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Overview

- Development of RPV Head Stress Analysis Model

> Model Description and Validation

C Results for RPV Top Head Nozzles
0,

> Results for RPV Bottom Head Nozzles

) Transient Analyses for Fatigue Analysis

> Additional Weld Residual Stress Modeling

> Fracture Mechanics Modeling with Stress Relaxation
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Development of RPV Head Nozzle Stress Analysis Model

Original Model
Pressurizer Heater Sleeves

1990

Extension to CRDM Nozzles
Bugcy Leak

1991

Model Validation Work
EPRI TR-103696

Ci 1994

COI
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Model Description and Validation
Description

3D FEA modeling
* ANSYS FEA software
* Parametric input/output modeling

Multi-pass welding
* Thermal analysis of each weld pass
* Structural analysis during weld cooling
* Alloy 600 tubes have strain hardening

o properties
* Welds assumed elastic-perfectly plastic

- Analysis includes
* Deposition and stress relief of buttering

prior to making J-weld
* Interference fit between nozzle and bore

in vessel head
* Counterbores at top and bottom of head
* Hydrostatic test pressure
* Operating pressure and temperature
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Model Description and Validation
Validation

Nozzle lateral deflection and ovality
* Pressurizer heater sleeves
* CRDM nozzles
* Bottom head nozzles

Correlation with reported crack locations and orientations
* Pressurizer heater sleeves
* CRDM nozzles

' Bottom head nozzles

> Correlation with x-ray and strain gauge hole drilling residual stress
measurements

* CRDM nozzle mockups
* Pressurizer heater sleeve mockups

- Comparison to EMC2 results
* Material properties
* Stresses

> Early validation work reported in EPRI TR-103696
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Results for RPV Top Head Nozzles
Typical Hoop and Axial Stresses

> Typical hoop and axial stresses at uphill location
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Results for RPV Top Head Nozzles
Correlation of Crack Orientation with Predictions

> Field experience consistent with typical analysis results
* Over 90% of cracks have been axial

. More cracks on the OD surface than on the ID surface

* Circumferential cracks are more likely to initiate on the OD surface below
the J-weld than on the ID surface

en
01
co,

No. of
Indications on
the Nozzle ID

No. of
Indications on
the Nozzle OD

No. of Axlal Tube Indications 112 224

Above Weld 0 7
No. or

Circumferential Tube Weld Elevation 0 12
Indications

Below Weld 6 10

Total

336

7

12

16

E371]

Indications on
the Nozzle ID

Indications on
the Nozzle OD

% Axial Tube Indications 30% 60%

Above Weld 0% 2%

% Circumferential Weld Elevation 0% 3%
Tube Indications

Below Weld 2% 3%

Total

91%

2%

3%

4%

ElI Total 1 118 | 253 l

Notes
1. 498 Indications in the Database (as of 09/2003).
2. Craze Cracking/Shallow Cracks are not Included.

Total 32% 68%

Notes
1. 498 Indications in the Database (as of 09/2003).
2. Craze Cracking/Shallow Cracks are not Included.
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Results for RPV Top Head Nozzles
Range of J-Weld Geometries

CYI

All J-welds are not the same
design

* Weld cross section areas vary
* Ratio of uphill-to-downhill areas vary

Analyses show differences in
stress and stress distribution with
J-weld geometry

As-built weld sizes determined
by UT inspections differ from
design dimensions

* Oversize downhill welds can reduce
maximum OD stresses at weld toe due
to lower restraint

1.5

e< 0.51

0

2.0

0.0 0.5 1.0 1.5
Average Weld Cross Section Area, A = (A , + A d._)/2 (in2)

2.0

Welding Residual and Operating Stress Analysis - RPV Top and Bottom Head Nozzles 8



Results for RPV Bottom Head Nozzles
Typical Westinghouse BMI Nozzle

Nozzles typically have lower D/T
ratio than CRDM nozzles

Typical results show
* Ovalization is lower than in CRDM

nozzles which have higher D/T ratio

en * Stresses are higher than in CRDM nozzles
due to larger relative weld size

* Hoop stresses in nozzle exceed axial
stresses at high stress locations

* Straightening the nozzle by plastic
deformation does not increase total
operating condition stresses
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Results for RPV Bottom Head Nozzles
Typical B&W IMI Nozzle

B&W IMI nozzles repaired
* Original nozzles and J-welds stress relieved

with vessel

* Prior to plant operation the part of the nozzle
inside the vessel was removed and replaced Extension
by larger diameter nozzle Welded on

After Stress

rN) )I- Typical results show
* Peak stresses in nozzle are higher than in

CRDM nozzles due to larger relative weld
size

* Hoop stresses in nozzle exceed axial stresses
at high stress locations

* Stresses in repaired part of nozzle trend to be
lower due to less restraint during welding
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Transient Analyses for Fatigue Evaluation

- Representative transients
selected for analysis |--- Downhill ID -*- Downhill OD -0- Uphill ID -o-Uphilll OD I

n1

> Thermal transient analysis
followed by structural analysis
with temps and pressures

i Typical results show:
* Stress trends consistent throughout

model

* Crack growth rates dominated by
PWSCC
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Additional Weld Residual Stress Modeling

Various nozzle repair techniques simulated with stress
results used as inputs to fracture mechanics models

* Nozzle removal repair

* Embedded flaw repair

o - Other penetrations being analyzed
* Pressurizer side shall penetrations

* Hot leg nozzle penetrations

Pressurizer top and bottom head penetrations
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Fracture Mechanics Analyses with Stress Relaxation
Background

Stress intensity factors are often calculated using
superposition method

- For cases with high residual stresses, superposition
* Conservatively applies residual stresses as primary loads
* Does not allow for stress relaxation and redistribution with crack growth

- Development work was performed to modify the existing
stress analysis model to calculate stress intensities for
circumferential flaws above the J-weld including the effects
of stress relaxation with crack growth
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Fracture Mechanics Analyses with Stress Relaxation
Calculation Methodology

> Initial application is for through-wall crack in outer row CRDM
nozzle parallel to weld contour with variable distance above top of
weld

0n
c;
C>

, Custom fracture mechanics code added to DEI welding residual
finite-element stress model for J-groove nozzles

> Stress redistribution from intact to cracked conditions modeled
. Redistribution modeled as an elastic unloading problem amenable to LEFM

- Equivalent stress intensity factor (K) calculated from J-integral
* J-integral calculated using numerical volume integration
* J-integral averaged across nozzle wall K - JavgE

* J-integral approach captures effect of Mode II and III contributions eq 1-V2

Welding Residual and Operating Stress Analysis - RPV Top and Bottom Head Nozzles 14



Fracture Mechanics Analyses with Stress Relaxation
Fracture Mechanics Model

O- rack Fac8e B/ion F Craik Frotr Key Hole

(J

N \ \

N \ \\\

LI / \

Crack Face

1800 Downhill-Centered Crack Crack Mesh Detail
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Fracture Mechanics Analyses with Stress Relaxation
Relief of Axial Stress With Crack Growth

l

Crack Plane Elevation

Operating Condition Axial Stress
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Fracture Mechanics Analyses with Stress Relaxation
Stress Intensity: Downhill-Centered Cracks

I--Top of Weld -- # 0.25 Above -- 0O5 Above -h 1.0" AboveI
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Fracture Mechanics Analyses with Stress Relaxation
Stress Intensity: Uphill-Centered Cracks

I--Top of Weld ---- 0.25"Above -- 0.5"Above A 1.0"Abovel
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Fracture Mechanics Analyses with Stress Relaxation
Comparison to Other Data: Downhill-Centered Cracks
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Fracture Mechanics Analyses with Stress Relaxation
Comparison to Other Data: Uphill-Centered Cracks
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Fracture Mechanics Analyses with Stress Relaxation
Model Validation Case 1: Pipe with Axial Tension

2,017 psi Axial Stres rckFc
Applied as Negaive Presa

CrckBlock Reon

Crdck Face

01

-4

V rP1 /

\ v Symn-dry Bounday Cordedri
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Fracture Mechanics Analyses with Stress Relaxation
Validation Case 1: Pipe with Axial Tension

' The stress intensity factor calculated for this model was compared
to the results published by Zahoorl for a mean radius to wall
thickness ratio of 10 and a maximum total crack arc of 1800:

. Results agree within about 10%

toco,

Crack Length
K, Calculated Using

Zahoorl
K Calculated per

FEA Model Test Case
1 .1.-

300

800

1300

1800

2.9 ksil/in

6.6 ksil/in

12.7 ksii/in

24.0 ksi\/in

2.9 ksil/in
. . 1 . . . . ..- - .. . .. .I. 1 . . - .1

7.1 ksi-/in

13.6 ksiin

26.5 ksi\in

IA. Zahoor, Ductile Fracture Handbook, Volutme 1, EPRI, Palo Alto, CA: 1989. NP-6301-
D.
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Fracture Mechanics Analyses with Stress Relaxation Model
Validation Case 2: Through-Wall Center Crack in Plate

> For large crack sizes, the residual stresses are mostly
relieved and the pressure stress determines the stress
intensity factor

A published solution2 for a through-wall crack in a finite
plate for all alb and large h/b was compared to the results

a

for large circumferential cracks t

The remote axial stress crwas based on the h

axial pressure loading including pressure
on the crack face K 1aO.5bO.26(b)X

K0

Note: a is taken as the projection of the crack midwall half-length on a horizontal
plane.

2 D. P. Rookc and D. J. Cartwright, Compendiuim of Stress Infensity Factors, Her Majesty's Stationery office, London, 1976, p.
10.
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Fracture Mechanics Analyses with Stress Relaxation Model
Validation Case 2: Through-Wall Center Crack in Plate
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Fracture Mechanics Analyses with Stress Relaxation
Conclusions

Analysis work shows that stress intensities calculated by
superposition without the effect of stress relaxation can be
conservative
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RPV Penetration Stress Analysis and Fracture Mechanics
Future Efforts

Continued comparisons of welding residual stress and
fracture mechanics model results with others

- New opportunity for comparison between model and as-
built results in North Anna RPV head

- Additional fracture mechanics applications:
* Through-wall axial cracks for wastage analyses

* J-groove weld cracks for time to grow to leak as well as leak rate
calculations
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I

Objectives and Scope

* Predict the first failure as it occurs in a statistical distribution. The first
failure is usually the most important and often cannot be readily
obtained

* Predict statistical distribution of SCC a priori based on physical
variables from prior experience.

* Combine statistical distribution with physical variables of pH,
potential, species, alloy composition, alloy structure, temperature,
stress.

* Integrate multiple environments and submodes using product of
reliabilities.

* Can apply to initiation and propagation.
* Evaluate in environments.



Weibull Distribution (Constant 0, Variable f8)
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Magnitudes of cdf Depending on Shape Parameter
And Number in Sample

(a) Calculated 0 = of (p11., 1_ X. C. T1,'1 u) (b)
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Probability of SCC vs. Time in Large (4 inch diameter)
and Small (2 inch diameter) of Welded Stainless Steel Piping

in BWR Water (Easton and Shusto)

Wcibull Plot
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Probability vs. EFPY for Alloy 600 Tubing
in Ringhalls-4 PWR Steam Generator (Gorman and Bjornquist)

Weibull ldt
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Shape Parameter, /A, vs Mean Failure Time in NaCl solutions
Using Sensitized Stainless Steel and No Crevices 30-80'C

(Akashi and Nakayama)
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Progressive Development of Prediction from
Early Data Using Weibull cdf
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Mode Diagram for SCC of
0.50 Sk, Alloy 600 in 300-3501C

oo 0e/20 Range in Pure Water Applied to

0.0 H 20 PWR Steam GeneratorsO.y/O/O
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2. and 3.
(pH, z, pH and species variables)

1.
(r, potential variable)

4.
(C, metal composition variable)
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Nine Stages of SCC

1. I~rccursor
- PIotenal changes to

initiation condition
Ef

2. Micropeaetrntion
- Imtwak

4. Pre-coaleseence cracks

MT//Z
5. Co31cscence

Uz
nA

01
C;A

III
)I t I~ ~I i 11: 1 1

IIllllll
3. Small Nitration

- Slipdissolution

JAY;
- Dcalloying

- Intagmnular
corrosion

I

Pits

- Ilydrogen embrintlemcnt

- Grnin'body
diffusion

6. Propnagtion of coalesced crack

9. Stare IIl Rapid propagation



Estimation of Depth of Transition from Initiation to Propagation

(a) (d)

log1 t (b)

loa I
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* LPSCC from primary side at roll transitions

* Approximatcly 40,000 hours of scrvicc
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Complexity of Environments in Heat Transfer Crevices

Tube h -:
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Chemistry, Location, and Depth of Deposits from Heated Crevice from PWR SG
(Cattant, Sala)
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Probability vs. Time for LPSCC of Alloy 600 as a Fuction of Temperature
(Data from Webb, Jacko);

Dependencies of Statistical Parameters on l/T
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Probability vs. Time as a Function of Stress for Sensitized Type 304
Stainless Steel Exposed at 288°C in Pure Oxygenated Water

(Clark and Gordon, Akashi and Ohtomo);
Dependence of Statistical Parameters on Stress
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Probability vs. Time for Stainless Steel in Boiling MgCl2 at 154°C
as a Function of Stress (Shibata and Takeyama, Cochran and Staehle);

Dependence of Statistical Parameters on Stress
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Probability vs. time for SCC offtype 304 Exposed to
Dilute and Concentrated Chloride Solutions as a Function of Concentration
(Nakayama et al. 1.75 Sy at 80'C Crevice; Shibata et al. 200MPa at 100'C)

Dependence of Statistical Parameters on Concentration
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Effects of Physical Conditions on the Shape Parameter;
Comparing Suruface and Time Dependent Processes;

Comparing with Cumulative Distribution and Hazard Function

Time, arbtnarr units
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Probability of SCC vs. Time as a Function of Stress for Zircaloy 2
in Iodine Gas at 350'C; Statistical Parameters vs. Hoop Stress

(Shimada and Nagai)

(b)

103

(a)

(a)
0.99

0.90
en
0)
C;

.0
C1.

0.50

0.10

0.05

.=10 2

QJj

10 W

l _

10 2

2

:1

100 .
X

E

10-lQ

I-

0.01
0.5 1 2 5 10 20 so

t - to, hours
10'1 _

to= 18.1x1O4exp (O.044a)
R =0.970

_? l l
-a; _

10 -
200

I I I I I I I I I

220 240 260 280 300

Hoop Stress, MPa

- 10.2

320



Probability vs. Time for Different Applied Stresses for
Type 304 Stainless Steel Exposed to MgC12 at 1540C;

Shape Parameter vs. Applied Stress (Shibata and Takeyama)
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Probability vs. Time for Initiation and Propagation of SCC in a High
Strength Steel in 3.5% NaCl at 40'C. (Ichikawa et al.)
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Probability vs. Time for the LPSCC of Alloy 600 in High Purity Water
with Hydrogen Additions Using RUB Specimens at 3650C from Different Heats.

(Estimated Data Points from Norring)
Aggregate of All Specimens
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Dependence of Shape Parameter on the Ratio of Scale Parameters for
Four Assumed Distributions and Constant Initial Shape Factor
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Probability vs. time for SCC of Type 304
Compared with Field Experience for Various Methods of Testing

(Sato et al.)
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Probability vs. Service Time for
Examples of Accelerated Test and Actual Conditions

0.4 Year mean
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Insert Dependencies on the
Seven Primary Variables into Statistical Parameters

pH pH 09 P to = 9, P, to (E, pH, X, C, M, T, )
Potential E F(t) = F(O, 13, to)

Cr. Identity and
concentration of X 0
species P

Alloy composition C to
Alloy structure M
Temperature T

Stress Cy



* Evaluate Each of the cdfs
o - - (b) of the Submodes for the

I E -P I . Dependencies on the
(-_., \ _ Seven Primary Variables;

* Develop the Total Probabililty
of Failure from Product of

I :.. C) Reliabilities,
:e g RT=RAkSCC x RLPSCC X RACSCC X**-

1 FT(t) 1 -(l-FAC)(lFLP)(l-FA) ' * Evaluate at Selected Environment.

\ (d)
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Conclusions

1. It is possible to predict the occurrence of the first failure by using
past experience together with a statistical distribution for which the
parameters are evaluated with primary variables.

2. This methods enables predicting the occurrence of first failures that
do not occur at the same conditions as previous -ones.

3. This method enables accounting for the multiple sets of submodes
that may occur.

4. There are naturally difficulties of interactions of variables in this
approach; however, a first approach is probably much more useful
than nothing.
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Elevated Temperature Grain Boundary
Embrittlement and Ductility-Dip Cracking

in Ni-base Weld Metals
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CiaoWeldability Issues with Austenitic Materials
O" T. W elding and Joining Metallurgy Group _____I________-_____________-__ ___ | _________-__I

Cracking Mechanism Location Factors that Promote

01
-4

Solidification Cracking

Weld Metal Liquation
Cracking

Ductility-Dip Cracking

Reheat, or Strain-age,
Cracking

Copper-Contamination
Cracking

Hydrogen-Assisted Cracking

Solidification Grain Boundary

Solidification Grain Boundary
Migrated Grain Boundary

Migrated Grain Boundary

Migrated Grain Boundary

Migrated Grain Boundary

Migrated Grain Boundary

Impurity segregation
Continuous liquid films

Impurity segregation
Large grain size
High heat input

Large grain size
Grain boundary mobility

Relaxation of residual stress
Intragranular precipitation
Impurity segregation

Cu abraded on surface
Temperature> 1093 0C

Grain boundary precipitation
Threshold H concentration



77 Weld Metal Boundaries
NM Welding and Joining Metallurgy Group

Fusion Zone . Differentiated by

. Composition
* Structure

* Solidification subgrain boundaries
(SSGBs)

¢ do ^* Composition (Case 2)
un gri Boundiar * Low angle misorientation

V , L VIP ,,* Solidification grain boundaries
r\ ar\ (SGBs)

|Migrated Grain * Composition (Case 3)

So lidification Grain High or low angle misorientation
Boundary * Migrated grain boundaries (MGBs)

* Local variation in composition
* High angle misorientation

C)+\A



OH Solidification Grain Boundary
Welding and Joining Metallurgy Group

Boundary between packets
of subgrains

5 . Results from competitive
growth

* Composition dictated by
Case 3 solute redistribution

* Large misorientation across
boundary at end of

,4,6 solidification - high angle
boundary

_25 fm *Most likely site for
solidification cracking
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SWE Migrated Grain Boundary
UNAnPI

Welding and Joining Metallurgy Group

* Crystallographic component
; _ , loof SGoB

* Migrates away from SGB in
the solid state following
solidification or during
reheating

tt * Large misorientation across
boundary - high angle
boundary

MB * Composition varies locally
* Possible boundary

a"25 fm sweeping" and segregation
* Liquation and ductility dip

cracking

C I 5
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SA; Ductility-dip Cra
UNrVEInr

~ Welding and Joining Metallurgy Group

BTR

a l

Ductility Signature
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OH" Weld Metal DDC Characteristics
Welding and Joining Metallurgy Group .~ .:-- - ,.

* Sharp drop in elevated temperature ductility

* Solid state cracking
* Austenitic (FCC) Alloys
* Large grain size

* High restraint levels

* Intergranular along migrated grain boundaries



IIAT -H-
MU~

Ductility-dip cracking in Filler Metal 52
multipass weld deposit

U_ Welding and Joining Metallurgy Group
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Om Ductility-dip cracking along migrated grain
LNVf boundaries in Filler Metal 52 butter layer

_1 Welding and Joining Metallurgy Group

* Large grain size
* Ductility "exhaustion" at

grain boundaries

C~n * Recrystallization along
grain boundaries due to
high local strains (arrows)

(oLF1
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om Migrated grain boundaries in re-heated weld
.nrvymetals

Welding and Joining Metallurgy Group

* Crystallographic
component of SGB

* High angle boundary
Cn * Migrates on-cooling

after solidification
and during re-
heating (multi-pass
welds)/

* Large grain size
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0 Factors Influencing DDC

_ Welding and Joining Metallurgy Group

* Strain concentration at Grain Boundaries (GB) and Triple Points
* GB orientation relative to the applied strain
* GB tortuosity
* Temperature

* GB sliding inoperable at low Temperature
* Recrystallization at high temperature

* Precipitates
* Impurities segregation (Sulfur)
* Hydrogen

* H induced decohesion
* H enhanced local plasticity
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OSH', Strain-to-Fracture DDC Test
UNnSIT
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S Testing filler metals - sample preparation
|_ Welding and Joining Metallurgy Group

Side View Top-View SA-36

A
Nickel-base Filler Metal
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'OHIO Filler Metal 52 STF Test Results
_ Welding and Joining Metallurgy Group

q

DDC in FILLER METAL 52 (Spot-Welded)
@ 0.06 cm/sec Stroke Rate

Heat NX9277JK
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Filler Metal 52
NN Welding and Joining Metallurgy Group

80

70

60 j
0,1

OD ~I...

U 30
C.)
0) 40
E
z

20 .-

1 0

0



T * H E

OFiller Metal 52 vs. Filler Metal 82

I_~ Welding and Joining Metallurgy Group _M = M

DDC in Filler Metal 52 and 82 (Spot-Welded)
100% Argon Shielding Gas

NX9277 vs YN6830 vs YN7355
20.00 -

18.00 __

16.00 - _ _ _ _ __

c;' 14.00__ _ _ _ _ _

@ 12.00 FM52

. 10.00 - FM82 NX9277 YN 73 5_j
on YN6830

8.00 -' ILI
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Temperature (Degrees C)
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OH' Filler Metal 82 - H2 additions
Welding and Joining Metallurgy Group __ _

DDC in Filler Metal 82 (Hydrogen Effects)
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oH Ductility-dip cracking
UNIVMTY

Welding and Joining Metallurgy Group

Characteristics
* Fully austenitic

* Large grain size
CD I* Straight, smooth

boundaries
* Low impurity

content
* High restraint
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OHAOW DDC Fracture Surface in Filler Metal 52
AM Welding and Joining Metallurgy Group

Ductile intergranular fracture along
migrated grain boundaries
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J Grain boundary c
_W~ Welding and Joining Metallurgy Group

Characteristics - Filler Metal 52

Long, straight, "clean" MGB in Filler Metal 52 at 9860 C
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0Sm TIntergranular Precipitation - FM 52
Welding and Joining Metallurgy Group
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o GB Pinning -Filh
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111M Welding and Joining Metallurgy Group

kr Metal 82

0n
(o
01

970 0C
Strain: 7.5%



OW Precipitates in Filler Metal 82
UNMISITY

_1M Welding and Joining Metallurgy Group

1150 OC
Strain: 11.3%

Heat - YN6830
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Fracture Surface
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SWEMedium Size (Nb,Ti)C Precipitates Filler Metal 82
Ug Welding and Joining Metallurgy Group

20 - 50 nm

(0co
co

(11 1)MC



Small Precipital
AM Welding and Joining Metallurgy Group

:es - Filler Metal 82
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Co

Small Precipitates: 10 nm
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OIOI Strain Distribution
A_1M Welding and Joining Metallurgy Group

1147 0C
Strain: 11.3%

Heat - YN6830
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O Strain Distribution
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9852C
Strain: 8.1%
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OH' Comparison
__ Welding anddJoining Metallurgy Groupp

* Filler Metal 52
* Long, straight grain boundaries (not tortuous)
* Sporadic intergranular large carbides and nitrides
* The nitrides are not enough to avoid grain growth
* Consistent medium size M23C6 distribution

C\, * Small amount of intragranular precipitates

* Filler Metal 82
* Very tortuous grain boundaries
* Consistent inter- and intra-granular eutectic large

(Nb,Ti)C distribution (1-3 gum)
* Sporadic intergranular medium size and small (NbTi)C

carbides
* Small amount of intragranular carbides
* No M23C6 observed
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6 Insight Into the Mechanism
_1 Welding and Joining Metallurgy Group

Grain Boundary Sliding

FM-52
986 0C0)

0)
CA)

FM-82
972 0C
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Insight Into the Mechanism
_^M Welding and Joining Metallurgy Group _I
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temperatures



soDDC Mechanism Insight
_ Welding and Joining Metallurgy Group _ _ _

* Effect of grain boundary precipitates
* "Locks" GB and/or "pins" GB migration
* Increases GB tortuosity
* Restricts grain growth
* Reduces GB sliding
* Reduces deformation accumulation at triple points
* May be crack initiators (precipitate itself or interface)
* Interaction with impurities

* Effect depends on
* When and where the precipitate forms
* Precipitate properties (MN - MC - M23Cd)
* Interface properties
* Distribution
* Size



FT _ ____E_

soDDC Mechanism Insight
_N Welding and Joining Metallurgy Group

* Grain boundary tortuosity
* Increases GB area versus straight grain boundaries
* GB "locking" effect
* Reduce deformation accumulation at triple points

0, * Favors cracks arrest process
0)

* Hydrogen Effect
* Increases GB/Interface decohesion
* Interaction with precipitates
* Enhances GB sliding



Vessel Head Penetration Inspection, Cracking, and Repairs Conference

Impact of PWSCC and Current Leak
Detection on Leak-Before-Break

CD0

D. Rudland ('), R. Wolterman (1), G. Wilkowski (1), and R. Tregoning( 2)
(1) Engineering Mechanics Corporation of Columbus
(2) U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Research
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LB-LOCA Redefinition Program

* This effort small part of larger program

* On-going elicitation to assess failure probabilities

CD w Next generation of probabilistic pipe fracture code under
co development

* Discussion with many people during this meeting to get
updated subcritical crack initiation and growth models

* Including many of the piping fracture analysis aspects from
NRC's Degraded Piping Program, Short Cracks programs,
IPIRG- 1 and -2 programs
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Background

* PWSCC in Ringhal and VC Summer hot legs, as well as more
recent Belgium and Japanese PWSCC piping experiences raised
concern about past LBB approvals for lines that at one time were
thought to be free of any cracking mechanism.

SRP 3.6.3 has a screening criterion to ensure that lines
susceptible to potentially large cracks cannot be accepted for
LBB relief of dynamic load effects of pipe whip supports andjet
impingements shields.
* "..requirement that corrosion resistance of piping be

demonstrated....".

* Fortunately the PWSCC cracks to date have been primarily axial
and a few small circumferential cracks; nevertheless, it was
desirable to see if LBB could be satisfied if circumferential
through-wall cracks occurred.
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Background

* V.C. Summer PWSCCs in hot-leg

C)
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Background

* Inconel 82/182 bimetallic weld locations that might be susceptible to
PWSCC

C)

* RPV main coolant nozzles, core flood nozzles
* Pressurizer nozzle, spray nozzles, and surge lines
* Steam generator nozzles and RCP nozzles
* Many branch line connections

* Locations vary by NSSS supplier since main coolant piping could be
stainless or clad carbon steels

-.' 861
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Revised LBB Analysis

* As part of the LB-LOCA redefinition program and the technical support for a
new LBB Regulatory Guide, many past LBB submittals were reviewed

* LBB analysis conducted in this effort using typical LBB loads and recalculating
how the leakage size crack may change if it was a PWSCC crack, i.e., PWSCC
cracks have a more tortuous flow path than fatigue cracks used in many past
LBB submittals.
* Need to define PWSCC crack-morphology parameters (roughness, number

of turns, actual flow path-to-thickness ratio) from cracks removed from
service.

* Photomicrographs of several PWSCC service-removed cracks were
available.

* Recalculated leakage cracks for LBB cases and determined margins on leakage
crack size versus critical crack size at N+SSE or other critical transient load
(i.e., start-up/shut-down thermal loads for a surge line)

.. : , . .............................. ,. ..2
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Crack Morphology Parameters

* Surface roughness, number of turns, and actual flow path length are key crack
morphology parameters.

V e ms - '01

Rq = ; fd

* Surface roughness and number of turns can depend on the magnitude of the
crack-opening displacement (PG = global surface roughness, IuL = local surface
roughness).

Large COD Small COD
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Crack Morphology Parameters

* Actual flow path length can depend on number of turns and will be greater than
just the thickness of the pipe.

T
I0)

Cn

Large COD Small COD
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Crack Morphology Parameters

* Interpolation procedure used to account for effect of
COD on transition from:
* very tight cracks (lower surface roughness, many turns, longer

flow path length) to
* large COD crack cases (higher roughness,

shorter effective flow lenqth)
fewer turns, and
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Crack Morphology Parameters

* Interpolation procedure is approximate and could be
improved with detailed CFM analysis
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Unique aspects of PWSCC in bimetallic welds

* Weld bead orientation may affect crack morphology parameters,
i.e., cracks grow parallel to dendritic grains faster

Fill weld beads
(dendrites in vertical direction)

Buttered weld beads
(dendrites in vertical direction)

:12



Statistical analysis of crack morphology for
different types of cracks
* Evaluated service removed cracks in NUREGICR-6004

"Probabilistic Pipe Fracture Evaluations for Leak-Rate-Detection
ADolications "
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PWSCC cracks examined from metallographic sections

* Inconel 600 base metal (CRDM nozzle)

* Inconel 600 base
and weld metal
(CRDM nozzle)

C Crack in weld metal
4A0)

0

* In 821182 weld in pipe I

i-.

s _ -A m -;i

'.Crack in In600 base metal
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Example of determining crack morphology parameters
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Comparison of Parameters for
Various Cracking Mechanisms

* PWSCC crack results

0)

Location PL (1pm) pc (pm) ntL (mm") Kr KG+L

Hot-leg 7.5 52 3.95 1.022 1.132
Inconel 82/182 weld 4.75 40 12.4 1.000 1.245

Parallel to dendritic grain 47 01. .0 .4
Hot-leg 21 125.5 5.42 1.015 1.278

Inconcl 82/182 weld 34.2 238 1.97 1.000 1.315
Parallel to dendritic grain 3. 3 .7 100 131

CRDM nozzle
Inconel 82/182 weld 10.2 282 8.3 1.500 2.487

Transverse to dendritic grains

CRDM tube 4.3 71 5.72 1.001 1.165
Inconel 600 base metal

CRDM tube 22 166 9.56 1.1
Inconl 600 bas metal 1 .5 1.170 1.614

CRDM tube 55 188 .1 .0
Inconel 600 base metal 5I 7 18.5I.10 1.0

i. �_ � I - : I .,II � _ I � I
i " . .1 : . , . o I z

L- _ - � _�_ 17-1,
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Mean and standard deviation of crack
morphology parameters

Crack Corros on Fatiguc IGSCC PWSCC - Base PWSCC - Wc1d132
Morphology Mean Standard Mean d Standard Mean Standard

Variable Dev Dev___D________

PL, PM 8.814 2.972 4.70 3.937 10.62 9.870 16.86 13.57
JIG, Pm 40.51 17.65 80.0 39.01 92.67 65.26 113.9 90.97

nLmrnr 6.730 8.070 28.2 18.90 8.043 2.043 5.940 4.540
KG 1.017 0.0163 1.07 0.100 1.060 0.095 1 1.009 0.011

KG+L 1.060 0.0300 1.33 0.170 1.327 0.249 1.243 0.079
(a) Crack growth parallel to long direction of dendritic grains.

C)
c;

:17
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Typical LBB GCases Analyzed

Case Piping Bimetallic Weld- OD, Wall
Number System Location mm thickness,

(inch) mm (inch)
356 35.71 Surge line Surge line to pressurizer (14.0) (1.41)

2 Hot le Hot-leg safe end to reactor vessel 879 68.6
g nozzle (34.6) (2.70)

Hot-leg safe end to reactor vessel 878 68.3Hot leg nozzle (34.6) (2.69)

Surge Line Surge line to hot leg 406 40.44 Suge ineSure lne t ho le (1.0) (1.59)

5 Surge Line Surge line to pressurizer 356 (3.41)

305 33.36 Surge Line Surge line to pressurizer (12.0) (1.31)

, -- - , . , . ,: .

:18],



C)

01

Typical LBB Cases Analyzed
Case Normal Operating Conditions Faulted Conditions (N+SSE)

Number Pressure, Temp., F, wvlpress, kN-m Pressure, Temp., F, wlpress, hN
MPa (psi) C (F) MN (kips) (in-kips) MPa (psi) C (F) kN (kips) (In-kip

16.0 345 1.04 200 16.0 345 1,078 241.6
(2.327) (653) (234) (1,770) (2.327) (653) (242) (2,138)

2 15.4 323 6.61 1720 15.4 323 7,126 1,861
2 (2,235) (614) (1490) (15.200) (2.235) (614) (1,602) (16.470)

15.4 323 6.19 3,680 15.4 322.8 7,864 4,397
(2.235) (613) (1.390) (32,600) 2.235) (613) (1,768) (38.910)

4 14.8 316 1.29 209 14.8 316 NA NA
(2.150) (600) (290) (1,853) (2.150) (600)

14.8 316 0.98 243 14.8 316
5 (2,150) (600) (221) (2,147) (2,150) (600) NA NA

15.5 345 0.689 220 15.5 345
6 (2.250) (653) (155) (1,950) (2.250) (653) NA NA

- AveargeProperties M -linimum Pro perties
Yield Ultimate E Yield Ultimate E

Case MIPa 1M1Pa GPa Mlla All'a GIla
Number (ksi) (ksi) (msi) Eo a n (ksi) (ksi) (msi) co a n

I( 2. 155 474 179.3 0.000863 6.50 3.80 (130 454 179.3 0.000723 9.11 3.80
1554 46874 17930 (8.8) (5.8) (26.0) 0002 .138

2(b) 16 453 179.3 0000084.045.52 ') 146 4 0.000812 8.10 3.35 142 434 17508 0.000803 8.04 5.55

3(h) 169 469 175.8 0000961 3.75 4.82 163 427 175.8 0.000929 7.30 8.90
(24.5) (68) (25.5) (23.7) (61.9) (25.5) 0002 .089

4 (33 229 501 172.7 0.001325 12.1 2.83 NA NA NA NA NA NA

5(3) 229 501 172.7 0.001325 12.1 2.83 NA NA NA NA NA NA

6(b) 146 453 179.3 0.000812 8.10 3.35 142 434 175.8 0.000808 8.04 5.55
(21.1) (65.7) (26.0) (. 62.9. (25.5) .. . .

r - :�: : 1 , ,
'. - 7 � , - '-, 1, I- i
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LBB Results - Leakage flaw lengths

n PWSCC parallel to dendritic grain - main part of weld

0)
r'3
0)

Applicants'/ Leakage crack size, mm (inch)
Published (Using GE/EPRI with original h functions - COD dependence)

Case leakage size
flaw, Air-fiatigue crack Corrosion- pySC~
mm (300-yincl; IGSCC PWSCC(g)

mm (inch) roughness no turns) fatigue

1(b) 71 (2.80) 88.6 (3.49 178 (6.99) 133 (5.25) 156 (6.13)
2(C) 132 (5.20) 142 (5.61) 321 (12.6) 218 (8.52) 291 (11.4)
3(c 85 (3.35) 110 (4.35) 234 (9.23) 166 (6.54) 216 (8.50)
4(C) 213 (8.40) 128 (5.03) 253 (9.98) 188 (7.39) 224 (8.81)
5(C) 261 (10.26) 214 (8.44) 345 (13.59) 283 (11.13) 306 (12.03)
6C 76 (3.00) 53.6 (2.11) 104 (4.11) 80.0 (3.15) 90.2 (3.55)

(a) Crack growingpairallel to long direction of dendritic grains in Inconcl 82/182 weld.
(b) 5 gpm leak rate - Factor of safety of 10 on 0.5 gpm Icakage detection capability.
(c) 10 gpm leak rate - Factor of safety of 10 on 1 gpm leakage detection capability.

r, 1, I
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Comparison of length of leaking corrosion
cracks with the length of air-fatigue cracks
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LBB Results - Margins on crack size

* PWSCC parallel to dendritic grain - main part of weld

00

Applicant/ Margin on leakage crack size
Published critical Applicants'/ Calculations from this report

Case flaw size, Puiblished Air-fatigue crack Corrosion

mm (margin (300-Iidnch roughness IGSCC -fatigue PWSCC
m m____ _inch_ __ __ _ _ _ _ _no turns) __a___ __ gu___

1 427 (16.8) 6.0 4.82 2.40 3.21 2.74
2 NA"" >2 5.51 2.45 3.63 2.70
3 190 (7.5) 2.24 1.72 0.81 1.15 0.88
4 396 (15.6) 1.86 3.10 1.56 2.11 1.77

462 (18.2) 1.77 2.16 1.34 1.64 1.51
6 163 (6.4) 2.13 3.03 1.56 2.03 1.80

I(a)
(b)

Crack growingparatiet to long direction or dendritic grains.
Applicant's critical flaw size was not available. Critical flaw size was calculated using NRCPIPE Version 3.0.
For this case, the critical flaw size was calculated as 785 mm (30.9 inch).

� 4 7c 5 j



PWSCC growth across the long direction of the
dendritic grains - buttered region

Crack growth and shortest path leakage direction
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LBB Results - Leakage flaw lengths

* PWSCC perpendicular to dendritic grain - buttered region crack

0

Applicants'/ Lcakagc crack size, mm (inch)
Published (Using GE/EPRI wvith original h functions & SQUIRT with COD

Case__Leakage__Sizedependence)Case Leakage Size Air-fatigue crack PWSCC(a)

m a (inch) (300-pinch roughncss (with crack growing perpendicilar to
b with no turns) long direction of dendritic grains)

1(b) 71 (2.80) 88.7(3.49) 187 (7.35)
2(C) 132 (5.20) 142 (5.61) 356 (14.02)
3) 85 (3.35) 110 (4.35) 287 (11.28)
4(c) 213 (8.40) 128 (5.03) 271 (10.68)
5(c) 261 (10.26) 214 (8.44) 353 (13.89)
6(c) 76 (3.00) 53.6 (2.11) 120 (4.72)

(a)
(b)
(c)

Crack morphology parameters are derived from only one photornicrograph, Figure 19 of Reference 12.
5 gpm leak rate - Factor of safety of 10 on 0.5 gpm leakage detection capability.
10 gpm leak rate - Factor of safety of 10 on I gpm leakage detection capability.
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LBB Results - Margins on crack size

* PWSCC perpendicular to dendritic grain - buttered region crack
Margin on leakage crack size

Margins from analysis in this report

Applicants'/
Published Critical

Flaw Size,
mm (inch)

Published
margin

Air fatigue crack
(300-ptinch

roughness with no
turns)

PXVSCCIb)
(with crack growing

perpendicular to long direction
of dendritic grains)Cficr0c --- ------ - -- , -

1 427 (16.8) 6.0 4.82 2.28
2 NA8a >2 5.51 2.21
3 190 (7.5) 2.24 1.72 0.66
4 396 (15.6) 1.86 3.10 1.46
5 462 (18.2) 1 .77 2.16 1.31

163 (6.4) 2.13 3.03 1.35
. . v- ' . _ . ... .. . I 1%

(a)

(b)

Applicant's critical flaw size was not available. Critical flaw size wvas calculated using INR-IT'IPIE version 3.0.
For this case, the critical flaw size was calculated as 785 mm (30.9 inch).
Crack morphology parameters are derived from only one photomicrograph, Figure 19 of Reference 15.
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Conclusions

* PSWCC cracks have a more tortuous flow path than air fatigue
cracks that were frequently used in past LBB submittals

0)~

* PWSCC crack morphology parameters determined from a few
limited service cracks

* PWSCC crack morphology slightly less severe than IGSCC if
crack grow parallel to dendritic grains, but could be worse if
going perpendicular to dendritic grain - buttered region

r I -
f ,- i , I . I 1� 1�

, . 71 . , , � : : , ,

- . - .. . . .. .. . . .

. . I+ : - 0- . ' - 2
. .- , , ''.:., .

*, of As. ; 0 : . ;- . .- t-- -- 0 . . - -3
: - . . . . - . L . , . - ., , , of

.

. .

. � I - . � I 
I-- -.-- I



Conclusions

* An updated LBB analysis was conducted using typical LBB
submittals

* J-R curves for In82/182 in progress

0)

* PWSCC cracks have leakage crack lengths that are longer than
air fatigue cracks (used in many LBB submittals) at the same
leakrate
* -70% longer if PWSCC is parallel to dendritic grain - main weldment
* 110% longer if PWSCC is perpendicular to dendritic grain - buttered

region

41.
___ __ * _ _ _ _ __a_-E_,_ _ _ _ _ _ _ _ _ _ _ _ _ ,_;_,_-_,:_ _K_ _- -



Conclusions

* Average margin on LBB crack length decreased from 3.39 for
air-fatigue crack to
* 1.9 for the PWSCC crack growing parallel to the long

direction of the dendritic grains
* 1.55 for the PWSCC crack growing transverse to the long

direction of the dendritic grains

* LBB difficult to satisfy for PWSCC crack cases using draft SRP
3.6.3 procedures

* PWSCCs could result in long circumferential surface cracks,
which could make breaks more likely to occur than by using the
simple circumferential through-wall crack analysis
* LBB screeningcriteria not satisfied.
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