Inclosure Letter, Hennessey to Gorman & Taylor, subject: Annual Tank Status Report for the Savannah River Site (SRS) High Level Waste (HLW) Tank Systems (CBU-ENG-2005-00005, dated

CBU-ENG-2005-00005 MAR © 9 2005

F/H Area High Level Waste Tank Status Report For CY2004

As Required By The Federal Facility Agreement For The Savannah River Site

March 2005

Unclassified – Does Not Contain
Unclassified Controlled Nuclear Information (UCNI)

ADC/RO: Paul D. d'Etrent 1 2/24/05
Signature Date

Print Name: Paul D. d'Entremont

APPROVED for Release for Unlimited (Release to Public)

F/H Area High Level Waste Tank Status Report For CY2004

As Required By The Federal Facility Agreement For The Savannah River Site

March 2005

-1-

Table of Contents

I.	Introduction
II.	Overview of Non-Compliant Tanks
III.	Other HLW System Developments
IV.	Individual Tank Status Report
V.	F/H Area HLW Tank System / Component Report
VI.	2004 Groundwater Monitoring Report

I. Introduction

Sections IX.B.2.(b) and IX.E.3 of the Savannah River Site Federal Facility Agreement (FFA) require the United States Department of Energy (DOE) to submit to the United States Environmental Protection Agency Region IV (EPA) and the South Carolina Department of Environmental Control (SCDHEC), an annual report on the status of high level radioactive waste tanks being removed from service, and assessment reports for tank systems or components installed during the previous year. This document is being submitted in order to meet both of these annual reporting requirements. Tanks scheduled for removal from service either do not meet current secondary containment and leak detection standards, or have potential leak sites. SRS intends to remove tank systems from service as opposed to providing secondary containment for non-compliant systems. The tanks that do not meet secondary containment and leak detection requirements or that have leaked (as documented in the tank assessment reports) include High Level Waste (HLW) Tanks #1 through #24. Tanks 17F and 20F have already undergone both waste removal and operational closure. In addition, this year's report introduces the first groundwater monitoring report for the high level radioactive waste tank farms, which will become a part of future annual submittals.

II. Overview of Non-Compliant Tanks - CY2004

The F/H Area High Level Waste Tank Status Report for CY2004 is provided on the following pages. For each non-compliant waste tank, (a) the current schedule for waste removal, (b) the design and construction status of waste removal equipment, and (c) any other noteworthy information is provided. Waste removal work has focused primarily on installation and testing of waste removal equipment for Tanks 4F, 5F, 6F, 8F, and 11H, the performance of waste removal operations on Tanks 8F and 11F, and the necessary tank farm infrastructure upgrades. One new leak site was identified in Tank 12H during inspections in calendar year 2004. Operational closure dates for Tanks 18F and 19F have been revised to February 28, 2007 and October 31, 2006, respectively.

III. Other HLW System Developments

Tank Farm Evaporators

The three tank farm evaporators, 242-16F (2F) Evaporator, the 242-16H (2H) Evaporator, and the 242-25H (3H) Evaporator, are currently operational. As to the non-operational 242-F (1F) Evaporator, deactivation and isolation activities are complete.

Operations of the 2F and the 3H Evaporators continue to have some limitations on the types of materials that can be processed through these systems. Current plans are to dedicate the 2H Evaporator to the processing of high silica feed streams.

Salt Processing Facility

Processing at the In-Tank Precipitation (ITP) Facility was terminated in 1998 because the facility could not meet safety and production requirements for the High Level Waste System. Subsequently, the salt solution processing alternative evaluation identified Caustic Side Solvent Extraction as the preferred technology for a future Salt Waste Processing Facility (SWPF). Design of the SWPF, initiated in calendar year 2003, continued forward in calendar year 2004. SRS continues to pursue alternatives for near-term processing of low activity salt solution, including the design and construction of a Modular Caustic Side Solvent Extraction Unit. This Unit is under construction in the Cold Feeds Area of H-Tank Farm, and is expected to be operational in early Fiscal Year 2007.

Extended Sludge Processing (ESP) Facility

The processing of Sludge Batch 3 is in progress. As of December 31, 2004, approximately 251,000 gallons of sludge slurry have been received at the Defense Waste Processing Facility (DWPF) for processing. Preparations continue for Sludge Batch processing.

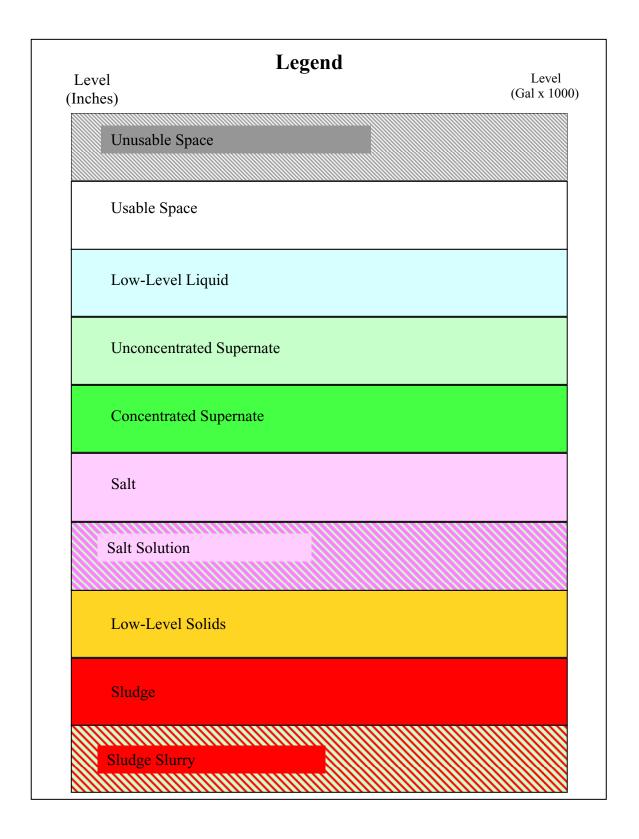
DWPF - Vitrification

For calendar year 2004, 256 sludge-only canisters of radioactive glass were produced at the Defense Waste Processing Facility, for a total of 1,775 canisters at year's end.

DWPF - Saltstone

The Saltstone Facility is currently awaiting issuance of a Solid Waste Landfill permit from the South Carolina Department of Health and Environmental Control to process low activity salt solution.

Consolidated Incineration Facility (CIF)


CIF suspended operations in FY2001. A decision on whether to restart CIF or pursue alternative treatment continues to be reviewed. Alternative treatment technologies continue to be evaluated to treat waste streams originally planned for treatment in CIF. CIF remains an alternative as technologies are considered. Progress reports are filed annually with SCDHEC.

Former Late Wash Facility (Building 512-S)

The former Late Wash Facility has been modified to process low curie salt waste as part of the Actinide Removal Process. The actinides will be sent to the DWPF for vitrification, and the bulk of the volume will be stabilized and disposed at the Saltstone Facility.

Building 241-96H (Former ITP Filter/Stripper Building)

The former ITP Filter/Stripper Building (241-96H) is being modified and reconfigured to perform a portion of the actinide removal process through the installation of two Monosodium Titanate Strike Tanks. This treatment of the salt waste will allow the 512-S Facility to operate at a higher throughput. The modifications will include the addition of a new valve box. The valve box will be located outside of 241-96H and facilitate waste transfers into and out of the building.

Tank No.: 1 Tank Type: I Tank Contents: Salt

Tank No.: 1	Tank Type: I Tank Contents: Sai	lt
Schedule for Waste Removal:	Approved Waste Removal (WR) Schedule: Waste removal to complete in 2018 and closure to complete in 2020. Projected PMP: Waste removal to complete in 2009 and closure to complete in 2010.	Tank 1 (F) (Type I) 1,100 1,000 350 900 800
Design / Construction Status:	Construction of waste removal facilities is approximately 80% complete, pump installation 0% complete, overall construction 55% complete. Modifications for waste removal will support the High Level Waste System Plan.	250 700 600 500 150 400
Other Noteworthy Information:	Tank 1 has a leakage history. A small quantity of dry waste is present on the annulus floor. No new leakage has been noted.	100 = 300 50 = 100 0 = 0

Tank No.: 2 Tank Type: I Tank Contents: Salt

Talik No., 2	Tank Type. I Tank Contents. Sai	ıι			
Schedule for	Approved WR Schedule: Waste removal to complete in 2017 and closure to complete in 2019. Projected PMP: Waste removal to		400	Tank 2 (F) (Type I)	1,100
Waste Removal:	complete in 2009 and closure to complete in 2010.		300		900 800
Design / Construction Status:	Construction of waste removal facilities is approximately 80% complete; pump installation 0% complete; overall construction 55% complete. Modifications for waste removal will support the		250		- 700 - 600 - 500
Other Noteworthy	High Level Waste System Plan. Tank 2 has no known leaks.		150		- 400 - 300 - 200
Information:			0 1		100

Tank No.: 3 Tank Type: I Tank Contents: Salt

	V 1			
	Approved WR Schedule: Waste removal to complete in 2020 and closure to complete in	400	Tank 3 (F)	1,100
Schedule for	2022. Projected PMP: Waste removal to	350		1,000
Waste Removal:	complete in 2009 and closure to complete in	000		900
	2010.	300		800
	Construction of waste removal facilities is	250		700
Design / Construction	approximately 55% complete; pump installation 0% complete; overall construction 38% complete.			600
Status:	Modifications for waste removal will support the	200		500
	High Level Waste System Plan.	150	1	400
	Tank 3 has no known leaks.	100	1	300
Other Noteworthy				200
Information:		50		100
		0	1	∐ o

Tank No.: 4 Tank Type: I Tank Contents: Water / Salt / Sludge

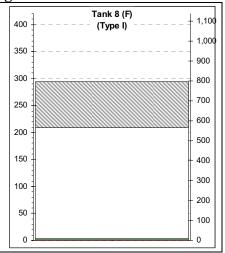
1 ank No.: 4	Tank Type: I Tank Contents: Wa	ate	r / Sait	/ Siuage	
	Approved WR Schedule: Waste removal to complete in 2020 and closure to complete in	41	00 }	Tank 4 (F)	- 1,100
Schedule for Waste Removal:	2022. Projected PMP: Waste removal to complete in 2008 and closure to complete in	3	50 =	• 	- 1,000 - 900
	2009.	30	00		- 800
	Construction of waste removal facilities is	2	50		- 700
D : /	approximately 100% complete; Construction of waste removal support facilities is approx. 75%	20	00		- 600
Design / Construction	complete; Construction D&R is 100% complete;				- 500
Status:	pump installation 0% complete; overall construction 50% complete. Modifications for	11	50 }		- 400
	waste removal will support the High Level Waste	10	00 1		- 300 - 200
	System Plan.	11,	50		
Other Noteworthy	Tank 4 has no known leaks.		1		- 100
Information:		L	0 1	-	- 0

Tank No.: 5 Tank Type: I Tank Contents: Sludge

Talik No.: 5	Tank Type: Tank Contents: Siu	luge		
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2011 and closure to complete in 2022. Projected PMP: Waste removal to complete in 2007 and closure to complete in 2008.	350 1	Tank 5 (F) (Type I)	1,100 1,000 1,000 900
Design / Construction Status:	Construction of waste removal facilities is approximately 100% complete; Construction of waste removal support facilities is approx. 95% complete; Construction D&R is 100% complete; pump installation 0% complete; overall construction 75% complete. Modifications for waste removal will support the High Level Waste System Plan.	250 - 200 - 150 -		700 600 500 400 300
Other Noteworthy Information:	A small quantity of waste (less than 5 gallons) is on the annulus floor. Salt nodules are dried on the tank wall.	50 1		100

Tank No.: 6 Tank Type: I Tank Contents: Sludge / Water

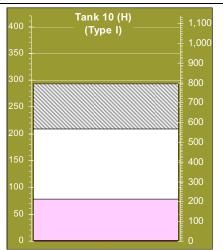
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2011 and closure to complete in 2022. Projected PMP: Waste removal to complete in 2007, and closure to complete in 2008.	400 350 300	1,000
Design / Construction Status:	Construction of waste removal facilities is 100% complete; Construction of waste removal support facilities is approx. 90% complete; Construction D&R is 100% complete; pump installation 0% complete; overall construction 65% complete. Modifications for waste removal will support the High Level Waste System Plan.	250 200 150 100	600 500 400 300
Other Noteworthy Information:	Approximately 92 gallons of dried waste is present on the annulus floor. No new leakage has been noted.	50 0	100


Tank No.: 7 Tank Type: I Tank Contents: Sludge / Water

1 ank 110 /	Tank Type: 1 Tank Contents: Sid	ust
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2020 and closure to complete in 2022. Projected PMP: Waste removal to complete in 2009 and closure to complete in 2010.	350 300
Design / Construction Status:	Construction of waste removal facilities is 100% complete; transfer pump installation 100% complete; slurry pump installation 100% complete. Installation of tank top services and the HVAC skid is nearing completion. Final testing of new equipment and instrumentation is in progress.	250 200 150
Other Noteworthy Information:	Tank 7 has no known leaks. Bulk waste removal of the supernate and the Tanks 1, 2 and 3 waste, and subsequent water washing will be completed by 2010.	50

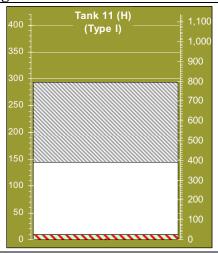
Tank No.: 8 Tank Type: I Tank Contents: Sludge / Water

Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2020 and closure to complete in 2022. Projected PMP: Waste removal to complete in 2007 and closure to complete in 2008.				
Design / Construction Status:	Construction of waste removal facilities is 100% complete.				
Other Noteworthy Information:	Tank 8 has no known leaks. Bulk sludge removal is complete. Heel removal and water washing remain.				

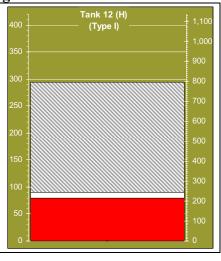


Tank No.: 9 Tank Type: I Tank Contents: Salt

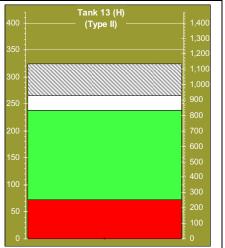
	<i>y</i> 1	-			
	Approved WR Schedule: Waste removal to complete in 2018 and closure to complete in		400	Tank 9 (H) (Type I)	1,100
Schedule for	2020. Projected PMP: Waste removal to		350 -	-	1,000
Waste Removal:	complete in 2012 and closure to complete in		330 -		900
	2013.		300 -		800
	Construction of waste removal facilities is		250 -		700
Design /	approximately 38% complete; pump installation		-		600
Construction	0% complete; overall construction 23% complete.		200 -		500
Status:	Modifications for waste removal will support the		150		
	High Level Waste System Plan.		150 -		400
	Tank 9 has a leakage history and waste has		100 -		300
Other Noteworthy	accumulated on the annulus floor. Changes in				200
Information:	appearance and configuration of the waste have		50 -		100
inioi mation.	occurred, and are most evident after heavy rainfalls apparently resulting in water intrusion.		0		0


Tank No.: 10 Tank Type: I Tank Contents: Salt

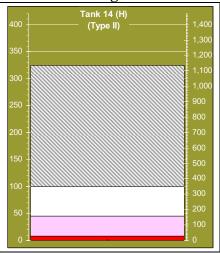
1 ank 110 10	Tank Type. I Tank Contents. Sai
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2018 and closure to complete in 2020. Projected PMP: Waste removal to complete in 2012 and closure to complete in 2013.
Design / Construction Status:	Construction of waste removal facilities is approximately 50% complete; pump installation 0% complete; overall construction 35% complete. Modifications for waste removal will support the High Level Waste System Plan.
Other Noteworthy Information:	Tank 10 has a leakage history and there is waste in the annulus. The appearance of the waste in the annulus has minutely changed over the years. The cause of these changes is not known.


Tank No.: 11 Tank Type: I Tank Contents: Sludge / Water

1 ank 110 11	Tank Type. I Tank Contents. Sit
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2007 and closure to complete in 2010. Projected PMP: Waste removal to complete in 2007 and closure to complete in 2012.
Design / Construction Status:	Construction of waste removal facilities is 100% complete. Waste removal activities are currently in progress.
Other Noteworthy Information:	Tank 11H has a leakage history. Trace amounts of waste are present on the annulus floor. There has been no evidence of new leakage during the waste removal campaign that began in February 2004.


Tank No.: 12 Tank Type: I Tank Contents: Sludge

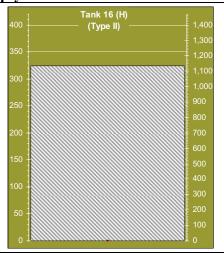
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2008 and closure to complete in 2010. Projected PMP: Waste removal to complete in 2012 and closure to complete in 2013.	
Design / Construction Status:	Design of waste removal facilities is 100% complete. Construction is 50% complete. In support of preparing the tank for bulk waste removal, a dry sludge re-wetting campaign was performed.	
Other Noteworthy Information:	The tank has a leakage history. Trace amounts of waste are present on the tank wall and annulus floor. A new leak site was identified between two known leak sites. The tank liquid level is below the lowest known leak site.	


Tank No.: 13 Tank Type: II Tank Contents: Sludge / Water

1 ank No.: 13	Tank Type: II Tank Contents: Siu	a	ge/	water
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2013 and closure to complete in 2015. Projected PMP: Waste removal to complete in 2012 and closure to complete in 2015.		350 - 300 -	Tank (Ty
Design / Construction Status:	Construction of waste removal facilities is 0% complete; pump installation 0% complete; overall construction 0% complete. Modifications for waste removal will support the High Level Waste System Plan.		250 - 200 - 150 -	
Other Noteworthy Information:	Tank 13 has a leakage history. A very small quantity of waste is present on the annulus floor. No new leakage has been noted.		100 - 50 -	

Tank No.: 14 Tank Type: II Tank Contents: Mixed Salt and Sludge

1 alik 110 14	Tank Type. II Tank Contents. Wil
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2008 and closure to complete in 2010. Projected PMP: Waste removal to complete in 2013 and closure to complete in 2014.
Design / Construction Status:	Construction of waste removal facilities is approximately 7% complete; pump installation 0% complete; overall construction 5% complete.
Other Noteworthy Information:	Tank 14 has a leakage history. There is a significant quantity of salt waste in the annulus. The appearance of the waste in the annulus has minutely changed over the years. The cause of these changes is not known.



Tank No.: 15 Tank Type: II Tank Contents: Salt / Sludge

Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2011 and closure to complete in 2013. Projected PMP: Waste removal to complete in 2012 and closure to complete in 2013.	(350 - 300 -	Tank 15 (H) (Type II)	1,400 1,300 1,200 1,100
Design / Construction Status:	Construction of waste removal facilities is approximately 95% complete; pump installation 0% complete; overall construction 75% complete. "To go" tank design modifications to support waste removal are approximately 40% complete.	4	250 - 200 - 150 -		800 700 600 500
Other Noteworthy Information:	Tank 15 has a leakage history and there is waste in the annulus. No new leakage has been noted.		100 50 0		400 300 200 100 0

Tank No.: 16 Tank Type: II Tank Contents: Empty

1 ank 110 10	Tank Type: II Tank Contents: En	-pty
Schedule for Waste Removal:	Approved WR Schedule: Closure to complete in 2015. Projected PMP: Closure to complete in 2010.	350 300
Design / Construction Status:	Waste removal, water washing and chemical cleaning of the tank interior have been completed. Design of annulus cleaning equipment has not yet started.	250
Other Noteworthy Information:	Some waste remains in the annulus. A sample of this waste was obtained in FY98 in an attempt to determine the extent of annulus cleaning required. Analysis has shown this waste to be very insoluble in water/caustic solutions. Further studies must be performed.	150

Tank No.: 17 Tank Type: IV Tank Contents: Fill Material

1 ank No.: 17	Tank Type: IV Tank Contents: Fil	i Materiai	
	Complete.	Tank 17 (F) (Type IV)	
		400	1,400
Schedule for			1,300
Waste Removal:		350	1,200
		300 #	1,100
			1,000
Design /	Complete.	250	900
Construction			800
Status:		200	700
	Final tank operational closure was approved by		600
	SCDHEC on 12/15/97.	150 +	500
04 N 4		100	400
Other Noteworthy			300
Information:		50 1	200
			100
		0 1	0

Tank No.: 18 Tank Type: IV Tank Contents: Water / Sludge / Zeolite

	Waste removal complete. Approved WR Schedule:	Tank 18 (F) (Type IV)	
	Closure to complete in 2007. Projected PMP:	400 }	,400
Schedule for	Closure to complete in 2006.	1	,300
Waste Removal:	Crosure to complete in 2000.	350 1	,200
waste Removal.			·
		300 + 1,	,100
			,000
Design /	Design and construction activities for bulk and heel	250	00
Construction	removal and water washing are complete. Heel	80	00
Status:	removal and water washing are complete.	200 + 70	00
	Tank 18F has no leakage history. Residual material	60	00
	has been characterized and shown to meet the Tank	150 1 50	00
	17F and 20F performance standards. The tank has		.00
Other Noteworthy	been isolated to preclude waste transfers.	100	00
Information:	1		00
		1 30 1	-
]	00
		0 11 0	

Tank No.: 19 Tank Type: IV Tank Contents: Sludge / Zeolite

1 ank No.: 19	Tank Type: TV Tank Contents: Siu	luge / Zeonte
Schedule for Waste Removal:	Waste removal complete. Approved WR Schedule: Closure to complete in 2007. Projected PMP: Closure to complete in 2006.	Tank 19 (F) (Type IV) 1,400 1,300 1,200 1,100 1,000
Design /	Design and construction activities for bulk and heel	250
Construction	removal and water washing are complete. Heel	800
Status:	removal and water washing are complete.	200 - 700
Other Noteworthy Information:	Tank 19F has a leakage history. Residual material in the tank has been characterized, and shown to meet the Tanks 17F and 20F performance standards. The tank has been isolated to preclude waste transfers.	150 100 50 50 400 300 200 100 0

Tank No.: 20 Tank Type: IV Tank Contents: Fill Material

1 ank 110 20	Tank Type: 14	1/10001101	
	Complete.	Tank 20 (F) (Type IV)	
		400	1,400
Schedule for			1,300
Waste Removal:		350	1,200
		300	1,100
			1,000
Design /	Complete.	250	900
Construction		1	800
Status:		200 🗍 🔭	700
	Final tank operational closure was approved by		600
	SCDHEC on 7/31/97	150	500
		400	400
Other Noteworthy		100	300
Information:		50 1	200
			100
		0 11 0	0

Tank No.: 21 Tank Type: IV Tank Contents: Sludge / Water

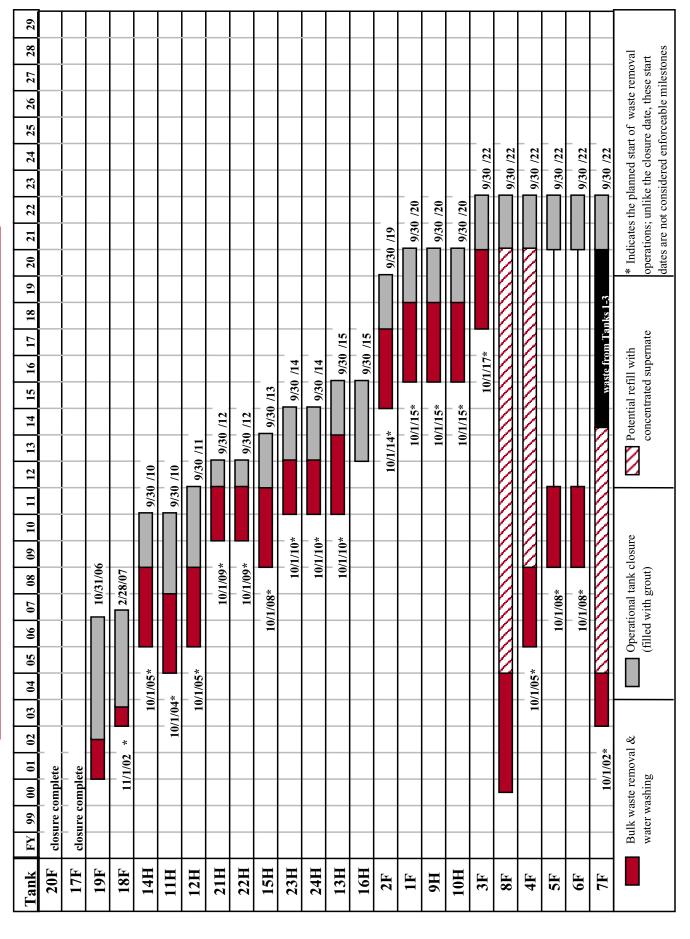
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2011 and closure to complete in 2012. Projected PMP: Waste removal to complete in 2012 and closure to complete in 2013.	350 Tank 21 (H) (Type IV) 1,400 1,300 1,100 1,100 1,000
Design / Construction Status:	Construction of waste removal facilities is approximately 97% complete; pump installation 100% complete; overall construction 93% complete. Re: leak detection modifications: installation of bearing water station mods 100% complete; valve box mods 100% complete.	250 - 900 - 800 - 700 - 600 - 500 - 400
Other Noteworthy Information:	Tank 21 has no leakage history. Most of the waste was removed from this tank during 1985-86. Tank 21 is used as a storage tank for dilute wastewater.	100 50 0 100 100 0

Tank No.: 22 Tank Type: IV Tank Contents: Sludge / Dilute Wastewater

Tank No.: 22	Tank No.: 22 Tank Type: IV Tank Contents: Studge / Dhute wastewater		
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2011 and closure to complete in 2012. Projected PMP: Waste removal to complete in 2012 and closure to complete in 2013.	Tank 22 (H) (Type IV) 350 300	- 1,400 - 1,300 - 1,200 - 1,100 - 1,000
Design / Construction Status:	Construction of waste removal facilities is approximately 98% complete; pump installation 100% complete; overall construction 95% complete.	250 -	- 900 - 800 - 700 - 600
Other Noteworthy Information:	Tank 22 has no leakage history. Most of the waste was removed from this tank in 1985-86. Tank 22 is also used to store dilute wastewater.	150	- 500 - 400 - 300 - 200 - 100

Tank No.: 23 Tank Type: IV Tank Contents: Sludge / Water

1 ank No.: 25	Tank Type: IV Tank Contents: Siu	uge / water
Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2012 and closure to complete in 2014. Projected PMP: Waste removal to complete in 2012 and closure to complete in 2013.	350 Tank 23 (H) (Type IV) 1,400 1,300 1,200 1,100 1,000
Design / Construction Status:	Construction of waste removal facilities is 0% complete; pump installation 0% complete; overall construction is 0% complete. Design of leak detection modifications is 100% complete.	250 - 900 - 800 - 700 - 600
Other Noteworthy Information:	Tank 23 has no leakage history. This tank routinely received dilute wastewater from the Receiving Basin for Offsite Fuels facility, and has also received DWPF Recycle water in the past.	150 100 50 50 0


Tank No.: 24 Tank Type: IV Tank Contents: Sludge / Water

Schedule for Waste Removal:	Approved WR Schedule: Waste removal to complete in 2012 and closure to complete in 2014. Projected PMP: Waste removal to complete in 2012 and closure to complete in 2013.	Tank 24 (H) (Type IV) 1,400 1,300 1,200 1,100 1,000
Design / Construction Status:	Construction of waste removal facilities is approximately 98% complete; pump installation 100% complete (supporting water washing); overall construction 90% complete. Design of leak detection modifications is 100% complete.	250 - 900 - 800 - 700 - 600 - 500
Other Noteworthy Information:	Tank 24 has no leakage history. Most of the waste was removed from this tank in 1983. Zeolite resin remains in the tank, and this tank is also used to store dilute wastewater.	100 - 400 - 300 - 200 - 100 0

FFA WASTE REMOVAL SCHEDULE, REVISION 2 And SUMMARY OF CHANGES

September 6, 2004

FFA Waste Removal Schedule, Revision 2 (9/6/04)

Summary of Changes

3/7/02 Submittal:

- * revised closure complete dates for Tanks 18 & 19
- * eliminated potential refill of Tanks 5 & 6
- * added closure complete dates for each tank (SCDHEC request)

4/8/02 Submittal (Revision 1)

- * revised closure complete dates from 10/1 to 9/30 (SCDHEC request)
- * added start of bulk waste removal dates for each tank (SCDHEC request)
- *added "Revision 1" and date to title
- * reduced Tank 11 "Operational Tank Closure" duration from 5 to 3 years

7/23/04 Submittal (Revision 2)

* revised operational closure complete dates for Tanks 18F and 19F

Report Section V

Federal Facility Agreement Annual HLW Tank Status Report For CY2004

System / Component Assessment Report included within this Report:

• "Assessment Report on Low Level Unirradiated Non-Waste Transfers from HPP-6 to Tank 50," Document No.: 04-HTF-004, Revision 1, last dated 11/03/2004.

ASSESSMENT REPORT

$\underline{\mathbf{ON}}$

LOW LEVEL UNIRRADIATED NON-WASTE TRANSFERS

FROM HPP-6 TO TANK 50

04-HTF-004

REV. 1

Page 1 of 12

04-HTF-004 REV. 1 Page 2 of 12

DISCLAIMER

This report was prepared by Westinghouse Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, or product or process disclosed herein or represents that its use will not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trademark, name, manufacturer or otherwise does not necessarily constitute or imply endorsement, recommendations, or favoring of same by WSRC or by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

APPROVAL SIGNATURES/SUMMARY OF CHANGES

APPROVALS

PREPARER/TITLE	DATE
Cesar P. Ansaldo, Design Engineer, Salt Waste Processing Facility, Projects, Design and Construction Services Business Unit	11/2/2004
REVIEWER	
Michael B. Wood	11,2.04
Michael B. Wood, Design Engineer, Salt Waste Processing Facility, Projects, Design and Construction Services Business Unit	(172.5)
APPROVAL	
Elay Soldings.	1/2/04
Eloy Saldivar Jr., Design Authority Manager, Salt Engineering, Liquid Waste Disposition Closure Business Unit	
APPROVAL	
Lectore	11/2/04
Lee Carey, Project Engineer, Salt Waste Processing Facility,	
Projects, Design and Construction Services Business Unit	

SUMMARY OF CHANGES

Rev.	Reason for	Pages	Preparer	Approval - DA	Approval - DE
No	Change	Affected	_		
0	Initial Issue	N/A	N/A	N/A	N/A
1	Clarification of Scope	All	N/A	N/A	N/A

TABLE OF CONTENTS

	Pa	ge No.
1.0	Executive Summary	. 5
2.0	Design Information	.6
3.0	Waste Compatibility	7
4.0	Foundation Support	.81
5.0	Leak Detection and Past Leaks	8
6.0	Inspections	81
7.0	Determination of Secondary Containment	.9
8.0	Professional Engineer Certifications (Design and Construction)	10
9.0	Attachment	
	Figure 1: Low Level Unirradiated Non-Waste Transfers from HPP-6 to Tank 50	12

1.0 Executive Summary

This Assessment Report is being submitted to satisfy requirements of Appendix B of the Savannah River Site (SRS) Federal Facility Agreement (FFA).

The purpose of this modification is to allow transfers of low level unirradiated non-waste from HPP-6 to Tank 50 and eventually to Saltstone for further processing. This assessment report covers the removal of the failed agitator, installation of a new in-line transfer pump, removal and replacement of an agitator cover plate at HPP-6, installation and replacement of HPP-6 jumpers, and installation of an aboveground line for low level non-waste transfers from HPP-6 to Tank 41 Riser C3. Existing transfer lines from Tank 41 (2"-WEE-1653-P48), the 2H Evaporator (2"-WEE-1653-PS202B) and Tank 50 (2"-WEE-3934-P48) will be used to complete the pipe routing from HPP-6 to Tank 50 (See Figure 1). This temporary non-waste transfer arrangement is expected to be in service for two years.

2.0 Design Information

This modification includes the following activities:

M-DCP-H-04045

- Modify Pump Pit HPP-6 as follows:
 - Dismantle and removal of a failed agitator in Pump Pit HPP-6.
 - Dismantle and removal of Jumper 2(HPP6)15.
 - Dismantle and removal of Electrical Jumper for Agitator Motor and Piping Jumper 14(HPP6)21.
 - Procure and install an in-line transfer pump.
 - Modify agitator cover plate to serve as pump base plate.
 - Fabricate and install a new Electrical Jumper for the pump motor.
 - Fabricate and install a new jumper that connects from Pump Pit Wall Nozzle 2 to the in-line transfer pump suction line.
 - Fabricate and install new Jumpers to connect the Pump Discharge to the new Pump Pit Wall Nozzle and to the 1 1/2" flexible hose outside the Pump Pit.
 - Procure and install approximately 800 feet of 1 1/2"flexible core hose with a 4" flexible jacket hose to connect HPP-6 to Tank 41 Riser C3.
- Modify Tank 41 Riser C3 as follows:
 - Disconnect hose connection of 3-Way Ball Valve to Line 2"-WEE-1653-P48.
 - Connect a 1 1/2" flexible hose from HPP-6 to Line 2"-WEE-1653-P48.

• C-DCF-H-03535

- Installation of core bores in HPP6 cell covers for valve stem extensions.

C-DCF-H-03536

- Installation of new shielding plug for HPP-6.

Design changes will be executed under the following Standards from the SRS Engineering Standards Manual, WSRC-TM-95-1:

15060	ASME B31.3 Additional Requirements for SRS Piping Systems
01110	SRS Civil Site Design Criteria
05057	SRS Welding Requirements
03010	Coring, Chipping, and Drilling in Concrete

Application of ASME B31.3

Design changes will be executed using the following Guides from the SRS Engineering Practices Manual, WSRC-IM-95-58:

15140-G	Field Fabrication and Installation of Pipe Supports	
16052-G	Installation of Electrical Wires, Cables and Terminations	
16053-G	nstallation of Electrical Equipment	
16056-G	Installation of Grounding Systems	
16482-G	Motor Control Centers, 600-Volt Class	
	•	
Design calculations d	ocumenting modifications made under this FFA:	
M-CLC-H-02563	HEU to Tank 50 Aboveground Transfer Pump Sizing	
M-CLC-H-02574	Water Hammer and Thermal/ Pressure Growth Analysis for Transfer Line	
T-CLC-H-00731	HPP6 Pump Pit Jumper Piping Analysis	
	The Fortump of Figure 1 Iping Marysis	

SRNL-IES-2004-00082 Memo from Annamarie M. Herb to Eloy Saldivar "Goodyear Viper

Hose Test Results"

C-CLC-H-01289 Support Design for HEU to Tank 50 Aboveground Transfer

Hose-in-Hose Assemblies

C-CLC-H-01296 Check of Road Cover Plate for Crane Movement

3.0 Waste Compatibility

15060-G

Compatibility of similar non-waste transfer materials were evaluated in the Phase II Assessment Report for the F & H Area High Level Radioactive Waste Tank Farms (Rev. 0, dated August 1991). These modifications use Type II (stainless steel core with carbon steel jacket) core and jacket piping previously evaluated but have flexible hoses in portions of the transfer line evaluated in WSRC-TR-2004-00471 "LLW Above Ground Transfer Hose Service Compatibility Review".

4.0 Foundation Support

The integrity of the waste transfer lines involved in this modification are evaluated in the following calculations (See Figure 1 for pipe numbers)

•	H-Area Diversion Boxes / Pump Pits Analysis		T-CLC-H-00276
•	Pipe Numbers 1 to 5	3"-WTS-1103-P48	T-CLC-G-00092
•	HPP6 Pump Pit Jumpers 6		T-CLC-H-00731
•	Pipe Number 7	1 1/2" Flex Hose	C-CLC-H-01289
•	Pipe Numbers 8 & 9	2"-WEE-1653-P48	T-CLC-G-00092
•	Pipe Number 10	2"-WEE-1653-PS202B	T-CLC-H-00676
•	Pipe Numbers 11 to 15	2"-WEE-3934-P48	T-CLC-H-00680
•	Support Design for HEU to Tank 50 Aboveground Transfer Line		C-CLC-H-01289
•	Package 2002-01 F/H Pump Tanks		T-CLC-H-00603

5.0 Leak Detection and Past Leaks

Existing leak detection systems currently used in LDB-2 at HPP-5/6 for 3"-WTS-1103-P48, LDB-2 at Tank 41 for 2"-WEE-1653-P48, and LDB-1 at Tank 50 for 2"-WEE-3934-P48 will still be used by the existing transfer lines. For the new aboveground hose-in-hose assembly transfer line, a 1" test/drain connection at the low end near the in-line transfer pump, is provided at the hose jacket for directing the core leaks into the existing HPT-6 leak detection system.

As stated in the Phase II Assessment Report, there are no known past or present leaks involving the core pipes and secondary containment jackets associated with any of the Type II waste transfer lines used in this modification.

6.0 Inspections

All piping material, fabrication, assembly, erection, inspection, examination, and testing shall be in accordance with ASME Code B31.3, SRS Engineering Standard 15060, SRS Engineering Guide 15060-G, and SRS Engineering Standard 05057. Examination and leak testing inspections for the hose-in-hose assembly are contained in the Quality Inspection Plan (QIP) within M-DCP-H-04045.

Safety Class (SC) components are fabricated/inspected by stand-alone QIPs for developmental drawings and installed/inspected per QIPs contained in either DCFs or the DCP. Core drilling of HPP-6 is covered in the QIP issued for C-DCF-H-03535. For fabrication of the shielded plug shown on P-PG-H-8269, C-QIP-H-00131 and C-QIP-H-00133 apply. Installation of the shielded plug is covered in the QIP issued for C-DCF-H-03536.

04-HTF-004 REV. 1 Page 9 of 12

7.0 Determination of Secondary Containment

This modification will breach the secondary containment of HPP-6 by core drilling through the top of HPP-6 to provide valve extension penetrations. The primary and secondary containment associated with this modification satisfies all FFA requirements stated in Section 2.1 of the Phase II Assessment Report as previously evaluated in Section 3.6.6 of same report. Therefore, no further assessment is needed.

8.0 Professional Engineer Certifications (Design and Construction)

Design

This assessment report was prepared under my supervision and direction. I certify that the design for the modifications detailed in M-DCP-H-04045, C-DCF-H-03535, C-DCF-H-03536 and associated design documents, kept with applicable engineering standards and the requirements of Appendix B of the Federal Facility Agreement. These standards have been generally accepted as adequate in demonstrating leak tightness.

Stamp

Name: SURENDRA K GUPTA

License Number: 13818

04-HTF-004 REV. 1 Page 11 of 12

Eword 112/04

Construction and Installation

I have conducted an inspection, to the extent possible, of the completion of the modified system. Based upon the inspection, I certify that, to the best of my knowledge, information, and belief, modification to the HPP-6 was constructed in accordance with the approved design. I further certify that the modification was tested and inspected in accordance with the requirements summarized in Section 6.0 of this Report and detailed in design change packages C-DCF-H-03535, C-DCF-H-03536 and associated design documents. The tests conducted to demonstrate leak tightness were found acceptable.

Stamp

Name: Andrew R. Redwood License Number: 20525

Construction and Installation

I have conducted an inspection, to the extent possible, of the completion of the modified system. Based upon the inspection, I certify that, to the best of my knowledge, information, and belief, modification to the HPP-6 was constructed in accordance with the approved design. I further certify that the modification was tested and inspected in accordance with the requirements summarized in Section 6.0 of this Report and detailed in design change packages M-DCP-H-04045 and associated design documents. The tests conducted to demonstrate leak tightness were found acceptable.

Stamp

Name: S. TYLER FRENCH License Number: 14883

Report Section VI

Federal Facility Agreement Annual HLW Tank Status Report For CY2004

Groundwater Monitoring Report included within this Report:

• "2004 Groundwater Monitoring Report for the High Level Waste Tank Farms" Document No.: WSRC-TR-04-00630, March 2005.

2004 GROUNDWATER MONITORING REPORT FOR THE HIGH LEVEL WASTE TANK FARMS

WSRC-TR-04-00630 MARCH 2005

Unclassified – Does Not Contain
Unclassified Controlled Nuclear Information (UCNI)
ADC/RO: Paul D. d'Entrem 1/31/05
Print Name: Pau P. d'Entremont

Introduction

This report presents the results of groundwater monitoring at the High Level Waste Tank Farms for calendar year 2004. Groundwater monitoring has been conducted at the tank farms for decades, but no formal annual reports have been compiled. In September of 2004, Liquid Waste Engineering determined that annual reports should be produced as part of the tank integrity program. Shortly thereafter the South Carolina Department of Health and Environmental Control (SCDHEC) requested submittal of annual reports each March (letter from B. Mullinax to Jeff Newman dated October 20, 2004).

Setting

The tank farms are located between Upper Three Runs Creek and Fourmile Branch in the central part of the Savannah River Site (figure 1). The uppermost aquifer in the area is the Upper Three Runs Aquifer (UTRA). This aquifer is divided into upper and lower aquifer zones by a leaky confining layer commonly referred to as the "tan clay". The UTRA is separated from the underlying Gordon Aquifer by the Gordon Confining unit which is commonly referred to as the "green clay". Water from the UTRA discharges

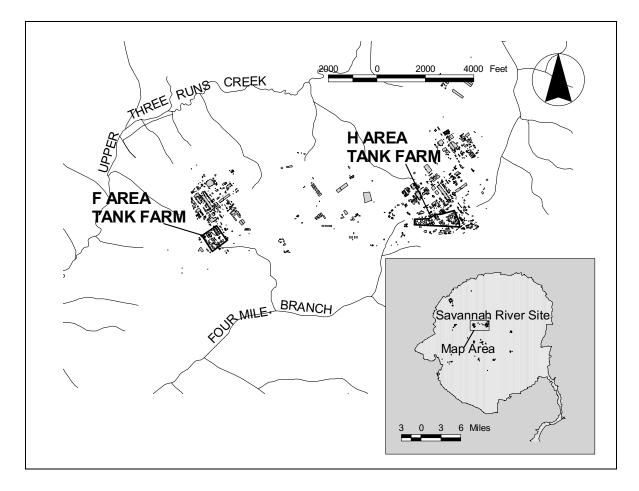


Figure 1. Locations of F Area and H Area Tank Farms.

into both Upper Three Runs Creek and Fourmile Branch. Water from the Gordon Aquifer discharges into Upper Three Runs Creek.

Groundwater Monitoring at F Area Tank Farm

Groundwater quality beneath F Tank Farm has been monitored at least annually since the 1970's. The purpose of that monitoring has been to assess the impact of known releases and to detect the impact of any unknown releases. This is a voluntary monitoring effort not driven by any regulatory requirement.

In 2004, there were 12 wells scheduled for annual sampling (figure 2). Wells FTF 28 and 29 monitor the lower aquifer zone of the Upper Three Runs Aquifer (UTRA). The other wells monitor the upper aquifer zone of that unit. Piezometric surface maps for the two units are shown in figures 3 and 4. Samples are analyzed for gross alpha, nonvolatile beta and tritium. If increases in these parameters signal a possible release of high level waste, more detailed analyses can be undertaken to determine the specific radionuclides present in the water. Samples are also analyzed for sodium and chromium to check for releases from the cooling water system. The monitoring results for 2004 are presented in Appendix A.

Recently, DOE, EPA and SCDHEC approved the General Separations Area (GSA) Western Groundwater Operable Unit (OU) RCRA Facility Investigation (RFI)/Remedial Investigation (RI) Phase I Work Plan, that includes the investigation of the groundwater associated with this OU. All F-Area facilities, including the F- Area Tank Farm, are contained in the GSA Western GWOU. The objective of the GSA Western Groundwater OU is to investigate groundwater contamination within this OU and determine whether this contamination poses a problem that warrants remedial action. Phase I of this work plan involves the use of expedited site characterization (ESC) techniques to gain an understanding of the extent of groundwater contamination and whether additional monitoring wells are needed. Based on the Phase I characterization and existing monitoring data, a long term Groundwater Monitoring strategy will be proposed. In Phase I ongoing preliminary characterization activities will also define the monitoring network and parameters to be analyzed.

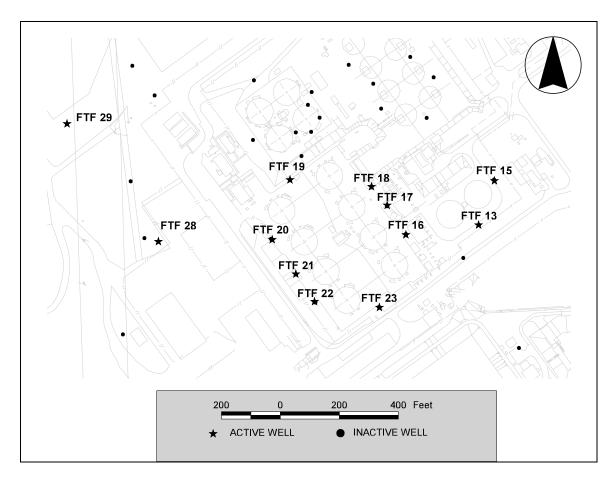


Figure 2. Wells at F Tank Farm.

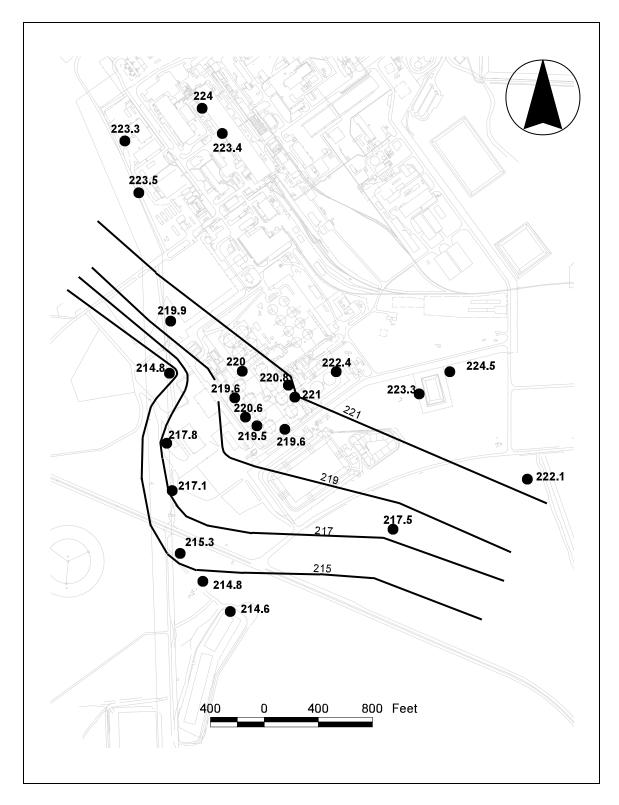


Figure 3. Water levels for the Upper Aquifer Zone of the Upper Three Runs Aquifer during the third quarter of 2004 near F Tank Farm.

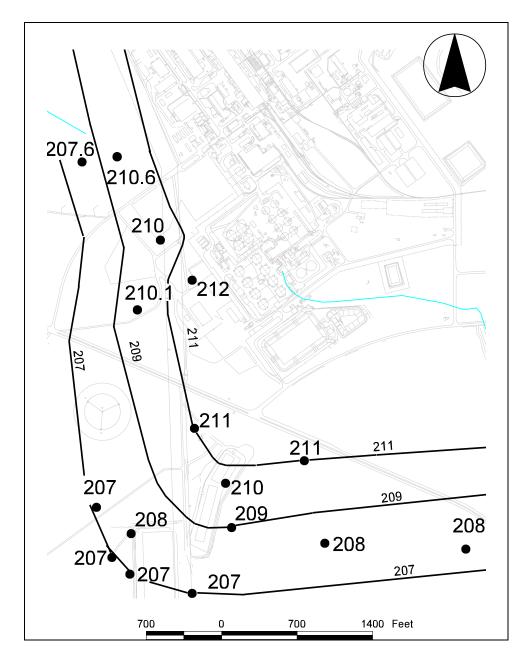


Figure 4. Water levels for the Lower Aquifer Zone of the Upper Three Runs Aquifer during the fourth quarter of 2004.

Except for results from two wells, the 2004 monitoring results give no clear indication of impacts from tank farm operations. Well FTF 21 had a sodium result of 21,390 ug/l and a chromium result of 7.935 ug/l. Taken together these results could be evidence of contamination from a chromate water release. At least one such release is well documented and was one of twelve F-Area Tank Farm Site Evaluation Areas moved to Appendix C of the Federal Facility Agreement (FFA) in 2003 (letter from Thomas Johnson to C.M. Gorman and K.B. Feely dated March 26, 2003).

Another point of interest is at well FTF 28 where a result of 141 pCi/l was reported for nonvolatile beta. The predominant beta emitter was determined to be technecium 99

which has a maximum concentration limit (mcl) of 900 pCi/l (based on 4 mrem/yr). This well was first sampled in 2003 when it yielded a result of 104 pCi/l. While it is within about 100 feet of the F-Area Inactive Process Sewer Line (FIPSL), it is up gradient of that facility and probably not affected by it (figure 5).

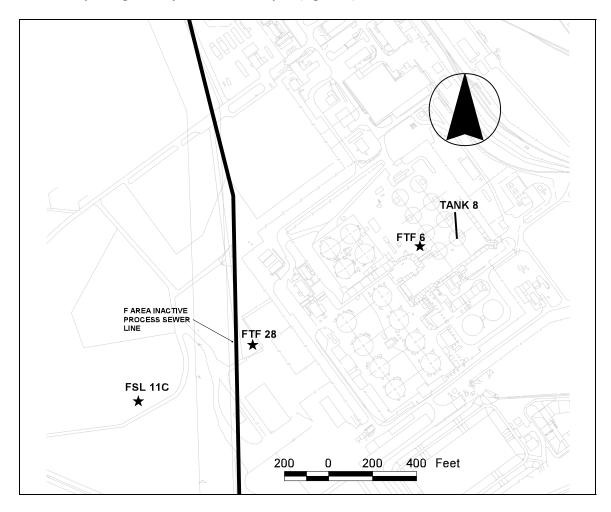


Figure 5. Locations of FTF 6, FTF 28, FSL 11C, and Tank 8.

The FTF 28 results are probably related to a release that occurred at tank 8 in 1961. In March and April of that year, high heat waste backed up into tank 8's fill line after incorrect readings were taken from a miscalibrated liquid level instrument. Waste seeped into the fill-line casement, and it is believed that approximately 1500 gallons of it leaked through the casement and into the surrounding soil (Odum 1976). A recurrence of this kind of accident is highly unlikely. The system of transfer lines leading to tanks 1-8 has been out of service for several years, and much of the liquid waste has been removed from the tanks. The remaining material consists principally of salt waste or small quantities of sludge material. Tank 8 currently stores a small residual heel of waste material.

Some of the wells close to the leak site have histories of very high nonvolatile beta results. Nonvolatile beta results for FTF 6 (figure 5) were as high as 45,000 pCi/l in the 1980's before dropping down to the hundreds of pCi/l in the mid-1990's. The

contaminated wells close to the leak site (including FTF 6) silted up and became unusable during the 1990's, but the historical results from them are sufficient to demonstrate that the 1961 event created a significant plume of contamination. It appears that this plume has reached the location of FTF 28.

Groundwater Monitoring at H Tank Farm

Groundwater quality beneath H Tank Farm has been monitored at least annually since the 1970's. The purpose of that monitoring has been to assess the impact of known spills and to attempt detection of any unknown spills. There are three groups of monitoring wells in and around the H-Area Tank Farm (figure 6). The HTF well series consists of 31 wells inside the tank farm. About half of these wells were installed in 1973 while most of the others were installed in 1985. Two others were installed in 1998. These wells are installed in the watertable aquifer.

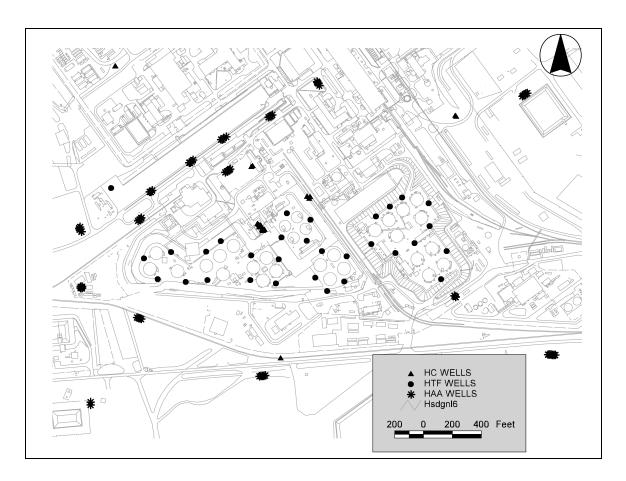


Figure 6. The HTF, HAA and HC well locations in and near H Tank Farm.

The HAA well series consists of 63 wells installed in the 1990's as part of environmental restoration activities. These wells lie outside the tank farm fence. They are grouped in clusters monitoring as many as five distinct aquifer zones.

The HC wells were installed in the 1960's to study regional water levels and groundwater flow. Twenty-two of these wells are in or near H Tank Farm. These wells have only been used for water levels in the past, but they can be sampled as monitoring wells. Wells HC 1A, 1B, 1C and 1D have been added to the monitoring program starting in 2005.

A network of wells positioned within the area and around the down gradient side of the tank farm is sampled on a routine basis. Thirteen of the HAA wells are sampled as part of a network monitoring groundwater quality from historical releases around the H Area facilities (the GSA Eastern Groundwater Operable Unit). This is done to comply with the terms of the approved RFI/RI Work Plan for the H Area Groundwater Operable Unit (WSRC 2002). These wells are sampled twice each year for the following constituents:

1,1,1 trichloroethane
1,1-dichloroethane
carbon tetrachloride
methyl ethyl ketone
trichloroethylene
cadmium
lead
tritium
nonvolatile beta
gross alpha

The objective of the GSA Eastern Groundwater Operable Unit is to investigate groundwater contamination within the Operable Unit and determine whether this contamination poses a problem that warrants remedial action. All H-Area facilities, including the H-Area Tank Farm, are contained in the GSA Eastern GWOU. The results are reported annually to SCDHEC and the Environmental Protection Agency (EPA).

In addition to the monitoring being performed through the GSA Eastern Groundwater Operable Unit RCRA Facility Investigation (RFI)/Remedial Investigation (RI), a historical monitoring network used for the study of the H-Tank Farm Area exists that involves the sampling of the HTF wells and included 14 additional HAA wells in 2004. The wells selected for the voluntary monitoring program are sampled annually for tritium, gross alpha, nonvolatile beta, sodium and chromium. In 2004, an attempt was made to sample 22 of the 31 HTF wells (nine wells have failed to yield sufficient water for a sample for several years). Of the 22 wells scheduled to be sampled, it is common for some to be dry and others to be impractical to sample due to radiological postings or other impediments. The HTF wells that are regularly yielding samples provide sufficient coverage of the watertable aquifer close to the tanks.

The wells scheduled for sampling in 2004 are shown in figure 7. The HTF wells all monitor the Upper Aquifer Zone of the UTRA. HAA wells monitoring three zones are being sampled. The "A" wells are in the Gordon Aquifer. The "B" wells are in the lowermost part of the Lower Aquifer Zone of the UTRA. The "D" wells are in the Upper Aquifer Zone of the UTRA.

Piezometric maps for the upper and lower aquifer zones of the UTRA are presented in figures 8 and 9. The 2004 sample results (Appendix A) are consistent with historical results. Elevated nonvolatile beta results at wells HTF 3, HTF6, HAA 4D and HAA 12A are probably related to a significant 1960 upset at tank 16 or to other smaller releases nearby (WSRC 1992). Wells in the area around tank 16 have yielded elevated results for decades.

Conclusions

In 2004, groundwater monitoring beneath the F and H Area high level waste tank farms consisted of both regulatory driven monitoring programs and voluntary sample collection. Samples were collected from wells both within the tank farm facilities and surrounding the down gradient perimeter. Samples were analyzed for select organic constituents, metals, and radionuclides. No unexpected results were observed during 2004. At F Area, a nonvolatile beta plume containing technecium 99 was detected just beyond the facility fence at FTF 28. This is a predictable result likely derived from a 1961 release from tank 8's fill line casement. The results for FTF 28 are below the mcl. The only noteworthy results at H Area are several elevated nonvolatile beta results probably related to historical releases in the vicinity of tank 16.

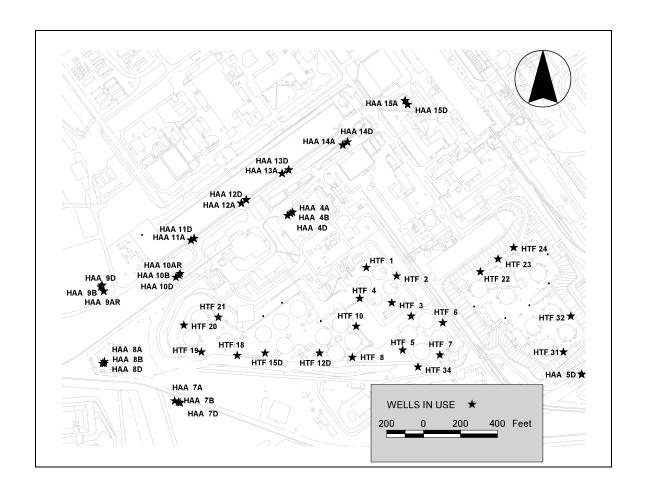


Figure 7. Routinely sampled wells at H Tank Farm.

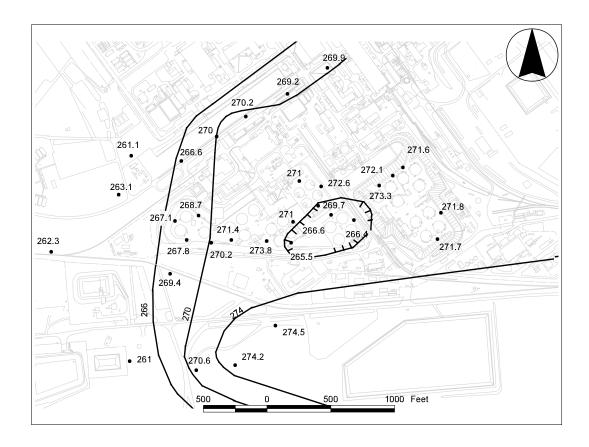


Figure 8. Water levels for the Upper Aquifer Zone of the Upper Three Runs Aquifer during the third quarter of 2004.

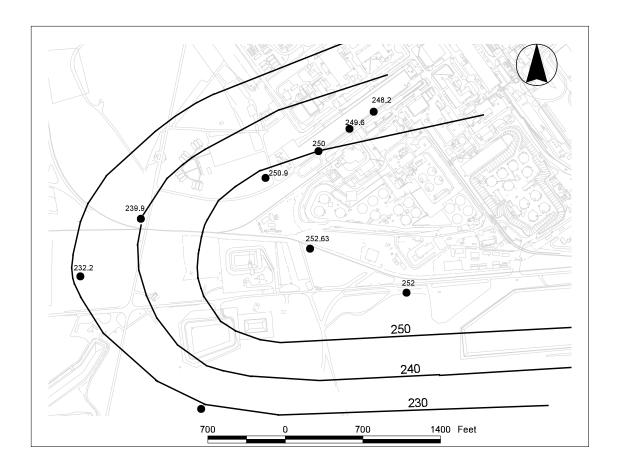


Figure 9. Water levels for the Lower Aquifer Zone of the Upper Three Runs Aquifer during the fourth quarter of 2004

References Cited

Johnson, Thomas, Recommendation for Twelve Site Evaluation Areas located in F-Tank Farm, letter to C. M. Gorman and K. B. Feely dated March 26, 2003.

Mullinax, Barry S., Initial Comments on Preliminary Closure Plan, letter to Jeff Newman dated October 20, 2004.

Odum, J.V, 1976, Soil Contamination Adjacent to Waste Tank 8, Separations Technology Department, E.I DuPont de Nemours & Company, Savannah River Plant, Aiken, South Carolina. DPSPU 76-11-4.

Westinghouse Savannah River Company (WSRC), 1992, RFI/RI Work Plan for Tank 16 (U), Savannah River Site, Aiken, South Carolina. WSRC-RP-90-497.

Westinghouse Savannah River Company (WSRC), 2002, RFI/RI Work Plan for the H-Area Groundwater Operable Unit (U), Savannah River Site, Aiken, South Carolina. WSRC-RP-2000-4144.

	D-f-W							
	Definitions	mathed detection limit					-	
	MDL PQL	method detection limit practical quantitation limit						
	LAB QUALIFIER	USEPA Functional Guideline Codes						
	LAB_QUALIFIEN	applied by labs.						
	EPA CODE	USEPA Functional Guideline Codes						
	LIACOBL	applied by SRS						
	J	The analyte was positively identified						
		but the numerical value is an estimate.						
	U	Material analyzed for but not detected.	Analytical r	esult rep	ported is less than	the		
		sample quantitation limit.						
	UJ	The analyte was not detected above th	e reported s	sample	quantitation limit.			
		The reported quantitation limit is appro-				tual		
		limit of quantitation necessary to accur					ple.	
WELL	DATE	ANALYTE_NAME	MDL	PQL	LAB_QUALIFIER	EPA_CODE	RESULT	UNITS
HAA 5D		1,1,1-TRICHLOROETHANE	0.34	1		J	91.4	
HAA 5D	9/28/2004		3.4	10			93.3	
HAA 9AR	3/11/2004		0.34	1	U	UJ	1	ug/L
HAA 9AR		1,1,1-TRICHLOROETHANE	0.34	1	U		1	
HAA 9D		1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	
HAA 9D		1,1,1-TRICHLOROETHANE	0.34	1	U		1	
HAA 11A		1,1,1-TRICHLOROETHANE	0.34	1	U	UJ		ug/L
HAA 11A		1,1,1-TRICHLOROETHANE	0.34	1	U			ug/L
HAA 11D HAA 11D		1,1,1-TRICHLOROETHANE 1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	
HAA 11D		1,1,1-TRICHLOROETHANE	0.34	1	U	UJ		
HAA 12A HAA 12A		1,1,1-TRICHLOROETHANE	0.34	1	U		1	
HAA 12D		1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	
HAA 12D		1,1,1-TRICHLOROETHANE	0.11	5	U		5	
HAA 12D		1,1,1-TRICHLOROETHANE	0.34	1	U			
HAA 13A		1,1,1-TRICHLOROETHANE	0.34	1	Ü			
HAA 13D		1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	
HAA 13D		1,1,1-TRICHLOROETHANE	0.34	1	U			ug/L
HAA 14A		1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	
HAA 14A		1,1,1-TRICHLOROETHANE	0.34	1	U		1	ug/L
HAA 14D		1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	ug/L
HAA 14D		1,1,1-TRICHLOROETHANE	0.11	5	U		5	
HAA 14D	9/27/2004	1,1,1-TRICHLOROETHANE	0.34	1	U		1	
HAA 15A	3/15/2004	1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	ug/L
HAA 15A	9/28/2004	1,1,1-TRICHLOROETHANE	0.34	1	U		1	ug/L
HAA 15D	3/15/2004	1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	ug/L
HAA 15D		1,1,1-TRICHLOROETHANE	0.34	1	U		1	ug/L
HTF 12D		1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	ug/L
HTF 12D		1,1,1-TRICHLOROETHANE	0.34	1	U		1	ug/L
HTF 15D		1,1,1-TRICHLOROETHANE	0.34	1	U	UJ	1	
HTF 15D		1,1,1-TRICHLOROETHANE	0.34	1	U		1	
HAA 5D		1,1-DICHLOROETHANE	4.1	10		J		
HAA 5D		1,1-DICHLOROETHANE	4.1	10				ug/L
HAA 9AR		1,1-DICHLOROETHANE	0.41	1	U	UJ	1	
HAA 9AR		1,1-DICHLOROETHANE	0.41	1	U		1	
HAA 9D		1,1-DICHLOROETHANE	0.41	1	U	UJ	1	
HAA 9D		1,1-DICHLOROETHANE	0.41	1	U		1	
HAA 11A		1,1-DICHLOROETHANE	0.41	1	U	UJ	1	ug/L
HAA 11A HAA 11D		1,1-DICHLOROETHANE 1.1-DICHLOROETHANE	0.41	1	U	UJ	1	
HAA 11D		1.1-DICHLOROETHANE	0.41	1	U	03		
HAA 12A		1,1-DICHLOROETHANE	0.41	1	U	UJ	1	
HAA 12A		1.1-DICHLOROETHANE	0.41	1	Ü	03		ug/L
HAA 12D		1,1-DICHLOROETHANE	0.41	1	U	UJ	1	
HAA 12D		1,1-DICHLOROETHANE	0.21	5	U		5	
HAA 12D		1,1-DICHLOROETHANE	0.41	1	U		1	ug/L
HAA 13A		1,1-DICHLOROETHANE	0.41	1	U		1	
HAA 13D		1,1-DICHLOROETHANE	0.41	1	U	UJ	1	
HAA 13D		1,1-DICHLOROETHANE	0.41	1	U			ug/L
HAA 14A	3/15/2004	1,1-DICHLOROETHANE	0.41	1		UJ	1	ug/L
HAA 14A		1,1-DICHLOROETHANE	0.41		U			ug/L
HAA 14D		1,1-DICHLOROETHANE	0.41		U	UJ		ug/L
HAA 14D		1,1-DICHLOROETHANE	0.21	5	U			ug/L
HAA 14D		1,1-DICHLOROETHANE	0.41					ug/L
HAA 15A		1,1-DICHLOROETHANE	0.41			UJ		ug/L
HAA 15A		1,1-DICHLOROETHANE	0.41		U			
HAA 15D		1,1-DICHLOROETHANE	0.41			UJ		ug/L
HAA 15D		1,1-DICHLOROETHANE	0.41		U	111		ug/L
HTF 12D		1,1-DICHLOROETHANE	0.41	1	U	UJ		ug/L
HTF 12D		1,1-DICHLOROETHANE	0.41	1				ug/L
HTF 15D HTF 15D		1,1-DICHLOROETHANE 1,1-DICHLOROETHANE	0.41 0.41	1		UJ		ug/L ug/L
HAA 5D		ALKALINITY (AS CACO3)	0.41	1	0			
HAA 5D		ALKALINITY (AS CACO3)						mg/L
HAA 9AR		ALKALINITY (AS CACO3)						mg/L
HAA 9AR		ALKALINITY (AS CACO3)						mg/L
HAA 9D		ALKALINITY (AS CACOS)						mg/L
HAA 9D		ALKALINITY (AS CACO3)						mg/L
HAA 11A		ALKALINITY (AS CACO3)						mg/L
HAA 11A		ALKALINITY (AS CACO3)						mg/L
HAA 11D		ALKALINITY (AS CACO3)						mg/L
HAA 11D		ALKALINITY (AS CACO3)						mg/L
		ALKALINITY (AS CACO3)						mg/L
HAA 12A								mg/L
HAA 12A HAA 12A	9/22/2004	ALKALINITY (AS CACO3)					040	mg/L
	9/22/2004	ALKALINITY (AS CACO3) ALKALINITY (AS CACO3)						mg/L
HAA 12A HAA 12D HAA 12D	9/22/2004 3/11/2004 9/22/2004	ALKALINITY (AS CACO3) ALKALINITY (AS CACO3)					0	
HAA 12A HAA 12D	9/22/2004 3/11/2004 9/22/2004 3/11/2004	ALKALINITY (AS CACO3)					0 0	mg/L

WELL	DATE	ANALYTE_NAME	MDL	PQL	LAB QUALIFIER	EPA CODE	RESULT	UNITS
HAA 13A		ALKALINITY (AS CACO3)				_		mg/L
HAA 13A		ALKALINITY (AS CACO3)					100	mg/L
HAA 13D		ALKALINITY (AS CACO3)						
HAA 13D		ALKALINITY (AS CACO3)						
HAA 13D HAA 14A		ALKALINITY (AS CACO3) ALKALINITY (AS CACO3)						
HAA 14A		ALKALINITY (AS CACOS)						
HAA 14D		ALKALINITY (AS CACO3)					5	
HAA 14D		ALKALINITY (AS CACO3)						_
HAA 15A		ALKALINITY (AS CACO3)					264	
HAA 15A		ALKALINITY (AS CACO3)					691	
HAA 15D		ALKALINITY (AS CACO3)					0	
HAA 15D		ALKALINITY (AS CACO3)						
HTF 12D HTF 12D		ALKALINITY (AS CACO3) ALKALINITY (AS CACO3)					73	_
HTF 15D		ALKALINITY (AS CACOS)						
HTF 15D		ALKALINITY (AS CACO3)						
HAA 5D		CADMIUM	0.04	1	U	U	1	
HAA 5D	9/28/2004	CADMIUM	0.04	1	U		1	
HAA 9AR		CADMIUM	0.04	1	U	U	1	
HAA 9AR		CADMIUM	0.04	1	U			
HAA 9D		CADMIUM	0.04	1	U	U	11	_
HAA 9D HAA 11A		CADMIUM CADMIUM	0.04 0.04	1	J U	1	0.096	
HAA 11A		CADMIUM	0.04	1	J	J		
HAA 11D		CADMIUM	0.04	1	U	U	1	
HAA 11D		CADMIUM	0.04	1	U	-	1	
HAA 12A		CADMIUM	0.04	1	U	U		
HAA 12A	9/22/2004	CADMIUM	0.04	1	U		1	
HAA 12D		CADMIUM	0.04	1	U	U	1	
HAA 12D		CADMIUM	0.037	5	U			ug/L
HAA 12D		CADMIUM	0.04	1	U			ug/L
HAA 13A HAA 13D		CADMIUM CADMIUM	0.04	1	J U	1		ug/L
HAA 13D		CADMIUM	0.04	1	J	J		
HAA 14A		CADMIUM	0.04	1	U	U	1	
HAA 14A		CADMIUM	0.04	1	U	-	1	
HAA 14D		CADMIUM	0.04	1	J	J		
HAA 14D	9/27/2004	CADMIUM	0.037	5	U		5	ug/L
HAA 14D		CADMIUM	0.04	1	U			
HAA 15A		CADMIUM	0.04	1	U	U		
HAA 15A		CADMIUM	0.04	1	J		0.053	
HAA 15D HAA 15D		CADMIUM CADMIUM	0.04 0.04	1	U	U	1	
HTF 12D		CADMIUM	0.04	1	U	U	1	ug/L ug/L
HTF 12D		CADMIUM	0.04	1	J	Ŭ	0.054	
HTF 15D		CADMIUM	0.04	1	J	J		
HTF 15D	9/28/2004	CADMIUM	0.04	1	J			
HAA 5D		CARBON TETRACHLORIDE	0.29	1		J	1.72	
HAA 5D		CARBON TETRACHLORIDE	0.29	1			2.57	
HAA 9AR		CARBON TETRACHLORIDE	0.29	1	U	UJ	1_	
HAA 9AR HAA 9D		CARBON TETRACHLORIDE CARBON TETRACHLORIDE	0.29	1	U	UJ	1_	ug/L
HAA 9D		CARBON TETRACHLORIDE	0.29	1	U	UJ	1	_
HAA 11A		CARBON TETRACHLORIDE	0.29	1	U	UJ	1	
HAA 11A		CARBON TETRACHLORIDE	0.29	1	U			Ü
HAA 11D		CARBON TETRACHLORIDE	0.29	1	U	UJ		
HAA 11D		CARBON TETRACHLORIDE	0.29	1	U			
HAA 12A		CARBON TETRACHLORIDE	0.29	1	U	UJ	1	ug/L
HAA 12A		CARBON TETRACHLORIDE	0.29	1	U		1	_
HAA 12D		CARBON TETRACHLORIDE	0.29	1	U	UJ	1	ug/L
HAA 12D HAA 12D		CARBON TETRACHLORIDE CARBON TETRACHLORIDE	0.14 0.29	5 1	U		<u>5</u>	
HAA 13A		CARBON TETRACHLORIDE CARBON TETRACHLORIDE	0.29	1	U			ug/L ug/L
HAA 13D		CARBON TETRACHLORIDE	0.29		U	UJ		ug/L
HAA 13D		CARBON TETRACHLORIDE	0.29	1	U			ug/L
HAA 14A		CARBON TETRACHLORIDE	0.29	1	U	UJ		ug/L
HAA 14A		CARBON TETRACHLORIDE	0.29	1				
HAA 14D		CARBON TETRACHLORIDE	0.29	1	U	UJ		
HAA 14D		CARBON TETRACHLORIDE	0.14	5	U			
HAA 14D HAA 15A		CARBON TETRACHLORIDE	0.29	1	U	111		Ü
HAA 15A HAA 15A		CARBON TETRACHLORIDE CARBON TETRACHLORIDE	0.29 0.29	1	U	UJ		
HAA 15D		CARBON TETRACHLORIDE	0.29	1		UJ		ug/L ug/L
HAA 15D		CARBON TETRACHLORIDE	0.29	1	U			ug/L
HTF 12D	3/16/2004	CARBON TETRACHLORIDE	0.29	1	U	UJ		
HTF 12D	9/28/2004	CARBON TETRACHLORIDE	0.29	1	U		1	ug/L
HTF 15D		CARBON TETRACHLORIDE	0.29	1	U	UJ		
HTF 15D		CARBON TETRACHLORIDE	0.29	1	U			
FTF 15		CHROMIUM	1	10 10	J		3.074	
FTF 15 FTF 16		CHROMIUM	1	10			2.88	ug/L ug/L
FTF 17		CHROMIUM	1	10				ug/L ug/L
FTF 18		CHROMIUM	1	10				ug/L ug/L
FTF 19		CHROMIUM	1	10	U			ug/L
FTF 20		CHROMIUM	1	10			1.144	ug/L
FTF 21	8/18/2004	CHROMIUM	1	10			7.935	ug/L
FTF 22		CHROMIUM	1	10	J		2.012	ug/L
FTF 23		CHROMIUM	1	10			2.027	
FTF 28		CHROMIUM	1	10			2.993	
FTF 29		CHROMIUM	1	10			1.64	
HAA 4A HAA 4A		CHROMIUM CHROMIUM	1	10 10			3.038 2.898	
IIAA 4A	0/11/2004	OF IT CIVILOIN	1	10	U		2.098	ug/L

WELL	DATE	ANALYTE_NAME	MDL	PQL	LAB_QUALIFIER	EPA_CODE	RESULT	UNITS
HAA 4B		CHROMIUM	1	10	J			
HAA 7A HAA 7B		CHROMIUM	1	10 10	J		3.085	
HAA 7D		CHROMIUM CHROMIUM	1	10	.1		3.572 1.826	
HAA 8A		CHROMIUM	1	10	J		3.145	
HAA 8B		CHROMIUM	1	10	J		4.066	ug/L
HAA 8D		CHROMIUM	1	10	J		1.675	
HAA 9AR HAA 9B		CHROMIUM CHROMIUM	1	10	J		2.235 10.59	
HAA 10AR		CHROMIUM	1	10	J		2.141	
HAA 10B	8/10/2004	CHROMIUM	1	10	J		6.045	ug/L
HAA 10D		CHROMIUM	1	10	J		1.034	
HTF 12D		CHROMIUM	1	10 10	J		2.548	
HTF 15D HTF 18		CHROMIUM CHROMIUM	1	10	U II			ug/L ug/L
HTF 18		CHROMIUM	1	10	Ü			ug/L
HTF 19	8/25/2004	CHROMIUM	1	10	U		10	ug/L
HTF 20		CHROMIUM	1	10	J		1.401	
HTF 21 HTF 24		CHROMIUM CHROMIUM	1	10 10	U U			ug/L ug/L
HTF 31		CHROMIUM	1	10	U			ug/L ug/L
HTF 32		CHROMIUM	1	10	U			ug/L
FTF 13		DEPTH_TO_WATER					63.9	
FTF 15		DEPTH_TO_WATER					64.1	
FTF 16 FTF 17		DEPTH_TO_WATER DEPTH_TO_WATER					67.6 68.8	
FTF 18		DEPTH_TO_WATER					67.5	
FTF 19		DEPTH_TO_WATER						
FTF 20		DEPTH_TO_WATER					67.5	
FTF 21		DEPTH_TO_WATER DEPTH_TO_WATER					66.9	
FTF 22 FTF 23		DEPTH_TO_WATER DEPTH_TO_WATER					67.3 66.4	
FTF 28		DEPTH_TO_WATER					85.2	
FTF 29	8/19/2004	DEPTH_TO_WATER					87.8	ft
HAA 4A		DEPTH_TO_WATER					128.1	
HAA 4B HAA 4D		DEPTH_TO_WATER DEPTH_TO_WATER					53.3 32.1	
HAA 5D		DEPTH_TO_WATER					24.5	
HAA 5D		DEPTH_TO_WATER					25.5	
HAA 7A		DEPTH_TO_WATER					116.4	
HAA 7B		DEPTH_TO_WATER					40.1	
HAA 7D HAA 8A		DEPTH_TO_WATER DEPTH_TO_WATER					27.3 117.6	
HAA 8B		DEPTH_TO_WATER					40.6	
HAA 8D	8/10/2004	DEPTH_TO_WATER					23.6	
HAA 9AR		DEPTH_TO_WATER					110.5	ft
HAA 9AR		DEPTH_TO_WATER					444.5	ft
HAA 9AR HAA 9B		DEPTH_TO_WATER DEPTH TO WATER					111.5 35.1	
HAA 9D		DEPTH_TO_WATER					20.9	
HAA 9D		DEPTH_TO_WATER					23	ft
HAA 9D		DEPTH_TO_WATER					21.2	
HAA 10AR		DEPTH_TO_WATER						
HAA 10B HAA 10D		DEPTH_TO_WATER DEPTH_TO_WATER					38.3 22.4	
HAA 11A		DEPTH TO WATER					19.7	
HAA 11A		DEPTH_TO_WATER					120.6	ft
HAA 11D		DEPTH_TO_WATER					27	
HAA 11D HAA 12A		DEPTH_TO_WATER					27.2	
HAA 12A HAA 12A		DEPTH_TO_WATER DEPTH TO WATER					128 129.15	
HAA 12D	3/11/2004	DEPTH_TO_WATER					34.3	ft
HAA 12D	9/22/2004	DEPTH_TO_WATER					34.25	ft
HAA 13A		DEPTH_TO_WATER					132.15 127.45	
HAA 13A HAA 13A		DEPTH_TO_WATER DEPTH TO WATER					127.45	
HAA 13A		DEPTH_TO_WATER					133	
HAA 13D	3/15/2004	DEPTH_TO_WATER					37.6	ft
HAA 13D		DEPTH_TO_WATER					37.6	
HAA 13D HAA 14A		DEPTH_TO_WATER DEPTH_TO_WATER					36 133.3	
HAA 14A		DEPTH_TO_WATER					133.8	
HAA 14D	3/15/2004	DEPTH_TO_WATER					38.6	
HAA 14D	9/27/2004	DEPTH_TO_WATER					38.6	ft
HAA 15A		DEPTH_TO_WATER					135.65	
HAA 15A HAA 15D		DEPTH_TO_WATER DEPTH_TO_WATER					136.3 40.45	
HAA 15D		DEPTH_TO_WATER					40.45	
HTF 1	8/24/2004	DEPTH_TO_WATER					11	ft
HTF 10		DEPTH_TO_WATER					51.7	
HTF 11		DEPTH_TO_WATER					57.3	
HTF 11 HTF 12D		DEPTH_TO_WATER DEPTH_TO_WATER					50.5	
HTF 12D		DEPTH_TO_WATER					52.1	
HTF 12D	9/28/2004	DEPTH_TO_WATER					50.8	
HTF 15D	3/16/2004	DEPTH_TO_WATER					50.6	ft
HTF 15D		DEPTH_TO_WATER					52.3	
HTF 15D HTF 18		DEPTH_TO_WATER DEPTH_TO_WATER					50.95 53.5	
HTF 19		DEPTH_TO_WATER					57	
HTF 2	8/24/2004	DEPTH_TO_WATER					9.2	ft
HTF 20		DEPTH_TO_WATER					57.8	
HTF 21	8/25/2004	DEPTH_TO_WATER					56	ft

WELL	DATE	ANALYTE NAME	MDL	PQL	LAB QUALIFIER	EPA CODE	RESULT	UNITS
HTF 22		DEPTH_TO_WATER					60.2	ft
HTF 23		DEPTH_TO_WATER					61.9	
HTF 24		DEPTH_TO_WATER					62.3	
HTF 3		DEPTH_TO_WATER DEPTH TO WATER					11.2	
HTF 31 HTF 32		DEPTH_TO_WATER DEPTH_TO_WATER					56 57.3	
HTF 34		DEPTH TO WATER					32	
HTF 5		DEPTH_TO_WATER					39.2	
HTF 6	9/1/2004	DEPTH_TO_WATER					39	ft
HTF 8		DEPTH_TO_WATER					38.2	
FTF 15		GROSS ALPHA	1.65	5.08	J			pCi/L
FTF 15		GROSS ALPHA	1.66	4.91	J			pCi/L
FTF 16 FTF 17		GROSS ALPHA GROSS ALPHA	1.65 1.75	4.54 5.98	J			pCi/L pCi/L
FTF 18		GROSS ALPHA	4.01	14.3	J			pCi/L
FTF 18		GROSS ALPHA	4.02	11.4	J			pCi/L
FTF 19		GROSS ALPHA	1.75	6.93				pCi/L
FTF 20		GROSS ALPHA	1.76	6	J			pCi/L
FTF 21		GROSS ALPHA	7.02	15.1	U			pCi/L
FTF 22		GROSS ALPHA	1.81 1.75	4.57 4.69	U			pCi/L
FTF 23 FTF 28		GROSS ALPHA GROSS ALPHA	2.73		J		-0.101	pCi/L
FTF 28		GROSS ALPHA	2.73	6.65				pCi/L
FTF 29		GROSS ALPHA	2.74	4.59			-0.0243	
HAA 4A		GROSS ALPHA	5.2	10.8				pCi/L
HAA 4B		GROSS ALPHA	5.19	8.28	U		-1.03	pCi/L
HAA 4B		GROSS ALPHA	5.21	9.77	U		0.145	
HAA 4D		GROSS ALPHA	5.89	22.7				pCi/L
HAA 7A		GROSS ALPHA	4.95	11.9				pCi/L
HAA 7B HAA 7D		GROSS ALPHA GROSS ALPHA	4.98 4.88	8.71 14.4			-0.424	pCi/L pCi/L
HAA 7D HAA 8A		GROSS ALPHA GROSS ALPHA	4.88 5.04	9.44			0.138	
HAA 8B		GROSS ALPHA	4.84				-0.958	
HAA 8D		GROSS ALPHA	4.81	10				pCi/L
HAA 9AR		GROSS ALPHA	7.06	14	U		0.973	
HAA 9B		GROSS ALPHA	5.45	11.8	U		2	pCi/L
HAA 9D		GROSS ALPHA	0.423			U	0.358	
HAA 9D		GROSS ALPHA	5.15	10.2			0.723	
HAA 10AR		GROSS ALPHA	4.95				-0.422	
HAA 10B HAA 10D		GROSS ALPHA GROSS ALPHA	5.21 5	10.9 10.9				pCi/L pCi/L
HTF 1		GROSS ALPHA	5.46					pCi/L
HTF 1		GROSS ALPHA	5.55	16.6	J			pCi/L
HTF 2		GROSS ALPHA	5.56	11.7	U			pCi/L
HTF 3	9/1/2004	GROSS ALPHA	4.21	13.6	J			pCi/L
HTF 3		GROSS ALPHA	4.29	12.1	J			pCi/L
HTF 4		GROSS ALPHA	3.7	8.62				pCi/L
HTF 4		GROSS ALPHA	3.81	7.64			0.764	
HTF 6 HTF 10		GROSS ALPHA GROSS ALPHA	3.84 5.34	13.5 14.5	J			pCi/L pCi/L
HTF 11		GROSS ALPHA	4.74	10.4				pCi/L
HTF 12D		GROSS ALPHA	4.14	10.4	U			pCi/L
HTF 12D		GROSS ALPHA	4.24	12.3	J			pCi/L
HTF 15D	8/25/2004	GROSS ALPHA	4.62	9.93	U		1.38	pCi/L
HTF 18		GROSS ALPHA	3.92	11.6	J			pCi/L
HTF 19		GROSS ALPHA	3.91	11	J			pCi/L
HTF 20 HTF 21		GROSS ALPHA GROSS ALPHA	3.93 3.93		J			pCi/L pCi/L
HTF 22		GROSS ALPHA	2.79		U			pCi/L pCi/L
HTF 23		GROSS ALPHA	2.79	7.55	J			pCi/L pCi/L
HTF 24		GROSS ALPHA	2.50		U			pCi/L
HTF 31		GROSS ALPHA	2.51	8.44	J			pCi/L
HTF 32		GROSS ALPHA	2.53	5.07	U		0.508	pCi/L
HTF 32		GROSS ALPHA	3.93	11.1	J			pCi/L
HTF 34		GROSS ALPHA	1.85	^	1	11		pCi/L
HAA 5D HAA 5D	3/16/2004 9/28/2004		0.05 0.05	2		U	1.91 0.876	
HAA 9AR	3/11/2004		0.05	2		U	0.624	
HAA 9AR	9/22/2004		0.05	2		-	0.343	
HAA 9D	3/11/2004	LEAD	0.05	2	UJ	U	0.359	ug/L
HAA 9D	9/22/2004		0.05	2	J		0.689	ug/L
HAA 11A	3/11/2004		0.05	2			4.32	
HAA 11A	9/22/2004		0.05	2			0.839	
HAA 11D HAA 11D	3/11/2004 9/22/2004		0.05 0.05	2		U	0.355 0.446	
HAA 11D HAA 12A	3/11/2004		0.05	2		U	0.446	
HAA 12A	9/22/2004		0.05	2		-	5.35	
HAA 12D	3/11/2004		0.05	2				ug/L
HAA 12D	9/22/2004	LEAD	0.05	2			4.2	ug/L
HAA 12D	9/22/2004		1.1	3			56.7	
HAA 13A	9/29/2004		0.05		J		0.289	
HAA 13D	3/16/2004		0.05				18.3	
HAA 13D	9/22/2004		0.05		1	U	2.53	
HAA 14A HAA 14A	3/15/2004 9/27/2004		0.05 0.05	2	J	U	1.13 1.87	
HAA 14A	3/15/2004		0.05	2			3990	
HAA 14D	9/27/2004		0.05	2			5.42	
HAA 14D	9/27/2004		1.1	3	J			ug/L
HAA 15A	3/15/2004	LEAD	0.05	2		U	0.445	
HAA 15A	9/28/2004		0.05				37.7	
HAA 15D	3/15/2004		0.05	2				ug/L
HAA 15D	9/28/2004		0.05	2			2.78	
HTF 12D	3/16/2004	LEAU	0.05	2	J	U	0.526	ug/L

WELL	DATE	ANALYTE_NAME	MDL	PQL	LAB_QUALIFIER	EPA CODE	RESULT	UNITS
HTF 12D	9/28/2004		0.05	2	J		0.499	
HTF 15D	3/16/2004		0.05	2	J	U	0.481	ug/L
HTF 15D	9/28/2004		0.05	2	J		0.389	
HAA 5D		METHYL ETHYL KETONE	2.31	5	U	UJ	5	
HAA 5D HAA 9AR		METHYL ETHYL KETONE METHYL ETHYL KETONE	2.31 2.31	5 5	U	UJ	5 5	
HAA 9AR		METHYL ETHYL KETONE	2.31	5	U	00	5	
HAA 9D		METHYL ETHYL KETONE	2.31	5	Ü	UJ	5	
HAA 9D	9/22/2004	METHYL ETHYL KETONE	2.31	5	U		5	
HAA 11A		METHYL ETHYL KETONE	2.31	5	U	UJ	5	ug/L
HAA 11A		METHYL ETHYL KETONE	2.31	5	U		5	
HAA 11D		METHYL ETHYL KETONE	2.31	5	U	UJ	5	
HAA 11D		METHYL ETHYL KETONE	2.31	5	U		5	
HAA 12A HAA 12A		METHYL ETHYL KETONE METHYL ETHYL KETONE	2.31 2.31	5 5	U	UJ	5 5	
HAA 12D		METHYL ETHYL KETONE	2.31	5	U	UJ	5	
HAA 12D		METHYL ETHYL KETONE	2.31	5	U	00	5	
HAA 13A		METHYL ETHYL KETONE	2.31	5	U		5	
HAA 13D		METHYL ETHYL KETONE	2.31	5	U	UJ	5	ug/L
HAA 13D		METHYL ETHYL KETONE	2.31	5	U		5	
HAA 14A		METHYL ETHYL KETONE	2.31	5	U	UJ	5	
HAA 14A		METHYL ETHYL KETONE	2.31	5	U		5	
HAA 14D		METHYL ETHYL KETONE	2.31	5	U	UJ	5	
HAA 14D HAA 15A		METHYL ETHYL KETONE METHYL ETHYL KETONE	2.31 2.31	5 5	U	UJ	5 5	
HAA 15A		METHYL ETHYL KETONE	2.31	5	U	50	5	
HAA 15D		METHYL ETHYL KETONE	2.31	5	U	UJ	5	
HAA 15D		METHYL ETHYL KETONE	2.31	5	U		5	
HTF 12D	3/16/2004	METHYL ETHYL KETONE	2.31	5	U	UJ	5	ug/L
HTF 12D		METHYL ETHYL KETONE	2.31	5	U		5	
HTF 15D		METHYL ETHYL KETONE	2.31	5	U	UJ		ug/L
HTF 15D		METHYL ETHYL KETONE	2.31	16.6	U		172	
FSL 11C FSL 11C		NONVOLATILE BETA NONVOLATILE BETA	1.9 7.6	16.6 35.8				pCi/L pCi/L
FSL 11C		NONVOLATILE BETA	7.6	34.5			80.5	
FSL 11C		NONVOLATILE BETA	9					pCi/L
FSL 11C		NONVOLATILE BETA	9.1	30.4				pCi/L
FTF 15	8/18/2004	NONVOLATILE BETA	3.5	8.17	U			pCi/L
FTF 15		NONVOLATILE BETA	3.51	7.84	U			pCi/L
FTF 16		NONVOLATILE BETA	3.5		U			pCi/L
FTF 17		NONVOLATILE BETA	3.58	7.98	U			pCi/L
FTF 18 FTF 18		NONVOLATILE BETA NONVOLATILE BETA	8.39 8.4	20.1	J			pCi/L
FTF 19		NONVOLATILE BETA	3.57	9.5	J			pCi/L pCi/L
FTF 20		NONVOLATILE BETA	3.58	8.31	U			pCi/L
FTF 21		NONVOLATILE BETA	10.3	26.8	J			pCi/L
FTF 22		NONVOLATILE BETA	3.62	8.33	U		2.82	pCi/L
FTF 23		NONVOLATILE BETA	3.57	8.23	U			pCi/L
FTF 28		NONVOLATILE BETA	6.41	30.9				pCi/L
FTF 28		NONVOLATILE BETA	6.42	32.6				pCi/L
FTF 29 HAA 4A		NONVOLATILE BETA NONVOLATILE BETA	3.96 10.3	10.6 21.8	H		-0.0739	pCi/L
HAA 4B		NONVOLATILE BETA	10.3	22	U			pCi/L
HAA 4B		NONVOLATILE BETA	10.4		U			pCi/L
HAA 4D		NONVOLATILE BETA	10.8					pCi/L
HAA 5D	3/16/2004	NONVOLATILE BETA	1.13	2.292	U	U	0.327	pCi/L
HAA 5D		NONVOLATILE BETA	8.53	18.3	U			pCi/L
HAA 5D		NONVOLATILE BETA	8.53		U		0.0272	
HAA 7A		NONVOLATILE BETA	10.2	22.6	U			pCi/L
HAA 7B HAA 7D		NONVOLATILE BETA NONVOLATILE BETA	10.2 10.1	20.8	U		-2.61 7.5	
HAA 7D HAA 8A		NONVOLATILE BETA	10.1	23.8	-			pCi/L pCi/L
HAA 8B		NONVOLATILE BETA	10.2	21.2	U		-0.116	
HAA 8D		NONVOLATILE BETA	10		U			pCi/L
HAA 9AR	3/11/2004	NONVOLATILE BETA	1.14	2.544			4.17	pCi/L
HAA 9AR		NONVOLATILE BETA	11.4					pCi/L
HAA 9AR		NONVOLATILE BETA	8.58					pCi/L
HAA 9AR		NONVOLATILE BETA	8.6					pCi/L
HAA 9B HAA 9D		NONVOLATILE BETA NONVOLATILE BETA	10.5 1.11	22.6 2.252		U	0.352	pCi/L
HAA 9D		NONVOLATILE BETA	1.11			U		pCi/L pCi/L
HAA 9D		NONVOLATILE BETA	10.3					pCi/L
HAA 9D		NONVOLATILE BETA	8.49				2.82	pCi/L
HAA 10AR	8/10/2004	NONVOLATILE BETA	10.2	21.6	U		0.839	pCi/L
HAA 10B		NONVOLATILE BETA	10.3				-0.774	
HAA 10D		NONVOLATILE BETA	10.2		U			pCi/L
HAA 11A		NONVOLATILE BETA	1.34		11			pCi/L
HAA 11A HAA 11D		NONVOLATILE BETA NONVOLATILE BETA	8.61 1	19 2.044		U	0.536	pCi/L
HAA 11D		NONVOLATILE BETA	8.47	18.2		0		pCi/L pCi/L
HAA 12A		NONVOLATILE BETA	1.27	3.39				pCi/L
HAA 12A		NONVOLATILE BETA	10.2		J			pCi/L
HAA 12D		NONVOLATILE BETA	1.09			J		pCi/L
HAA 12D	9/22/2004	NONVOLATILE BETA	8.43	18	U		1	pCi/L
HAA 12D		NONVOLATILE BETA	8.47	17.9	U		0.261	
HAA 13A		NONVOLATILE BETA	10.4					pCi/L
HAA 13A		NONVOLATILE BETA	10.5					pCi/L
HAA 13D		NONVOLATILE BETA	1.03			J		pCi/L
HAA 13D HAA 14A		NONVOLATILE BETA NONVOLATILE BETA	8.45 0.605			1	2.31 0.657	pCi/L
HAA 14A HAA 14A		NONVOLATILE BETA	8.92			J		pCi/L pCi/L
HAA 14A		NONVOLATILE BETA	8.94				0.0408	
HAA 14D		NONVOLATILE BETA	0.537			J	0.668	
_								

WELL	DATE	ANALYTE_NAME	MDL	PQL	LAB_QUALIFIER	EPA CODE I	RESULT	UNITS
HAA 14D		NONVOLATILE BETA	8.87	18.9			0.122	
HAA 14D	9/27/2004	NONVOLATILE BETA	8.87	18.7	U		-0.342	pCi/L
HAA 15A		NONVOLATILE BETA	0.748	2.636				pCi/L
HAA 15A		NONVOLATILE BETA	9.76	29.4				pCi/L
HAA 15D		NONVOLATILE BETA	0.703	1.373	U	U	-0.295	
HAA 15D HTF 1		NONVOLATILE BETA NONVOLATILE BETA	8.47 10.3	18.3 27.3	U			pCi/L pCi/L
HTF 1		NONVOLATILE BETA	10.3	26.5	J			pCi/L
HTF 2		NONVOLATILE BETA	10.4	25.1	J			pCi/L
HTF 3	9/1/2004	NONVOLATILE BETA	8.74	28	-			pCi/L
HTF 3	9/1/2004	NONVOLATILE BETA	8.8	28.4				pCi/L
HTF 4		NONVOLATILE BETA	7.23	15.8	U			pCi/L
HTF 4		NONVOLATILE BETA	7.29	16.3	U			pCi/L
HTF 6		NONVOLATILE BETA	8.46	37				pCi/L
HTF 10 HTF 11		NONVOLATILE BETA NONVOLATILE BETA	10.2 9.79	22.8 21.8	U			pCi/L pCi/L
HTF 12D		NONVOLATILE BETA	1.38	2.936	J	1		pCi/L
HTF 12D		NONVOLATILE BETA	8.77	20.2	U	3		pCi/L
HTF 12D		NONVOLATILE BETA	8.84	19.9	Ü			pCi/L
HTF 12D		NONVOLATILE BETA	9.37	21.4	U			pCi/L
HTF 15D	3/16/2004	NONVOLATILE BETA	1.39	2.98			3.34	pCi/L
HTF 15D		NONVOLATILE BETA	9.11	20.2				pCi/L
HTF 15D		NONVOLATILE BETA	9.1	20.4	U			pCi/L
HTF 18		NONVOLATILE BETA	8.59	21.4	J			pCi/L
HTF 19		NONVOLATILE BETA	8.58	21.3	J			pCi/L
HTF 20 HTF 21		NONVOLATILE BETA NONVOLATILE BETA	8.6 8.59	19.4 19.9	U			pCi/L pCi/L
HTF 22		NONVOLATILE BETA	6.59	15.7	J			pCi/L pCi/L
HTF 23		NONVOLATILE BETA	6.48	14.9	U			pCi/L
HTF 24		NONVOLATILE BETA	6.33	13.3	U			pCi/L
HTF 31		NONVOLATILE BETA	6.35	14.3			2.88	pCi/L
HTF 32		NONVOLATILE BETA	6.36	13.7				pCi/L
HTF 32		NONVOLATILE BETA	8.6	19.1	U			pCi/L
HTF 34		NONVOLATILE BETA	3.61	-				pCi/L
FTF 15 FTF 16	8/18/2004 8/18/2004						4.8	pH
FTF 16	8/18/2004							рН
FTF 17	8/31/2004							рН
FTF 19	8/18/2004						5.4	
FTF 20	8/18/2004							pH
FTF 21	8/18/2004	PH					11.2	pН
FTF 22	8/18/2004						5.7	
FTF 23							4.8	
FTF 29	8/19/2004							pH
HAA 4A HAA 4B	8/11/2004 8/11/2004							pH
HAA 4D	8/11/2004						7.3	рП
HAA 5D	3/16/2004						5.2	
HAA 5D	9/28/2004						5.3	
HAA 7A	8/10/2004						6.8	
HAA 7B	8/10/2004	PH					5.8	pН
HAA 7D	8/10/2004						4.6	
HAA 8A	8/10/2004						7.6	
HAA 8B		PH					5.5	
HAA 8D HAA 9AR	8/10/2004 3/11/2004						7.7	pH
HAA 9AR	8/10/2004						10.2	
HAA 9AR	9/22/2004						7.3	
HAA 9B	8/10/2004						7.9	
HAA 9D	3/11/2004						5.6	pH
HAA 9D	8/10/2004	PH					5.4	рН
HAA 9D	9/22/2004						4.8	
HAA 10AR	8/10/2004						6.4	
HAA 10B HAA 10D	8/10/2004						6.6	
HAA 10D HAA 11A	8/10/2004 3/11/2004						4.8 6.3	
HAA 11A	9/22/2004							рН
HAA 11D	3/11/2004							pH
HAA 11D	9/22/2004							pH
HAA 12A	3/11/2004	PH					11.5	pН
HAA 12A	9/22/2004						11.8	
HAA 12D	3/11/2004							pH
HAA 12D	9/22/2004							pH
HAA 13A HAA 13A	3/11/2004 3/29/2004							pH pH
HAA 13A	9/29/2004							рН
HAA 13A	9/29/2004							рН
HAA 13D	3/15/2004							pH
HAA 13D	3/16/2004	PH					4.5	pН
HAA 13D	9/22/2004	PH					6	pН
HAA 14A	3/15/2004						5.9	
HAA 14A	9/27/2004						5.9	
HAA 14D	3/15/2004							pH
HAA 14D	9/27/2004 3/15/2004						4.8	
HAA 15A HAA 15A	9/28/2004						11.4 11.4	
HAA 15A	3/15/2004							рН
HAA 15D								pH
		PH						
HTF 1	9/28/2004 8/24/2004						6.3	pН
HTF 10	9/28/2004 8/24/2004 8/24/2004	PH PH					6.3 5.9	pН
HTF 10 HTF 11	9/28/2004 8/24/2004 8/24/2004 8/24/2004	PH PH PH					6.3 5.9 5	pH pH
HTF 10	9/28/2004 8/24/2004 8/24/2004	PH PH PH PH					6.3 5.9	pH pH pH

WELL	DATE	ANALYTE_NAME	MDL	PQL	LAB_QUALIFIER	FPA CODE	RESULT	UNITS
HTF 12D	8/25/2004	PH PH	IVIDE	I QL	E/IB_QO/IEII IEIX	LI N_OODL	5.9	
HTF 12D	9/28/2004	PH						pН
HTF 15D	3/16/2004							pН
HTF 15D	8/25/2004						9.6	
HTF 15D	9/28/2004							pH
HTF 18 HTF 19	8/25/2004 8/25/2004			-				pH pH
HTF 2	8/24/2004	PH						pH
HTF 20	8/25/2004	PH						pН
HTF 21	8/25/2004						5	pН
HTF 22	8/26/2004							pH
HTF 23	8/26/2004							pH
HTF 24 HTF 31	8/26/2004 8/26/2004							pH pH
HTF 32	8/25/2004						4.9	
HTF 34	8/31/2004							pH
HAA 5D	3/16/2004	PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 5D		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 9AR		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 9AR HAA 9D		PHENOLPHTHALEIN ALKALINITY PHENOLPHTHALEIN ALKALINITY					0	mg/L mg/L
HAA 9D		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 11A		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 11A		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 11D		PHENOLPHTHALEIN ALKALINITY		L			0	mg/L
HAA 11D		PHENOLPHTHALEIN ALKALINITY		-			0	mg/L
HAA 12A HAA 12A		PHENOLPHTHALEIN ALKALINITY PHENOLPHTHALEIN ALKALINITY			1		77 620	mg/L
HAA 12A HAA 12D		PHENOLPHTHALEIN ALKALINITY PHENOLPHTHALEIN ALKALINITY			 		620 0	mg/L mg/L
HAA 12D		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 13A	3/11/2004	PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 13A		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 13A		PHENOLPHTHALEIN ALKALINITY		-			0	mg/L
HAA 13A HAA 13D		PHENOLPHTHALEIN ALKALINITY PHENOLPHTHALEIN ALKALINITY	-				0	mg/L
HAA 13D HAA 13D		PHENOLPHTHALEIN ALKALINITY PHENOLPHTHALEIN ALKALINITY		-			0	mg/L mg/L
HAA 13D		PHENOLPHTHALEIN ALKALINITY			1		0	mg/L
HAA 14A		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 14A	9/27/2004	PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 14D		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 14D		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HAA 15A HAA 15A		PHENOLPHTHALEIN ALKALINITY PHENOLPHTHALEIN ALKALINITY					234 691	mg/L mg/L
HAA 15D		PHENOLPHTHALEIN ALKALINITY					091	mg/L
HAA 15D		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HTF 12D		PHENOLPHTHALEIN ALKALINITY					10	mg/L
HTF 12D		PHENOLPHTHALEIN ALKALINITY					64	mg/L
HTF 15D		PHENOLPHTHALEIN ALKALINITY					0	mg/L
HTF 15D FTF 15	9/28/2004 8/18/2004	PHENOLPHTHALEIN ALKALINITY	100	1000	11		1000	mg/L
FTF 15	8/18/2004		100	1000	II		1000	ug/L ug/L
FTF 16	8/18/2004		100	1000	Ŭ		3113	ug/L
FTF 17	8/18/2004	SODIUM	100	1000				ug/L
FTF 18	8/31/2004		100	1000			5289	ug/L
FTF 19	8/18/2004		100	1000			3615	ug/L
FTF 20 FTF 21	8/18/2004 8/18/2004		100 100	1000			4205 21390	
FTF 22	8/18/2004		100	1000			4206	ug/L ug/L
FTF 23	8/18/2004		100	1000			7561	ug/L
FTF 28	9/30/2004		270	2700				ug/L
FTF 29	8/19/2004		100	1000	U		1000	ug/L
HAA 4A	8/11/2004		20	200	1		1560	ug/L
HAA 4A HAA 4B	8/11/2004 8/11/2004		20 20	200 200	1		1634 2041	
HAA 7A	8/10/2004		20	200			2289	
HAA 7B	8/10/2004		20	200			2593	
HAA 7D	8/10/2004		20				2030	
HAA 8A	8/10/2004		20	200	1		5343	
HAA 8B	8/10/2004		20	200			1593	
HAA 8D HAA 9AR	8/10/2004 8/10/2004		20	200	1		4196 51290	
HAA 9B	8/10/2004		20	200			7124	
HAA 10AR	8/10/2004		20	200			1339	
HAA 10B	8/10/2004	SODIUM	20	200			3701	ug/L
HAA 10D	8/10/2004		20	200			11250	
HTF 12D	8/25/2004		100	1000			6001	
HTF 15D HTF 18	8/25/2004 8/25/2004		100 100		1		15140 3348	
HTF 18	8/25/2004		100				3434	
HTF 19	8/25/2004		100				1698	
HTF 20	8/25/2004	SODIUM	100				3648	
HTF 21	8/25/2004		100				3565	
HTF 24	8/26/2004		100		1		3204	
HTF 31 HTF 32	8/26/2004 8/25/2004		100 100		1		4328 4298	
FTF 15		SPECIFIC CONDUCTANCE	100	1000				ug/L uS/cm
FTF 16		SPECIFIC CONDUCTANCE						uS/cm
FTF 17	8/18/2004	SPECIFIC CONDUCTANCE						uS/cm
FTF 18	8/31/2004	SPECIFIC CONDUCTANCE					94	uS/cm
FTF 19		SPECIFIC CONDUCTANCE						uS/cm
FTF 20 FTF 21		SPECIFIC CONDUCTANCE			+			uS/cm
FTF 21		SPECIFIC CONDUCTANCE SPECIFIC CONDUCTANCE		-	1			uS/cm uS/cm
111 44	0/10/2004	OI LOII IO OOMDOOTANOE			1		υU	uO/UIII

WELL	DATE	ANALYTE NAME		MDL	PQL	LAB_QUALIFIER	EPA CODE	RESULT	UNITS
FTF 23		SPECIFIC CONDUCTANCE							uS/cm
FTF 29		SPECIFIC CONDUCTANCE							uS/cm
HAA 4A		SPECIFIC CONDUCTANCE							uS/cm
HAA 4B		SPECIFIC CONDUCTANCE							uS/cm
HAA 4D HAA 5D		SPECIFIC CONDUCTANCE SPECIFIC CONDUCTANCE							uS/cm uS/cm
HAA 5D		SPECIFIC CONDUCTANCE							uS/cm
HAA 7A		SPECIFIC CONDUCTANCE							uS/cm
HAA 7B	8/10/2004	SPECIFIC CONDUCTANCE						49	uS/cm
HAA 7D	8/10/2004	SPECIFIC CONDUCTANCE						69	uS/cm
HAA 8A		SPECIFIC CONDUCTANCE							uS/cm
HAA 8B		SPECIFIC CONDUCTANCE							uS/cm
HAA 8D		SPECIFIC CONDUCTANCE							uS/cm
HAA 9AR HAA 9AR		SPECIFIC CONDUCTANCE SPECIFIC CONDUCTANCE							uS/cm uS/cm
HAA 9AR		SPECIFIC CONDUCTANCE							uS/cm
HAA 9B		SPECIFIC CONDUCTANCE							uS/cm
HAA 9D		SPECIFIC CONDUCTANCE							uS/cm
HAA 9D		SPECIFIC CONDUCTANCE							uS/cm
HAA 9D		SPECIFIC CONDUCTANCE							uS/cm
HAA 10AR		SPECIFIC CONDUCTANCE							
HAA 10B		SPECIFIC CONDUCTANCE							uS/cm
HAA 10D		SPECIFIC CONDUCTANCE							uS/cm
HAA 11A HAA 11A		SPECIFIC CONDUCTANCE SPECIFIC CONDUCTANCE							uS/cm uS/cm
HAA 11D		SPECIFIC CONDUCTANCE							uS/cm
HAA 11D		SPECIFIC CONDUCTANCE							uS/cm
HAA 12A		SPECIFIC CONDUCTANCE							uS/cm
HAA 12A	9/22/2004	SPECIFIC CONDUCTANCE		-		_		2337	uS/cm
HAA 12D		SPECIFIC CONDUCTANCE							uS/cm
HAA 12D		SPECIFIC CONDUCTANCE							uS/cm
HAA 13A		SPECIFIC CONDUCTANCE							uS/cm
HAA 13A HAA 13A		SPECIFIC CONDUCTANCE SPECIFIC CONDUCTANCE							uS/cm uS/cm
HAA 13A		SPECIFIC CONDUCTANCE							uS/cm
HAA 13D		SPECIFIC CONDUCTANCE							
HAA 13D		SPECIFIC CONDUCTANCE							uS/cm
HAA 13D	9/22/2004	SPECIFIC CONDUCTANCE						32	uS/cm
HAA 14A		SPECIFIC CONDUCTANCE							uS/cm
HAA 14A		SPECIFIC CONDUCTANCE							uS/cm
HAA 14D		SPECIFIC CONDUCTANCE							uS/cm
HAA 14D		SPECIFIC CONDUCTANCE							uS/cm
HAA 15A HAA 15A		SPECIFIC CONDUCTANCE SPECIFIC CONDUCTANCE							uS/cm uS/cm
HAA 15D		SPECIFIC CONDUCTANCE							uS/cm
HAA 15D		SPECIFIC CONDUCTANCE							uS/cm
HTF 1		SPECIFIC CONDUCTANCE						299	uS/cm
HTF 10	8/24/2004	SPECIFIC CONDUCTANCE						170	uS/cm
HTF 11		SPECIFIC CONDUCTANCE							uS/cm
HTF 11		SPECIFIC CONDUCTANCE							uS/cm
HTF 12D		SPECIFIC CONDUCTANCE SPECIFIC CONDUCTANCE							uS/cm
HTF 12D HTF 12D		SPECIFIC CONDUCTANCE							uS/cm uS/cm
HTF 15D		SPECIFIC CONDUCTANCE							uS/cm
HTF 15D		SPECIFIC CONDUCTANCE							uS/cm
HTF 15D		SPECIFIC CONDUCTANCE							uS/cm
HTF 18	8/25/2004	SPECIFIC CONDUCTANCE							uS/cm
HTF 19		SPECIFIC CONDUCTANCE							uS/cm
HTF 2		SPECIFIC CONDUCTANCE							uS/cm
HTF 20		SPECIFIC CONDUCTANCE							uS/cm
HTF 21 HTF 22		SPECIFIC CONDUCTANCE SPECIFIC CONDUCTANCE							uS/cm uS/cm
HTF 23		SPECIFIC CONDUCTANCE							uS/cm uS/cm
HTF 24		SPECIFIC CONDUCTANCE							uS/cm
HTF 31		SPECIFIC CONDUCTANCE							uS/cm
HTF 32		SPECIFIC CONDUCTANCE						44	uS/cm
HTF 34		SPECIFIC CONDUCTANCE							uS/cm
HAA 5D		TRICHLOROETHYLENE (T		0.36	1	J	J		ug/L
HAA 5D HAA 9AR		TRICHLOROETHYLENE (T TRICHLOROETHYLENE (T		0.36	1	J	UJ	0.429	
HAA 9AR		TRICHLOROETHYLENE (I		0.36	1	U	UJ		ug/L ug/L
HAA 9D		TRICHLOROETHYLENE (T		0.36	1	U	UJ		
HAA 9D		TRICHLOROETHYLENE (T		0.36	1				ug/L
HAA 11A		TRICHLOROETHYLENE (T		0.36	1	U	UJ		ug/L
HAA 11A		TRICHLOROETHYLENE (T		0.36	1	U		1	ug/L
HAA 11D	3/11/2004	TRICHLOROETHYLENE (T	CE)	0.36	1	U	UJ		ug/L
HAA 11D		TRICHLOROETHYLENE (T		0.36	1	U			ug/L
HAA 12A		TRICHLOROETHYLENE (T		0.36	1	U	UJ		ug/L
HAA 12A HAA 12D		TRICHLOROETHYLENE (T TRICHLOROETHYLENE (T		0.36		U	UJ		ug/L ug/L
HAA 12D HAA 12D		TRICHLOROETHYLENE (T		0.36	5		55		ug/L ug/L
HAA 12D		TRICHLOROETHYLENE (T		0.06	1	U			ug/L ug/L
HAA 13A		TRICHLOROETHYLENE (T		0.36	1	Ü			ug/L
HAA 13D		TRICHLOROETHYLENE (T		0.36	1	U	UJ		ug/L
HAA 13D	9/22/2004	TRICHLOROETHYLENE (T	CE)	0.36	1	U		1	ug/L
HAA 14A		TRICHLOROETHYLENE (T		0.36	1	U	UJ	1	ug/L
HAA 14A		TRICHLOROETHYLENE (T		0.36		U			ug/L
HAA 14D		TRICHLOROETHYLENE (T		0.36	1	U	UJ		ug/L
HAA 14D HAA 14D		TRICHLOROETHYLENE (T TRICHLOROETHYLENE (T		0.06	5 1	U			ug/L
HAA 14D HAA 15A		TRICHLOROETHYLENE (I		0.36	1		UJ		ug/L ug/L
HAA 15A		TRICHLOROETHYLENE (T		0.36		U	50		ug/L ug/L
HAA 15D		TRICHLOROETHYLENE (T		0.36		U	UJ		ug/L
	,	/							

WELL	DATE	ANALYTE_NAME	MDL	PQL	LAB_QUALIFIER	EPA_CODE	RESULT	UNITS
HAA 15D		TRICHLOROETHYLENE (TCE)	0.36		U		1	ug/L
HTF 12D		TRICHLOROETHYLENE (TCE)	0.36	1		J	0.386	ug/L
HTF 12D HTF 15D		TRICHLOROETHYLENE (TCE) TRICHLOROETHYLENE (TCE)	0.36 0.36	1		UJ	1	ug/L ug/L
HTF 15D		TRICHLOROETHYLENE (TCE)	0.36	1		00	1	ug/L ug/L
FTF 15	8/18/2004		0.886		J			pCi/mL
FTF 15	8/18/2004	TRITIUM	0.89	2.21			3.62	pCi/mL
FTF 16	8/18/2004		0.868	2.13				pCi/mL
FTF 17	8/18/2004		0.879	2.1				pCi/mL
FTF 18 FTF 18	8/31/2004 8/31/2004		0.879 0.879	2.09				pCi/mL pCi/mL
FTF 19	8/18/2004		0.89	2.23				pCi/mL
FTF 20	8/18/2004		0.886	2.15				pCi/mL
FTF 21	8/18/2004		0.882	2.17				pCi/mL
FTF 22	8/18/2004		0.885	2.2				pCi/mL
FTF 23	8/18/2004		0.885	2.12				pCi/mL
FTF 28	9/30/2004 9/30/2004		0.898	2.13				pCi/mL
FTF 28 FTF 29	8/19/2004		0.908 0.901	2.13	J			pCi/mL pCi/mL
HAA 4A	8/11/2004		0.837	1.85	U			pCi/mL
HAA 4B	8/11/2004		0.84	2.1				pCi/mL
HAA 4D	8/11/2004		0.839	2.57				pCi/mL
HAA 5D	3/16/2004		0.36	1.1				pCi/mL
HAA 5D	9/28/2004		0.803					pCi/mL
HAA 5D HAA 7A	9/28/2004 8/10/2004		0.81 0.847	2.15 1.85	П			pCi/mL pCi/mL
HAA 7A HAA 7B	8/10/2004		0.847	1.85				pCi/mL
HAA 7D	8/10/2004		0.846	2.48	-			pCi/mL
HAA 8A	8/10/2004	TRITIUM	0.847	1.86			0.204	pCi/mL
HAA 8B	8/10/2004		0.839	1.82	U		-0.0247	
HAA 8D	8/10/2004		0.837					pCi/mL
HAA 9AR HAA 9AR	3/11/2004 8/10/2004		0.339 0.835	0.733 1.82		U	0.0653	pCi/mL pCi/mL
HAA 9AR	9/22/2004		0.835	1.82				pCi/mL pCi/mL
HAA 9B	8/10/2004		0.841	1.87				pCi/mL
HAA 9D	3/11/2004		0.363	1.469				pCi/mL
HAA 9D	8/10/2004		0.86	2.6			12	pCi/mL
HAA 9D	8/10/2004		0.862	2.58				pCi/mL
HAA 9D	9/22/2004		0.868	2.6				pCi/mL
HAA 10AR HAA 10B	8/10/2004 8/10/2004		0.845 0.86	1.87				pCi/mL pCi/mL
HAA 10D	8/10/2004		0.854	2.77	U			pCi/mL
HAA 11A	3/11/2004		0.337	0.723	U	U	-0.0177	
HAA 11A	9/22/2004	TRITIUM	0.872	1.87				pCi/mL
HAA 11D	3/11/2004		0.367	1.333				pCi/mL
HAA 11D	9/22/2004		0.867	2.68				pCi/mL
HAA 11D	9/22/2004		0.871	2.68				pCi/mL
HAA 12A HAA 12A	3/11/2004 9/22/2004		0.334 0.872	1.39 2.58				pCi/mL pCi/mL
HAA 12D	3/11/2004		0.371					pCi/mL
HAA 12D	9/22/2004		0.87	3.88				pCi/mL
HAA 12D	9/22/2004		0.872	3.85				pCi/mL
HAA 13A	9/29/2004		0.933	2.01			-0.184	pCi/mL
HAA 13A	9/29/2004		0.937	2.01	U			pCi/mL
HAA 13D HAA 13D	3/16/2004 9/22/2004		0.53 0.879					pCi/mL pCi/mL
HAA 14A	3/15/2004		0.341		U	U	-0.0643	
HAA 14A	9/27/2004		0.909	1.98		0	-0.00702	
HAA 14A	9/27/2004	TRITIUM	0.909	1.96	U		-0.225	pCi/mL
HAA 14D	3/15/2004		0.344					pCi/mL
HAA 14D	9/27/2004		0.909	3.04				pCi/mL
HAA 14D HAA 15A	9/27/2004 3/15/2004		0.914 0.326	3.02 0.726	П	U		pCi/mL pCi/mL
HAA 15A HAA 15A	9/28/2004		0.326			5		pCi/mL pCi/mL
HAA 15D	3/15/2004	TRITIUM	0.346	2.09	-			pCi/mL
HAA 15D	9/28/2004	TRITIUM	0.815	2.7			15	pCi/mL
HTF 1	8/24/2004		0.848	2.61				pCi/mL
HTF 1	8/24/2004		0.854	2.59				pCi/mL
HTF 2 HTF 3	8/24/2004	TRITIUM TRITIUM	0.846	2.64 2.54				pCi/mL
HTF 4	8/26/2004		0.879 0.877	2.63				pCi/mL pCi/mL
HTF 4	8/26/2004		0.885	2.63				pCi/mL
HTF 6	9/1/2004	TRITIUM	0.879	2.36			7.74	pCi/mL
HTF 10	8/24/2004	TRITIUM	0.858	3.12			22.8	pCi/mL
HTF 11	8/24/2004		0.844	2.85				pCi/mL
HTF 12D	3/16/2004		0.38 0.828	1.39				pCi/mL
HTF 12D HTF 12D	8/25/2004 9/28/2004		0.828					pCi/mL pCi/mL
HTF 15D	3/16/2004		0.359					pCi/mL
HTF 15D	8/25/2004		0.838				11.7	pCi/mL
HTF 15D	9/28/2004	TRITIUM	0.907	2.76			12.2	pCi/mL
HTF 18	8/25/2004		0.826				11.1	pCi/mL
HTF 18	8/25/2004		0.831	2.58				pCi/mL
HTF 19	8/25/2004		0.827	2.22				pCi/mL
HTF 20 HTF 21	8/25/2004 8/25/2004		0.82 0.826	2.39				pCi/mL pCi/mL
HTF 22	8/26/2004		0.883	2.49				pCi/mL
HTF 23	8/26/2004		0.878				6.22	pCi/mL
HTF 24	8/26/2004	TRITIUM	0.881	2.49			8.06	pCi/mL
HTF 31	8/26/2004		0.879	2.38				pCi/mL
HTF 32 FTF 15	8/25/2004		0.824	2.29			7.13	pCi/mL NTU
FTF 15		TURBIDITY TURBIDITY		-			2.6	NTU
111 10	0/10/2004	ווטוטוטווו			l .		2.0	1110

WELL	DATE	ANALYTE_NAME	MDL	PQL	LAB QUALIFIER	EBA CODE	DECLILT	UNITS
FTF 17		TURBIDITY	IVIDL	PQL	LAB_QUALIFIER	EPA_CODE		
FTF 18	8/31/2004	TURBIDITY						
FTF 19		TURBIDITY						NTU
FTF 20		TURBIDITY						
FTF 21	8/18/2004	TURBIDITY					12	NTU
FTF 22		TURBIDITY						NTU
FTF 23		TURBIDITY						
FTF 29		TURBIDITY						NTU
HAA 4A		TURBIDITY						
HAA 4B HAA 4D		TURBIDITY TURBIDITY						
HAA 5D		TURBIDITY						NTU NTU
HAA 5D		TURBIDITY						NTU
HAA 7A		TURBIDITY						NTU
HAA 7B		TURBIDITY						NTU
HAA 7D	8/10/2004	TURBIDITY					4.7	NTU
HAA 8A	8/10/2004	TURBIDITY					1.8	NTU
HAA 8B		TURBIDITY						NTU
HAA 8D		TURBIDITY						NTU
HAA 9AR		TURBIDITY						NTU
HAA 9AR		TURBIDITY						
HAA 9AR HAA 9B		TURBIDITY TURBIDITY						NTU NTU
HAA 9D		TURBIDITY						NTU
HAA 9D		TURBIDITY					0.5	NTU
HAA 9D		TURBIDITY					1.5	NTU
HAA 10AR	8/10/2004			1				NTU
HAA 10B		TURBIDITY					12	NTU
HAA 10D		TURBIDITY						
HAA 11A		TURBIDITY		1				NTU
HAA 11A		TURBIDITY			1			NTU
HAA 11D		TURBIDITY		-				NTU
HAA 11D HAA 12A		TURBIDITY TURBIDITY		+				NTU NTU
HAA 12A		TURBIDITY						NTU
HAA 12D		TURBIDITY						
HAA 12D		TURBIDITY		1				NTU
HAA 13A	3/11/2004	TURBIDITY					0	NTU
HAA 13A		TURBIDITY						NTU
HAA 13A		TURBIDITY						NTU
HAA 13A		TURBIDITY						NTU
HAA 13D		TURBIDITY						NTU
HAA 13D HAA 13D		TURBIDITY TURBIDITY		-				NTU NTU
HAA 13D HAA 14A	9/22/2004 3/15/2004	TURBIDITY		1				NTU
HAA 14A		TURBIDITY		+				NTU
HAA 14D		TURBIDITY		1				NTU
HAA 14D		TURBIDITY						NTU
HAA 15A	3/15/2004	TURBIDITY					0.2	NTU
HAA 15A		TURBIDITY				-		NTU
HAA 15D		TURBIDITY						NTU
HAA 15D	9/28/2004							NTU
HTF 1		TURBIDITY		1				NTU
HTF 10 HTF 11		TURBIDITY TURBIDITY		1	1			NTU NTU
HTF 11		TURBIDITY		1				NTU
HTF 12D		TURBIDITY						NTU
HTF 12D		TURBIDITY						NTU
HTF 12D	9/28/2004	TURBIDITY						NTU
HTF 15D		TURBIDITY						
HTF 15D		TURBIDITY						NTU
HTF 15D		TURBIDITY			1			
HTF 18 HTF 19		TURBIDITY TURBIDITY	_	+				NTU NTU
HTF 19		TURBIDITY		1	1			NTU
HTF 20		TURBIDITY						NTU
HTF 21		TURBIDITY		1				NTU
HTF 22		TURBIDITY						NTU
HTF 23	8/26/2004	TURBIDITY					28	NTU
HTF 24		TURBIDITY						NTU
HTF 31		TURBIDITY		1				NTU
HTF 32		TURBIDITY		1				NTU
HTF 34 FTF 15		TURBIDITY WATER TEMPERATURE						NTU degC
FTF 16		WATER TEMPERATURE		+				degC
FTF 17		WATER TEMPERATURE						degC
FTF 18		WATER TEMPERATURE						degC
FTF 19	8/18/2004	WATER TEMPERATURE						degC
FTF 20		WATER TEMPERATURE					28.8	degC
FTF 21		WATER TEMPERATURE						degC
FTF 22		WATER TEMPERATURE		1				degC
FTF 23		WATER TEMPERATURE		1				degC
FTF 29		WATER TEMPERATURE		-				degC
HAA 4A HAA 4B		WATER TEMPERATURE WATER TEMPERATURE						degC degC
HAA 4B		WATER TEMPERATURE						degC
HAA 5D		WATER TEMPERATURE		1				degC
HAA 5D		WATER TEMPERATURE						degC
HAA 7A		WATER TEMPERATURE						degC
HAA 7B	8/10/2004	WATER TEMPERATURE					20.5	degC
HAA 7D		WATER TEMPERATURE						degC
HAA 8A		WATER TEMPERATURE						degC
HAA 8B	8/10/2004	WATER TEMPERATURE					19.8	degC

WELL	DATE	ANALYTE NAME	MDL	PQL	LAB_QUALIFIER	EDA CODE	PESHIT	UNITS
HAA 8D		WATER TEMPERATURE	IVIDE	I QL	LAD_QUALITIEN	LI A_CODE		degC
HAA 9AR		WATER TEMPERATURE						degC
HAA 9AR		WATER TEMPERATURE						
HAA 9AR		WATER TEMPERATURE						degC degC
HAA 9B		WATER TEMPERATURE						degC
HAA 9D		WATER TEMPERATURE						degC
HAA 9D		WATER TEMPERATURE						degC
HAA 9D HAA 10AR		WATER TEMPERATURE						degC
		WATER TEMPERATURE						degC
HAA 10B		WATER TEMPERATURE						degC
HAA 10D		WATER TEMPERATURE						degC
HAA 11A		WATER TEMPERATURE						degC
HAA 11A		WATER TEMPERATURE						degC
HAA 11D		WATER TEMPERATURE						degC
HAA 11D		WATER TEMPERATURE						degC
HAA 12A		WATER TEMPERATURE						degC
HAA 12A		WATER TEMPERATURE						degC
HAA 12D		WATER TEMPERATURE						degC
HAA 12D		WATER TEMPERATURE						degC
HAA 13A		WATER TEMPERATURE						degC
HAA 13A		WATER TEMPERATURE					0	degC
HAA 13A		WATER TEMPERATURE						degC
HAA 13A		WATER TEMPERATURE						degC
HAA 13D		WATER TEMPERATURE						degC
HAA 13D		WATER TEMPERATURE						degC
HAA 13D		WATER TEMPERATURE						degC
HAA 14A		WATER TEMPERATURE						degC
HAA 14A		WATER TEMPERATURE						degC
HAA 14D		WATER TEMPERATURE						degC
HAA 14D		WATER TEMPERATURE						degC
HAA 15A		WATER TEMPERATURE						degC
HAA 15A		WATER TEMPERATURE						degC
HAA 15D		WATER TEMPERATURE						degC
HAA 15D		WATER TEMPERATURE						degC
HTF 1		WATER TEMPERATURE						degC
HTF 10		WATER TEMPERATURE						degC
HTF 11		WATER TEMPERATURE						degC
HTF 11		WATER TEMPERATURE						degC
HTF 12D		WATER TEMPERATURE						degC
HTF 12D		WATER TEMPERATURE						degC
HTF 12D		WATER TEMPERATURE						degC
HTF 15D		WATER TEMPERATURE						degC
HTF 15D		WATER TEMPERATURE						degC
HTF 15D		WATER TEMPERATURE						degC
HTF 18		WATER TEMPERATURE						degC
HTF 19		WATER TEMPERATURE						degC
HTF 2		WATER TEMPERATURE						degC
HTF 20		WATER TEMPERATURE						degC
HTF 21		WATER TEMPERATURE					26.4	degC
HTF 22	8/26/2004	WATER TEMPERATURE					29.6	degC
HTF 23	8/26/2004	WATER TEMPERATURE						degC
HTF 24		WATER TEMPERATURE						degC
HTF 31	8/26/2004	WATER TEMPERATURE						degC
HTF 32		WATER TEMPERATURE						degC
HTF 34		WATER TEMPERATURE						degC