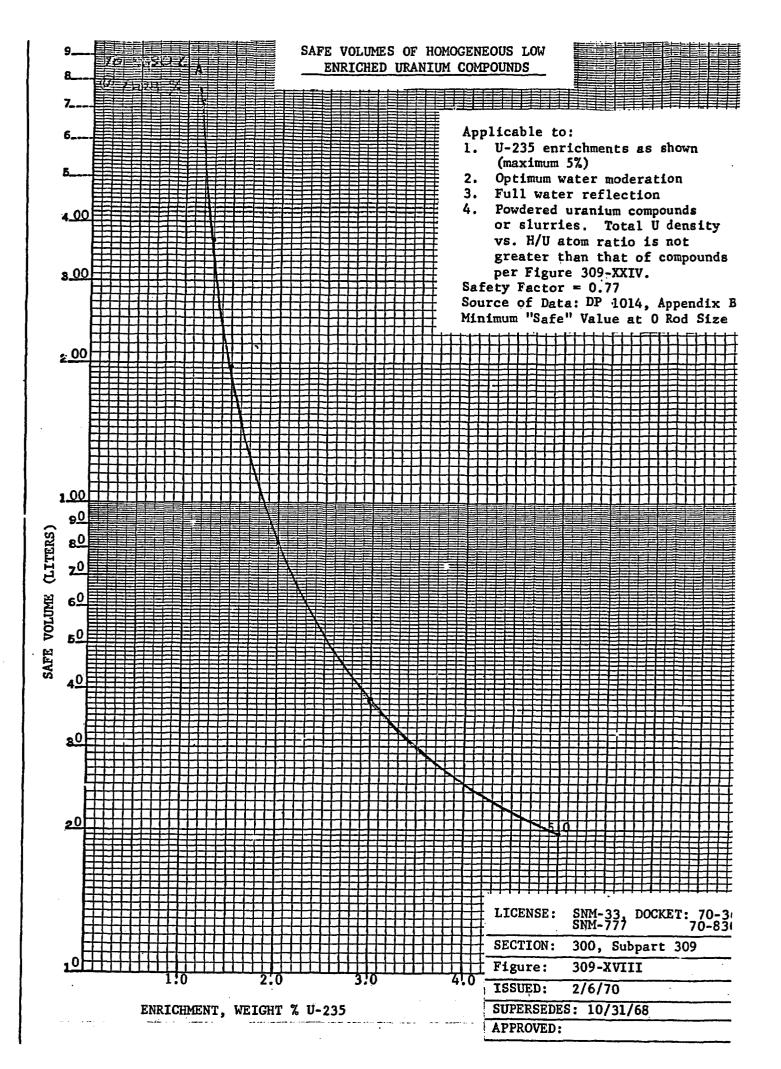


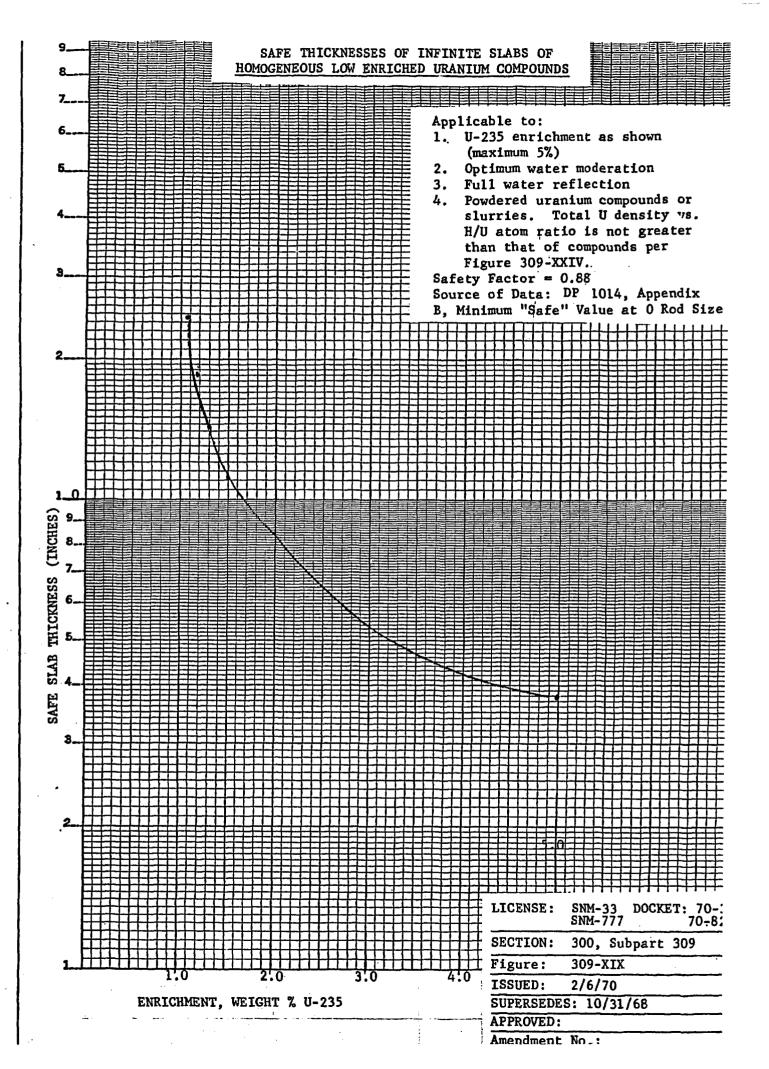


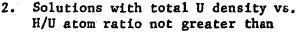






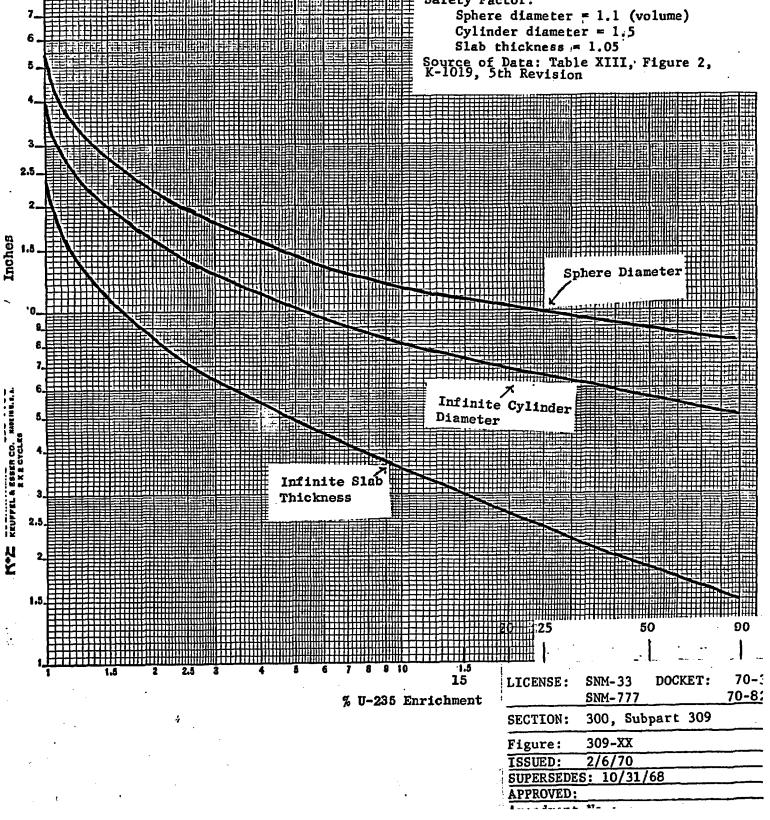


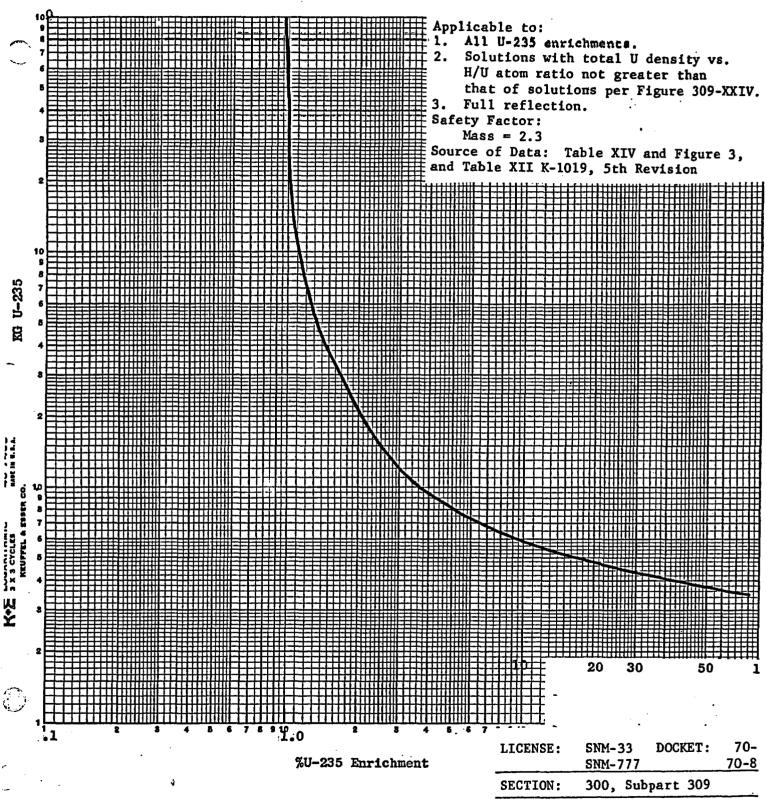



SAFE GEOMETRIC VARIABLES

FOR SPECIFIED U-235 ENRICHMENTS

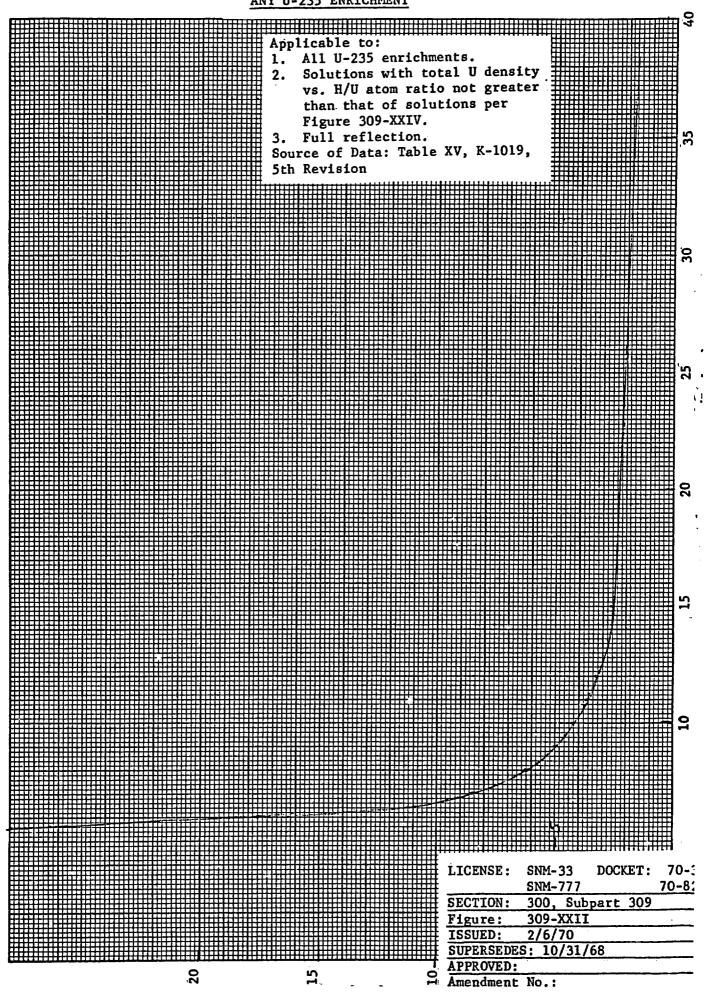
100


Applicable to:

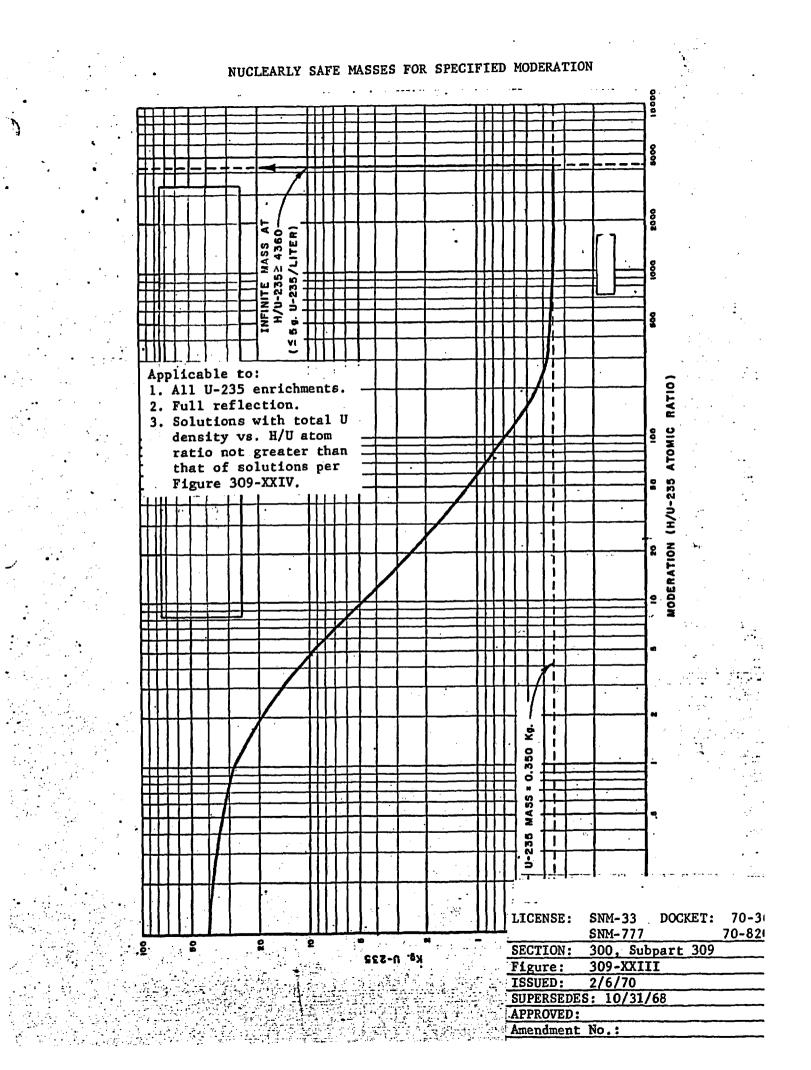


- that of solutions per Figure 309-XXIV.
- 3. Full reflection.

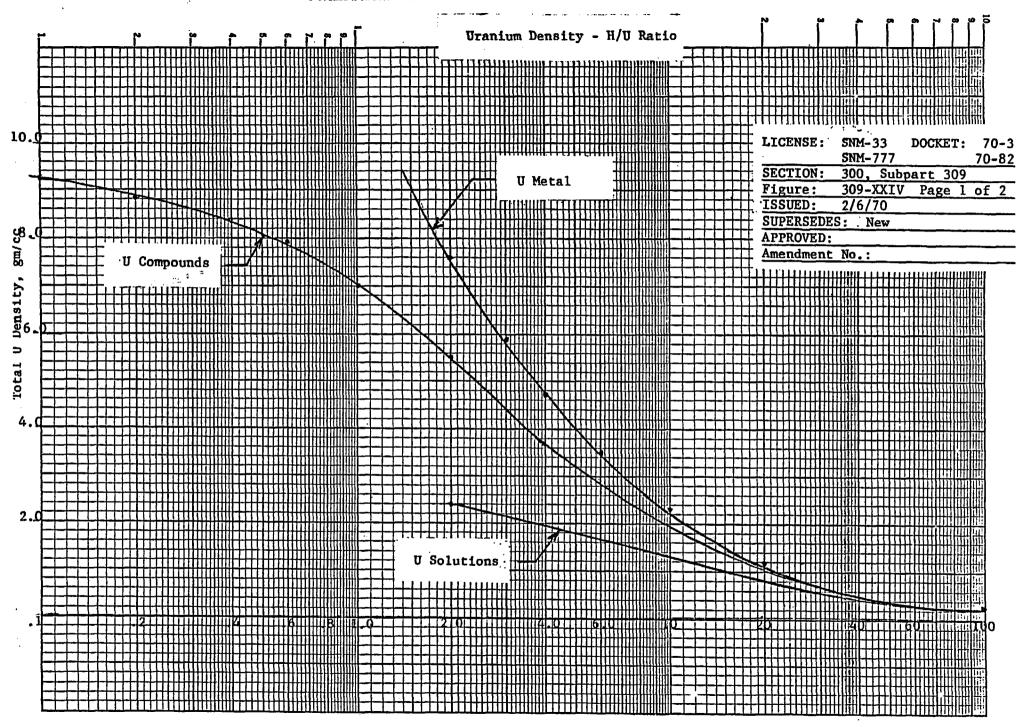
Safety Factor:

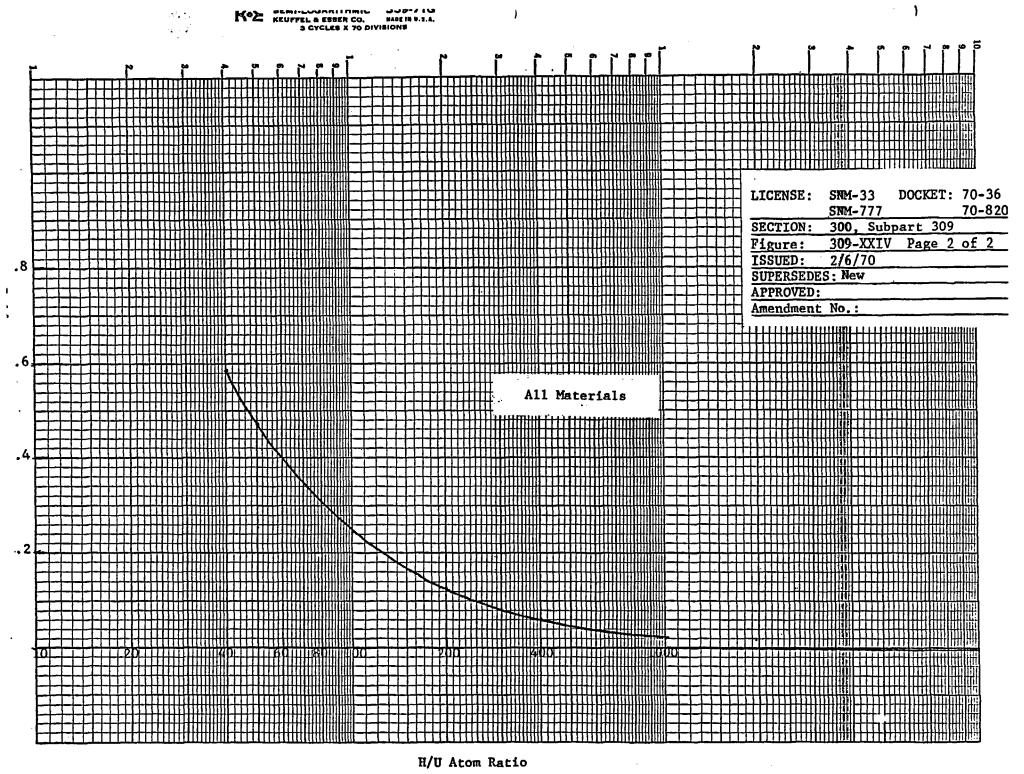


SPECIFIED U-235 ENRICHMENT



SECTION:	300, Subpart 309
Figure:	309-XXI
ISSUED:	2/6/70
SUPERSEDES	5: 10/31/68
APPROVED:	:
Amendment	No.:


ANY U-235 ENRICHMENT


K+C 10 A 10 TU VA INCH 40 1323 X T X 10 INCHES MIN N.E.A.

H/U Atom Ratio

H/U Atom Ratio

Uranium Density vs. H/U Ratio

I. General

Nuclear criticality safety parameters are a function of uranium density and the degree of moderation of neutrons within the uranium system. Unless specifically stated otherwise, hydrogen in water is the most efficient moderator for which nuclear safety parameters have been established. The degree of moderation is measured by the ratio of the hydrogen to uranium atoms $\binom{H}{U}$ of the system considered. Generally throughout the literature, the U-235 isotope is used as the reference for defining the density and moderation effects; however individual publications are usually confined to one enrichment level and use of U-235 as the reference is convenient. At the Commercial Products Division plants, uranium of all enrichments is processed. To standardize nuclear safety parameters, it is more convenient to work in terms of total uranium as it applies to density and degree of moderation; therefore, unless specifically stated otherwise, total uranium will be used in all discussions and data involved in the relationship between density and H/U ratio.

II. Material Types

The types of material processed at Commercial Products Division facilities falls into four physical categories:

Solutions U Metal and compound water mixtures U Metal U alloys with aluminum, zirconium and stainless steel

The relationship of uranium density and H/U ratio for water mixtures of metal and compounds and solution is shown on Figure 1. Based on this figure, there are three standard curves for uranium density and H/U ratio. These are for:

Uranium Metal Uranium Compounds Uranium Solutions

A. Uranium Compounds

The density vs. H/U relationship of UO_2 is the maximum for uranium compounds processed by CPD.

LICENSE: SNM-777 Docket 70-820 SNM-33, Docket 70-36
SECTION: 300, Figure 309-XXIV
Nuclear Safety Evaluation, Density vs. H/U Ratio
Page 1 of 4
APPROVED:
ISSUED: 2/6/70
SUPERSEDES: New

Uranium Compounds (continued)

Water mixtures of uranium compounds are subject to the most variation of the density and H/U relationship which is caused by the variation of the maximum theoretical density of the individual compounds and weight fraction \times of uranium in the compound. The typical compounds processed by CPD are UO₂, U₃O₈, UF₄, UO₂F₂, UO₄, and ADU (ammonium diuranate). Of these UO₂ has the maximum density for a given H/U level. This is illustrated on Figure 1 and Table 1. For purposes of establishing standard nuclear criticality safety parameters for compounds, the total uranium density vs. H/U relationship for UO₂ is established as the upper limit for which such standards are applicable.

The maximum theoretical density has been used to develop the data of Table 1 and Figure 1. These maximum densities can be achieved only by special ceramic processing such as the process of making UO₂ pellets from UO₂ powder. These densities are not possible from the chemical process of converting UF₆ to UO₂ or recovery of uranium from scrap and residues; these processes result in a UO₂ powder having a maximum bulk density of 4 kg U/liter corresponding to an H/U of 4. Accordingly, standards for compounds in homogeneous form are applicable to this level. Standards for compounds having bulk densities in excess of 4 kg U/liter are applicable to densities up to the theoretical maximum.

Experiments to determine effect on density when water is added to dry UO_2 powder were unsuccessful. The water would not "wet" the powder without special agitation causing a reduction of the density.

This is typical of plant applications. The oxide does not achieve the upper density levels except when it has been dried. The maximum density limit is just that, i.e., dry powder introduced into a wet process is either added to the liquid in incremental quantities (which action reduces its density) or the liquid is added to the powder (which action requires mechanical mixing) also reducing the density.

B. Uranium Solutions

The density vs. H/U relationship for UO_2F_2 solutions is the maximum for uranium solutions processed at CPD.

Historically, UO_2F_2 solutions have been used in experimental measurements of SNM-33 70-36 critical parameters because it permitted the LICENSE: SNM-777 DOCKET: 70-820 highest concentration and lowest non-fissioning absorption cross section of solutions generally SECTION: 300, Figure 309-XXIV processed. A review of solutions processed at Nuclear Safety Evaluation, CPD confirms this; the most typical solution Density vs. H/U Ratio being uranyl nitrate. These data are also illustrated in Figure 1 and Table 1. 4 2 Page of For purposes of establishing standard nuclear criticality safety parameters for solutions the 2/6/70 ISSUED: density vs. H/U relationship of UO2F2 solutions New SUPERSEDES: is established as the upper limits for which the standards will be applicable. **APPROVED:** AMENDMENT NO.:

C. Uranium Metal

The relationship of metal density versus H/U shown on Figure 1 is that obtained from Table 1, TID 7028. This is the maximum possible density for any form of uranium. Safe parameter standards for uranium metal are based on this relationship.

D. Alloys

The effect of the relationship of uranium density to H/U ratio for alloys has been included in the special calculations (NDEO 1050) performed for the alloys. Safe parameters are reported as a function of the U-235 content of the alloy.

III. Development of the Density vs. H/U Ratio

A. Compounds and Water Mixtures

The relationship for uranium compounds and water mixture is based on the maximum theoretical density of the compound and the volume additive mixtures of the compound with water. Specifically H/U ratios were calculated from the formula:

The data plotted on Figure 1 and calculated by the above formula is tabulated on Table 1.

B. Metal Water Mixtures

The relationship for uranium metal and water mixtures has been obtained from the data of Figures 1 through 4, TID-7016, Rev. 1.

SNM-33, Docket 70-36
LICENSE: SNM-777, Docket 70-820
SECTION: 300, Figure 309-XXIV
Nuclear Safety Evaluation,
Density vs. H/U Ratio
Page 3 of 4
APPROVED:
ISSUED: 2/6/70
SUPERSEDES: New

C. Solutions

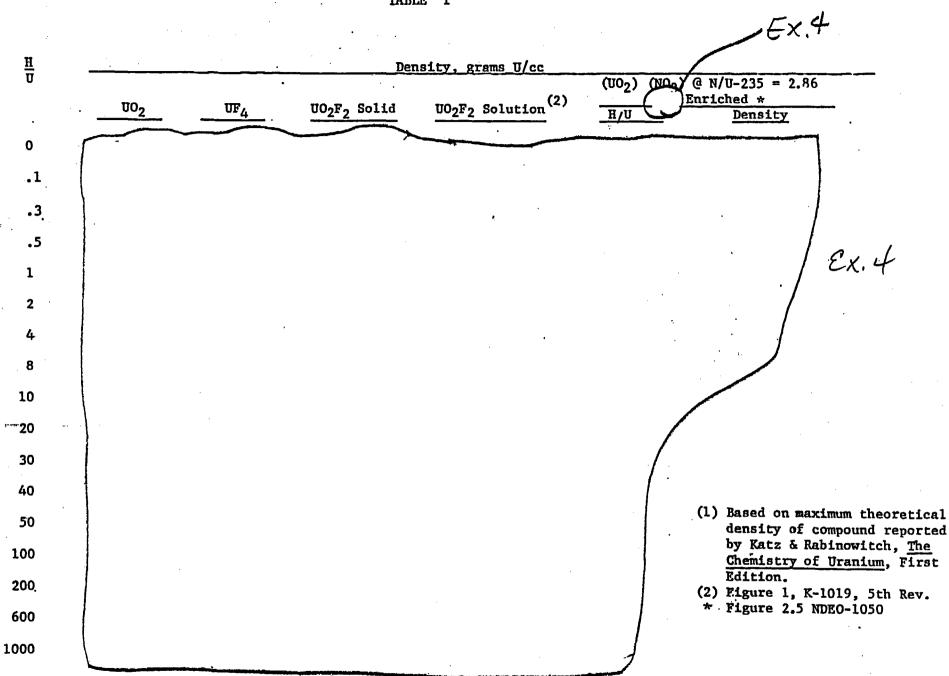
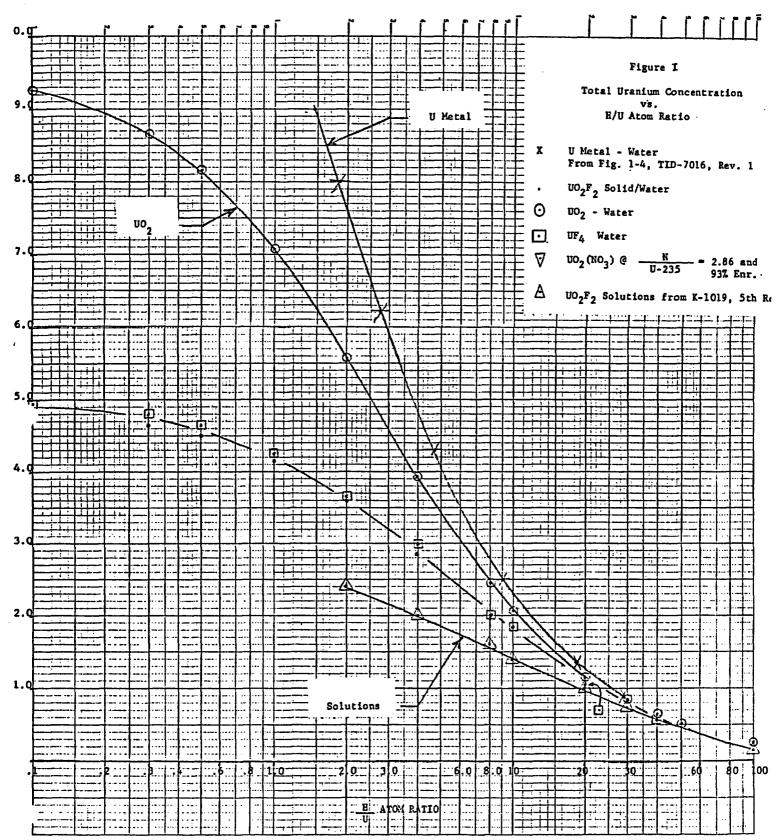
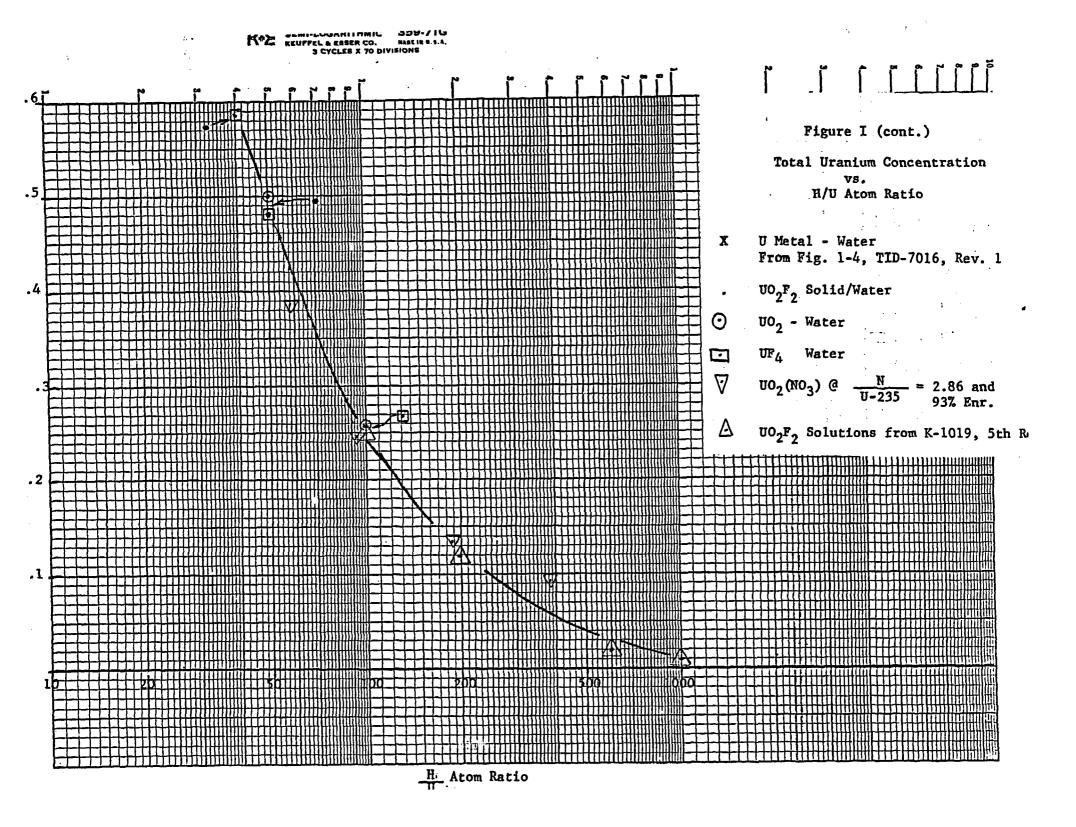
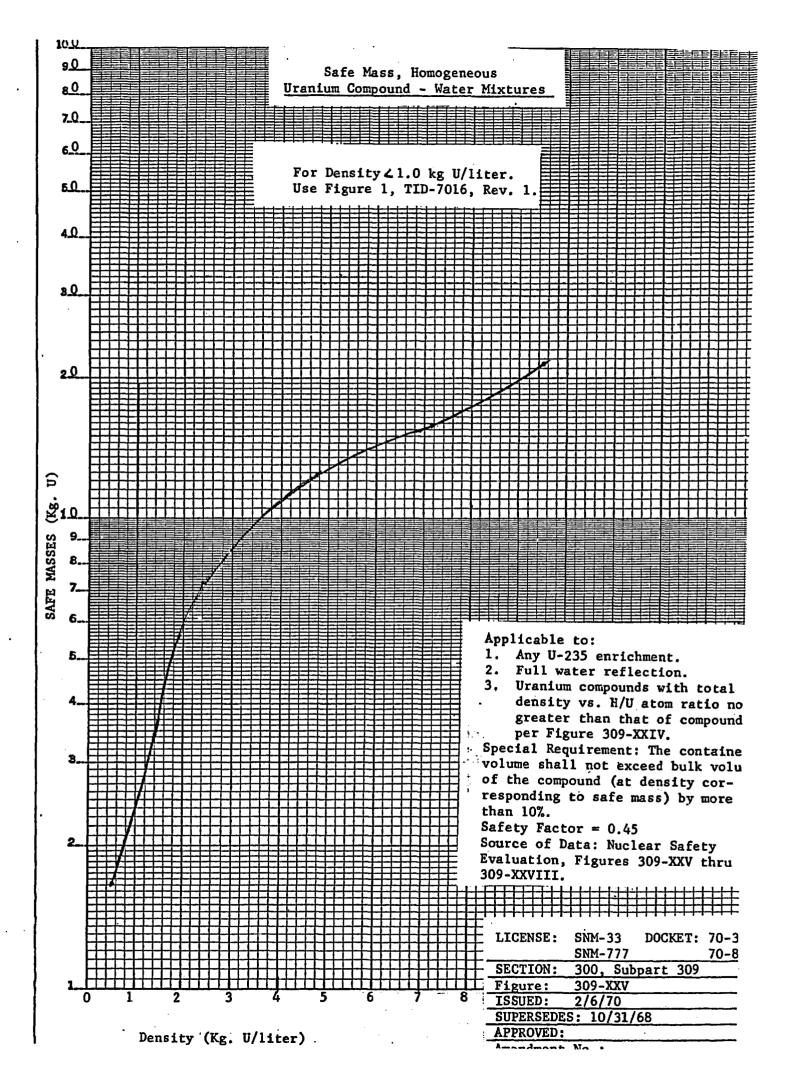
The data for solutions has been obtained from Figure 1, K-1019, 5th Revision.

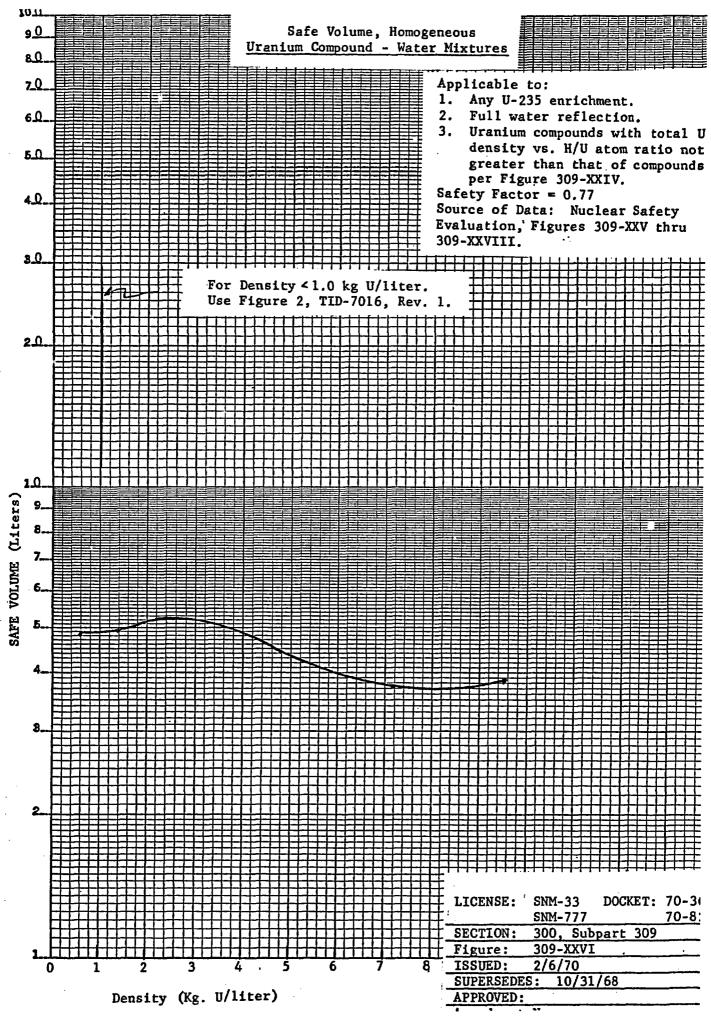
In examining Figure 1 it can be seen that all of the curves converge into a single curve at an H/U ratio of approximately 20 and a density of approximately 1. This single curve follows that of the solution curve for H/U ratios in excess of 20. Unless specifically stated otherwise, safe parameters for all systems with H/U ratios greater than 20 will therefore follow those of solutions.

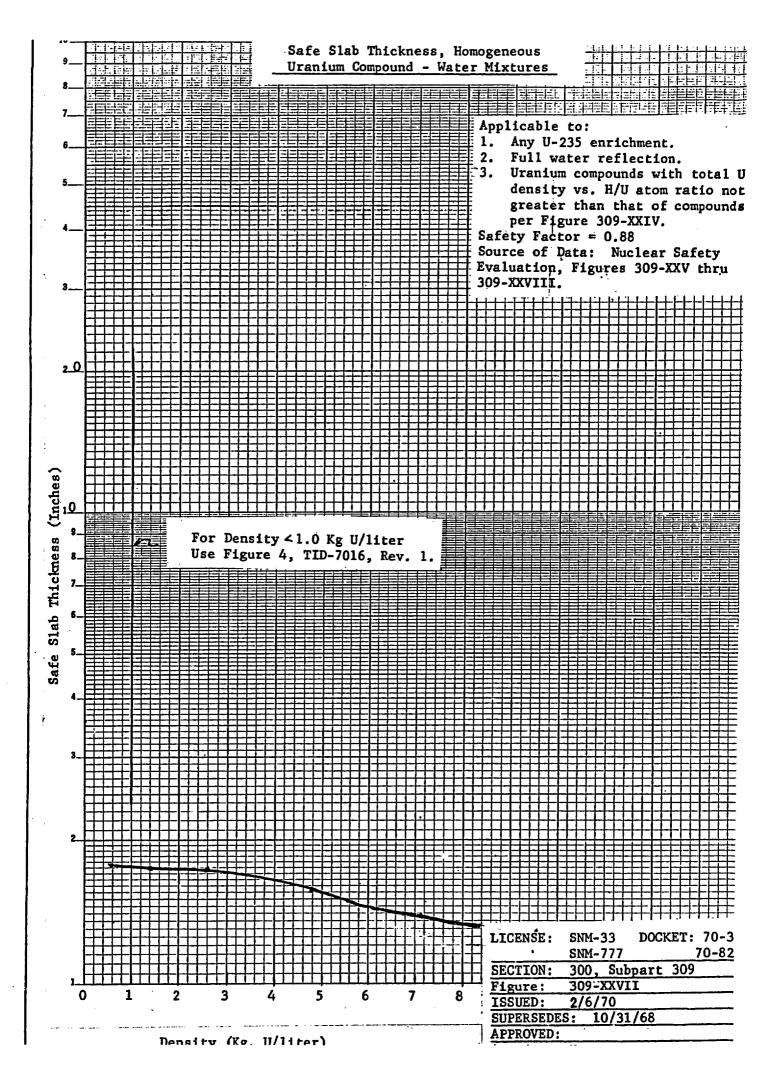
SNM-33, Docket 70-36
LICENSE: SNM-777, Docket 70-820
SECTION: 300, Figure 309-XXIV
Nuclear Safety Evaluation,
Density vs. H/U Ratio
Page 4 of 4
APPROVED:
ISSUED: 2/6/70

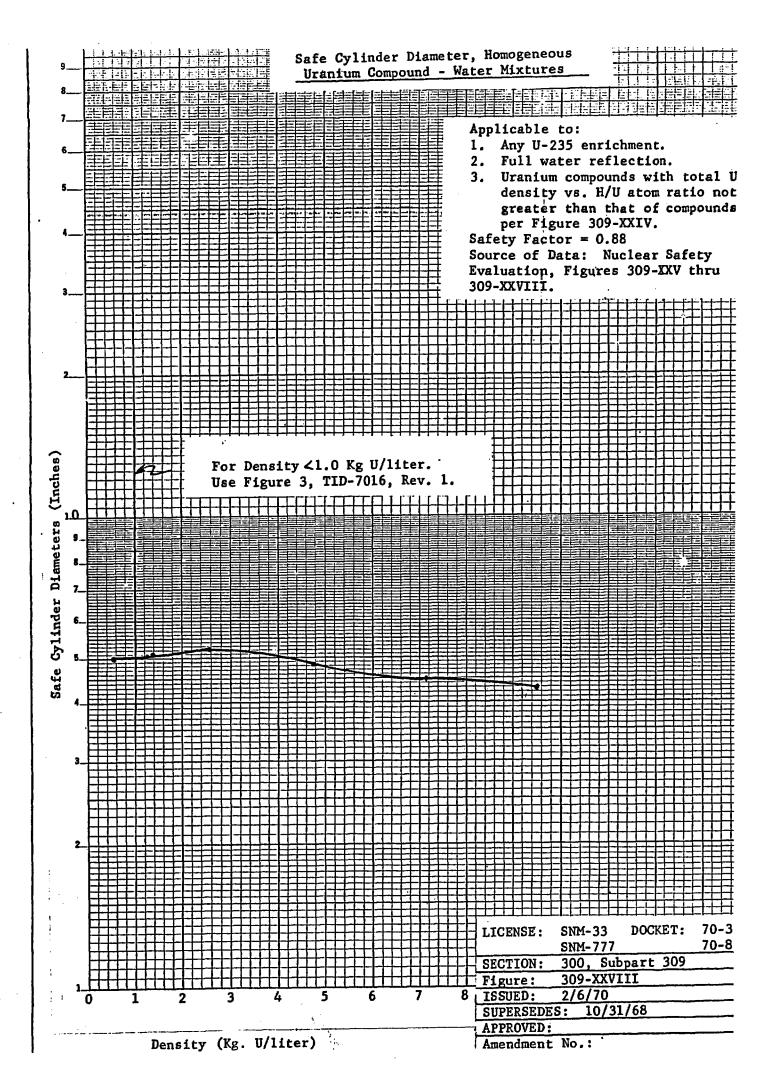
New

SUPERSEDES:


TABLE 1


KE SEMI-LOGARITHMIC 359-71G ECUFFEL & EBSER CO. VILCINE , 4 3 CYCLES & 70 DIVISIONS



H/U-235	Density U-235 Total U (Kg./L) Kg. U/L	$\frac{Cyli}{R} \qquad (1)$ $\frac{C_{ch}\Gamma}{(ch)} \qquad (in.)$	nder Rc,b Ds,b (1) (cm) (in.)	T _{c,r} T _{s,r} (cm) (in.	Slab (2) Tc,b (cm)	(2) (in.)
0 0.98 2.94 8.96 20.60 43.90						Ex. 4
NOTE: (1) (2)	T _c (cm)		93 R _c , where R _c val			
Subscripts:	<pre>c = critical s = safe b = bare r = full water red s.f.= safety factor</pre>	Elector			SECTION: Nuclear Sa	2/6/70

Critical and Safe Homogeneous Uranium Compound - Water Cylinder Diameters and Slab Thicknesses at all Enrichments

.

Amandmant Na.

APPROVED:

	•			•				
• •			•					
		Water Volum	es and Masse	neous Uranium s at all Enric			•	
Density U-235 Total 5 (Kg./L) Kg U/L		Sphere (2) V _{s,r} (Liters)	(1) V _{c,b} (Liters)	(2) V _{8,b} (Liters)	(3) M _{c,r} (Kg. U-235)	M _{s,r} (4) (Kg. U)	Mc,b ⁽³⁾ (Kg. U-235)	M _{s,b} (4 (Kg. U)
						· · ·		
· • •								
						Constant of the	2 1	
· •		ere R values c .	are obtaine	d from Table	V-K, LA-3612		Ex. 4	
(2) V _s		•		· ** ¥***	- Annes			
(3) M _c		•			,		· .	
(4) M _s	= <u>.45 M</u> .935	· •						
Subscripts: c	= critical = safe		•			•	•	
	= bare = full water re	flector	•			LICEN	Se: SNM-33 I SNM-777	
Ъ						SECTI		art 309
Ъ					· .	Nuclea Figur	ar Safety Eval es <u>309-XXV thr</u> 2 of 2	uation-D

·

. .

SECTION 400

SECTION 400 - HEALTH STANDARDS

SUBSECTION 401 - GENERAL HEALTH PHYSICS REQUIREMENTS 401.1 Surface Contamination 401.2 Air and Gaseous Effluents

401.3 Records

SUBSECTION 402 - PERSONNEL MONITORING

402.1 Dosimetry

402.2 Bio-Assay

SUBSECTION 403 - RESPIRATORY PROTECTION PROGRAM

Table 403-I - Protection Factors for Respirators

SUBSECTION 404 - FACILITY AND EQUIPMENT REQUIREMENTS

404.1 Zoning

404.2 Ventilation

404.3 Liquid Effluent

SUBSECTION 405 - INSTRUMENTATION

405.1 Nuclear Alarm System
405.2 Alpha Counting System
405.3 Alpha Survey Meter
405.4 Air Sampling Equipment
405.5 Beta-Gamma Survey Meter
405.6 Betta Gamma Counting System

SUBSECTION 406 - SURVEILLANCE

406.1 Special Surveys
406.2 Routine Surveillance
406.3 Surface Contamination
406.4 Airborne Concentrations in Restricted Areas
406.5 Air and Gaseous Effuents
406.6 Water Samples

LICENSE: SNM-777, Docket: 70-820 SECTION 400 Table of Contents

UNITED NUCLEAR	PAGE 1 OF 2
ICENSE: SNM-777, Docket: 70-820 CTION: 400 - HEALTH PHYSICS STANDARDS	Approved
ubsection: .401 - General Health Physics Requirements	ISSUED October 31, 1968
	SUPERSEDES New
01. General Health Physics Requirements	
The Radiation Protection Program shall comply with in Title 10, Code of Federal Regulations, Part 20, Subsection and the requirements of other regulator	the Standards of this
Internal procedures and/or data forms are used in the health physics functions in accordance with th	
these procedures shall be reviewed by the Health I Health Physic Consultant prior to approval by the and Industrial Safety Department, Commercial Produ	Physics Specialist or Manager of the Nuclear
1. Surface Contamination*	
1.1 Restricted Areas (As defined in 10 CFR 20)
Action Contamination Action	on Level (Excluding Process
Immediate Cleanup 10,000 alpha dpm/10	0 cm ² removable (smear)
- 100;000 beta dpm/10	0 cm ² removable (smear)
) cm ² removable (smear)) cm ² removable (smear)
Material on processing equipment or fixed limited as required to control airborne r radiation exposures.	
1.2 Unrestricted Areas (Release of Materials include the abandon	
1.2.1. The maximum amount of fixed alpha integrations per minute per 100 not exceed 25,000.	•
1.2.2 The average amount of fixed alpha integrations per minute per 100 s not exceed 5,000.	
1.2.3 The maximum amount of removable (by wiping the surface with a filt paper) radioactivity (alpha or be	
minute per 100 square centimeters	
	h an open-window beta- ue equivalent absorber of or square centimeter shall

4∎ • •

-

•

UNITED NUCLEAR	PAGÊ2 OF 2
LICENSE: SNM-777, Docket: 70-820	Approved
Subsection: 401 - General Health Physics Requirements	ISSUED October 31, 1968
	SUPERSEDES New

401. General Health Physics Requirements (Con't)

The average radiation level at one centimeter from the contaminated surface measured in the same manner shall not exceed 0.2 millirad per hour.

2. Air and Gaseous Effluents

The radioactivity concentration limits of 10 CFR 20 will be followed.

. . .

3. Records

Records of Personnel Monitoring, Monitoring Surveys, Respiratory Protective Program Personnel Instructions and Instrument Maintenance and Calibration shall be maintained by Health Physics.

l	UNITED NUCLEAR	PAGE1IOF 2
LICENSE: SECTION: Subsection:	SNM-777, Docket: 70-820 400 - HEALTH PHYSICS STANDARDS 402 - Personnel Monitoring	Approved
, .		ISSUED October 31, 1968 SUPERSEDES New

402. Personnel Monitoring

Personnel Monitoring shall be supplied to each individual who is likely to receive a dose in excess of 25% of the applicable limits in 10 CFR 20 and those personnel who routinely work in the process areas.

1. Dosimetry

The personnel dosimeters shall be sensitive to an exposure of 25 millirem. Hand exposures will be determined by surveys. Exposures in excess of 25% of the applicable limits shall be investigated.

2. Bioassay

The urine analyses shall be sensitive to concentrations of 10 alpha dpm/liter. Insofar as possible, samples are collected after two days off the job as follows:

2.1 At the start and termination of employment.

2.2 On a routine schedule consistent with the degree of exposure and results of past samples but at least as follows:

Minimum Bioassay Frequency*

Area

Clean or clear areas

Intermediate or limited contaminated areas

Contaminated or restricted areas

Employment and termination

Frequency

6 months

3 months

If respiratory protection is required, or if the radionuclides are in a soluble form

monthly

2.3 Following a suspected potential overexposure or ingestion of contaminated material.

2.4 The investigation and action levels follow:

2,4.1 All samples above 50 dpm/liter shall be investigated.

2.4.2 A sample in excess of 100 dpm/liter will require immediate restriction of the individual to jobs where airborne. radioactivity levels are not expected to exceed 25% MPC. The individual will remain on restricted jobs until two consecutive samples less than 50 dpm/litter are obtained.

	UNITED NUCLEAR	PAGÉ2- OF 2
LICENSE: SECTION:	SNM-777, Docket: 70-820	Approved
Subsection:	400 - HEALTH PHYSICS STANDARDS 402 - Personnel Monitoring	ISSUED October 31, 1968
		SUPERSEDES New

402. Personnel Monitoring

2.4.3 More intensive investigation shall be performed on the circumstances of exposure for persons who remain on restriction for three (3) or more resamplings.

:

•

•

* These frequencies apply to personnel spending 10% or more of their assigned work schedule in the area listed.

UNITED NUCLEAR	PAGE1 OF 2
LICENSE: SNM-777, Docket: 70-820 SECTION: 400 - HEALTH PHYSICS STANDARDS	Approved
Subsection: 403 - Respiratory Protection Program	ISSUED October 31, 1968
	SUPERSEDES New

403. Respiratory Protection Program

 In circumstances in which adequate limitation of the inhalation of radioactive materials by use of process or other engineering controls is impractical United Nuclear Corporation may permit an individual in a restricted area to be exposed to average concentrations of airborne radioactive materials in excess of the limits specified in Appendix B, Table I, Colum 1 of 10 CFR 20 provided:

.

...

- 1.1 The individual uses respiratory or other appropriate protective equipment such that the total intake, in any period of seven consecutive days by inhalation, ingestion or absorption, would not exceed that intake which would result from breathing the concentrations specified in Appendix B, Table I, Column 1 of 10 CFR 20 for a period of 40 hours.
- 1.2 UNC shall advise each respirator user that he may leave the area for relief from respirator use in case of equipment malfunction, physical or psychological discomfort, or any other condition that might cause reduction in the protection afforded the wearer.
- 1.3 UNC shall maintain a respiratory protection program adequate to assure that the objectives of 1.1 above is met. Such program shall include:
 - 1.3.1 Air sampling and other surveys sufficient to identify the hazard, to evaluate individual exposure, and to permit proper selection of the respiratory protective equipment;
 - 1.3.2 Procedures to assure proper selection, supervision and adequate training of personnel using such protective equipment;
 - 1.3.3 Procedures to assure the adequate fitting of respirators and the testing of equipment for operability;
 - 1.3.4 Procedures for maintenance to assure full effectiveness of respiratory protective equipment, including issuance, cleaning and decontamination, inspection, repair and storage.
 - 1.3.5 Bio-assays of individuals and other surveys as may be appropriate to evaluate individual exposures and to assess protection actually provided; and

: _

1.3.6 Records sufficient to permit periodic evaluation of the adequacy of the respiratory protective program.

	UNITED NUCLEAR	PAGE2- OF 2
LICENSE:	SNM-777, Docket: 70-820 400 - HEALTH PHYSICS STANDARDS	Approved
Subsection:	403 - Respiratory Protection Program	ISSUED October 31, 1968
•		SUPERSEDES Now

403. Respiratory Protection Program (continued)

.

1.4 UNC has evaluated the protective equipment (1) and has determined that, when used to protect against radioactive material under the conditions of use to be encountered, such equipment is capable of providing a degree of protection at least equal to the protection factors listed in Table 403-1.(2)

United Nuclear Corporation shall not assign protection factors in excess of those given in Table 403-I, in selecting equipment.

.

- (1) In evaluating respiratory protective equipment for use against radioactive materials to assure that the equipment provides the protection factors listed in Table 403-I, UNC may accept equipment approved under appropriate test schedules of the U.S. Bureau of Mines to the extent pertinent.
- (2) The factors listed apply only to protection against radioactive materials. Additional precautions may have to be taken to protect against concurrent non-radiation hazards.

•

.

	•	·	
· · · · · ·			amona, a /
· · ·		PROTECTION FA	CTORS 2/
	17	Particulates	
Description	Modes1/	and Vapors and	Tritium
		Gases Except	Oxide
		Tritium Oxide ³ /	,
1. AIR-PURIFYING RESPIRATORS		70	•
Facepiece, half-mask		10	1
Facepiece, full		100	1
		<u>م محمد 1980 م محمد محمد محمد محمد محمد محمد محمد م</u>	
I. ATMOSPHERE-SUPPLYING RESPIRATOR			
1. Air-line respirator			-
Facepiece, half-mask	CF	100	· 2
Facepiece, half-mask	D	100	2
Facepiece, full	CF	1000	· 2
Facepiece, full	D	. 500	2
Facepiece, full	PD	1000	2
Hood	CF	1000	2
Suit	CF	14/	4/
	•		
2. Self-contained breathing	· · · · · · · · · · · · · · · · · · ·		
apparatus (SCBA)			
Facepiece, full	D	500	2
Facepiece, full	PD	1000	2
Facepiece, full	R	1000	2
racepiece, ruit	16	1000	2
3. Combination respirator		·	·····
Any combination of air-purify	ving and	Protection factor	for type
atmosphere supplying respirat		and mode of operat	
atmosphere Suppryrug respira		listed above.	LON as
			•
/ CF: continuous flow		· · · · · · · · · · · · · · · · · · ·	
D: demand			•
PD: pressure demand (i.e., always	positive press	ure)	
R : recirculating			
(a) For purposes of this authoriza	ation the prote	ction factor is a mer	sure of the
degree of protection afforded			
concentration of airborne rad	loactive materi	al outside the respin	retory pro-
tective equipment to that inst			
piece) under the conditions of			
centration to determine the co			
to the following formula:		mated by the weater,	according
		•	
Concentration Inhaled	- Airborne Co	ncentration	
	Protectio	n factor	
		[· · · · · · · · · · · · · · · · · · ·
• •		LICENSE: SNM-777,	Docket:70:8
		SECTION: 400, Subs	section: 40
		Table 403-1 #	
· · · ·		APPROVED	
	•	1	
			1000
		ISSUED October 3	81, 1963
		ISSUED October 3 SUPERSEDES: New	31, 1963

.

۰,

Page 1 of 2

- 2/ (b) The protection factors apply:
 - (i) only for individually fitted respirators worn by trained individuals and used and maintained under supervision in a well-planned respiratory protection program.
 - (ii) for air purifying respirators only when high efficiency particulate filters and/or sorbents appropriate to the hazard are used.
 - (iii) for atmosphere supplying respirators only when supplied with adequate respirable air.
- 3/ Excluding radioactive contaminants that present an absorption or submersion hazard.
- 4/ Appropriate protection factors must be determined taking account of the permeability of the suit to the contaminant under conditions of use. No protection factor greater than 1000 shall be used except as authorized by the Commission.
- NOTE 1: Protection factors for respirators as may be approved in the future by the U. S. Bureau of Mines according to approval schedules for respirators to protect against airborne radionuclides may be used in lieu of the protection factors listed in this Table. Where additional respiratory hazards other than radioactive ones are present, especially those immediately dangerous to life, the selection and use of respirators shall also be governed by the approvals of the U. S. Bureau of Mines in accordance with their applicable schedules.

LICENSE: SNM-777, Docket:70-82 SECTION: 400, Subsection: 403
Table 403-I
APPROVED: ISSUED: October 31, 1968 SUPERSEDES: New
Page <u>2</u> of <u>2</u>

a				•
ļ			PAGE 1 OF 2	
LICENSE: SECTION:	SNM-777, Docket: 400 - HEALTH PHY		Approved	•
Subsection:	404 - Facility a		ISSUED October 31, 1968	3
•			SUPERSEDES New	

404. Facility and Equipment Requirements

1. Zoning

The facility shall be zoned to define contamination areas, limited contamination areas and clear areas. Protective clothing or special clothing, shower and change facilities shall be provided for use in the contamination area. A sink and aplha survey meter or hand monitor shall be provided at the exit from the contamination area.

2. Ventilation

Air flow sahll be from the areas of lower to areas of higher contamination. Hoods, glove boxes, or local exhaust shall be provided as required to maintain airborne and surface contamination in the work areas within the limits under normal conditions. The type of equipment will depend upon the operation being ventilated, i.e., very dusty operations will be performed in glove boxes, while highly localized contamination sources such as product takeoff or grab sampling ports are ventilated with local exhaust, and the routine handling of uncontained SNM is performed in hoods. Fire prevention shall be considered in the design of ventilation equipment. Where operations are exhausted which generate high effluent temperatures, fire resistant filters will be used. Consideration will also be given to the potential for generating explosive atmospheres in glove boxes and appropriate safe design implemented. Ventilation equipment is required for operations generating airborne concentrations in excess of 25% of MPC with minimum air movement requirements as follows:

Fume hood face velocity General purpose hood face velocity Local exhaust Glove boxes 75 feet per minute 150 feet per minute 150 feet per minute sufficient negative pressure to control the operational hazard (except inert atmosphere boxes)

All process exhaust generating more than 25% of MPC during operations shall be filtered through high efficiency filters (nominel 99.97% for particles larger than 0.3 microns) or a scrubber system.

	INITED NUCLEAR	
	CORPORATION	PAGE 2 OF 2
LICENSE: SECTION:	SHM-777, Docket: 70-820 400 - HEALTH PHYSICS STANDARDS	Approved
Subsection:	404 - Facility and Equipment Requirements	ISSUED October 31, 1968
•		SUPERSEDES New

404. Facility and Equipment Requirements (continued)

3. Liquid Effluent

J

Process waste and laundry water is transferred to a lagoon or liquid handling system prior to discharge. Where particulate contaminants constitute a significant redioactive component of the liquid, filtration may be required before discharge. The contamination level of these effluents is monitored.

L	JNITED NUCLEAR	PAGE- 1 OF 3
LICENSE: SECTION: Subsection:	SNM-777, Docket: 70-820 400 - HEALTH PHYSICS STANDARDS 405 - Instrumentation	Approved ISSUED October 31, 1968
•		SUPERSEDES New

405. Instrumentation

The minimum instrumentation required for operational surveillance is listed below. All instruments are calibrated quarterly or in accordance with the manufacturer's recommendations. The manufacturer's calibration of flowmeters, velometers, rotameters and orifices are used.

. Nuclear Alarm System

The nuclear alarm system consists of gamma sensitive detectors, audible alarms and remote indicator panel at or near the guard station. The requirements for this alarm system follow:

- 1.1 Detector units shall have a pre-set alarm level of not less than 5 MR/hr or greater than 20 MR/hr.
- 1.2 Detector units shall also have a response time no greater than 3 seconds at a radiation level of 20 MR/hr.
- 1.3 Detectors shall be located so as to be capable of detecting and operating the alarm from an incident of the magnitude that would result in a gamma flux of 3×10^5 mrem/hr one (1) foot from the source of radiation.
- .4 Detectors shall be installed within 120 feet of every location where 500 grams or more of Special Nuclear Material is handled, used, or stored.
- 1.5 Whenever possible, the location and spacing of the detectors is chosen to avoid the effect of shielding by massive equipment or materials. Low density materials of construction such as 2 x 4 stud construction walls, plaster or metal corrugated panels; asbestos panels, doors, panel walls and steel office partitions are disregarded in determining the spacing. The spacing is reduced where high density building materials such as brick, concrete, concrete or cinder blocks, or lead-lined x-ray rooms, shield a potential accident area from the detector.

Calculations to determine adequate coverage through significant shielding materials is performed using the following formula:

 $I = \frac{I_0 (e^{-\mu t})}{d^2}$

where I = gamma intensity at the detector (minimum for calculations will be 20 mrem/hr)

UNITED NUCLEAR	PAGE- 2 OF 3
LICENSE: SNM-777, Docket: 70-820	Approved .
SECTION: 400 - HEALTH PHYSICS STANDARDS Subsection: 405 - Instrumentation	ISSUED October 31, 1968
	SUPERSEDES New
405. Instrumentation (continued)	
I. = Unattenuated gamma in the flux source	
ji = mass absorption cross material_ x density of	
of incidence e is not	o centimeters. Where angle 90° to the plane of the the dimension, csc 0 t.
d = distance from source i	n feet.
Such calculations will not include the effe An example of the calculational technique i evaluation for this subsection. 1.6 The detector and alarm circuits shall be self starting diesel generator which will power to the system in the event of disru This backup power system will be checked	s shown in the health physics equipped with an auxilliary automatically supply ption of primary power.
1.7 The system will be tested by sounding the and at the time of each practice evacuation	
1.8 Automatic monitors shall give warning in which renders the system inoperable.	case of any malfunction
1.9 The alarm shall be clearly audible in all which Special Nuclear Materials are handl in all adjacent areas where significant e result from an incident.	ed, used, or stored and
2. Alpha Counting System	
Minimum detectability - 10 DPM	
3. Alpha Survey Meter	
Minimum counting efficiency - ~ 30% (calibrat Minimum Range - 0 - 100,000 counts per minute	ed to read 21)
4. Air Sampling Equipment	
Routine - Nominal 20 liters per minute samplin	g rate

.

لز

. .

•

-

1			
	UNITED NUCL		
LICENSE: SECTION:	SNM-777, Docket: 70-820 400 - HEALTH PHYSICS STA	NDARDS	Approved
Subsection			ISSUED October 31, 1968
•			SUPERSEDES Now

405. Instrumentation (con't)

Beta-Gamma Survey Meter

GM type with maximum window thickness of not more than thirty milligrams GM type with maximum window children per square centimeter. Minimum range - 0 - 60,000 counts per minute 0 - 20 mr/hr

Beta Gamma Counting System 6.

•

Minimum detectability - 200 dpm Emergency instrumentation is listed in Section 600.

NUCLEAR ALARM SYSTEM COVERAGE CALCULATIONS

I. Following are calculations of the effectiveness of nuclear alarm system coverage through significant barriers encountered in facility construction.

Using the Formula

 $I = \frac{I_0 (e^{-\mu t})}{d^2}$

Barrier: 8" Concrete Block Thickness, t = 7.625 cm/in = 19.37 cm. $\mu = 0.0317 \text{ cm}^2 \times 1.22 \text{ gm/cm}^3 = 0.0387 \text{ cm}^{-1}$

$$d^{2} = \frac{3 \times 10^{5} \text{ mr/hr} (e^{-0.750})}{20 \text{ mr/hr}}$$
$$d^{2} = 7.10 \times 10^{3}$$

d = 84 ft. maximum permitted distance of source from detector to provide coverage.

12" Concrete Block Barrier: Thickness t = 11.625" x 2.54 cm/in = 29.6cm $\mu = 0.0317 \text{ cm}^2 \times 1.17 \text{ gm/cm}^3 = 0.0371 \text{ cm}^{-1}$

$$d^{2} = \frac{3 \times 10^{5} \text{ mr/hr (e}^{-1.10})}{20 \text{ mr/hr}}$$
$$d^{2} = 5 \times 10^{4}$$

d = 70.7 ft. maximum permitted distance of source from detector to provide coverage.

C. Barrier: 8" Poured Concrete Wall Thickness $t = 8'' \times 2.54 \text{ cm/in} = 20.3 \text{ cm}$. $\mu = 0.317 \text{ cm}^2 \times 2.3 \text{ gm/cm}^3 = 0.735 \text{ cm}^{-1}$

$$1^2 = \frac{3 \times 10^5 \text{ mr/hr} (e^{-1.49})}{20 \text{ mr/hr}}$$

20 mr/hr

 $d^2 = 3.375 \times 10^3$

d = 58.1 ft. maximum permitted distance of source from detector to provide coverage.

The effectiveness of the nuclear alarm system when a barrier is interposed II. between the source and the detector at an angle which is not normal to the line between them is calculated using the following formula:

$$I = I_0 \underline{/e}^{-\mu t(csc\theta)} \underline{7}$$

where Θ is the angle of incidence of the line. between the source and detector with respect to the plane of the barrier.

In this manner, increased attenuation caused by angular incidence of the beam on a barrier of given thickness is calculated.

LICENSE: SNM-777, Docket 70-82 SECTION: 400, Subsection: 405.1

Health Physics Evaluation Nuclear Alarm System Coverage APPROVED:

ISSUED: October 31, 1968

SUPERSEDES: New

Page 1 of 1

UNITED NUCLEAR		PAGE1 OF 2
LICENSE: SECTION: Subsection:	SNM-777, Docket: 70-820 400 - HEALTH PHYSICS STANDARDS 405 - Surveillance	Approved ISSUED October 31, 1968
•		SUPERSEDES New

406. Surveillance

Special Surveys

All new, non-routine and spill cleanup operations shall be performed under the congizance of Health Physics.

With the exception of incidents requiring immediate evacuation, major spills or other accidental releases shall be cleaned up immediately. Criticality restrictions on the use of containers and water shall be followed at all times. The Foreman and Health Physics must be notified immediately of such incidents. Appropriate precautions such as use of respirators shall be observed.

Routine Surveillance

Surveys shall be conducted on a regularly scheduled basis consistent with plant operation and survey results. The frequency of survey depends upon the contamination levels common to the area, the extent to which the area is occupied, and the probability of personnel exposures.

Surface Contamination

Corrective action and/or cleanup is initiated when contamination exceeds the action levels.

Airborne Concentrations in Restricted Areas

- 4.1 Airborne levels in excess of 25% of the maximum permissible concentration require posting in accordance with 10 CFR 20 and an investigation of the causes.
- Airborne levels in excess of the maximum permissible concentration require exposure evaluation. Controls to restrict the personnel to 40 LPC hours per week shall be required.

Air and Gaseous Effluents

· . •

Systems will be reviewed and/or checked for malfunctions whenever the concentration exceeds 25% of the applicable limit.

Inasmuch as process stacks are equipped with high efficiency filters and manometers designed to indicate filter pressure drop, such stacks will be sampled during initial operations (at least three (3) samples per stack). Thereafter, each process stack shall be sampled no less frequently than once per quarter. Stacks using a scrubber system are monitored continuously during operations.

L	INITED NUCLEAR	PAGE2 OF 2
LICENSE: SECTION: Subsection:	SNM-777, Docket: 70-820	Approved ISSUED October 31, 1968
Subsection:	TOO - DUIVOIIIance.	-C

406. Surveillance (continued)

5. <u>Air and Gaseous Effluents</u> (con't)

Process and/or system changes shall require that the effluent air from the exhaust system(s) thus affected should again be sampled at least three (3) times during operations to re-establish the effectiveness of the filtering system.

. . . .

A weekly inspection of all process exhaust systems will be made. This will include intake velocity measurements and inspection of the degrees of filter loading. Velocity measurements are made with a velometer; filter loading is determined by pressure drop readings. The filter loading inspection may be omitted if the stack is sampled continuously during operations.

Filters in the exhaust system shall be changed when the air flow at the hoods served by the systems falls below the limits, or if by inspection, the filters are found to be plugged, or a manometer or stack sample indicates a filter failure.

Water Samples

6.1 Plant Waste Effluent

The contamination level of liquid effluent is measured at the point of discharge from the waste handling system. A representative sample of the outflow shall be collected and analyzed for alpha and betta activity and pH. In addition, grab samples from a lagoon must be collected and evaluated prior to discharge.

Where liquid wastes are discharged into a river or stream, a grab sample sahll be collected monthly from above and below the plant outfall and analyzed for alpha and beta activity and pH.

·

UNITED NUCLEAR		
c (DRPORATION	PAGE- 1 OF 1
LICENSE: SNM- SECTION: 500	777, Docket: 70-820 - Nuclear Material Management	Approved
		ISSUED October 31, 1968
• • •		SUPERSEDES New
500. Nuclear Mate	erial Lanagement	
This section has	been submitted under separate cover da	tod Aumunt 00 . 1000
-	Mr. Dale Smith AEC Division of Nuclear Materials S Division of Materials Licensing U.S. Atomic Energy Commission	
•	4915 St. Elmo Place Bethesda, Maryland 20014	
1		
•		
•		
		•
•		

Ĵ

)

008 NOILDES

			NO.
UNITED NUCLEAR			PÅĜE OF
	· · ·		Approved:
		ENSE: SNM-33 Docket: 70-36 SNM-777, Docket: 7-820	ISSUED October 31, 1968
SECTION:		D - EMERGENCY CONTROL PLAN ble of Contents	SUPERSEDES New
SUBSECTION (501. G	ENERAL OBJECTIVES	
SUBSECTION 6	502 E	STABLISHMENT OF RESPONSIBILITIES	
SUBSECTION (503 E	MERGENCY PLANS	
SUBSECTION 6	504 C	OORDINATION OF OUTSIDE AGENCIES	
SUBSECTION (505 E	MERGENCY SUPPLIES AND EQUIPMENT	
SUBSECTION 6	506 E	MPLOYEE TRAINING AND DRILLS	
SUBSECTION 6	60 7 P	UBLIC RELATIONS AND COMMUNICATIONS -	EMERGENCY PROCEDURE

SUBSECTION 608 INVESTIGATING AND REPORTING

Ì

		NO.
	UNITED NUCLEAR	PAGE 1 OF 1
		Approved:
SUBJEC	SNM-777. Docket: 70-820	ISSUED October 31, 1968
SECTI Subse	Fuel Recovery Operations ON: 600 - Emergency Control Plan ction: 601 - General Objectives	SUPERSEDES New
601.	General Objectives	
	This Emergency Control Plan is applicable to the Hematite, Missouri (SNM-33) and Recovery Operati Junction, Rhode Island (SNM-777). ¹	
	It is the policy to anticipate, insofar as possi which may arise at plants within the Commercial minimize by organized action, any injury, loss o	Pròducts Division, and
	Emergencies for which this plan is prepared incl the following:	ude, but are not limited to
	Nuclear Alarm - False and Accidental Critic	allty
-	Fire	
	Release of Radioactive Materials	
	Explosion or Building Collapse	
•	Flood, Windstorm or other Natural Disasters	•
	The plan for control of emergencies established requirements, requirements for emergency equipment liaison with hospitals, ambulance corps and medic and Federal Agencies whose assistance may be require ing and maintaining current emergency procedures investigation and reporting instructions.	nt and supplies, cal personnel, and State uired, means for establish-
	Authority for audit and enforcement of plant emerapproval of emergency plans as described herein : of the Nuclear and Industrial Safety Department, includes the coordination of emergency planning :	rests with the manager whose responsibility
	Division Plants. Implementation of these plans : of the operating group, as defined herein.	is the responsibility
· · · ·		•
•		
••••••		
ی دارد در سیست در		
	¹ The Emergency Control Plan for the Fuel Fal New Haven, Conn. (SNN-777) is that plan applicab	
· · · ·	Division, New Haven, Conn. (SNM-368, Docket: 70	-731). The Navel
	Products Division has prime responsibility for example and proceedures for	
	operations.	

Ī	UNITED NUCLEAR	PAGE
LICE	NSE: SNM-33, Docket: 70-36 SNM-777, Docket: 70-820	Approved
SECT		ISSUED October 31, 1968
		SUPERSEDES New
602.	Establishment of Responsibilities	
•	Each Plant emergency organization is headed by 1 who is responsible for the direction and coordin during the emergency. Emergency duties will be personnel under the Emergency Director.'s supervi	nation of all activities carried out by in-plant
	The Emergency Director is the senior member pres supervisors designated in writing as Emergency: this group is designated by the General Manager, Division, for the Hematite, Missouri and Wood Ri	sent of those selected Directors. Each member of Commercial. Products Lver Junction, Rhode Island
1	locations, and certified by the Manager of the Masser of t	itions and training to
	are assigned to the indivduals holding the posit	
	Responsibility	signed to
	Security Corporate Security of personnel security	Ity Director, Supervisor rvices
•		(Commercial Products Istration Manager or Lee
•	Health Physics S	r & Industrial Safety Specialist/Nuclear & ty_Representative
		ician/Plant Physician/ r & Industrial Safety
		r & Industrial Safety/ Lity Safety Specialist
	Procedures are available to plant personnel out to be performed in above areas of responsibility designated individuals.	
	In the absence of the above listed individuals,	
	assumes the indicated responsibility except for conditions not specified in the emergency proces	

.

		ED NUCLEAR	Page 1 of 5
TOP		R P O R A T I O N	Issued 2/6/70
	LICENSE: SNM-33 & SNM-777, Docket 70-36 & 70-820 SECTION: 600 - Emergency Control Plans Subsection: 603 - Emergency Plans		Supersedes 10/31/68
Subpa			Approved
			Amendment No.
603.	Emergency Plan	<u>6</u>	
	broken into for maintained in are: A. Nuclear Ala B. Fire Alarm		dures or check lists are h category. The categories
-		Radioactive Materials nuclear emergency which may resul	lt in B. or C.
	emergencies, w		
		o permit reading during the emerg where they can be used.	gency.
	C. Establish	limitations of authority where ne	
		idelines for emergency judgments. t all needed outside assistance i	
		r relocation in event of emergence	
*		Iteria for first-aid treatment an	d decontamination of personne
	603.1 Nuclear	Alarm	
		Detailed Procedure Requirements	· · · · ·
	003.1.1	The detailed procedures will es quired actions. This includes:	tablish a sequence of re-
		A. Immediate plant evacuation sounding of the nuclear ala B. Check list of instructions	rm.
		This will include but not be li	
		a) Immediate accounting fo	r all personnel
		 b) Identification of expos emergency treatment. 	ed personnel and initiating
			-
		C. A list of persons authorize Director.	d to function as Emergency
		D. A check list of instruction includes establishing emerge	
	·	Safety Manager to function a	by the Nuclear and Industria as a plant re-entry team. not normally be part of this
	cates Change		

UNITED NUCLEAR	PAGE- 2 OF 5
LICENSE: SNM-33, Docket: 70-36	Approved
SNM-777, Docket: 70-820 SECTION: 600 - Emergency Control Plan Subsection: 603 - Emergency Plans	ISSUED October 31, 1968
	SUPERSEDES New
603. Emergency Plans (continued)	
F. A check list of instructions.fc	or the plant re-entry team.
G. Criteria by which the Emergency the alarm was false or if an ac	
occurred.	cluental criticality has
telephone numbers and priority	OI DOTIFICATION.
The off-site assistance list in	¢ludes:
a) Off-site Company personnel-	
b) Local police, fire departme authorities.	
(Arrangements are in effect authorities to assist as re	
Director.) c) Medical Assistance. (Arran	gements are in effect for
obtaining assistance from o and hospital facilities.)	
d) Atomic Energy Commission. e) Plant and Company Managemen	it.
I. An outline of criteria to follo	w in effecting emergency
rescue of personnel.	
J. An outline of criteria to follo Director determines the need to	
running.	
603.1.2 Plant: Re-Entry	
A. <u>Re-Entry Survey Team</u> The plant re-entry survey team shall	concist of a minimum of
two persons. The 'team sahll be equi	pped with a high range
(0-500 r/Hr) and a low range (0-2500 meter.	mrynr) betaygamma survey
B. Initial Es-Entry	
The team will enter and survey all a gamma radiation levels greater than	100 mr/hr are present.
If rediations of 100 mr/hr or higher immediately report back to the Emerg	
instructions.	
C. <u>Re-Entry for Emergency Rescue</u> The Emergency Director will determin	e the need for re-entry
of the plant for emergency rescue.	Re-entry procedures for

· · ·

·

9

)

. IT	NITED NUCLEAR	NO.
U	CORPORATIÓN	PAGE 3 OF 5
	C O R F O R A I I O N	PAGE 3 OF 5
		Approved:
SUBJECT:	LICENSE: SNM-33, Docket: 70-36	
		ISSUED October 31, 1968
	Fuel Recovery Operations	
SEGTION: Subsection:	600 - Emergency Control Plan 603 - Emergency Plans	SUPERSEDES New
•	ncy Plans (continued)	
bus. Emerge	ncy Plans (continued)	•
	this purpose shall be based on Nati	lonal Bureau of Standards.
•	Handbook.59, Permissible Dose from	
•	Jonizing Radiation. Re-entry perso	
• * ·	kept cognizant through training of	probable radiation effects
. .	for various exposures, means to rec	
	additional criteria which will assi	lst them in making such
•	decisions.	•
•	D. <u>Re-Entry for Equipment Shut Down</u>	
	The Emergency Director will determined for shut down of equipment left run	
•	will include an evaluation of the p	
• • •	personnel against the hazard of per	•
	run. Re-entry procedures for this	
	National Bureau of Standards, Handh	
•	from External Sources of Ionizing I	
	entry personnel will be kept cogniz	
•	probable radiation effects for vari	
•	reduce exposure, and additional cri	teria which will assist
•	- them in making such decisions.	
•	E. Isolation of Affected Area	
	If radiation is excess of 100 mr/hr	
	be established to mark the 100 mr/h authorized by the Emergency Directo	
	this boundary.	MALL De beimitted bast
· ·		
603.1.	3 All Clear	•
	False Alarm	
•	The Emergency Director will determine th	at a false alarm has
	occurred if:	
	a) There is no physical evidence that a	n contiontal anticality
	a) There is no physical evidence that a has occurred.	a accidental criticality
•	b) No radiation is detected from indium	foil contained in
	personnel badges.	. IVII COMPULACE IN
•	c) No radiation levels, in excess of no	rmal plant radiation
	levels are found by the re-entry tea	
	When these conditions have been fulfille	
1. 1	may release all personnel to return to t	he plant. Operation of
2 T 4	the plant shall not resume until the nuc	lear alarm system is
	reset and operable. In event of defecti	
	or any movement of nuclear material may	be resumed only in the
	or any movement of nuclear material may portion of the Plant covered by detector	be resumed only in the
	or any movement of nuclear material may	be resumed only in the
603.1.	or any movement of nuclear material may portion of the Plant covered by detector 70.24.	be resumed only in the

)

1. 162.0

When the Emergency Director determines (by physical evidence, radiation measurements or other means) that an accidental

		NO.
	JNITED NUCLEAR	PAGE 4 OF 5
		Annuals
SUBJECT:	LICENSE: SNM-33, Docket: 70-36 SNM-777, Docket: 70-820	Approved: ISSUED October 31, 19
SECTION: Subsection:	Fuel Recovery Operations 600 - Emergency Control Plan 603 - Emergency Plans	SUPERSEDES New
603. Emerg	ency Plans (continued)	
	criticality has occurred, he shall im	nediately start implementa
•	of all requirements of this control p	
603.2	Pire Alarm	동물 소리관 가 전자 관계에
•	Upon sounding of the fireralarm, the	fire briggde shall assemble
	at the non-nuclear emergency assembly	
	The Emergency Director is responsible	
	a) Direction of the fire brigade	3.
•	b) Determining the need to summe	on assistance from the
•	local Fire Department.	
	Arrangements have been made a	with the local Fire
•	Bepartment to comply with the	
	instructions.	
	c) Determining the need for plan	nt evacuation and issuing
	appropriate instructions.	
•	Outside Assistance Call numbers for local fire companies	and police are maintained
	in strategic locations in the Plant an	nd in the emergency assemb
•	building. In all cases of fire within	
	local fire companies will assist only the Emergency Director.	under the direction of
	Moderation Control	dah man manle da
•	Use of fire hoses in process areas, wh accidental relocation of special nucle	· · ·
	will be avoided. Use of fogs and hydr	
	specifically prohibited, but will be a	used in process areas
	only if dry extinguisher supplies are fire must be controlled promptly to p	
	serious hazards. Any area in which the	
	for any reason will be clearly indicat	
6U3.2	B Release of Radioactive Material	
	• Release of radioactive material, i.e., a or mists requires an immediate but order	
	or plant area directly involved. Equip	aent shutdown may be done
	only under the direction of the Emergend	cy Director with use of
	protective equipment mandatory.	
		이번 승규는 승규는 것을 가 없는 것을 하는 것을 수가 있다. 이렇게 좋아하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수가 있는 것을 수가 있는 것을 수가 있다. 이렇게 좋아하는 것을 수가 있는 것을 수가 있다. 이렇게 좋아하는 것을 수가 있는 것을 수가 있다. 이렇게 말 하는 것을 수가 있는 것을 수가 있다. 이렇게 말 하는 것을 수가 있는 것을 수가 있다. 이렇게 귀에서 있는 것을 수가 있 않는 것을 수가 있는 것을 것 같이 않는 것을 수가 있는 것을 수가 않는 것을 수가 있는 것을 수가 않는 것을 것을 것을 것을 수가 않는 것을
	승규는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 없는 것 같이 없다.	

.•

<u>;</u>. **.** ·

. .

•••

	UNITED NUCLEAR	
-	CORPORATION	PAGE-5 OF 5
LICENSE:	SNM-33, Docket: 70-36	Approved
	SNM-777, Docket: 70-820 Fuel Recovery Operations 600 - Emergency Control Plan	ISSUED October 31, 1968
SECTION: Subsection:	603 - Emergency Plans	SUPERSEDES New

file in the state of the state of

603. Emergency Plans (continued)

c)

.....

All involved may, as required by the Nuclear & Industrial Safety Representative, furnish samples for bio-assay.

603.4 Other Non-Nuclear Emergencies

a) Sudden Emergencies

Authority for emergency action in event of chemical explosion, equipment or piping failure, building collapse, or other sudden unexpected event is placed with the Emergency Director.

b) Anticipated Emergency

In event of impending flood, windstorm, or other adverse happening, the Emergency Director will devise a specific plan of action to minimize the resultant hazards, obtaining qualified nuclear criticality safety and other advice as appropriate. Emergency Movement of SNM

Should any emergency condition make advisable the relocation of uranium inventories, such movement may be authorized by the Emergency Director. If it becomes necessary to move such material to abnormal locations or by abnormal methods, such movement will require either greater spacing between safe units, or smaller units, or both, than normally provided. All such storage will be immediately reviewed under the direction of the Nuclear and Industrial Safety Department Representative for return to approved storage areas.

Basic training in nuclear criticality safety practices will be given all employees who may be called on to assist in such emergency movements.

Lists of those qualified to provide emergency nuclear criticality safety advice and means for contacting them shall be kept in strategic in-plant and emergency building locations. d) Power Failure

Emergency power generating equipment is available at all locations, and have functioned well in the past (loss of main power has resulted in momentary dip in line voltage, with no interruption of coverage by Nuclear Alarm Detectors).

Supervisory personnel will determine what post-outage action is required and the number and type of personnel required to accomplish the task(s).

. <u> </u>	JNITED NUCLEAR	PAGE1 OF 3
LICENSE:	SNM-33, Docket: 70-36 SNM-777, Docket: 70-820	Approved
SECTION:	Fuel Recovery Operations 600 - Emergency Control Plan	ISSUED October 31, 1968
	604 - Coordination of Outside Agencies	SUPERSEDES New

604. Coordination of Outside Agencies

Based on the initial assessment of the nature of the emergency, the Emergency Director or his designee will utilize the call lists available at the Emergency assembly station (or if evacuation has not been necessary at the primary guard post) to summon assistance from the police and/or fire departments, medical personnel or radiological safety organizations as necessary ...

Police

Chemical Operations, Hematite, Missouri

The Sheriff's office, Hillsboro, Missouri, is manned on a 24 hour basis and procedures are available at the post to summon assistance from the State Police, Barnes Hospital, local ambulance corps, and the Hematite Fire Department.

Fuel Recovery Operations, Wood River Junction, Rhode Island

The Rhode Island State Police barracks at Hope Valley is manned on a 24 hour basis and procedures are available at that post to summon assistance from the State Council of Defense (radiological safety), the Hope Valley Amublance Corps, the Cross Mills Fire Department and local law enforcement personnel. State Police have received training in radiological and control procedures.

In addition to notification of other assistance agencies, the State Police and local police procedures provide for immediate action to cordon off plant access routes to restrict unauthorized personnel from entering the hazardous areas.

B. Fire

Chemical Operations, Hematite, Missouri

Personnel of area Fire Department at Hematite and Festus are familiar with plant layout and potential hazards in fire control. The procedures in effect require fire fighting personnel to stand by upon arrival for supervision by UNC trained personnel. Selected UNC employees constitute a plant fire brigade which is subject to periodic refresher training.

Fuel Recovery Operations, Wood River Junction, Rhode Island

1 . Personnel of area Fire Departments at Alton, Shannock and Cross Mills are familiar with plant layout and potential hazards in fire control. The procedures in effect require fire fighting personnel to stand by upon arrival for supervision on UNC trained personnel. Selected UNC employees constitute a plant fire brigade which is subject to periodic refresher training.

	UNITED NUCLEAR	FAGE2 OF 3
LICENSE:	SNM-33, Docket: 70-36 SNM-777, Docket: 70-820	Approved
SECTION:	Fuel Recovery Operations 600 - Emergency Control Plan	ISSUED October 31, 1968
Subsection:	604 - Coordination of Outside Agencies	SUPERSEDES New

604. Coordination of Outside Agencies (continued)

C. Medical

Physicians (All Plants)

The Plant Physician will be summoned by the Emergency Director of his designee immediately upon determination of injury or exposure to personnel. The Plant Physician has designated secondary medical personnel to be contacted in the event of his absence. The Plant Physician will in the event of serious radiation casualty cases, contact the Company Consultant Physician, a specialist in radiation casualty care, requesting he proceed to the hospital selected for victim care. The Plant Psysician will determine the hospital to which the casualty will be transported and will provide a complete description of patient condition and associated radiation hazards to the hospital. The emergency procedures provide for victim identification and collection of excretion samples.

Ambulance

Commercial Operations, Hematite, Lissouri

Procedures are available at the Sheriff's Office, Hillsboro, Missouri to:summon assistance from local ambulance corps. Secondary ambulance capability is also available through the radio network of the Festus Fire Department.

Fuel Recovery Operations, Wood River Junction, Rhode Island

Procedures are available at the Rhode Island State Police barracks at Hope Valley to summon assistance from the Hope Valley Ambulance Corps. Secondary ambulance capability is also available through the State Police notification network if necessary. Both the Westerly Ambulance Corps and the Cross Mills Emergency Squad have received training in the handling of radiological accident cases.

Hospitals

Chemical Operations, Hematite, Missouri

Based on the medical evaluation of condition of casualties or exposed personnel, and the number involved, the victim(s) will be dispatched to Barnes Hospital, St. Louis, Missouri.

Fuel Recovery Operations, Wood River Junction, Rhode Island

Based on the medical evaluation of conditions of casualties or exposed personnel, and the number involved, the victim(s) will be dispatched to Rhode Island Hospital, New England Deaconess Hospital, or Westerly Hospital.

	UNITED NUCLEAL		
	UNITED NUCLEAL	FK	 PAGE- 3 OF 3
LICENSE:	SNM-33, Docket: 70-36 SNM-777, Docket: 70-820		Approved
SECTION:	Fuel Recovery Operations 600 - Emergency Control Plan		ISSUED Cctober 31, 1968
Subsection:	604 - Coordination of Cutside	Agengies	SUPERSEDES New
604. Coordi	nation of Outside Agencies (co	ntinued)	
V: Tr	ictims whose condition presents adiation or contamination will b eaconess Hospitals.	a hazard from	the standpoint of de Island or New England
•			
		na an a	
•			

UNITED NUCLEAR	PAGE1 OF 1
LICENSE: SNM-33, Docket: 70-36	Approved
SNM-777, Docket: 70-820 Fuel Recovery Operations SECTION: 600 - Emergency Control Plan	ISSUED October 31, 1968
SECTION: 600 - Emergency Control Plan Subsection: 605 - Emergency Supplies and Equips	nent SUPERSEDES New

605. Emergency Supplies and Equipment

A list of location(s) where emergency supplies are situated is kept by the local Nuclear & Industrial Safety Department Representative, each of the authorized Emergency Directors (and alternates) and at the Guard Post(s) adjacent to operating areas. A detailed listing is available at the Emergency Assembly station, together with maps of the building showing layout and floor plans.

Radiation Survey Equipment

2 - Beta-gamma portable survey meters low range sensitive (0-100 mr/hr) 1 - Gamma portable survey meter hi-range (at least 3 ranges) 0-500 R/hr:

- 1 Alpha portable survey meter gas proportional 0-100,000 cpm
- 8 Low range pencil dosimeters, 200 mrem
- 2 High range pencil dosimeters, 200 R
- 1 Dosimeter charger

Film badges (DuPont Pocket Type 544 or equivalent) and badges containing Idium foil to augment or replace normal personnel dosimetry

Air Sampling Equipment

1 - Battery powered air sampler

- 1 High volume air sampler with annular Kinetic Impactor Head
- 2 Vacuum Pumps with Inline Filter

Supporting Equipment

- 1 Self contained Breathing Apparatus
- 1 Resuscitator
- 2 Absolute Filter Respirators

Protective clothing--includes head and foot cover

- Marking equipment and tags
- Plant outline drawings
- Blankets
- First Aid Kit including Disposable Litters and Splints Flashlight

Additional supplies are available upon call from the unaffected location(s).

-			· · · · · · · · · · · · · · · · · · ·
	UI	NITED NUCLEAR	.• РАСЕд ОГ 1
	LICENSE;	SNM-33, Docket: 70 <u>-36</u>	Approved
-	SECTION:	SNM -777, Docket: 70-820 Fuel Recovery Operations 600 - Emergency Control Plan	ISSUED October 31, 1968
	Subsection:	606 - Employee Training and Drills	SUPERSEDES New
			•

606. Employee Training and Drills

The employee orientation program presents the general outline of required emergency actions; this is continued by the floor supervisors and augmented by drills conducted twice per year.

Drills

Training

UNITED NUCLEAR	PAGE1 OF 1
LICNESE: SNM-33, Docket: 70-36 SNM-777, Docket: 70-820	Approved
. Fuel Revovery Operations SECTION: 600 - Emergency Control Plan	ISSUED October 31, 1968
Subsection: 607 - Public Relations and Communication Emergency Procedure	• • • • • • • • • • • • • • • • • • • •

607. Public Relations and Communications--Emergency Procedure

Releases to the public through the press, radio or television, shall be made by the Division General Manager. Where practical, the releases shall be typewritten in duplicate, and copy retained by the individual releasing the information. The Security Director (or authorized classifier) will assist in determining the security aspects of releases for publication prior to such release.

All communications to the Atomic Energy Commission will originate with the Emergency Director, Nuclear & Industrial Safety Manager, or General Manager, Commercial Products Division.

UNITED NUCLEAR	PAGE1 OF 2
LICENSE: SNM-33, Docket: 70-36 SNM-777, Docket: 70-820	Approved
SHE-177, DECRET: 70-820 Eucl Recovery Operations SECTION: 600 - Emergency Control Plan	ISSUED October 31, 1963
/ Subsection: 608 - Investigation and Reporting	SUPERSEDES New

608. Investigation and Reporting

Reports

In accordance with 10 CFR 20.403, the Emergency Director, or Manager, Nuclear and Industrial member of Company Management will notify the Director, Division of Compliance, Region I or III (as appropriate) by telephone and telegraph either immediately or within 24 hours, depending upon the appropriate determinations of exposure, release of radioactive material, damage or operations interruption.

. Accidental Criticality

The Investigation Staff, or a member of that staff, under the direction of the General Manager, will prepare a report in writing within 30 days for submission to the Director, Division of Compliance, U. S. Atomic Energy Commission, Washington, D. C. 20545 with a copy to the Director, Region I or III (as appropriate) of: (1) each exposure of an individual to radiation or concentrations of radioactive material in excess of any applicable limit in Part 20 or in the licensee's, (2) any incident for which notification is required by 20.403; and (3) levels of radiation or concentrations of radioactive materials (not involving excessive exposure of any individual) in an unrestricted area in excess of the times any applicable limit set forth in Part 20 or in the licnesee's license. The report shall describe the extent of exposure of persons to radiation or to radioactive material; levels of radiation and concentrations of radioactive material involved; the cause of the exposure, levels of concentrations; and corrective steps taken or planned to assure against a recurrence. The names of individuals who have received radiation exposure will be stated in a separate part of the report from the basic narrative.

B. Other

Radiation exposure other than from an accidental criticality will be reported as required in 10 CFR 20, by the Manager of Nuclear & Industrial Safety.

Investigation Staff

The General Manager will designate personnel responsible for compiling a comprehensive report as required under 10CFR 20.405, including:

Cause

Extent of injury to personnel to include radiation doses received.

3. Extent of property damage.

. Extent of contamination

	NITED NUCLEAR	PAGE2 OF 2
LICENSE:	SNM-33, Docket: 70-36	Approved
	SNM-777, Docket: 70-820 Fuel Recovery Operations	ISSUED October 31, 1968
SECTION: Subsection:	600 - Emergency Control Plan 608 - Investigation and Reporting	SUPERSEDES New

Investigation and Reporting(continued) 608.

Decontamination procedures 5. •.

Recommendation for improvment in handling emergency 6. .

7. Recommendation for corrective measures to preclude recurrences of incident.

,

the second second second i de la composición d TA . 3 . . SECTION 700

.

•

. .

į

24

ISSUED: October 31, 1968

SUPERSERED: New

SNM-777, Docket: LICENSE: Docket: 70-820 SECTION: 700

SHIPPING CONTAINERS RECEIPT OF INCOMING SPECIAL NUCLEAR MATERIAL SUBSECTION 704

TABLE OF CONTENTS

INTRODUCTION SUBSECTION 701 SHIPPING STANDARDS SUBSECTION 702 SUBSECTION 703

SECTION 700 - TRANSPORTATION

	Page 1 of 1
UNITED NUCLEAR	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 700 - TRANSPORTATION	Supersedes 10/31/68
Subsection: 701 - Introduction	Approved
	Amendment No.

701. Introduction

This section 700 describes the packages, handling and administrative procedures applicable to the shipment of Special Nuclear Material.

* The Manufacturing Departments are responsible (as described in Subsection 204) for administration of the procedures described in this section 700.

*Indicates Change

.

UNITED NUCLEAR	PAGE-1 OF 2
LICENSE: SNM-777, Docket 70-820	Approved
SECTION: 700 - Transportation Sub-section: 702 - Shipping standards	ISSUED October 31, 1968
	SUPERSEDES New

- 1.1 To assure compliance with all UNC, local, State and Federal criteria, restrictions or regulations concerning the shipment of SNM.
- 1.2 To outline periodic inspection criteria to insure that shipping containers meet approved standards.
- 1.3 To list records and reports required.
- Handling of Material of Unknown Enrichment
- 2.1. The material is treated as fully enriched unless a lower enrichment value has been verified.
- Container Inspection

- 3.1 Prior to each use of any container, the container is inspected to insure that:
 - 3.1.1 It has not been significantly damaged.
 - 3.1.2 Original design conditions approved by AEC and DOT are maintained.
 - 3.1.3 Marking and labeling is correct as required by the AEC and DOT approvals.
 - The Shipping Department is responsible for this inspection. The NIS Department overchecks as part of its audit function.
- . <u>Records</u>
 - 4.1 A record of each shipment will be maintained for a period of 2 years.
 - 4.1.1 The record will include (for unirradiated SNM only);
 - 4.1.1.1 Identification of the container used by model number.
 - 4.1.1.2 Details of any significant defects in the container, including the means used to repair the defects and prevent their recurrence.
 - 4.1.1.3 Volume and identification of coolant (where applicable).
 - 4,1.1.4 Type and quantity of SNM in each package.

	UNITED NUCLEAR	PAGP2 OF 2
LICENSE:	SNM-777, Docket 70-820	Approved
SECTION: Subsection:	700 - TRANSPORTATION 702 - Shipping Stendards	ISSUED October 31, 1968
•		SUPERSEDES New

702. Shipping Standards (continued)

4.1.1.5 Total quantity of SNM in each shipment

4.1.1.6 Date of Shipment.

. . .

4.1.1.7 For Fissile Class III, any special controls exercised.

÷

i.

4.1.1.8 Name and address of the transferee.

10 - A. 4.1.1.9 Address to which shipment was made.

Results of inspection described in Subpart.702.3 4.1.1.10 above.

•

UNITED NUCLEAR	PAGE1 OF 1
LICENSE: SNM-777, Docket: 70-820	Approved
SECTION: 700 - TRANSPORTATION Subsection: 703 - Shipping Containers	ISSUED October 31, 1968
	SUPERSEDEL New
The following shipping containers will be used for SNM: Shipping Container AEC Approval or Model Number Amendment Number	Date of Approval
UNC-740 71-9	or Amendment 1-4-68
UNC-1001 •71-10	1-4-68
/ UNC-1351 71-11	1-4-68
UNC-1483 71-12	1-4-68

7-5-67

7-28-67

1-4-68

2-6-67

UNC-2800 71-6 10-17-67 UNC-2900 71-14 6-17-68 UNC-3000 71-13 2-13-68

71-4

71-5

71-7

71-3

UNC-1634

UNC-1886

UNC-2400

UNC-2600

The use of these containers is subject to the conditions specified in the above listed AEC amendments and to the conditions specified in this license.

l	UNITED NUCLEAR	. PAGE1 OF 1	
LICENSE:	SNM-777, Docket: 70-820	Approved	
SECTION:	700 - TRANSPORTATION	ISSUED October 31, 1968	
Subsection:	704 - Handling of Incoming & Outgoing Shipments	SUPERSEDES New	

704. Handling of Incoming and Outgoing Shipments

Storage of Undamaged Containers

.

Storage of as-received containers or containers awaiting shipment may be stored anywhere within the fenced area.

The specific location shall be covered by the nuclear criticality monitoring and alarm system. The storage arrangement shall be one of the • •••••• methods listed below:

1.1 The same arrangement that they occupied on the transportation. vehicle.

1.2 Under controlled storage conditions, the total number of containers meet a "100 unit" rule (i.e., no more than that number of containers whose assigned radiation units can be summed to a maximum value of 100.0). Controlled storage is here defined as an area where a positive safeguard is provided against the inadvertent addition of a moderating media (i.e., in a roofed warehouse or covered area : including use of a water-proof tarpaulin).

When the storage conditions do not meet the definition for controlled storage, the total number of containers meet a "75 Unit" rule.

Separation of arrays described in 1.1. and 1.2 above is maintained 1.3 in accordance with criteria of Subsection 303.

Unloading and Handling of Contents

.

. . . During unloading and the subsequent handling, incidental to receipt. and storage, the contents of received shipping containers will be handled and stored to the enrichment as certified by the shipper. the enrichment is unknown or doubtful, the material will be handled and stored as fully enriched until enrichment has been determined by analyses.

3. Damaged Containers

. .

Containers received in a damaged condition will be held separate from . other SNM (in accordance with criteria of subsection 303).

Prior to further handling or unloading, the extent of damage will be evaluated to establish proper action. Results of the evaluation and action to be taken shall be reviewed and approved by the NIS Representative.

.

. . .

and we are a set of the set of th

SECTION COO

SECTION 800 - FUEL FABRICATION OPERATION

SUBSECTION 810 - STORAGE

TABLE OF CONTENTS

į	•
Subpart 811	GENERAL CONSIDERATIONS
	811.1 Outside Storage
,	811.2 Inside Storage
Subpart 812	19H FUEL STORAGE AREA
	812.1 General
•	812.2 High Enrichment Uranium Metal Storage
	812.3 High Enrichment Alloy Storage
• •	812.4 High Enrichment UALX Storage
Subpart 813	19H INPROCESS STORAGE
	813.1 High Enrichment Alloy Improcess Storage
Subpart 814	50 H STORAGE
	814.1 U-AL Plate and Element Inprocess Storage Racks
	814.2 U-AL Plate and Element Storage Racks
•	814.3 Low Enrichment UO, Rod Improcess Storage Racks
	814.4 Low Enrichment UO ₂ Finished Component Storage
Subpart 815	11H STORAGE
	815.1 Low Enrichment UO ₂ Pellet Storage
Subpart 816	CART STORAGE
	816.1 Low Enrichment UO ₂ Rod Mobile Work Tables

ومحيوطة بالمحيان والفرقات المتناكر فالهنا	والمرجب والمسامعة المشروعين فالمرجع والمتكر والمتكر والمتكر والمتكر والمتكر والمتكر والمتكر	
LICENSE:	SNM-777	•
DOCKET:	70-820	
SECTION:	800	
TABLE OF (CONTENTS	
PAGE 1 of	1 .	•
APPROVED:		
ISSUED:	October 31, 1968	•
SUPERSEDI	ES: NEW	

•	UNITÉD NUCLEAR	PAGE 1 of 1
LICENS SECTIO	N: 800 - FUEL FABRICATION OPERATION	Approvad
Subsec	tion: 810 - Storage t: 811 - General Considerations 811.1 - Outside Storage	ISSUED October 31, 1968
•	oll.i - Outside Storage	SUPERSEDES NEW
	• • • • • • • • • • • • • • • • • • • •	•
811.1	OUTSIDE STORAGE	-
	SNM bearing materials may be stored outside the Fuel Fabrication Operation within the f SNM is in a shipping container. Arrays of stored as described in Subsection 704.	enced-in area if the
:		
•		•
	•	•
•		•
•		

Ĺ

.		<u> </u>
	UNITED NUCLEAR	PAGE 1 of 1
	ION: 800 - FUEL FABRICATION OPERATION	Approvad
Subpa	ection: 810 - Storage art: 811 - General Considerations 811.2 - Inside Storage	ISSUED October 31, 1968
•	····	SUPERSEDES NEW
811.2	INSIDE_STORAGE	<u>\</u>
	SNM may be stored in buildings in specified is shipping containers. Arrays of containers wild described in Subsection 704.	locations, in ill be stored as
-	After unloading from shipping contains tored in storage areas or devices described	Iners, SNM will be in this Subsection.
	In-process storage devices are placed through to retain SNM during processing or between pr devices are metal racks or concrete bunkers w between safe cross section metal boxes or por count batches.	cocess steps. These which provide spacing
•		
	• • • • •	
•		
	······································	
	• • • •	
•		
	•	

UNITED NUCLEAR CORPORATION	RAGE 1 of 1
 LICENSE: SNM-777, Docket: 70-820 SECTION: 800 - FUEL FABRICATION OPERATION Subsection: 810 - Storage Subpart: 812 - 19H Fuel Storage Area 812.1 - General	Approvad ISSUED October 31, 1968 SUPERSEDES NEW
Laguan - Jane - Jaro - Langer - Barton - B	

812.1 GENERAL

A locked, controlled storage area is located in Building 19H which is used primarily for the storage of incoming SNM. Uranium metal, uranium compounds such as UO_2 , UALX, uranium-aluminum alloy recycle material and various uranium bearing scraps are currently stored in this area. The various storage devices in this area are described in further detail in the remainder of this subpart. The layout of this area is shown on Sketch 812.1-I.

A small hood and a work table or desk are provided in this area for routine nuclear materials management and process work. Examples of types of operations to be performed in this hood and work table or desk are:

1. Weighing as received shipping containers.

2. Transfer of material from one container to another.

3. U-AL alloy change preparation.

Work involving opening containers, transfers of powders (except UALX) etc. will be performed only in the hood. The hood and table or desk will be centrally located in the area at least 5 feet from any other SNM in racks.

The hood will be limited to two safe geometry containers plus 700 grams of U-235 as loose pieces, such as cores, etc. Each container and the loose pieces will be separated 12 inches using administrative control. Safe geometrics will be obtained using the Figs. in Subsection 309. The same safety requirements apply to the work table or desk.

.: -CHANGE 3 UAL, STORAGE-.2'5" METAL PRODUCTION STORAGE AREA 29.2 ALLOY HOOD STORAGEL PASS TABLE OR DESK THRU PORT .10' 20'11" 13' POSSIBLE FUTURE SCREEN STORAGE WALL 2'5" SU METAL (93% EN) STORAGE З 51' ⊨ APPROVED SECTION: ISSUED: PAGE LICENSE: SKETCH 1 812.1 800, SUDPART: 812.1 OCTOBER 31, SIM-777; DOCKET: of FUEL STORAGE - 19H 1 н 89*6*[70-82

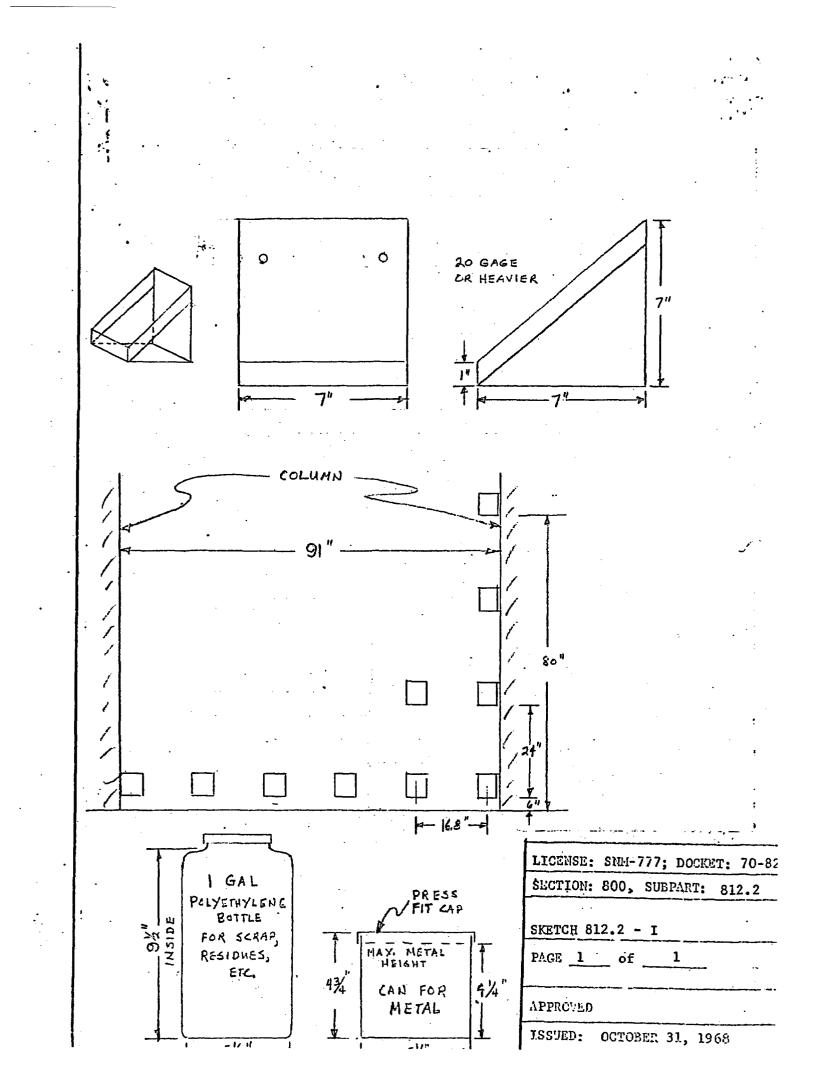
	Page 1 of 1
	Issued 2/6/70
LICENSE: SNM-33 & SNM-777, Docket: 70-36 & 70-820 SECTION: 800 - FUEL FABRICATION OPERATION	Supersedes 10/31/68
Subsection: 810 - Storage Subpart: 812 - 19H Fuel Storage Area	Approved
812.2 - High Enrichment Uranium Metal Storage	Amendment No.

812. High Enrichment Uranium Metal Storage

1. Description

These racks will be used primarily for the storage of high enrichment uranium metal after unloading from the as received shipping container and prior to processing. Miscellaneous process scrap, residues and other such material in bottles or cans may also be stored on this type of arrangement. Racks are formed by individual holders placed on an existing concrete block wall. Other walls of this type may be provided at a later date and these other walls willbe constructed of mortored 8" high density concrete blocks, or equivalent, to insure effective isolation. See Sketch 812.1-I.

Uranium metal will be stored in as received containers. These containers will be $5\frac{1}{2}$ "ID x 4-3/4" high (1.85 liters) maximum and will be limited to 10 kgs U-235. Process scrap, residues and other such material will be in 6" ID x 10" high (1 gallon capacity) plastic or metal bottles, jars or cans.


Racks will be constructed with individual holders fastened to a concrete block wall. These holders will be 7"x7"x7"-20 gage or heavier welded steel with two or more powder actuated bolts holding them to the wall. Individual holders will be arranged in a 4x12 arrangement with 16.8" center to center side separation and 24" center to center to p to bottom separation.

Details of this arrangement are shown on Sketch 812.2-I.

2. Nuclear Safety

Cans for metal provide a safe volume when limited to 10 kgs U-235. The 1 gallon bottle is safe for densities up to and including 3.2 grams U-235 per cubic centimeter. Containers meet the maximum unit quantities listed in Table V, LA-2063, Groups of containers on each wall form planar arrays which are separated by 8" to 12" of high density concrete. As stated on page 41, LA-2063, "two arrays are effectively isolated from one another if the arrays are completely separated by concrete at least 8" thick".

*Indicates Change

I. DESCRIPTION

- 1. The maximum size container will be 1 gallon (6" OD x 10").
- 2. Holders (ports) are spaced 16.8" side-by-side and 24" top to bottom.

3. Arrays will be isolated in accordance with the criteria of Subpart 303.2.3.

II. NUCLEAR SAFETY OF INDIVIDUAL UNITS

Metal will be stored in 1.85 liter cans limited to 10 Kgs U-235 each. A 1.85 liter volume is subcritical for U-235 densities not exceed in 10 Kgs U-235 per liter as shown on Fig. 9, TID-7028. A mass of 10 Kgs U-235 is subcritical for densities greater than 225 Kgs U-235 per liter as shown on Fig. 8, TID-7028. Therefore, 10 Kgs U-235 in a 1.85 liter volume is subcritical. A one (1) gallon volume is nuclarly safe for material with a density not exceeding 3.2 kg per liter as shown in Table 309-I.

111. INTERACTION CALCULATIONS

The nuclear safety of a planar array of units on a wall will be evaluated using the solid angle method. The most reactive unit which will be stored in this arrangement will be a one gallon bottle.

- 1. Contribution from Units Above and Below Centermost Unit (#1 Units)
 - r = 3", h = 19" $\Omega_{-} = 2\pi(1-\cos \theta)$ where $\tan \theta = \frac{r}{h} = \frac{3"}{19"} = .158$ = 6.28 (1-.988) = 6.28 (.012) cos $\theta = .988$ = .075 Ω_{-} (Total) = 2 x Ω_{-} = 2 x .075 = .15 steradians

2. Contribution from Units on Each Side ($\frac{\mu}{r}$ 2 Units)

	_
LICENSE: SNM-777,	
DOCKET: 70-820	<u> </u>
SECTION: 800, Subpart 812.2	
Nuclear Safety Evaluation	•
High Enrichment Uranium	
Metal Storage	
Page 1 of 3	
APPROVED:	
ISSUED: October 31, 1968	
SUPERSEDES: NEW	

$$d = 6^{u}, L = 10^{u}, L/2 = 5^{u}, h = 14^{u}$$

$$\Omega_{2} = \frac{2d}{h} \sin e$$

$$= \frac{12^{u}}{14^{u}} (.336)$$

$$= \sin e = .336$$

$$= .288$$

$$\Omega_{2} (Total) = 2 \times \Omega_{2} = 2 \times .288 = .576 \text{ Steradians}$$
3. Contribution from Nearest Units in Next Row (#3 Units)

$$a = diagonal = \sqrt{52+10^{2}} = \sqrt{136} = 11.7^{u}, b = diamater = 6^{u}, q = 23.5^{u}$$

$$h = 19^{u}, r = 14^{u}$$

$$\Omega_{-3} = \left(\frac{4b}{(23,5)^{2}}\right) \cos e$$

$$= \text{ there tan } e = \frac{r}{h} = \frac{14^{u}}{15^{u}} = .737$$

$$= \frac{(11.7x6)}{(23.5)^{2}} (.805) = \frac{70.2}{552} (.805)$$

$$= .127 \times .805 = .102$$

$$\Omega_{-3} (Total) = 4 \times \Omega_{3} = 4 \times .102 = .408 \text{ steradians}$$
4. Contribution from Next Nearest Units in Next Row (#4 Units)

$$a = diagonal = 11.7^{u}, b = diameter = 6^{u}, q = 45^{u}, h = 43^{u}, r = 14^{u}$$

$$\Omega_{-4} = \left(\frac{4b}{(47)^{2}}\right) \cos e$$

$$= \text{ where tan } e = \frac{r}{h} = \frac{14^{u}}{43^{u}} = .326$$

$$= \frac{(11.7x6)}{(45)^{2}} (.950) = \frac{70.2}{2025} (.950)$$

$$= .0347 \times .95 = .033$$

$$\Omega_{-4} ((Total)) = 2 \times \Omega_{4} = 2 \times .033 = .066 \text{ steradians}$$
5. Contribution from Nearest Units in Second Row ("5 Units)

$$a = diagonal = 11.7^{u}, b = diameter = 6^{u}, q = 36.5^{u}, h = 31^{u}, r = 14^{u}$$

$$\Omega_{-5} = \left(\frac{ab}{(q^{2})} \cos e$$

$$\text{ where tan } e = \frac{r}{h} = \frac{14^{u}}{31^{u}} = .452$$

$$= \left(\frac{11.7x6}{(36.5)^{2}} (.911) = \frac{70.2}{1330} (.911)$$

$$= .053 \times .911 = .048$$

$$\Omega_{-5} (Total) = 4 \times \Omega_{-5} = 4 \times .048$$

$$= .192 \text{ steradians}$$

$$\frac{LICEMEE: SIMI-777; DOCKET: 70-62:}{SECTION: 800, SUBPANT: 812.2}$$

$$\frac{Neb}{RACE} Z \text{ of } 3$$

ŧ

APPROVED

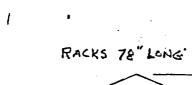
ISSUED: OCTOBER 31, 1968

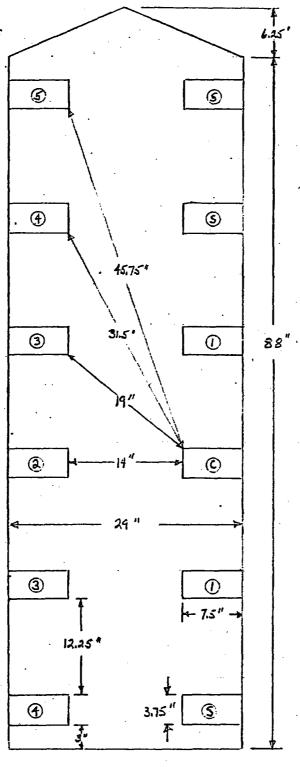
- 6. Contribution from Next Nearest Units in Second Row (=6 Units)
 - a = diagonal of unshielded portion = 8.5", b = diameter of unshielded
 portion = 3"
 - q = 51.5", h = 48", r = 14" $f = f = \frac{ab}{(q^2)} = \cos e \qquad \text{where } \tan e = \frac{r}{h} = \frac{14"}{48"} = .292$ $= \frac{(8.5x3)}{(51.5)^2} (.860) = \frac{25.5}{2650} (.860) \qquad \cos e = .960$ $= .00964 \times .96 = .00925$

- $-\Omega_{-6}$ (Total) = 4 x Ω_{-6} = 4 x .00925 = .037 steradians
- 7. Contribution from All Other Units in Array
 - All other units in the array are shielded.
- 8. Total Interaction

Total $\Omega = \Sigma \Omega_1$ (Total) + ... + Ω_{-6} (Total) = 1.43 steradians

9. Allowable Interaction


From Figure XVII, K-1019, Rev. 5, the allowable interaction for a 4.8 liter (approximately 1 gallon) volume is 1.9 steradians


IV. CONCLUSIONS

The storage arrangement is nuclearly safe.

LICENSE: SNM-777, Docket:70-820
SECTION: 800, Subpart 812.2
Nuclear Safety Evaluation -
High Enrichment Uranium
Metal Storage
Page 3 of 3
APPROVED:
ISSUED: OCTOBER 31, 1968
SUPERSEDES: NEW
•

	ITAIS THE ALL AND	
	UNITED NUCLEAR	PAGE 1 of 1
LICENSE:	SNM-33, Docket: 70-36 SNM-777, Docket: 70-820	Approved
SECTION:	800 - FUEL FABRIGATION OPERATION a: 810 - Storage	ISSUED February 6, 1970
Subpart:	812 - 19 H Fuel Storage Area	ISSUED FEDELARY 0, 1970
	812.3 - High Enrichment Alley Storage	SUPERSEDES October 31, 1968
812.3 <u>F</u>	IIGH ENRICHMENT ALLOY STORAGE	
1	. <u>Description</u>	
	These racks will be used to store U-AL al be in the form of pieces, melting splatte core punching, etc. or cast ingots or rol maximum, will be placed end-to-end formin There will be two such arrays side-by-sid in this Storage Area. See Sketch 812.1-I ment.	er, residues left from led slabs. Two racks, g individual arrays. e separated by 10 feet
· · · .	The small pieces will'be held in metal to are constructed of 1/16" aluminum with 3" Large pieces (ingots and slabs) will be 1 ness and width do not exceed 18 sq. inches	x6"x16" inner dimensions. imited so that the thick-
	Docks will be constructed of 2/161 eletter	
1	Racks will be constructed of 3/16" slotted The outside will be covered with a thin m to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bolt	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the
	The outside will be covered with a thin mo to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts.
. 2	The outside will be covered with a thin mo to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bolt Details of construction are shown on Sketo	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts.
*	The outside will be covered with a thin me to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bolt	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts. ch 812.3-I.
•	The outside will be covered with a thin mo to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bold Details of construction are shown on Sketce . <u>Nuclear Safety</u> The tote boxes or the ingot or slab geomet section for the material to be stored. Th storage arrangement is evaluated in the at	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts. ch 812.3-I.
•	The outside will be covered with a thin mo to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bold Details of construction are shown on Sketce . <u>Nuclear Safety</u> The tote boxes or the ingot or slab geomet section for the material to be stored. Th storage arrangement is evaluated in the at	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts. ch 812.3-I.
•	The outside will be covered with a thin mo to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bold Details of construction are shown on Sketce . <u>Nuclear Safety</u> The tote boxes or the ingot or slab geomet section for the material to be stored. Th storage arrangement is evaluated in the at	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts. ch 812.3-I.
•	The outside will be covered with a thin mo to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bold Details of construction are shown on Sketce . <u>Nuclear Safety</u> The tote boxes or the ingot or slab geomet section for the material to be stored. Th storage arrangement is evaluated in the at	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts. ch 812.3-I.
•	The outside will be covered with a thin mo to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bold Details of construction are shown on Sketce . <u>Nuclear Safety</u> The tote boxes or the ingot or slab geomet section for the material to be stored. Th storage arrangement is evaluated in the at	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts. ch 812.3-I.
*	The outside will be covered with a thin me to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bold Details of construction are shown on Sketce . <u>Nuclear Safety</u> The tote boxes or the ingot or slab geomet section for the material to be stored. The storage arrangement is evaluated in the at Evaluation.	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts. ch 812.3-I.
•	The outside will be covered with a thin me to provide 14" edge-to-edge and 12-1/2" to between ports. Ports are long troughs run of the rack with a maximum 3-3/4"x7-1/2" of with 16 gage steel plates welded to them a length of each opening to provide closures of the tote boxes or ingots or slabs. Rac floor by bolting with powder actuated bold Details of construction are shown on Sketce . <u>Nuclear Safety</u> The tote boxes or the ingot or slab geomet section for the material to be stored. The storage arrangement is evaluated in the at Evaluation.	etal (24 gage or heavier) op to bottom separation nning the entire length opening. Steel hasps are welded along the s which ensure retention cks are fastened to the ts. ch 812.3-I.

.

LICENSE: SNM-777; DOCKET: 70-8:
SECTION: 800, SUBPART: 812.3
<u>SKETCH 812.3 - I</u> PAGE <u>1</u> of <u>1</u>
APPROVED
ISSUED: OCTOBER 31, 1968

23 pgs w/k enterety

. * *

•

.

Ex. 4

.

• • • •

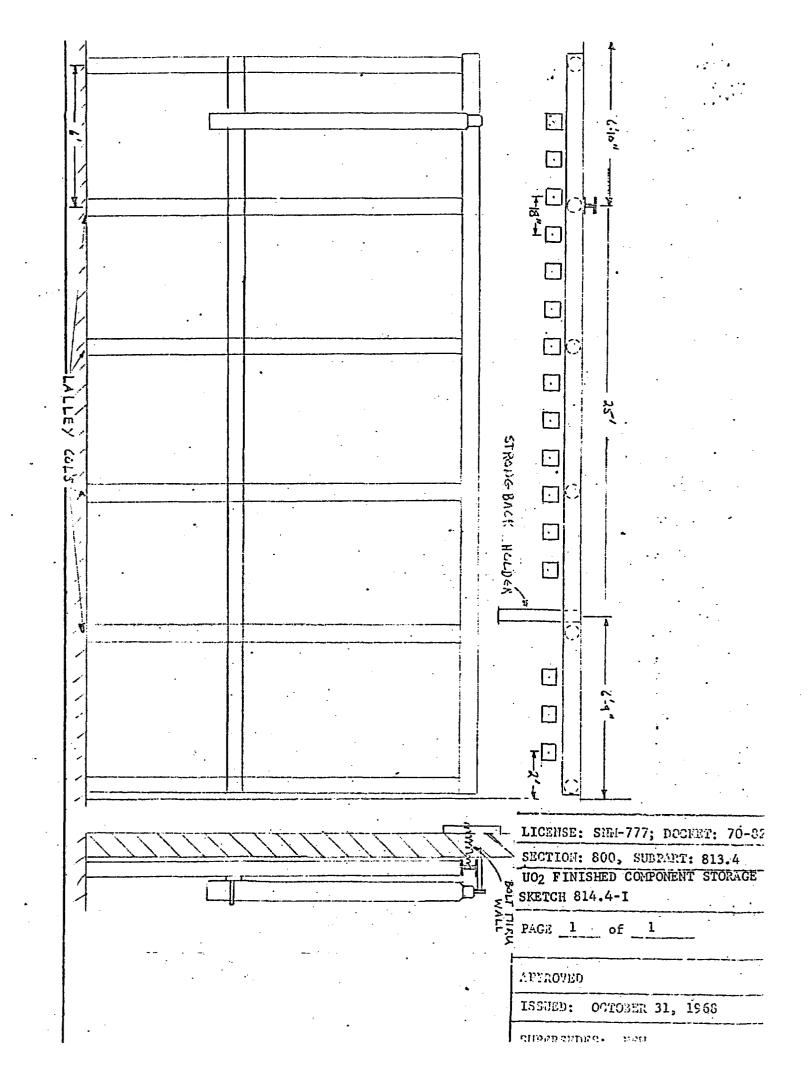
CORPORATION	PAGE 1 OF 1
LICENSE: SNM-777, Docket: 70-820 -SECTION: 800 - FUEL FABRICATION OPERATION	Approved
-SECTION: 800 - FUEL FABRICATION OPERATION Subsection: 810 - Storage Subpart: 814 - Clad SNM Storage	HSUED OCTOBER 31, 1968
814.4 - Low Enrichment UO ₂ Finished Component Storage	SUPERSEDES NEW
	<u> </u>

814.4 Low Enrichment UO, Finished Component Storage

1. Description

Finished UO₂ components will be stored along the north wall of Building 50H. The rack contains spaces for 16 components on 18" centers. This arrangement consists of hanging components from 2" x 1-1/4" steel bars which are welded on 18" centers to an 8" x 8" wide flange H beam. The H beam is supported from the floor by six 5" Schedule 40 steel pipes and secured through the cinder block wall in six locations. An adjustable clamping bar contains each component at its bottom fitting to prevent it from coming into contact with adjacent fuel elements.

Structural calculations indicate that the storage arrangement would support a total of 13,600 lbs. or 16 components weighing 850 lbs.


Details of this storage arrangement are shown on Sketch 814.4-I.

. Nuclear Safety

Individual components will be nuclearly safe by themselves. The solid angle subtended by the centermost component in the array when one other component is in transit is

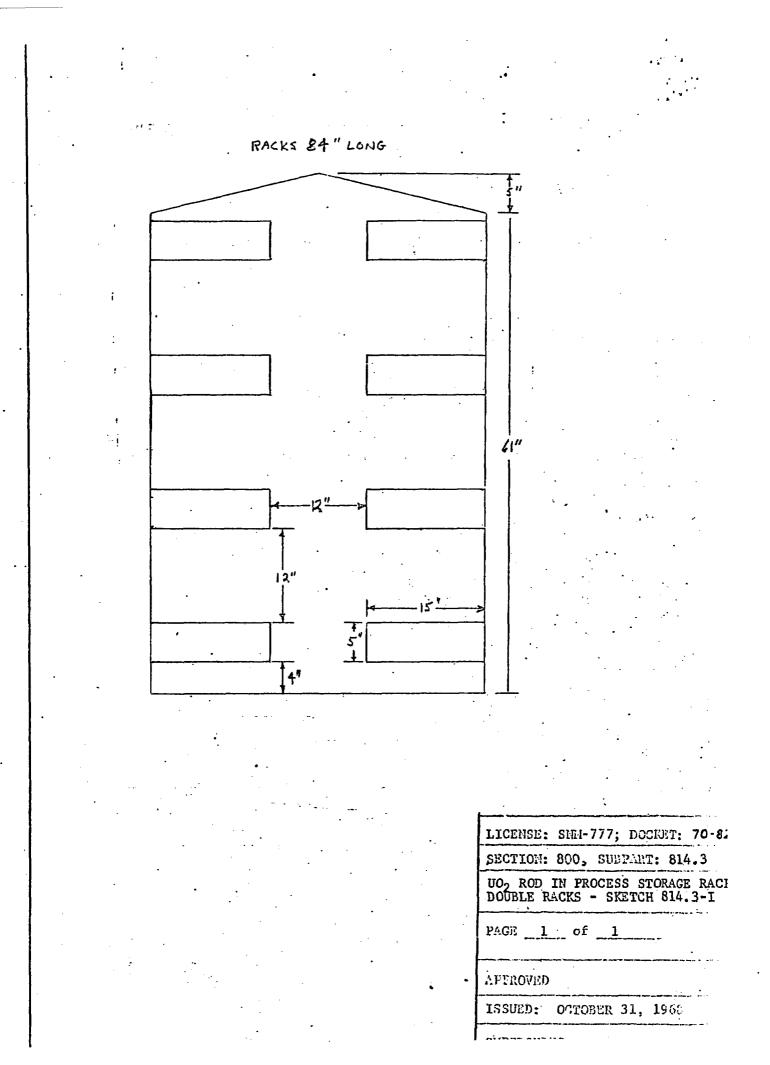
•	Type of Component			<u>So</u> 1:	ld Angle	
. •	Dresden	•		1.35	steradians	
•	Yankee	•	•	2.4	stèradians	

No more than one (1) component will be permitted to be in transit at any one time. Other SNM bearing material in the general vicinity of this rack will be spaced at least four (4) feet from the rack.

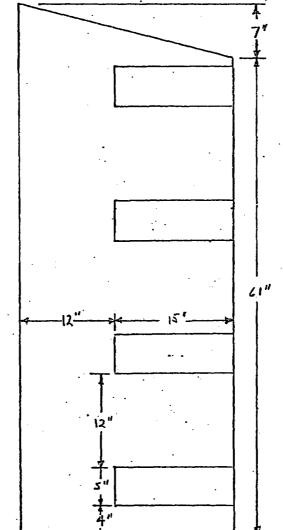
CORPORATION	PAGE 1 of 1	
LICENSE: SNM-777, Docket: 70-820 SECTION: 800 - FUEL FABRICATION OPERATION Subsection: 810 - Storage Subpart: 814 - 50 H Storage	Approved ISSUED October	31, 1968
814.3 - Low Enrichment UO ₂ Rod Inprocess Storage	SUPERSEDES New	•
814.3 Low Enrichment UO, Rod Inprocess Storage	· .	

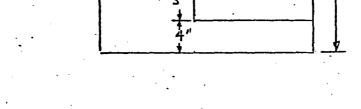
I. <u>Description</u>

These racks will be used to store UO₂ rods not exceeding 5% enriched during processing. They will be placed individually or in groups formed by placing racks end-toend but never side by side.


Rods are contained in modules for ease in handling. These modules are open end troughs or channels made of 1/16" or 16 gage stainless steel. 3/8" diameter drain holes are placed 4" apart approximately 9/16" above the module bottom along the entire length of the module. 16 gage safety bars or lids may be placed over the top of the module for product protection. Modules have 1-1/2"x 2-3/4" x various length inside dimensions.

Racks are constructed of $1" \ge 1/8"$ frame steel angle welded together. The outside is covered with at least 20 gage steel to provide 12" edge-to-edge and top to bottom separation between ports. Ports are long troughs running the entire length of the rack with a maximum 5" $\ge 15"$ opening. Steel hasps with 16 gage steel plates welded to them are welded along the length of each opening to provide closures which ensure retention of the modules and tubes. These racks may form one or two planer arrays.


Details of construction are shown on Sketch 814.3 - I and - II.


2. Nuclear Safety

Under normal conditions, these racks are unmoderated and unreflected and are nuclearly safe. They are also safe under accident conditions of optimum water moderation and complete water reflection. The ports or openings are safe when filled with uranium not exceeding 2.8% enrichment. The storage of higher enrichments require reduced opening sizes so the material is safe under accident conditions. Details of their nuclear safety are set forth in Nuclear Safety Evaluation 814.3.

LICENSE: SIM-777; DOCKET: 70-8:
SECTION: 800, SUBPART: 814.3
UO2 ROD IN PROCESS STORAGE RAC SKETCH: 814.3-11
PAGE <u>1</u> of <u>1</u>
APPROVED
ISSUED: OCTOBER 31, 1963
נונטים מיוטוים מווימים מיוטוים

I. <u>DESCRIPTION</u>

- 1. Rods will be stored in metal modules.
- 2. Up to 15 modules (3x5) may be stored in each port opening.
- 3. Ports are separated 12 inches edge-to-ege.
- 4. There will be <u>no</u> hydrogeneous material (e.g., paper, polyethylene, etc.) with the rods or modules in each port.
- 5. SNM will be restricted to UO2 pellets with enrichments not exceeding 5.0% which are encased in metal (usually zircaloy or stainless steel) to form rods.
- 6. Racks may be placed end-to-end to form planar arrays.
- 7. Individual racks or planar arrays formed by racks placed end-to-end will be separated at least 3 feet side-by-side.

II. NUCLEAR SAFETY OF INDIVIDUAL PORTS

Under normal conditions, there will be no moderating material in the ports with the SNM. As indicated on page 10, TID-7028, "unmoderated uranium cannot become critical if the U-235 content is below 5 or 6 wt. %".

Each port opening has a cross sectional area of.

 $A = 5'' \times 15'' = 75$ sq.in.

This cross section corresponds to a cylinder diameter of 9.78 inches.

A = 75 in² =
$$\frac{\pi d^2}{4}$$
, d = $\sqrt{\frac{4A}{\pi}}$ = $\sqrt{\frac{300}{\pi}}$ = $\sqrt{95.5}$ = 9.78"

This is a safe diameter for enrichments up to and including 2.8% as shown in Figure 309-XII. Therefore, the SNM in a port would be safe even if accidentally flooded to cause optimum water moderation and complete water reflection. If higher enrichments are to be stored, the equivalent diameter will be reduced using Figure 309-XII.

III. INTERACTION CALCULATIONS

Under normal conditions, there will be no moderating material in the ports with the SNM or between the ports. As stated in II above, unmoderated material with enrichments less than 5% cannot become critical.

LICENSE: SNM-777; DOCKET: 70-82
SECTION: 800, SUBPART: 814.3
Nuclear Safety Evaluation - UO2 Rod Inprocess Storage Racks
PAGE <u>1</u> of <u>2</u>
APPROVED
ISSUED: COTOBER 31, 1968

entreperentee.

If accidental flooding should occur, individual ports will be separated by 12 inches of water. Twelve inches of water gives effective neutron isolation as indicated in TID-7016, Rev. 1. Since, the modules, ports and racks have many openings, there is no place for water retention. So; all water would "run out" of the modules, ports, and racks as the flooding subsided. Also, the rack construction is such that in the event of a water spray (eg., sprinkler release, water pipe rupture, etc.), it is considered unlikely that water would enter the modules, ports or racks. Therefore, these racks are safe under accident conditions.

IV. CONCLUSIONS

These racks are safe under normal or accident conditions.

LICENSE	SNM-777, Docket: 70-82
SECTION	800, Subpart: 814.3,
Nuclear	Safety Evaluation -
UO2 Rod	Inprocess Storage Rack
•	· · ·
	Page 2 of 2
APPROVED	
	OCTOBER 31, 1968
SUPERSED	ES: NEW

. DESCRIPTION

- 1. Components will be stored on 18" centers.
- 2. No more than 1 component will be permitted to be in transit at any one time.
- 3. Other SNM bearing material in the general vicinity of the rack will be spaced at least 4 feet from the rack.

II. NUCLEAR SAFETY OF INDIVIDUAL UNITS OR COMPONENTS

Individual components will be subscritical with optimum possible water moderation and complete water reflection. A summary of components and their effective multiplication factors is listed below:

Component Type	Keff	Reference
4		
Dresden	. 591	Nuclear Safety EvalDresden I.F.ESubsection 823
Yankee	.852	Nuclear Safety EvalYankee F.E Subsection 823

III. INTERACTION CALCULATIONS

The nuclear safety of planar array formed by the 16 components in a line will be evaluated using the K - Λ method.

1. Dresden Fuel Elements

h = active fuel length = 103.25", d = side dimension = 4.38", e-e = 18" - 4.38" = 13.62"

 $\lambda = \frac{h}{d} = \frac{108.25''}{4.38''} = 24.7, q = \frac{e-c}{d} = \frac{13.62''}{4.38''} = 3.1$

 $\hat{\Lambda}_{f}$ = .035 from Fig. F-1.1, γ -1272

Since the rack forms a planar array, the centermost element sees only two other elements in the array--the ones on each side of it. Assuming one element in transit at the same spacing, the centermost unit sees three elements.

 $\Omega_{T} = 4 \pi \bar{\Omega}_{f} x$ number elements .

 $= 12.56 \times .035 \times 3 = 1.35$ steradians

LICENSE: SNM-777; DOCKET: 70-82
SECTION: 800, SUEPART: 814.4
Nuclear Safety Evaluation - UO ₂ Finished Components Storage
PAGE 1 of 2
&P2ROVED
ISSUED: CCTOBER 31, 1968
· · · ·

SUPERSEDES: NEW

III. INTERACTION CALCULATIONS

1. Dresden Fuel Elements (Continued)

From the Nuclear Safety Evaluation - Dresden I Fuel Elements (Subsection 823), the effective multiplication factor for one water moderated, unreflected element is

Keff = 0.306

Therefore,

Allowable n = 9-10K = 9-3.06 = 5.94 steradians

This rack is safe for these components.

2. Yankee Fuel Elements

h = active fuel length - 91", d = side dimension = 7.615", e-e = 18" - 7.615" = 10.385"

$$\lambda = \frac{h}{d} = \frac{91''}{7.615''} = 12, \ \sigma = \frac{e-e}{d} = \frac{10.335''}{7.615''} = 1.4$$

 $\hat{n}_{f} = .063 \text{ from Fig. F-1.1}, / -1272$

Since the rack forms a planar array, the centermost element sees only two other elements in the array--the ones on each side of it. Assuming one element in transit at the same spacing, the centermost unit sees three elements.

 $\Omega_T = 4\pi \bar{n}_F x$ no. units = 12.56 x .063 x 3 = 2.4 steradians

From the Muclear Safety Evaluation - Yankee Fuel Elements (subsection 823) the effective multiplication factor for one water moderated, unreflected element is

Keff = 0.595

Therefore,

Allowable n = 9-10K = 9-5.95 = 3.05 steradians

This rack is safe for these components.

LICENSE: SNM-777; DOCKET: 70-82
SECTION: 800, SUBPART: 814.4
Nuclear Safety Evaluation - UO ₂ Finished Component Storage
PAGE of
APPROVED
ISSUED: OCTOBER 31, 1968
A CONTRACTOR OF A CONTRACTOR O

CHITED OPIND C.

, LICENSE:	SNM-777, Docket 70-820	Approvad
<pre>~ SECTION: Subsection:</pre>	800 - FUEL FABRICATION OPERATION 810 - Storage	
Subpart:	815 - 11 H Storage	ISSUED OCTOBER 31, 1968
	815.1 - Low Enrichment UO ₂ Pellet Storage	SUPERSEDES NEW
		L
815.1 Lo	Enrichment UO2 Pellet Storage	
1.	Description	
	UO2 pellets will be stored in fibrepaks, c container packages used with shipping cont horizontally across the floor in one of th	tainers, by placing them
	The pellet packages are stored in troughs crete blocks. The walls are standard conc holes) butted together and not cemented.	crete blocks (with two The block arrangement
	is held in place by angle iron supports ar which are bolted to the floor. This (1/8" used to cover the troughs. Loading and un be done while standing on the concrete blo	cound the outer edge 'thick) steel plates are ploading the troughs will
	located within this storage area.	•••
2.	Nuclear Safety	
T	This storage arrangement provides a safe c material stored in each trough. The solid	ross section for the
•	centermost trough of the array is approxim	ately 1,964 steradians.
	centermost trough of the array is approxim	angle subtended by the ately 1,964 steradians.
	centermost trough of the array is approxim	angle subtended by the mately 1,964 steradians.
	centermost trough of the array is approxim	angle subtended by the mately 1,964 steradians.
•	centermost trough of the array is approxim	angle subtended by the mately 1,964 steradians.
	centermost trough of the array is approxim	angle subtended by the mately 1,964 steradians.
•	centermost trough of the array is approxim	angle subtended by the mately 1,964 steradians.
	centermost trough of the array is approxim	angle subtended by the ately 1,964 steradians.
	centermost trough of the array is approxim	angle subtended by the ately 1,964 steradians.
	centermost trough of the array is approxim	ately 1,964 steradians.
	centermost trough of the array is approxim	ately 1,964 steradians.
	centermost trough of the array is approxim	angle subtended by the ately 1,964 steradians.
	centermost trough of the array is approxim	ately 1,964 steradians.
	centermost trough of the array is approxim	ately 1,964 steradians.
	centermost trough of the array is approxim	ately 1,964 steradians.
	centermost trough of the array is approxim	angle subtended by the mately 1,964 steradians.

- 1. SNM will be in Fibrepaks with inner dimensions of 8-1/2" diameter " and 8" height or boxes with an 8" width and thickness.
- 2. Fibrepaks will be arranged upright, side by side; and boxes will be arranged end to end in troughs.
- 3. Troughs will be separated 12" edge-to-edge.
- 4. SNM will be restricted to UO_2 pellets with enrichments up to end including 2.34%.

II. NUCLEAR SAFETY OF INDIVIDUAL TROUGHS

The SNM in each trough is restricted to a 68 sqaure inch (8.5" x 8") cross sectional area. This cross sectional area corresponds to a cylinder diameter of 9.3"

A = 68 in² =
$$\frac{77 d^2}{4}$$
, d = $\sqrt{\frac{4A}{17}}$ = $\sqrt{\frac{4x68}{47}}$ = $\sqrt{86.6}$ = 9.3 in.

This is a safe diameter for enrichments not exceeding 3.25% as shown in Figure 309-XII.

III. INTERACTION CALCULATIONS

Since the storage arrangement is a planar array, the centermost trough sees only the trough on each side. A row of Fibrepaks placed side by side in a trough form a rectangle of SNM $8'' \times 8.5'' \times 35'$. The solid angle would be

-1 (Total) = 2 x -1 = 2 x .982 = 1.964 steradians.

LICENSE: SNM-777, Docket:70-8
SECTION: 800, Subpart: 815.1
Nuclear Safety Evaluation -
'UO2 Pellet Storage
Page 1 of 2
APPROVED:
ISSUED: OCTOBER 31, 1968
SUPERSEDES: NEW

The geometric buckling for a trough of Fibrepaks is,

a = 8.5" = 21.6 cm, b = 8" = 20.3 cm, c = 35' = 420" = 1066.8 cm Bg² = $\frac{\pi 2}{(a+2\lambda)^2} + \frac{\pi 2}{(b+2\lambda)^2} + \frac{\pi 2}{(c+2\lambda)^2}$ where λ = 2.5 cm from Fig. 3 = $\frac{9.8}{(21.6+5)^2} + \frac{9.8}{(20.3+5)^2} + 0$ = $\frac{9.8}{(26.6)^2} + \frac{9.8}{(25.3)^2} + 0$ = $\frac{9.8}{707.6} + \frac{9.8}{640} + 0 = .0138 + .0153$ = .0291 cm²

Replotting the data from Appendix B and C, DP-1014, for 2.34% enriched UO2 at the minimum critical diameter,

 $Bm^2 = .0115 \text{ cm}^2$, $M^2 = 32.2 \text{ cm}^2$

The effective multiplication factor for a trough of Fibrepaks is

k eff =
$$\frac{1+M^2Bm^2}{1+M^2Bg^2} = \frac{1+(32.2x.0115)}{1+(32.2x.0291)} = \frac{1.370}{1.937} = .707$$

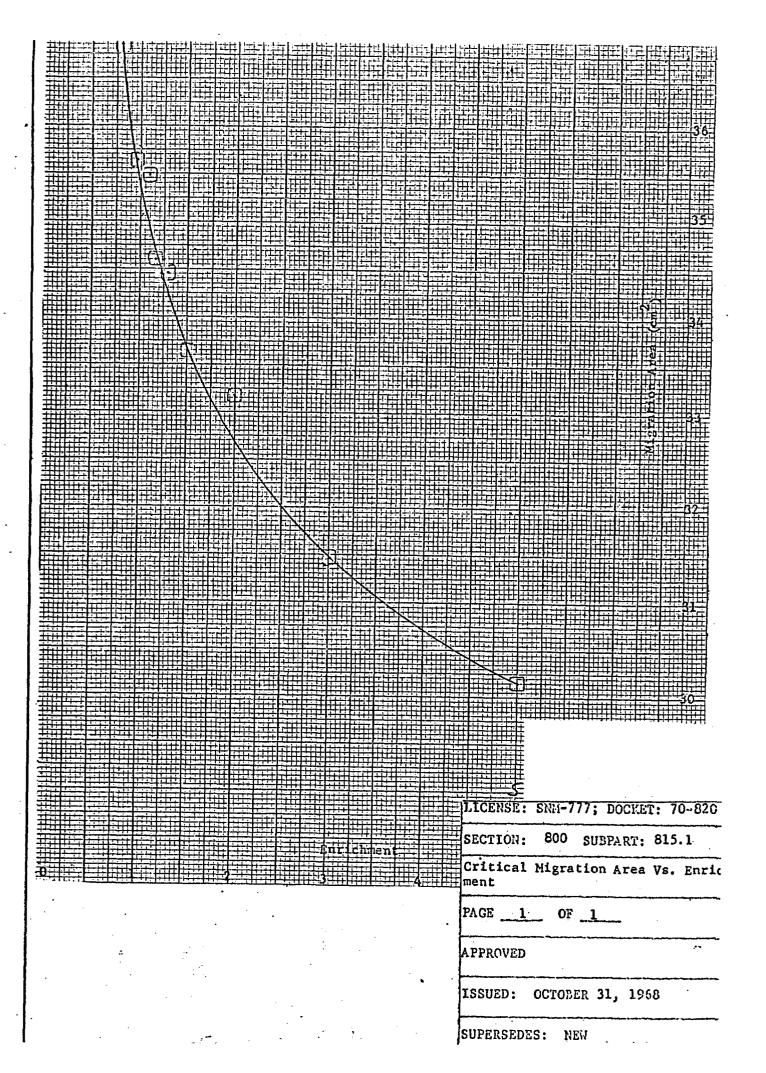
The sllowable solid angle is

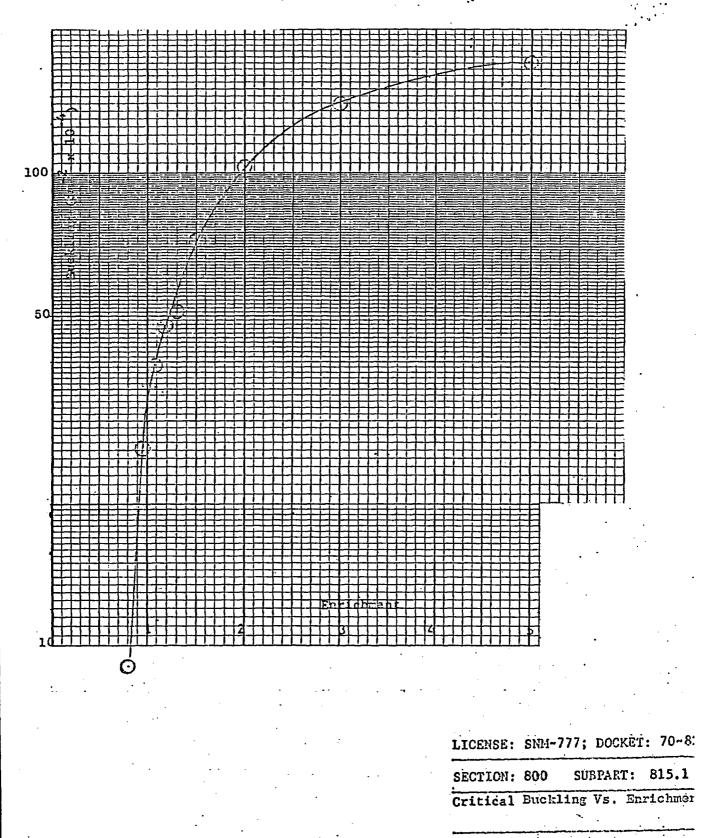
 $(Allowable) = 9-10 \ k = 9-7.07 = 1.93 \ steradians$

IV. CONCLUSIONS

Although the actual solid angle slightly exceeds the allowable solid angle, the system is nuclearly safe since the solid angle method contains a large, though undefined, safety factor.

LICEN	SE: S	M4-77	7; DC	CKET:	70-82
Şecti	0N: 8	00, S	UBPAR	T: 81	5.1
		afety : Stor		ation	-
PAGE	2	of _	2		•
APPRO	עצע	·			
ISSUE	p: 0	CTOBE	R 31,	1958	
SUPER	SEDES	: NC	 \{		


CRITICAL URANIUM OXIDE - WATER SYSTEMS


DATA FROM APPENDICES B & C, DP-1014

	•			•		•	
ENRICHMENT	ROD. DIA. (IN)	AUG. U-235 <u>dens (G/L)</u>	U-235 MASS (Kgs.)	CYL. DIA. (C m)	MIGRATION Anea (cm ²)	BUCKLING (cm ⁻²)	REFLECTOR Savings (cm
• 80	1.2	38.08	149 ·	156	36,85	.000906	6.54
.95	1.0	40.16	27.5	80.6	35.65	.002638	6.50
1.08	1.0	45.66	15.9	63.6	35.48	.003934	6.52
1.17 🦌	0.8	44.99	11.2	56.8	34.61	.004751	6.50
1.30	0.8	49.43	8.68	50.1	34.46	.005109	6.51
1.50	0.6	51.82	6.09	43.4	33.63	.007260	6.53
2.00	0.6	69.10	4.17	34.0	33.17	.010339	6.64
3.00	0.4	81.34	2.71	27.4	31.47	.014056	6.60
5.00	0.3	118.56	2.31	22.3	30.15	.017172	6.66

. .

LICENSE: SNM-777, DOCKET 70-82 SECTION: 800, SUBPART: 815.1 DATA FROM APP. B&C, DP-1014 PAGE 1 of 1 APPROVED: ISSUED: OCTOBER 31, 1968 SUPERSEDES: NEW

PAGE 1 OF 1

APPROVED

ISSUED: OCTOBER 31, 1968

SUPERSEDES: NEW

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C O R P O R A T I O N	PAGE L OT L
LICENSE: SECTION:	SNM-777, Docket: 70-820 800 - FUEL FABRICATION OPERATION	Approvad
Subsection:	810 - Storage	ISSUED October 31, 1968
Subpart:	816 - Coat Storage 816.1 - Low Enriched UO, Rod Mobile Work	
	Tables	SUPERSEDES NEW
	•	MEN
	ſĸġſŢŗġĔĨĊĸĊſĊſĸŧĸŧĸĸŧĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	· · · · · · · · · · · · · · · · · · ·
° 016 1.	TOU ENDIOUED HO BOD MODILE HODE TADLES	
816.1	LOW ENRICHED UO, ROD MOBILE WORK, TABLES	
i	1. Description	
· ;	These carts will be used as mobile wo	
,	cessing of UO ₂ Rods. They also may so for these rods while they are awaiting	
ì	will normally be kept in modules for	
	modules are described in Subpart 814.	
· ·	Carts are constructed of angle iron,	usually 1/2" x 1/2" x 1/8".
	which is covered with a thin metal sk:	in, usually 24 gage or
•	heavier. The cart assembly is welded are designed with a horizontal trough	
	loose rods or rods in modules. Non-si	
	placed in each side of the trough. Ea	ach cart is designed so
	that the cart width and length or add least 12" separation from other SNM.	ed bumpers provide at
		· · · ·
- - -	2. <u>Nuclear Safety</u>	
1	2. <u>Nuclear Safety</u>	afa clab thickness depende
, .	2. <u>Nuclear Safety</u> The troughs will be restricted to a sa	
1	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
!	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being	g processed. Safe slab ng Figure 309-XV. The
! 	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
1	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
•	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
1	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
•	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
•	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
•	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
•	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
•	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
•	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
•	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The
	2. <u>Nuclear Safety</u> The troughs will be restricted to a saing on the enrichment of the SNM being thickness valves will be obtained using	g processed. Safe slab ng Figure 309-XV. The

## SECTION 800 - FUEL FABRICATION OPERATION

## SUBSECTION 820 - PROCESSING

## TABLE OF CONTENTS

SUBPART	821	INTRODUCTION
SUBPART	822	FABRICATION OF ALUMINUM PEATE TYPE ELEMENT ASSEMBLIES 822.1 General Considerations
i i		822.2 Process Description
SUBPART	823	FABRICATION OF STAINLESS STEEL, ALUMINUM, OR ZIRCALOY CLAD TUBULAR TYPE UO, PELLET ASSEMBLIES
\$		823.1 General Considerations
		823.2 Process Description
SUBPART	824	FABRICATION OF ENRICHED URANIUM METAL
	· .	824.1 General Considerations
!		824.2 Process Description
SUBPART	825	FABRICATION OF URANIUM ALUMINUM INTER METALLIC CORES
		825.1 General Considerations
•		825.2 Process Description
		925 3 Cumpart on Auvillerin Oneration

a 21

LICENSE: SNM-777; Docket:70-8:
SECTION: 800, SUBPART:
TABLE OF CONTENTS
Page 1 of 1
APPROVED:
ISSUED: February 6, 1970
SUPERSEDES: October 31, 1968

LICE	NGE •	SNM-777, Docket 70	-820	All Park Charles and Management 2, Speed of State Street Street		
- SECT		800 - FUEL FABRICA		on –	Approvad	
		: 820 - Processing 821 - Introduction			ÍSSUED OCTO	DBER 31, 1968
Subpa	art:	821 - Incroduction			_	
			-		SUPERSEDES	New
		•••		1		
·	and a second state state		الى بۇتىرىكى <del>بىر</del> ىيە بىلىرىيە تىلىرىيە يېرىيە بىلىرىيە يىلىرىيە بىلىرىكى بىلىرىكى بىلىرىكى بىلىرىكى بىلىرىكى بىلى يېرىكى بىلىرىكى بىلىر		· · · · · · · · · · · · · · · · · · ·	
821	INT	RODUCTION	•	÷		
	•	• • •		•		
						e
		· ,	-			
	1.	The subsections whi				
.		and procedures whic SNM bearing compone				
		tations and conside	rations, and	processing in		
		and described in th	e appropriate	e subsections.		
	2.	The use of up to an				
		is authorized for r the following condi		elopment, and	pilot operatio	ons under
			• •			
		2.1 Each 350 gram	-			
Í		2.2 The maximum am U-235 at any e			regulated is	lu kgs
	1	2.3 Each work stat	. –	.*	iece of equipm	aent will
·  .	•	be separated a	minimum of i			
	•	batch or any o	ther SNM;			
	3.	The interaction bet		-		
		Generally, each pro identified as a cri			•	
•		ports or shelves in				
		interaction between has been establishe				
		per square ft. The	Process Area	i Limits are:	•	
		<u>Buildi</u>	ng	Process Ar	<u>ea Limit</u>	
• .		10H		122 Kg		
		І9Н 50Н.	•	1050 Kg	V-235	
		JUR,	• • • • •	5075 Kg	0-235	•
	-	Details concerning		-		-
		Evaluation 821. The not be exceeded reg				· 100 will
				•		
		· •	• •			· .•
		• •	• •	. :	•	
.			•			
	:	•	•	•		
<b>.</b>			· .	•	· .	•
		÷.		· •	· ·	~1

#### I. DETERMINATION OF SAFE SURFACE DENSITY VALUE

A safe surface density value of 175 gms U-235 per sq.ft. of floor area was used. Reference subsection 300.

#### II. PROCESS AREA LIMIT - BUILDING 10H

The Tube Loading Area has a floor area of approximately 788 sq.ft. Assuming that the inprocess storage devices occupy approximately 88 sq.ft. there is approximately 700 sq.ft. as process area.

Process Area Limit = 700 ft.² x 175 gm U-235/ft.² = 122 Kg U-235.

#### III. PROCESS AREA LIMIT - BUILDING 19H

The total floor area is approximately 6600 sq.ft. Assuming that inprocess storage devices occupy approximately 600 sq.ft., there is approximately 6000 sq.ft. as process area.

Process Area Limit = 6000 ft.² x 175 gm U-235/ft.² = 1050 Kg U-235

#### IV. PROCESS AREA LIMIT - BUILDING 50H

The total floor area is approximately 32,175 sq.ft. Assuming that inprocess storage devices occupy approximately 3,175 sq.ft., there is approximately 29,000 sq.ft. as process area.

Process Area Limit = 29,000 ft.² x 175 gm U-235/ft.² = 5,075 Kg U-235.

LICENSE: SNM-777, Docket:70-82(
SECTION: 800, Subpart 821
Nuclear Safety Evaluation-
Process Area Limits
Page 1 of 1
Approved
Issued 10-31-68
Supersedes New

14 PBS with in enterety EX 4

DIVISION General Office Lynchburg, VA.

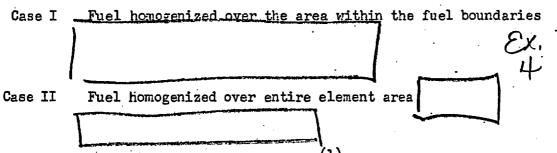
# ATOMIC ENERGY DIVISION

Bullenek

P. O. BOX 1260 Lynchburg, VA. 24505

November 1, 1966

United Nuclear Corp. 365 Winchester Avenue New Haven, Connecticut


ATTENTION: W. A. Cameron

Re: B&W Purchase Order A-27859, 190x807 A CODE 703

Dear Sir:

In accordance with your Mr. Kropp's request, we submit the following information to supplement our letter dated August 17, 1966, on multiplication and migration area values for the BAWTR fuel elements:

Recent calculations for the standard BAWTR fuel element (~______grams U₂₃₅) give the following results:



The above calculations were made using the KATE-1⁽¹⁾, Program for Maxwellian averaged thermal constants,  $MUFT-5^{(2)}$  Fast neutron spectrum program for the fast groups, and  $MANDA-5^{(3)}$  neutron diffusion program. Thirty-four (34) group cross-sections were used.

REFERENCES

 H. J. Amster and J. B. Callaghan, KATE-1, "A Program for Calculating Wigner-Wilkins and Maxwellian Averaged Thermal Constants for the Philco-2000, MAPD-TM-232 (October 1960). United Nuclear Corp.

Page - 2 -

November 1, 1966

(2) H. Bohl, Jr. and A. P. Hemphill, MUFT-5, "A Fast Neutron Spectrum Program for the Philco-2000, WAPD-TM-218 (February 1961).

(3) O. J. Marlowe and M. C. Suggs, MANDA-5, "A One-Dimensional Neutron Diffusion Equation program for the Philco-2000, WAPD-TM-241 (November 1960).

We trust the above will be sufficient, however, if you have any questions, please do not hesitate to contact us.

Yours very truly,

THE BABCOCK & WILCOX COMPANY Atomic Energy Division

R. A. Beal, Purchasing Agent

C. D. Conter Jr. 1200

By C. D. Carter, Jr.

CDC, Jr./cbp

LICENSE: SECTION:	SNM-:777, Docket: 70-820 800 - FUEL FABRICATION OPERATION	Approvad
Subsection:	820 - Processing	
	823 - Fabrication of Stainless Steel	
	Aluminum, or Zircaloy Clad Tul Type UO, Pellet Assemblies	SUPERSEDES NEW
	823,1 - Generál Considerations	
	₽₽₩₽₽₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	2938703 4-72
823.1	GENERAL CONSIDERATIONS	•
· •	cluding 5% enriched UO, fuel mat	od assemblies or clusters with the , Zircaloy, or Aluminum. Indivi- rformed, are shown on Diagram
	2. Operations on pellets will be per assembly fabrication will be per	erformed in Building 10H. Rod and rformed in Building 50H.
i	3. Fuel assemblies which may be fat	pricated under the provisions of
•	this Subsection will be limited	
	ponents: 4.1 Dresden (BWR)	•
	4.2 Yankee (PWR)	•
	4. Safe cross section valves used is using the safe diameter valves a The cross section will be calcul	shown on Fig. 309-XII.
	Safe Cross Section = $\pi x$ (s	safe diameter) ²
• ?		4
	5. Unless stated otherwise, safe va	lues referenced in this Subpart
· ·	will be obtained using the Figur table:	res referenced in the following
٠	Safe Value 5.1 Heterogeneous Diameter	<u>Figure</u> 309-XII
· .	5.2 Heterogeneous lass	309-XIII
	5.3 Heterogeneous Volume	309-XIV
• .	5.4 Heterogeneous Thickness	-309-XV
•	5.5 Homogeneous Diameter	309-XVI
	5.6 Homogeneous Mass	309-XVII
	5.7 Homogeneous Volume	309-XVIII
	5.8 Homogeneous Thickness	309-XIX
2	5.9 Geometric Variables for Specified U235 Enrichmen	its 309-XX
•	5.10 Masses for Specified U23 Enrichment	309-XXI
-	5.10 Masses for Specified U23	
	5.10 Masses for Specified U23 Enrichment 5.11 Safe Cylinders for any	309-XXI

CONTERNATION INCOMPANY PAGE 2 of 2 CORPORATION SNM-777, Docket: 70-820 LICENSE: Approvad SECTION: 800 - FUEL FABRICATION OPERATION Subsection:820 - Processing ISSUED October 31, 1968 823 - Fabrication of Stainless Steel, Aluminum, or Zircaloy Clad Tubular Type UO, Pellet Assemblies 823.1 - General Considerations SUPERSEDES NEW 6. K eff values will be determined by individual Nuclear Safety evaluations included in this Subpart (823).

	CORPORATION	PAGE 1 OF 3
LICENSE: SECTION: Subsection:	SNM-777, Docket: 70-820 800 - FUEL FABRICATION OPERATION 820 - Processing 823 - Fabrication of Stainless Steel,	Approvad ISSUED OCTOBER 31, 1968
Subpart:	Aluminum, or Zircaley Clad Tubular Type UO2 Pellet Assemblies 823.2 - Process Description	SUPERSEDES New
823.2 PROC	CESS DESCRIPTION	
- 1.	Receive Pellets	
	Pellets will be received and handled in ac 810.	cordance with Subsection
· 2.	Méasure and Weigh Stack	
•	This is a dry operation and will be limited mass. If pellets are damaged, they will be geneous diameter or volume or cross section be placed in a container and limited to a s If the pellets are sufficiently damaged so the $UO_2$ powder will be placed in safe homoso or cross section containers or placed in a a safe homogeneous mass.	e placed in safe hotero- n containers or they will safe heterogeneous mass that UO2 powder is found, geneous diameter or volume
3.	Pellet Dryness Test	
	A few representative pellets are removed for tested for dryness. This operation will be heterogeneous mass.	com each batch or lot and a limited to a safe
, 4.	Load and Weld	
•	Pellets are loaded into tubes and the end p the tubes during this operation. It will b heterogeneous mass or a fixture may be used heterogeneous cross-section.	e limited to a safe
5.	Machine or Hand Finish Welds	
٠	This operation is usually performed on indi a time. It is limited to a safe heterogene	vidual loaded rods one at
6.	Inspect	
	This operation will be limited to a safe he	terogeneous mass,
. 7.	Zyglo Test	
	Dye penetrantis brushed on the welded end c Test materials are removed by dipping the e liquid. Since only the ends are placed in to 2 inches), this operation is limited to	nds of the rods in a a liquid (approximately 1
8.	Leak Test by Alcohol Immersion	
•	Prior to leak testing, rods are immersed in operation and is limited to a safe hetcorog are held by a fixture or the equipment in a section.	eneous mass or the rods
. 9.	<u>Helium Leak Test</u>	
	This operation is dry and performed in leak vessel is limited to a safe heterogeneous r retained in a safe heterogeneous cross-sect	ass or the rods are
	· · · · ·	

۲ ۱

	CORPORATION	PAGE 2 OF 3	
LICENSE: -SECTION:	SNM-777, Docket: 70-820 800 - FUEL FABRICATION OPERATION	 Approvad	
	820 - FOLL FABRICATION OFERATION 820 - Processing 823 - Fabrication of Stainless Steel,	ISSUED OCTOBER 31,	1968
Subpart:	Aluminum, or Zircaley Clad Tubular Type UO2 Pellet Assemblies 823.2 - Process Description	SUPERSEDES New	
Suppare:			

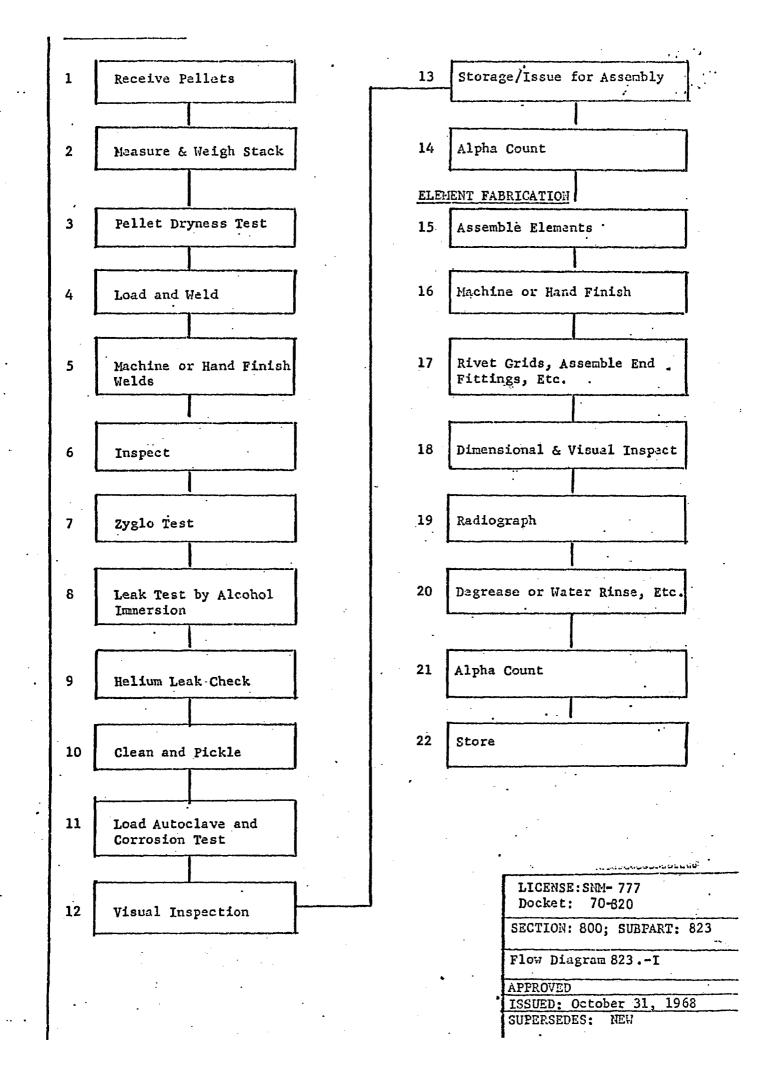
#### 10. Clean and Pickle

Typically, the sequence of operations are a detergent clean, a water rinse, an acid dip, a cold water and/or a hot water rinse, and a warm water soak. Tanks are spaced close together to allow quick transfer and each is roughly 1-1/2 ft. square and approximately 10 ft. deep. All SNM material is clad and fixtured. Fixtures are moved from tank to tank via an overhead crane one at a time. Only one fixture at a time is allowed in movement and one other fixture is allowed in one of the other tanks at any one time. Fixtures are designed to hold only a safe mass of SNM, or the SNM is retained in a safe cross-section, or the fixture has a k eff (bare)  $\leq 0.65$  and k eff (reflected) < 0.9. The safe geometry for the fixture will be determined neglecting the affects of the cladding.

Fixtures are further designed to preclude accidental insertion of two fixtures into one tank. An acid tank is assumed to have enough acid to dissolve one batch completely. Acid tanks are continuously . agitated, usually by air bubbling, which insures uniform mixing and pickling. No uranium is allowed in the solutions. Pickling solutions are checked, usually by sampling, before the start of each shift to determine how spent they are. If there is reason to believe that the solution contains SNM, the solution is sampled and analyzed for uranium content prior to processing additional SAM. Material is inspected after pickling. Any over-pickling or penetration to SNM 'causes rejection of the material and sampling of the pickle solution. In addition, the pickle lines are equipped with an automatic withdrawal system. The system will be designed to insure automatic with-drawal of the SNM material or dumping of the acid even in the event of loss of primary power. Therefore, the insertion of a fixture containing SNM into a solution containing SNM or the dissolution of the SNM, is considered unlikely. In addition, acid tanks are equipped with an automatic dump system to preclude SNM being in the tanks for extended periods due to electrical or mechanical failure. An example of a k eff calculation for a fixture of this type is shown in NDEO-1077.

- 11.
- Load Autoclave and Corrosion Test

After pickling, the fixture containing SNM may undergo a water soak (if required), then is loaded into an autoclave and corrosion tested. Again, individual fixtures will hold only a safe mass of SNM, or the SNM is retained in a safe cross-section, or the fixture has a k eff (bare)  $\leq 0.65$  and k eff (reflected) < 0.9. The interaction between autoclaves is approximately 1.82 steradians with 2.5 steradians allowed.


12. Visual Inspection

This operation is limited to a safe heterogeneous mass.

13. Storage/Issue for Assembly

Storage of rods will be in accordance with Subsection 810. During issue for assembly, loose rods will be retained in a safe heterogeneous cross-section container or limited to a safe heterogeneous mass.

۲۰۰۰۰۲ - Bara - Brance, 1961 - Turker - Land - Taraka	CORPORATION	PAGE 3 of 3
LICENSE: SECTION:	SNM-777, Docket: 70-820 800 - FUEL FABRICATION OPERATION	Approvad
	820 - Processing 823 - Fabrication of Stainless Steel,	ISSUED OCTOBER 31, 1968
	Aluminum, or Zircaley Clad Tubular Type UO2 Pellet Assemblies	SUPERSEDES
Subpart:	823.2 - Process Description	New
14.	Alpha Count	<b>6</b>
-	Prior to assembly, rods may be alpha counted This operation is limited to a safe hercorog	
15.	Assemble Elements	· ·
,	Rods are assembled with non-SNM components a into assemblies. This is a dry operation an mass or the assemblies will have a k eff (b (reflected) $\leq 0.9$ .	nd limited to a safe
16.	Machine or Hand Finish	
	If required, excess well material may be mad blies hand finished. This operation is limi assemblies with a k eff (bare) $\leq 0.65$ and k	ted to that number of
17.	Rivet Grids, Assemble End Fittings. etc.	
	This operation is limited to that number of $< 0.65$ and k eff (reflected) $< 0.9$ .	assemblies with k eff (bare
18.	Dimensional and Visual Inspect	•
	Same considerations as Subpart 823.2.17.	•
19.	Radiograph	
	Same considerations as Subpart 823.2.17.	
20.	Degrease or Water Rinse, etc.	
•	A final cleaning operation is performed. Th will be limited such that k eff (bare) $< 0.6$ < 0.9.	
21.	Alpha Count	•
	Same considerations as Subpart 823.2.17. ;	• • •
22.	Store	
· ·	Assemblies will be stored in accordance with	Subsection 810.
		· · · · · · · · · · · · · · · · · · ·
		•
•		
· .		
	•	
• •		
•		
•.		



A. Pellet Description: 0.482" Ø x 0.6"

1.0" long

B. Rod Description:

1.	<u>Type Rod</u> Free End	Fuel Stack Length 108.25 + .50	<u>Tube Length</u> 114.70"Length, Spring,Disc	Wght. 8#	Fuel Loading/Rod 3251 + 98 g (67.0 g U-235)
	Fixed Type	108.25 ± .50	114.70"Length, Spring, Disc	8#	3251 ± 98 g (67.0 g U-235)
	Remov. Type 1	108.25 <u>+</u> .50	114.70"Length, Spring, Disc	8#	3251 + 98 g (67.0 g U-235)
	*Remov. Type 2	108.25 ± .50	114.70"Length, Spring, Disc	8₽	3175 <u>+</u> 95 g
	PPC Type	108.25 + .50	114.70"Length, Spring, Disc	.8₽	3251 + 98 g (50.7 g U-235)
	Segmented	17.54 + .05 5 per Rod	114.70"Length, Spring, Disc	<b>1</b> 0 <b>∦</b>	3013 + 90 g (62.1 U-235 Total)
		12.63 ± .050 1 per Rod		÷	
Ins	strumented	None	114.70"Length, No Springs,Disc		None
*Uranium Dioxide-Gadolinia (64.1 g U-235) (55.0 g Gd ₂ 0 ₃ )					

2. Zircaloy-2 Tubing

Std Tube: 0.0370" ± .0025" W.T. x 0.4925" ± .0020" I.D. Instru. Tube: 0.0293" ± .0025" W.T. x 0.540" ± .002" I.D.

C. Element Description

4.38" x 4.38" x Length Over Active Fuel - 108.25" Length Between Grids - 115.33" Length Overall - 134.35" 36 Rods Per Element

1.Type ElementRequired/Batch No 6Type 153Type 230Instrumented13

LICENSE: SMI-777; DOCKET: 70-82
SECTION: 800, SUBPART: 823
Nuclear Safety Evaluation - DRESDEN-1 Fuel Elements (BVR)
PAGE <u>1</u> of <u>6</u>
APPROVED
ISSUED: OCTOBER 31, 1968
SUPERSEDES: NEW

2.	Type Rod	No Required Per Type I Element	No Required Per Type II Element	No Requirea rec Instrument Element
	Free End	20	20	20
	Fixed Type A	8	8	8
	Remov. Type 1	1	-	-
	Remov. Type 2	-	1	-
	PPC Type	6	6	6
	Segmented	1	. 1	1
	Instrument	-	-	1

### D. General Information

- 1. Enrichment
  - a. Normal Fuel 2.34 ± 0.05 w/o
  - b. Segmented Fuel  $2.34 \pm 0.05$  w/o
  - c. PPC Fuel 1.77 ± 0.05 w/o

With Strate and St

and warris will fright much after the

d. Gadolinia Content 1.74  $\pm$  0.05 w/o (Remov.Type 2 Pellets Only With 2.34  $\pm$  0.05 w/o U-235)

Note: Free End, Type A, Remov. No. 1 and Remov. No. 2 Know as "Normal"

2. Pellet Density: 93.5% Theoretical + 2.0%

#### II. ASSUMPTIONS

- A. The design reactivity information contained in NDEO-1033 is applicable and will be used to determine effective multiplication factors  $(K e^{2} = 1.21 \text{ and } M^{2} = 39 \text{ cm}^{2})$
- B. Calculations will be performed using the following equations:

$$B^{2} = \frac{\pi^{2}}{(\text{length} + 2\delta)} + \frac{\pi^{2}}{(\text{width} + 2\delta)} + \frac{\pi^{2}}{(\text{thickness} + 2\delta)^{2}} \text{ and}$$

$$K_{\text{eff}} = \frac{k \infty}{1 + \mu^{2}B^{2}}$$

- C. Using Fig. 4-27 of ANL-5800, 2nd Edition, a reflector savings (\$) of 8 cm. for a full water reflector was selected.
- D. From Fig. 3 and 4 of TID-7028, an extrapolation length (also designated §) of 2.5 cm. was selected for bare, moderated systems. This value is based on highly enriched uranium experimental data; however, it is consistent with the calculated results shown on Fig. 2.7 of DP-532. At lower enrichment DP-532 indicates a higher extrapolation length (approximately 4 cm.) which is probably due to calculated or experimental error or perhaps a real effect due to increasing system radii. This variation of extrapolation length from 2.5 to 4 cm. will yield minor reactivity changes, probably 10% or less in K eff.

Arres 1 - 2 1 2

LICENSE: SNM-777, Docket:70-820
SECTION: 800 Subsection: 823
Nuclear Safety Evaluation - DRESDEN 1 Fuel Elements (BWR)
Page 2 of 6 pages
APPROVED
ISSUED: 2/6/70
SUPERSEDES: 10/31/68

*Indicates Change

*

4

elements is assumed. Under moderated conditions, this will yield higher k eff values than would occur if the elements were closely packed.

#### III. CALCULATIONS

- A. One Element envelope = 11.13 cm. x 11.13 cm. x 275 cm.
  - 1. Reflected Case

 $B^{2}_{Refl.} = \frac{9.87}{(11.13 + 16)^{2}} + \frac{9.87}{(11.13 + 16)^{2}} + \frac{9.87}{(275 + 16)^{2}} = \frac{9.87}{(27.13)^{2}} + \frac{9.87}{(27.13)^{2}} + \frac{9.87}{(27.13)^{2}} + \frac{9.87}{(27.13)^{2}} = \frac{9.87}{736.04} + \frac{9.87}{736.04} + \frac{9.87}{84,861} = 0.0134 \div 0.0134 + 0.0001 = 0.0269$ 

$$K_{\text{eff}} = \frac{1.21}{1 + (39 \times 0.0269)} = \frac{1.21}{1 + 1.049} = \frac{1.21}{2.049} = \boxed{0.591}$$

2. Bare Case

$$B^{2}_{Bare} = \frac{9.87}{(11.13+5)^{2}} + \frac{9.87}{(11.13+5)^{2}} + \frac{9.87}{(275+5)^{2}} = \frac{9.87}{(16.13)^{2}} + \frac$$

$$K_{\text{eff}} = \frac{1.21}{1 + (39 \times 0.0759)} = \frac{1.21}{1 + 2.9601} = \frac{1.21}{3.9601} = 0.306$$

- B. <u>Two Elements</u> envelope = (11.13 + 1.91 + 11.13 = 24.17) = 24.17 cm x 11.13 cm x 275 cm.
  - 1. <u>Reflected Case</u>  $B^{2}_{Refl.} = \frac{9.87}{(24.17 + 16)^{2}} + \frac{9.87}{(11.13 + 16)^{2}} + \frac{9.87}{(275 + 16)^{2}} + \frac{9.87}{(40.17)^{2}} + 0.0134$   $0.0001 = \frac{9.87}{1613.63} + 0.0134 + 0.0001 = 0.0061 + 0.0134 + 0.0001 = 0.0196$  $K_{eff} = \frac{1.21}{1 + (39 \times 0.0196)} = \frac{1.21}{1 + 0.764} = \frac{1.21}{1.764} = 0.686$
  - 2. Bare Case

 $B^{2}_{Bare} = \frac{9.87}{(24.17+5)^{2}} + \frac{9.87}{(11.13+5)^{2}} + \frac{9.87}{(275+5)^{2}} = \frac{9.87}{(29.17)^{2}} + 0.0379 + 0.0001 = 0.0116 + 0.0379 + 0.0001 = 0.0496$ 

 $K_{eff} = \frac{1.21}{1 + (39 \times 0.0496)} = \frac{1.21}{1 + 1.934} = \frac{1.21}{2.934} = 0.412$ 

LICENSE: SNM-777, Docket:70-82(
SECTION: 800; SUBPART: 823
Nuclear Safety Evaluation - DRESDEN 1 Fuel Elements (BWR) ·
Page 3 of 3 pages
ISSUED: OCTOBER 31, 1968
SUPERSEUES: NEW

	1.	$\frac{\text{Reflected Case}}{\text{B}_{\text{Refl.}}^2} = 0.0061 + 0.0061 + 0.0001 = 0.01$	•	
		$B_{\text{Refl.}} = 0.0061 + 0.0061 + 0.0001 = 0.01$	23	
		$K_{eff} = \frac{1.21}{1 + (39 \times 0.0123)} = \frac{1.21}{1 + 0.480} = \frac{1}{1}$	$\frac{.21}{.48} = 0.819$	
	2.	$\frac{Bare Case}{B^2} = 0.0116 + 0.0116 + 0.0001 = 0.023$	3	
			Jan and a state of the second s	
		$K_{eff} = \frac{1.21}{1 + (39 \times 0.0233)} = \frac{1.21}{1 + 0.909} = \frac{1}{1}$	$\frac{.21}{.909} = 0.634$	•
D.	Nin	ne Elements (3 x 3) - envelope (11.13 + 1. 37.21 cm.) = 37.21 cm	91 + 11.13 + 1.91 + 11 m. x 37.21 cm. x 275 cm	
	1.	Reflected Case		
		$\frac{1}{B^{2}}_{\text{Refl.}} = \frac{9.87}{(37.21 + 16)^{2}} + \frac{9.87}{(37.21 + 16)^{2}}$		
	•	$\frac{9.87}{(53.21)^2} + 0.0001 = \frac{9.87}{2831.30} + \frac{9.87}{2831.30} + 0$	0.0001 = 0.0035 + 0.003	35 +
		0.0001 = 0.0071		
		$K_{eff} = \frac{1.21}{1 + (39 \times 0.0071)} = \frac{1.21}{1 + 0.2769} = \frac{1}{1}$	.21 .2769 = 0.948	
	2.	Bare Case		
		$\frac{\text{Bare Case}}{\text{Bare}} = \frac{9.87}{(37.21+5)^2} + \frac{9.87}{(37.21+5$	9.87 $9.87$ $9.87$	F
		Bare $(57.21 + 5)^{-}$ $(57.21 + 5)^{-}$	2/5 + 10) - (42.21) -	
		$\frac{9.87}{(42.21)^2} + 0.0001 = \frac{9.87}{1781.68} + \frac{9.87}{1781.68} + 0.0001 = \frac{9.87}$	0.0001 = 0.0055 + 0.00	55 +
		0.0001 = 0.0111	Ċ.	\$
•		$K_{eff} = \frac{1.21}{1 + (39 \times 0.0111)} = \frac{1.21}{1 + 0.433} = \frac{1}{1}$	<u>.21</u> .433 = 0.844	
E.	Six	teen Elements (4 x 4) - envelope = (11.13	+1.91 + 11.13 + 1.91	+ 11,13 +
		1.91 + 11.13 = 50	.25 cm) 50.25 cm x 50.	25 cm x
	1.	Reflected Case 275 cm.		
		$\frac{1}{B^{2}} = \frac{9.87}{(50.25 + 16)^{2}} + \frac{9.87}{(50.25 + 16)^{2}} + \frac{9.87}{(50.25 + 16)^{2}} + \frac{1}{(50.25 + 16)^{2}$	$\frac{9.87}{(275+16)^2} = \frac{9.87}{(66.25)^2}$	$2 + \frac{9.87}{(66.25)}$
	+	$0.0001 = \frac{9.87}{4389.1} + \frac{9.87}{4389.1} + 0.0001 = 0.002$	224 + 0.00224 + 0.0001	= 0.00453
•		$K_{eff} = \frac{1.21}{1 + (39 \times 0.00455)} = \frac{1.21}{1 + 0.1786} = \frac{1}{1}$	$\frac{1.21}{1.1786} = 1.027$	
			LICENSE: SNM-777, Docke	et:70-820
			SECTION: 800, SUBPART:	823
			Nuclear Safety Evaluat	
			DRESDEN 1 Fuel Element	
	•	•	Page 4 of 6 page	S.
		•	APPROVED	*******
		·	ISSUED: OCTOBER 31, 19 SUPERSEDES: NEW	968
			OCIENDEDES: NEW	<b>.</b> .

ł

·

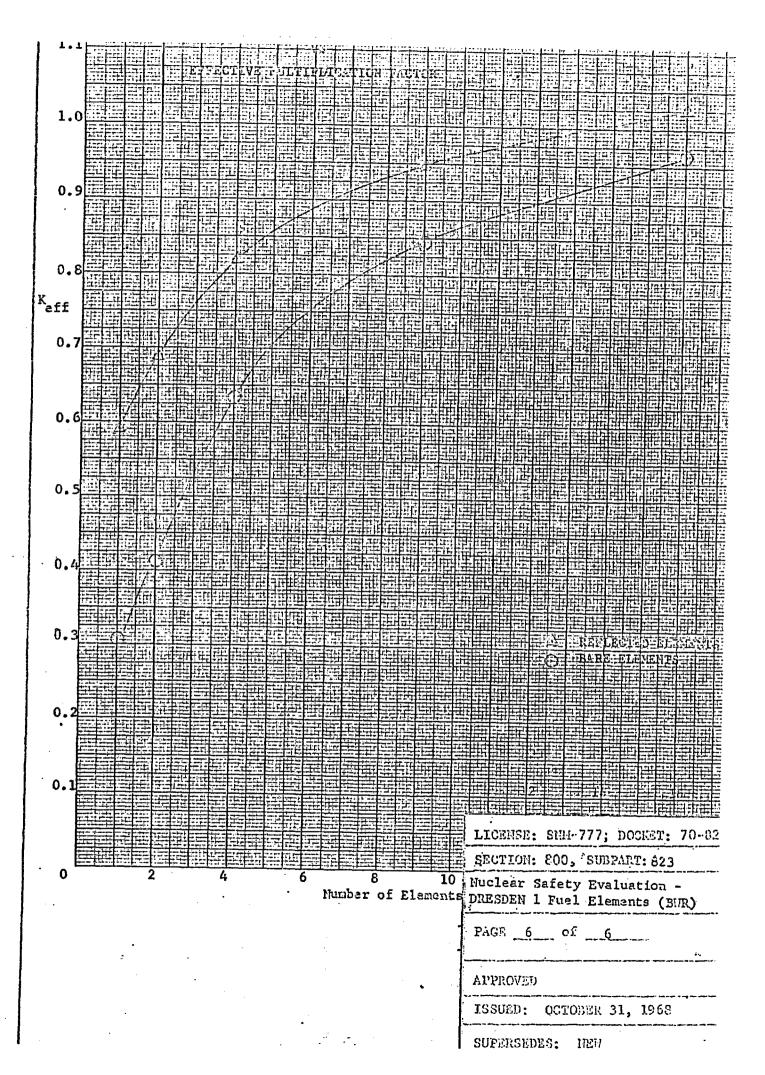
1

E. Sixteen Elements (continued)

## 2. Bare Case

$$B_{Bare}^{2} = \frac{9.87}{(50.25+5)^{2}} + \frac{9.87}{(50.25+5)^{2}} + \frac{9.87}{(275+5)^{2}} = \frac{9.87}{(55.25)^{2}} + \frac$$

$$K_{eff} = \frac{1.21}{1 + (39 \times 0.00656)} = \frac{1.21}{1 + 0.2558} + \frac{1.21}{1.2558} = 0.964$$


#### IV. CONCLUSIONS

*

A. These calculations indicate that 16 elements in a 4 x 4 array would be just critical. Calculations in NDEO-1033,-1164.-and 1501, indicate that 17 nominally fabricated elements would be required for criticality. Therefore, these calculations are representative.

#### *Indicates Change

<b>,</b> '	it is a second			
ļ	LICENSE: SNH-777; DOCKET: 70-8:			
	SECTION: 800, SUBPART: 823			
	Nuclear Safety Evaluation - DRESDEN 1 Fuel Elements (BWR)			
	PAGE 5 of 6 pages			
	APPROVED			
	ISSUED: 2/6/70			
1				



#### Supplement to NUCLEAR SAFETY EVALUATION DRESDEN FUEL ELEMENT (BWR)

#### I. Material Description

PuO₂ - UO₂ Fuel Rods and Elements.

A. General

This supplement provides additional information applicable to the shipment of Dresden  $PuO_2 - UO_2$  fuel rods and elements. The orginial nuclear safety evaluation remains unchanged.

The rods and elements are the same type and with the same dimensions and arrangement as the previously described Dresden BWR elements.

в. Pellets

Pellets are sintered (high fired) ceramic of two types: a) UO₂ 2.34% U²³⁵ enrichment. b) Mixed oxide PuO₂ - UO₂

- Nominal composition:

97.7 ± w/o UO, natural enrichment  $2.3 \pm w/o Pu0_2$ 100.0

Nominal isotopic composition of Pu is:

Pu 238	0.37%
Pu 239	71.34%
Pu 240	20.63%
Pu 241	6.09%
Pu 242	<u> </u>
•	100.00%

#### C. Rods

Two types

a) UO, pellets

Dimensions, weight and enrichment as described in Nuclear Safety Evaluation--Dresden I Fuel Elements (BSR) dated 9/15/67.

b) PuO₂ - UO₂ pellet

Net weight	$PuO_2 - UO_2$	3254	gms/rod
	UO2	3179	gms/rod
	Pu ^O 2	75	gms/rod
	V-235	19.9	gms/rod gms/rod
·	Pu	66	gms/rod

LICENSE: SNM-777 DOCKET: 70-820
SECTION: 800 SUBPART: 823
Nuclear Safety Evaluation Dresden Fuel Element (BWR)
Page <u>1</u> of <u>2</u>
ISSUED: 2/6/70
SUPERSEDES: New
APPROVED: AMENDMENT NO.:

#### D. Element

Type Rod	Number	Net Weight Per Rod, Grams	Net Weight Per Element, Grams
UO ₂ Pellet, Free End	:		
and Fixed End	19	3251	61769
UO, Pellet, PPC	6	3251	19506
U0 ₂ Pellet,	1	3013	301.3
	1	3251	3251
U0, -Gd, 0, Pellet Pu0, - U0, Pellet, Free			•
fend and fixed end	9	3254]	29,286
	36		116,825

#### II. Nuclear Criticality Safety

#### A. A. Elements

The  $PuO_2 - UO_2$  elements are neutronically equivalent to standard  $UO_2$ Dresden element. (Ref. NDEO 1501). The Nuclear Safety Evaluation for assembly and handling Dresden elements remains unchanged and is applicable to these elements.

#### B. Rods

The standard batch size will be 18 rods. As shown in NDEO-1771, 90 rods at the optimum moderating condition and fully reflected will have a  $K_{eff}$  not exceeding 0.92. Therefore, 18 rods will be subcritical by a larger margin and are nuclearly safe.

LICENSE: SNM-777 DOCKET: 70-820
SECTION: 800 SUBPART: 823
Nuclear Safety Evaluation Dresden Fuel Element (BWR)
Page <u>2</u> of <u>2</u>
ISSUED: 2/6/70
SUPERSEDES: New
APPROVED: AMENDMENT NO.:

4035 uppendicity Ex.4

•

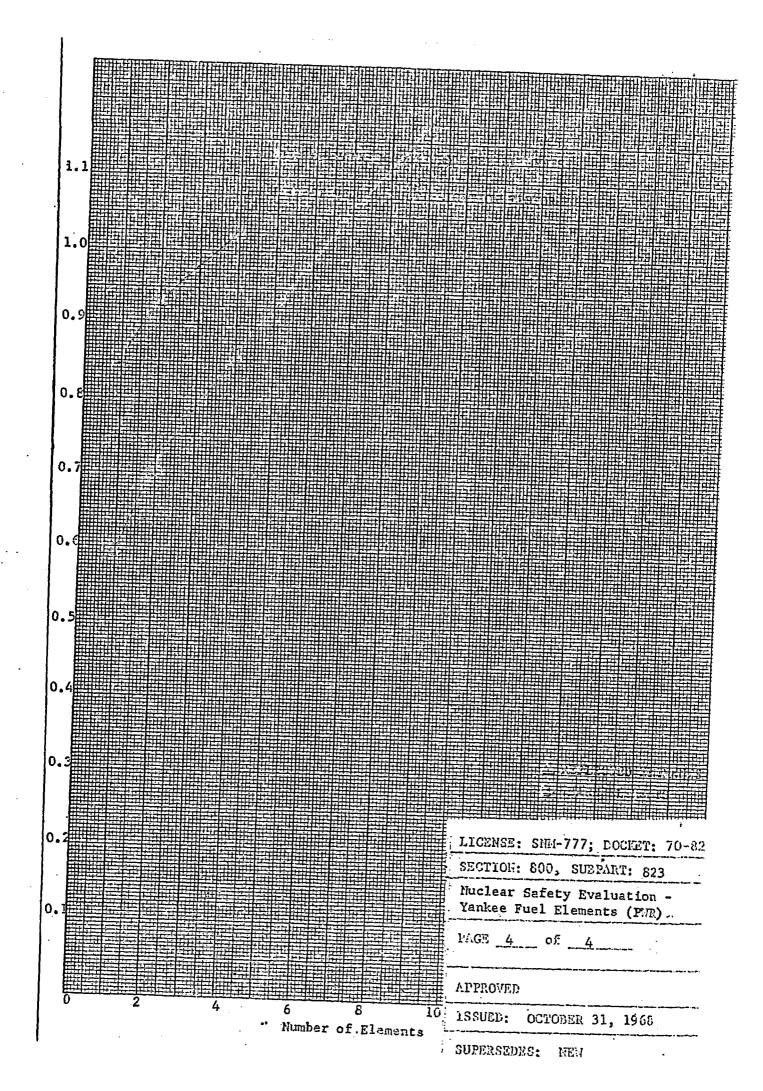
.

I. BASIC INFORMATION Pellet Description: 0.3145" Ø x 0.6"-> 1.0" long Rod Description: Β. Fuel Stack LengthTube LengthWeightFuel Loading/Rod91.00 + .2594.57"3.3 1bs. 1182.8 g UO2 Type Rod (36.49 g U-235) 2. Zircaloy-2 Tubing Std. Tube: 0.020" W.T. x 0.368" + 0.002" OD x 0.3210" + 0.001" ID C. Element Description Length Over Active Fuel - 91,00" 7.615" x 7.615" x Length Between Grids - 95.44" 238 Fuel Rods Per Element Pitch - 0.468" D. General Information 1. Enrichment: 3.5 w/o 2. Pellet Density: 94% Theoretical II. ASSUMPTIONS A. The design reactivity information contained in NDEO-1134 is applicable and will be used to determine effective multiplication factors = (K $\infty$  = 1.405 and M² = 40.9 cm²) B. Calculations will be performed using the following equations  $B^{2} = \frac{\pi^{2}}{(\text{length} + 2\delta)} + \frac{\pi^{2}}{(\text{width} + 2\delta)} + \frac{\pi^{2}}{(\text{thickness} + 2\delta)}$ and K eff =  $\frac{K}{1+M^2p^2}$ C. Using Fig. 4-27 of ANL-5800, 2nd Edition, a reflector savings (S) of 8 cm for a full water reflector was selected. D. From Fig. 3 and 4 of TID-7028, an extrapolation length (also designated * S ) of 2.5 cm. was selected for bare, moderated systems. This value is based on highly enriched uranium experimental data; however, it is consistent with the calculated results shown on Fig. 2.7 of DP-532. At lower enrichments, DP-532 indicates a higher extrapolation length (approximately 4 cm.), which is probably due to calculated or experimental error or perhaps a real factor due to increasing system radii. This variation of extrapolation length from 2.5 to 4 cm. will yield minor reactivity changes, probably 10% or less in k eff. LICENSE: SNM-777 Docket:70-820 SECTION: 800; SUBPART: 823 Nuclear Safety Evaluation -Yankee Fuel Elements (PWR) Page <u>1</u> of <u>4</u> pages APPROVED ISSUED: _ 2/6/70 SUPERSEDES: 10/31/68

*Indicates Change

elements is assumed. Under moderated conditions, this will yield higher k eff values than would occur if the elements were closely packed. **III. CALCULATIONS** One Element - envelope = 19.34 cm x 19.34 cm x 231 cm Α. 1. Reflected Case  $B^{2}_{\text{Refl}} = \frac{9.87}{(19.34 + 16)^{2}} + \frac{9.87}{(19.34 + 16)^{2}} + \frac{9.87}{(231 + 16)^{2}} = \frac{9.87}{(35.34)^{2}} + \frac{9.87}{(35.$  $\frac{9.87}{(35.34)^2} + \frac{9.87}{(247)^2} = \frac{9.87}{1249} + \frac{9.87}{1249} + \frac{9.87}{61,009} = 0.0079 + 0.0079 + 0.0001 =$ 0.0159  $K_{eff} = \frac{1.405}{1 + (40.9 \times 0.0159)} = \frac{1.405}{1 + 0.650} = \frac{1.405}{1.650} = 0.852$ 2. Bare Case  $B_{\text{bare}}^{2} = \frac{9.87}{(19.34+5)^{2}} + \frac{9.87}{(19.34+5)^{2}} + \frac{9.87}{(231+5)^{2}} = \frac{9.87}{(24.34)^{2}} + \frac{9.87}{(24.34)^{2}}$  $\frac{9.87}{(24.34)^2} + \frac{9.87}{(236)^2} = \frac{9.87}{592} + \frac{9.87}{592} + \frac{9.87}{55,696} = 0.0166 + 0.0166 + 0.0001 =$ 0.0333  $K_{eff} = \frac{1.405}{1 + (40.9 \times 0.0333)} = \frac{1.405}{1 + 1.362} = \frac{1.405}{2.362} = 0.595$ B. Two Elements - envelope=(19.34 + 1.91 + 19.34 = 30.59)=30.59 cm x 19.34 cm x 231 cm. 1. Reflected Case  ${}^{2}_{\text{Ref1.}} = \frac{9.87}{(30.59 + 16)^{2}} + \frac{9.87}{(19.34 + 16)^{2}} + \frac{9.87}{(231 + 16)^{2}} = \frac{9.87}{(46.59)^{2}} + 0.0075$  $+ 0.001 = \frac{9.87}{2171} + 0.0079 + 0.001 = 0.0045 + 0.0079 + 0.001 = 0.0125$  $K_{\text{eff}} = \frac{1.405}{1 + (40.9 \times 0.0125)} = \frac{1.405}{1 + 0.511} = \frac{1.405}{1.511} = 0.930$ LICENSE: SNH-777; DOCKET: 70-82 SECTION: 800, SUBPART: 823 Nuclear Safety Evaluation -Yankoe Fuel Elements (F.R) PAGE 2 of 4 APPROVED OCTOBER 31, 1968

SUPERSEDES:


NEW

	в.	Two elements (continued)
		2. Bare Case
		$B_{Bare}^{2} = \frac{9.87}{(30.59+5)^{2}} + \frac{9.87}{(19.34+5)^{2}} + \frac{9.87}{(231+5)^{2}} = \frac{9.87}{(35.59)^{2}} + 0.0166 + $
		$0.001 = \frac{9.87}{1267} + 0.0166 + 0.0001 = 0.0077 + 0.0166 + 0.0001 = 0.0244$
		$K_{\text{eff}} = \frac{1.405}{1 + (40.9 \times 0.0244)} = \frac{1.405}{1 + 0.998} = \frac{1.405}{1.998} = 0.703$
	C.	Four Elements (2 x 2) envelope = 30.59 cm. x 30.59 cm.x 231 cm.
		1. <u>Reflected Case</u>
		$B_{\text{Refl.}}^2 = 0.0045 + 0.0045 + 0.0001 = 0.0091$
		$K_{\text{eff}} = \frac{1.405}{1 + (40.9 \times 0.0091)} = \frac{1.405}{1 + 0.372} = \frac{1.405}{1.372} = 1.024$
	•	2. Bare Case
		$B_{Bare}^2 = 0.0077 + 0.0077 + 0.0001 = 0.0155$
		$K_{\text{eff}} = \frac{1.405}{1 + (40.9 \times 0.0155)} = \frac{1.405}{1 + 0.634} = \frac{1.405}{1.634} = 0.860$
	D.	<u>Nine Elements</u> (3 x 3) - envelope (19.34 + 1.91 + 19.34 + 1.91 + 19.34 = 61.84 cm) = 61.84 cm x 61.84 cm x 231 cm.
		1. <u>Reflected Case</u> - Critical
		2. Bare Case
		$B_{Bare}^{2} = \frac{9.87}{(61.84+5)^{2}} + \frac{9.87}{(61.64+5)^{2}} + \frac{9.87}{(231+5)^{2}} = \frac{9.87}{(66.84)^{2}} + \frac$
		$\frac{9.87}{(66.84)^2} + 0.0001 = \frac{9.87}{4468} + \frac{9.87}{4468} + 0.0001 = 0.0022 + 0.0022 + 0.0001 =$
		0.0045
		$K_{\text{eff}} = \frac{1.405}{1 + (40.9 \times 0.0045)} = \frac{1.405}{1 + 0.134} = \frac{1.405}{1.184} = 1.137$
IV.	CON	ICLUSIONS
	A.	These calculations indicate that just greater than 3 elements would be
		required for criticality. NDEO-7034-1164 indicate that greater than 3 elements would be required for criticality. Therefore.

.....

greater than 3 elements would be required for criticality. Therefore, these calculations are representative.

LICENSE: SNM-777; DOCKET: 70-82
SECTION: 800, SUBPART: 823
Nuclear Safety Evaluation - Yankee Fuel Elements (FWR)
PAGE <u>3</u> of <u>4</u>
APFROVED
ISSUED: OCTOBER 31, 1968
SUPERSEDES: MEN



U			1 E		Э	Ŋ	U	C	9	01	ar	•	6	
	C	0	R	P	0	R	Α	т	1	0	N			

P. Buck R. Tomonto

	/		NDEO-10	)33 ·
10	R. E. Kropp	AT New Haven	DATE	May 19, 1967
FROM	L. Goldstein	A Elmsford	COPY TO	W. Compas-New Hav D. Cronin ""
SUBJECT	Nuclear Informat: Shipping Contain	lon Required for Dre er Design	esden	E. Krinick " " G. Sofer B. Teer

As per your request, nuclear information for Dresden Type 6 fuel elements is enclosed. Basic physics data and their calculational backup are presented first, followed by criticality safety data.

#### Physics Data and Backup

The basic physics data for the three types of United Nuclear fuel elements are given in Table 1 (as per DRC-2 dated 5/10/67). All evaluations were made for clean assemblies at 68°F.

Table 1 - Fuel Element Type		Average Enrichment w/o U-235	k _{oo}	<u>o</u> <u>M</u> ²		
	6C	2.24	1.210	39.0		
	6P	2.24	1.310	41.0		
	61	2.24	1.310	41.0		
	3-F (G.E.)	2,24	1.210	39.0		

The above data were computed using the LEOPARD¹ zero dimensional cross section calculation and depletion program. The code determines fast and thermal spectra using only basic fuel assembly geometry and temperature data, based on a modified FORM-TEMPEST slowing down-thermalization model. A correlation of the  $U^{238}$  resonance integral data is incorporated in the code to correct for resonance spatial and energy self-shielding effects. The multigroup Amouyal-Benoist method is used to calculate thermal self-shielding. The code computes fuel depletion effects for an infinite homogeneous reactor and recomputes the spectra and corresponding four-group cross sections before each discrete burnup step. All basic microscopic cross-section data are contained within the LEOPARD library, which was compiled by WAPD based on reported data. The LEOPARD cross sections do not contain any arbitrary adjustments to improve agreement with critical experiments.

The LEOPARD program is used routinely at UNC-REC as a basic tool for the generation of depletion dependent reactor constants for both PWRs and BWRs. The code has been checked extensively at REC against PWR and BWR experimental data, as well as against Monte Carlo calculations. Comparison with more than fifty oxide fueled critical and exponential experiments was performed by WAPD². Both REC and WAPD evaluations of the LEOPARD program showed excellent agreement ( $\pm 0.4\%$  in k_{eff}) with experiments in all cases.

Furthermore, when LEOPARD data are used to develop depletion dependent constants for use in the UNC-TRILUX fuel management program, excellent agreement is obtained with operational fuel cycle lengths and power distributions for both BWRs and PWRs. Fuel cycle lengths calculated by TRILUX with LEOPARD derived constants are within 5% of those actually achieved in Cycles 1 and 4 of Dresden 1, and also within 5% of the cycle length expected for Cycle 1 of the Trino Vercellese PWR. Calculated element-wise radial power distributions for Cycle 1 of the Trino PWR at about 4000 MWD/MTU deviate by less than 2% relative to experimental power distributions derived from Mn⁵⁶ activations.

#### Criticality Safety Data

UNC Type 6C fuel is neutronically equivalent to the G.E. Type 3-F assembly. Furthermore, the nuclear properties of UNC Type 6I and 6P are neutronically equivalent to the G.E. Type 3-F with its gadolinia poison rod removed. Commonwealth Edison Company in Addenda (dated March 2, 1965) to Exhibit I in Submittal, dated December 24, 1964, for Amendment of Appendix A of License DPR-2 to Permit Operation with Type 3-F Fuel-Change Number 10; Docket 50-10; addendum Section V Safety Evaluation, reports minimum critical measurement data for Type 3-F fuel performed at Vallecitos by G.E. These data are given in Table 2.

Table 2 -	G.E. Fuel Type	Corresponding UNC Fuel Type	Minimum Number of Elements to Reach Criticality	
	3-F	6C	17	
	3-F Gd poison removed	6I, 6P	14	

Goldstein

#### References:

- 1. WCAP-3269-26, LEOPARD-A Spectrum Dependent Non-Spatial Depletion Code for the IBM-7094, R. F. Barry, Sept. 1963.
- 2. WCAP-3269-25, "Calculation of Lattice Parameters and Criticality for Uniform Water Moderated Lattices", L. E. Strawbridge, September 1963.

## united Nuclear.

CORPORATION

10 F. Cronin^V

ATNew Haven

0

NDEO-1077 DATE June 21, 1967

MEMÓ

FROM J. R. Tomonto

ATE1msford

COPY TO G. Sofer J. O'Toole

SUBJECT Criticality of Dresden Fuel Rods During Corrosion and Pickling Operations

#### Summary

1.

An analysis has been performed to determine the criticality safety limits for the Dresden regular enrichment  $UO_2$  fuel rods during corrosion and pickling operations. The Dresden regular enrichment fuel rods analyzed were located in a maximum of five concentric rings around a central water region (OD = 3.88 in.) as shown in Dwg. D-302863-2. The outer ring of rods is located in a 10" diameter bolt circle. This pickling rack can be located in several types of autoclaves (ID from 11" to 20"). Therefore the approach was to determine that individual autoclaves would be subcritical when fully reflected for all possible conditions of partial to full loading of the pickling rack fuel rod locations and for variations in water density caused by heating and possible boiling:

The results of this analysis indicate:

The maximum  $k_{00}$  for a repeating array of Dresden regular enrichment fuel rods in water (T = 70°F) is 1.330 and occurs at a water to fuel volume ratio of 2.20.

- 2. The maximum k_{eff} for the fully reflected rack loaded with Dresden regular fuel rods is 0.854 and occurs at a water to fuel volume ratio of 2.2.
- 3. Removing either the center or outermost ring of Dresden regular fuel rods from the fully reflected pickling rack reduces  $k_{eff}$  to 0.765 (water/fuel volume ratio 2.20).
- 4. The k_{eff} of the bare but fully reflected and moderated pickling rack is 0 (48) abd/occurs at a water/fuel volume ratio of 25.

#### Method of Analysis

Calculations of the fueled regions assumed a regular array of regular enrichment Dresden 1 reload fuel rods in water  $(T = 70^{\circ}F)$ . The Dresden regular fuel rods were selected because they are the most reactive of the three types of rods used in Type 6 Dresden reload assemblies. The fuel is 2.34 w/o enriched UO₂ pellets, (OD = 0.482") density 10.34 gm UO₂/cm³, in Zircaloy tubing (ID = 0.4925", OD = 0.5625).

Calculations of  $k_{CO}$  were performed using the LASER⁽¹⁾ code. This code is a one dimensional (cylindrical), multi-energy (85 groups) lattice-cell program which is based on the MUFT and THERMOS codes. Fast group parameters (E>1.85 ev) are averaged over a semi-infinite medium spectrum calculated by the MUFT method. A correlation of the U²³⁸ resonance integral data is incorporated in the code to correct for resonance spatial and energy self-shielding effects. Thermal group constants were determined for a one dimensional THERMOS type "calculation using the NELKIN scattering kernel. All basic microscopic cross section data are contained within the LASER library, which was compiled by WAPD based on recently reported experimental data. The LASER cross sections and calculational method have been extensively tested with experimental data and do not require any arbitrary adjustments to improve agreement with critical experiments⁽³⁾.

Calculations of the pickling rack with internal and external water regions were performed using the AIM-6 one dimensional diffusion theory code with two neutron energy groups. Cross sections for the reflectors and autoclave wall were calculated with the FORM-TEMPEST codes.

### Results

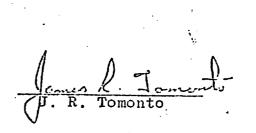
The calculated variation of  $k_{\infty}$  for a repeating array of Dresden 1 regular fuel rods is shown in Figure 1. A point noted on this figure corresponds to the calculated  $k_{\infty}$  for a completed Type 6P or 6I assembly⁽²⁾ (having an average enrichment of 2.24). The maximum  $k_{\infty}$  of 1.33 occurs at a water to fuel ratio of 2.2.

Calculations were performed to determine  $k_{eff}$  of pickling racks when loaded into autoclaves and fully reflected. Because of the possibility of using several sizes of autoclaves, the calculations conservatively neglected the effects of the autoclave wall ( $t \approx 2''$ ). The calculations were performed for an infinite cylinder containing the pickling rack and surrounded by a thick water reflector. The maximum calculated  $k_{eff}$  of 0.854 was found at a water to fuel volume ratio of 2.2 as shown in Figure 2.

In order to assess the potential positive reactivity associated with changes in the moderating properties of the central water region, a calculation was performed in which the absorption in water of the central region was neglected. The  $k_{eff}$  for this condition was 0.919 for a water to fuel ratio of 2.2 in the fuel region and a thick outer water reflector. It is concluded that the maximum reactivity change that can be associated with loss of water from the central region is +7.5% $\Delta k_{eff}$ . This is an upper limit on the worth of water in the central region.

Calculations were performed to determine the loss of reactivity when the inner or outermost ring of fuel rods were removed from the pickling rack. The calculated  $k_{eff}$  for both conditions was 0.765 for a water to fuel ratio of 2.2 in the fuel region and with a thick water reflector surrounding the pickling rack.

In analyzing the interaction between adjacent fully loaded autoclaves, at optimum internal moderation, the following situations are applicable:


1. Full water flooding between autoclaves - In this situation the presence of water essentially isolates each autoclave and the maximum  $k_{eff}$  is that calculated for the fully reflected pickling rack (e.g., from Figure 2,  $k_{eff} = 0.854$ ).

2. No moderator between autoclaves - If the pickling rack is located in a 20" ID autoclave, it will be essentially fully reflected and therefore isolated from the other units ( $k_{eff} \sim 0.86$ ). If the rack is located in a 14" ID autoclave, the calculated  $k_{eff}$  of an individual unit is 0.804. If the rack is located in an 11" ID autoclave,  $k_{eff}$ will be less than 0.8 because of the lack of reflector. In the latter two cases, there is a possibility of interaction between adjacent units even though the neutron flux is attenuated by the autoclave wall ( $\sim 2$ " of iron).

The maximum  $k_{eff}$  of the pickling rack internally moderated but unreflected was calculated as 0.648.

#### References

- WCAP-6073, "LASER A Depletion Program for Lattice Calculations Based on MUFT and THERMOS", by C. G. Poncelet, April 1966.
- Letter to R. E. Kropp from L. Goldstein, "Nuclear Information Required for Dresden Shipping Container Design", NDEO-1033, May 19, 1967.
- 3. Eich, W. J., "Analysis of PuO₂-UO₂ Critical Experiments", Trans. American Nuclear Society, Vol. 10-1 (June 1967).



JRT:jk

÷ ..... :: . : . : :::: :::: 111 ::: .... ..... • • • Figure 1 17 .... ------. . . n Reporting hirny of Regular Fuel Rode in Tater (T = 70 F) Drasc 00 01 ៗព ::: 11 . . . . **.** . . ..... •: :::: Ξ. ::: ::::: ..... .... .... : .:: .... -÷ İ 1 .... ٦t . . :: 1.40 :: 11 T 1 ... Ē :::: kor of Dre assembly ( Type GP ..... . . . : sden ¢ : (Ref; ..... Ŋ 1::: 111 111 .... .... .... : [ ..... :: 11 ::: .... ..... 1.1 171 ŀ : 1 1 . 11 :1: č 1.35 . . . . . :: 1.1 Ľ 1 1 ..... : : • • :: ••• 1:---1:;: .... : Kes æ . . .: ::: . ..... -----.... ---11 :1: 0 :::; . . <u>ا</u>:--..... ξ. Ţ ..... -----1:1: 120 ..... ..... ļ :: -۰. ÷ . Ξ. 11 . . 1 - 1 111 ..... . . • ... .... • • • H •• -. Ē i, :[: 1 . . : ٠ļ ÷ 612 110 57 :: 10/11 <u>D</u>E Lid ..... .... .... ÷ :. 7 .: :.: :: . 111 1.25 ٠. -1

10 × mits

-

.9. : :: -1 1 i : · ; į . -1 ..... i : ÷ 1 ۰. ÷ . .... i . ŧ. ... ţ ; 1 . ļ ŀ : ÷. ì 2 Figure Į. •••• . **[**].: : . • .| 1 1.1 keff of a Fully Reflected Pickling Rack Containing Dresden Regular Fuel Rods ; . : ÷., i Ē .-• ÷ 1 i · · · · .: 1. İ ÷ |<del>-</del> . : Ì <u>_</u>____ • i..... .85 1:. • • t. 1: i i i ·|-. 1... ÷ 10 į. : ÷Ē .::í ٦. i: : : : .: • 1. Ï 1.:-• İ. • • • E . :1 . - il-Ţ:.: :::| **.**... : ÷ 1 : 1:: ·.. 🛔 ; • . :: . :1 • į 1 17 ī :[.:. . : : :: . **H** 13 :1 ÷ :: 1: -• : -1 1 EFF . Ξ. Ŧ . . . ŧ., i . . . 1 ·!..! . ٠ ÷ -1.: . :: Ī ÷ :: • . 1 .£ :: ••| :: . . . :: ----i. . . . . :. È: ۰. ..... Į :. • <u>.</u> . F. . ..... • .... --. •••• : -----1 :. • :: . 3 NI 1084 .... ••••• : . 1-• • A TO MORE A CO. . .... : . .... .:: ... i::-:: ..... ···· •**1**00 11 •: ÷ 1 : .... ..... •••• i ٠ ų., .... .... :.. -:: . . -----17. K S .75 Ē ..... .: . . ::: ..... . . ..... -1:---:: . . . . . . · . ۰. · . . ..... 11 .... • . :: ٠. 4 <u>|</u> ..... .... :: ÷ :: . Ξ. : . . -: ÷ :: ÷., . . ::::E :. :. . . ••• :: . . **[**... . . . . 1 .:. ÷ ..... 1.: N DEC- 167 . 6/15/67 JE TONOMTO E :. 1: į : . • • 1. 2 : :. : · • • 1 :: · · i :.. .:: CATL

.1 ł H.: **!:**•. ł 3 Figure 0.75. of a Fully Modorated But Unreflected Rack Containing Dresden Regular Fuel Rods keff Pickling _ _ : -1 · • • .... ÷. . -----:..: : :11 ١. 1: 1. : . . . .: - -÷ \$ . .: 11 ÷., · . . _ . ••• 11 . . . : -: 1.1 · 0.7 Ī • ÷ .... •1 : i .: :. 1 • ł : . 1 1 .: .... :: : : SEFF ! 1: ..... . -: 1 ÷ ·.. . :: :.... ł :: . . . . . . . . . ..... ···· .... 0.65 1 - W . KULFEL A ESSEN CO. Т., ::: = 5 3 -11 ۶ د ΞL ----:: 100 . . :1: . E Dit F. :. · 1 . . . 1 E ... i 3 6 16162 ł :: **;** . R. 7 2010 - 2017 0 11 1: 1 1.077 ..... · • • - 1: C 舏

UNITED NUCLEAR . . INTER-OFFICE MEMO ORPORATIO

NDEO-1134 R. E. Kropp AT New Haven DATE August 15, 1967 Rom L. Goldstein COPY TO W. COmpas A Elmsford D. Cronin SUBJECT Nuclear Information Required For Shipping E. Krinik Yankee Fuel Bearing Components. G. Sofer M. Labar R. Tomonto P. Buck

As per your request, nuclear information for Yankee fuel elements are given below. The k $\infty$  and M² data were obtained by the methods described in NDEO-1033.^{*} The number of assemblies required to reach criticality was determined from the basic physics data  $(k_{\oplus} \& M^2)$  by calculating the critical buckling from which the dimensions of a fully reflected system were evaluated.

The required information for the Yankee fuel elements at 68°F is as follows:

M² Average Minimun Number ko Enrichment of Elements to w/oU-235 Reach Criticality: 3,50 1.405 40.9 >3

For these elements, the keff of a fully reflected 2 element array is 0.921.

Goldstein

LG/lh

10

*NDEO-1033, Nuclear Information Required for Dresden Shipping Container Design, L. Goldstein, May 19, 1967.

UNITED NUCLEAR

## INTER-OFFICE MEMO

Nº R. E. Kropp

AI New Haven

ø

NDEO-1164 DATE Sept. 11, 1967

FROM L. Goldstein

AT Elmsford

COPY TO Distribution

Subject Additional Information Required for Shipping Dresden I and Yankee Rowe Fuel Elements

Reference: NDEO-1033 and NDEO-1134

This memo is to confirm the numbers given by L. Goldstein to R. E. Kropp in a telephone conversation of 9/11/67 concerning  $H/U^{235}$  ratios inside the shroud for Dresden I and Yankee Rowe fuel elements. The data are as follows:

# Fuel Element Type H/U²³⁵

Dresden I165Yankee Rowe121

Data are for cold, clean, 0 void condition.

LG:JK

Distribution

- W. Compas
- D. Cronin
- E. Krinik
- G. Sofer
- M. LaBar
- J. R. Tomonto
- P. Buck

INTER-OFFICE MEMO



To F. Cronin

NDEO-1359 DATE March 22, 1968

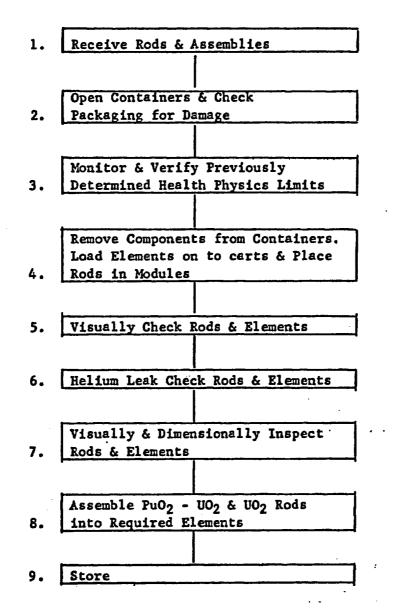
FROM J. R. Tomonto

COPY TO

SUBJECT REACTIVITY CONTRIBUTION OF CLADDING IN DRESDEN 6P AND PATHFINDER FUEL RODS

> References 1 and 2 present the results of a criticality safety evaluation of Dresden and Pathfinder fuel rods during corrosion and pickling operations. These evaluations were based on the most reactive arrangement of Zr clad fuel rods. The AEC has requested further information relating to the effort of cladding desolution during pickling operations. The following items apply:

A٦


- (1) If some of the Zr clad is disolved, it would most likely remain in solution in the vicinity of the fuel rods and there would be a slight decrease in  $k_{\infty}$  of the lattice because of the reduced Zr thermal self-shielding factor.
- (2) If the Zr clad is completely disolved, the fuel rods will collapse and fall to the bottom of the autoclave. This configuration would be less reactive than the configurations analyzed.
- (3) The reactivity controlled by Zr absorptions is  $+0.010 \ \Delta k_{\infty}/k_{\infty}$  for the Dresden rods and  $+.012 \ \Delta k_{00}/k_{\infty}$  for the Pathfinder rods at optimum moderation.

JRT:jk

## References

- NDEO-1077, "Criticality of Dresden Fuel Rods During Corrosion and Pickling Operations", by J. R. Tomonto, 6/21/67.
- NDEO-834, "Criticality of Pathfinder Fuel Rods During Corrosion and Pickling Operations", by J. R. Tomonto, 11/11/66.

## Dresden 2.34 w/o PuO₂ - UO₂ Fuel Rod and Assembly Fabrication



LICENSE: SNM-777 DOCKET: 70-820
SECTION: 800 SUBPART: 823
Flow Diagram 823-I A
Page <u>1</u> of <u>1</u>
ISSUED: 2/6/70
SUPERSEDES: New
APPROVED: Amendment NO.:

ł	never the state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	. ماينېن ويو يې	RPORATION	PAGE 1 of 1
	LICENSE: SECTION:	SNM-777, Docket: 70-820 800 - FUEL FABRICATION OPERATION		Approved
	Subsection: Subpart:		- Processing - Fabrication of Enriched Uranium	ISSUED October 31, 1968
		824	Metal .1 - General Considerations	SUPERSEDES NEW
			•	
, j	. 824.1	Gen	eral_Considerations	· · · · · · · · · · · · · · · · · · ·
		1.	This subsection covers the preparati	on and proceeding of up
		• •	to and including fully enriched uran through chopped stock (approximately operations which may be performed are and are listed in their expected sequ	ium metal from feed material 1/8" cubes). Individual e shown on Diagram 824.I
	•	2.	All operations normally will be performed.	ormed in Building 19H
Ì	•			
	! .	3 <b>.</b>	Unless stated otherwise, safe values ing Subpart will be obtained using the 309-I.	referenced in the follow- he limits listed in Table
		4.	For this undiluted uranium metal in wi less than 93%, the U235 mass limit ma appropriate factor from Figure 20, Th	ay be increased by the
			•	
• .	•			•
	. '		•••••	•
•	· · · · · ·		••••	•
•	,			
•	•		•	
	•			
•	•			
	•			
	•		r	
	•			
	•			
	•			
	•			

21 pgs w/h enterety

×.

n an De Berner a le pression de la contraction de la

APPENTY

		UNITED NUCLEAR	PAGE 1 OF 1
• •	LICENSE:	SNM-777, Docket: 70-820	APPROVED:
		Errata Sheet	ISSUED October 31, 1968
	· · · · · · · · · · · · · · · · · · ·		SUPERSEDES New
		1	
		The words "special" and "dry" are synon used to define a criticality zone.	ymous when
	•		
			· · ·
	•		
			•
	-		•
· .			•
- 11			
		•	•
	•		• •
.	•		
	:		•
	· •.		
		• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •
	• .		
			•
			•
	· · · ·		
	*		
· ·			
	•		
·	•• ••		•
• .	•		
	·•* . :		
			•.*
.	• • •		· · · · · · · · · · · · · · · · · · ·
ļ			
}	•		
	· '.		

## APPENDIX

Annual Report, 1968

NDEO-1050

LICENSE: SNM-777 Docket: 70-820 SECTION: Appendix ISSUED: October 31, 1968

SUPERSEDES: New

90 00 with in entirety Ex. 4

.