PSEG Nuclear LLC P.O. Box 236, Hancocks Bridge, New Jersey 08038-0236

NOV 1 6 2005

LR-N05-0446

U. S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555

ASME CODE RELIEF REQUEST SALEM GENERATING STATION – UNIT 1 AND UNIT 2 DOCKET NOS. 50-272 AND 50-311 FACILITY OPERATING LICENSE NOS. DPR-70 AND DPR-75

Pursuant to 10 CFR 50.55a(a)(3)(i), PSEG Nuclear LLC (PSEG) requests relief from American Society of Mechanical Engineers (ASME) Section VIII, Division 1, UG-27. This section does not permit the use of plastic analysis; however, ASME Section VIII, Division 2 does permit the use of plastic analysis provided minimum wall thickness requirements are satisfied and any seam welds are fully radiographed.

This relief request is being submitted in an effort to align the lower design pressure of the Component Cooling (CC) heat exchanger with that of the remainder of the Salem Service Water System. Analysis has been performed which demonstrates that there is adequate safety margin of the CC Heat Exchanger under the design pressure requirements. PSEG is requesting for deviation from the normal approach of performing calculations. The proposed alternative is to use plastic analysis of the CC heat exchanger using the methodology provided in ASME Code, Section VIII Division 2, 2004 Edition, Appendix 4, Paragraph 4-136.4.

If you have any questions please contact Mr. Justin Wearne at 856-339-5081.

Sincerely,

Thomas P. Joyce Site Vice President Salem Generating Station

Attachments

(1) Relief Request SC-RR-W03.

⁷ Document Control Desk LR-N05-0446

C: Mr. S. Collins, Administrator – Region I U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406

> Mr. S. Bailey, Licensing Project Manager - Salem U. S. Nuclear Regulatory Commission Mail Stop 08B1 Washington, DC 20555

> USNRC Senior Resident Inspector – Salem (X24)

Mr. K. Tosch, Manager IV Bureau of Nuclear Engineering PO Box 415 Trenton, New Jersey 08625 Document Control Desk Attachment 1

ĩ

7

10 CFR 50.55a Request Number SC-RR-W03

Proposed Alternative In Accordance with 10 CFR 50.55a(a)(3)(i) Alternative Provides Acceptable Level of Quality and Safety

Component Description

Component Cooling (CC) shell-and-tube heat exchangers (1CCE5, 2CCE5, 2CCE6)

Applicable ASME Code Edition and Addenda:

American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code), Section VIII – Division 1, 1968 Edition, with No Addenda (Reference 1), Paragraph UG-27 provides the requirements for the minimum wall thickness.

Reason for Request:

Background

The current design pressure for the tube-side (head) of the heat exchangers is less than the Service Water (SW) System design pressure. The vessel design pressure is 150 psig versus a SW system design pressure of 200 psig. The SW system typically operates at a pressure under 150 psig. However, under certain system cold weather configurations, the operating pressure can increase above 150 psig. The maximum operating pressure would occur following a loss-of-offsite power (LOOP) event due to the combination of three pumps operating and decreased winter flow demand as the Containment Fan Cooler Units (CFCUs) and non-safety flow loads are automatically isolated. In this configuration, the system pressure is expected to be approximately 180 psig, with some components experiencing slightly higher pressures due to hydrostatic pressure.

In order to address this issue, an evaluation was performed of the SW side of the heat exchangers to demonstrate that the ASME Code margins are maintained at the worst-case operating conditions. The goal was to demonstrate acceptability of the SW side of the heat exchangers to 200 psig for compatibility with the system design pressure. This analysis is documented in S-C-SW-MEE-1882 (Enclosure 1). The evaluation concluded that the CC shell-and-tube heat exchangers are acceptable per the original Code to 154 psig. This pressure was limited by the minimum wall thickness requirements of the Code for the channel (i.e., the channel head minimum wall thickness criteria per Paragraph UG-27 are not met for higher pressures).

Specific Code Issues

This relief request is to permit the use of an alternative analysis that will demonstrate that the CC heat exchangers meet the intent of the ASME Code for a pressure of 191 psig. This pressure (191 psig) is high enough to satisfy all of the system pressure requirements for the CC heat exchanger.

1

⁷ Document Control Desk Attachment 1

1

10 CFR 50.55a Request Number SC-RR-W03

Proposed Alternative In Accordance with 10 CFR 50.55a(a)(3)(i) Alternative Provides Acceptable Level of Quality and Safety

The standard ASME Code calculations identify three areas that do not meet the standard Code requirements at the higher SW pressure (191 psig). Specifically,

- 1. The existing channel head wall thickness is 0.625 inches versus a required wall thickness 0.756 inches.
- 2. The existing nozzle reinforcement area is 7.48 in² versus a required reinforcement area of 14.17 in².
- 3. The existing channel flange minimum thickness is 4.63 inches versus a required thickness of 5.05 inches, based on maintaining an allowable stress of 17.5 ksi.

Proposed Alternative and Basis for Use:

Proposed Alternative

The proposed alternative is to allow the use of plastic analysis of the CC shell-and-tube heat exchanger channel using the methodology provided in ASME Code, Section VIII - Division 2, 2004 Edition, Appendix 4, Paragraph 4-136.4.

Basis for Use

The issues related to the channel heads were evaluated using a finite element analysis (FEA). The FEA (enclosure 2) evaluated the inlet/outlet head using a three-dimensional model, which included the head, the nozzle and the flange. This permitted a single model to address all three design code compliance issues, as detailed in the previous section. The FEA included both elastic analysis and plastic analysis.

A scoping elastic analysis, using the allowable stresses provided in Section VIII -Division 1, concluded that the flanges and nozzle reinforcement are acceptable for a SW pressure of 191 psig. However, the additional support provided by the nozzles and the pass partition plate are not enough to limit the membrane stress in the channel head to less than the allowable stress. Hence, a plastic analysis was necessary to justify operation at higher pressures. Plastic analysis can support higher working pressures by accounting for such strengthening phenomenon as strain hardening, redundancies by load shedding to other locations and strengthening by changing the basic shape of the component (i.e., large deflections).

The original Code of Record (ASME Section VIII – Division 1) does not permit the use of plastic analysis. However, ASME Section VIII – Division 2 does permit the use of plastic analysis, provided the minimum wall thickness requirements are satisfied and any seam welds are fully radiographed. The CC shell-and-tube heat exchangers do not satisfy either of these conditions. The minimum wall thickness requirement is not met

Document Control Desk Attachment 1

10 CFR 50.55a Request Number SC-RR-W03

Proposed Alternative In Accordance with 10 CFR 50.55a(a)(3)(i) Alternative Provides Acceptable Level of Quality and Safety

and the seam welds were only spot radiographed. Accordingly, the FEA results could not be used to support a formal Code evaluation of the heat exchangers. Regardless, plastic analysis was used to determine whether overall Code margins to failure (i.e., 2/3 factor of safety to plastic collapse) would be maintained.

The plastic analysis showed that the 2/3 factor of safety on plastic collapse was maintained for channel head elements subjected to internal pressure of at least 191 psig (even though the minimum wall thickness requirements are not satisfied). This was accomplished by accounting for such strengthening phenomenon as strain hardening, redundancies by load shedding and changing the basic shape of the component (i.e., large deflections). The head shell material is a 90-10 Cu-Ni material which is very ductile at 30% elongation. The flange is also constructed of a ductile material (carbon steel). The analysis approach is an adaptation of the Section VIII – Division 2 procedure.

- A 15% reduction of the stress-strain curve was made to philosophically account for the joint efficiency associated with spot radiography. This is not in accordance with the Code, but was done to maintain the overall Code approach of penalizing allowable stresses based on the level of inspections performed.
- Allowable stresses were based on Section VIII Division 1 allowable stresses.

When plastic analysis is used, the Code also requires that fatigue and ratcheting be specifically considered, because of the potential for higher than typical strains. For fatigue, the number of pressure cycles experienced by the channel heads is very low and the fatigue is not considered significant. Ratcheting is not considered a concern because the plastic analysis included a 15% reduction factor on the yield strength to account for the joint efficiency. This reduction is analytical, but in reality, sections will not develop plastic hinges until the actual minimum yield strength is reached, which is at higher pressures. Therefore, ratcheting is not considered to occur.

Conclusion

Through the use of plastic analysis, it is demonstrated that the flanges and nozzle reinforcement are acceptable at a pressure of 191 psig, and that the inherent Code 2/3 margin to plastic collapse of the channel head (inherent in the ASME Code) is met for at least 191 psig. Based on this result, it is concluded that the heat exchanger provides margin that is consistent with the intent of the Original Code.

1

Document Control Desk Attachment 1

10 CFR 50.55a Request Number SC-RR-W03

Proposed Alternative In Accordance with 10 CFR 50.55a(a)(3)(i) Alternative Provides Acceptable Level of Quality and Safety

Duration of Proposed Alternative

The proposed "one-time-only" relief request alternative is requested on a permanent basis for Salem Units 1 and 2.

Precedents

None

٢

References:

- 1. ASME Code Section VIII Division 1, 1968 Edition with No Addenda.
- 2. ASME Code, Section VIII Division 2, 2004 Edition, Appendix 4, Paragraph 4-136.4.

Enclosures:

- 1. S-C-SW-MEE-1882, Salem SW Heat Exchangers—Suitability for Operation at Higher Pressures, Revision: 0, dated 1/27/05, Attachment C, MPR Calculation 0108-0309-jlh-1, "Component Cooling Shell and Tube Heat Exchanger Service Water Pressure Rerate Evaluation 1CCE5, 2CCE5 & 2CCE6," Revision 0.
- 2. S-C-SW-MEE-1882, Salem SW Heat Exchangers—Suitability for Operation at Higher Pressures, Revision: 0, dated 1/27/05, Attachment D, MPR Calculation 0108-0.309-jem-1, "Component Cooling Water Shell and Tube Heat Exchanger Channel Analysis," Revision 0.

LR-N05-0446

Document Control Desk Attachment 1

T

5

10 CFR 50.55a Request Number SC-RR-W03

Proposed Alternative In Accordance with 10 CFR 50.55a(a)(3)(i) Alternative Provides Acceptable Level of Quality and Safety

Enclosure 1

S-C-SW-MEE-1882, Salem SW Heat Exchangers - Suitability for Operation at Higher Pressures, Revision 0, **Attachment C**, MPR Calculation 0108-0309-jlh-1, *"Component Cooling Shell and Tube Heat Exchanger Service Water Pressure Rerate Evaluation – 1CCE5, 2CCE5 & 2CCE6,"* Revision 0, dated 1/27/05. Document Control Desk Attachment 1

10 CFR 50.55a Request Number SC-RR-W03

Proposed Alternative In Accordance with 10 CFR 50.55a(a)(3)(i) Alternative Provides Acceptable Level of Quality and Safety

Enclosure 2

S-C-SW-MEE-1882, Salem SW Heat Exchangers - Suitability for Operation

at Higher Pressures, Revision: 0, Attachment D, MPR Calculation 0108-

0.309-jem-1, "Component Cooling Water Shell and Tube Heat Exchanger

Channel Analysis," Revision dated 1/27/050.

7

5-\$C-SW-MEE-1882

Page C-1 of C-38

RT# 2.2.05

Attachment C: MPR Calculation 0108-0309-jlh-1, "Component Cooling Shell and Tube Heat Exchanger Service Water Pressure Rerate Evaluation—1CCE5, 2CCE5, &2CCE6" Revision 0

5-8C-SW-MEE-1882 4010

Page C-2 of C-38

XMPR	MPR As 320 King Alexand	sociates, Inc. 3 Street ria, VA 22314		
	CALCULATION T	TILE PAGE		= <u></u>
Client: Public Service Electric	and Gas			Page 1 of 37
Project: Salem SW HX Re-rate			010	Task No. 8-0418-0309-00
Title: Component Cooling Sh Pressure Rerate Evaluat	ell and Tube Heat Exchanger tion—1CCE5, 2CCE5, & 2CC	Service Water CE6	C 01	alculation No. 08-0309-j1h-1
Preparer / Date	Checker / Date	Reviewer & Approve	r / Date	Rev. No.
J L 14:1200 12-23-04 J. L. Hibbard	R. PARKER Sons 12-23-04 R. Parkerson	R. B. Keating	- 3/64	0
This document has been prep requirements of 100	QUALITY ASSURANCE pared, checked, and reviewed/ap CFR50 Appendix B, as specified	DOCUMENT proved in accordance with in the MPR Quality Assu	the Qual rance Ma	ity Assurance nual.

MPR-QA Form QA-3.1-1, Rev. 1

12

USER	RESPONSIBLE	FOR	VERIFYING	REVIS	SION.	STATUS	AND	CHANGES
PRINTE	D 20051108							
				()	*			

S-SC-SW-MEE-1882	Kes O
Dudl a a of	

ł

Page C-3 of C-38

\bigwedge h	MPR	MPR Associates, Inc. 320 King Street Alexandria, VA 22314					
		RECORD OF RE	VISIONS				
Cal 010	culation No. 8-0309-j1h-1	Prepared By	Checked By R. PARKER SON	Page: 2			
Revision	Affected Pages		Description	<u>_</u>			
D	All	Initial Issue.		•			
			···· ; .				

MPR QA Form QA-3.1-2, Rev. 0

:

USER	RESPONSIBLE	FOR	VERIFYING	REVISION,	STATUS	AND	CHANGES
PRINTE	D ¹ 20051108						

\mathbf{V}	A]	PR		MPR As 320 King Alexandr	sociates, Inc. Street ia, VA 22314
Cal	culation	on No.	Prepared By	Checked By	Page: 3
010	8-030	9-jlh-1) Hisbard	R. PARKOR Sond	Revision: 0
1.0 2.0	Pur Sun	pose	S		
3.0	Cal	culation Base	S		6
4.0	Cale	culation		*****	7
	4.1	Data	••••••••		7
	4.2	Minimum Thie	ckness of Cylindrical Shell		14 -393
	4.3	Flange Bolt Te	ensile Area		16
	4.4	Channel Flang	e Evaluation		
	4.5	Manway Flang	e Evaluation		
	4.6	Inlet and Outle	t Nozzle Flange Evaluatio	ກ	23
	4.7	Minimum Thio	ckness of Flat Cover		
	4.8	Reinforcement	Area		
	4.9	Tubesheet			
	4.10	Seismic Evalua	ation		

MPR QA Form: QA-3.1-3, Rev. 0

 ${\mathcal M}^{(2)}$

5-8C-SW-MEE-1882	(v) (v)	Page C-5 of C-3		
MMPR	Prepared By:	Ittilbard	Calculation No.: 0108-0309-j/h-1	
MPR Associates, Inc.		MACh For	Revision No.: 0	
Alexandria VA 22314	Checked By: "	R. PARKERSON	Page No.: 4	

1.0 PURPOSE

This calculation is a Section VIII, Division 1, 1968 Edition (Reference 1) evaluation of the Salem Unit 1 Component Cooling (CC) Heat Exchanger Nos. 11, 21, and 22. The allowable stress for the cover bolting is from the 2001 edition of the ASME Code. The heat exchangers are evaluated for an increase in the tube side design pressure from 150 psig to 191 psig. Only the heat exchanger components that are affected by the design pressure increase are evaluated. As such, this is a partial code evaluation of the tube-side of the Component Cooling Heat Exchangers and is an addenda to the original code evaluation.

2.0 SUMMARY

Results of the code evaluation for the Component Cooling Heat Exchanger tube-side pressure increase are provided below.

Pressure Part Wall Thickness

1	*Location*	"Required"	"Actual"	"Result"
		"Thickness"	"Thickness"	-
		"in."	"in."	41 00
	"Tube"	0.013	0.035	"Ok"
	"Channel A & B"	0.756	0.625	"Not Ok"
	"Inlet & Out. Nozzle"	0.232	0.625	"Ok"
<i>TI</i> =	"Manway Nozzle"	0.263	0.313	"Ok"
	"Channel Flange"	5.035	4.625	"Not Ok"
l	"Manway Flange"	1.437	2	"O k"
	"Channel A & B Cover"	3.991	6 .188	"Ok"
	"Manway Cover"	1.188	1.5	" Ok"
	"Tubesheet"	1.966	3.5	"Ok"

Flange Bolt Tensile Stress Area

	("Location"	"Required"	"Actual"	"Result"
		"Bolt Area"	"Bolt Area"	
T 2 =	513	"in.^2"	*in. ^ 2*	-
	"Channel A & B"	30. l	30.2	"Ok"
	"Manway"	5.4	16.6	•0k*)

USER RESP PRINTED 20	ONSIBL	E FOR VERIFYING	REVISION, STATUS	AND CHANGES		
	5-30	R77 2-2-05	, V\@J ~		Page C-7 of C-38	
		MPR	Prepared By:	J Kithous	Calculation No.: 0108-0309-jlh-1	
	MPR	Associates, Inc.		NILL FOR	Revision No.: 0	
	Alexa	undria VA 22314	Checked By: C	R. PARKERSon	Page No.: 6	
	3.0	CALCULATIO	ON BASES			
	1.	The joint efficiency weld and that no ins	for the tube is E _{Tube} pection was performe	= 0.6 . This assumes the end of t	he tube is a single sided butt ive.	
	2.	Joint efficiencies for the inlet nozzle and outlet nozzle are $E_{inler} = 0.8$. This conservatival assumes the weld is a single sided butt weld with spot radiography (spot radiography is specified on Reference 4).				
	3.	The manway gasket gasket is assumed to diameter. This gives reasonable load for t	seating load calculation, the er minus the bolt hole which is considered to give a			

4. The gasket area for the gasket seating load calculation is based on the gasket OD and ID; the area for the gasket seal to the pass partition plate is not included in the gasket area.

- 5. No credit is taken for the thickness of the 90-10 CuNi integral clad on the carbon steel manway cover and tubesheet.
- 6. The channel flange is evaluated as a loose type flange, i.e., no credit is taken for stiffening provided by the channel hub. This is a conservative approach that simplifies the analysis, since the flange ring and hub are different materials (carbon steel and 90-10 CuNi).
- 7. The manway flange thickness is evaluated with the approach in Reference 1, Paragraph UA-6(b)(2). This provides the required flange thickness for a spherically dished cover with a full face gasket. This evaluation approach is suggested in Reference 1, Paragraph UA-56, since the typical flange evaluation in Appendix A is not applicable to full face gaskets.
- 8. The corrosion allowance of the 90-10 CuNi materials is 0 inches based on Reference 13. A corrosion allowance of 0 inches was also used for the titanium tube.

R RESPONSIBLE FOR VERIFYING	; REVISION, STATUS AN	D CHANGES
S-SC-SW-MEE-1882 RTH 2.2.05	Res 0	Page C-8 of C-38
XMPR	Prepared By: 14	Calculation No.: 0108-0309-jih-1
MPR Associates, Inc. 320 King Street	alla	Fac Revision No.: 0
Alexandria VA 22314	Checked By: R.M.	RKERSON Page No.: 7
4.0 CALCULATIO	DN .	
4.1 <u>Data</u>		
Design Conditions		
P₁ = 191 · psi		Tube-side design pressure
P _s = 150·psi		Shell-side design pressure; Ref. 2, Data Sheet
$T_t = 200 \cdot F$		Tube-side design temperature; Ref. 2, Data Sheet
Operating Conditions		
Tavg.sali = (90 + 99.3).F	+ 2 T _{avg.salt} = 94.65 F	Average salt water temperature; Ref. 2, Data Sheet
$T_{avg.sw} = (113 + 100) \cdot F$	+ 2 T _{avg.sw} = 106.5 F	Average service water temperature; Ref. 2, Data Sheet
$T_{avg.i} = (T_{avg.sali} + T_{av})$	$(s,s,v) + 2 T_{avg.t} = 100.57 F$	Average tube water temperature
$c = c + Q_{\rm A} c$		

!

	r-dro		E-1992	in a f)			Page C-9
PRINTE	D 20051108							
USER	RESPONSIBLE	FOR	VERIFYING	REVISION,	STATUS	AND	CHANGES	

- ----

5-8C-SW-MEE-1882 BTH Q-2-05	5.570		Page C-9 of C-3	38
MMPR	Prepared By:	J Hssbard	Calculation No.: 0108-0309-jlh-1	
MPR Associates, Inc.	,	MILL FOR	Revision No.: 0	
Alexandria VA 22314	Checked By: ^C	R. PARKERSON	Page No.: 8	

4

Materials

Component	Material	Reference
Tube	Titanium, Gr. 2	No. 2, Data Sheet
Channel A & B	SB-171 90-10 CuNi	No. 2, Data Sheet
Channel A & B Cover	SA-105, Gr. II with a 90-10 CuNi Liner	No. 2, Data Sheet
Channel A & B Flange	SA-105, Gr. II	No. 4, Grid D-2
Channel A & B Bolting	SA-193, Gr. B7	No. 4, Grid D-2
Inlet & Outlet Nozzle	SB-171 90-10 CuNi	No. 4, Grid C-2
Inlet & Outlet Nozzle Flange	SA-181, Gr. II	No. 4, Grid C-2
Manway Cylinder	SB-171 90-10 CuNi	No. 5, p. 3
Manway Cover	SA-516, Gr. 70	No. 5, p. 3
Manway Flange	SA-516, Gr. 70	No. 5, p. 3
Manway Flange Bolting	SA-193, Gr. B7	No. 5, p. 4
Tubesheet	SA-515, Gr. 70 with a 70-30 CuNI Liner	No. 2, Data Sheet
Shell	SA-515, Gr. 70	No. 4, Grid D-2
Nozzle Reinforcement Pad	SA-515, Gr. 70	No. 4, Grid C-1
Cover Gasket	1/8" thick, MONEL jacketed Asbestos	No. 5, p. 4
Manway Gasket	1/8" thick, Garlock 3400	No. 5, p. 5

5-SC-SW-MEE-1882) 0	Page C	-13 of C-
MMPR	Prepared By: 5	Calculation No. 0108-0309-jih-	.: 1
MPR Associates, Inc.	11	Revision No.: (D
320 King Street Alexandria VA 22314	Checked By:	PARKERSon I Page No.: 12	
[
Tubes			
N _f = 3400		Number of tubes; Ref. 2, Data She	et
$\rho_l = l \cdot in$		Tube pitch; Ref. 2, Data Sheet	
$\alpha_t = 4.65 \cdot 10^{-6} \cdot \frac{in}{in \cdot F}$		Mean coefficient of thermal expans 100°F (approximate average tube t Ref. 11, Table TE-5	sion for tub lemperatur
$E_{I} \equiv linterp\left[\begin{pmatrix}70\\200\end{pmatrix}, F, \begin{pmatrix}15.5\\15\end{pmatrix}\right]$	10 ⁶ ·psi, 100·F	Modulus of elasticity for tube at 10 average tube temperature); Ref. 1	0°F (approx I, Table TM
$E_1 = 15.38 \times 10^6 \text{ psi}$			
Shell			
id _s = 65·in		Shell ID; Ref. 2, Data Sheet	
t _s ≈ 0.5-in		Shell wall thickness; Ref. 2, Data S	iheet
$od_s \equiv id_s + 2 \cdot t_s \qquad od_s$	= 66 in	Shell OD	
$L = 25 \cdot ft + 11.75 \cdot in - 2 \cdot 3.625 \cdot in$	in a state of the second s	Length between tubesheets: Ref. 1	0. Grid D-f
L = 304.50 in			
$\alpha_s = 5.73 \cdot 10^{-6} \cdot \frac{in}{in \cdot F}$		Mean coefficient of thermal expans 100°F (approximate average shell t Ref. 11, Table TE-1, Material Group	ion for she emperatur p B
$E_s \equiv linterp \begin{bmatrix} 70\\200 \end{bmatrix} \cdot F \cdot \begin{pmatrix} 29.5\\28.8 \end{bmatrix} \cdot$	10 ⁶ ·psi, 100·F	Modulus of elasticity for shell at 100 average shell temperature); Ref. 11 C<0.3%)°F (appro: , Table TM
$E_s = 29.34 \times 10^\circ$ psi			

-x6C-SV <u>R 7</u>	N-MEE-1882	0 (3)			Page C-1	6 of C-38
	IPR pistor Inc	Prepare	d By: 🔰	Hibbard	Calculation No.: 0108-0309-jih-1	
20 King S	itreet	Chooke	d Dan Ch	John For	Revision No.: 0	
lexandria	VA 22314		e e e e e e e e e e e e e e e e e e e	.PARKERSON	Page No.: 15	
ımmarize	e the results and cor	npare to the	actual wal	l thickn c ss.		
T1 :=	for $i \in 1rows(1_{r,C})$	y4)				
	$a_i \leftarrow if(t_{r.cyl_i} \leq t_a)$, ok, nok)				
	stack(R1,augment(1)	, t _{r.cyl} + in,t _a	+ in,a))			
	("Location"	"Remind"	"Actual"	"Rass.lt"		
		"Thickness"	"Thickness"	in the second se		
		"in."	"in."	-		
<i>TI</i> =	"Tube"	0.013	0.035	"Ok"		
	"Channel A & B"	0.756	0.625	"Not Ok"		
	"Inlet & Out. Nozzle"	0.232	0.625	"Ok"		
ļ	"Manway Nozzle"	0.263	0.313	"Ok"		
				-		
		4	•			
					•	
·						
•						

S-SC-SW-MEE-1882 R=#_0-2-05	Key O		Page C-17 of C-38
MPR	Prepared By:	JHillard	Calculation No.: 0108-0309-jlh-1
MPR Associates, Inc.		Malan FOR	Revision No.: 0
320 King Street Alexandria VA 22314	Checked By:	R. PARKERSON	Page No.: 16

4.3 Flange Bolt Tensile Area

The flange design bolt load is calculated with Reference 1, Paragraph UA-49. The basic gasket seating width is calculated in accordance with Reference 1, Table UA-49.2. Use Sketch 1c, Column II for the channel gasket and Sketch 1a, Column II for the manway gasket.

Note: The inlet and outlet nozzle flange bolts are not included in the evaluation because the inlet and outlet nozzle flanges are standard ANSI B16.5 flanges for attached piping. See Section 4.6 for an evaluation of the inlet and outlet nozzle flanges.

The basic gasket seating width for the channel and manway gaskets are:

The effective gasket seating width is calculated with Reference 1, Table UA-49.2.

Note: The gasket width for the manway is less than the actual width and so the gasket seating load calculated below is underestimated. The approach used is considered reasonable for a full face gasket for the purpose of sizing the flange bolts.

The location of the gasket load reaction is calculated with Reference 1, Table UA-49.2.

$$G_{i} := if \left(b_{o_{i}} \le 0.25 \cdot in, d_{i}, od_{g_{i}} - 2 \cdot b_{i} \right) \qquad G = \begin{pmatrix} 67.375\\ 20.634 \end{pmatrix} in \qquad l_{2} = \begin{pmatrix} \text{"Channel A & B"} \\ \text{"Manway"} \end{pmatrix}$$
where $d = \begin{pmatrix} 67.375\\ 20 \end{pmatrix} in \qquad od_{g} = \begin{pmatrix} 67.875\\ 21.5 \end{pmatrix} in$

$$\begin{aligned} & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \\ & \int \frac{\partial C}{\partial x} \\ & \\ & & \int \frac{\partial C}{\partial x} \\ & & \\ & & & \\$$

.

.

S-SC-SW-MEE-1882
$$(2, 2)$$
 Page C-19 of C-38
RTH 2-2-05
Prepared By: JU-Low Olds-0309-jih-1
MPR Associates, Inc.
320 King Street
Alexandria VA 22314
Prepared By: JU-Low Olds-0309-jih-1
Revision No.: 0
320 King Street
Alexandria VA 22314
Checked By: R. PRR/KER.Son Page No.: 18
The required bolt area A_m is:
 $A_m := max[A_m1_i \cdot Am2_i]$ $A_m = \begin{pmatrix} 30.07 \\ 5.39 \end{pmatrix} in^2$ $l_2 = \begin{pmatrix} *Channel A & B^* \\ *Manway^* \end{pmatrix}$
Summarize the results.
 $T2 := \begin{bmatrix} for i \in 1..rows(A_m) \\ a_i \leftarrow if(A_{m_i} \leq A_{b_i} \cdot ok, nok) \\ stack(R2, augment(l_2, A_m + in^2, A_{b} + in^2, a)) \end{bmatrix}$
 $T2 = \begin{pmatrix} *Location^* & Required^* & Actual^* & Result^* \\ & & & & \\ & & & \\ & & & & \\ & &$

The flange design bolt load is the maximum of the load for operating and gasket seating conditions (Reference 1, Paragraph UA-49(c)). From Reference 1, UA-49(c), the bolt load for operating conditions is W_{m1} . The bolt load for gasket seating conditions is:

$$W_{scat_{i}} \coloneqq \frac{\left(A_{m_{i}} + A_{b_{i}}\right) \cdot S_{a_{i}}}{2} \qquad \qquad W_{scat} = \begin{pmatrix}752954\\275219\end{pmatrix} lbf \qquad l_{2} = \begin{pmatrix}*Channel A \& B^{*}*Manway^{*}\end{pmatrix}$$

The flange design bolt load is the maximum of the load for operating and gasket seating conditions.

$$W_{i} := max \left(W_{inl_{i}}, W_{seat_{i}} \right) \qquad W = \begin{pmatrix} 752954 \\ 275219 \end{pmatrix} lbf \qquad l_{2} = \begin{pmatrix} "Channel A & B" \\ "Manway" \end{pmatrix}$$

4.4 **Channel Flange Evaluation**

Flange moments for the operating and gasket seating conditions are calculated with Reference 1, Paragraph UA-50. The flange is evaluated as a loose type flange because the material strength of the channel is less than that of the flange ring and because the ASME Code allows this approach (Reference 1, Figure UA-48 and Paragraph UA-48(a)(3)). Evaluate the criteria for applying the loose flange evaluation.

80 := la Channel go = 0.625 in $\begin{pmatrix} g_o \leq \frac{5}{8} \cdot in \\ \frac{B_{channel}}{g_o} \leq 300 \end{pmatrix} = \begin{pmatrix} i \\ i \\ i \\ l \end{pmatrix}$ $\frac{B_{channel}}{80} = 106$ B_{channel} = 66.25 in

A value of 1 indicates the applicability criterion is met. A value of 0 indicates the applicability criterion is not met.

where

 $P_{1} = 191 \, psi$

Operating Condition

Calculate the moments M_D, M_T, and M_G with Reference 1, UA-47(b).

$$H_D := \frac{\pi}{4} \cdot \left(B_{channel} \right)^2 \cdot P_I \qquad H_D = 658408 \, lbf$$

H_G = 70749 lbf $H_G := W_{ml} - H_{channel}$

See Reference 1, UA-47

 $H_T \coloneqq H_{channel} - H_D$ $H_T = 22551 \, lbf$

where

H_{channel} = 680959 lbf

I

4.5 Manway Flange Evaluation

The manway flange has a full face gasket, which cannot be evaluated with the rules of Reference 1, Appendix II, Part A. Reference 1, Paragraph UA-56 references Paragraph UA-6(b)(2). This provides the required flange thickness for a spherically dished cover with a full face gasket.

 $I_{r.manway} := 0.6 \cdot \sqrt{\frac{P_{l}}{S_{f_{munway}}}} \left[\frac{B_{manway}}{A_{manway}} \left(\frac{A_{manway}}{A_{manway}} + \frac{B_{manway}}{B_{manway}} \right) \cdot \left(\frac{bc_{manway}}{B_{manway}} - \frac{B_{manway}}{B_{manway}} \right) \right]$

 $t_{r.manway} = 1.44$ in

where

1

 $P_l = 191 \, psi$ $A_{manway} = 25 \, in$ $bc_{manway} = 22.75 \, in$ $B_{manway} = 18.625 \, in$ $S_{f_{manway}} = 17.5 \, ksi$

The actual flange thickness is $i_{fl_{mulmut}} = 2 in$. Add the results to the summary table T1.

 $TI := stack (TI, augment ("Manway Flange", t_{r,manway} + in, t_{fl_{manway}} + in, if (t_{r,manway} \leq t_{fl_{manway}}, ok, nok)))$

5-\$C-SW-MEE-1882 	C		Page C-24 of C-38
XMPR	Prepared By:	J Hibbang	Calculation No.: 0108-0309-jlh-1
MPR Associates, Inc.		NI le For	Revision No.: 0
Alexandria VA 22314	Checked By: "	R. PARKERSON	Page No.: 23

4.6 Inlet and Outlet Nozzle Flange Evaluation

Reference I, Paragraph UG-44(a) recommends that bolted flanges to external piping conform to a recognized standard. Such flanges may be used in accordance with the pressure-temperature ratings of the standard.

The inlet and outlet nozzle flanges are ANSI B16.5 standard flanges with a 150# rating (Reference 4, Grid C-2). At a design temperature of 200°F, the allowable pressure is $P_{150.allow} = 240 \text{ psi}$ (Reference 8, Table 2).

Summarize the results.

	"Location"	"Pressure"	"Design"	"Result"	Ì
	e n:	"Rating"	*Pressure*	un 1	
1) :=	N 11	"psi"	"psī"		
	"Inlet & Outlet Nozzle Flange"	P 150.allow + psi	P ₁ + psi	$if(P_1 \leq P_{1S0,allow}, ok, nok)$	

н 1 1 г. н

	("Location"	"Pressure"	"Design"	"Result"
TE	••	"Rating"	"Pressure"	
1) =	wis	"psi"	"psi"	-
	"Inlet & Outlet Nozzle Flange"	240	191	•0k")

5-8C-SW-MEE-1882 Q54 0-2-05	Ro,0		Page C-25 of C	
MMPR	Prepared By:	1 Hilland	Calculation No.: 0108-0309-jlh-1	
MPR Associates, Inc.		NI/L ED	Revision No.: 0	
320 King Street Alexandria VA 22314	Checked By: ²	R. PARKERSON	Page No.: 24	

4.7 Minimum Thickness of Flat Cover

Determine the minimum required wall thickness of flat heads from Reference 1, Paragraph UG-34, Equation 2. The minimum thickness for the channel cover is calculated for operating conditions. The minimum thickness for the manway cover is calculated with the formula for no edge moment, because . the manway uses a full face gasket.

$$l_{r,flat} := \begin{bmatrix} d_{channel} \cdot \frac{C_{channel} \cdot P_{f}}{S_{flat}} + \frac{1.78 \cdot W_{ml}}{S_{flat}} + \frac{1.78 \cdot W_{ml}}{S_{flat}} \\ \frac{S_{flat}}{S_{flat}} + \frac{S_{flat}}{S_{flat}} + \frac{S_{flat}}{S_{flat}} + \frac{S_{flat}}{S_{flat}} \\ \frac{S_{flat}}{S_{flat}} + \frac{S_{flat}}{S_{flat}} \\ \frac{S_{flat}}{S_{flat}} + \frac{S_{flat}}{S_{flat}} \\ \frac{S_{flat}}{S_{flat}} + \frac{S_{flat}}{S_{flat}} \\ \frac{S_{flat}}{S_{flat}} + \frac{S_{flat}}{S_{flat}} + \frac{S_{flat}}{S_{flat}} + \frac{S_{flat}}{S_{flat}} \\ \frac{S_{flat}}{S_{flat}} + \frac$$

$$l_{r,flat} = \begin{pmatrix} 3.991 \\ 1.188 \end{pmatrix} \text{ in } l_2 = \begin{pmatrix} \text{"Channel A \& B"} \\ \text{"Manway"} \end{pmatrix}$$

where $P_t = 191 \text{ psi}$ $S_{flat} = \begin{pmatrix} 17.5 \\ 17.5 \end{pmatrix} \text{ksi}$ $bc_{manway} = 22.75 \text{ in}$ $d_{channel} = 67.38 \text{ in}$ $W_{m1}_{channel} = 7517081bf$ $C = \begin{pmatrix} 0.3 \\ 0.25 \end{pmatrix}$ $h_G = 0.938 \text{ in}$ (6.19)

The actual cover thicknesses are $t_{flat} = \begin{pmatrix} 6.19 \\ 1.5 \end{pmatrix}$ in. Add the results to the summary table T1.

 $TI := \begin{cases} for \ i \in 1 ... rows(t_{r,flat}) \\ a_i \leftarrow if(t_{r,flat_i} \leq t_{flat_i}, ok, nok) \\ stack(TI, augment(1_3, t_{r,flat} + in, t_{flat} + in, a)) \end{cases}$

The channel cover plate is grooved for the gasket as shown in Reference 1, Figure UG-34(k). The requirement for the cover plate thickness at the groove is provided in Reference 1, Paragraph UG-34(d).

$$I_{r.groove} = d_{channel} \cdot \frac{\left[\frac{1.78 \cdot W_{m}\right]_{chunnel} \cdot h_{G}}{S_{flai}_{channel} \cdot \left(\frac{d_{channel}}{channel}\right)^{3}}$$

í

ł

Reference 5, p. 5 shows that the gasket groove in the cover plate is in the clad material and that the groove does not infringe on the cover plate thickness of $t_{flat_{channel}} \approx 6.19$ in that is used in the above

evaluation. It is concluded that the thickness of the cover at the gasket groove is acceptable without further evaluation.

4.8 <u>Reinforcement Area</u>

Evaluate the reinforcement area for the inlet/outlet nozzle opening in the channel and the manway opening in the channel cover. The reinforcement area requirements are in Reference 1, Paragraphs UG-37 (channel) and UG-39 (channel cover).

The required reinforcement area is:

 $A_{r} := \begin{pmatrix} id_{Inlet} \cdot i_{r,Cyl} & \ddots & i_{Channel} \\ 0.5 \cdot id_{Manway} \cdot i_{r}, flat_{channel} \end{pmatrix} \qquad A_{r} = \begin{pmatrix} 14.17 \\ 35.92 \end{pmatrix} in^{2} \qquad i_{4} := \begin{pmatrix} "Inlet/Outlet Nozzle" \\ "Manway" \end{pmatrix}$

where

 $id_{lalei} = 18.75 \text{ in the set of the se$

Define functions to calculate the reinforcement area available in the vessel wall and in the nozzle (Reference 1, UG-40).

 $AI(E_{I},t,F,t_{r},d,t_{n}) := \begin{vmatrix} aI \leftarrow (E_{I}\cdot t - F\cdot t_{r}) \cdot d \\ a2 \leftarrow 2 \cdot (E_{I}\cdot t - F\cdot t_{r}) \cdot (t+t_{n}) \\ max(aI,a2,0) \end{vmatrix}$

$$A2(t_n, t_m, t, t_e) := \begin{vmatrix} aI \leftarrow (t_n - t_m) \cdot 5 \cdot t \\ a2 \leftarrow (t_n - t_m) \cdot (5 \cdot t_n + 2 \cdot t_e) \\ max(0, min(aI, a2)) \end{vmatrix}$$

where E,

Ļ

d

= joint efficiency for a longitudinal weld if it passes through nozzle; 1 otherwise

- t = nominal vessel wall thickness F = correction factor for variation in
 - correction factor for variation in pressure stress; 1.0 for this evaluation
 - required thickness of vessel
 - diameter of finished opening
 - nominal nozzle thickness
- t_m = required thickness of nozzle
 - thickness of reinforcement pad

USER RESPONSIBLE FOR VERIFYING REVISION, STATUS AND CHANGES PRINTED 20051108 S-\$C-SW-MEE-1882 Kay O RTH 2-2-05 Page C-30 of C-38 Calculation No.: Prepared By: 1 Kilbarg 0108-0309-jlh-1 MPR Associates, Inc. Revision No.: 0 FOR 320 King Street Checked By: Page No.: 29 Alexandria VA 22314 R. PAR Summarize the results. $T7 := for i \in 1..rows(A_{lol})$ $a_{i} \leftarrow if(A_{r_{i}} \leq A_{lol_{i}}, ok, nok)$ $stack(R3, augment(l_{4}, A_{r} + in^{2}, A_{lol} + in^{2}, a))$ "Location" "Required" "Acsual" "Result" " Area" "Area" "in ^ 2" 77 = "in.^2" "Inlet/Outlet Nozzle" 14.17 7.48 "Not Ok" "Manway" 35.92 39.63 "Ok" ÷., : 1. 1. 1. 1.

S-\$C-SW-MEE-1882 REA 9-2-05		Page C-31 of C-38
MMPR	Prepared By: 114	Calculation No.: 0108-0309-jlh-1
MPR Associates, Inc.	111	Revision No.: 0
320 King Street Alexandria VA 22314	Checked By: R.F.	Page No.: 30

4.9 <u>Tubesheet</u>

 $i_{bend} = \frac{F_{in} \cdot G_c}{2} \cdot \sqrt{\frac{F_{is}}{S_{is}}}$

The ASME Code (Reference 1) has no requirement for the thickness of the tubesheet. Reference 2, Data Sheet indicates the heat exchanger was designed to the TEMA R standard. Use the 1968 TEMA R standard (Reference 12) to determine the minimum required tubesheet thickness.

The minimum tubesheet thicknesses for bending and for shear are (Reference 12, Paragraphs R-7.122 and R-7.123):

 $t_{shear} = \frac{0.31 \cdot D_L}{1 - \frac{od_l}{S_{ls}}} \frac{P_{ls}}{S_{ls}}$ minimum required tubesheet thickness for bending where t_{bend} E minimum required tubesheet thickness for shear E t_{shear} thickness multiplier Fm E = ID of pressure vessel G_c = tubesheet design pressure P_{is} = tubesheet allowable stress at design temperature Sts DL = equivalent diameter of tube bundle (4*area/circumference) tube OD od, = tube pitch P₁ =

The tubehseet is integral with the shell and the channel head, i.e., the tubesheet is welded to both structures and benefits from the stiffening they provide. In addition, the tubesheet is stationary (there is no shell expansion joint). Accordingly, the parameters G_c and F_m are determined with Paragraph R-7.141 of Reference 12.

 G_c can be the ID of the channel head or the ID of the shell depending on the calculation. Since the two diameters are equal ($id_{Channel} = 65$ in and $id_s = 65$ in), set G_c to the ID of the channel.

 $G_c = id_{Channel}$

1

G_c = 65 in

ب جمسته با مع الم با


```
† .
```

 $F_m := F_{7,141}(r_{max})$

The tubesheet design pressure, Pts, is the the hydrostatic design pressure modified by Reference 12, Paragraphs R-7.153 and R-7.154. Calculate the modified tubesheet design pressure. This requires equivalent differential expansion pressure from R-7.151 and the equivalent bolting pressure from R-7.152.

Equivalent Differential Expansion Pressure-R-7.151

Calculate the equivalent differential thermal expansion pressure.

Shell has no expansion joint

 $F_{m} = 1.000$

 $J \equiv I$

• !

S-\$C-SW-MEE-1882 (, 0) Page C-33 of C-38 **Calculation No.:** Prepared By: Julyand 0108-0309-jlh-1 MPR Associates, Inc. Revision No.: 0 320 King Street Checked By: R. PARKARSON Page No.: 32 Alexandria VA 22314 The tube (sub t) and shell (sub s) differential temperatures for thermal growth are: $\Theta_{l} = \left(T_{avg.l} - 70 \cdot F\right)$ $\Theta_1 = 30.57 F$ $\Theta_s \equiv T_{avg.sw} - 70 \cdot F$ $\Theta_s = 36.5 F$ $T_{ave.l} = 100.57 F$ $T_{avg.sw} = 106.5 F$ where Calculate the constant K. $K = \frac{E_s \cdot t_s \cdot (od_s - t_s)}{E_t \cdot t_{a_{Tubs}} \cdot N_t \cdot (od_{Tubs} - t_{a_{Tubs}})}$ K = 0.734 E_s = 2.934 × 10⁷ psi $E_1 = 1.538 \times 10^7 \text{ psi}$ where od_s = 66 in $t_{a_{Tabe}} = 0.035$ in $N_{f} = 3400$ od_{Tube} = 0.75 in Guess that the required tubesheet thickness is $t_{r,ts} = 1.966$ in. Calculate the constant F_{cr} . $F_{q} := max \left[1, 0.25 + (F_{m} - 0.6) \left[\frac{300 \cdot t_{s} \cdot E_{s}}{K \cdot L \cdot E_{ts}} \cdot \left(\frac{G_{c}}{t_{s-c}} \right)^{3} \right]^{\frac{3}{4}} \right]$ F_q = 5.243 $E_{re} = 2.934 \times 10^7 \, \text{psi}$ where L = 304.5 in $G_c = 65$ in The differential thermal expansion equivalent pressure is: $P_d := \frac{4 \cdot J \cdot E_s \cdot I_s \cdot \left(\alpha_s \cdot \Theta_s - \alpha_t \cdot \Theta_t\right)}{\left(\alpha_s - 3 \cdot I_s \right) \cdot \left(1 + J \cdot K \cdot F_{\sigma}\right)}$ $P_d = 12.57 \, psi$ $\alpha_s = 5.73 \times 10^{-6} \frac{in}{in \cdot F} \qquad \alpha_l = 4.65 \times 10^{-6} \frac{in}{in \cdot F}$ where

$$t_{bend} \coloneqq \frac{F_m \cdot G_c}{2} \cdot \sqrt{\frac{F_{ts}}{S_{ts}}}$$
where
$$S_{ts} = 17.5 \, ksi$$

Drawings are not available to calculate the parameter D_L . Approximate D_L using the area and perimeter of a circle with diameter G_c . This is a conservative approach, since the ID of the channel head is larger than the tube bundle diameter. Also, using a circle with diameter G_c to calculate the perimeter is likely conservative since it is judged to be smaller than the tube bundle perimeter as shown in Reference 12, Figure R-7.123.

tbend = 1.97 in

t

· RF# 2-2-05			1-296 0-00 01 0-00	
			Calculation No.:	
	Prepared By:	Milbart	0108-0309-Jin-1	
MPR Associates, Inc. 320 King Street		Alothen FOR	Revision No.: 0	
Alexandria VA 22314	Checked By:	R. PARKERSON	Page No.: 35	
$D_L = 4 \cdot \frac{\frac{\pi}{4} \cdot G_c^2}{\pi \cdot G_c}$	<u> </u>	D _{I.} = 6	5 in	
$t_{shear} \coloneqq \frac{0.31 \cdot D_L}{1 - \frac{od_{Tube}}{P_1}} \cdot \frac{P_{is}}{S_{is}}$		lshear '	= 0.29 in	
where $p_t = l$ in				
t _{req.15} := max(Ibend.Ishear	.)	treq.1s	= 1.97 in	
Verify that the guessed value 7.151, variable T definition.	and the calculated	value meet the criterion	or Reference 12, Paragraph	· 말 것 같은 한만한 100 위험 것
Verify that the guessed value 7.151, variable T definition. $\left \frac{I_{req.ts} - I_{r.ts}}{I_{req.ts}} \right < 1.5 \cdot \% =$	and the calculated t	value meet the criterion A value of 1 indicates th A value of 0 indicates th	or Reference 12, Paragraph ne criterion is met. ne criterion is not met.	ing por βατηγοποιού σ
Verify that the guessed value 7.151, variable T definition. $\left \frac{t_{req.ts} - t_{r.ts}}{t_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thickness	and the calculated t I ss is $t_{15} = 3.5$ in. Add	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ	or Reference 12, Paragraph ne criterion is met. ne criterion is not met. nary table T1.	ing μ τη βατητική που σ' το ποιοιοιοιοιοιοιοιοιοιοιοιοιοιοιοιοιοιο
Verify that the guessed value 7.151, variable T definition. $\left \frac{I_{req.ts} - I_{r.ts}}{I_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thicknes TI := stack{T1, augment{"	and the calculated 1 ss is $t_{15} = 3.5$ in. Add Tubesheet", $t_{req.ts} + in$,	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ $t_{1s} + in, if(t_{req.ls} \le t_{1s}, ok, no)$	tor Reference 12, Paragraph the criterion is met. the criterion is not met. thary table T1.	ing μ in the prove of the second second second second second second second second second second second second second second seco
Verify that the guessed value 7.151, variable T definition. $\left \frac{t_{req.ts} - t_{r.ts}}{t_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thicknes T1 := stack(T1, augment(*))	and the calculated v I ss is $t_{15} = 3.5$ in. Add Tubesheet", $t_{req.ts} + in$,	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ $t_{1s} + in, if(t_{req.ts} \le t_{1s}.ok, no)$	tor Reference 12, Paragraph ne criterion is met. ne criterion is not met. hary table T1.	
Verify that the guessed value 7.151, variable T definition. $\left \frac{t_{req.ts} - t_{r.ts}}{t_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thicknes T1 := stack(T1, augment(**)	and the calculated v I ss is $t_{15} = 3.5$ in. Add Tubesheet", $t_{req.ts} + in$,	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ $t_{15} + in, if(t_{req.15} \le t_{15}.ok, no)$	The criterion is met. The criterion is not met. The criterion is not met. The criterion is not met.	
Verify that the guessed value 7.151, variable T definition. $\left \frac{t_{req.ts} - t_{r.ts}}{t_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thicknes TI := stack(TI, augment("))	and the calculated v I ss is $t_{15} = 3.5$ in. Add Tubesheet", $t_{req.ts} + in$,	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ $t_{IS} + in, if(t_{req.IS} \le t_{IS}.ok, no)$	tor Reference 12, Paragraph the criterion is met. the criterion is not met. thary table T1.	
Verify that the guessed value 7.151, variable T definition. $\left \frac{1_{req.ts} - 1_{r.ts}}{1_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thicknes T1 := stack(T1, augment(**))	i and the calculated v i ss is $t_{15} = 3.5$ in. Add Tubesheet", $t_{req.15} + in$,	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ $t_{1S} + in, if(t_{req.1S} \le t_{1S}.ok, no)$	tor Reference 12, Paragraph ne criterion is met. ne criterion is not met. hary table T1.	
Verify that the guessed value 7.151, variable T definition. $\left \frac{t_{req.ts} - t_{r.ts}}{t_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thicknes $TI := stack{T1, augment{"}}$	and the calculated v I ss is $t_{15} = 3.5$ in. Add Tubesheet", $t_{req.ts} + in$,	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ $t_{15} + in, if(t_{req.15} \le t_{15}, ok, no)$	<pre>or Reference 12, Paragraph ne criterion is met. ne criterion is not met. hary table T1. k)))</pre>	
Verify that the guessed value 7.151, variable T definition. $\left \frac{t_{req.ts} - t_{r.ts}}{t_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thicknes T1 := stack(T1, augment(**)	i and the calculated v i ss is $t_{15} = 3.5$ in. Add Tubesheet", $t_{req.15} + in$,	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ $t_{15} + in, if(t_{req.15} \le t_{15}.ok, no)$	<pre>or Reference 12, Paragraph ne criterion is met. ne criterion is not met. hary table T1. *)))</pre>	
Verify that the guessed value 7.151, variable T definition. $\left \frac{t_{req.ts} - t_{r.ts}}{t_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thicknes T1 := stack(T1, augment("))	and the calculated v I ss is $t_{15} = 3.5$ in. Add Tubesheet", $t_{req.ts} + in$,	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ $t_{15} + in, if(t_{req.15} \le t_{15}.ok, no)$	tor Reference 12, Paragraph the criterion is met. the criterion is not met. thary table T1.	
Verify that the guessed value 7.151, variable T definition. $\left \frac{t_{req.ts} - t_{r.ts}}{t_{req.ts}}\right < 1.5 \cdot \% =$ The actual tubesheet thicknes T1 := stack{T1,augment{"}}	and the calculated v I ss is $t_{15} = 3.5$ in. Add Tubesheet" $, t_{req.ts} + in$,	value meet the criterion A value of 1 indicates th A value of 0 indicates th I the results to the summ $t_{15} + in, if(t_{req.15} \le t_{15}.ok, no)$	tor Reference 12, Paragraph the criterion is met. thary table T1. *)))	

5-5C-SW-MEE-1882 8774 0.2.05	No) 0		Page C-37 of C-38
MMPR	Prepared By:	Hilland	Calculation No.: 0108-0309-jlh-1
MPR Associates, Inc.		NI / FR	Revision No.: 0
Alexandria VA 22314	Checked By: 4	R. FARKERSON	Page No.: 36

4.10 Seismic Evaluation

Channel Cover, Cover Bolting, and Channel Flange

Reference 5, Paragraph 7.B.1 determined that the equivalent pressure load on the cover from seismic acceleration is $P_{eq.ch} = 2.4 \text{ psi}$. This is $P_{eq.ch} + P_1 = 1.3\%$ of the new design pressure of $P_1 = 191 \text{ psi}$. It is concluded that the seismic loading on the channel cover, cover bolting, and channel flange is negligible and that no further evaluation is required.

Channel Head and Manway Cylinder

Section 4.2 of this calculation determines the channel and manway required wall thickness for the design pressure. The limiting stress in determining the minimum required wall thickness is the hoop stress. Seismic acceleration produces longitudinal membrane and bending stresses. It is concluded that the seismic acceleration does not affect the minimum wall thickness calculation of Section 4.2 and that no further evaluation of the channel or manway cylinder for scismic acceleration is required.

Manway Cover, Manway Bolting, and Manway Flange

Reference 5, Paragraph 7.B.2 determined that the equivalent force on the manway cover from seismic acceleration is $F_{eq.m} = 540$ lbf. This is an equivalent pressure of:

1.2

$$P_{eq.m} := \frac{F_{eq.m}}{\frac{\pi}{4} \cdot (G_{manuray})^2} \qquad P_{eq.m} = 1.61 \text{ psi}$$

where

G_{manway} = 20.634 in

This equivalent seismic pressure is $P_{eq.m} + P_t = 0.8$ % of the new design pressure of $P_t = 191$ psi. It is concluded that the seismic loading on the manway cover, manway cover bolting, and manway flange is negligible and that no further evaluation is required.

5-\$	C-SW-MEE-1882 R+10 R5H Q-2-05	Page C-38 of C-38
\wedge	MPR Prepared By: JH-1	Calculation No.: 0108-0309-jth-1
MPR /	Associates, Inc.	Revision No.: 0
Alexa	ndria VA 22314 Checked By: Checked By: R. PARKER	Page No.: 37
5.0	REFERENCES	
1.	1968 ASME Code, Section VIII, Division 1.	
2.	PSE&G VTD No. 301110, 7/25/91, Auxiliary Heat Exc Manual.	changers Westinghouse Instruction
3.	Greenkorn and Kessler, "Transfer Operations," McGrav	w-Hill Book Company, 1972.
4.	PSE&G VTD No. 111008-05, EFCO Drawing No. NE Details."	N-15763, "Shell, Chan. & Support
5.	PSE&G VTD No. 316898-01, "ASME Code Calculation Exchanger Modification No. 1 Unit," Original Issue.	ons for Component Cooling Heat
6.	Garlock Gasket Product Catalog, available at web site: http://www.garlock.net/upload/catalogs/GSK%203-1%	20Gasket%20catalog.pdf.
7.	E. Avallone & T. Baumeister, "Marks' Standard Handb McGraw-Hill Book Company, 9th Edition.	ook for Mechanical Engineers,"
8.	ANSI B16.5 (1961), "Steel Pipe Flanges and Flanged F	"ittings."
9.	PSE&G VTD No. 320478, Equipment Specification No Exchangers," Revision 1.	o. G-676454, "Auxiliary Heat
10.	PSE&G VTD No. 117638-04, EFCO Drawing No. NEI	N-B-15763, "Tubesheets.".
11.	1992 ASME Code, Section II, Materials, Part D, Proper	rties.
12.	TEMA, "Standards of Tubular Exchanger Manufacture	rs Association," 5th Edition, 1968.
13.	Form U-1, Manufactured by Engineers and Fabricators, Board No. 1148.	Vessel No. S-15763-A, National
14.	2001 ASME Code, Section II, Materials, Part D, Proper	rties.

ģ

LR-N05-0446

Document Control Desk Attachment 1

¥

10 CFR 50.55a Request Number SC-RR-W03

Proposed Alternative In Accordance with 10 CFR 50.55a(a)(3)(i) Alternative Provides Acceptable Level of Quality and Safety

Enclosure 2

S-C-SW-MEE-1882, Salem SW Heat Exchangers - Suitability for Operation at Higher Pressures, Revision: 0, **Attachment D**, MPR Calculation 0108-0.309-jem-1, *"Component Cooling Water Shell and Tube Heat Exchanger Channel Analysis,"* Revision dated 1/27/050.

5-5C-SW-MEE-1882 Rp, 0

Page D-1 of D-19

Attachment D: MPR Calculation 0108-0309-jem-1, "Component Cooling Water Shell and Tube Heat Exchanger Channel Analysis," Revision 0

*

4

ļ

5- 5C-SW-MEE-1882	Res O	F	Page D	-2 of D-19
ATH 2-3	2-05	A 3 4	/IPR As 20 King Nexandi	sociates, Inc.) Street ria, VA 22314
	CALCULATION TI	TLE PAGE		
Client: PSEG Nuclear			: (+	Page 1 of 15 Attachments)
Project: Salem SW HX Re-Rate			010	Task No. 8-0418-0309-00
Title: Component Cooling Wa Analysis	ater Shell and Tube Heat Exch	anger Channel	C 010	alculation No. 08-0309-JEM-1
Preparer / Date	Checker / Date	Reviewer & Approver	/ Date	Rev. No.
James Moroney	Teresa K. Tetlow 12/28/04 Teresa Tetlow	12/28/04 Robert Coward		0
This document has been pre requirements of 100	QUALITY ASSURANCE parcd, checked, and reviewed/app CFR50 Appendix B, as specified	DOCUMENT proved in accordance with in the MPR Quality Assu	the Qua rance Ma	lity Assurance mual.

MPR-QA Form QA-3.1-1, Rev 1

.

:

		2-05	MPR A 320 Kir Alexan	ssociates, Inc. ng Street dria, VA 22314
		RECORD OF R	EVISIONS	
Cal 0108	culation No. -0309-JEM-1	Prepared By Ash	Checked By J. K. Ictlow	Page: 2
Revision	Affected Pages		Description	
0	All	Initial Issue		•
	- - - - - - - - - - 	\$.		,
		ł		

•

MPR QA Form QA-3.1-2. Rev 0

R5#	2.2-05	MPR As 320 King Alexand	sociates, Inc. 3 Street ria, VA 22314
Calculation No. 0108-0309-JEM-1	Prepared By	Checked By J. K. Itllow	Page: 3 Revision: 0
Table of Conte	ents		
1.0 Purpose		•••••••••••••••••••••••••••••••••••••••	4
1.0Purpose2.0Summary of I	Results	•••••••••••••••••••••••••••••••••••••••	4 4
 Purpose Summary of I Finite Element 	Results nt Model	•••••••••••••••••••••••••••••••••••••••	4 4 4
 Purpose Summary of I Finite Element Model Geometric 	Results at Model etry	•••••••••••••••••••••••••••••••••••••••	4 4 4 4
 Purpose Summary of I Finite Element Model Geomet Material Prop 	Results at Model etry erties	······	
 Purpose Summary of I Summary of I Finite Element Model Geome Material Prop Boundary Cod 	Results nt Model etry erties nditions		
 Purpose Summary of I Summary of I Finite Element Model Geometric Material Prop Boundary Cont Analysis 	Results nt Model etry erties nditions		
 Purpose Summary of I Summary of I Finite Element Model Geomet Material Prop Boundary Cont Analysis Analysis Rest 	Results nt Model etry erties nditions ults		
 Purpose Summary of I Summary of I Finite Element Model Geome Material Prop Boundary Con Analysis Analysis Rest References 	Results at Model erty erties nditions ults		
 Purpose Summary of I Summary of I Finite Element Model Geome Material Prop Boundary Co. Analysis Analysis Rest References Plastic Analysis 	Results at Model etry rerties nditions ults sis Deflection Data		

MPR QA Form: QA-3.1-3, Rev. 0

 $\sim 2^{\frac{1}{2}}$

RJ# 2-2-0	5	MPR A 320 Ki Alexar	Associates, Inc. ng Street Idria, VA 22314
Calculation No.	Prepared By	Checked By	Page: 4
0108-0309-JEM-1	4-7	J. R. Ietion	Revision: 0

1.0 PURPOSE

This calculation documents a finite element analysis of the Service Water side of the Component Cooling (CC) Heat Exchangers Nos. 11, 21, and 22 at Salem. PSEG Nuclear is currently reevaluating the Salem Service Water (SW) system heat exchangers for an increase in design pressure from 150 psig to 200 psig. This analysis is being performed as part of that effort. This elastic-plastic finite element analysis calculates the collapse pressure of the heat exchanger channel.

2.0 SUMMARY OF RESULTS

Using the methodology of Reference 7, Appendix 4, 4-136.5, the maximum allowable pressure for the SW side of CC Heat Exchangers Nos. 11, 21, and 22 is 267 psig. This is not a certification that the Heat Exchangers meet all applicable ASME B&PV code requirements.

3.0 FINITE ELEMENT MODEL

A three-dimensional finite element model of the CC heat exchangers "A" channel has been prepared to calculate the collapse load of the heat exchanger head. Note that the "A" channel is larger than the "B" channel. Therefore the results of this analysis are bounding for both channels. While this calculation uses a methodology described in the ASME B&PV, it does not certify that the CC heat exchanger is in compliance with all ASME B&PV requirements.

The finite element analysis was performed using the ANSYS general purpose finite element computer program Version 8.1 on a Sun Microsystems 280R server running the Solaris 8 operating system. The ANSYS installation verification is documented in QA-81-1

3.1 Model Geometry

The model geometry is taken from References 1 through 3. Channel "A" is modeled along with approximately 2 feet of the heat exchanger shell. Note that this section of shell is not being evaluated, but is included for boundary conditions only. In addition, the cover and nozzle flanges are conservatively not included in the model. Scoping evaluations indicated that these components do not significantly impact the behavior of the channel shell. No credit is taken for the structural strength of the tubesheet clad.

The model is a three-dimensional half model, with the axis of symmetry at the along the heat exchanger axial length at the nozzle centerline. Figure 3-1 shows the model geometry. The model is meshed with 3-D solid elements with 10 nodes (ANSYS Element SOLID45). Figure 3-2 shows the model mesh.

MPR QA Form QA-3 1-3, Rev. C

_	5-,8C-SW-MEE-1882 RFH 2-2-0 WMPR	Jein 10 10	Page MPR As 320 King Alexand	e D-6 of D-19 sociates, Inc. g Street Iria, VA 22314	-
	Calculation No.	Prepared By	Checked By	Page: 5	-
	0108-0309-JEM-1	95/~	J. X. Tetlow	Revision: 0	
tr ¹ i i i i i i i i i i i i i i i i i i i	CCW HX Channel Hea	Ind A	eometry		

MPR QA Form: QA-3.1-3, Rov. 0

Nozzle Repad

SC-SW-MEE-1882 (Ker 0	Page D-8 of D-19	
RF4 -2-2-05 NMPR	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. Prep	pared By Checked By Page: 7	· · ·
0108-0309-JEM-1	7 J. R. Ittows Revision: 0) (
3.2 Material Properties Table 3-1 shows the component materials materials are taken from References 1	ial properties used in this analysis. All component and 3.	
3.2 Material Properties Table 3-1 shows the component materials materials are taken from References 1 Tab	ial properties used in this analysis. All component and 3. le 3-1. Model Materials	
3.2 Material Properties Table 3-1 shows the component materials materials are taken from References 1 Tab Component	ial properties used in this analysis. All component and 3. le 3-1. Model Materials Material	•
3.2 Material Properties Table 3-1 shows the component materials materials are taken from References 1 Tab Component Channel	ial properties used in this analysis. All component and 3. le 3-1. Model Materials Material	•
3.2 Material Properties Table 3-1 shows the component materials are taken from References 1 Tab Component Channel Nozzles	ial properties used in this analysis. All component and 3. le 3-1. Model Materials Material SB-171 90-10 Cu-Ni	•
3.2 Material Properties Table 3-1 shows the component materials materials are taken from References 1 Tab Component Channel Nozzles Partition Plate	ial properties used in this analysis. All component and 3. le 3-1. Model Materials Material SB-171 90-10 Cu-Ni	•
3.2 Material Properties Table 3-1 shows the component materials materials are taken from References 1 Tab Component Channel Nozzles Partition Plate Channel Flange	ial properties used in this analysis. All component and 3. le 3-1. Model Materials Material SB-171 90-10 Cu-Ni SA-105-II	• • • •

To properly account for the redistribution of load and potential concentration of strain for loads that produce stresses beyond the elastic limit, elastic-plastic material properties were included in this analysis. The behavior of the channel shell is of particular interest. Therefore, a stress-strain curve was developed for SB-171 90-10 Cu-Ni. Bi-linear stress-strain curves were used for the carbon steel portions of the model (SA-150-II and SA-515 Gr. 70). Key material properties used in the stress-strain curves are shown in Table 3-2 (Reference 4).

Material	Yield Strength (ksl)	Strain at Yield Strength (%)	Ultimate Tensile Strength (ksi)	Maximum Elongation (%)
SB-171 90-10	15	0.5	40	30
SA-105-II	36	0.5	70	30
SA-515 Gr. 70	38	0.5	70	21

The stress-strain curve developed for SB-171 is based a standard stress-strain curve for SB-171 90-10 Cu-Ni (Reference 5). The following adjustments were made to this curve:

- The yield strength point was set at 15 ksi and 0.5% strain.
- The ultimate tensile strength (UTS) point was set at 40 ksi and 30% strain. All points on the curve between the yield strength and UTS points were scaled down based on the ratio

Longitudinal (Z-axis) motion is constrained at the heat exchanger shell.

1

- The edge of the partition plate engaged with the cover is constrained against vertical (Y-axis) motion.
- The nozzle end nodes are coupled vertically (Y-axis) to ensure they remain in-plane vertically.

MPR QA Form. QA-3.1-3, Rev 0

a de Pro

Krs O 5-SC-SW-MEE-1882 Page D-13 of D-19 REA 2-2-05 MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 12 J. K. Tetlow 0108-0309-JEM-1 Revision: 0 4.0 ANALYSIS This calculation performs a Plastic Analysis of the CC heat exchanger channel using the methodology specified in Reference 7, Appendix 4, 4-136.4. This analysis does not attempt to certify that the heat exchanger meets the requirements of the ASME B&PV. Using the full stressstrain curve discussed above, a collapse load is calculated using the methodology described Reference 7, Appendix 6, 6-153. As the internal pressure is ramped up to a final arbitrary load of 400 psi, the deflection of the channel shell at a location remote from discontinuities is plotted. From this deflection vs. load data, a collapse limit line is plotted. The intersection of the deflection curve and collapse limit line is the collapse pressure. Per Reference 7, 4-136.4, the maximum loading of the component shall not exceed two-thirds of the plastic collapse load. With the deflection vs. load plotted with the load on the ordinate, the collapse limit line is determined by first calculating the angle between the elastic portion of the deflection curve and the ordinate (θ). The angle between the collapse limit load and the ordinate (Φ) is calculated as follows: $\Phi = \tan^{-1}(2\tan\theta)$ 4.1 Analysis Results Figures 4-1 and 4-2 show the stress intensity distribution of the channel at 200 psi and 400 psi, respectively. Review of these stress distributions indicates that the channel shell stress is primarily membrane stress and that no plastic hinges have been formed. Figure 4-3 shows the deflection vs. load curve and the collapse limit line calculated in accordance with Reference 7, Appendix 6, 6-153 (See Appendix A for data). This data is taken at a point approximately midway between the tubesheet and flange (axially) and midway between the partition plate and upper nozzle repad. This is where the maximum shell displacement occurs. The deflection vs. load curve on Figure 4-3 had not yet intersected with the collapse limit line at a pressure of 400 psi. Based on this, it is conservative to assume that the plastic collapse load is at least 400 psi. Given a plastic collapse load of 400 psi, the maximum heat exchanger channel load is 2/3 * (400 psi) = 267 psi. The displacement and strain at other locations, including the highest stress region, were also evaluated using this methodology. In all cases, the displacement data and collapse limit lines were essentially identical, supporting the 267 psi maximum heat exchanger channel load.

MPR OA Form: QA-3.1-3, Rev. 0

MPR QA Form: QA-3.1-3, Rev. 0

Cal	nutation No	Prenared By	Checked By	Page: 15
0108.	-0309-IEM-1	ANNY	J. K. Ittlow	Revision: 0
5.0	Referen	CES		
1.	PSE&G VTD No Details," Revision	. 111008-05, EFCO Drawing 1 K.	NEN-15763, "Shell, Chan &	Support
2.	PSE&G VTD No Exchangers," Rev	. 108724-08, EFCO Drawing rision G.	CD-15763, "Component Coo	ling Heat
3.	PSE&G VTD No	. 117638-04, EFCO Drawing	NEN-B-15763, "Tube Sheets	," Revision B.
4.	ASME Boiler and	Pressure Vessel Code, 1968	Edition.	
5.	Boyer, Howard E	, Atlas of Stress-Strain Curve	s, Figure 16-71, ASM Interna	tional, 1987.
6.	PSE&G VTD No. Manual.	. 30110, 7/25/91, Auxiliary H	eat Exchangers Westinghouse	Instruction
7.	ASME Boiler and	Pressure Vessel Code, Section	on VIII, Division 2, 2004 Edit	ion.
8. ι	MPR Calculation Service Water Pre	0108-0309-JLH-1, "Compon ssure Rerate Evaluation - 1C	ent Cooling Shell and Tube H CE5, 2CCE5, & 2CCE6," Re	eat Exchanger vision 0.

۰.

÷

MMPR			MPR As 320 King Alexandr	sociates, Inc. Street ia, VA 2231	4
Calculation No.	Prepared By		Checked By	Page:	A-
0108-0309-JEM-1	gen	T.	R. Tetlow	Revision:	0
A Plastic Ar Table A-1 shows the def	Talysis Deflection	on Data	SYS collapse load ar	nalysis.	_
	Pressure Disp				
	0.50 0	.0003	1		
	1.00 0	.0006			
	1.75 0	.0011			
	2.88 0	.0018			
	4.55 0	.0028			
		0066			
	16.59 0	0101			
	25.13 0	.0152			
	07041 0	.0228	بالمراجع الشوتي أنابي	Menana ana ang sang sang sang sang sang sa	•
والمنيات الوصير بعروضه والمرقولية	37.94 0				
an Arrian Shekara an	<u> </u>	0342			
laho dari kangga kangga kangga sa	37.94 0 57.17 0 77.17 0	0342 0459			
، المتيارية الوريفاري ويونية جامع الملية الملية. الم	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0	0342 0459 0574			
ا المريان الوابطار واوجاد والمراجع الم	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0	0342 0459 0574 0688 0800			
ide, de la suescence de la composition	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 157.17 0	0342 0459 0574 0688 0800 0911			
ىلىنى بىرىپىرىغىيە يەرىپىرى بىلىرىكى ،	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 157.17 0 177.17 0	0342 0459 0574 0688 0800 0911 1021			
, ån en somensen konstruktionen och som och som och som	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 157.17 0 157.17 0 157.17 0 197.17 0 177.17 0 177.17 0 197.17 0	0342 0459 0574 0688 0800 0911 1021 1129 129			
lan dar a sama ang kang sa	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 157.17 0 157.17 0 157.17 0 127.17 0 127.17 0 217.17 0 237.17 0	0342 0459 0574 0688 0800 0911 1021 1129 1235 1344			
ala i fan 'n regenere soer op de gewoer in de	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 157.17 0 157.17 0 177.17 0 197.17 0 217.17 0 237.17 0 257.17 0	0342 0459 0574 0688 0800 0911 1021 1129 1235 1344 1452			
an far a shekara duku u u u u u u	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 157.17 0 157.17 0 177.17 0 177.17 0 197.17 0 237.17 0 257.17 0 277.17 0	0342 0459 0574 0688 0800 0911 1021 1129 1235 1344 1452 1599			
lan dar a sugara gang di sun i	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 157.17 0 157.17 0 157.17 0 157.17 0 177.17 0 217.17 0 237.17 0 257.17 0 297.17 0	0342 0459 0574 0688 0800 0911 1021 1129 1235 1344 1452 1599 1807			
on far a sugar grad grad grad grad grad grad grad g	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 157.17 0 157.17 0 177.17 0 197.17 0 217.17 0 237.17 0 257.17 0 297.17 0 317.17 0	0342 0459 0574 0688 0800 0911 1021 1129 1235 1344 1452 1599 1807 2028			
 A δ second s	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 137.17 0 157.17 0 177.17 0 197.17 0 217.17 0 237.17 0 257.17 0 297.17 0 317.17 0 337.17 0	0342 0459 0574 0688 0800 0911 1021 1129 1235 1344 1452 1599 1807 2028 2259			
le, let a sugering diagonal in a sugering of the sugering of the supering of t	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 157.17 0 157.17 0 157.17 0 157.17 0 177.17 0 217.17 0 237.17 0 257.17 0 297.17 0 317.17 0 337.17 0 357.17 0 357.17 0	0342 0459 0574 0688 0800 0911 1021 1129 1235 1344 1452 1599 1807 2028 2259 2499 2854			
in the second	37.94 0 57.17 0 77.17 0 97.17 0 117.17 0 137.17 0 137.17 0 157.17 0 177.17 0 177.17 0 197.17 0 217.17 0 237.17 0 257.17 0 297.17 0 317.17 0 337.17 0 357.17 0 357.17 0 388.58 0	0342 0459 0574 0688 0800 0911 1021 1129 1235 1344 1452 1599 1807 2028 2259 2499 2851 3109			

MPR QA Form: QA-3.1-3, Rev. 0

1 A Martin St.

5-8C-SW-MEE-1882 (0 Page D-18 of D-19 R5H 2-2-0.5 MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: A-2 gen J. J. Totlow 0108-0309-JEM-1 Revision: 0 Using this data, the slope of the elastic portion of the deflection line is calculated: $m_{slave} = \frac{P}{S} = \frac{37.94 \ psi}{0.0226 \ in} = 1675.2 \ lb \ lin$ The angle (θ) between the ordinate and the elastic portion of the deflection line is: $\theta = 90 - \tan^{-1}(m_{dens}) = 0.034^{\circ}$ The angle between the ordinate and the collapse limit line is: $\Phi = \tan^{-1}(2\tan(\theta)) = 0.068^{\circ}$

MPR QA Form. QA-3 1-3, Rev. 0

د		Key 0			Page	D-19 OI D-19
	AMPR			MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
	Calculation No.	Prep	pared By	Che	cked By	Page: B-
	0108-0309-JEM-1	Jen	7	I . K.	Tetlow	Revision: 0
	B ANSYS O	utput Fi	les			
	Filename		Date		Tim	e
	Hcad.out		11/17/2004		12:57	
	Mmshcoarseep.ou	1 <u>t</u>	12/20/2004 12/22/2004		18:25 19:07	
	Headep.out					
1 - E				, .		

MPR QA Form: QA-3.1-3, Rev. 0