

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

WSRC-RP-2001-00024 Revision 0 Page 2 of 235

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

Approved By: Nel Rhams

Neil Davis, Waste Removal Prog Manager & Team Leader

Approved By:

Gary Abell, Systems Engineering

WR Engineering Nader Elraheb,

Approved By:

Approved By:

Ed Howard, WR Design Engineering

Approved By: John K. McCulloug John McCullough, HLW Maintenance

Jim Menghi, Project Management Approved By:

Approved By:

<u>SUL FILM</u> Susan Peterman, WSMS

Approved By: James Tinsley, C ect Liaison STOWA

ł

REVISION SUMMARY

Rev. No.	<u>Rev. Date</u>	Affected Sections	Description of Revision
0	05/22/01	All	Initial Issue

Abstract

Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store and treat the high level waste created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) (Reference 1) requires the high level waste (HLW) to be removed from the tanks and stabilized into a final waste form as well as closure of the tanks following waste removal. The FFA closure date for Tank 18 is March 2004.

Waste removal was previously performed on Tank 18 in 1986-1987. A heel of about 37,000 gallons of sludge remained. Closure in 1997 of Tanks 17 and 20 resulted in an additional 8,000 gallons of sludge being added to Tank 18. Closure of Tank 19, currently in progress, is expected to result in an additional 33,000 gallons of sludge being added to Tank 18. The resultant 78,000 gallons of sludge must be removed from Tank 18 in time to support the March 2004 closure date.

The Waste Removal Line Item Project S-W183 contains baseline scope and technology to retrofit Tank 18 with waste removal equipment. The baseline scope was exactly the same as the scope used in 1986-1987 that resulted in the large sludge heel described above. Though the technology was inadequate in that regard, it did serve to provide a financial placeholder in the Line Item Project until a more robust scope evaluation could be completed.

A formal Systems Engineering Evaluation (SEE) for Tank 18 was completed between October 2000 and February 2001. The purpose of the evolution was to determine the methodology, equipment and transfer routes to successfully meet the project mission.

This document contains the results of the evaluation and a recommendation for the waste removal process, equipment and strategy to be employed on Tank 18.

ł

. .

, •,

Table of Contents

ABSTR	ACT	4
FIGURI	ES	6
TABLE	S	6
1.0	EXECUTIVE SUMMARY	7
2.0	PURPOSE	9
3.0	BACKGROUND	10
4.0	RECOMMENDED OVERALL STRATEGY 4.1 Waste Removal Methodology 4.2 Waste Transfer Methodology 4.3 System Integration Overview 4.4 Implementation Plans	.14 .15 .15
5.0	TEAM PROCESS 5.1 Activity Planning Model 5.2 Desktop Procedures 5.3 Validation	.18 .18
6.0	RESULTS	.20 .20 .21 .25 .26 .27 .28 .28 .30 .31 .31 .32
7.0	GLOSSARY	.39
8.0	ACRONYMS	41
9.0	REFERENCES	43
10.0	ATTACHMENTS	44

.

•

Figures

Figure 3-1	Relative Location of Tank 18	.11
Figure 3-2	Contents in Tank 18	.12
Figure 3-3	Tank 18 Configuration (Top View)	13
Figure 4.4.2-1	Tank 18 Implementation Plan Logic Diagram	
Figure 6.4.2-1	HLW Tank 18 Waste Removal Top Level Functions and Requirements	

Tables

Table 4.0-1	Description of Functions	14
Table 4.4.1-1	Parametric Costs of Implementation Plan	16
Table 6.6-1	Idea Summary	
Table 6.7-1	Categories of Generated Ideas	
Table 6.9-1	Selection Criteria, Weights, and Definitions Used To Score Ideas	28
Table 6.9-2	Utility Functions	
Table 6.9-3	Top Scoring Ideas After Applying Selection Criteria	30
Table 6.9-4	Function F.1 Scored Ideas Removed From Further Consideration	30
Table 6.10-1	Risk Analysis Summary	31
Table 6.12-1	Strategies Eliminated Based on Risk	32
Table 6.13-1	Selection Criteria, Weights, and Definitions Used To Score Strategies.	33
Table 6.13-2	Utility Functions	
Table 6.13-3	Aggregate Score Formulas	34
Table 6.14-1	Scored Results of Strategies by Function	36

1.0 Executive Summary

Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store and treat the high level waste (HLW) created in support of the missions assigned by the DOE. The FFA (Reference 1) requires the HLW to be removed from the tanks and stabilized into a final waste form as well as closure of the tanks following waste removal.

The methodology to remove and transfer the high level waste from Tank 18 to another HLW tank is the focus of this report. The purpose of waste removal and transfer is to accommodate the eventual closure of Tank 18. This work is in support of the Line Item Project S-W183.

Removal and transfer of waste from other HLW tanks has been accomplished, but not without difficulty. The methods initially baselined to remove and transfer Tank 18 waste are no longer considered cost-effective. The HLW Tank 18 Waste Removal Systems Engineering Evaluation Team (Team) was formed to conduct a systematic evaluation to identify, evaluate, and recommend cost-effective and safe technology and transfer methods for Tank 18 waste. The Team considered prior methods, other alternatives, and new technologies. A Systems Engineering Evaluation (SEE) approach was used to ensure that a comprehensive study was completed. Risk assessments of proposed ideas and strategies provided significant information upon which to facilitate Team decisions.

The overall strategy recommended by the Team is summarized below:

- **Prepare the Bulk Waste in Tank 18 (Function F.1)**: The recommendation is to develop and deploy a modified Advanced Design Mixing Pump (ADMP) to suspend the waste in a slurry thus enabling the waste to be transferred to another tank. The modified ADMP would have the same pump characteristics as the current ADMP, but it would be modified to fit into a 2-foot diameter riser. The smaller size enables the modified ADMP to fit into all 33 remaining waste removal tanks, whereas, the existing ADMP can only be used in nine of the remaining tanks. There is risk associated with this recommendation due to the probable time required to develop a totally new "wet end" to the ADMP versus the amount of schedule left on Tank 18. The risk mitigation involves refurbishing the unmodified ADMP and having it ready to install in Tank 18 in the event that the modified ADMP development takes too long.
- Transfer Non-Heel Bulk Waste to another HLW Tank (Function F.2): The recommendation is to use a Bibo pump as the prime mover. This is a standard, industrial grade, sump pump similar to the pump in current use on Tank 19. The recommendation also includes the completion of a tie-in from Tank 18 to Tank 7 by connecting the existing lines from Tank 18 to the F-Area Diversion Box -1 (FDB-1) and Tank 1 to Tank 7. This will provide a direct underground route from Tank 18 to Tank 7 in support of sludge batch #3 and requires only minor excavations.
- **Prepare the Heel from Tank 18 (Function F.3)**: The recommendation is to continue to use the modified ADMP (or ADMP) from Function F.1 until the final level of less than

1,000 gallons of sludge remains. There is a risk associated with this approach in that too much water or too much time will be required to de-inventory the sludge to this level. The mitigation alternative is to use either sluicers or a robotic suction device for the final heel removal, if necessary.

• **Transfer Heel to another HLW Tank (Function F.4)**: The prime mover and transfer route used for Function F.2 will be re-used for Heel Removal and transfer to Tank 7.

The significant value aspects of the overall recommended strategy for Tank 18 include:

- This recommendation can be used on all Tank types.
- Tank 18 center riser will use only one (1) pump. Subsequent tanks would employ the use of two pumps; which is less than the number established in the baseline.
- A trend toward "portability" is initiated by this strategy because the recommendation will include these design considerations
- Placement of the waste directly in Tank 7 will enhance sludge batch #3. This has two benefits, first that the waste will not be required to be moved later into this tank (prior plan was to send from Tank 18 to Tank 26 and at a later date, from Tank 26 to Tank 7). Secondly, the production schedule for DWPF will be enhanced due to the larger amount of material in sludge batch #3.
- Approximately \$15 20 million in Life Cycle Cost savings over the life of the contract

To provide ease in publishing this Report, several supplemental documents have been issued with supporting information, as part of the SEE:

1.	Tank 18 Systems Engineering Evaluation - Lessons Learned from Other Tanks,
	HLW-CST-2001-0003, February 21, 2001Reference 8
2.	Tank 18 Systems Engineering Evaluation - Individual Idea Scoresheets, HLW-
	CST-2001-0004, February 21, 2001Reference 9
3.	Tank 18 Systems Engineering Evaluation – Developed Ideas for Function 1,
	HLW-CST-2001-0005, February 21, 2001Reference 10
4.	Tank 18 Systems Engineering Evaluation – Developed Ideas for Function 2,
	HLW-CST-2001-0006, February 21, 2001
5.	Tank 18 Systems Engineering Evaluation – Developed Ideas for Function 3,
	HLW-CST-2001-0007, February 21, 2001Reference. 12
6.	Tank 18 Systems Engineering Evaluation – Developed Ideas for Function 4,
	HLW-CST-2001-0008, February 21, 2001Reference 13

2.0 Purpose

The purpose of this report is to define the methodology and transfer system recommended by the Team to remove the high level waste in Tank 18 and transfer it to another HLW tank. A description of the process used for identifying, evaluating, and selecting the recommendations and the results obtained are presented to provide the bases of decisions made by the Team.

The members of the Team are listed below along with their parent organization:

<u>Name</u>

Representing

Neil Davis - Team Leader Gary Abell Nader Elraheb Ed Howard John McCullough Jim Menghi Susan Peterman Mike Tinsley

WR Program Manager Systems Engineering WR Engineering WR Design Engineering

HLW Maintenance Project Management WSMS CSTO/WR Project Liaison

The Team acknowledges the support provided by additional participants in the SEE process, including Vince Ledonne, Tommy Caldwell, Bob Leishear, and Dave Stefanko. The Team also acknowledges the contribution of Warren Adkins for the development of computerized graphics, Bob Grimm and Cathy Smalls for producing the systems engineering decision analysis results using the Logical Decisions software, and Ruth Whitaker and Kimbly Boatwright for clerical support in producing the Final Report.

3.0 Background

The H- and F-Area Tank Farms at SRS were constructed during the 1950s and 1960s to receive, store and treat the various radioactive waste streams generated in support of weapons grade material production. There are a total of fifty-one HLW tanks: twenty-nine in H-Tank Farm and twenty-two in F-Tank Farm. Two of the F-Tank Farm tanks have been closed, i.e. Tanks 17 and 20.

Tank 18 is a 1.3 million-gallon capacity, single-wall, Type IV waste tank located in F-Tank Farm. Tank 18 construction was completed in 1958 and the tank was immediately placed in service as a receiver of Low Heat Waste (LHW). The Tank is an 85 foot diameter flat-bottomed cylindrical carbon steel tank with a domed roof. The walls are roughly 28.5 feet high with the center height about 50 feet. There are no cooling coils or internal structures inside the tank. The location of Tank 18, with respect to other F Area HLW Tanks is shown in Figure 3-1.

From July 1959 to August 1987, F-Canyon PUREX and non-canyon wastes were received in Tank 18. The sludge solids deposited from F-Canyon were a product of LHW streams. Tank 18 non-canyon receipts consisted of various forms of supernate, LHW and High Heat Waste, evaporator overheads, dissolved salts and sludge slurries received from Tanks 2, 7, 13, 17, 19, 20, 30, 33 and 34. Sludge removal operations in Tank 18 began in April 1986; the sludge level was estimated at 551,000 gallons. Approximately 94% of the sludge was removed from Tank 18 and transferred to Tanks 40, 41, and 42 using three (3) standard slurry pumps. The last sludge transfer from Tank 18 occurred in August 1987 with the material being transferred to Tank 51 through the existing FDB-1 route. The transfer line from Tank 18 to FDB-1 is not a pressure testable line; the jacket is open at FDB-1.

Based on photos taken on May 25, 1988, the estimated sludge volume in Tank 18 was approximately 37,000 gallons. In 1996, Tank 18 received transfers from Tanks 17 and 20 in preparation of closure of both of those tanks. Tank 17 started with 10,000 gallons of sludge and transferred 7,800 gallons to Tank 18. Tank 20 started with 1,000 gallons of sludge and transferred only supernate. After the Tank 17 and 20 transfers, the sludge volume in Tank 18 was approximately 44,000 gallons.

On October 2, 2000, transfer of the contents of Tank 19 to Tank 18 was started. The initial composition of the Tank 19 inventory is estimated as 13,000 gallons of spent zeolite, 7,000 gallons of metal oxides/hydroxides (standard sludge) and 13,000 gallons of insoluble salts. The goal of the Tank 19 transfer was to transfer the 33,000 gallons from Tank 19 to Tank 18. As of February 2001, approximately 15,000 gallons of sludge has been transferred to Tank 18. The sludge volume in Tank 18 at the end of the Tank 19 heel removal campaign is projected to be 78,000 gallons. The supernate volume in Tank 18 at the end of the Tank 19 heel removal and spray washing campaigns is projected to total between 900,000 and 1,300,000 gallons at a specific gravity of 1.01.

Pictorial views of Tank 18 are provided in Figures 3-2 and Figure 3-3.

.

٠

.

Figure 3-1. Relative Location of Tank 18 in F Area Tank Farm

.

-

Figure 3-2. Contents in Tank 18

Figure 3-3. Tank 18 Configuration (Top View)

.

4.0 Recommended Overall Strategy

The Team's recommendations, implementation plans, estimated costs and schedules are detailed in this section (cost and schedule estimates are "rough order of magnitude"). The recommended overall strategy consists of several components and modifications, which were selected by the Team, based on the requirements for the various functions to be performed. The strategy's components and modifications are described, by function, in Sections 4.1 and 4.2. The plan for implementation of the overall strategy has been developed and is discussed in Section 4.4.2.

The four basic functions, to be satisfied by a successful waste removal process were defined in the following Table by the Team:

Table 4.0-1 Descri	ption of Functions
--------------------	--------------------

Function F.1: Prepare Bulk Waste in Tank 18	
Function F.2: Transfer Non-Heel Bulk Waste to another HLW Tank	
(Prime Mover and Transfer Route)	
Function F.3: Prepare Heel in Tank 18	
Function F.4: Transfer Heel to another HLW Tank	

4.1 Waste Preparation Methodology

Prepare Bulk Waste in Tank 18 (F.1):

The recommendation is to develop and deploy a modified Advanced Design Mixing Pump (ADMP) to suspend the waste in a slurry, thus enabling the waste to be transferred to another tank. The modified ADMP would have the same pump characteristics as the existing ADMP, but it would be modified to fit into a 2-foot diameter riser. The smaller size enables the modified ADMP to fit into all 33 remaining waste removal tanks whereas the existing ADMP can only be used in nine (9) of the remaining tanks. The ADMP has been successfully demonstrated at TNX, for over 4,200 pump hours, with materials that are significantly more viscous than Tank 18 is expected to contain. Additionally, the ADMP has a greater Effective Cleaning Radius (ECR) than the current slurry pumps, thus reducing the number of pumps that must be installed in each tank to complete waste removal. There is schedule risk in this recommendation, due to the probable time required to develop a totally new "wet end" (where the material is brought into the pump) to the ADMP. The risk mitigation involves providing seed money to the pump vendor to prioritize the activity and refurbishing the existing ADMP to have it ready to install in Tank 18, in the event that the modified ADMP development cannot meet the schedule requirements.

Prepare Heel in Tank 18 (F.3):

The Team's recommendation is to continue to use the modified ADMP (or ADMP) from Function F.1 until the final level of less than 1,000 gallons of sludge remains. There is a risk that too much water or too much time will be required to de-inventory the sludge to this level. To address this potential scenario, the Team recommends that enhancements, such as sluicers or a robotic suction device for the final heel removal, be available after further evaluation of these options. The sluicers or robotic suction device would be made ready for deployment prior to completion of bulk waste removal.

4.2 Waste Transfer Methodology

Transfer Non-Heel Bulk Waste to another HLW Tank (Function F.2):

This function was subsequently subdivided into tow sub-functions, i.e., *Prime Mover* and *Transfer Route*. *Prime Mover*: The recommendation is to use a Bibo pump as the prime mover. This is a standard, industrial grade, sump pump, similar to the pump currently in use on Tank 19. *Transfer Route*: The recommendation is to complete a tie-in from Tank 18 to Tank 7 by connecting the existing lines from Tank 18 to F Area Diversion Box -1 (FDB-1) and Tank 1 to Tank 7. This will provide a direct underground route from Tank 18 to Tank 7 and requires only minor excavations. The various portions of this transfer route will be inspected prior to design activities, for risk mitigation action. After Tank 18 Waste Removal has been completed the Tank 1 to Tank 7 transfer line will be reinstated to its original configuration. Transferring the waste to Tank 7 now will eliminate the need for transfer to this tank at a later date. This will reduce the overall number of steps needed to prepare Sludge Batch #3.

Transfer Heel to another HLW Tank (Function F.4):

The prime mover and transfer route used for Function F.2 will be re-used for Heel Removal, i.e., Bibo pump.

4.3 System Integration Overview

- The integration of the overall recommended strategy and the associated modifications and equipment fits well into the HLW systems, structures, components, and processes already in existence. The required modifications of existing systems, structures, and components are not first-of-a-kind other than modifying the ADMP. Preparation for implementation of the recommended strategy will require:
- Demolition and removal (D&R) of the Telescoping Transfer Pump (TTP) in the Tank 18 northeast riser.
- D&R of the Goulds pump in the Tank 18 west riser.
- Modification of the existing steel on Tank 18 to support the ADMP.
- Installation of a new variable frequency drive and turntable to support ADMP operation.
- Relocation of the existing equipment currently installed in the Tank 18 center riser. (H&V piping, Reel Tape, Dip Tubes, etc.)
- Modification of two existing transfer lines in order to establish a direct route from Tank 18 to Tank 7. Minor excavation will be required to complete the transfer line modifications and tie-in and would be completed in an area that has minor impact on normal Tank Farm activities.
- There are several changes that would be required to the Authorization Basis, however, changes/updates would be needed for any of the chosen options.
- Operational activities, such as procedures and training would involve mock-ups and demonstrations to ensure readiness to operate.

A major advantage recognized by the Team is that the proposed system will likely work in all Tank designs, i.e., type I, II, II, IIA, and IV, pending further engineering evaluations, e.g., structural analyses of cooling coils and the impingement of tank fluids during mixing.

4.4 Implementation

4.4.1 Implementation Schedule and Costs

The Team developed the costs (using parametric analysis) and schedules associated with the various activities associated with the recommendations. The parametric costs are provided below in Table 4.4.1-1:

Option	Tank 18 Total Estimated Cost (TEC)	Comments
Modified ADMP	5.2 million	High risk, high LCC savings
ADMP	4.7 million	Low project risk to Tank 18, same cost savings as Modified ADMP, only downside is that Modified ADMP would not be demonstrated until Tank 11 or Tank 26 (2-3 years)
Baseline	6.7 million	

 Table 4.4.1-1 Parametric Costs of the Implementation Plan

4.4.2 Implementation Plan

An integrated logic driven approach for implementation of the recommended strategy was developed and is shown in Figure 4.4.2-1 on the following page.

2/7/01

5.0 Team Process

The systems engineering evaluation concept used to identify, evaluate and select recommended solutions entailed planning the Team's activities and following the plan. For each key activity to be completed by the Team, the inputs, outputs, support resources and controls were identified. The activities focused on first understanding the problem to be solved, its causes and impacts, describing what a successful solution had to accomplish, and then seeking viable solutions. The Team followed a process based on systems engineering principles in order to proceed in a logical sequence, facilitate creative thinking and minimize bias in developing solutions. The Team's process consisted of three key elements referred to as the *Activity Planning Model, Desktop Procedures,* and *Validation,* which are described below. The Team used consensus to make decisions throughout the process.

5.1 Activity Planning Model

The Activity Planning Model developed by the Team contains the following information:

- Activities (steps) needed to complete the Team's mission using a graded approach,
- Inputs, controls, resource requirements, and outputs associated with each step,
- The logical sequencing of steps,
- The scheduled dates of completion for each step.

Attachment 1 provides the Activity Planning Model developed and used by the Team.

5.2 Desktop Procedures

The Team developed specific instructions on how to conduct key steps within the Activity Planning Model. The instructions were captured in "Desktop Procedures" and controlled locally within the Team by Team Leader signature. The Desktops required the Team to think about how it would execute the various steps prior to starting them. This facilitated a common understanding and common expectations of the process.

Desktop procedures were written for the following steps in the Activity Plan and are included in Attachment 2 for reference:

DTP-001	Development, Approval And Control Of Desktop Procedures
DTP-002	Identification Of Concepts To Remove HLW From Tank 18
DTP-003	Application Of Screening Criteria
DTP-004	Risk Analysis
DTP-005	Application of Weighted Evaluation Criteria
DTP-006	Tank 18 Waste Removal Strategy Selection Process

5.3 Validation

The third key element of the process was the validation of Team activities at specific intervals. Validation consisted of stakeholder interim reviews of completed Team

outputs and proposed future activities. The purpose of each validation was to review Team activities with the stakeholders and obtain approval of the information developed before proceeding to the subsequent steps.

The three validation points in the schedule are shown on the Activity Planning Model (Attachment 1), as steps 8, 14 and 21, respectively. The first validation, conducted on November 3 resulted in concurrence with the activities, problem definition schedules, assumptions, key functions and requirements, interfaces, terms/definitions, screening and weighted selection criteria.

The second Validation, conducted on December 8, resulted in an emphasis on life cycle cost savings of the waste removal program.

A final Validation, conducted on February 2, 2001, was to receive concurrence from stakeholders on the Recommended Strategy developed by the Team prior to presentation to the Decision Makers.

A briefing was held with the HLW Board (Decision Makers) on February 7, 2001. Approval was received to implement the strategy as recommended by the Team.

6.0 Results

This Section documents the results obtained by the Team for the activities described on the Activity Planning Model (Attachment 1).

6.1 Team Formation and Orientation

The members of the Team are listed in Section 2 of this report. The Team orientation consisted of an introduction, overview of Team protocols, schedules, expectations of the Team leader and an overview of the systems engineering process.

6.2 Define Team Activities, Resources and Schedules

Activities, resources, and schedules are presented in the Activity Planning Model shown in Attachment 1. The model was developed by the Team prior to commencement of subsequent activities. This up-front planning facilitated a clear roadmap of actions and the associated inputs, outputs, controls and resources needed to complete the Team's mission.

6.3 Define Problem

The problem, its bases and potential impacts, defined by the Team are as follows:

Problem Statement: It is believed that the Tank 18 baseline waste removal method and system will not perform as required.

Basis:

- Three standard 150 hp slurry pumps mounted in the three available risers were used to remove sludge from Tank 18 in the mid 1980's. The pumps were irregularly spaced in the east, west and northwest risers. An estimated 42,000 gallons of sludge remained after a prolonged sludge removal campaign. The pumps were unable to develop the required ECR in this orientation. The suspended sludge settled in the quiescent zones in the tank. The Tank 19 heel removal demonstration will add an estimated 33,000 gallons of sludge to Tank 18 in FY01.
- The baseline calls for refurbishing three standard slurry pumps and installing them in the same risers. This baseline was chosen as a financial "placeholder" in full recognition that it is not a viable means to remove the remaining sludge.
- Cognizant engineers associated with the waste removal project assumed that a standard slurry pump with a single discharge could be used to increase the ECR. This pump was tested at TNX and demonstrated to have a 40 foot ECR using a kaolin clay/water mixture as the test medium. The required ECR is 42.5 feet to reach the most remote part of the tank.
- Alternate sludge mobilization technologies (Flygt mixers) were demonstrated in Tanks 17 and 20 with marginal success on small volumes of sludge. Improved versions of these mixers were deployed in Tank 19 during September, 2000; however, additional development is required to remove the estimated 75,000 gallons that will be in Tank 18.

Impacts:

• Tank 18 must be closed by March 2004. Failure to do so will result in a violation of the Federal Facilities Agreement. South Carolina Department of Health and Environmental Controls (SCDHEC) could levy fines and penalties.

6.4 Review Design Input

Based on a review of Project S-W183 design inputs (technical baseline), the Team focused on the key functions, requirements, and assumptions which proposed solutions for Tank 18 waste removal must address. These key inputs are discussed below in terms of functions (what the solution must do), requirements (how well the solution must perform the functions), and key assumptions the Team made in order to proceed forward.

6.4.1 Key Functions

The Team defined the high level functions that any proposed solution must satisfy in order to be considered a viable option. These are shown in Figure 6.4.2-1. The functions of "Isolating Tank 18" and "Closing Tank 18" were not within the scope of the Team's activities.

6.4.2 Key Requirements

The Team defined the high level requirements that any proposed solution must satisfy in order to be considered a viable option.

The requirements are subdivided into two types, i.e., performance requirements, and interface requirements. The high level requirements in these two categories are listed in Figure 6.4.2-1. The detailed requirements exist in the approved technical baseline documents which include the: wastewater operating permit (WWOP) (Reference 2), downstream waste acceptance criteria (WAC) (Reference 3), site standards, authorization bases (AB) (e.g., tank top loading, structural integrity database, corrosion control), general tank closure plan (e.g., performance assessments, residual amounts), functional performance requirements (FPR) document (Reference 4), and functional design criteria (FDC) document (Reference 5).

WSRC-RP-2001-00024 HLW from Tank 18 Move HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

Figure 6.4.2-1 HLW Tank 18 Waste Removal Top Level Functions and Requirements

6.4.3 Key Assumptions

The key assumptions formulated by the Team are listed below with the basis (rationale) for making the assumption.

- Funding Tank 18 waste removal will receive the required funding (TEC, other project costs (OPC) and Operation Expenses) to complete waste removal activities per the schedule shown in HLW System Plan, Revision 11 (Reference 6). <u>Basis</u> -The FFA Plan and Schedule for closure of old-style tanks will carry sufficient priority at the site level to ensure adequate funding for this task.
- 2. **Project Baseline** it is possible to revise the existing baseline to accommodate the recommended technology. **Basis** the baseline technology is not expected to be successful, and the Waste Removal line item project scope includes development and demonstration of alternative technologies.
- 3. **FFA Tank Closure Date** the March 30, 2004 closure date is non-negotiable. <u>Basis</u> - numerous interactions with SCDHEC indicate that re-negotiation is unlikely.
- Authorization Basis (AB) the AB will remain the same throughout the performance of this project. <u>Basis</u> – no significant or more restrictive changes to the AB are anticipated.
- Regulatory Requirements the Tank Closure Environmental Impact Statement (EIS) Record of Decision, the Natural Resources Defense Council (NRDC) lawsuit, and the Nuclear Regulatory Commission (NRC) Waste Incidental to Reprocessing rulings will allow closure of Tank 18 consistent with the precedent set by Tanks 17 and 20. <u>Basis</u> - resolution of each item is ongoing, all indications are that the rulings will be favorable.
- Tank 19 Schedule heel removal will be completed in Tank 19 so as not to interfere with Tank 18 waste removal. <u>Basis</u> Tank 19 must be closed one year before Tank 18. Waste transfer from Tank 19 to Tank 18 are brief in duration (<1 day) and can easily be accommodated if they occur during Tank 18 construction.
- Tank 19 Sludge Composition the sludge removed from Tank 19 will be similar in physical characteristics (shear stress, particle size, etc.) to the sludge currently in Tank 18. <u>Basis</u> - the sludge in each tank came from the same source, the sludge in Tank 19 will have been slurried in FY00.
- Riser Availability all risers on Tank 18 are assumed to be available for equipment insertion including the two pillbox risers and risers containing failed slurry pumps.
 <u>Basis</u> - failed equipment has been removed on other tanks, pillboxes have been removed on other tanks or equipment inserted through the roof of the pillbox into the tank.
- 9. New Risers new risers can be installed as needed. <u>Basis</u> a new riser was installed on Tank 19.

- 10. **Tank Access** existing piping penetrations into/out of Tank 18 can be used, new penetrations can be installed. **Basis** existing penetrations have been reused on other tanks, new penetrations have been installed into diversion boxes which are similar in construction to waste tanks.
- 11. **Tanktop Truss** the existing Corrective Action Report (CAR) (Reference 7) can be dispositioned to allow reuse for waste removal. **Basis** similar trusses on Tanks 17, 19 and 20 were refurbished and used for heel removal.
- 12. Tank 18 Projected Levels the projected volume of sludge/solids at the start of waste removal operations in Tank 18 is approximately 75,000 (75K) gallons (pre Tank 19 transfers into Tank 18). <u>Basis</u> Present contents of Tank 18 consists of 42K gallons of sludge, and Tank 19 contents is 33K gallons of solids (including zeolite) to be transferred into Tank 18. Projected supernate level in Tank 18 is estimated to be 308K gallons presently in Tank 18 and 275K gallons from Tank 19. Additional liquid waste will be generated during the Tank 19 Heel Removal, which will is limited, by the Authorization Basis, to be transferred to Tank 18.
- 13. Zeolite If the Tank 19 contents are transferred to Tank 18, the Zeolite will be in a form/consistency which is easily prepared and transferred from Tank 18 to another HLW Tank. Basis a) In order to transfer the Zeolite from Tank 19 to Tank 18, it had to be in a transferable condition. b) The preparation used to mobilize the Zeolite in Tank 19 will result in a "non-reversible" state in Tank 18, i.e., the Zeolite will not recoalesce. c) A Cesium Removal Column has never been installed in Tank 18. Zeolite in Tank 19 is very consolidated and was not slurried and transferred to Tank 18 during Tank 19 waste removal during 1980-86 based on sample analyses.
- 14. **Tank Isolation** Nine months are required to complete Tank isolation, grouting, and closure of Type IV waste tanks. **Basis** Experience with Tanks 17 & 20 which required about seven months for each.
- 15. **Program Impacts** Potential impacts from other programs (e.g., canyons, 2H evaporator recovery, 3H evaporator operations) will not affect the Tank 18 waste removal project. **Basis** Major known changes of other programs have not affected the Tank 18 project.
- 16. **Sludge Destination** The sludge from Tank 18 will be sent to Tank 7. <u>Basis</u> Tank 7 will become Sludge Batch #3. If the sludge in Tank 18 can be sent to Tank 7, then more canisters can be made from Sludge Batch #3 at virtually no additional cost to the customer. Also, High Level Waste System Plan (HLWSP) Revision 12, which is currently being developed, is based on sending the Tank 18 sludge to Tank 7.
- 17. Schedule The schedule for Tank 7 sludge removal can be meshed with Tank 18 sludge removal in a way that supports the need date for Sludge Batch #3. <u>Basis</u> -The existing Tank 7 schedule shows sludge removal occurring from 9/02 to 2/03. The draft schedule for Tank 18 shows sludge removal occurring from 4/03 to 6/03 (about a 4 month mismatch). It may be possible to add the Tank 18 sludge to Extended Sludge Processing (ESP) after the Tank 7 sludge without delaying Sludge

Batch #3 due to the very dilute salt content in the Tank 18 sludge or it may be possible to accelerate the Tank 18 schedule to better match the Tank 7 schedule.

6.5 Define Screening and Selection Criteria

In order to objectively evaluate proposed options, the Team developed screening criteria and weighted selection criteria for evaluating both individual ideas and total strategies. The criteria and associated definitions used are described below.

6.5.1 Screening Criteria

Screening criterion are non-negotiable (go/no-go) aspects which solutions must meet to be considered for further evaluation. Some screening criteria applied to ideas, some to total strategies, and some to both. The *Screening Criteria* and associated bases used by the Team are listed below:

- 1. The idea performs part or all of the function(s). A strategy must satisfy all the functions. **Basis**: If the idea/strategy does not contribute to the solution then it is of no value.
- 2. The idea/strategy supports the 6-30-03 completion of waste preparation and transfer of HLW from Tank 18 to another receipt tank. **Basis**: Support FFA commitments per HLW System Plan, Revision. 11 (Reference 6).
- The TEC ≤ \$7.8M (applicable to individual ideas only; strategies will consider life cycle cost benefits separately). Basis: Represents a 20% increase from current TEC of \$6.5M which allows latitude to consider more options. The \$6.5M is the TEC/management reserve (MR)/Contingency for Tank 18 waste removal (waste preparation & transfer) and excludes spray washing, tank isolation & closure, and OPC.
- 4. Implementation does not require qualification of a new Defense Waste Processing Facility (DWPF) glass waste form. **Basis**: Re-qualification is not accepted based on long lead time to complete and uncertainty of success.
- 5. The idea/strategy does not present any obvious and unreasonable hazards to the workers, public, or environment and does not violate non-negotiable regulatory requirements. **Basis**: Injury or environmental damage is unacceptable.

6.5.2 Selection Criteria

In order for the Team to objectively select the best overall methodology (i.e., strategy) to remove (prepare/transfer) waste starting with Tank 18, required defining weighted attributes to facilitate distinguishing and grading the candidate ideas and strategies. The Team defined and weighted "selection" criteria (attributes) deemed important to success. Higher weighted criteria are considered more important than lower weighted criteria. An initial set of weighted criteria were used to evaluate and score individual ideas. A *different set* of weighted criteria were developed to evaluate strategies. (Note: As used

by the Team, strategies are various individual ideas grouped together to form an overall solution.) The applicable criteria are detailed in Section 6.9 for the ideas and Section 6.13 for strategies.

To provide clarity and consistency in scoring ideas, the Team used "utility functions". Utility Functions (UF) define gradations (point ranges) within the selection criteria to make it easier and more consistent in applying the selection criteria. These are also described in later sections of the report.

6.6 Brainstorming

The Team conducted two formal brainstorming sessions on October 12, 2000, to identify ideas for each of the four functions (prepare bulk waste in Tank 18, transfer non-heel bulk waste to another HLW tank, prepare heel in Tank 18, transfer heel to another HLW tank) to be addressed. Participants included the Team and invited guests with subject matter expertise in various aspects of waste preparation, removal, and transfers. The following is a composite list of the participants:

<u>Facilitators</u>	Team Members	<u>SMEs</u>
Ed Urbanawiz	Gary Abell Tommy Caldwell Neil Davis Nader Elraheb Max Howard Robert Leishear J. McCullough James Menghi David Stefanko	Glenn Beaumier Joe Cato Paul D'Entremont Eric Freed M. Harrell J. Herbert Gary Johnson Mark Mahoney Scott Saunders Paul Schearer Charles Sharpe Mike Tinsley Eloy Saldivar Robert Wilson

The identification of ideas was done in accordance with Desktop Procedure, DTP-002 (Attachment 2). Participants were provided a briefing package (Attachment 3) in advance of the brainstorming sessions in an effort to stimulate the generation of ideas.

A raw list of about 140 ideas resulted from the brainstorming session. Additional ideas were generated during the course of the Team's subsequent activities, including whether the Heel Preparation idea would be reused from bulk preparation or it would be stand alone. Tank 26 was originally designated to receive the waste from Tank 18, based on the HLW System Plan, Revision 11 (Reference 6). The change in receiver tanks resulted in additional transfer routes being identified and ideas were added, which resulted in evaluating the transfer routes. Some transfer routes were modified and others were eliminated because they could not be implemented for Tank 7 as the receiver tank. Those that still were applicable were coded with an "M" for modified.

Supplemental documents, such as Pro-formas, were issued that detail the ideas developed as part of this evaluation (References 10-13). The total number of ideas considered by the Team totaled 218. The number of ideas, per function, are shown in Table 6.6-1:

Table	6.6-1	Idea	Summary	I
-------	-------	------	---------	---

F.1 Prepare Bulk Waste in Tank 18	74 Ideas Total
F.2 Transfer Non-Heel Bulk Waste to another HLW Tank	43 Ideas Total
Prime Mover 23 Ideas	
Transfer Route 20 Ideas	
F.3 Prepare Heel in Tank 18	56 Ideas Total
F.4 Transfer Heel to another HLW Tank	45 Ideas Total
Prime Mover 34 Ideas	
Transfer Route 11 Ideas	

All ideas were submitted on a "Pro-Forma" form as shown in the Briefing Package (Attachment 3). The idea Pro-Formas were binned based on the particular function (bulk waste preparation, bulk waste removal, heel preparation, or heel removal). References 10 through 13 contain all of the Pro-Formas submitted for consideration.

6.7 Screening

The Team reviewed the ideas for commonality and combined similar ideas into one idea. The ideas were then screened by applying the screening criteria discussed in Section 6.5.1. The results of the screening process are presented in Tables I, II, and III of Attachment 4. Table I lists all ideas (prior to combining the similar ones) that *passed screening*, Table II lists those ideas which *failed the screening* along with the particular criterion it failed; and Table III lists the shortened list from Table I (i.e. acceptable ideas) after combining similar ideas. It should be noted that the screening process was revisited whenever new information about individual ideas or global strategies evolved.

Table 6.7-1 is a listing of the categories, by function, that the initial ideas were binned into during the brainstorming sessions.

Table 6.7-1 Categories	of Generated Ideas
------------------------	--------------------

F.1 Prepare Bulk Waste in Tank 18: Long shaft and submersible slurry
pumps, propellers, agitators, arms, scrapers, dredges, robots, chemical
dissolution, erosion, sluicing, sparging, ultrasonics
F.2 Transfer Non-Heel Bulk Waste to another HLW Tank:
Prime Movers: TTP, transfer pump, sump pump (floor/mast), jets, robots,
arm, based, screw, lift, diaphragm, piston pumps
Transfer Routes to Tank 7: truck, via FDB-1, bypass FDB-1, overland, via
catch tank, via feed line to tank 7 or 26
F.3 Prepare Heel in Tank 18: The same categories shown in F.1 above ideas
plus dewater/vacuum, grout in place, create sump, microbial, in-situ, absorb,
chemical separation
F.4 Transfer Heel to another HLW Tank: Same categories as F.2 above

The screening process was done in accordance with Desktop Procedure, DTP-003 (Attachment 2).

6.8 Develop and Evaluate Viable Options

Table III in Attachment 4, includes a listing of the summarized ideas that were advanced for further consideration. Additional information developed for these ideas was added to the Pro-Forma sheets (References 10-13).

6.9 Apply Selection Criteria to Ideas

The weighted selection criteria applied to ideas are shown in Table 6.9-1. The individual scoresheets which document the raw scores, including discussion comments, were issued separately (Reference 9).

Criterion Title	Criterion Number	Assigned Weight	Criterion Definition
Effectiveness	1.0	0.22	The degree of confidence that the alternative will perform the function for which it was proposed.
Complexity	2.0	0.18	The degree of complexity of the alternative with regard to design, construction, testing, and operation.
. Design	2.1		The degree of complexity of design with regard to Title II, Title III, and procurement of engineered equipment.
Construction/Start Up	2.2	0.06	The degree of complexity of construction with regard to fabrication, installation, excavations, equipment D&R, and testing.
Operation	2.3	0.06	The degree of complexity of operations with regard to ops resources, training, procedures, maintainability, and close coupled ops.
Technical Maturity	3.0	0.15	The degree to which the alternative has been developed and/or has been demonstrated in a radioactive waste removal application.
Authorization Basis Impact	4.0	0.15	The degree of Authorization Basis changes required to implement the alternative.
System Integration	5.0	0.12	The degree to which the alternative is compatible with existing regulatory programs (WWOP, WAC, etc.), processes, and infrastructure.
Regulatory Programs/Processes	5.1	0.06	The degree of compatibility with regard to existing regulatory programs and processes.
Infrastructure	5.2	0.06	The degree of compatibility with regard to existing infrastructure.
Reliability	6.0	0.13	The degree of confidence to which the equipment will perform the needed functions without failure.
Safety	7.0	0.05	The degree to which the alternative can be constructed and operated with regard to industrial safety and radiological controls.

	í	
Table 6.0.1. Coloction Critoria	Weights, and Definitions Used to Score lo	lage
able 6.9-1. Selection Chiena.	weights, and Deminitions used to Score it	iça ə

The utility functions used for each criteria are shown in Table 6.9-2.

Criterion Title	Criterion Number	Utility Function	Value (in points)
Effectiveness	1.0	High level of confidence	100
		Moderate level of confidence	50
		Low level of confidence	0
Complexity	2.0		
Design	2.1	High level of complexity	100
Construction	2.2	Moderate level of complexity	50
Operation	2.3	Low level of complexity	0
Technical Maturity	3.0	Fully developed and proven in a radioactive waste removal	100
		application	
	1	Fully developed and proven in a non-radioactive waste removal	50
	1	application	
	1	Pilot plant/prototypical application demonstrated	30
		Theoretical/R&D	0
Authorization	4.0	Utilizes the existing AB with negligible changes by internal	100
Basis Impact		contractor (WSRC)	1
•		May result in significant AB changes requiring DOE approval	50
		May result in significant AB changes requiring DOE approval and	25
		addresses a new accident scenario	
		May result in a new AB	0
System	5.0		
Integration			
Reg. Prog/	5.1	High level of compatibility	100
Processes		Moderate level of compatibility	50
Infrastructure	5.2	Low level of compatibility	0
Reliability	6.0	High level of confidence	100
•		Moderate level of confidence	50
		Low level of confidence	0
Safety	7.0	Minimal safety/radcon risks to construct, operate, and maintain	100
		Moderate safety/radcon risks to construct, operate, and maintain	50
		Significant safety/radcon risks to construct, operate, and maintain	0

Table 6.9-2 Utility Functions

These selection criteria were applied to each idea in Table III (Attachment 4). For each idea, the Pro-Forma was reviewed and the merits of the idea were discussed with the Team to reach a consensus utility function score for each of the criteria. The application of the weighted criteria was a simple process of assigning points (0-100) from the list of utility functions, multiplying the criteria weight times the utility function value and summing up the score for each idea. The maximum score (most desirable) possible is 100. Attachment 5 is the weighted score for each of the ideas by function and provides an overall ranking. The individual scoresheets which documented the rationale for the utility function score applied was issued as a separate document (Reference 9). This resulted in numerical scoring which allows for a "ranking" of ideas within each functional area, i.e. bulk waste preparation, bulk waste transfer, heel preparation, and heel removal. The application of weighted selection criteria was done in accordance with Desktop Procedure, DTP-005 (Attachment 2).

Table 6.9-3 lists the top scoring ideas within each function. This method of ranking was used to identify the more promising ideas to pursue versus those of least benefit. The ranking did not preclude the use of any idea as a final recommendation. Due to the large number of ideas submitted and scored for F.1 (prepare bulk waste in Tank 18), the Team elected to take the highest scoring ideas in F.1 from the three categories, i.e., pumps, robotics, and arms. This provided the Team with several options to consider in subsequent strategy development. This was not done for the other functions (F.2, F.3, and F.4) because there was a limited number of top scoring ideas.

Function	Idea	Category	Description	Score
F.1	A4	Pump	ADMP with Flygts	89.5
	A1	Pump	Quad Volute Slurry Pump (QVSP)	88.9
	A70	Pump	4 Slurry Pumps (SPs)	87.7
	A73	Pump	Slurry Pumps with TTP	84.7
	A72	Pump	ADMP with 2 Slurry Pumps	84.2
	A43	Robotics	ARD (SRS procure/deploy/operate)	83.6
	A74	Arm	Arm with Confined Sluicing End Effector (CSEE)	82.6
	A12	Pump	Submersible Pump	82.0
	A41	Pump	Modified ADMP	80.5
	A53	Pump	Modify Existing Slurry Pumps	79.5
	A46	Pump	101-SY Modified Slurry Pump	79.3
	A44	Robotics	Houdini Robot with CSEE	78.9
F.2 ·	B38	Prime Mover	TTP	97
	B16	Prime Mover	Diode pump	93
	B8	Prime Mover	Bibo pump	91
	B43M	Transfer Route	Tank 1 Tie-in	91
	B4M	Transfer Route	Above-ground Transfer Line	86
F.3	C1	Robot	ARD robot	86
–	C20	Arm	Arm	84
	C56R	Sluicer	Sluicer	78
	C21	Chemical	Chemical Cleaning (acid dissolution)	76
F.4	N/A	N/A '	Same as F.2	N/A

Table 6.9-3 Top Scoring Ideas After Applying Selection Criteria

This ranked order of ideas was reviewed by the Team. The following table identifies the ideas that were not considered further and the rationale for this decision in picking the top scoring ideas from the three categories in Function F.1.

Table 6.9-4 Function F.1 Scored Idea	s Removed From Further Consideration
--------------------------------------	--------------------------------------

Idea.	Description	Rationale
A73	Slurry Pumps with TTP	F.1 Idea is the same as A70 (combined with F.2 prime mover)
A72	ADMP with 2 Slurry Pumps	F.1 Idea is the similar to A4 (combined)
A12	Submersible Pump	Idea is similar to A70 (combined)
A53	Modify Existing Slurry Pumps	Ideas is similar to A70 (combined)
A46	101-SY Modified Slurry Pump	Idea is similar to A70 (combined)

6.10 Analyze Risks

A risk analysis was performed on the top scoring ideas within each function, i.e. Prepare Bulk Waste in Tank 18, Transfer Non-Heel Bulk Waste to another HLW Tank, Prepare Heel in Tank 18, and Transfer Heel to another HLW Tank, as identified in Table 6.9-3. A summary of the risks identified by idea is presented in Table 6.10-1. The risk assessment sheets, which detail each identified risk, the likelihood of occurrence, the consequence(s) of occurrence, risk level, and risk handling strategies for each candidate idea, are provided in Attachment 7. The risk analysis was performed in accordance with Desktop Procedure, DTP-004 (Attachment 2).

Idea	Idea Title	High and Moderate Risks Identified	
A4	ADMP	Process hazard [gas filled column] (Moderate)	
A41	Modified ADMP	The vendor may take too long to develop the pump.	
A43	ARD	Pump requirements for transfer of material (High)	
		Operations and maintenance experience (Moderate)	
		Tether management (Moderate)	
A44	Houdini/CSEE	Difficulty to perform function test (High)	
		Operations and maintenance experience (Moderate)	
		Tether management (Moderate)	
A70	4 Slurry Pumps	Substantial D&R (Moderate)	
A74	Arm w/CSEE	Reliability, Availability, Maintainability Issues (High)	
		Complex design (Moderate)	
B4M	Hose in Hose	Co-occupancy issue [routing of hose and Control Room]	
		(Moderate)	
		Substantial D&R (Moderate)	
B16	Diode Pump	No high or moderate risks identified.	
B43M	Tank1 Tie-In	Difficulty to perform functional test (Moderate)	
C21	Chemical Cleaning	New application of technology (High)	
		Multiple system interfaces (High)	
		Project schedule uncertainties (High)	
C56	Sluicer	Multiple interfaces required (Moderate)	

Table 6.10-1 Risk Analysis Summary

Upon completion of the risk analysis, a cross-check was made by the Team to ensure consistency and uniformity of risk was assessed between the different ideas.

The impact on cost and schedule derived from the Risk Analysis were incorporated into the costs and schedules developed for the strategies. Additional discussion on how risk was used to eliminate strategies is provided in Section 6.12.

6.11 Develop Strategies

The resulting individual ideas, applied to each function, as shown in Table 6.9-3 and modified per Table 6.9-4 were used to establish strategies for waste removal for further consideration. The strategies were defined by using ideas from each of the function and combining them together. A total of 210 strategies were mathematically possible.

6.12 Strategy Screening Criteria

The Team recognized that not all of the 210 combinations were feasible, i.e., conflicting configurations. For example, you could not deploy the arm in F.3, when the ADMP was already deployed in the same riser. The incompatible strategies (96) were not considered for further evaluation.

The remaining strategies were screened against the screening criteria (Section 6.5.1) to determine if they passed. The strategy screening criteria included the following:

- The strategy must perform all of the functions
- The strategy must support the Federal Facilities Agreement date
- The strategy must not require a new glass form
- The strategy must not impose any unreasonable hazards.

The final number of viable strategies considered for further evaluation was 114. Attachment 6, Strategy Scoring includes as Table IV, the listing of all of the viable strategies.

Also, as a result of the risk analysis, 24 strategies did not possess adequate assurance that they would work or have alternative backup methodologies should the primary idea not work. The strategies eliminated from further consideration are identified in Table 6.12-1. Ninety (90) viable strategies remained for further evaluation.

Strategy Description Rationale Strategy Number Risk associated with reducing S1, SS5, S9, S13, ADMP sludge level <1 inch S17, and S21 S25, S29, S33, S37, Same QVSP S41, and S45 S49, S54, S59, S64, Same Modified ADMP S69, and S74, 4 Slurry Pumps S79, S84, S89, S94, Same S99, and S104

Table 6.12-1 Strategies Eliminated Based on Risk

6.13 Apply Selection Criteria to Strategies

New weighted selection criteria and utility functions were defined and applied to the 90 strategies. Table 6.13-1 summarizes the selection criteria applied to the combined strategies. The utility functions used to facilitate consistent scoring are shown in Table 6.13-2. The listing of the individual strategies is included Attachment 6, Table IV.

Table 6.13-1: Selection Criteria, Weights and Definitions Used To Score Strategies

Criterion Title	Criterion Number	Assigned Weight	Criterion Definition
Cost	1.0	0.32	The degree of initial cost incurred and/or cost savings realized by utilizing the strategy.
Initial Cost to Deploy	1.1	0.12	The magnitude of cost to deploy the strategy on Tank 18. (Initial cost is equal to: TPC Cost – TFA Funding utilized)
Life Cycle Cost	1.2	0.20	The degree of Life Cycle Cost savings that will be realized within the HLW Waste Removal Program over the eight year period of FY01 – FY08 by utilizing the strategy.
Effectiveness	2.0	0.28	The degree of confidence that the strategy will perform all functions.
Complexity	3.0	0.25	The degree of complexity of the strategy with regard to design, construction, testing, and operation. Design: The degree of complexity of the strategy with regard to Title II, Title III, and procurement of engineered equipment. Construction: The degree of complexity of construction with regard to fabrication, installation, excavations, equipment D&R, and testing. Operation: The degree of complexity of operations with regard to operations resources, training, procedures, maintainability, and close coupled operations.
Authorization Basis Impact	4.0	0.15	The degree of Authorization Basis changes required to implement the alternative.

Table 6.13-2 Utility Functions

Criterion Title	Criterion Number	Utility Function	Value (Points)
Cost	1.0		
Initial Cost to Deploy	1.1	Low Cost to Deploy	100
		Moderate Cost to Deploy	50
	1	High Cost to Deploy	0
Life Cycle Cost Savings	1.2	High Degree of LCC Savings	100
		Moderate Degree of LCC Savings	50
		Low Degree of LCC Savings	0
Effectiveness	2.0	High level of confidence	100
		Moderate level of confidence	50
		Low level of confidence	0
Complexity	3.0	High level of complexity	100
		Moderate level of complexity	50
		Low level of complexity	0
Authorization Basis	4.0	Utilizes the existing AB with negligible changes by internal contractor (WSRC)	100
		May result in significant AB changes requiring DOE	50
		May result in significant AB changes requiring DOE approval and addresses a new accident scenario	25
		May result in a new AB	0

This process involved evaluating the functions and ideas as individual items and then as an aggregate strategy. For example, would deploying the ARD robot after bulk waste removal was complete, require additional costs to retrofit the equipment or would there be a need to do additional design at the onset. If so, the costs would increase and the design would be more complex which would lower the overall score. By performing this review, a consistency check was completed both horizontally and vertically to ensure that the logic was appropriate. The *Initial Cost to Deploy* costs were developed per idea per applicable function(s). The Initial Cost to Deploy criterion was evaluated after determining the actions needed to implement/deploy the idea, e.g., project work. This information was evaluated and the

total amount for deployment was given as a rough order of magnitude (ROM) estimate based on the Team's experience with similar activities at the site, including estimated procurement costs and credits for Tank Focus Area funds. Once the overall range for costs, within a function, was determined, an arithmetical average was used to determine the scores. The minimum cost idea to deploy received a 100 and the maximum cost idea to deploy received a 0. The results of the risk analysis, e.g., risk handling costs, were factored in as appropriate. The scores for this selection criteria per idea per function are shown in Attachment 6, Table IV.2.

The LCC Savings criteria was evaluated after determining whether the idea could be used on any of the four remaining tanks (11, 26, 4, and 15) in the performance period of eight years assumed as the life-cycle for the study versus the current baseline cost. Eight years was selected as the life-cycle since it envelopes the current contract period of six years and the operational period of two years. The extent to which the idea could be reused and was effective for these other tanks was used to determine the score. One idea clearly had extensive LCC savings and scored 100 points. The remaining ideas had extremely limited or no LCC savings potential had scored less than 10 points. The results of the risk analysis, e.g., risk handling costs, were factored into as appropriate. The scores for this selection criteria per idea per function are shown in Attachment 6, Table IV.2.

. The selection criteria for the areas of *Effectiveness*, *Complexity* and *Authorization Basis Impact* utilized the scores previously determined for each idea for each function. These individual scores are presented in Attachment 6. Effectiveness Scores are in Table IV.3. Complexity Scores are in Table IV.4. Authorization Basis Impact Scores are in Table IV.5. The Team evaluated these scores for consistency between ideas and between the functions before proceeding.

In order to develop an aggregate strategy score for the five selection criteria, a mathematical expression was formulated, which applied an additional set of weights to the different functions. The mathematical expressions were developed based on each selection criteria and the importance of each function when compared to each other. The mathematical expressions used to determine the aggregate scores for each selection criteria are in Table 6.13-3.

Selection Criteria Formula	• F.1	F.2 Prime Mover	F.2 Transfer Route	F.3	F.4
1. Deployment Cost	75%	15%	10%	0%	0%
2. LCC Savings	60%	15%	10%	15%	0%
3. Effectiveness	40%	10%	0%	50%	0%
4. Complexity	40%	5%	15%	40%	0%
5. AB Impacts	10%	15%	40%	35%	0%

Table 6.13-3 Aggregate Score Formulas

As an example, for the *Initial Cost To Deploy*, the Team felt that the cost of Function 1 was the most important and outweighed the other functions, in that Function 1 accounted for 75% of the cost to deploy for the strategy. The Function 1 score accounts for the costs of Function 3, as these costs were modified to include risk mitigation costs.

The costs of the prime mover were slightly more than the costs for the transfer route, and as a result the weighting factors were assigned as 15% and 10%. No costs were attributed to Function 4 as these are part of Function 2.

The Tables in Attachment 6 includes these formulas at the top and bottom of the spreadsheet for clarity. A summary of the aggregate scores for each of the selection criteria can be found in Table IV.6. The aggregate scores would be applied against the utility function for determination of the final total score. These results of this process are shown in descending order in Attachment 6, Table IV.1.

In order to detail the process the Team implemented to determine the aggregate scores, the following example is available:

<u>Example:</u> Strategy S60 (Modified ADMP, with Bibo pump as prime mover, using the Tank 1 Tie-In transfer route and deploying the ARD robot for heel preparation would get the following aggregate score:

Deployment Cost:

Scores from ideas (Table IV.2, Attachment 6, Strategy S60) F.1=78 F.2 (PM)=90 F.2(RT)=60 F.3=100 F.4=0 Applying Formula 1: (.75)(78)+(.15)(90)+(.1)(60)+(0)(100)+(0)(0)=78

LCC Savings

 Scores from ideas (Table IV.2, Attachment 6, Strategy S60)

 F.1=100
 F.2 (PM)=80
 F.2(RT)=60
 F.3=0
 F.4=0

 Applying Formula 3: (.6)(100)+(.15)(90)+(.1)(60)+(.15)(0)+(0)(0)=72

Effectiveness:

Scores from ideas (Table IV.3, Attachment 6, Strategy S60)F.1=89F.2 (PM)=95F.2(RT)=100F.3=95F.4=0Applying Formula 3: (.4)(89)+(.1)(95)+(0)(100)+(.5)(95)+(0)(0)=92.6

Complexity: Scores from ideas (Table IV.4, Attachment 6, Strategy S60) F.1=77 F.2 (PM)=86 F.2(RT)=86 F.3=98 F.4=0 Applying Formula 4: (.4)(77)+(.05)(86)+(.15)(86)+(.4)(98)+(0)(0)= 87.2

AB Impacts:

Scores from ideas (Table IV.5, Attachment 6, Strategy S60) F.1=86 F.2 (PM)=100 F.2(RT)=89 F.3=81 F.4=0 Applying Formula 5: (.1)(86)+(.15)(100)+(.4)(89)+(.35)(81)+(0)(0)= 87.55

Therefore the scores and the selection criteria weights can be summarized as follows: Strategy Scores (Table IV.1, Attachment 6, Strategy S60 and Weights from Table 6.13-1) Cost to Deploy: 78(.12)=9.36 LCC Savings: 72(.2)=14.4 Effectiveness: 92.6(.28)=25.928 Complexity: 87.2(.25)=20.4 AB Impacts: 87.55(.15)=13.1325 <u>Total Weighted Score=83.22</u>

A Sensitivity Analysis was performed on the strategy scores to determine if the scoring of strategies was sensitive. This analysis was competed by varying the individual criteria weights of the selection criteria to see if small changes ($\pm 10\%$) caused major changes in the strategy rank ordering. It was determined that only minor changes in rank ordering were observed. The Team concluded that the ranking of ideas was fairly insensitive to small changes in criteria weighting. The results of the strategy sensitivity analysis are included in Attachment 8.

6.14 Select Option and Implementation Plan

Utilizing the information prepared, the strategies were ranked in descending order based on total score (shown in Table IV.1, Attachment 6). This information was evaluated by the Team as input to selecting a recommended option. Table 6.14-1 summarizes the results of the strategy scoring by function:

Prepare Bulk Waste in Tank 18 (F.1)	Modified ADMP-based strategies (83)			
	ARD for all functions (78)			
	Houdini for all functions (75)			
	ADMP-based strategies (73)			
	Arm for all functions (73)			
	QVSP-based strategies (70)			
	Four Slurry Pump-based strategies (68)			
Transfer Non-Heel Bulk Waste to	Prime Mover (F.2): The Bibo pump always			
another HLW Tank (F.2)	scored higher than the TTP or Diode pump			
	Transfer Route (F.2): Below-Ground Route			
	- Tank 1 Tie-In always scored higher than			
	the Above-Ground - Hose in Hose route			
Prepare Heel in Tank 18 (F.3)	ARD always scored higher than Sluicers,			
•	Chemical Cleaning, and Arm			
Transfer Heel to another HLW Tank (F.4)	No scores were generated separately for			
	this function. Refer to F.1.			

Table 6.14-1 Scored Results of Strategies by Function	Table 6.14-1	Scored	Results	of	Strategies	by	Function
---	--------------	--------	----------------	----	------------	----	----------

After review of this information, the Team recommends the following overall strategy:

Prepare Bulk Waste in Tank 18 (Function F.1): The recommendation is to develop and deploy a modified ADMP to suspend the waste in a slurry, prior to pumping to another tank. The modified ADMP would have the same pump characteristics as the existing ADMP, but it would be modified to fit into a 2-foot riser. Only a limited number of tanks have the 4-foot riser required to deploy the current ADMP. <u>Rationale</u>: This strategy leverages the existing excellent ADMP experience, the smaller diameter means this pump can be used in any tank, and Tank Focus Area is likely to co-fund this activity as Hanford has expressed a similar need. <u>Future Applications</u>: The smaller size pump
can be used on all five tanks to be worked (18, 11, 26, 4, and 15) in the current contract period. This pump could be used in all 33 remaining waste removal tanks, pending cooling coil evaluation (1-3, 5-6, 9-10, 12-14, 21-25, 27-39, and 43-47). There is a potential use for the pump in the seven waste processing tanks (40-42, 48-51). Projected savings versus baseline in current contract period is >\$15 million based on using 3 versus 4 pumps per tank, there is also a potential for reducing the need to only 2 pumps per tank. Risk: There is a risk that it may take longer than 18 months to develop,

test, and approve the prototype. This may be an insurmountable risk, based on initial discussions with the vendor. <u>Risk Mitigation</u>: Added \$0.5 million to cost to allow for fast-tracking of the development effort to modify the design, refurbish the existing ADMP and use if the modified ADMP is not ready in time. Houdini and ARD were not picked (although they scored higher) to mitigate the bulk sludge preparation risk in lieu of ADMP because of concerns with operating robots in 21 inches of sludge and also because there would be no LCC savings from this option in the contract period.

Transfer Non-Heel Bulk Waste to another HLW Tank (Function F.2)

Prime Mover: The recommendation is to use a Bibo pump as the prime mover. <u>Rationale</u>: The pump is made by ITT Flygt. The pump is a standard, industrial grade, sump pump, similar to the pump currently in use on Tank 19. The Bibo pumps are inexpensive. Tank 19's use has transferred >2,000,000 gallons of sludge/slurry woth this pump design and has been in operation for over six months. <u>Future Applications</u>: Bibo pumps can be used in all remaining tanks. <u>Risk</u>: A minor risk but no significant risk was identified. <u>Risk Mitigation</u>: Complete a thorough test of pump and complete a design for the pump interface points to provide the ability to easily replace or add a new pump.

Transfer Route: The recommendation is to complete a tie-in from Tank 18 to Tank 7 by connecting the existing lines from Tank 18 to FDB-1 and Tank 1 to Tank 7. <u>Rationale</u>: This will provide a direct underground route from Tank 18 to Tank 7 and requires only minor excavations to complete the two tie-ins. This line bypasses FDB-1 and all associated AB issues. There would be no inadvertent transfer paths and require only minimal interfaces. The tie-in would take about 20 feet of new pipe with two tie-in points and caps and the excavation would only be about 4 foot deep. After Tank 18 Waste Removal has been completed the Tank 1 to Tank 7 transfer line will be reinstated to its original configuration. <u>Future Applications</u>: None, one-time cost savings. <u>Risk</u>: Tie-ins may be more expensive than planned, AB may be difficult when Tank 1 jet discharge route is capped. <u>Risk Mitigation</u>: Test line segment jackets early.

Prepare Heel in Tank 18 (Function F.3): The recommendation is to continue to use the modified ADMP (or ADMP) from F.1 until the final level of less than 1,000 gallons of sludge remains. <u>Rationale</u>: The pump can be used in the heel preparation phase if water management (decants) and schedule allow continued use of the ADMP for heel preparation. <u>Future Applications</u>: Tanks 21-24, however this is after the current contract period. <u>Risk</u>: May require too much water or too much time. <u>Risk Mitigation</u>: Procure and stage robotic suction device/system. The cost is between \$100K to \$300K for the entire system. There is already experience with this product at SRS. The robot will fit

through a 24 inch riser. The unit provides a fully developed mobile sluicing/suction similar to Houdini but without the extensive support structure and equipment.

Transfer Heel to another HLW Tank (Function F.4): The equipment and transfer route determined for Function F.2 will be used for Heel Removal.

The selection of the recommended technology and transfer methods was made by the Team based on several considerations, i.e.:

- Ranking of alternatives based on the application of the weighted selection criteria. This included sensitivity analysis.
- A system integration overview for the most promising alternatives. This required "visualizing" the implementation of each alternative to assess upstream and downstream impacts on the entire HLW system.
- Discussions with subject matter experts (SMEs), stakeholders, and decision makers.
- Consideration of the new six year contract period and the tanks to be emptied during that period.
- Team expertise and judgement.

To provide ease in publishing this Report, several supplemental documents have been issued with supporting information, as part of the SEE (see References 8-13).

7.0 Glossary

Advanced Design Mixing Pump – This is a prototype slurry pump that was jointly developed by Hanford and SRS based on the lessons learned from both sites. The pump is a 55 foot tall vertical shaft, dual discharge centrifugal pump with a 300 hp motor mounted above the tank top and a 39 inch diameter pump casing submerged in the waste. The pump capacity is 5,200 gal/min at the maximum operating speed of 1,150 rpm. The expected cleaning radius in SRS sludge is 50 feet. This pump has been tested at SRS for over 4,000 hours but has never been deployed in a radioactive environment.

Baseline Technology - the waste removal technology for Tank 18 identified in project documentation (e.g., Functional Performance Requirements (FPR), Functional Design Criteria (FDC)) which includes 3 standard slurry pumps and 1 telescoping transfer pump.

Bulk Waste Removal - is defined as removing the first 99% of the original volume of waste which typically means leaving no more than 10,000 gallons of waste in the tank at the completion of bulk waste removal. This operation is typically done with slurry pumps.

Decision Makers - the HLW Board consisting of the Level 1 and 2 Managers in the HLW Division and matrixed support managers.

Demonstrated (Proven) Technology - Technology that is commercially available and/or has been used in the nuclear industry.

Heel Removal - the purpose of heel removal is to remove as much of the remaining waste as required to enable the tank to pass a Performance Assessment indicating that the tank is ready to close. Preliminary calculations indicate that Tank 18 must have no more than 1,000 gallons of sludge remaining at the time of closure. Heel removal on Tanks 16, 17 and 20 employed several different techniques in addition to slurry pumps.

Idea - A concept, if implemented, which would satisfy some or all of the Tank 18 Waste Removal System functions and/or requirements.

Life Cycle – The life cycle of this activity includes all of the tanks currently scheduled for waste removal during the next eight years (starting in FY01) as reflected in the current WSRC Contract and the HLW System Plan, Rev. 11. The Tanks included are: Tank 18, Tank 11, Tank 26, Tank 15, and Tank 4.

Life Cycle Cost - The life cycle cost is the capital cost for the project to retrofit the five HLW tanks in the Life Cycle with waste removal equipment minus projected TFA funding for new technologies.

Life Cycle Cost Savings: The life cycle cost savings was used as the basis to evaluate from the strategies selected using the current Baseline Costs

Slurry Pump – This pump is a 45 foot tall vertical shaft, dual discharge centrifugal pump with a 150 hp motor mounted above the tank top and a 22 inch diameter pump casing submerged in the waste. The pump capacity is 1200 gal/min at the maximum operating

speed of 1800 rpm. The expected effective cleaning radius in SRS sludge is 25 feet. This type of slurry pump has been used to remove waste from several tanks at SRS and West Valley.

Stakeholders - Individuals or organizations potentially impacted by the recommended alternative.

Subject Matter Experts (SMEs)- SMEs are individuals recognized by the Team as experts in a particular field(s).

Validation – a scheduled meeting that provides the opportunity for stakeholder input and feedback at key points during the execution of the Systems Engineering Evaluation process.

Waste Removal (WR) - the removal of high level waste (e.g., sludge, salt, supernate, zeolite) from a waste tank. Waste removal may consist of "bulk waste removal" and "heel removal".

8.0 Acronyms

AB ADMP ARD CAR CSEE CST	Authorization Basis Advanced Design Mixing Pump Advanced Research and Development Environmental, Inc. Corrective Action Report Confined Sluicing End Effector Concentration, Storage, and Transfer
D&R	Demolition and Removal
DOE	Department of Energy
DTP	Desktop Procedure
DWPF	Defense Waste Processing Facility
E7	Conduct of Engineering & Technical Support Manual
ECR	Effective Cleaning Radius
EIS	Environmental Impact Statement
ESP	Extended Sludge Processing
F.1 F.2	Prepare Bulk Waste in Tank 18 Transfer Non-Heel Bulk Waste to another HLW Tank (Prime Mover
F.2	and Transfer Route)
F.3	Prepare Heel in Tank 18
F.4	Transfer Heel to another HLW Tank
FDB	F Area Diversion Box
FDC	Functional Design Criteria
FFA	Federal Facility Agreement
FPR	Functional Performance Requirements
FTF	F Area Tank Farm
FY	Fiscal Year
H&V	Heating and Ventilation
HLW	High Level Waste High Level Waste System Plan
HLWSP HTF	High Level Waste System Plan H Area Tank Farm
IM	Implementation Manual
K	1,000
LCC	Life Cycle Cost
LHW	Low Heat Waste
MŔ	Management Reserve
NRC	Nuclear Regulatory Commission
NRDC	Natural Resources Defense Council
O&M	Operations and Maintenance
OPC	Other Project Costs
PBI	Performance Based Incentive
PEM	Project Engineering Manager Plutonium Uranium Extraction
PUREX QVŠP	Quad Volute Slurry Pump
R&D	Research and Development
BAMI	Reliability, Accountability, Maintainability Issues
ROM	Rough Order of Magnitude
•	······

.

SCDHEC SE	South Carolina Department of Health and Environmental Controls Systems Engineering
SEE	Systems Engineering Evaluation
SME	Subject Matter Experts
SP	Slurry Pump
SRS	Savannah River Site
SRTC	Savannah River Technology Center
TEC	Total Estimated Cost
TFA	Tank Focus Area
TNX	SRTC Development Facility for 200 Areas
TP	Transfer Pump
TTP	Telescoping Transfer Pump
UF	Utility Function
VP	Vice President
WAC	Waste Acceptance Criteria
WR	Waste Removal
WSMS	Westinghouse Safety Management Solutions
WSRC	Westinghouse Savannah River Corporation
WWOP	Wastewater Operating Permit

.

9.0 References

- 1. Federal Facilities Agreement for the Savannah River Site, Administrative Docket Number 89-05-FF, August 13, 1993.
- 2. Chapman, J. W., Permit to Operate #17, 424-IW, F/H Area High-Level Waste Tank Farm, South Carolina Department of Health and Environmental Control, March 3, 1993.
- 3. Waste Acceptance Criteria Program Requirements for Radioactive Waste, 1S WAC 1.02, August 28, 2000.
- 4. Functional Performance Requirements for Project S-W183 Waste Removal, G-FPR-G-00019, Rev. 0, May 19, 1999.
- 5. Functional Design Criteria S-2081 Waste Removal and Extended Sludge Processing, G-FDC-G-00029, Rev. 2, September 30, 1993 and amendments.
- 6. High Level Waste System Plan, HLW-2000-00019, Revision 11, April 2000.
- 7. Corrective Action Report on Structural Steel, 95-CAR-22-0001.
- 8. Tank 18 Systems Engineering Evaluation Lessons Learned from Other Tanks, HLW-CST-2001-0003, February 21, 2001.
- 9. Tank 18 Systems Engineering Evaluation Individual Idea Scoresheets, HLW-CST-2001-0004, February 21, 2001.
- 10. Tank 18 Systems Engineering Evaluation Developed Ideas for Function 1, HLW-CST-2001-0005, February 21, 2001.
- 11. Tank 18 Systems Engineering Evaluation Developed Ideas for Function 2, HLW-CST-2001-0006, February 21, 2001.
- 12. Tank 18 Systems Engineering Evaluation Developed Ideas for Function 3, HLW-CST-2001-0007, February 21, 2001.
- . 13. Tank 18 Systems Engineering Evaluation Developed Ideas for Function 4, HLW-CST-2001-0008, February 21, 2001.

.

10.0 Attachments

.

Attachment 2: Deskt	ty Planning Mode top Procedures fication of Ideas Briefing Package	47-104
	Its of the Idea Screening	
Table I:		
Table II:		
Table III:	Acceptable Ideas/Combination (4pgs)	125-128
Attachment 5: Applic	cation of Weighted Criteria to Ideas	
Attachment 6: Strate	egy Scoring.	138-162
Table IV:	Listing of Strategies (3pgs)	139-141
Table IV.1:	Strategy Weighted Scoring Summary (2pgs)	142-143
Table IV.2:	Cost Scores (Includes Deploy and LCC) (3pgs)	
Table IV.3:	Effectiveness Scores (3pgs)	147-149
Table IV.4:	Complexity Scores (3pgs)	150-152
Table IV.5:	Authorization Basis Impact Scores (3pgs)	153-155
Table IV.6:	Strategy Unweighted Score Summary (3pgs)	156-158
Table IV.7	Tank 18 SEE Strategy Scoring Notes (3pgs)	159-161
Attachment 7: Risk /	Analysis Sheets	163-214
Attachment 8: Strate	egy Sensitivity Analysis	215-232

WSRC-RP-2001-00024 Revision 0 Page 45 of 235

ATTACHMENT 1

ACTIVITY PLANNING MODEL

HLW Tank 18 Waste Removal Technology Team Activity Planning Model

4

•

UTPACE: PROCEDURE FOR THE STRATEGY
 SELECTER PROCESS.

EVALUATE METHODS

ç

301/01

.

.

.

.

•

ATTACHMENT 2

DESKTOP PROCEDURES

DTP-001	Development, Approval And Control Of Desktop Procedures(7pgs)
DTP-002	Identification Of Concepts To Remove HLW From Tank 18(6pgs)
DTP-003	Application Of Screening Criteria(10pgs)
DTP-004	Risk Analysis(16pgs)
DTP-005	Application of Weighted Evaluation Criteria(13pgs)
DTP-006	Tank 18 Waste Removal Strategy Selection Process(6pgs)

WSRC-RP-2001-00024 Revision 0 Page 48 of 235

> DTP-001 Revision: 0

SAVANNAH RIVER SITE

HIGH LEVEL WASTE SALT DISPOSITION TANK 18 WASTE REMOVAL TECHNOLOGY TEAM

DESKTOP PROCEDURE FOR THE

DEVELOPMENT, APPROVAL AND CONTROL OF DESKTOP PROCEDURES

APPROVED:

DATE:______

Neil Davis Tank 18 Waste Removal Technology Team Leader

1.0 Purpose

The Savannah River Site (SRS) High Level Waste Tank 18 Waste Removal Technology Team ("Team") was formed to systematically evaluate alternatives and recommend a preferred method for preparing and transferring (removal) High Level Waste from Tank 18 to another HLW waste tank. This Desktop Procedure provides the necessary direction to develop and approve desktop procedures to be utilized by the Team and support personnel to conduct a systems engineering evaluation on Tank 18.

2.0 Scope

This procedure provides direction for the development, approval and control of desktop procedures to be used by the Team and support personnel to complete Team activities.

3.0 Responsibilities

The Team Leader or his designee, shall be responsible for implementation of this procedure.

The Team is responsible for review and approval of desktop procedures. The Team approval of desktop procedures shall be documented by the signature of the Team Leader in the approval block of the procedures.

4.0 Process

The desktop procedure process is depicted in the flowchart shown in Figure 1.

Procedures shall be developed in accordance with the format guidelines of the "Desktop Procedure Template" (Attachment 1).

Revisions to desktop procedures shall be performed by the same process as the original procedure and the revision number shall be modified accordingly.

Procedures shall be numbered with the format of "DTP-xxx" where xxx is a sequential number e.g., DTP-001, DTP-002.

•

.

5.0 Records

Procedures produced as a result of this desktop procedure shall be included in the Team's Final Report.

•

6.0 References

None

Attachment 1 – Desktop Procedure Template

DTP-XXX Revision: x

SAVANNAH RIVER SITE

HIGH LEVEL WASTE SALT DISPOSITION TANK 18 WASTE REMOVAL TECHNOLOGY TEAM

DESKTOP PROCEDURE FOR THE

[TITLE]

APPROVED:

DATE:___

Neil Davis Tank 18 Waste Removal Technology Team Leader

1.0 Purpose

This desktop procedure provides the methodology for performing [Name process and briefly state why procedure is needed].

2.0 Scope

This procedure shall be used by the Team, SMEs and/or stakeholders to [*Briefly state what will be performed under this procedure*. If the procedure supersedes a previously issued position paper, a statement should be made -"This procedure supersedes position paper xxxxxx"].

3.0 Definitions [*Optional*]

Team The members of the HLW Tank 18 Waste Removal Technology Team.

[Above is an example of the format of "definitions," the definitions included here would be dictated by the individual procedure].

4.0 Responsibilities

The Team Leader shall be responsible for the implementation of this procedure and for initial approval and approval of changes to this procedure. [add any additional responsibilities unique to the activities covered by this procedure]

The Team and support personnel are responsible for performing the [*subject*] process as defined within this procedure. [*Add any additional responsibilities unique to the activities covered by this procedure*]

[add any additional personnel/groups and their responsibilities unique to the activities covered by this procedure. Where responsibilities can be designated it should be stated here within the definition of the responsibility].

5.0 Discussion [Optional]

[This section should be used to provide clarification, history, philosophy as deemed necessary by the author to aid in the overall understanding of the process covered by the procedure - if process is simple and easily understood then no further explanation is necessary].

6.0 Process

[The overall process is depicted in the flowchart shown in Figure 1]

[The process methodology shall be defined in terms of "functional title" shall perform "function" – topics may be added to logically divide functions or responsibilities or stages of the process]

6.1 [TOPIC 1]

[Topic process methodology]

[SUBTOPIC A]

[Subtopic process methodology]

[SUBTOPIC B]

[Subtopic process methodology]

[If documents require processing by document control, refer to the document Control procedure]

7.0 Records

Documents produced during the Team activities will be included in the Team's Final Report. [name process]

8.0 References

1. DTP-001, Desktop Procedure for the Development, Approval and Control of Desktop Procedures.

4

WSRC-RP-2001-00024 Revision 0 Page 56 of 235

> DTP-002 Revision 0

SAVANNAH RIVER SITE HIGH LEVEL WASTE TANK 18 WASTE REMOVAL TECHNOLOGY TEAM

DESKTOP PROCEDURE FOR

THE

IDENTIFICATION OF CONCEPTS TO REMOVE HLW FROM TANK 18

APPROVED:_

_ DATE:_____

Neil Davis HLW Tank 18 Waste Removal Technology Team Leader

1.0 Purpose

This desktop procedure provides the necessary guidance and requirements for the HLW Tank 18 Waste Removal Technology Team (Team) to perform the identification of ideas and concepts.

.

2.0 Scope

.

This procedure shall be used by the Team, SMEs and/or Stakeholders to facilitate the solicitation and documentation of ideas for use in the definition of a preferred strategy for removal of HLW from Tank 18.

.

3.0 Definitions

Baseline Technology:	The technology referenced in the project baseline for Tank 18 Waste Removal which consists of three slurry pumps and one telescoping transfer pump.
Demonstrated (Proven)	
Technology:	Technology which is commercially available and/or has been used in the nuclear industry.
ldea:	A concept, if implemented, which would satisfy some or all of the Tank 18 Waste Removal System functions and/or requirements.
Pro-Forma:	A Team form used to document a candidate idea for consideration.
Briefing Package:	An information package to facilitate brainstorming. It contains such things as the problem definition, critical mission need, top level functions and requirements, a model representing the generic solution(s) to developing a strategy, and a Pro-Forma form (Attachment 1) to document ideas.
Stakeholders:	Individuals or organizations potentially impacted by the recommended alternative(s).
Subject Matter Experts:	Individuals recognized by the Team as experts in a particular
(SMEs)	field(s).

4.0 Responsibilities

The Team is responsible for review and approval of this desktop procedure. The Team approval of this desktop procedure shall be documented by the signature of the Team Leader in the approval block of the procedure. Revisions will be annotated by sequential revision numbers and approval.

The Team Leader is responsible for the implementation of this procedure.

The Team, SMEs and/or Stakeholders are responsible for identification of ideas as defined within this procedure.

5.0 Discussion

The Team was formed to identify, evaluate, and select an integrated system (including technology) to remove and transfer HLW from Tank 18 to another HLW tank. The activities prescribed in this procedure use a systematic approach to facilitate the completion of the Team activities.

6.0 Process

The overall process of identifying ideas for subsequent evaluation, is depicted in Figure 1.

Figure 1. Process for Identification of Ideas

6.1 Identification of Ideas

The methods to solicit and identify relevant ideas and concepts for subsequent evaluation are as follows:

- 6.1.1 Formal brainstorming sessions shall be conducted. The Team shall identify SMEs and Stakeholders to supplement the Team expertise. A briefing package shall be distributed in advance of brainstorming activities in order to provide invitees with ample time to think about solutions. Ideas presented during the brainstorming shall be documented on a Pro-Forma form.
- 6.1.2 Input from other knowledgeable people not attending formal brainstorming sessions will also be solicited. Target groups or organizations will be defined by the Team. These individuals shall be different than those participating in the formal brainstorming activity. These individuals shall be provided a briefing package. Ideas submitted by individuals shall be documented on a Pro-Forma form.

6.2 Documenting Results

Ideas and concepts identified through the methods described above shall be documented on a Pro-Forma form before it can be considered as a potential strategy or component thereof.

7.0 Records

Documented results produced as a result of implementing this desktop procedure will be included in the Team's Final Report.

8.0 References

1. DTP-001, HLW Tank 18 Waste Removal Technology Team Desktop Procedure for the Development and Control of Desktop Procedures.

	Attachment I HLW Tank 18 Waste Removal System Pro-Forma Form					
Idea #:	Sponsor:	Date:				
Originator:		Phone#				
		·				
Description:		,				
	······································					
Safety Issues:						
Safety Issues:						
Safety Issues: Advantages:						
Safety Issues: Advantages:						

Attachment 1 (cont'd)

Explanatory Notes for "Idea Pro-Forma"

Idea – To be inserted by the Team, or designee.

Sponsor - the originator, a suitable "champion" or a Team member.

Date - Date submitted.

Originator - name and phone number needed for follow-up purposes.

Title - should capture the key unit operations of the proposed idea.

Description - should be a single paragraph technical description of the steps involved in the proposed idea, clearly identifying where use is made of existing HLW processes/facilities or other process/facilities at the SRS.

Technical Maturity - a key criterion for screening ideas. Define the current development status of the process, (e.g., theoretical idea, chemistry proven in lab, fully commercialized for non-nuclear applications, full nuclear operation).

Safety Issues - a key criterion for screening ideas. What significant safety issues would have to be tackled on the proposed idea (e.g., hazardous chemicals, risk of explosion, high temp; pressure, etc.)?

Advantages and Disadvantages - apart from safety and technical maturity, what are the other principal advantages and disadvantages of the proposed idea, e.g., simplicity, cost, operability, use of existing facilities, etc., as compared to the baseline technology.

Process Diagram (Optional) - If you can, sketch the principal steps of the process, showing interaction with existing facilities, on the back of the sheet.

Completed Forms - Returned to Jim Menghi, either by E-mail or hard copy to 241-109F, or FAX 2-3780. Otherwise, return to another member of the Team: Gary Abell, Tommy Caldwell, Neil Davis, Nader Elraheb, Ed (Max) Howard, Bob Leishear, John McCullough, or Dave Stefanko.

WSRC-RP-2001-00024 Revision 0 Page 62 of 235

> DTP-003 Revision 1

SAVANNAH RIVER SITE

HIGH LEVEL WASTE TANK 18 WASTE REMOVAL TECHNOLOGY TEAM

DESKTOP PROCEDURE FOR

THE

APPLICATION OF SCREENING CRITERIA

APPROVED:_

DATE:

Neil Davis HLW Tank 18 Waste Removal Technology Team Leader

1.0 Purpose

This desktop procedure provides the necessary guidance and requirements for the HLW Tank 18 Waste Removal Technology Team (Team) to perform the screening of ideas resulting in an "Initial List" for subsequent evaluation.

2.0 Scope

This procedure shall be used by the Team, SMEs and/or Stakeholders to apply screening criteria to candidate ideas developed by or submitted to, the Team.

3.0 Definitions

Baseline Technology:	The technology referenced in the project baseline for Tank 18 Waste Removal which consists of three slurry pumps and one telescoping transfer pump.
Demonstrated (Proven)	The state of the foregroup and the second of the boop
Technology:	Technology which is commercially available and/or has been used in the nuclear industry.
Idea:	A concept, if implemented, which would satisfy some or all of the Tank 18 Waste Removal System functions and/or requirements.
Pro-Forma:	A Team form used to document a candidate idea for consideration.
Screening Criteria:	Functions and/or requirements that must be met (non-negotiable) for a candidate idea to be considered viable for subsequent evaluation.
Stakeholders:	Individuals or organizations potentially impacted by the recommended alternative(s).
Subject Matter Experts:	SMEs are individuals recognized by the Team as
(SMEs)	experts in a particular field(s).

4.0 **Responsibilities**

The Team is responsible for review and approval of this desktop procedure. The Team approval of this desktop procedure shall be documented by the signature of the Team Leader in

the approval block of the procedure. Revisions will be annotated by sequential revision numbers and approval.

The Team Leader is responsible for the implementation of this procedure.

The Team, SMEs and/or Stakeholders are responsible for performing the application of screening criteria as defined within this procedure.

5.0 Discussion

The Team was formed to identify, evaluate, and select an integrated system (including technology) to remove and transfer HLW from Tank 18 to another HLW tank. The activities prescribed in this procedure use the Systems Engineering Process described in the Systems Engineering Guidance Manual⁽¹⁾, and will facilitate the completion of the Team activities.

6.0 Process

The overall process of screening ideas to develop an initial list is depicted in Figure 1.

6.1 Screening Criteria

The specific screening criteria to be applied and their bases are listed below:

1. The idea performs part or all of the function(s).

Basis: If the idea does not contribute to the solution then it is of no value.

2. The idea supports the 6-30-03 completion of waste preparation and transfer of HLW from Tank 18 to another receipt tank.

Basis: Supports the FFA commitments reflected in the HLW System Plan Rev. 11.

3. The TEC \leq \$7.8M

Basis: Represents a 20% increase from current TEC of \$6.5M which allows latitude to consider more options. The \$6.5M is the TEC/MR/Contingency for Tank 18 waste removal (waste preparation and transfer) and excludes spray washing, tank isolation and closure, and OPC.

4. Implementation does not require qualification of a new DWPF glass waste form.

Basis: Requalification is *not* acceptable based on long lead time to complete and uncertainty of success.

5. The idea complies with regulatory requirements (OSHA, EPA/DHEC, SRS Safety and Radcon Programs).

Basis: Noncompliance is unacceptable.

6.2 Application of Screening Criteria

For consistency during the screening process, the criterion listed above shall be applied as shown in Figure 2. Each idea submitted to the Team shall be compared to the criteria as shown in Figure 2.

6.3 Participants

The Team expertise shall be supplemented by the use of SMEs and/or stakeholders, as appropriate to facilitate accurate screening of submitted ideas.

6.4 Documenting Results

6.4.1 Accepted Ideas

Those ideas which satisfy the screening criteria, or for which insufficient information exists to accurately assess the criteria, shall be documented in Table I. Common or similar ideas shall be noted in Table I comments.

6.4.2 Rejected Ideas

If the application of any criterion results in an "unacceptable" response, then that idea is rejected, and no further screening is required. Ideas screened out at this level shall have the screening criterion and causative failure documented (Table II) and dropped from further consideration.

.

6.4.3 Initial List Ideas

Table III will contain the unique ideas consolidated from Table I and will constitute the initial list of ideas. Ideas from Table I covered by an initial list idea shall be noted in the comments of Table III, where appropriate.

7.0 Records

Documented results produced as a result of this desktop procedure will be included in the Team's Final Report.

8.0 References

- 1. WSRC-IM-98-0033: Systems Engineering Methodology Guidance Manual Appendix A, Rev. 0.
- 2. DTP-001, HLW Tank 18 Waste Removal Technology Team Desktop Procedure for the Development and Control of Desktop Procedures.

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

WSRC-RP-2001-00024 Revision 0 Page 69 of 235

TABLE I: ACCEPTABLE TANK 18 WASTE REMOVAL IDEAS (Passed Screening Criteria)

COMMENT				
COMMENT				
COMMENT				
COMMENT			-	
COMMENT			-	
COMME			-	
CON				
ARY				
MMD				
IDEA SUMMARY				
E				
LII				
IDEA TITLE				
	-		 	
VO				
IDEA NO.				

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

•

TABLE II: UNACCEPTABLE TANK 18 WASTE REMOVAL IDEAS (Failed Screening Criteria)

COMMENTS					
SCREENING CRITERION FAILED					
IDEA NO. IDEA TITLE					

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

WSRC-RP-2001-00024 Revision 0 Page 71 of 235

TABLE III: INITIAL LIST IDEAS FOR TANK 18 WASTE REMOVAL (Redundant Ideas Accepted & Combined)

. <u> </u>		 	,	 r		
COMMENTS						
IDEA SUMMARY						
IDEA TITLE					-	
IDEA NO.						

WSRC-RP-2001-00024 Revision 0 Page 72 of 235

> DTP-004 Revision 0

SAVANNAH RIVER SITE

HIGH LEVEL WASTE TANK 18 WASTE REMOVAL TECHNOLOGY TEAM

DESKTOP PROCEDURE FOR

RISK ANALYSIS

APPROVED:__

_____ DATE:_____

Neil Davis HLW Tank 18 Waste Removal Technology Team Leader
1.0 Purpose

This desktop procedure provides the methodology for the HLW Tank 18 Waste Removal Technology Team (Team) to perform risk analyses on the screened ideas.

2.0 Scope

This procedure shall be used by the Team. The application of the risk analysis process to the ideas will involve the identification and evaluation of risks. The evaluation will include determining a risk level (i.e. high, moderate, low), Risk Handling Strategies (RHS), and residual risk levels. The risk analysis process concludes with preliminary cost and schedule estimates to implement the necessary and sufficient RHS.

3.0 Definitions

Baseline Technology:	The technology referenced in the project baseline for Tank 18 Waste Removal which consists of three slurry pumps and one telescoping transfer pump.
Consequence of	
Occurrence:	The impact(s) realized as a result of a risk occurring.
Demonstrated (Proven)	· ·
Technology:	Technology which is commercially available and/or has been used in the nuclear industry.
ldea:	A concept, if implemented, which would satisfy some or all of the Tank 18 Waste Removal System functions and/or requirements.
Probability of	
Occurrence:	The likelihood that a risk will be realized.
Residual Risk Level: `	The significance of the risk remaining after credit is taken for proposed risk handling strategies.
Risk:	An issue that may cause an uncertainty.
Risk Acceptance:	A handling strategy that accepts the risk "as is". This type of strategy does not attempt to reduce the risk level. Low and some moderate level risks are examples of the types of risks that are normally subject to being accepted.

.

Risk Handling Strategy:	An approach which, if implemented, would eliminate or at least reduce the consequence of a risk occurring. Handling strategies can be grouped into the following five categories:
	Risk Prevention
	Risk Mitigation
	Risk Reduction
	Risk Transference
	Risk Acceptance
Risk Level:	The significance of the identified risk based on probability and consequence considerations. The risk level prior to or subsequent to consideration of risk handling strategies are designated as RL and RL_h , respectively.
Risk Mitigation:	A handling strategy that mitigates the consequence of a risk. This type of strategy essentially drives the consequences of a risk to zero, eliminating the risk.
Risk Prevention:	A handling strategy that prevents the risk from occurring (avoidance). This type of strategy essentially drives the probability of the risk occurring to zero, eliminating the risk.
Risk Reduction:	A handling strategy that reduces risk, but does NOT eliminate it. This type of strategy reduces the probability and/or the consequences of a risk, but eliminates neither. The risk remains, but at a reduced level.
Risk Transference:	A handling strategy that transfers the risk to a new owner (e.g., different project). The new owner must accept the risk before it can be transferred.
Stakeholders:	Individuals or organizations potentially impacted by the recommended strategy(s).
Subject Matter Experts:	Individuals recognized by the Team as experts in a particular field(s).

4.0 Responsibilities

•

,

The Team is responsible for review and approval of this desktop procedure. The Team approval of this desktop procedure shall be documented by the signature of the Team Leader in the approval block of the procedure.

The Team Leader is responsible for the implementation of this procedure.

The Team, SMEs and/or Stakeholders are responsible for performing the analysis of risk as defined within this procedure.

5.0 Discussion

The Team was formed to identify, evaluate, and select an integrated system (including technology) to remove and transfer HLW from Tank 18 to another HLW Tank. The activities prescribed in this procedure use the Systems Engineering Process described in the Systems Engineering Guidance Manual ⁽¹⁾, and will facilitate the completion of the Team activities.

The ideas are evaluated for risks to assist in down-selecting to the final recommendation. Uncertainty and associated contingency analyses will be performed in more detail after the final recommendation. The risk analysis will primarily focus on the ability of the ideas to satisfy the project baselines and issues relative to the four functions (*bulk waste preparation, bulk waste transfer, heel preparation, and heel transfer*) that must be performed.

6.0 Process

The overall process of performing the risk analysis is depicted in Figure 1.

6.1 Risk Screening Criteria

To provide consistency in assessing risk, the risk screening criteria identified in Attachment 1 shall be applied to each idea or composite strategy.

6.3 Risk Identification

Identified risks shall be documented on Attachment 2 whenever a "yes" results from the previous step. Explanatory notes or bases should be provided for clarification.

6.4 Identify Probability of Occurrence

The qualitative probability (i.e., Very Likely, Likely, Unlikely, Very Unlikely), from Table I of the risk initially occurring, *without taking credit for risk handling*, shall be declared in Attachment 2.

6.5 Identify Consequences of Risk

The initial consequences which may result, *without taking credit for risk handling*, from the identified risk shall be stated in Attachment 2 and quantified as to "Crisis, Critical, Significant, Marginal, or Negligible" based on the definitions in Table II.

6.6 Horizontal Check for Consistency

The following steps shall be applied sequentially such that the consistency check is complete.

6.6.1 Double Counting

The Risk Screening Area Checklist (Attachment 1) was created to assure that no risks are overlooked. As a result, the same risk may be stated more than once for an idea. The following guideline shall be followed to eliminate double-counting of the same or very similar risks:

Guideline: If a Risk Assessment Identification Form simply identifies an additional manifestation of a risk previously identified for the alternative, the risk identified should be consolidated with the other manifestations. The consolidation should preserve pertinent probability and consequence information from each draft Identification Form. The risk screening area in which the risk is preserved should be consistent with the area in which this type of risk is documented for other alternatives.

6.6.2 Risk Statement Consistency Guideline

Over the period in which the risk assessment will be performed, the potential exists for variations in the wording of the risk statements. Differences in wording may imply differences in the risk, so it is important to assure that risks are stated consistently across the alternatives assessed.

Guideline: A risk which applies to more than one alternative should be worded in the same manner for each occurrence unless there is a distinguishing aspect of its application to an alternative that is to be noted in the risk statement.

(

6.5.3 Inclusiveness Guideline

As the risks are identified over a period of time for the various alternatives, new risks applicable to alternatives previously assessed may be discovered. An attempt should be made to assure that these new risks are identified for each alternative to which the risk is applicable.

Guideline: After risks are identified for each alternative, the alternatives will be assessed for applicability of all risks. If a risk is found to be applicable to an alternative for which an identification form does not exist, an identification form will be generated for that alternative.

6.5.4 Completeness Guideline

The horizontal review will be performed following the completion of the primary portion of the risk assessment. Any subsequent additional knowledge obtained will offer the potential for a changed view of risk probability and consequence. Any such changed views will be examined in the horizontal review.

Guideline: Additional information or reappraisals of the probability and/or consequence of identified risks should be included in the values assigned to the risk. Any risks not identified in the risk assessment, but coming to light prior to or during the horizontal review should be documented on the Risk Screening Area checklist and with an identification form for the applicable alternative.

6.5.5 Uniformity Guideline

Due to the time period over which the risk assessment will be performed, the Team recognizes the potential that the assigned risk probability and consequence levels (i.e., High, Medium, Low) from alternatives assessed early in the process to those assessed toward the end of the process will vary. In order to form a sound basis for the risk handling and adjustment process; the Risk Levels (RL) must be similarly assigned from alternative to alternative for similar probability and consequence. [Note that identical risk statements may appropriately have different probability and consequence levels for different alternatives if the probability and/or consequence of the risk are different for each alternative.]

Guideline: Probabilities and consequences must be assigned on the same scale for the different alternatives. Assigned probability or consequences which are not comparable to the values used for similar risk probabilities and consequences will be adjusted according to the values provided in Tables I and II

6.7 Determination of Risk Level

The Risk Level (RL or RL_h), (i.e., High, Moderate or Low) will be determined by applying the assigned probability and consequence factors to Table III. The risk level shall be recorded on Attachment 2.

To define the levels of risk in Table III, the Team considered the guidelines provided in references 1, 2, 3 and applied them as deemed appropriate to this stage of risk analysis.

6.8 Identify Risk Handling Strategies

For risks with a Risk Level of "High", Risk Handling Strategies (RHS), shall be developed and recorded on Attachment 2. This approach ensures that handling of risks, with at least a "significant" consequence and "likely" probability of occurrence, is addressed. Risk Handling Strategies shall consider; prevention, mitigation, reduction, transference, or acceptance of the stated risks as methods of lowering the risk level.

6.9 Determine Schedule for Risk Handling Strategies

The estimated duration for completion of the proposed RHS shall be recorded on Attachment 2. The Team, SMEs, and/or stakeholders will use "best judgement" to develop the estimated durations. If the RHS does not result in lowering the RL_h to at least a "moderate" level, then an "N/A" will be recorded for duration.

6.10 Determine Cost of Risk Handling Strategies

The estimated cost associated with the RHS shall be recorded on Attachment 2. The Team, SMEs, and/or stakeholders will use "best judgement" to develop the estimated costs. The costs will be rough order of magnitude in nature. If the RHS does not result in lowering the RL_h to at least a "moderate" level, then an "N/A" will be recorded for cost.

6.11 Determine Impact of Risk Handling Strategy

Risk Handling Strategies are intended to either eliminate or, at a minimum, reduce the risk level. Therefore, the Team will reevaluate the original probability and consequence levels assigned by considering (i.e., take credit for) the proposed risk handling strategies defined for a particular risk. An update (adjustment) to the consequence and/or probability and the resulting risk level will be made and stated in Section F of Attachment 2. The rationale for lowering the consequence or probability levels will be provided in the "Basis".

The re-evaluated or "new" probabilities, consequences and resulting residual risk levels (from Tables I, II, and III, respectively) will be annotated as P_h , C_h , and RL_h . The subscript "h" indicates that the impact of the RHL has been "handled". If no adjustments are made, then the P_h , C_h , and RL_h values will be the same as the original values.

6.12 Disposition of Ideas/Strategies Based on Risk

The Team shall review the residual risk RL_h levels for the risks identified. Each idea/strategy containing "High" RL_h levels will be dropped from further consideration. A high RL_h indicates that feasible risk handling strategies could not be formulated to reduce the risk level to a moderate or low level.

The ideas or strategies with "Low" or "Moderate" RL_h levels will be considered for further evaluation.

WSRC-RP-2001-00024 Revision 0 Page 81 of 235

Figure 1. Determination of Risk and Risk Handling Strategies (cont.)

7.0 Records

Documented results produced as a result of implementing this desktop procedure will be included in the Team's Final report.

8.0 References

- 1. WSRC-IM-98-0033, "Systems Engineering Methodology Guidance Manual, Appendix B".
- 2. WSRC E7 Manual, "Conduct of Engineering and Technical Support".
- 3. WSRC E11 Manual, "Conduct of Project Management and Control".
- 4. DTP-001, Tank 18 Waste Removal Technology Team Desktop Procedure for the Development and Control of Desktop Procedures".

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Ы	02	#	
10	Ed	#*	

Function _

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose No risk to the project are identified as such. A Low risk is marked accordingly and should be justified under separate documentation. A Yes response indicates the potential for risk. If any of the questions are answered as Yes, a Risk Analysis is required.

Risk Screening Criteria		Potential for Risk?			
	No	Low	Yes		
A. TECHNOLOGY					
1. New technology?					
2. Unknown or unclear technology?					
3. New application of existing technology?					
4. Modernized/advanced technology in existing application?	1				
B. INTERFACES					
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?					
2. Multiple technical agencies an issue?					
3. Interfaces with operating SSCs during construction/installation present issues?					
4. Interfaces with operating SSCs including testing present issues?					
5. Involves co-occupancy issues?					
6. H&V/Negative pressure loss issues?					
7. Multiple Project/Facility interfaces cause issues?					
C. SAFETY					
1. Criticality potential?					
2. Significant exposure/contamination potential?					
3. Any significant impact or challenge to the Facility's Authorization Basis?					
4. Hazardous material issues?					
5. Process hazard potential?					
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	_				
D. REGULATORY/ENVIRONMENTAL					
1. Environmental assessment/impact statement issues?					
2. Additional releases?					
3. Undefined disposal methods?					
4. Requires substantial equipment D&R?					
5. Emergency transfers needed?					
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?					
E. DESIGN					
1. Undefined, incomplete or unclear functional requirements?					
2. Undefined, incomplete or unclear design criteria?					
3. Complex design features (e.g., controls, seismic, compatibility)?					
4. Difficult to perform functional test?					
5. Issues with the content, number or clarity of assumptions?					
6. Precludes portability of infrastructure?					
7. RAMI issues?					

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

ldea # _____

Function _____

Risk Screening Criteria	Potential for Risk?			
	No	Low	Yes	
F. RESOURCES/CONDITIONS	•	•		
1 Are adequate and timely resources, material, or equipment a concern?			[]	
2. Specialty resource requirements create concerns?				
3. Are existing utility locations a concern (above/below ground)?				
4. Are geological conditions a concern?			[
5. Is weather a concern?				
6. Are critical lifts a concern?				
7. Is there insufficient experience with the O&M of the proposed system?			ł	
G. SCHEDULE				
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?				
2. Fast track critical needs issues?				
H. PROCUREMENT				
1. Long lead items that may affect critical path?				
2. Potential unavailable qualified vendors or contractors?				
3. Is the procurement strategy inadequate?				
4. Is it a first-use subcontractor/vendor that presents issues?				
5. Do vendor support issues exist?				
I. OTHER				
1. Contract issues?				
2. Direct hire/subcontract issues?				
3. Systems startup concerns?				

Page 2 of 2

HLW TANK 18 WASTE	ATTACHMENT 2 REMOVAL AND TRANSFER RISK IDENTIFICATION FORM
	Risk Assessment Identification Form LW Tank 18 Waste Removal and Transfer
Risk Number:	Date: Idea/Strategy Number:
Idea/Strategy Title:	
A. Statement of Risk (What are w	e concerned about?)
Basis for the risk	
	obability that the "unhandled" risk will come true?)
	Very Likely OLikely OUnlikely Very Unlikely
Basis for Probability of Occ	urrence:
	Crisis Critical Significant Marginal Negligible or (State consequences):
	·/·
Estimated Cost:	Estimated Schedule:
F. Impact of Strategy on Risk L	
New Probability (P_h) :	Basis:
Very Likely Likely	Unlikely Very Unlikely
New Consequence (C _h): :	Basis
Crisis OCritical OSignifica	nt 🔿 Marginal 🔿 Negligible ————————————————————————————————————
Residual Risk Level (RL _h):	High Moderate Low Eliminated

Probability	of Occurrence						
Qualitative	Quantitative	Criteria					
Very Unlikely	≤ 0.1	Will not likely occur anytime in the life cycle of SRS facilities; or the estimated recurrence interval exceeds 10,000 years*; or the probability of occurrence is less than or equal to 10%.					
Unlikely	* > 0.1 but ≤ 0.4	Will not likely occur in the life cycle of the project or its facilities; or estimated recurrence interval exceeds 1000 years*; or the probability of occurrence is greater than 10% but less than or equal to 40%.					
Likely	> 0.4 but < 0.8	Will likely occur sometime during the life cycle of the project or its facilities; or estimated recurrence interval is between 10 - 1000 years*; or the probability of occurrence is greater than 40% but less than 80%.					
Very Likely	≥ 0.8	Will likely occur sometime during the life cycle of the project; or estimated recurrence interval is less than 10 years*; or the probability of occurrence is greater than or equal to 80%.					

.

.

Table I – Risk Probability Thresholds

*Time intervals to be customized per needs specific to the modification being assessed.

.

.

.

.

Consequence of Occurrence		Critorio
Qualitative	Quantitative	Criteria
Negligible	≤ 0.1	 Minimal or no consequences; unimportant. Some potential transfer of money, but budget estimates not exceeded. Negligible impact on program; slight potential for schedule change; compensated by available schedule float.
Marginal	0.2 to 0.4	 Small reduction in modification/project technical performance. Moderate threat to facility mission, environment, or people; may require minor facility redesign or repair, minor environmental remediation, or first aid/minor medical intervention. Cost estimates marginally exceed budget.* Minor slip in schedule with some potential adjustment to milestones required.*
Significant	0.5 to 0.7	 Significant degradation in modification/project technical performance. Significant threat to facility mission, environment, or people; requires some facility redesign or repair, significant environmental remediation, or causes injury requiring medical treatment. Cost estimates significantly exceed budget.* Significant slip in schedule with resulting milestones changes that may affect facility mission.*
Critical	0.8 to 0.9	 Technical goals of modification/project cannot be achieved. Serious threat to facility mission, environment, or people; possibly completing only portions of the mission or requiring major facility redesign or rebuilding, extensive environmental remediation, or intensive medical care for life-threatening injury. Cost estimates seriously exceed budget.* Excessive schedule slip unacceptably affecting overall mission of facility/site/DOE objectives, etc*
Crisis	> 0.9	 Modification/project cannot be completed. Cost estimates unacceptably exceed budget.* Catastrophic threat to facility mission, environment, or people; possibly causing loss of mission, long term environmental abandonment, and death.*

Table II - Risk Consequence Thresholds

*Actual dollar values and schedule delays to be determined, per the needs/limitations of the modification being assessed.

_

Table III – Risk Level (RL) Determination Matrix

sk	Very Likely	Low	Moderate	<u>lanun</u>	lingh	ittal
Probability of Risk Materializing	Likely	Low	Moderate	innih (india	ំណែ
obabili Mater	Unlikely	Low	Low	Moderate	Moderate	មើប្រែប្រ
Pr	Very Unlikely	Low	Low	Low	Low	អាញ្ញា
		Negligible	Marginal	Significant	Critical	Crisis
			Seve	rity of Conseq	uence	

WSRC-RP-2001-00024 Revision 0 Page 89 of 235

> DTP-005 Revision 0

SAVANNAH RIVER SITE

HIGH LEVEL WASTE TANK 18 WASTE REMOVAL TECHNOLOGY TEAM

DESKTOP PROCEDURE

FOR THE

APPLICATION OF WEIGHTED EVALUATION CRITERIA

APPROVED:_

DATE:

Neal Davis Tank 18 Waste Removal Technology Team Leader

1.0 Purpose

This desktop procedure provides the methodology for the HLW Tank 18 Waste Removal Technology Team (Team) to apply weighted evaluation criteria to the waste removal (preparation/transfer) ideas which passed the screening procedure ⁽¹⁾.

2.0 Scope

This procedure shall be used by the Team to rank the ideas based on a numerical score for use as input to subsequent Team decisions.

3.0 Definitions

ldea:	A concept, if implemented, which would satisfy some or all of the Tank 18 Waste Removal System functions and/or requirements.
Ranking:	The ordering of ideas (alternatives) based on the numerical scores (high to low) resulting from the application of weighted evaluation criteria.
Sensitivity Analysis:	Determining if there are large changes in rankings based on small changes (<u>+</u> 10%) in the evaluation criteria weights or UFV.
Stakeholders:	Individuals or organizations potentially impacted by the recommended alternative(s).
Subject Matter Experts	
(SMEs):	Individuals recognized by the Team as experts in a particular field(s).
Utility Function (UF):	A statement describing a specific characteristic of an attribute.
Utility Function Value (UFV):	The numerical value assigned to a specific UF. The most desirable UF is assigned a value of 100 and the least desirable is assigned a value of zero.
Weighted Evaluation	
Criteria:	Key attributes (and their relative importance to each other) considered in the evaluation of ideas. Attributes have the following characteristics:

- 1. Independence from each other.
- 2. Address all necessary and sufficient functions and requirements.
- 3. Universally understood by evaluators.
- 4. Differentiate meaningfully among alternatives without bias.
- 5. Be quantifiable (e.g., analysis, subject matter expertise, Team judgement, etc.)

4.0 Responsibilities

The Team is responsible for review and approval of this desktop procedure. The Team approval of this desktop procedure shall be documented by the signature of the Team Leader in the approval block of the procedure.

The Team Leader is responsible for implementing this procedure.

The Team and identified Stakeholders and/or SMEs are responsible for performing the application of weighted evaluation criteria as defined in this procedure.

5,0 Discussion

The Team was formed to identify, evaluate, and select an integrated system (including technology) to remove and transfer HLW from Tank 18 to another HLW tank. The activities prescribed in this procedure use a systematic approach to facilitate the completion of the Team activities.

Application of the weighted evaluation criteria defined in this procedure will result in a ranking based on numerical scoring. This ranking will be used as input by the Team in subsequent alternative selection.

To provide consistency in understanding and application of the weighted evaluation criteria, Utility Functions (UF) are assigned to each evaluation criterion. This provides a basis for discussion and comparison of each idea versus the evaluation criteria.

A sensitivity analysis will be used to highlight changes in rankings based on small (e.g., $\leq \pm$ 10%) changes in weighted values of evaluation criteria or utility function values assigned.

6.0 Process

The overall process of ranking the Tank 18 waste removal (preparation and transfer) alternatives based on weighted evaluation criteria is depicted in Figure 1.

6.1 Define Evaluation Criteria

The evaluation criteria, associated definitions and basis selected by the Team will be documented.

The Team may elect to subdivide the evaluation criteria (which will be referred to as Level 1 criteria) into subcriteria (which will be referred to as Level 2 criteria) if further resolution is desired. If level 2 criteria are used, then at least two are required for the Level 1 criterion they represent.

Each Level 1 criterion will be identified by title (category), an identification number (1.0, 2.0, 3.0, etc.), a definition to facilitate the universal understanding of the criterion by the Team, and a stated basis for its selection. Each Level 2 criteria shall have the same type of information documented as that for Level 1 criteria. {Note: A Level 2 criterion identification number shall be traceable to its respective Level 1 criterion (1.1, 1.2, 1.3, etc).} See Attachment 1 for a typical method of documenting the required information.

6.2 Weighting of Evaluation Criteria

Once the evaluation criteria are defined, the Team will "weight" the criteria with respect to their relative importance to each other. The criterion judged to be most important will have the highest weight factor. The bases for the relative importance, i.e., weight, of the criteria shall be provided.

Level 1 and Level 2 criteria weight factors will be expressed as a decimal within a range of greater than zero to less than unity (>0.0 to <1.0). The *sum* of all weights for the Level 1 criteria shall equal 1.0. Level 2 criteria will also be comparison weighted, but only against the other Level 2 criteria within the same Level 1 criterion. Likewise, the *sum* of Level 2 criteria weights, within their assigned Level 1 criterion, shall equal 1.0.

6.3 Define Utility Functions and Values

Utility functions provide a means of quantifying aspects of the evaluation criteria for a more objective evaluation of the ideas or strategies to ensure a more consistent application.

Utility functions will only be developed and assigned at the lowest criterion level, i.e. if Level 2 criteria exist then utility functions are only defined for the Level 2 criterion and no utility functions

are defined for the parent Level 1 criterion. Figure 2 provides examples of assigned utility functions when only Level 1 criteria exist or when Level 2 criteria also exist.

Typically, three to five utility functions will be defined and assigned to an evaluation criterion. Utility functions define levels or scenarios of acceptability from "most desirable" to "least desirable" for the evaluation criterion to which they are assigned. The most desirable utility function will be assigned a value of 100 and the least desirable will be assigned a value of zero. The value of intermediate level utility functions are assigned numerical values greater than zero and less than 100 depending on the desirability of that specific utility function. Interpolation between stated utility function values (UFV) is permissible if it represents a more accurate evaluation.

Attachments 2 through 4 provide a typical method for recording utility functions and the associated values selected by the Team. Commercially available software programs, e.g. Logical Decisions[®] provide useable formats as well.

6.4 Evaluation of Alternatives

Each of the alternatives will be evaluated against each evaluation criterion (Level 1 or Level 2) and the respective utility functions. The utility function value which "best describes" the idea under consideration will be identified and recorded along with an explanatory note(s) to clarify the Team's decision. Inputs from risk assessments, SMEs, stakeholders, studies, etc., are useful at this step.

Attachments 2 through 4 also provide a typical method for recording the information generated in this step.

6.5 Consistency Check

After completion of the previous steps, a "vertical slice" assessment is conducted to compare the UFV assigned to each of the alternatives. Adjustments or changes shall be completed to ensure consistency in the assignment of UFVs between alternatives.

6.6 Weighted Scoring of Ideas

Weighted scoring of ideas is obtained by multiplying the evaluation criterion weights by the defined utility function values selected, and adding up the products to yield a total weighted score for each alternative. Higher scores represent better compliance with the evaluation criteria than lower scores. The formulae for computing weighted scores are listed on Attachments 2, 3 and 4.

A typical method for recording the idea being evaluated, the Level 1 or 2 evaluation criteria, weights, utility functions, values, and scores is shown in Attachments 2 through 4.

6.7 Sensitivity Analysis

A sensitivity analysis seeks to determine if small changes $(\pm 10\%)$ in criteria weighting have a significant affect on the numerical scores calculated for each idea. Potential uncertainty and bias in assigning criteria weights can result based on the engineering judgements used to determine them.

If significant changes in idea ranking occur as a result of small changes in criteria weighting, then the criteria need to be re-evaluated/weighted to produce insensitive results.

Figure 1: Definition and Use of Weighted Evaluation Criteria

						Disposal Cost WL = <u>9.75</u>	Utility Function	< \$1 M	\$1 M to < \$1.5 M	\$1.5 M to < \$1.8 M	\$1.8 M to \$2 M	> \$2 M
Cost w1. = <u>0.25</u>							UFV	100	70	0		
Ĩ					`	Development Cost Wt. = <u>0.25</u>	Utility Function	≤ \$50 K	\$51 K to \$75 K	> \$75 K		-
	UFV	100	01	20	0	Deve	L_	1	<u> </u>	<u> </u>	J	
Volume wt. = <u>0.50</u>	Utility Function	< 50 F1	50 to 100 Ft ¹	101 to 150 Ft ^A	>150 Pt ⁴					Legend: Wr = Weiofit Assigned to Criteria	tespective Utility Function	
LI			. <u> </u>		-					đ	ned to the R	
	UFV	<u>6</u>	5.	•				-		ned to Crite	Value Assig	
Color wt.=0.25	Utility Function	Red	Green	Black						Legend: Wr = Welebt Assier	urv = Numerical	
Level I Criteria		Utility Functions	& Values			Level 2 Criteria			Utility Functions & Values			

Figure 2. Example of Level 1 & 2 Weighted Evaluation Criteria and Associated Utility Functions and Values

WSRC-RP-2001-00024 Revision 0 Page 96 of 235

7.0 Records

Documented results produced as a result of implementing this desktop procedure will be included in the Team's Final Report.

8.0 References

_

- 1. DTP-003, "Desktop Procedure for the Application Of Screening Criteria"
- 2. DTP-001, "Desktop Procedure For the Development, Approval And Control Of Desktop Procedures"

.

-

-

ATTACHMENT 1

HLW Tank 18 Waste Removal Technology Team Evaluation Criteria Definitions, Weights & Bases Identification Form

Level 1	Criterion Title:							
	Criterion Number: X.0							
	Criterion Definition:							
	Weight Assigned: 0							
	Basis:							
Level 2	Subcriterion Title:							
1.2.00	Subcriterion Number: X.1							
	Subcriterion Definition:							
	Weight Assigned: 0							
	Basis:							
Level 2	Subcriterion Title:							
•	Subcriterion Number: X.1							
	Subcriterion Definition:							
	Weight Assigned: 0.							
	Basis:							

For additional Level 2 criterion, follow the same format as above.

.

•

,

Attachment 2 HLW Tank 18 Waste Removal Technology Team Level 1 Evaluation Criteria Assessment Form

Strategy/Idea Number:		Strategy/Idea Title			
Date	e:				
Α.	Evaluation Criterion Title: Evaluation Criterion Descripti				
B.	Evaluation Criterion ID #: (Note 1)				
C.	Evaluation Criterion Weighted Value: $W_1 = 0.00$				
D.	Utility Functions: Utility Function (UF) Valu (Note 2)	ue $(V_1) = \Sigma$ Level 2 Criterion Weighted Score (WS)			
E.	UF Value Formula: V_1 (Note 3)	=			
F.	Evaluation Criterion wei Alternative: Explanatory Notes for Weigh	-			

Notes:

-

- 1. For Level 1 Evaluation Criterion, the ID# is described by X.0, where X = 1, 2, 3,etc. For Level 2 Evaluation Criterion, the ID# is described by X.1, X.2, X.3, etc. where 'X' is the Level 1 Evaluation Criterion ID#.
- 2. Utility Function values range from 0 (least desirable) to 100 (most desirable).
- 3. If Level 2 Criterion are used, the sum of the Level 2 "Weighted Scores" must be multiplied by the Level 1 Weight to determine the Level 1 Weighted Score.

.

Attachment 3 HLW Tank 18 Waste Removal Technology Team Level 1 Evaluation Criteria Assessment Form

Strategy/Idea Number: Strategy/Item Title						
Date:						
Α.	Evaluation Criterion Title:					
B.	Evaluation Criterion ID #: (Note 1)				· ·	
C.	Evaluation Criterion Weighted Value:	W ₁ =_	0.00)		
E.	Utility Functions:					UF Value (Note 2)
	Utility Function (UF) Description:					
UF	1					<u>0.0</u>
UF	2					<u>0.0</u>
UF	3					<u>0.0</u>
UF	4					<u>0.0</u>
UF	5					<u>0.0</u>
E.	UF Value:			V ₁ =	0	
	Explanatory Notes for UF Selected:				<u></u>	
F.	Evaluation Criterion weighted score	e (WS) for th	ne	$W_1 \times V_1 = WS$	5 ∴ <u>0.00</u> × <u>0</u>	_ =00.0
	Alternative:					

Notes:

ł

· · · ·

- 1. For Level 1 Evaluation Criterion, the ID# is described by X.0, where X = 1, 2, 3,etc. For Level 2 Evaluation Criterion, the ID# is described by X.1, X.2, X.3, etc. where 'X' is the Level 1 Evaluation Criterion ID#.
- 2. Utility Function values range from 0 (least desirable) to 100 (most desirable).
- 3. If Level 2 Criterion are used, the sum of the Level 2 "Weighted Scores" must be multiplied by the Level 1 Weight to determine the Level 1 Weighted Score

Attachment 4 HLW Tank 18 Waste Removal Technology Team Level 2 Evaluation Criteria Assessment Form

Stra	ategy/Idea Number: Strategy/Idea Title				
Dat	e:				
A.	. Evaluation Criterion Title:				
	Evaluation Criterion Description:				
В.	Evaluation Criterion ID #: (Note 1)				
C.	Evaluation Criterion Weighted Value: $W_2 = 0.00$				
F.	Utility Functions:	UF Value (Note 2)			
	Utility Function (UF) Description:	(Note 2)			
UF.	1	<u>0.0</u>			
UF.2	2	<u>0.0</u>			
UF.	3	<u>0.0</u>			
UF.4	4	<u>0.0</u>			
UF.	5	<u>0.0</u>			
E.	UF Value: $V_2 = 0$				
	Explanatory Notes for UF Selected:				

F. Evaluation Criterion weighted score (WS) for the $W_2 \times V_2 = WS \therefore 0.00 \times 0 = 0.00$ Alternative:

Notes:

- 1. For Level 1 Evaluation Criterion, the ID# is described by X.0, where X = 1, 2, 3, etc. For Level 2 Evaluation Criterion, the ID# is described by X.1, X.2, X.3, etc. where 'X' is the Level 1 Evaluation Criterion ID#.
- 2. Utility Function values range from 0 (least desirable) to 100 (most desirable).
- 3. If Level 2 Criterion are used, the sum of the Level 2 "Weighted Scores" must be multiplied by the Level 1 Weight to determine the Level 1 Weighted Score.

WSRC-RP-2001-00024 . Revision 0 Page 102 of 235

> DTP-006 Revision 0

SAVANNAH RIVER SITE

HIGH LEVEL WASTE

TANK 18 WASTE REMOVAL TECHNOLOGY TEAM

DESKTOP PROCEDURE

FOR THE

TANK 18 WASTE REMOVAL STRATEGY SELECTION PROCESS

APPROVED:__

_____ DATE:___

Neil Davis Tank 18 Waste Removal Technology Team Leader

1.0 Purpose

This desktop procedure provides the methodology for the HLW Tank 18 Waste Removal Technology Team (Team) to select a recommended Waste Removal (preparation/transfer) Strategy from the list of submitted ideas.

2.0 Scope

This procedure shall be used by the Team to select the recommended strategy based on stakeholder and SME input, advantages, disadvantages, risks, weighted evaluation criteria, and modeling (as needed). Team judgement and expertise will be used to make the final selection.

3.0 Definitions

Idea:	A concept which , if implemented, would satisfy some or all of the Tank 18 Waste Removal System functions and/or requirements.
Ranking:	The ordering of ideas and/or strategies based on the numerical scores (high to low) resulting from the application of weighted evaluation criteria
Risk:	An issue that may cause an uncertainty.
Risk Level:	The significance of the identified risk based on probability and consequence considerations.
Short List:	The list of the final (~5) Strategies to be evaluated by the Team from which the recommended Strategy will be selected.
Stakeholders:	Individuals or organizations potentially impacted by the recommended strategy(s).
Strategy:	An idea or combination of ideas that will satisfy the functions and requirements of the Tank 18 Waste Removal Program.
Subject Matter Expert (SMEs):	Individuals recognized by the Team as experts in a particular field(s).
Weighted Evaluation Criteria:	Key attributes (and their relative importance to each other) considered in the evaluation of ideas. Attributes have the following characteristics:

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

- 1. Independence from each other.
- 2. Address all necessary and sufficient functions and requirements.
- 3. Universally understood by evaluators.
- 4. Differentiate meaningfully among alternatives without bias.
- 5. Be quantifiable (e.g., analysis, subject matter expertise, Team judgement)

Waste Removal: The preparation and transfer of high level waste (e.g., sludge, salt, supernate, zeolite) from a waste tank to another waste tank. Waste removal may consist of "bulk waste removal" and "heel removal".

4.0 Responsibilities

The Team is responsible for review and approval of this desktop procedure. The Team approval of this desktop procedure shall be documented by the signature of the Team Leader in the approval block of the procedure.

The Team Leader is responsible for the implementing this procedure.

The Team is responsible for performing the selection of a recommended HLW Tank 18 Waste Removal Strategy.

5.0 Discussion

The Team was formed to identify, evaluate, and select an integrated system (including technology) to remove and transfer HLW from Tank 18 to another HLW tank. The activities prescribed in this procedure use a systematic approach to facilitate the completion of the Team activities.

Ideas were solicited for each of the four major functions to be performed, i.e., *bulk waste preparation, bulk waste transfer, heel preparation, and heel transfer.* Approximately 150 ideas were submitted to, or identified by, the Team for possible use in waste/heel preparation and/or transfer. These ideas were screened and further developed for clarity and understanding by the Team.

Application of the selection process defined in this procedure will result in the recommendation of an overall strategy for Tank 18 waste removal which is manageable, technically achievable, and implementable.

6.0 Process

The overall process of selecting the Tank 18 waste removal strategy is depicted in Figure 1. Due to the large number (~150) ideas submitted, the Team has defined a "down selection"

6.1 Preliminary Screening Criteria

Each individual idea or strategy will be evaluated against the "five point" screening criteria⁽¹⁾. Those which pass are carried forward for further consideration. Those that fail are identified in the Final Report.

6.2 Idea Ranking

The individual ideas will be scored against Weighted Evaluation Criteria⁽³⁾ and ranked numerically. This will provide the Team some insight as to the overall value of each idea when compared to the evaluation criteria.

6.3 Strategy Development

The higher scoring ideas in each of the four functional areas (*bulk waste preparation, bulk waste transfer, heel preparation, heel transfer*) shall be reviewed and combined, as appropriate, by the Team (and SMEs as needed) into unique strategies to satisfy the waste removal from Tank 18. Lower scoring ideas may also be incorporated into the strategies if, in the Team's judgement, there is value added in doing so, e.g., synergy effects.

6.4 Risk Analysis

The Team shall determine if any strategies have high risks for which no reasonable risk handling strategy can be identified. Strategies falling into this category shall be eliminated from further consideration and identified in the Final Report. The remaining strategies are carried forward for further consideration.

6.5 Strategy Ranking

The result of combining ideas into a strategy may affect how well the composite strategy meets the weighted criteria. As such, the strategies will be scored against the Weighted Evaluation Criteria ⁽³⁾ and ranked numerically. This will provide the Team some insight as to the overall value of each strategy when compared to the evaluation criteria. The Team will select a *Short List* of the most viable strategies for further consideration in the downselect process.

6.6 Strategy Selection

The Team will review the information developed on the *Short List* with Subject Matter Experts and Stakeholders, as necessary, and begin a detailed comparison and selection of the preferred strategy. Enhancements of strategies will also be considered at this time. The relative importance of factors considered, by the Team, to make its selection, shall be consistent with predecessor activities. Additional factors (e.g., schedule, costs, total risk level, ease of implementation, portability, integration) should be considered if not done so previously. The Team's proposed recommended Strategy will be compared to the

numerical rank within the *Short List*. If the proposed recommended Strategy is inconsistent with the ranking then a justification or reconciliation is required.

STRATEGY DOWN SELECTION PROCESS

7.0 References

- 1. DTP-003, "Desktop Procedure for the Application of Screening Criteria"
- 2. DTP-004, "Desktop Procedure for the Risk Analysis"
- 3. DTP-005, "Desktop Procedure for the Application of Weighted Evaluation Criteria"
- 4. DTP-001, "Desktop Procedure for the Development, Approval and Control of Desktop Procedures"
ATTACHMENT 3

IDENTIFICATION OF IDEAS BRIEFING PACKAGE

WSRC-RP-2001-00024 Revision 0 Page 110 of 235

SAVANNAH RIVER SITE

HIGH LEVEL WASTE

TANK 18 WASTE REMOVAL TECHNOLOGY

Identification of Ideas Briefing Package

Approved:

Neil Davis: HLW Tank 18 Waste Removal Technology Team Leader

Introduction

The Waste Removal Project, S-W183, is required to provide equipment and facilities necessary for the removal of radioactive salt and sludge waste from existing storage tanks in the F-Area and H-Area Tank Farms. The Tank 18 Waste Removal Technology Team has been formed with the charter to identify and select a preferred alternative for removing approximately 75,000 gallons of sludge from the tank. The term "removal" as defined by the Team includes both preparation and transfer of waste.

The Team has put this briefing package together to facilitate the solicitation of ideas and/or concepts which will be reviewed for viability and future consideration.

The contents of this package include:

- 1. A Problem Definition Statement
- 2. The Mission Need Statement
- 3. The top level functions and associated requirements which must be satisfied by any proposed idea
- 4. A simplified Tank 18 system boundary model
- 5. References used by the Team
- 6. Definitions
- An idea description form (Pro-Forma) and instructions for completing

These items are intended to provide only general guidance to prospective participants who wish to submit ideas on the Pro-Forma description form. Anyone needing more detailed information should contact a member of the Tank 18 Waste Removal Technology Team.

Problem Statement

It is not known if the Tank 18 baseline waste removal method and system will perform as required.

Basis:

- Three standard 150 hp slurry pumps mounted in the three available risers were used to remove sludge from Tank 18 in the mid-1980's. The pumps were irregularly spaced in the east, west and northwest risers. An estimated 42,000 gallons of sludge remained after a prolonged sludge removal campaign. The pumps were unable to develop the required effective cleaning radius (ECR) in this orientation. The suspended sludge settled in the quiescent zones in the tank. The Tank 19 heel removal demonstration will add an estimated 33,000 gallons of sludge to Tank 18 in FY01.
- The baseline calls for refurbishing three standard slurry pumps and installing them in the same risers. This baseline was chosen as a financial "placeholder" in full recognition that it is not a viable means to remove the remaining sludge.
- Cognizant engineers associated with the waste removal project assumed that a standard slurry pump with a single discharge could be used to increase the ECR. This pump was tested at TNX and demonstrated to have a 40' ECR. The required ECR is 57' to reach the most remote part of the tank.
- Alternate sludge mobilization technologies (Flygt mixers) were demonstrated in Tanks 17 and 20 with marginal success on small volumes of sludge. Improved versions of these mixers will be deployed in Tank 19 during 9/00; however, much more development is required to remove the estimated 75,000 gallons that will be in Tank 18.

IMPACTS:

Tank 18 must be closed by March 2004. Failure to do so will result in a violation of the Federal Facilities Agreement. SCDHEC could levy fines and penalties.

Mission Need

Move HLW from Tank 18 to another HLW Tank.

HLW TANK 18 WASTE REMOVAL TECHNOLOGY

MISSION FUNCTION LEVEL 1

F-1: Move HLW from Tank 18 to another HLW Tank

MISSION REQUIREMENTS LEVEL 1

- R-1-1: Shall meet the requirements of Site Standards.
- R-1-2: Shall meet the requirements of the General Tank Closure Plan such as Performance Assessments, Residual Amounts, etc.
- R-1-3: Shall meet the requirements of the FPR Rev. 0.
- R-1-4: Shall meet the requirements of the FDC Rev. 2.
- R-1-5: Shall meet the requirements of the Waste Water Operating Permit.
- R-1-6: Shall meet the requirements of the Waste Acceptance Criteria (Downstream).
- R-1-7: Shall meet the requirements of the Authorization Bases such as Tank Top Loading, Structural Integrity Data Base, Corrosion Control, etc.

Key Performance Requirements Transfer /Transport Routes Complete by 6/30/03⁽²⁾ Key Interface Requirements Heel (≤ 1,000 Gal.) ⁽³⁾ Receipt Tank WAC Tank Accessibility Page 114 of 235 WSRC-RP-2001-00024 Revision 0 Infrastructure F-1.4 Heel to another HLW Tank Transfer HLW TANK 18 TECHNOLOGY WASTE REMOVAL - Key Interface Requirements Tank Accessibility -Structural Integrity Data Base General Tank Closure Plan, e.g. Waste Water Operating Permit Infrastructure -Performance Assessments Authorization Bases, e.g. -Tank Top Loading WAC (Downstream) -Residual Amounts Heel from Site Standards Tank 18 Prepare Key Requirements FPR Rev. 0 FDC Rev. 2 d' Move HLW from Tank 18 to another HLW Tank SYSTEM Bulk Waste Residual • 10,000 Gal.⁽¹⁾ - Key Performance Requirements Key Interface Requirements Tank Accessibility HLW Tank 18 Waste Removal Systems Engineering Evaluation to another HLW Tank Non-Heel Bulk Waste F-I. Transfer Waste Water Operating Permit
 HLW System Plan Rev. I1
 Same as Tank 19 Performance Assessment - Key Interface Requirements Tank Accessibility Infrastructure ÷ **Bulk Waste** in Tank 18 Prepare Final Report

REFERENCES

Α.	Project Technical Baseline Documents

B-1 G-FPR-G-00019, Rev. 0

G-FDC-G-00029, Rev. 2, and amendments

G-TRT-G-00006, "Interim Functional Classification of SSCs for Liquid Radioactive Facilities".

B. Project Cost Baseline

- B-1. F&H Area Tank Farm Reconfiguration, Project # S-183, Tank # 18 Reconfigured, 4/14/2000.
- C. Project Schedule Baseline C-1. HLW-2000-00019, Rev. 11, SRS HLW System Plan

D. Authorization Basis

- D-1. WSRC-SA-33, "LRWHF Safety Analysis Report"
- D-2. WSRC-TS-96-14, "Technical Safety Requirements for F-Area Tank Farm".
- D-3. WSRC-TR-99-00205, "CST/WPT Facilities Justification for Continued Operation".
- D-4. G-TRT-G-00003, "TSR Administrative Control Compliance Requirements".

E. Regulatory Requirements

- E-1. Industrial Wastewater Closure Plan for F- and H-Area High-Level Waste Tank Systems, July 10, 1996
- E-2. Federal Facility Agreement for the Savannah River Site, August 16, 1993

F. Lessons Learned

- F-1. Savannah River Site High Level Waste Tank Closure Lessons Learned, April 29-30, 1998, Atlanta, Georgia
- F-2. Waste Removal Lessons Learned, N. Davis, February 3, 2000
- F-3. Tank 8 Lessons Learned, draft
- F-4 Hanford Tank 101-AZ Mixer Pump Lessons Learned, draft
- F-5 Tank 19 Lessons Learned, draft

Definitions

Validation – provides the opportunity for stakeholder input and feedback at key points during the execution of the Systems Engineering Evaluation process.

Waste Removal – the preparation and removal of high level waste (e.g., sludge, salt, supernate, zeolite) from a waste tank to another location. Waste removal may consist of "bulk waste removal" and "heel removal".

Bulk Waste Removal – is defined as removing the first 99% of the original volume of waste which typically means leaving no more than 10,000 gallons of waste in the tank at the completion of bulk waste removal. This operation is typically done with slurry pumps.

Heel Removal – the purpose of heel removal is to remove as much of the remaining waste as required to enable the tank to pass a Performance Assessment indicating that the tank is ready to close. Preliminary calculations indicate that Tank 18 must have no more that 1,000 gallons of sludge remaining at the time of closure. Heel removal on Tanks 16, 17, and 20 employed several different techniques in addition to slurry pumps.

Decision-Makers – the HLW Program Board consisting of the Level 1 and 2 Managers in the HLW Division and matrixed support managers.

Baseline Technology – the waste removal technology for Tank 18 identified in project documentation (e.g., Functional Performance Requirements, Functional Design Criteria) which includes 3 standard slurry pumps and 1 telescoping transfer pump.

Stakeholders – Individuals or organizations potentially impacted by the recommended alternative(s).

Subject Matter Experts – SMEs are individuals recognized by the Team as experts in a particular field(s).

Idea – A concept, which if implemented would satisfy some or all of the Tank 18 Waste Removal system functions and/or requirements.

.

.

	Pro-Fori	ma Form	
Idea #:	Sponsor:		Date:
			····
Description			
			· · · · · · · · · · · · · · · · ·
			-
	· · · · · · · · · · · · · · · · · · ·		<u> </u>
Technical Maturity: _		<u> </u>	
Safety Issues:			·
· · · · · · · · · · · · · · · · · · ·			
Advantages:			
<u> </u>	·····		
<u> </u>			
Disadvantages:			
	······································		

•

Attachment 1 (cont'd)

Explanatory Notes for "Idea Pro-Forma"

Idea - To be inserted by the Team, or designee.

4

Sponsor - the originator, a suitable "champion" or a Team member.

Date - Date submitted.

Originator - name and phone number needed for follow-up purposes.

Title - should capture the key unit operations of the proposed idea.

Description - should be a single paragraph technical description of the steps involved in the proposed idea, clearly identifying where use is made of existing HLW processes/facilities or other process/facilities at the SRS.

Technical Maturity - a key criterion for screening ideas. Define the current development status of the process, (e.g., theoretical idea, chemistry proven in lab, fully commercialized for non-nuclear applications, full nuclear operation).

Safety Issues - a key criterion for screening ideas. What significant safety issues would have to be tackled on the proposed idea (e.g., hazardous chemicals, risk of explosion, high temp, pressure, etc.)?

Advantages and Disadvantages - apart from safety and technical maturity, what are the other principal advantages and disadvantages of the proposed idea, e.g., simplicity, cost, operability, use of existing facilities, etc., as compared to the baseline technology.

Process Diagram (Optional) - If you can, sketch the principal steps of the process, showing interaction with existing facilities, on the back of the sheet.

Completed Forms - Returned to Jim Menghi, either by E-mail or hard copy to 241-109F, or FAX 2-3780. Otherwise, return to another member of the Team: Gary Abell, Tommy Caldwell, Neil Davis, Nader Elraheb, Ed (Max) Howard, Bob Leishear, John McCullough, or Dave Stefanko. .

ATTACHMENT 4

RESULTS OF THE IDEA SCREENING

. .

WSRC-RP-2001-00024 Revision 0 Page121 of 235

Function Idea Description Function Idea Description C F-1.1 Surry pumps with guad volutes Mixing F-1.1 Single discharge slury pumps with submersible mixer (possibly Mixing Mixing F-1.1 Mare and volute slury pumps Mixing F-1.1 Mare monitor slure submersible pump Mixing F-1.1 Mare monitor slure submersible pump Mixing F-1.1 Water monitor slure submersible pump Mixing F-1.1 Water monitor slure size Mixing F-1.1 Water monitor slure size Mixing F-1.1 Paddle aglitation method F F-1.1 Paddle aglitation freet F Acaned Design Mixer Pump (ADMP) in center riser with Mixing F-1.1 Paddle aglitation freet F F-1.1 Bore hole miner F F-1.1 Bore hole miner F					ystems Eng Ev	aluation			
Instruction Category Prominal Screening Prominal Field Prominal Screening Prominal Field Prominal Screening Prominal Field Promoninal Field Prominal Field Pr				(Table I:	itable Ideas)	•			Commente
A1 F-1.1 Stury purge with quad volutes: Mining Purip-Stury Yes Ye		ldea No	Function	Idea Description	Category	Protorma Submitted	Screening Complete	Screen	CONTRACTOR
A2 F-1.1 Strenge discharge sum yr pumpe sum submarsble miker (possbi) Miking Pumpe Sum yr Yes	-	A1	F 1 1	Slurry pumps with guad volutes	Mixing Pump-Slurry	Yes	Yes	>	
A3 F-1.1 Mining burnerstation Mining burnerstation Yes Y A4 F-1.1 Avantanced Design (Miser Purp (ADMP) Mining burnerstation Yes Y A6 F-1.1 Avantanced Design (Miser Purp (ADMP) Mining burnerstation Yes Y A1 F-1.1 Avantanced Design (Miser Purp (ADMP) Robucts Yes Yes Y A1 F-1.1 Washing machine gatherial around Robucts Yes Yes Y A16 F-1.1 Washing machine gatherial around Agilator Yes Yes Y A16 F-1.1 Paratio activitie gatherial around Agilator Yes Yes Yes A16 F-1.1 Deradue control room and MCC Agilator Yes	~	A2	E-1.1	Single discharge slurry pumps with submersible mixer (possibly with creater robulice)	Mixing Pump-Slurry	Yes	Yes	٨	
A3 F1:1.1 mm:more neurosciences Yess Yes	ſ	C V		Witt clawfort.course) Mini crised vehicts chirny numbs	Mixing Pump-Slurry	Yes	Yes	٢	
A6 F11.1 Water antific structures Struct Yes	2	S.		Advanced Design Miyer Plymp (ADMP)	Mixing Pump-ADMP	Yes	Yes	٢	Passes w/below grade line
AB F1:1. Transmission Yes Y A10 F1:1. Transmission Slucter Yes Y A11 F1:1. Water camon Slucter Yes Y A13 F1:1. Water camon Slucter Yes Yes Y A13 F1:1. Water camon Slucter Yes Yes Yes Y A13 F1:1. Paddle apliatorin center riser Agitator Yes Yes Yes Y A14 F1:1. Stateper deployeed through outside of tank file a souegee) Agitator Yes	4 L	A4		Nuter monitor eluicers	Sluicer	Yes	Yes	۲	
Alio F.1.1 Water amon Sulicer Yes Yes Yes Yes Yes Y A12 F.1.1 Water amon Aliator Filt Submersible pump rigged to be movable (articulated)/(AZ-101) Mixing Pump-Other Yes Yes Y A13 F.1.1 Pacelle agliator in center riser Agliator Yes Yes Yes Yes Yes Yes Y A16 F.1.1 Steager deployed through outside of tank (like a squeegee) Agliator Yes Yes Yes Y A18 F.1.1 Derdgel sentor form and MCC Mixing Pump-ADMP Yes Yes Y A228 F.1.1 Derdgel sentor form and MCC Mixing Pump-ADMP Yes Yes Y A233 F.1.1 Benditor tank and move sludge with canvertiser with Mixing Pump-ADMP Yes Yes Y A33 F.1.1 Benditor tank and move sludge with canvertiser Mixing Pump-ADMP Yes Yes Yes A33 F.1.1 Benditor tank and move sludge with c	n u			Crawler with now to push material around	Robotics	Yes	Yes	>	
ATX F-11 Summersible primp rigged to be movable (articulated)/(AZ · 101) Mixing Pump-Other Yes Y				Water cannon	Sluicer	Yes	Yes	7	
All F.11 Washing method Agitator Yes Yes Y A15 F-11 Paddle agitator in center riser Agitator Yes Yes Yes Y A15 F-11 Paddle agitator in center riser Agitator Yes Yes Yes Yes Yes Y A18 F-11 Scraper degitator in center riser Agitator Yes Yes Yes Yes Yes Y A19 F-11 Deredge lite nith occam Maccellaneous Yes Yes Yes Y A28 F-11 Deredge lite nith Boon oleaner Robotics Yes Yes Yes Y A28 F-11 Bore hole miner Agitator Yes	~ o			tump rigged to be	Mixing Pump-Other	Yes	Yes	>	
Alis F-1.1 Paddle agliator in center riser Agliator Yes	°			Weshing machine anitation method	Agitator	Yes	Yes	7	
Aib F1:1. Fauture square deployed through curside of tank (like a squeegee) Agitator Yes	יי ר			Poddle evitator in center riser	Agitator	Yes	Yes	۲	
Alio F-1.1 Screader deployed intrough outside of tark (like a squeegee) Robotics Yes	2[:			Doddto oditator in contor ricor	Agitator	Yes	Yes	٢	
A10 F-1.1. Advanced Design Mixer Pump (ADMP) in center riser with the control room and MCC Mixing Pump-ADMP Yes Yes Y A22 F-1.1. Advanced Design Mixer Pump (ADMP) in center riser with portable control room and MCC Miscellaneous Yes Yes Ye A23 F-1.1. Deredge like in the octan Rob Olics Yes Yes Yes Y A33 F-1.1. Bertilion tank and move sludge with crawler/plow Rob Olics Yes Yes Yes Yes Yes Yes Yes Y A33 F-1.1. Bertilion tank and move sludge with crawler/plow Rob Olics Yes Yes Yes Yes Yes Yes Yes Yes Yes Y A33 F-1.1. Nodular let mixing pump Mixing Pump-Other Yes Yes Yes Yes Yes Yes Yes Yes Y A35 F-1.1. Ultreasonci Mixing Pump-Other Yes Yes </td <td>= \$</td> <td></td> <td></td> <td>Screner denioned through outside of tank (like a squeegee)</td> <td>Robotics</td> <td>Yes</td> <td>Yes</td> <td>></td> <td></td>	= \$			Screner denioned through outside of tank (like a squeegee)	Robotics	Yes	Yes	>	
A22 F-1.1 Dentation contron and move studge with crawler/plow Miscellaneous Ves Ves Ves Ves V A26 F-1.1 Dentation tank and move studge with crawler/plow Robotics Yes Yes<	13		F-1-1	Advanced Design Mixer Pump (ADMP) in center riser with	Mixing Pump-ADMP	Yes	Yes	≻	
AZZ F-1.1 Unedge inter with lagoon cleaner Robotics Yes Ye	Ĩ		,		Miscellaneous	Yes	Yes	≻	
A26 F-1.1 Parmater mut nayour creating A28 Fer.1 Parmater mut nayour creating Yes Yes Yes Y A33 F-1.1 Borne hole miner Sluicer Yes Yes Yes Y A33 F-1.1 Borne hole miner Autication Sluicer Yes Yes Yes Yes Yes Yes Yes Y A34 F-1.1 Borne hole mixer Mixing pump Agitator Yes Yes Yes Y Y A35 F-1.1 Putse tube mixer Mixing pump Agitator Yes Yes Yes Y A37 F-1.1 Untrasonic Mixing Pump-Other Yes Yes Yes Y A37 F-1.1 Untrasonic Mixing Pump-Other Yes	₹ľ				Robotics	Yes	Yes	7	
Az8 F-1.1 Frauton tank and the first period Yes Y A33 F-1.1 Air sparging Air sparging Air sparging Air sparging Yes Yes Yes Yes Yes Yes Y A35 F-1.1 Modular Jett mixing pump Mixing Pump-Other Yes Yes Yes Yes Yes Yes Yes Yes Y A35 F-1.1 Ultrasonic Air F-1.1 Vissolited Advanced Design Mixer Pumps (ADMP's) Mixing Pump-ADMP Yes Yes Y A33 F-1.1 Ontined sluicing Mixing Pump-ADMP Yes Yes Y A43 F-1.1 Ontined sluicing Mixing Pump-ADMP Yes Yes Y A43 F-1.1 Ontined sluicing Mixing Pump-ADMP Yes Yes Y A44 F-1.1 Ondified Sluicy pump Mixing Pump-ADMP Yes Yes Yes	2 2				Robotics	Yes	Yes	۲	
A32 F-1.1 Done menunet A33 F-1.1 Air sparging Yes Yes Yes Y A34 F-1.1 Nodular jet mixing pump Mixing Pump-Other Yes Y	₽Ĩ				Sluicer	Yes	Yes	۲	
A33 F-1.1 An spearging A34 F-1.1 Bewer sucker A35 F-1.1 Pulse tube mixer A35 F-1.1 Pulse tube mixer A36 F-1.1 Pulse tube mixer A37 F-1.1 Pulse tube mixer A37 F-1.1 Ultrasonic A37 F-1.1 Ultrasonic A39 F-1.1 Ultrasonic A39 F-1.1 Ultrasonic A31 F-1.1 Immonol stuicing A41 F-1.1 Ano modified Advanced Design Mixer Pump (ADPM) in center riser A42 F-1.1 Ano modified Advanced Design Mixer Pump (ADPM) in center riser A43 F-1.1 Ano modified Advanced Design Mixer Pump (ADPM) in center riser A43 F-1.1 Ano modified Advanced Design Mixer Pump (ADPM) in center riser A43 F-1.1 Ano modified Advanced Design Mixer Pump (ADPM) in center riser A43 F-1.1 Ano modified Advanced Design Mixer Pump (ADPM) in center riser A43 F-1.1 Houdinn with CSE A45 F-1.1 Houdinn with CSE A46 F-1.1 101-SY modified slury pump A47 F-1.1 Submersible pump rigged to be movable (articutated)/(A2-101) A47 F-1.1					Agitator	Yes	Yes	٢	
A35F-1.1Modular jet mixing pump.YesYesYesA36F-1.1Pulse tube mixerAgitatorYesYesYesA37F-1.1UltrasonicYesYesYesYesA39F-1.1UltrasonicYesYesYesYesA31F-1.1UltrasonicYesYesYesYesA33F-1.1Confined sluicingSluicerYesYesYesA41F-1.1Two modified Advanced Design Mixer Pump (ADPM) in center riserMixing Pump-ADMPYesYesA43F-1.1Anodified Advanced Design Mixer Pump (ADPM) in center riserMixing Pump-ADMPYesYesA43F-1.1Anodified Slurry pumpRoboticsYesYesYesA45F-1.1Houdini with CSERoboticsYesYesYesA45F-1.1Houdini with CSERoboticsYesYesYesA45F-1.1Submersible pump rigged to be movable (articutated)/(AZ-101)Mixing Pump-SlurryYesYesA46F-1.1Submersible pump rigged to be movable (articutated)/(AZ-101)Mixing Pump-ChierYesYesA47F-1.1Submersible pump rigged to be movable (articutated)/(AZ-101)YesYesYesA46F-1.1Storawler with water monitorRoboticsYesYesYesA47F-1.1Storawler with water monitorRoboticsYesYesYesA46F-1.1Storawler with wa	19			An sparging Sewer sucker	Robotics	Yes	Yes	٨	Passes if collection tank is internal to Tk 18
A35 F-1.1 Mocuar Jet many painty A36 F-1.1 Pulse tube mixer Yes Yes A37 F-1.1 Ultrasonic Yes Yes Yes A39 F-1.1 Ultrasonic Yes Yes Yes A31 F-1.1 Untrasonic Yes Yes Yes A41 F-1.1 Two modified Advanced Design Mixer Pump (ADPM) in center riser Mixing Pump-ADMP Yes Yes A42 F-1.1 Ano modified Advanced Design Mixer Pump (ADPM) in center riser Mixing Pump-ADMP Yes Yes A43 F-1.1 Ano modified Slurry pump Robotics Yes Yes Yes A43 F-1.1 Houdini with CSEE Robotics Yes Yes Yes A44 F-1.1 Houdini with CSEE Robotics Yes Yes Yes A45 F-1.1 Houdini with CSE Auo Robotics Yes Yes A45 F-1.1 Houdini with CSE Robotics Yes Yes Yes A45 F-1.1 Submersible pump rigged to be movable	1		, , ,	111adi dae iat misina numn	Mixing Pump-Other	Yes	Yes	7	
A30F.1.1NurserviceYesYesYesA37F.1.1UrrasonicNixing EurrorYesYesYesA39F.1.1Confined Advanced Design Mixer Pumps (ADMP's)Mixing Pump-ADMPYesYesYesA41F.1.1Two modified Advanced Design Mixer Pumps (ADM) in center riserMixing Pump-ADMPYesYesYesA42F.1.1One Advanced Design Mixer Pump (ADPM) in center riserMixing Pump-ADMPYesYesYesA43F.1.1ARD service contractRoboticsYesYesYesYesYesA44F.1.1Houdini with CSEEAddF.1.1And Science contractRoboticsYesYesYesYesA45F.1.1Houdini with CSEAddF.1.1NoditicsYesYesYesYesYesYesA45F.1.1Submersible pump rigged to be movable (articutated)/(AZ-101)Mixing Pump-CitherYes	8	1		Mouular jet minar je pomp	Agitator	Yes	Yes	7	
A39F-1.1Confined sluicingSluicerYesYesYesA31F-1.1Two modified Advanced Design Mixer Pumps (ADPM) in center riserMixing Pump-ADMPYesYesYesA42F-1.1One Advanced Design Mixer Pump (ADPM) in center riserMixing Pump-ADMPYesYesYesA43F-1.1Adsencie contractRoboticsYesYesYesYesA44F-1.1Houdini with CSEERoboticsYesYesYesYesA45F-1.1Houdini with CSEERoboticsYesYesYesYesA45F-1.1BUMRoboticsYesYesYesYesYesA45F-1.1Submersible pump rigged to be movable (articutated)/(AZ-101)Mixing Pump-SlurryYesYesYesA44F-1.1Strawler with water monitorRoboticsYesYesYesYesA45F-1.1Strawler with suction pumpRoboticsYesYesYesYesA45F-1.1Strawler with suction pumpRoboticsYesYesYes<	26			1 litrasonic	Miscellaneous	Yes	Yes	>	
AddF-1.1Two modified Advanced Design Mixer Pumps (ADPM) in center riserMixing Pump-ADMPYesYesYesAd3F-1.1One Advanced Design Mixer Pump (ADPM) in center riserMixing Pump-ADMPYesYesYesAd4F-1.1ARD service contractRoboticsYesYesYesYesAd4F-1.1Houdini with CSEERoboticsYesYesYesYesAd4F-1.1Houdini with CSEERoboticsYesYesYesYesAd5F-1.1101-SY modified slurry pumpMixing Pump-SlurryYesYesYesAd4F-1.1Submersible pump rigged to be movable (articutated)/(AZ-101)Mixing Pump-SlurryYesYesAd4F-1.1Stamler with water monitorMixing Pump-SlurryYesYesYesAd5F-1.1FerultFerultFerultYesYesYesAd5F-1.1Stamler with suction pumpRoboticsYesYesYesAd5F-1.1Stamler with suction pumpAditatorYesYesYesAd5F-1.1Stamler with suction pumpAditatorYesYesYesAd5F-1.1Fugt mixersYesYesYesYesYesAd5F-1.1StatorYesYesYesYesYesAd5F-1.1StatorYesYesYesYesYesAd5F-1.1StatorYesYesYesYes <td>3</td> <td></td> <td></td> <td>Confined slutcing</td> <td>Sluicer</td> <td></td> <td>Yes</td> <td>~</td> <td></td>	3			Confined slutcing	Sluicer		Yes	~	
A42 F-1.1 One Advanced Design Mixer Pump (ADPM) in center riser Mixing Pump-ADMP Yes Yes Yes A43 F-1.1 ARD service contract Robotics Yes Yes <td>3</td> <td></td> <td></td> <td>Two modified Advanced Design Mixer Pumps (ADMP's)</td> <td>Mixing Pump-ADMP</td> <td></td> <td>Yes</td> <td></td> <td></td>	3			Two modified Advanced Design Mixer Pumps (ADMP's)	Mixing Pump-ADMP		Yes		
A43 F-1.1 ARD service contract Yes Yes A44 F-1.1 Houdini with CSEE Robotics Yes Yes A45 F-1.1 Houdini with CSEE Robotics Yes Yes A45 F-1.1 HO1-SY modified slurry pump Mixing Pump-Slurry Yes Yes A46 F-1.1 Submersible pump rigged to be movable (articulated)/(AZ-101) Mixing Pump-Other Yes Yes A47 F-1.1 Submersible pump rigged to be movable (articulated)/(AZ-101) Mixing Pump-Other Yes Yes A46 F-1.1 Submersible pump rigged to be movable (articulated)/(AZ-101) Mixing Pump-Other Yes Yes A47 F-1.1 SRS crawler with water monitor Robotics Yes Yes A50 F-1.1 Flygt mixers Yes Yes Yes A51 F-1.1 Flygt mixers Yes Yes Yes A51 F-1.1 Yest mixers Yes Yes Yes	12		F-1.1	One Advanced Design Mixer Pump (ADPM) in center riser	Mixing Pump-ADMP		Yes	>>	
A44F-1.1Houdini with CSEEYesYesYesYesYesA45F-1.1EMMARoboticsYesYesYesYesYesA46F-1.1101-SY modified slurry pumpMixing Pump-SlurryYesYesYesYesA47F-1.1Stamersible pump rigged to be movable (articulated)/(AZ-101)Mixing Pump-OtherYesYesYesA49F-1.1SFS crawler with water monitorRoboticsYesYesYesYesA50F-1.1Flygt mixersAgitatorYesYesYesYesYesA51F-1.1Flygt mixersAgitatorYesYesYesYesYesA51F-1.1Vertical Elvort mixersYesYesYesYesYesYesA51F-1.1Yethical Elvort mixersYesYesYesYesYesYes	۶ ۱۳				Robotics	Yes	Yes	,	
A45F-1.1EMMARoboticsYesYesYesYesYesA46F-1.1101-SY modified slurry pumpMixing Pump-SlurryYesYesYesYesA47F-1.1Submersible pump rigged to be movable (articulated)/(AZ-101)Mixing Pump-OtherYesYesYesA49F-1.1SFS crawler with water monitorRoboticsYesYesYesYesA50F-1.1Flyat mixersAgitatorYesYesYesYesA51F-1.1Flyat mixersAgitatorYesYesYesYesA51F-1.1Vertical Elvort mixersAgitatorYesYesYesYes	3			Houdini with CSEE	Robotics	Yes	Yes	≻ :	
Add F-1.1 101-SY modified slurry pump Yes Yes Yes A47 F-1.1 Submersible pump rigged to be movable (articulated)/(AZ-101) Mixing Pump-Other Yes Yes A47 F-1.1 SHS crawler with water monitor Robotics Yes Yes A50 F-1.1 SHS crawler with suction pump Another Yes Yes A50 F-1.1 Flygt mixers Agitator Yes Yes A50 F-1.1 Flygt mixers Yes Yes Yes	ŝ			EMMA	Robotics	Yes	Yes	>	
Att F-1.1 Submersible pump rigged to be movable (articulated)/(AZ-101) Mixing Pump-Other Yes Yes A49 F-1.1 SHS crawler with water monitor Robotics Yes Yes A50 F-1.1 SHS crawler with suction pump Robotics Yes Yes A50 F-1.1 Flygt mixers Agitator Yes Yes A51 F-1.1 Flygt mixers Agitator Yes Yes			F-1	dund /	Mixing Pump-Slurry	Yes	Yes	>	
A49 F-1.1 SHS crawler with water monitor Yes Yes A50 F-1.1 SHS crawler with suction pump Agitator Yes Yes A51 F-1.1 Flygt mixers Agitator Yes Yes A51 F-1.1 Vertical Flyort mixers Yes Yes Yes	۶Į۶		E-1 1	Submersible pump rigged to be movable (articulated)/(AZ-101)	Mixing Pump-Other	Yes	Yes	>	
A50 F-1.1 SHS crawler with suction pump Robotics Yes Yes A51 F-1.1 Flygt mixers Agitator Yes Yes A51 F-1.1 Vertical Flyot mixers Agitator Yes Yes	키군				Robotics	Yes	Yes	~	
A51 F-1.1 Flygt mixers (150HP) Agitator Yes Yes Yes A52 F-1.1 Vertical Elvot mixers (150HP) A52 F-1 Vertical Elvot mixers (150HP)	5 6			SRS crawler with suction pump	Robotics	Yes	Yes	>	
Accidential Elvort mixers (150HP) Agitator Yes Yes	3 I E		F-1-1	Flyct mixers	Agitator	Yes	Yes	> :	
	315		- - -	Vertical Flyot mixers (150HP)	Agitator	Yes	Yes	>	

Page 1 of 5

WSRC-RP-2001-00024 Revision 0 Page 122 of 235

•

																		Project Baseline																					
		> 	7	~	>	>			≻ ×	≻ > -∔	- >	►	>	>	> 	>	7	>	7	>	>	>	>	>	7	γ	۲	>	> -	>	>	>	>	>	>	>	≻ : -	× 	
	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
luation	Yes	Yes	Yes	Yes	Yes	Yes	Xes Yes	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
oval Systems Eng Eva	Mixing Pump-Slury	Anitator	Mixing Pump-Slurry	Mixing Pump-Shurry	Anitator	Bohotice	Miving Primp-ADMP		Mixing Pump-Other	Mixing Pump-Slurry	Mixing Pump-Other	Robotics	Sluicer	Sluicer	Miscellaneous	Mixing Pump-Slurry	Mixing Pump-ADMP	Mixing Pump-Slurry	Robotics	LTP	Transfer Route	Subm Pump	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Subm Pump	Subm Pump	TTP	Subm Pump	Miscellaneous	Transfer Route	Subm Pump	Transfer Route	Subm Pump	Transfer Route	Subm Pump	<u>тр</u>	
Tank 18 Waste Removal Systems Eng Evaluation		A53 F-1.1	A54' F-1.1	37 A55 F-1.1 Single discharge sturry pumps with submersible mixer (possibly 38 A56 F-1.1 Single discharge sturry pumps with submersible mixer (possibly		A57 F-1.1	F-1.1	A61	A63 E-11		ARE F-1 1 Hydraulic pump	F-1.1	•		A68 F-1.1	A69 F-1.1	╉	A/2 F-1.1	A/3 F-1-1	52 A/4 F-1.1 Altri with success		4 7 4 					B7 F-1.2	88			B11 F-1.2 All UIVell automotion Point		E 1 0 Make of built num mobile		B15 F1.2	B10	D1/ F-1.5	Replace TTP with standard TTP	

Page 2 of 5

WSRC-RP-2001-00024 Revision 0 Page 123 of 235

																	Project baselitie		-																		
	>	>	>	>	>	~	>	≻	~	>	>	>	>	7	۲		- : 	>	~	>	>	>	>	>	>	> [;]	> :	≻ ; 	>>	- :	> :	≻ :	≻	>	- >	- >	-
•	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Voe		Les V	2 P
aluation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	2022	5	Yes	Sel
oval Systems Eng Eva Acceptable Ideas)	TTP (TTP	Subm Pump	Subm Pump	Subm Pump	Subm Pump	ТТР	ЧЦ	Transfer Route	Transfer Boute		Mixing Pump-Slurry	Robotics	Transfer Route	Robotics	Robotics	Robotics	Robotics	Agitator	Agitator	Tank in Tank	Tank in Tank	Tank in Tank	Sluicer	Robotics	Mixing Pump-ADMP		Mixing Pump-ADMP	Colored Colored	HODOLICS	Chemical	Mixing Pump-Slurry					
Tank 18 Waste Removal Systems Eng Evaluation (Table I: Acceptable Ideas)	E30 E.1.0 Eived landth TP vs. telescoping	F E-1 2 Hazlaton TTP	R24 F-12	R25 F-12	R26 F-12	T	B28 F.1 2	Roo E-1 2 Macerator numb	R20 F-12	E31 E-19	R30 F-1 2	R33 F-12	F-1.2 Modified deep well eductor pur		B35 F-1.2		R38 F-12	R30 F-1.2	F-1:2	24 E 4 2				C7 E-1.3 Flvat mixers		F-1.3	C11 F-1.3	C12 F-1.3	C13 F-1.3	C14 F-1.3	C15 F-13	C16 F-1.3 Slurry pump with TTP	C17 F-1.3		104 C20 F-1.3 Arm with suction	C21 F-1.3 Acid dissolution	106 C22 F-1.3 Convert existing sturry pumps (@central shops) to single Mit discharge

•

Page 3 of 5

WSRC-RP-2001-00024 Revision 0 Page 124 of 235

									Passes if sludge is removed from Tank 18																										
	>	⊢	۲	۰- ۲	Y	۲	>	>	>	7	>	≻	>	>	>	>:	>	> ;	>;	>	>	>	>	>	> >		>>	•	>	>	>	• >	\ \	×	
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	. Yes	Yes	Yes	Yes	Voe	Yes	Yes	1
luation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Vac	20- Vor	Yec Yec	Yes	}
oval Systems Eng Eva Accentable Ideas)	Tank in Tank	Robotics	Robotics	Robotics	Chemical	Chemical	Robotics	Miscellaneous	Tank in Tank	. Robotics	Mixing Pump-ADMP	Mixing Pump-ADMP	Misc-Tk Partition	Miscellaneous	Mixing Pump-Slurry	Robotics	Sluicer	Subm Pump-Pnuem	Robotics	Subm Pump-Pnuem	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Dahation	C.L. Durucs	Misc. Tk Partition		→ E
Tank 18 Waste Removal Systems Eng Evaluation	with multiple parts to mix		F-1.3 IMODILE SUCIOU DEVICE	F-1.3 Attrit udseu suurin uevive	T	Τ	E 1.3 USB UILUE TILLIO		F-1.3 Tank in tank then treat in inner tank (identify options in		F-1.3 One Advanced Design Mixer Pump (ADMP) in center riser with		E 1.2 Marke felse floor ho injection prout to elevate/move studge	T	E-1-2 Additional standard sturry pump risers	Crawler with plow to push mater	F-1 3 Water monitor sluicers	T	Γ	Г	Tanker transfer	T	Tank 18 - FOB1 - FDB2 - final o	F-1 4 New line from Tank 18 to CTS, pumpline to Tank 26	Tie into 1F feedline (from Tank	Tie into 1F vent line to FDB6 to	Tank 18 to catch tank transfer I		E-1 A New above crede line to destination	Tank 18 - FDB1 - FDB2 - FDB	downcomer to Tank 33)	Fill tank to max level and dred	F-1.4 Centrifugal pump with mobile suction	-	F-1.4 Returbish/replace 11P
	C24		9516		990	38	300	C44	C47	010	C49	010		202		520	C56	32	38	82	5	312	010	010	013	D14	D15	D16	52	010		D20	D22	027	D28
	107		8					114	115		117		0	200		- 20	<u>i</u>	124	125	1.05	22	j ç	129	Ę	ŝĒ	130	133	134	ų č	200		137	138	139	140

Page 4 of 5

•

.

(Table I: Acceptable Ideas) Modify TP with motor at bottom (subm pump) TTP Yes Raise tank level to max and dredge/recirc to destination tank Miscellaneous Yes Make pit bull pump mobile Subm Pump-Misc Yes Diode pump Subm Pump-Phuem Yes Hazleton TTP Subm Pump-Misc Yes Hazleton TTP Subm Pump-Misc Yes Macerator pump Subm Pump-Misc Yes Modified deep well eductor pump Subm Pump-Misc Yes Modified deep well eductor pump TTP Yes Modified deep well eductor pump TTP Yes Modified deep well eductor pump using existing DWPF style TTP	vith motor at l evel to max a ll pump mobil o n TP vs. teles o n floor y driven vane ump ump (like polyextri s cavity pump eep well educt eep well educt		F-1.4 Modify TP with motor at L F-1.4 Raise tank level to max a F-1.4 Make pit bull pump mobil F-1.4 Diode pump F-1.4 Fixed length TP vs. telest F-1.4 Hazleton TTP F-1.4 Hydraulically driven vane F-1.4 Air piston pump on floor F-1.4 Air piston pump F-1.4 Porgressive cavity pump F-1.4 Progressive cavity pump
---	---	--	--

٠

										Seal Chinese	200	Commonte
dea No	Function	Idea Description	Category	Proforma Submitted	Screening Complete	Passed Screen	Solves Problem	Supports Schedule		Below New Glass	Compl	Comments
2	F-1.1	Polaris	Mixing Pump- Other	Yes	Yes	z	×			[.		
74	- 	Scoop with remote bobcat	Robotics	Yes	Yes	z	×					
88	F-1-1	Crawler with plow to push material around	Robotics	Yes	Yes	z	×		F			
6A	F-1.1	Chemical/microbial dissolution	Chemical	Yes	λes	z		×		×		
A11	F-1.1	Dendritic erosion	Chemical	Yes	Yes	z		× [Enhances
A13	F-1.1	em with cables	Miscellaneous	Yes	Yes	z	×					other options
217	- -	Indea voided by submitter	Miscellaneous	N/A	Yes	z	×					Voided
A20	F-1-1	s at	Mixing Pump- Slurry	Yes	Yes	z	×	×				
404			Miscellaneous	Yes	Yes	z		×			;	
200			Miscellaneous	Yes	Yes	z		×			×	
		Aliminim dissolution and pump out	Chemical	Yes	T Yes	z	×				;	
		Ibren with zeolite (absorb)	Chemical	Yes	Yes	z					× :	
427 A27	E-1.1	Use Hg and float material (high density fluid)	Miscellaneous	Yes	Yes	z					×	
N		Tank in tank	Miscellaneous	Yes	Yes	z	×					
		Wave machine	Mech Agitator	Yes	Yes	z	×					
A31	E-1.1	Remove large section of tank top and convey	Miscellaneous	Yes	Yes	z		×				
A38	- - - - -	ICO2 suspension	Miscellaneous	Yes	Yes	z	×	, 			> -	
A40	- -	In situ vitrification	Miscellaneous	Yes	Yes	z		× : -		>	<	
A48		Pump dry with absorbent material and convey out	Dewater	Yes	Yes	z		× :		<		
A58		IDry with HVAC and in situ grout	Dewater	Yes	Yes	z		× :			<	
A59	-	Dry with HVAC and in situ grout with chemical treatment to remove lochicitum	Dewater	Yes	Yes	z		×			×	
A62	F-1.1	Demo Advanced Design Mixer	Mixing Pump- ADMP	Yes	Yes	z	×				, 	Ennances other options
471		In can vitrification	Miscellaneous	Yes	Yes	z		× _			< 	
	-ŀ	-Г	Transfer Boute	Vac	Yes	Ż	_	×				

WSRC-RP-2001-00024 Revision 0 Page 127 of 235

38 B19 F1.2 Reader finor -reuse stury media Miscellaneous Yes Ye Y X P Splores 28 F1.1 An windage (in suspension) process it is and more marked in the marked in printiple ESPONPF Miscellaneous Yes N X N X P popolos 28 F1.1 An windage (in suspension) process it is and more marked in the ma				Tank 18 Wa	ink 18 Waste Removal Systems Eng Evaluation (Table II: Unacceptable Ideas)	al Syst accept	noval Systems Eng E Unacceptable Ideas)	ng Eva eas)	luatior	-				
E20 F.1.2 Process waste at tank with portable ESPDWFF Miscellaneous Yes N X X B37 F.1.3 Content tank Content tank Miscellaneous Yes N X N X B37 F.1.3 Content tank Miscellaneous Yes N X N X C3 F.1.3 Deans pool cleaner Miscellaneous Yes N X N X C4 F.1.3 Suspend with pop cleaner Miscellaneous Yes Yes N X </th <th>26</th> <th>B19</th> <th>F-1.2</th> <th>Recirc line - reuse slurry media</th> <th>Miscellaneous</th> <th>Yes</th> <th>Yes</th> <th>z</th> <th>×</th> <th></th> <th></th> <th></th> <th></th> <th>Enhances other options</th>	26	B19	F-1.2	Recirc line - reuse slurry media	Miscellaneous	Yes	Yes	z	×					Enhances other options
B36 F-13 Tank Ha FaDB1+ FD82- FD83- fmal Miscellaneoids Ves N X X X B37 F-12 Tank Ha FADB1+ FD82- FD83- fmal Misre Faulty Ves N X X X C3 F-13 Dearoner Misre Faulty Ves Ves N X X X C4 F-13 Beave fit In tank via enalysis Misre Faulty Ves Ves N X	27	B20	F-1.2	Process waste at tank with portable I	Miscellaneous	Yes	Yes	z		×			-	
B37 F-13 Tent 18<-FD83 - FD83 - final	5 8	B36	F-1.3	After sludge is in suspension process it vs. send to another tank	Miscellaneous	Yes	Yes	z	x					
C3F-13Detaries pool cleanerMintog Pump- ModelYesNXNXC4F-13Leave it in tark via analysisMiscellineuusYesYesNXNNNC10F-13Lusyeni uhit pipe cleanerMixing Pump- Mixing ViaTark in TarkYesYesNXNNNC11F-13Teark in tarkTark in tarkTark in TarkYesYesNXNNNC11F-13Teark in tarkTark in tarkTark in TarkYesYesNNNNNC11F-13Surry pumps with WildenMining Pump- ViaYesYesNNNNNNC13F-13Surry pumps with WildenMining Pump- ViaYesYesNNNNNNNC23F-13Surry pumps with WildenMining Pump- ViaYesYesNNNNNNNC23F-13Surry pumps with WildenMining Pump- ViaYesYesNNNNNNNNC33F-13Survater heat and remove remaining drywetDewaterYesYesNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN<	29		F-1.2	Tank 18 - FDB1 - FDB2 - FDB3 - finat destination (swap let in downcomer to Tank 33)	Transfer Route	Yes	хөх	N.	x					
C4 F-1.3 Leave it in trank wa analysis Miscellaneous Yes Yes N X N X C3 F-1.3 Suspend with ploe cleaner Mixing Pump Yes N X N X C10 F-1.3 Tank in tank Tank in tank Tank in tank Mixing Pump Yes N X X N C11 F-1.3 Two Advanced Design Mixer Pumps (ADMP) in Mixing Pump Yes N X	32		F-1.3	Polaris pool cleaner	Mixing Pump- Pneum	Yes	Yes	z	х					
C3 F-1.3 Suspend with pipe cleaner Mixing Pump- Hydr Yes N X X C10 F-1.3 Tank in tank Tank in tank Yes N X X C17 F-1.3 Tuw Advanced Oesign Mixer Pumps (ADMP) in Center riser with lots of water Mixing Pump- ADMP Yes N X X X C18 F-1.3 Stury pumps with with lots of water Mixing Pump- Suity Yes N X X X C19 F-1.3 Stury pumps with witholds parts to mix and pump through entire cycle (centrifuging & Stury) Mixing Pump- Yes Yes N X X X X C23 F-1.3 Stury pumps with mitple parts to mix and pump through entire cycle (centrifuging & Stury) Stury Yes N X	R		F-13	_	Miscellaneous	Yes	Yes .	z	×					
C10 F-1.3 Tank in tank. Tank in Tank. Ves N X X C17 F-1.3 Two Advanced Design Mixer Pumps (ADMP) in Mixing Pump. Yes Yes N X X C18 F-1.3 Two Advanced Design Mixer Pumps (ADMP) in Mixing Pump. Yes Yes N X X X C19 F-1.3 Slurry pumps with Wilden Mixing Pump. Yes Yes N X X X C23 F-1.3 Slurry pumps with Wilden Mixing Pump. Yes Yes N X X X C25 F-1.3 Dewaler heal and remove remaining drywet Dewaler Yes Yes N X X X C25 F-1.3 Onvolter Task Dewaler heal and remove remaining drywet Dewaler Yes N X X X X C25 F-1.3 Onvolter Task Dewaler Dewaler Yes N X X X X X X X X X X X X X X X X X X <	8		F-1.3		Mixing Pump- Hydr	Yes	Yes	z	X .					
C17 F-1.3 Two Advanced Design Mixer Pumps (ADMP) in Mixing Pump- Yes Yes N X X X C18 F-1.3 Chenter/Rise with lots of a whater Chenter/Rise with lots with lots of a whater Chenter/Rise with lots with lots with lots of a whater Chenter/Rise with lots wi	35	C10	F-1.3		Tank in Tank	Yes	Yes	z	×				<u> </u>	Enhances other
C18 F-1.3 Chemicat/microbial discolution Chemication Chemication<	36	C17	F-1.3	Two Advanced Design Mixer Pumps center riser with lots of water	Mixing Pump- ADMP	Yes	Yes	z			×			
C19 F-1.3 Slurry pumps with Wilden Mixing Pump- Yes N X N X C23 F-1.3 Slurry pumps with Wilden Slurry Yes N X X X C25 F-1.3 Bowater heel and remove remaining dry/wet Dewater Yes Yes N X X X C25 F-1.3 Dewater heel and remove remaining dry/wet Dewater Yes Yes N X X X C25 F-1.3 After sludge is in suspension process it vs. send Miscellaneous Yes Yes N X X X X C30 F-1.3 Chemical dissolution (Flussian Regime) Chemical Yes Yes N X	37	C18	F-1.3		Chemical	Yes	Yes	Z	×					
C23 F-1.3 Single device with multiple parts to mix and pump- interval parts to mix and pump- interval centrifuging & Surry settion pump through entire cycle (centrifuging & Surry settion settion settion from the cycle (centrifuging & Surry settion settion settion from through entire cycle (centrifuging & Surry settion settion settion from the cycle (centrifuging & Surry settion settion settion from the cycle (centrifuging & Surry settion settion from the cycle (centrifuging & Surry settion settion from the cycle (centrifuging & Surry settion from the cycle (centrifuging & N × × × × × × × × × × × × × × × × × ×	38	C19	F-1.3	Siurry pumps with Wilden	Mixing Pump- Slurry	Yes	Yes	z	×					Covered by B1 3 D4
C25 F-1.3 Dewater freel and remove remaining drywet Dewater Yes N X X C29 F-1.3 Attent studge is in suspension process it vs. send Miscellaneous Yes Yes N X X X C30 F-1.3 Chemical dissolution (Flussian Regime) Chemical Yes Yes N X X X X C31 F-1.3 Chemical dissolution (Flussian Regime) Chemical Yes Yes N X	66		F-1.3	Single device with multiple parts to mix and pump through entire cycle (centrifuging & settling)	Mixing Pump- Slurry	. Yes	Yes	z		×				
C29F-1.3After studge is in suspension process it vs. send to another tankMiscellaneousYesNXC30F-1.3Chemical dissolution (Russian Regime)ChemicalYesYesNXXC31F-1.3Chemical dissolution (Russian Regime)ChemicalYesYesNXXC31F-1.3Chemical dissolution (Russian Regime)ChemicalYesYesNXXC34F-1.3Use a substance lighter than water to attach toChemicalYesYesNXXXC35F-1.3Use a substance lighter than water to attach toChemicalYesYesNXXXC35F-1.3Mobile grout machine in tankRoboticsYesYesNXXXC36F-1.3Tank in tank explaneAnothing wencepsulate when fullTank in TankYesYesNXXXC36F-1.3Torniting wencepsulate wentulMiscellaneousYesYesNXXXC37F-1.3Torniting wencepsulate wentulMiscellaneousYesYesNXXXC38F-1.3Torniting wencepsulate wentulMiscellaneousYesYesNXXXXC38F-1.3Torniting wencepsulate wentulMiscellaneousYesYesNXXXXC41F-1.3Heat/Dake sludge and blow outD	Q	-	F-1.3	Dewater heel and remove remaining cake	Dewater	Yes	Yes	z					×	
C30 F-1.3 Chemical dissolution (Russian Regime) Chemical Yes Yes N X X C31 F-1.3 Complexing agent complexing agent X X X X X C34 F-1.3 Use a substance lighter than water to attach to Chemical Yes Yes N X X X C35 F-1.3 Grout inpaction leaving hele with binding agent Chemical Yes Yes N X X X X C35 F-1.3 Grout machine in tank Robotics Yes Yes N X X X X C36 F-1.3 Do nothing with heel after evaluation Miscellaneous Yes Yes N X X X X C37 F-1.3 Do nothing with heel after evaluation Miscellaneous Yes Yes N X X X X C38 F-1.3 Do nothing with heel after evaluation Miscellaneous Yes N X X X X X X X X	4	C29	F-1.3		Miscellaneous	Yes	Yes	z	×					
C31 F-1.3 Chemical dissolution (Russian Regime) with a complexing agent Cemical issolution (Russian Regime) with a complexing agent Yes N X X C34 F-1.3 Use a substance lighter than water to attach to chemical sludge & ald suspension Yes Yes N X X X C35 F-1.3 Grout injection leaving heel with binding agent Chemical Yes Yes N X X X C35 F-1.3 Grout injection leaving heel with binding agent Chemical Yes Yes N X X X X C36 F-1.3 Tank in tank encapsulate when full Tank in Tank Yes Yes N X X X C37 F-1.3 To nothing with heel after evaluation Miscellaneous Yes Yes N X X X C38 F-1.3 To nothing with heel after evaluation Miscellaneous Yes Yes N X X X C40 F-1.3 To nothing with heel after evaluation Miscellaneous Yes Yes N X X X <td>42</td> <td>ŝ</td> <td>F-1.3</td> <td>Chemical dissolution (Russian Regime)</td> <td>Chernical</td> <td>Yes</td> <td>Yes</td> <td>z</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td>	42	ŝ	F-1.3	Chemical dissolution (Russian Regime)	Chernical	Yes	Yes	z		×				
C34 F-1.3 Use a substance lighter than water to attach to Chemical Yes Yes N X X C35 F-1.3 Grout injection leaving heel with binding agent Chemical Yes Yes N X X X C35 F-1.3 Grout injection leaving heel with binding agent Chemical Yes Yes N X X X X C36 F-1.3 Mobile grout machine in tank Tank in Tank Yes Yes N X <td>43</td> <td>C31</td> <td>F-1.3</td> <td>Chemical dissolution (Russian Regit complexing agent</td> <td>Chernical</td> <td>Yes</td> <td>Yes</td> <td>z</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td>	43	C31	F-1.3	Chemical dissolution (Russian Regit complexing agent	Chernical	Yes	Yes	z		×				
C35 F-1.3 Grout Injection leaving heel with binding agent Chemical Yes Yes N X X X C36 F-1.3 Mobile grout machine in tank Robotics Yes Yes N X X X X C36 F-1.3 Mobile grout machine in tank Robotics Yes Yes N X X X X C37 F-1.3 Tank in tank encapsulate when full Tank in Tank Yes Yes N X X X X C37 F-1.3 Do nothing with heel after evaluation Miscellaneous Yes Yes N X X X X C38 F-1.3 Heat/bake sludge and vacuum out Dewater Yes Yes N X	44		F-1.3		Chernical	Yes	Yes	z		×		×		
C36 F-1.3 Mobile grout machine in tank Robotics Yes Yes N X N X C37 F-1.3 Tank in tank encapsulate when full Tank in Tank Yes N X X X C37 F-1.3 Ton with heel after evaluation Miscellaneous Yes Yes N X X X C38 F-1.3 Do nothing with heel after evaluation Miscellaneous Yes N X X X X C40 F-1.3 Heat/bake sludge and vacuum out Dewater Yes Yes N X X X X X C41 F-1.3 Heat/bake sludge and blow out Dewater Yes Yes N X X X X X C42 F-1.3 In tank vitrification Miscellaneous Yes Yes N X	45		F-1.3		Chemical	Yes	Yes	z		×				
C37 F-1.3 Tank in tank encapsulate when full Tank in Tank Yes Yes N X <td>9</td> <td>I</td> <td>F-1.3</td> <td></td> <td>Robotics</td> <td>Yes</td> <td>Yes</td> <td>z</td> <td>×</td> <td></td> <td></td> <td></td> <td>×</td> <td></td>	9	I	F-1.3		Robotics	Yes	Yes	z	×				×	
C38 F-1.3 Do nothing with heel after evaluation Miscellaneous Yes Yes N X	14	C37	F-1.3	Tank in tank encapsulate when full	Tank in Tank	Yes	Yes	N					×	
C40 F-1.3 TC removal Miscellaneous Yes Ves N X X X C41 F-1.3 Heat/bake sludge and vacuum out Dewater Yes Yes N X X X X C41 F-1.3 Heat/bake sludge and blow out Dewater Yes Yes N X X X C42 F-1.3 In tark vitrification Dewater Yes Yes N X X X C43 F-1.3 In tark vitrification Miscellaneous Yes Yes N X X C44 F-1.3 For stubborn chunks add frit/particles to slurry Miscellaneous Yes Yes N X X	48	C38	F-1.3	Do nothing with heel after evaluation	Miscellaneous	Yes	Yes	z	×			_		
C41 F-1.3 Heat/bake sludge and vacuum out Dewater Yes Yes N X X X C42 F-1.3 Heat/bake sludge and blow out Dewater Yes Yes N X X X X C43 F-1.3 In tank vitrification Miscellaneous Yes Yes N X X X C44 F-1.3 For stubborn chunks add frit/particles to slurry Miscellaneous Yes Yes N X X X Media to increase erosion media to increase erosion Xes Yes N X X X	49	C40	F-1.3	TC removal	Miscellaneous	Yes	Yes	z		×	×		×	
C42 F-1.3 Heat/bake sludge and blow out Dewater Yes Yes N X C43 F-1.3 In tank vitrification Miscellaneous Yes Yes N X X C44 F-1.3 For stubborn chunks add frit/particles to slurry Miscellaneous Yes Yes N X X Media to increase erosion Miscellaneous Yes Yes N X X	50	ŀ	F-1.3	Heat/bake sludge and vacuum out	Dewater	Yes	Yes	z		×			×	
C43 F-1.3 In tank virtification Miscellaneous Yes N X X C44 F-1.3 For stubborn chunks add frit/particles to slurry Miscellaneous Yes N X X media to increase erosion	51	ŀ	F-1 3	Heat/bake sludge and blow out	Dewater	Yes	Yes	z		×				
C44 F-1.3 For stubborn chunks add frit/particles to slurry Miscellaneous Yes Yes N X media to increase erosion	52		F-13	In tank vitrification	Miscellaneous	Yes	Yes	z		×		×	Ţ	
	ß		F-1.3	For stubborn chunks add frit/particles to slurry media to increase erosion	Miscellaneous	Yes	Yes	z	×					Enhances SP options

.

.

Page 2 of 3

.

WSRC-RP-2001-00024 Revision 0 Page 128 of 235

					Enhances other options		Voided by submitter	_										Enhances other options				Enhances other options
	×	×									×		1			×				×		
			×					×							×	-						
uoi	×			×		×				×	×	×								×		
=valuai)					×		×		×				×	×	×		×	×	×	-	×	×
teng t Ideas	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
noval systems Eng E Unacceptable Ideas)	Yes	Yes	≺es	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
oval S) Inacce	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18 Waste Removal Systems Eng Evaluation (Table II: Unacceptable Ideas)	Chemical	Tank in Tank	Tank in Tank	Robotic	Robotics	Miscellaneous	Robotics	Transfer Route	Robotics	Misc-Dewater	Dewater	Subm Pump- Misc	Transfer Route	Transfer Route	Transfer Route	Miscellaneous	Transfer Route	Miscellaneous	Miscellaneous	Miscellaneous	Misc-Tk Partition	Miscellaneous
Tank 18 W	F-1.3 Add multi ion exchange media in mix and leave in tank	F-1.3 Stainless steel tank (sealable) in tank then grout	Tank in tank then treat in inner tank (identil options in Proforma)	Scoop with remote bobcat to tank in tank	Crawler with plow to push material around	Side wall drain box (external sump)		Tanker transfer				Low volume HP pump	1 Tie into 1F vent line to FDB6 to FPT-3 to Tank 34	1 Tank 18 to catch tank transfer line to FPT-3 to Tank 34		I Drum and truck	I Tank 18 - FDB1 - FDB2 - FDB3 - final destination (swap jet in downcomer to Tank 33)	I Receive/send tank (recirc sturry media)	I Find and use existing sump depression on tank floor (one plate)	1 Make a sump in tank (i.e. deformation)	F-1.4 Make false floor by injecting grout to elevate/move sludge	F-1.4 Use tank at TNX to test different experiments
	F-1.3	F-1.3	F-1.3	F-1.4	F-1.3	F-1.4	F-1.4	F-1.4	F-1.4	F-1.4	F-1.4	F-1.4	F-1.4	F-1.4	F-1.4	F-1.4	1	F-1.4	F-1.4	F-1 4		t –
	C45	C46	C47	C51	C55	5	ß	5	ß	63	ß	<u>11</u>	D14	D15	D16	018	D19	B 2	D23	D24	74 D25	75 D26

.

,

•

WSRC-RP-2001-00024 Revision 0 Page129 of 235

Tark 18 Waste Removal Systems Eng Evaluation Tark 18 Waste Removal Systems Eng Evaluation (Table III: Acceptable IdeastCombinations) Comments (Table III: Acceptable IdeastCombinations) Comments Sum Propertion (ADMP) Mixing Pump-Sium Sint Pump-Sium Comments Mixing Pump-Sium Sint Pumps Mixing Pump-Sium Sint Pumps Mix Mixing Pump-]	4		ଚ 	ନ୍ଥ	<u>ਜ</u>	8 - 1		œ 	58	8	8	27	15	e	12	~	<u>ں</u>	5	52 52	នា	- - - -		<u>ا</u> يم	မ ျ	នាំ	ې م ۲	Т Т	=[;		»;	- - - -			3] -T		2 S	43
Systems Eng Category Mixing Pump-S Mixing			A42,			Project Baseline			Includes A47 & A64				Includes A8 & A49		Includes A63 & A65	Includes A55		Includes A56	Includes A10 & A67	Includes A57				Includes A14 & A16		Includes A54							Passes if collection tank is internal to 1k 18			Project Baseline			Includes B9 & B24
Systems Eng Category Mixing Pump-S Mixing	uation ns)	Score	90.96	88.94	87.74	84.72	84.23	82.61	82.03	80.51	79.48	79.30	78.85	77.20	76.40	75.92	75.33	74.40	71.79	70.26	69.51	65.25	60.69	54.07	53.30	51.82	50.48	49.88	48.13	45.05	41.40	38.66	38.30	30.41	0.0	96.70	95.80	92.62	91.49
Tank 18 Waste Removal Sy (Table III: Acceptable Id Idea Description Advanced Design Mixer Pump (ADMP) Sturry pumps with TP Sturry pumps with TP Sturry pumps with TP Advanced Design Mixer Pump (ADMP) with two slurry pumps Advanced Design Mixer Pump (ADMP) with two slurry pumps Advanced Design Mixer Pump (ADMP) (AZ-101) Sturry pumps (ADMP) with two slurry pumps Advanced Design Mixer Pump (ADMP) with suction advanced Design Mixer Pump (ADMP) (AZ-101) Submensible pump rigged to be movable (articulated)/(AZ-101) Two modified Advanced Design Mixer Pumps (ADMP's) Modular Jetury pumps Advanced Design Mixer Pump (SDMP) Modular Jetury pumps Modular Jetury pumps Modular Jetury pumps Mini quad volute slury pumps Modular feture (possibly with creating slury pumps Single discharge slury pumps Mixer (possibly with creating of the mixer Single discharge slury pumps Mixer (possibly with creating of the mixer Single discharge slury pumps Mixer (possibly with creating of the mixer Single discharge slury pumps Single discharge slury pumps Mindular fet monitor slutcers Single discharge slury pumps <td>stems Eng Eval eas/Combinatio</td> <td>Category</td> <td>Mixing Pump-ADMP</td> <td>Mixing Pump-Slurry</td> <td>Mixing Pump-Slurry</td> <td>Mixing Pump-Slurry</td> <td>Mixing Pump-ADMP</td> <td>Robotics</td> <td>Mixing Pump-Other</td> <td>Mixing Pump-ADMP</td> <td>Mixing Pump-Slurry</td> <td>Mixing Pump-Slurry</td> <td>Robotics</td> <td>Robotics</td> <td>Mixing Pump-Other</td> <td>Mixing Pump-Slurry</td> <td>Sluicer</td> <td>Mixing Pump-Slurry</td> <td>Sluicer</td> <td>Agitator</td> <td>Agitator</td> <td>Robotics</td> <td>Sluicer</td> <td>Agitator</td> <td>Robotics</td> <td>Agitator</td> <td>Miscellaneous</td> <td>Robotics</td> <td>Agitator</td> <td>Robotics</td> <td>Robotics</td> <td>Miscellaneous</td> <td>Robotics</td> <td>Miscellaneous</td> <td>Robotics</td> <td>Mixing Pump-Slurry</td> <td>ЦЦ</td> <td>Subm Pump</td> <td></td>	stems Eng Eval eas/Combinatio	Category	Mixing Pump-ADMP	Mixing Pump-Slurry	Mixing Pump-Slurry	Mixing Pump-Slurry	Mixing Pump-ADMP	Robotics	Mixing Pump-Other	Mixing Pump-ADMP	Mixing Pump-Slurry	Mixing Pump-Slurry	Robotics	Robotics	Mixing Pump-Other	Mixing Pump-Slurry	Sluicer	Mixing Pump-Slurry	Sluicer	Agitator	Agitator	Robotics	Sluicer	Agitator	Robotics	Agitator	Miscellaneous	Robotics	Agitator	Robotics	Robotics	Miscellaneous	Robotics	Miscellaneous	Robotics	Mixing Pump-Slurry	ЦЦ	Subm Pump	
	ast II:	Idea Description	Advanced Design Mixer Pump (ADMP)	Slurry pumps with quad volutes	Additional standard slurry pump risers	Slurry pumps with TTP	Advanced Design Mixer Pump (ADMP) with two slurry pumps	Arm with suction	Submersible pump rigged to be movable (articulated)/(AZ-101)	Two modified Advanced Design Mixer Pumps (ADMP's)	Modify existing slurry pumps	101-SY modified slurry pump	Houdini with CSEE	Robotic arm with attached pumping mechanism (lixed suction-	Modular jet mixing pump	Mini nuad volute slurv pumps	Bore hole miner		Water monitor stuicers	l Flvat mixers	Vertical Flydt mixers (150HP)	SRS crawfer with suction pump	Stuicing with recirc	Paddle agitator in center riser	EMMA	Pulse tube mixer	Steam driven venturi mixer	_	Air sparging	Partition tank and move sludge with crawler/plow	Dewater with lagoon cleaner	Dredge like in the ocean	Sewer sucker	Ultrasonic	ARD (SRS Procure/Deploy/Operate)	Slurry pumps with TTP	Fixed length TP vs. telescoping	Diode pump	
Function of the second se		idea No	T	A1'	A70	A73	A72	A74	A12	A41	A53	A46	A44	A66	A35	A 3	A32	A2	Aĥ	A51	A52		1	1		1											1	ļ	
Add Add A1 A1 A3 A3 A3			╞	~	6	₹	2	G		™	1 5	 =	F	12	Ę	2	Ĩ	9	F	Ę	Ģ	ŝ	1	2	ន	2	25	26	27	28	29	8	Б.	33	g	ह	35	е Ю	37

WSRC-RP-2001-00024 Revision 0 Page130 of 235

Tank 18 Waste Removal Systems Eng Evaluation Tank Tank Tank Tank Fil: 2 Removement F-1.2 Monthy Te with most at the weating DWPF style Sum Pump Biolis F-1.2 Monthy Te with most at the weating DWPF style Sum Pump Biolis Month state of Biolis F-1.2 Month state of Dump Sum Pump Sum Pump F-1.2 Month state of Dump Sum Pump Sum Pump F-1.2 Month state of Dump Sum Pump Sum Pump F-1.2 Month state of Dump Sum Pump Sum Pump Month state of Dump Sum Pump Sum Pump Month state of Dump			4	45	2	34	2	22		2	ខ	4 9	49	5 2 		ရှိ ၂		<u>9</u>	3 8						₹ 	4		₹T ₹	79 	키 1 丁	32	3 		4 3 7	0 [ېلو ۲	3 1 7	下 下	
Tank 18 Waste Removal Systems Eng Evaluations Tank 18 Waste Removal Systems Eng Evaluations (odity TP with motor at bottom (subm pump) Evaluation (subm pump) Motify TP with motor at bottom (subm pump) Subm Pump Evaluation at bottom (subm pump) Subm Pump Evaluation at the pump (widen) Subm Pump Subm Pump Evaluation at the pump (widen) Subm Pump Subm Pump Evaluation at the pump (widen) Subm Pump Subm Pump Evaluation at the pump (second pump Subm Pump Evaluation at the pump (second pump Subm Pump Colspan="2">Colspan="2" Colspan= 2 FDB2 - FDB2 - TK 7 (TK 7 riser 4: Use TTP dump [second at the second at the s				Includes B26 & B27	Includes B30 & B31	Includes B21 & B23								Includes B32; Need more into											Includes B6	Includes B6				Includes D1/					Includes C27	Includes C13 & C14	Project Baseline, includes U22		
Tank 18 Tank 18 <thtank 18<="" th=""> <tht< td=""><td></td><td>uation ns)</td><td>89.15</td><td>88.35</td><td>86.65</td><td>85.35</td><td>85.10</td><td>84.98</td><td>82.43</td><td>67.35</td><td>59.45</td><td>59.25</td><td>58.25</td><td>0.00</td><td>0.00</td><td>89.37</td><td>88.48</td><td>88.45</td><td>87.80</td><td>85.55</td><td>84.95</td><td>81.63</td><td>81.63</td><td>80.85</td><td>79.16</td><td>78.48</td><td>75.63</td><td>63.85</td><td>63.85</td><td>20.22</td><td>92.12</td><td>CC.19</td><td>87.29</td><td>85.15</td><td>84.41</td><td>84.26</td><td>19.90</td><td>79.88</td><td>/9.64</td></tht<></thtank>		uation ns)	89.15	88.35	86.65	85.35	85.10	84.98	82.43	67.35	59.45	59.25	58.25	0.00	0.00	89.37	88.48	88.45	87.80	85.55	84.95	81.63	81.63	80.85	79.16	78.48	75.63	63.85	63.85	20.22	92.12	CC.19	87.29	85.15	84.41	84.26	19.90	79.88	/9.64
Tank 18 Tank 18 Addity TP with motor at bottom (subm ir driven submersible pump (Wilden) Nodified deep well eductor pump (activentish/replace TTP) Additied deep well eductor pump (activentically driven vane pump (strain tank with second pump) Additied deep well eductor pump (strain tank with second pump) Additied deep well eductor pump (SRS Procure/Deploy/Operate) ADB1 Strain Last (strain tank tank tank tank tank (strain tank tank tank tank tank tank tank tank tank tank tank tank tank tank (strain tank tank tank tank tank tank tank tank tank tank tank tank tank tank tank tank to CTS Amm with suction Ann with suction Amm with suction Ann with suction Ann with suction		stems Eng Evalt eas/Combinatio	TTP	Subm Pump	Subm Pump	ТТР	ЧТ	Subm Pump	Subm Pump	TTP	Subm Pump	Miscellaneous	Subm Pump	Subm Pump	Robotics	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	I ransfer Houte	Hobotics	Mixing Pump-AUMP	Robotics	Mixing Pump-ADMP	Robotics	Robotics	Mixing Pump-Slurry	Tank in Tank	Mixing Pump-ADMP
	- 1	_	Modify TP with motor at bottom (subm pump)	Air driven suhmersible pump (Wilden)	Т	Т		T		Т	Т	Т		T	Г	6	Tank 18 - FDB1 - FDB2 - FDB3 - FDB FDB1)	2/TBI Tk 18NE-Fast Riser-FDB2-Tk 7 (Tk 7 riser 4: Use TTP dump leg)	2(TR) Tank 18 - FDB1 - FDB2 - FDB3 - FDB4- Tk 7(hardpipe around FDB1)	2/TB) Overland express to Tank 7 (above ground transfer line)	2/TB) Overland express to Tank 26 (above ground transfer line)	Tank 18 - Tank 26 via old evaporator	TV 18NE-OId Feed I ine-FDB6-TK 7	OTEN TR IRNE-FEDRI-TK Riser 6			Tk 18-FDB1-FDB2-Tk 7 (Riser 4: Use	Use evaporator feed pump and go thre					E.1.3 Rora hole miner	Advanced Design Mixer Pump (ADM	Arm with suction	1	T	F-1.3 Tank in tank with Houdin//CSEE	Advanced Design Mixer Pump (ADMP) with Flygt mixers
																	_					I		L						87									
			20	86	n N S	Ì	42	5	₽ ₹	\$ 	₽ ₽	\$;	÷ 0		Ŷ	3	22	1°	54	L L	8 9	8	ត់ដែ	8	8	3	5	3	8	ട്ര	8	6	ľ	80	35	7	7	2	74

.

÷

WSRC-RP-2001-00024 Revision 0 Page131 of 235

Page 3 of 4

-

WSRC-RP-2001-00024 Revision 0 Page132 of 235

•

•

	0 0	62	8	6	88	96	
E							
aluatio ions)	96.75	96.61	96.40	93.89	84.95	70.95	
stems Eng Ev eas/Combinati	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Transfer Route	Page 4 of 4
Tank 18 Waste Removal Systems Eng Evaluation (Table III: Acceptable Ideas/Combinations)		115 D10R F-1.4 (TR) Tank 18 - FDB1 - FDB2 - final destination (hardpipe around	14 DOP F.1 4 (TR) Tank 18 - FDB1 - FDB2 - final destination		118 D17 F-14 (TR) New above grade line to destination		

•

ATTACHMENT 5

APPLICATION OF WEIGHTED CRITERIA TO IDEAS

Group A Overall Ranking for Function	F-1.1	Pg. 134
Group B Overall Ranking for Function	F-1.2	Pg. 135
Group C Overall Ranking for Function	F-1.3	Pg. 136
Group D Overall Ranking for Function	F-1.4	Pg. 137
Idea Scoring Group A for Function	F-1.1	Pg. 138
Idea Scoring Group B for Function	F-1.2	Pg. 139
Idea Scoring Group C for Function	F-1.3	Pg. 140
Idea Scoring Group D for Function	F-1.4	Pg. 141

Ranking for OVERALL Goal

Group A Overall Ranking F-1.1

WSRC-RP-2001-00024 Revision 0 Page135 of 235

Ranking for OVERALL Goal

Alternative	Utility	
B-38	96.70	
B-22	.95.80	
B-16	92.62	
B-8	91.49	
B-10	89.15	
B-2-M	88.45	
B-11	88.35	
B-40-M	87.80	
B-28	86.65	
B-4-M	85.55	
B-1	85.35	
B-34	85.10	
B-29	84.98	
B-3	82.43	
B-41-M	80.85	
B-35-M	79.94	
B-5-M	78.48	
B-42-M	75.63	
B-39	74.86	
B-44	74.86	
B-45	74.86	,
B-33	67.35	
B-13-M	63.85	
B-25	59.45	
B-12	59.25	
B-14	58.25	
B-18	0.00	

Group B Overall Ranking F-1.2

01/16/01

Ranking for OVERALL Goal

Group C Overall Ranking F-1.3

01/16/01

WSRC-RP-2001-00024 Revision 0 Page137 of 235

Ranking for OVERALL Goal

Group D Overall Ranking F-1.4

01/16/01

WSRC-RP-2001-00024 Revision 0 Page138 of 235

.

ALTERNATIVE SCORING GROUP A F-1.1

•

-

3619WT	-1			- 1	_	_			_						1			-1		-	-1	~1	— 1	·т	1	1		-1		-		- 1	-1
the Safety of	68	6 6	80	95	20	61	80	82	20	20	73	78	19	60	94	19	48	73	82	88	75	94	80	62	68	83	85	58	ß	69	80	83	85
The second se	92	73	78	95	6	89	43	23	50	40	70	91	84	20	75	73	83	85	87	80	25	85	40	50	69	67	75	81	80	93	87	87	80
	88	73	83	66	63	79	85	82	30	50	41	67	99	50	60	62	71	71	84	80	70	87	85	84	84	86	85	78	48	84	84	84	80
Prom/Processee	100	93	100	80	80	95	85	88	80	60	0	58	74	70	100	73	48	100	06	87	85	98	60	87	92	96	88	50	69	100	63	. 96	88
調	91	82	88	· 86	78	87	77	68	82	60	32	76	31	60	62	50	21	84	81	82	60	88	6	94	91	79	78	45	49	89	91	95	78
100	91	<u> </u>	64	88	69	84	25	23	10	30	74	80	43	10	₽E	50	1	63	81	64	30	83	35	92	63	62	09	83	69	95	28	85	06
Such and a such as a such asuch as a such as a	97	- 72	92	95	53	85	65	37	75	50	52	60	48	40	85	51	80	94	74	74	40	88	50	81	88	88	67	60	43	93	85	90	72
Constriction of the second sec	88	. 45	64	86	с	46	38	68	16	35	72	70	13	60	85	19	15	65	84	73	20	82	75	53	45	56	82	66	41	53	74	76	75
o W	69	64	65	80	73	72	œ	53	15	50	0	62	13	40	99	16	18	53	88	76	45	6	65	61	75	63	14	62	56	76	78	87	75 .
9890U	8	77	67	63	61	87	50	43	20	25	50	8	56	30	6	55	0	89	85	75	70	58	70	60	50	68	86	55	18	92	62	74	88
	-1 VA				31. 27 . 18	2	-15			-28 43		20	3	34	36	36	-37 :	- 1. 	43	44	45	46	9	-51	 	-53 1	-66	88	69	0	72	-73	-74
12.	5	12	12	17	9	12	12	12	12	12	12	12	12	12	12	12	Ľ	Ľ	IJ	Ľ	Ľ	Ľ	Ľ	Ľ	Ľ	Ľ	Ľ	12	ľ	12	12	D	12

•

WSRC-RP-2001-00024 Revision 0 Page139 of 235

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

ALTERNATIVE SCORING GROUP B F-1.2

۰ .

			_		-	- 1	1	-1			_	_	-1	-1	-1	- 1				-'T	- –		- r	-1		_	-1
Safety	10	82	82	80	35	80	82	0	09	82	65	82	82	75	82	82	67	82	81	20	ន	82	58	81	81	63	82
Reliability	75	80	85	8	84	40	98	0	87	100	60	8	0 0	93	80	90	75	100	87	95	85	78	69	87	87	74	93
Infrastructure	06	06	6	80	68	80	06	0	85	90	60	93	93	85	90	90	75	90	90	92	85	91	80	06	90	85	63
Prgm/Processe s	100	100	100	70	50	75	100	0	82	100	75	100	100	60	100	100	75	100	75	83	82	. 65	75	75	75	75	100
AB Impact	100	100	90	75	35	65	06	0	89	100	50	95	100	70	75	75	75	100	81	58	89	38	40	81	81	40	100
Technicat Maturity	100	75	06	40	75	50	06	0	97	8 6	50	80	50	75	50	85	87	100	81	06	97	67	92	81	81	97	06
Operations	95	95	95	65	75	40	06	0	66	95	40	95	95	85	08	80	68	95	40	6	91	06	83	40	40	88	95
Constr/Start-up	35	ຣ	80	65	25	65	80	0	20	75	65	80	80	75	70	80	09	80	65	75	ន	88	68	65	65	73	80
Design	65	75	75	40	30	50	60	0	77	6	60	82	80	75	45	75	80	95	60	85	74	72	60	60	60	65	82
Effectiveness	00	100	6	50	6	09	66	0	0	100	02	80	6	92	50	6	6	100	20	100	100	100	100	20	20	100	06
	8-14 - 1 - 1	B-10, 1 - 1	B-11: ::	B-12%	B-13-M	8-14 8 4	B-16.2%	B-18 11 12 13	B-2-M	B 22	B-25, S	B-287 % 1. 655	B-29 6 M	B.3 5428 5 45 1	B-30 1/101 1/11	B-34% 1 . 17 . 20 . 1	B-35-M' - b	B.38	B-39-27 - 1-1-1	B:4:M.13	B-40-M. 2010.00	B-41:M-11 - 22 -	B-42-M	B-44	B-45	B-5-M	8-8

,

.

ALTERNATIVE SCORING GROUP C F-1.3

.

			- 1	- 1	Т	1				_ T		·	-	_	-1	-			1	_	T		-	-1		1	Т		-т	Т	-1
Safety	82	80	80	20	95	88	85	6	20	80	80	11	70	78	85	100	95	80	95	75	85	95	20	80	6	98	66	80	95	62	68
Reliability	90	80	60	60	70	85	82	78	85	70	70	46	85	92	06	0	6	75	80	06	85	70	90	6	80	95	88	60	90	58	65
Infrastructure	84	75	75	84	100	80	80	100	80	75	80	81	80	49	100	0	100	85	100	50	85	100	63	100	100	100	100	85	100	84	84
Reg Prgm/Processes	06	88	06	80	70	87	88	88	60	89	60	75	60	60	60	. 0	80	80	80	75	6	70	8	80	80	80	80	6	80	80	85
AB Impact	Γ	20	20	94	100	82	78	100	35	70	20	41	90	76	100	0	100	8	100	75	90	100	78	100	100	100	100	06	100	94	91
Technical Maturity	81	80	35	76	85	- 19	06	06	95	60	45	35	75	80	80	0	80	50	80	75	50	95	75	75	63	91	95	35	88	76	63
Operations	78	75	65	80	85	80	72	80	20	75	65	R	02	.09	99	0	95	65	80	20	75	85	53	50	94	97	63	65	95	81	88
Constr/Start-up	84	65	75	65	100	73	75	100	81	65	75	20	8	02	100	0	100	75	9	75	75	100	8	100	00	005	100	75	100	60	50
Design	88	65	65	75	100	76	75	100	ន	65	02	44	55	62	100	0	100	85	100	75	80	100	73	100	100	100	100	65	100	61	75
Effectiveness	, R	95 95	e e	86	202	95	88	95	96	88	86		90	87	87	; 0) 02	292	202	Ca Ca	86	40	45	45	e Q	S	86	36	6	02	50
			10	C-16-P	216.B				0.2162-00		<u> </u>	20			D 30.D		C-40:P		C.S.D.					C.Se.Fl	C-67.D				- H-Va		80

.

WSRC-RP-2001-00024 Revision 0 Page141 of 235

ALTERNATIVE SCORING GROUP D F-1.4

-

Safety		78	95	65	65	100	10	81	80	80	100	8	82	100	65	65	82	100.	82	100	80	100	80	100
Reliability		93	91	70	65	100	80	87	60	55	98	98	93	93	60	55	92	06	92	88	60	100	80	80
Infrastructure		85	100	60	100	100	100	96	80	100	100	100	95	100	60	100	63	100	63	100	80	100	8	100
Reg Prgm/Processe	S	06	100	75	75	95	100	75	75	75	100	100	100	100	75	75	100	. 100	100	100	75	95	96	96
AB Impact		70	100	50	100	100	100	81	65	100	100	100	100	100	50	100	95	100	100	100	65	100	06	100
Technical Maturity		75	75	77	17	95	75	81	60	60	6	86	06	8	50	50	80	08	50	50	45	95	85	85
Operations	•	85	95	40	40	95	96	40	80	80	100	100	. 95	95	65	65	95	95	95	95	65	95	80	80
Constr/Start-up		78	100	65	100	100	100	65	65	100	100	100	85	100	65	100	80	100	80	100	85	100	82	100
Design	• . *	75	100	8	100	100	100	60	60	100	100	100	82	100	60	100	. 82	100	80	100	20	100	14	100
Effectiveness		92	92	70	70	06	06	70	75	75	6	06	95	95	87	87	85	85	06	6	06	66	100	100
		D-2: 5	D-2-R-35	0-22		D-28-R	D-29-R	03	D31	1.	D-32-R.	D-33-R.S.	D-36	D-36-R ; ; ;	D-36, 1, 1, 1	D-36-H	J.	· • •	D-39	æ	1		D-45	D-45-H

.

.

-

WSRC-RP-2001-00024 Revision 0 Page142 of 235

ATTACHMENT 6

.

STRATEGY SCORING

Table IV Table IV.1 Table IV.2 Table IV.3 Table IV.4 Table IV.5	Listing of Strategies (3pgs) Strategy Weighted Scoring Summary (2pgs) Cost Scores (Includes Deploy & LCC) (3pgs) Effectiveness Scores (3pgs) Complexity Scores (3pgs) Authorization Basis Impact Scores (3pgs)	142-143 144-146 147-149 150-152
Table IV.5 Table IV.6 Table IV.7	Strategy Unweighted Score Summary (3 pgs) Tank 18 SEE Strategy Scoring Notes(3pgs)	156-158

-

•

Attachment 6: Strategy Scoring Table IV Listing of Strategies

1	Strat No	Туре	Strategy Description		F2 PM	F2 RT	F3	F3A	F4
1	S1	Pump	Advanced Design Mixer Pump	ADMP	TTP	TK1 Tie-In	ADMP	None	Same as F2
2	S2	Pump	Advanced Design Mixer Pump	ADMP	TTP		ADMP	ARD	Same as F2
- 2	<u> </u>		Advanced Design Mixer Pump	ADMP	ПР	TK1 Tie-In	ADMP	Chem	Same as F2
4	<u>S4</u>	Pump	Advanced Design Mixer Pump	ADMP	TTP	TK1 Tie-In	ADMP	Sluicer	Same as F2
- 5		Pump	Advanced Design Mixer Pump	ADMP	TTP		ADMP	None	Same as F2
6			Advanced Design Mixer Pump	ADMP	TTP		ADMP	ARD	Same as F2
7		Pump	Advanced Design Mixer Pump	ADMP	ΠΡ	Hose-in-Hose	ADMP	Chem	Same as F2
8	<u>57</u> S8	Pump	Advanced Design Mixer Pump	ADMP	ΤΤΡ	Hose-in-Hose		Sluicer	Same as F2
9	S9	Pump	Advanced Design Mixer Pump	ADMP	BIBO		ADMP	None	Same as F2
10	59 S10	Pump	Advanced Design Mixer Pump		BIBO	TK1 Tie-In	ADMP	ARD	Same as F2
11		Pump	Advanced Design Mixer Pump	ADMP	BIBO		ADMP	Chem	Same as F2
		Pump	Advanced Design Mixer Pump	ADMP	BIBO	TK1 Tie-In	ADMP	Sluicer	Same as F2
12	S12 S13	Pump	Advanced Design Mixer Pump	ADMP	BIBO		ADMP	None	Same as F2
13			Advanced Design Mixer Pump	ADMP	віво	Hose-in-Hose		ARD	Same as F2
14	S14 S15	Pump Pump	Advanced Design Mixer Pump		BIBO		ADMP	Chem	Same as F2
15			Advanced Design Mixer Pump	ADMP	BIBO	Hose-in-Hose		Sluicer	Same as F2
16	S16	Pump Bump	Advanced Design Mixer Pump		Diode	TK1 Tie-In	ADMP	None	Same as F2
17	S17	Pump	Advanced Design Mixer Pump		Diode	TK1 Tie-In	ADMP	ARD	Same as F2
18	<u>S18</u>	Pump	Advanced Design Mixer Pump		Diode	TK1 Tie-In		Chem	Same as F2
19	<u>S19</u>	Pump		ADMP	Diode	TK1 Tie-In	ADMP	Sluicer	Same as F2
20	S20	Pump	Advanced Design Mixer Pump Advanced Design Mixer Pump		Diode		ADMP	None	Same as F2
21	<u>\$2</u> 1	Pump			Diode	Hose-in-Hose		ARD	Same as F2
22	<u>S22</u>	Pump	Advanced Design Mixer Pump		Diode	Hose-in-Hose		Chem	Same as F2
23	S23	Pump	Advanced Design Mixer Pump		Diode	Hose-in-Hose	ADMP	Sluicer	Same as F2
24	S24	Pump	Advanced Design Mixer Pump	ADMP		TK1 Tie-In	QVSP	None	Same as F2
25	S25	Pump	Quad Volute Slurry Pump			TK1 Tie-In	QVSP	ARD	Same as F2
26		Pump	Quad Volute Slurry Pump	QVSP			QVSP	Chem	Same as F2
27	\$27	Pump	Quad Volute Sturry Pump	QVSP		TK1 Tie-In	QVSP	Sluicer	Same as F2
28		Pump_	Quad Volute Slurry Pump	QVSP		TK1 Tie-In			Same as F2
29		Pump	Quad Volute Slurry Pump	QVSP		Hose-in-Hose	QVSP	ARD	Same as F2
30		Pump	Quad Volute Slurry Pump	QVSP		Hose-in-Hose	QVSP		Same as F2
31	S31	Pump	Quad Volute Slurry Pump	QVSP		Hose-in-Hose		Chem Sluicer	Same as F2
32		Pump	Quad Volute Slurry Pump	QVSP	TTP	Hose-in-Hose	QVSP		Same as F2
33		Pump	Quad Volute Slurry Pump	QVSP	BIBO	TK1 Tie-In	QVSP	None	Same as F2
34		Pump	Quad Volute Slurry Pump	QVSP	BIBO	TK1 Tie-In	QVSP	ARD	Same as F2
35		Pump	Quad Volute Slurry Pump	QVSP	BIBO	TK1 Tie-In	QVSP	Chem	Same as F2
36		Pump	Quad Volute Slurry Pump	QVSP	BIBO	TK1 Tie-In	QVSP	Sluicer	
37		Pump	Quad Volute Slurry Pump	QVSP	BIBO	Hose-in-Hose	OVSP	None	Same as F2
38		Pump	Quad Volute Slurry Pump	QVSP	BIBO	Hose-in-Hose	QVSP	ARD	Same as F2
39	S39	Pump	Quad Volute Slurry Pump	QVSP	BIBO	Hose-in-Hose	QVSP	Chem	Same as F2
40		Pump	Quad Volute Slurry Pump	QVSP	BIBO	Hose-in-Hose		Sluicer	Same as F2
41	S41	Pump	Quad Volute Slurry Pump	QVSP	Diode	TK1 Tie-In	QVSP	None	Same as F2
42		Pump	Quad Volute Slurry Pump	QVSP	Diode	TK1 Tie-In	QVSP	ARD	Same as F2
43		Pump	Quad Volute Slurry Pump	QVSP	Diode	TK1 Tie-In	QVSP	Chem	Same as F2
44	S44	Pump_	Quad Volute Slurry Pump	QVSP	Diode	TK1 Tie-In	QVSP	Sluicer	Same as F2
45	S45	Pump	Quad Volute Slurry Pump	QVSP	Diode	Hose-in-Hose		None	Same as F2
46	S46	Pump	Quad Volute Slurry Pump	OVSP	Diode	Hose-in-Hose		ARD	Same as F2
47		Pump	Quad Volute Slurry Pump	QVSP	Diode	Hose-in-Hose		Chem	Same as F2
48		Pump	Quad Volute Slurry Pump	QVSP	Diode	Hose-in-Hose		Sluicer	Same as F2
49		Pump	Modified QVSP/ADMP	Modified	ΠΤΡ	TK1 Tie-In	Modified	None	Same as F2
50		Pump	Modified QVSP/ADMP	Modified	ТТР	TK1 Tie-In	Modified	ARD	Same as F2
51		Pump	Modified QVSP/ADMP	Modified	TTP	TK1 Tie-In	Modified	Chem	Same as F2
52		Pump	Modified QVSP/ADMP	Modified	ΠΡ	TK1 Tie-In	Modified	Sluicer	Same as F2
53		Pump	Modified QVSP/ADMP	Modified	ΠΡ	TK1 Tie-In	Modified	Arm	Same as F2
54		Pump	Modified QVSP/ADMP	Modified	TTP	Hose-in-Hose	Modified	None	Same as F2
55		Pump	Modified QVSP/ADMP	Modified	TTP	Hose-in-Hose		ARD	Same as F2
56		Pump	Modified QVSP/ADMP	Modified	TTP	Hose-in-Hose		Chem	Same as F2
		i unp		1	ΤΓΡ	Hose-in-Hose		Sluicer	Same as F2

-

.

Attachment 6: Strategy Scoring Table IV Listing of Strategies

	Strat No	Туре	Strategy Description	F1	F2 PM	F2 RT	F3	F3A	F4
58	S58	Pump	Modified QVSP/ADMP	Modified	ΤГР	Hose-in-Hose	Modified	Arm	Same as F2
59	S59	Pump	Modified QVSP/ADMP	Modified	BIBO	TK1 Tie-In	Modified	None	Same as F2
60	S60	Pump	Modified QVSP/ADMP	Modified	BIBO	TK1 Tie-In	Modified	ARD	Same as F2
61	S61	Pump	Modified QVSP/ADMP	Modified	BIBO	TK1 Tie-In	Modified	Chem	Same as F2
62	S62	Pump	Modified QVSP/ADMP	Modified	BIBO	TK1 Tie-In	Modified	Sluicer	Same as F2
63	S63	Pump	Modified QVSP/ADMP	Modified	BIBO	TK1 Tie-In	Modified	Am	Same as F2
64	S64	Pump	Modified QVSP/ADMP	Modified	BIBO			None	Same as F2
65	S65	Pump	Modified QVSP/ADMP	Modified	BIBO	Hose-in-Hose	Modified	ÁRD	Same as F2
66	S66	Pump	Modified QVSP/ADMP	Modified	BIBO	Hose-in-Hose	Modified	Chem	Same as F2
67	S67	Pump	Modified QVSP/ADMP	Modified	BIBO	Hose-in-Hose	Modified	Sluicer	Same as F2
68	S68	Pump	Modified QVSP/ADMP	Modified	BIBO	Hose-in-Hose	Modified	Arm	Same as F2
69	S69	Pump	Modified QVSP/ADMP	Modified	Diode	TK1 Tie-In	Modified	None	Same as F2
70		Pump	Modified QVSP/ADMP	Modified	Diode	TK1 Tie-In	Modified	ARD	Same as F2
71	S71	Pump	Modified QVSP/ADMP	Modified	Diode	TK1 Tie-In	Modified	Chem	Same as F2
72	\$72	Pump	Modified QVSP/ADMP	Modified	Diode	TK1 Tie-In	Modified	Sluicer	Same as F2
73	S73	Pump	Modified QVSP/ADMP	Modified	Diode	TK1 Tie-In	Modified	Arm	Same as F2
74	S74	Pump	Modified QVSP/ADMP	Modified	Diode	Hose-in-Hose	Modified	None	Same as F2
75	\$75	Pump	Modified QVSP/ADMP	Modified	Diode	Hose-in-Hose	Modified	ARD	Same as F2
76	S76	Pump	Modified QVSP/ADMP	Modified	Diode	Hose-in-Hose	Modified	Chem	Same as F2
77	S77	Pump	Modified QVSP/ADMP	Modified	Diode	Hose-in-Hose	Modified	Sluicer	Same as F2
78	S78		Modified QVSP/ADMP	Modified	Diode	Hose-in-Hose	Modified	Arm	Same as F2
79	S79	Pump	Slurry Pumps	4SPs	TTP	TK1 Tie-In	4SPs	None	Same as F2
80	S80	Pump	Slurry Pumps	4SPs	ТТР	TK1 Tie-In	4SPs	ARD	Same as F2
81	S81	Pump	Slurry Pumps	4SPs	TTP	TK1 Tie-In	4SPs	Chem	Same as F2
82	S82	Pump	Slurry Pumps	4SPs	ΤΤΡ	TK1 Tie-In	4SPs	Sluicer	Same as F2
83	S83	Pump	Slurry Pumps	4SPs	ТТР	TK1 Tie-In	4SPs	Arm	Same as F2
84		Pump	Slurry Pumps	4SPs	ТТР	Hose-in-Hose	4SPs	None	Same as F2
85	\$85	Pump	Slurry Pumps	4SPs	TTP	Hose-in-Hose		ARD	Same as F2
86	S86	Pump	Slurry Pumps	4SPs	TTP	Hose-in-Hose	÷	Chem	Same as F2
87		Pump	Slurry Pumps	4SPs	ТТР	Hose-in-Hose	4SPs	Sluicer	Same as F2
88	S88	Pump	Slurry Pumps	4SPs	ттр	Hose-in-Hose	4SPs	Am	Same as F2
89		Pump	Slurry Pumps	4SPs	BIBO	TK1 Tie-In	4SPs	None	Same as F2
90	<u> </u>	Pump	Slurry Pumps	4SPs	BIBO	TK1 Tie-In	4SPs	ARD	Same as F2
91	S91	Pump	Slurry Pumps	4SPs	BIBO	TK1 Tie-In	4SPs	Chem	Same as F2
92	S92	Pump	Slurry Pumps	4SPs	BIBO	TK1 Tie-In	4SPs	Sluicer	Same as F2
93	S93	Pump	Slurry Pumps	4SPs	BIBO	TK1 Tie-In	4SPs	Arm	Same as F2
94	S94	Pump	Slurry Pumps	4SPs	BIBO	Hose-in-Hose	4SPs	None	Same as F2
95		Pump	Slurry Pumps	4SPs	BIBO	Hose-in-Hose	4SPs	ARD	Same as F2
96		Pump	Slurry Pumps	4SPs	BIBO	Hose-in-Hose	4SPs	Chem	Same as F2
97	S97	Pump	Slurry Pumps	4SPs	BIBO	Hose-in-Hose	4SPs	Sluicer	Same as F2
98		Pump	Slurry Pumps	4SPs	BIBO	Hose-in-Hose	4SPs	Arm	Same as F2
99		Pump	Slurry Pumps	4SPs	Diode	TK1 Tie-In	4SPs	None	Same as F2
100		Pump	Slurry Pumps	4SPs	Diode	TK1 Tie-In	4SPs	ARD	Same as F2
			Slurry Pumps	4SPs	Diode	TK1 Tie-In	4SPs	Chem	Same as F2
101		Pump	Slurry Pumps	4SPs	Diode	TK1 Tie-In	4SPs	Sluicer	Same as F2
102	÷	Pump	Slurry Pumps	4SPs	Diode	TK1 Tie-In	4SPs	Arm	Same as F2
		Pump	Slurry Pumps	4SPs	Diode	Hose-in-Hose		None	Same as F2
104		Pump	Slurry Pumps	4SPs	Diode	Hose-in-Hose		ARD	Same as F2
105			Slurry Pumps	4SPs	Diode	Hose-in-Hose		Chem	Same as F2
106		Pump Pump	Slurry Pumps	4SPs	Diode	Hose-in-Hose		Sluicer	Same as F2
107					Diode	Hose-in-Hose		Arm	Same as F2
108		Pump	Slurry Pumps	4SPs					Same as F2
109		Robotics		ARD	ARD	TK1 Tie-In		None	
110			ARD	ARD	ARD	Hose-in-Hose		None	Same as F2 Same as F2
111			Houdini/CSEE	Houdini	Houdini	TK1 Tie-In	Houdini	None	
112			Houdini/CSEE	Houdini	Houdini	Hose-in-Hose	<u> </u>	None	Same as F2
113		Am	Am/CSEE	Arm	Am	TK1 Tie-In	Am	None	Same as F2
114	S114	Arm	Am/CSEE	Arm	Am	Hose-in-Hose	IAUU	None	Same as F2
WSRC-RP-2001-00024 Revision 0 Puge 145 of 235

Attachment 6: Strategy Scoring Table IV.1 Strategy Weighted Scoring Summary (Descending Order)

Weights
Table IV.1:
From

N*.15

M*.25

L[•].28

K.2

J*.12

	[LIne				с 1	<u>च</u>	ام	۵		8	יו	P	Ξ	2	2 	4	15	9	14	<u>8</u>	<u>0</u>	2	21	22	23	র	52	56	27	58	50	30	31	ਲ੍ਹ	ŝ	
		Strat No		S60	S62	S65	S67	S70	S72	S61	S50	S52	S75	S77	S66	S55	S57	S63	S71	S109	S51	S68	S76	S110	S73	S56	S53	S78	S111	S58	S112	S113	S10	S12	S114	S14	; -
R+S+T+U+V	Weighted	Total Score		83.22	82.79	81.77	81.34	80.62	80.59	80.08	79.69	79.67	79.17	79.14	78.62	78.24	78.21	78.19	77.88	77.68	76.95	76.74	76.42	76.23	75.99	75.50	75.07	74.54	74.45	73.61	72.99	72.77	72.64	72.30	71.32	71.19	
R V	Weighted	AB	Impacts	13.1325	12.975	11.2725	11.115	12.9075	12.75	10.7175	13.1325	12.975	11.0475	10.89	8.8575	11.2725	11.115	12.975	10.4925	13.6275	10.7175	11.115	8.6325	11.7675	12.75	8.8575	12.975	10.89	13.665	11.115	11.805	13.515	13.1325	12.975	11.655	11.2725	
5	Weighted V	Complexity	_	20.4	19	20.2875	18.8875	20.0125	19.0125	19.1	20.05	19.05	19.9	18.9	18.9875	19.9375	18.9375	19.4	19,1125	21.75	19.15	19.2875	19	21.6375	19.4125	19.0375	19.45	19.3	20.95	19.3375	20.8375	20.85	21.4	20	20.7375	21.2875	
	Weighted	Effectiveness		25.928	25.228	25.928	25.228	26.04	25.34	26.348	25.872	25.172	26.04	25.34	26.348	25.872	25.172	25.928	26.46	24.78	26.292	25.928	26.46	24.78	26.04	26.292	25.872	26.04	23.66	25.872	23.66	25.116	26.376				
S	Weighted	LCC Cost lE		14.4	15.15	14.8	15.55	13.2	13.95	16.8	12	12.75	13.6	14.35	17.2	12.4	13.15	14.4	15.6	Φ	14.4	14.8			13.2			13.6	G	12			ie.	37	6.4		
æ	Welghted	Cost -	Deploy	9.36	10.44	9.48	10.56	8.46	9.54	7.11	8.64	9.72	8.58	9.66	7.23	8.76	9.84	5.49	6.21	11.52	6.39	5.61	6.33	11.64	4 59	6.51	4.77	4.71	10.17	4.89	10.29	7 29	B 73	o o	7.41	8.85	
		E3	>	ARD	Stuicer	ARD	Skricer	ARD	Shricer	Chem	ARD	Sluicer	ARD	Shricer	Chem	ARD	Shirer	Arm	Chem	Nooa	Chem	Am	Chem	None	Verm	Chem	Arm	Arm.	Mone	Am	None	Anno		Shirer	None		2
		EN DT		TK1 Tia-In	Tie-In	e-in-Hose							as						1	1		Hood in Hoed	Hose-in-Hose			Hose-in-Hose	TK1 Tie-In	Hose-in-Hose	TV1 Tio.In	Hose h-Hose	Hoco-in-Hoco	Trk Tio.In			HALL HE-ILL	Hose-in-Hose	10901111-000L
		C2 DM			Ι					T	T	T	- U													9000						=					
		Z	Ξ	Modified	Modified	And flood		Modified			Modified	Modified			Modified		Modilled	Deninow	MOUIIBU		שרואים הבוזיבת	MODIFIED				Modified	Modified			Houdin	Moulted		E C	AUMP	ADMP	Am and a second	AUMF
			Strat NO	L	200	I.		1	ļ				306 076	0/0	210	T		1					895	1		873	1		1		800	2112	5113	S10	S12	S114	S14
		ľ	_	l s	88	8 2	818	2	2 	2	56	36		গ	518			26	31			5	8	92	2	2	S S S	36	2		2		5113	<u> </u>	2		4

Page 1 of 3

WSRC-RP-2001-00024 Revision 0 Page 146 of 235

Attachment 6: Strategy Scoring Table IV.1 Strategy Weighted Scoring Summary (Descending Order)

34	35	36	37	88	ĝ	đ	41	42	43	44	45	46	47	48	4	20	51	52	23	5	55	20	57	28	59	8	6	<u>8</u>	83	3	8	66	67	89	69	70	71	72	73
S16	S34	S20	S36	S18	S11	S2	S4	S38	S24	S40	S22	S15	S44	S42	S8	290	S6	S19	S35	S92	S28	S26	S3	S48	S46	S95	S23	S39	S97	S32	S30	S43	S102	S7	S100	S91	S27	S82	S80
70.85	70.40	70.10	70.07	70.04	69.67	69.23	69.18	68.95	68.65	68.61	68.59	68.22	67.87	67.80	67.72	67.66	67.66	67.47	67.44	67.41	66.94	66.88	66.55	66.41	66.35	66.21	66.02	65.99	65.96	65.49	65.43	65.24	65.21	65.10	65.06	64.79	64.31	64.29	64.14
11.115	13.2075	12.75	13.05	12.9075	10.7175	13.1325	12.975	11.3475	10.89	11.19	11.0475	8.8575	12.825	12.9825	11.115	13.1775	11.2725	10.4925	10.7925	13.02	13.05	13.2075	10.7175	10.965	11.1225	11.3175	8.6325	8.9325	11.16	11.19	11.3475	10.5675	12.795	8.8575	12.9525	10.7625	10.7925	13.02	13.1775
19.8875	21.2	20.0125	19.8	21.0125	20.1	21.05	20.05	21.0875	19.9	19.6875	20.9	19.9875	19.8125	20.8125	19.9375	19.7	20.9375	20.1125	19.9	18.3	19.85	20.85	20.15	19.7	20.7	19.5875	20	19.7875	18.1875	19.7375	20.7375	19.9125	18.3125	20.0375	19.3125	18.4	19.95	18.35	19.35
25.676	25.256	25.788	24.556	26.488	26.796	26.32	25.62	25.256	25.788	24.556	26.488	26.796	24.668	25.368	25.62	26.264	26.32	26.908	25.676	25.564	24.5	25.2	26.74	24.668	25.368	26.264	26.908	25.676	25.564	24.5	25.2	25.788	25.676	26.74	26.376	26.684	25.62	25.508	26.208
4.15	e	2.55	3.75	1.8	5.4	0.6	1.35	3. 4	2.95	4 15	22	8	2.55	8.1	1.75	2.4	ļ	4.2	4 .3	3.15	1.35	0.6	ल 	2.95	2.2	8	4.6	5.8	3.55	1.75	-	42	1.95	40	1.2	4.8	C	0.75	0
10.02	7.74	5	8.91	7.83	6.66	8.13	9.18	7.86	9.12	60.6	7.95	6.78	8.01	6.84	6.9	6.12	8.13	5.76	5.67	7.38	8.19	7.02	5.94	8.13	6.96	6.24	5.88	5.79	7.5	8.31	7,14	4 77	6.48	6.06	5.22	4 14	4 95	6.66	5.4
F								-	╞					╞		╞								╞	+-		$\left \right $		-	-	$\frac{1}{1}$		+	ŀ				╞	$\left - \right $
Sluicer	ARD	Sluicer	Sluicer	ARD	Chem	ARD	Shricer	ARD	Shirer	Shirer		L Herry	Shicer	ARD	Shricer	ARD	ARD	Chem	Chem	Sluicer	Sluicer	ABD	Chem	Sluicer	ARD	ARD	Chem	Chem	Sluicer	Sluicer	ARD	men	Shricer	Chem	ARD	Chem	Chem	Stuicer	ARD
Hose-in-Hose	TK1 Tia-In	TK1 Tie-In	TK1 Tia-In	Hoeo.in-Hoeo	Hoce-in-Hoce	Hose-in-Hose	Hose-in-Hose	Hoco-in-Hoco	TK1 Tia-In	TK1 Tie-In	Hose-in-Hose	TK1 Tie-In	Hose-in-Hose	TK1 Tie-In	TK1 Tie-In	TK1 Tia-In	TK1 Tie-In	TK1 Tie-In	TK1 Tie-In	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	TK1 Tia-In	TK1 Tie-In	Hose-in-Hose	TK1 Tie-In	TK1 Tie-In		TK1 Tie-In	TK1 Tie-In				
						2011				ADDIO					TTP	BIBO	TTP TTP	Diode							epoid epoid				BIBO		- 4	C C C	Diode		Diodo				LLL
ADMP										AUMP 03/10		AUMP				ASPa	ADAP		ds/U	NODe ACDe	asing asing		away		102/10	40De	ADAP		45Pe	ds/C	asilo	2010	4000		AUNIT			UVSP ACDe	4SPs
- 19 C16	100	500	320	000	510	5	80	*	820	524	040	522	010	044	300	8	en en	210	610 C0E	500	292	020	070	200	940		565	020	202	222	206	200	040	2010	0/-		1		207 S80
4		5 8	र, य	s e	<u></u> ;	1	<u>v</u> †•	4 (S	3		\$ }	27	2	‡ [\$	Ţ	8	sta I	₽ţ 	24	88			Q r	7	ş ţ		<u> </u>	3	86	b C	y e	З s	4 5 5 5		- 221	3	5	20	28

Page 2 of 3

.

WSRC-RP-2001-00024 Revision 0 Page 147 of 235

Г

Attachment 6: Strategy Scoring Table IV.1 Strategy Weighted Scoring Summary (Descending Order)

4	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	6			
S47	S107	3105	S96	S31	S87	S93	S85	S101	S81	S98	S106	S103	S86	S83	S108	S88			
63.79	63.76	63.61	63.33	62.86	62.84	62.72	62.68	62.59	61.66	61.27	61.13	60.52	60.21	59.60	59.07	58.15		R+S+T+U+V	
8.7075	10.935	11.0925	8.9025	8.9325	11.16	13.02	11.3175	10.5375	10.7625	11.16	8.6775	12.795	8.9025	13.02	10.935	11.16	N15		i
19.8	18.2	19.2	18.2875	19.8375	18.2375	18.7	19.2375	18.4125	18.45	18.5875	18.3	18.7125	18.3375	18.75	18.6	18.6375		2	
25.788	25.676	26.376	26.684	25.62	25.508	26.264	26.208	26.796	26.628	26.264	26.796	26.376	26.628	26.208	26.376	26.208	28 M [•] .25	2	
4.6	2.35	1.6	5.2	3.4	1.15	2.4	0.4	3.6	2.4	2.8	च	1	8.0	0	9.1	0.4	2 L1.28	<u>-</u>	C IO C OUCO
4.89	6.6	5.34	4.26	5.07	6.78	2.34	5.52	3.24	3.42	2.46	3.36	1.44	3.54	1.62	1.56	1.74	12 K 2	S	
						_	╞										J.12	œ	
Chem	Sluicer	ARD		Chem		M	ARD	Chem	Chem	AT	Chem	Am A	Chem	E E	E	Am			
Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	TK1 Tie-In	Hose-in-Hose	TK1 Tie-In	TK1 Tie-In	Hose-in-Hose	Hose-in-Hose	TK1 Tia-In	Hose-in-Hose	TK1 Tie-In	Hose-in-Hose	Hose-in-Hose			
Diode	Diode	Dinde	BIBO			BIBO		Dinde		RIBO	aboic				Diode	1TP			
DVSP	4SPs	4SPc	ASPe	DVSP	4SPs	4SPs	4SPa	4500	4SPa	45Pe	ACPe			4SPe	45Pe	45Pe	, 		
S47	5107	3105	90%	231	Sa7	200	SBF	5101	Sat	800	C106	0010	COR	2000	S108	Sag	30		
£₹	E C	, L	38	डो ल 		58		35	δa	8		35	38		35				2

•

WSRC-RP-2001-00024 Revision 0 Page 148 of 235 •

Attachment.6: Strategy Scoring Table IV. 2 Cost Scores (Includes Deploy and LCC)

.

s lo	-+	_	67.75	49.5	T			<u>50.5</u> 17			(12.75 55 5		c/.81 C.28						ŝ	48	c/.21 c/	0 1 1	S S	76 11475		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	41.25 15	68.25 6.75	0	59.5 5		69.25 8.75		64.5 15	
	2 Z	_	0	80	25 -			8	52			0.0	52	2.9							Z 2		2	2 H	S c			25		0	80	25	q	٥	0
æ	Deploy	0	100	9	100	0	<u>6</u>	10	00		8	100	100		001	001			00	00	20	0	100		3		001	100		100	100	100	0	100	
	£	None	ARD	Chern	Sluicer	None	ARD	Chem	Sluicer	None	ARD	Chem	Sluicer	None	AHU AHU		Sillicer	euon		Chem	Sluicer	None	ARU	Chem				Sluicer	None	ARD	Chem	Sluicer	None	ARD	Č
┟┈╊╸	с СС	0	0	0	٩	٩	8	2	8				م	-		3	3		_	4	0	٩	8	8	34					୍ଷ	202	20	0	0	
z	Deploy	0	20	60	80	0	02	02	2	8	09	60	80		2		02		ൢ	8	00	0	2	0				30		2	04	04	0	60	00
	F2 RT		TK1 Tie-In						ŝ	Tie-In		Tie-In		_	Hose-in-Hose	HOSB-IN-HOSB	Hose-in-Hose				1				8	TK1 110-10		TK1 Tie-In	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	TK1 Tie-In	TK1 Tie-In	
×	TCC	0	٥	0				0			8					Ţ	T						6	ç i								0		80	I
-	Deploy	0	50	50	50			50					8									0		0	40 40	0				50	50	50		6	
	F2 PM	ПР	ПР	гтр	ПΡ	ПР	LP L	ПР	ПР	BIBO	BIBO	BIBO	BIBO	BIBO	BIBO	BIBO	BIBO	Diode	Diode	Diode	Diode	Diode	Diode	Diode	Diode						TP	dLTP	BIBO	BIBO	
<u>ں</u>	D T C C	þ	5 S	5	5	0	5 LO	L.	Ъ Ч	l d	9	5	لم	0	تم ا	۳	л Б	٥	5	5	5	0	ی م	<u>س</u>				0 4			240	LO LO			I
L	Deplo Y	0	14	48	84	0	5	8 4 84	84	o	14	48	84	a	5	4 8	84	0	71	48	84	o	7	4 8	8	ᆈ		वह	2	209	6	73		8	ļ
	F F	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	ADMP	OVSP				dSV0	OVSP 0	OVSP	DVSP	OVSP								
LCC=G*.6+K*.15+0*.1+R* 15	Strategy Description	Advanced Design Mixer Pump		Advanced Design Mixer Pump	Advanced Design Mixer Pump			Advanced Design Mixer Pump		Advanced Design Mixer Pump		Quad Volute Slurry Pump	Quad Volute Slurry Pump	Quad Volute Slurry Pump	Juad Volute Slutry Futtip	Dued Volute Stury Pump	Outed Volute Shirry Pump	Oried Volute Slurv Pump	Oried Volute Shirty Pump	Ouad Volute Stury Pump															
-	Type	Pump	Dump	Dumo	Dumo	D m n d	Dump	- amn	D E E E E E	Pumo	Pump	Pump	Pump	Pump	Pump		Pump	Dump	Pump	Pump	Pump	Bund	Pump	Pump	Pump	Pump	Pump	Pump							5
	Strat No	2			14 17			4 S7						13 S13	14 S14	15 S15	16 S16		18 S18	1				23 S23	24 S24		26 S26		- 1						

• '

WSRC-RP-2001-00024 Revision 0 Page 149 of 235

Attachment 6: Strategy Scoring Table IV. 2 Cost Scores (Includes Deploy and LCC)

		Τ											-[1		Ī			·	Ī		T			ļ								
18.75	0	17	53	20.75	٥	<u>б</u>	21	12.75	٥	11	ព	14.75	ع	8	72	63.75	8	0	62	74	65.75	82	0	22	8	75.75	22	0	74	88	77.75	7	┛	8	78	69.75	99	0	68	8	
74.25	0	65.5	48.25	75.25	0	57	39.75	66.75	Q	58	40.75	67.75	0	72	53.25	81	39.75	a	53	54.25	82	40.75	٥	78	59.25	87	45.75	0	79	60.25	88	46.75	0	70.5	51.75	79.5	38.25	0	11.5	52.75	
25	0	0	80	25	q	٥	80	25	d	o	80	25	0	Q	80	25	q	o	o	80	25	٥	a	٥	80	25	٥	٥	٥	80	25	0	٥	٥	80	25	þ	0	0	80	
100	0	00 100	100	100	0	100	100	100	o	100	100	100	0	100	100	100	100	0	100	100	100	100	o	9	õ	100	100	0	100	10	<u>6</u>	<u>9</u>	0	100	100	100	100	o	100	100	
Sluicer	None	ARD	Chem	Sluicer	None	ARD	Chem	Sluicer	None	ARD	Chem	Sluicer	None	ARD	Chem	Sluicer	Arm	None	ARD	Chem	Sluicer	Arm	None	ARD	Chem	Sluicer	Am	None	ARD	Chem	Sluicer	Am	None	ARD	Chem	Sluicer	Аm	None	ARD	Chem	
0	0	g	20	20	o	0	0	0	٥	20	20	20	0	0	o	0	0	0	50	20	20	20	0	0	0	0	0	o	20	8	8	2	0	٥	0	0	0	0	8	20	
TK1 Tie-In 60	Hose-in-Hose 0		Hose-in-Hose 70	Hose-in-Hose 70	TK1 Tie-In D	TK1 Tie-In 60	TK1 Tie-In 60	rK1 Tie-In 60	Hose-in-Hose D	Hose-in-Hose 70	-lose-in-Hose 70	Hose-in-Hose 70	rK1 Tie-In D		TK1 Tie-In 60	rK1 Tie-In 60	TK1 Tie-In 60	Hose-in-Hose D	Hose-in-Hose 70	-lose-in-Hose 70			rk1 Tie-In 0	rkt Tie-In 60	TK1 Tie-In 60	TK1 Tie-In 60	TK1 Tie-In 60	Hose-in-Hose D	-lose-in-Hose 70			Hose-in-Hose 70	TK1 Tie-In D	TK1 Tie-In 60	TK1 Tie-tn 60	TK1 Tie-In 60	TK1 Tie-In 60	Hose-in-Hose 0	Hose-in-Hose 70		
80 JT		B0 H		80 H	ц о	40 T		Ē		Γ	04 H	04 H		ц П	0	0					н С	т 0		80 1						-	80			40 1		ľ	40	Γ	07	Π	Page 2 of 3
06	0	06	80	6	0	6	4 0	ę	-	đ	ĝ	0 4	0	50	50	50 20	ß	0	ß	50	50	50	0	8	00	8	80	0	8	90	90	90	م	40	4	ą	đ		ą	40	
BIBO	BIBO	BIBO	BIBO	BIBO	Diode	Diode	Diode	Diode	Diode	Diode	Diode	Diode	Γ	100 TTP	Ĩ.		1_	۳-	100 TTP		5		ļ		100 BIBO	6	100 BIBO		100 BIBO	100 BIBO	100 8180			00 Diode	00 Diode	100 Diode			100 Diode	100 Diode	
3 5		60	Γ	73 5		60 5	37 5			09	37	73 5							8	Γ													<u> </u>		Ì				1	1	
CVSP 73	OVSP 0	OVSP 6			Г		I	r	Г	Г		A ASVO	Q	Modified78	Modified 53	Modified 90	Modified 35	ModifiedD	Modified 78	Modified 53	Modified 90	Modified 35	ModifiedD	Modified 78	Modified 53	Modified 90	Modified 35	ModifiedD	Modified78	Modified 53	Modified 90	Modified 35	Modified 0	Modified 78	Modified 53	Modified 90	Modified 35	ModifiedD	Modified 78	Modified 53	
S36 Pump Quad Volute Slurry Pump	D I I	Pump Quad Volute Slurry Pump	I Pump Duad Volute Slurry Pump	Pump Duad Volute Slurry Pump	Primo Duad Volute Stury Pump			Pirmo Duad Volute Slurv Pump	Pirmo Dirad Volute Stury Pump	Prime Oried Volute Shirty Pitmo	Primo Ditad Volute Slurv Pump	Primo Driad Volute Shirry Pump	Modified ADMP		d unit		D m	L L L	Dund			- Dung			Duma	Pump	╋	Dunid	Bump	Dumo	Dump	Pump	Ритр	Pump	d	Dim				Pump	
	5			40 7			Ł						2	1	3					- E			•				÷ -		1		6						<u>ין ג</u>			1	1

i

.

WSRC-RP-2001-00024 Revision 0 Page 150 of 235

•

Attachment 6: Strategy Scoring	Table IV.2 Cost Scores	(Jooludoo Donlow and LCC)
Attachme	Table	handly 1

			1							1		1									ļ		ļ								Ì		ļ	
71.75 68 0	<u>_</u>	3.75	٥	0	2	4	5.75	ец		12	15.75	12	0	14	26	17.75	14		ا س		0 70 0			6	11 75			3 8	2	30	32	8	32	M
80.5 39.25 0	45	55.5	13.5	o	46	29.5	66.5	14.5	0	51	04-0 81-5	19.5	0	52	35.5	62.5	20.5	0	43.5	72	40 2	71	24 1	80		35	90	<u> </u>	6	84.75	85.75	60.75	61.75	λ
5005	06	00		0	0	80	25	0	0	0	200			0	80	25	0	0	0	8	22 2	24				S c	200	8	100	100	100	100	100	s S
00100	100		100	0	100	100	10	100	0	10		3 6		100	10	100	100	0	10	<u>9</u>	100	8			3		3	3	100	100	100 1	100	100	Œ
Sluicer Arm None	ARD	Chem	Am	None	ARD	Chem	Sluicer	Am	None	ARD			None	ARD	Chem	Sluicer	Am	None	ARD	Chem	Sluicer	E	None			Siucer		None	None	None	None	None	None	
880	0				a	02	20	20	٥	م			2	ç	R	8	20	0	٥	٥	0		-	26	3	38	34		ຊ	0	50	Þ	8	0
0 10	00	00	38		20		<u>ہ</u> 70		٥	8	<u>8</u>	20	1			T			60	09	8	8				0/1			e 70	09	e 70	09	e 70	I
d LCC) Hose-in-Hose 70 Hose-in-Hose 70 TK1 Tie-In 0	rK1 Tie-In	TK1 Tie-In	K1 Tie-In	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	rK1 Tie-In	rK1 Tie-In	TK1 Tie-In	I K1 116-IN TV1 Tio-Io	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	Hose-in-Hose	TK1 Tie-In	TK1 Tie-In	TK1 Tie-In	TK1 Tie-In	TK1 Tie-In	Hose-in-Hose	Hose-in-Hose	Hose-In-Hose	Hose-in-Hose	HOSe-IN-HOSe	TK1 Tie-In	Hose-in-Hose	TK1 Tie-In	Hose-in-Hose	TK1 Tie-In	Hose-in-Hose	
(Includes Deploy and LCC) 40 40 Hose-in 40 40 Hose-in 0 0 TK1 Tic	T I	مع	T	ſ				0	0	80	Т	T	T		36	6			ę	40	64	ę,		Q (Ş	Q !	g	100	100	100	100	100	100	2
ncludes C 40 0	50	00 00			20	20	50	50	0	80	8	86	22			8	80		64	40	40	9		ç	40	ą	ð	100	100	100	100	100	9	
	ПР		1		 		d L	ЦР	BIBO	8180	BIBO	BIBO					BIBO	Diode	Diode	Diode	Diode	Diode	Diode	Diode	Diode	Diode	Diode	DR	ARD	Houdini	Houdini	Am		
			Ť		T	T	Γ	T	0		<u> </u>			T	Τ	Τ		Γ	Γ		o D		٦			7		<u> </u>						
	42	8	ا		20	100	56			42	20	9			¥Ic				42	R	56			42	្ត	56		100	10	85	85	5.2	36	3
Modified 90 Modified 35 4SPs 0	T				Τ		1	T	4SPs 0		4SPs			Ţ		T			T			4SPs (4SPs (4SPs	ARD	ARD	Houdini	Houdini	Arm		
Pump Modified ADMP Pump Modified ADMP Mmb Slurry Pumps	Pump Slurry Pumps	Pump Sturry Pumps	Pump Slurry Pumps	Pump Sturry Pumps		Slury Fumps				Pump Slurry Pumps	Pump Slurry Pumps	Pump Slurry Pumps	Pump Slurry Pumps	Pump Slurry Pumps	Pump Sturry Pumps			Sluicy Futups		Primo Shiriy Pumos	Pump Slurv Pumps	Pump Slurry Pumps	Pump Sturry Pumps	Pump Slurry Pumps	Slurry Pumps		Sturry Pumps	Roboli ARD	ti ARD	ti Houdini/CSEE	S112 Roboti Houdini/CSEE	CS		S114 Am Am/USEE
S77 S78 S79	″I≍						تر ا م	A 1 77	6 I 7	ă l <i>in</i>	1.0	1ő	σÌ	٥Ì	ناف	юl	ωlč	ρli	ρIZ	. I.Z.	15	16	Lin	1	lin	1in	In	lin	lin	lin	lin	- Li	ωl	ഗ

÷

.

WSRC-RP-2001-00024 Revision 0 Page 151 of 235

.

	[<u>.</u> ,	Effectiveness N=F*.4+H*.1+L*.5		F		н		К		L	N
	Strat No	Туре	Strategy Description	F1	Effect	F2 PM	Effect	F2 RT	Effect	F3	Effect	Overa Scor
	S1	Pump	Advanced Design Mixer Pump	ADMP	93	TTP	93	TK1 Tie-In	100	None	85	89
2	\$2	Pump	Advanced Design Mixer Pump	ADMP	93	ΠΡ	93	TK1 Tie-In	100	ARD	95	94
3	S 3	Pump	Advanced Design Mixer Pump	ADMP	93	ΠP	93	TK1 Tie-In	100	Chem	98	95.5
4	S4	Pump	Advanced Design Mixer Pump	ADMP	93	ΠΡ	93	TK1 Tie-In	100	Sluicer	90	91.5
5	S5	Pump	Advanced Design Mixer Pump	ADMP	93	TTP	93	Hose-in-Hose	100 _	None	85	89
6	S6	Pump	Advanced Design Mixer Pump	ADMP	93	ÎΠΡ	93	Hose-in-Hose	100	ARD	95	94
7	S7	Pump	Advanced Design Mixer Pump	ADMP	93	ΠΡ	93	Hose-in-Hose	100	Chem	98	95.5
8	S8	Pump	Advanced Design Mixer Pump	ADMP	93	TTP	93 _	Hose-in-Hose	100	Sluicer	90	91.5
9	S9	Pump	Advanced Design Mixer Pump	ADMP	93	BIBO	95	TK1 Tie-In	100	None	85	89.2
10	S10	Pump	Advanced Design Mixer Pump	ADMP	93	BIBO	95	TK1 Tie-In	100	ARD	95	94.2
11	S11	Pump	Advanced Design Mixer Pump	ADMP	93	BIBO	95	TK1 Tie-In	100	Chem	98	95.7
12	S12	Pump	Advanced Design Mixer Pump	ADMP	93	BIBO	95	TK1 Tie-In	100	Sluicer	90	91.7
13	S13	Pump	Advanced Design Mixer Pump	ADMP	93	BIBO	95	Hose-in-Hose	100	None	85	89.2
14	S14	Pump	Advanced Design Mixer Pump	ADMP	93	BIBO	95	Hose-in-Hose	100	ARD	95	94.2
15	S15	Pump	Advanced Design Mixer Pump	ADMP	93	BIBO	95	Hose-in-Hose	100	Chem	98	95.7
16	S16	Pump	Advanced Design Mixer Pump	ADMP	93	BIBO	95	Hose-in-Hose	100	Sluicer	90	91.7
17	S17	Pump	Advanced Design Mixer Pump	ADMP	93	Diode	99	TK1 Tie-In	100	None	85	89.6
18		Pump	Advanced Design Mixer Pump	ADMP	93	Diode	99	TK1 Tie-In	100	ARD	95	94.6
19		Pump	Advanced Design Mixer Pump	ADMP	93	Diode	99	TK1 Tie-In	100	Chem	98	96.1
20		Pump	Advanced Design Mixer Pump	ADMP	93	Diode	99	TK1 Tie-In	100	Sluicer	90 _	92.1
21	S21	Pump	Advanced Design Mixer Pump	ADMP	93	Diode	99	Hose-in-Hose	100	None	85	89.6
22	\$22	Pump	Advanced Design Mixer Pump	ADMP	93	Diode	99	Hose-in-Hose	100	ARD	95	94.6
23	S23	Pump	Advanced Design Mixer Pump	ADMP	93	Diode	99	Hose-in-Hose	100	Chem	98	96.1
24		Pump	Advanced Design Mixer Pump	ADMP	93	Diode	99	Hose-in-Hose	100	Sluicer	90	92.1
25		Pump	Quad Volute Slurry Pump	QVSP	83	TTP	93	TK1 Tie-In	100	None	80	82.5
27	\$27	Pump	Quad Volute Slurry Pump	QVSP	83	ΠΡ	93	TK1 Tie-In	100	Chem	98	91.5
28		Pump	Quad Volute Slurry Pump	QVSP	83	ΠΡ	93	TK1 Tie-In	100	Sluicer	90	87.5
29		Pump	Quad Volute Slurry Pump	QVSP	83	ΤΤΡ	93	Hose-in-Hose	100	None	80	82.5
30		Pump	Quad Volute Slurry Pump	QVSP	83		93	Hose-in-Hose	100	ARD	95	90
31		Pump	Quad Volute Slurry Pump	QVSP	83	ΠΡ	93	Hose-in-Hose	100	Chem	98	91.5
32		Pump	Quad Volute Slurry Pump	QVSP	83	ΠΡ	93	Hose-in-Hose	100	Sluicer	90	87.5
33		Pump	Quad Volute Slurry Pump	QVSP	83	BIBO	95	TK1 Tie-In	100	None	80	82.7
34		Pump	Quad Volute Slurry Pump	QVSP	83	BIBO	95	TK1 Tie-In	100	ARD	95	90.2
35		Pump	Quad Volute Slurry Pump	OVSP	83	BIBO	95	TK1 Tie-In	100	Chem	98	91.7
36		Pump	Quad Volute Slurry Pump	QVSP	83	BIBO	95	TK1 Tie-In	100	Sluicer	90	87.7
37		Pump	Quad Volute Slurry Pump	QVSP	83	BIBO	95	Hose-in-Hose	100	None	80	82.7
38		Pump	Quad Volute Slurry Pump	QVSP	83	BIBO	95	Hose-in-Hose	100	ARD	95	90.2
39		Ритр	Quad Volute Slurry Pump	QVSP	83	BIBO	95	Hose-in-Hose	100	Chem	98	91.7

Attachment 6: Strategy Scoring Table IV.3 Effectivness Scores

Page 1 of 3

WSRC-RP-2001-00024 Revision 0 Page 152 of 235

				Table IV.	3 Enectivenes:	s acures						
40	S40	Pump	Quad Volute Slurry Pump	QVSP	83	BIBO	95	Hose-in-Hose	100	Sluicer	90	87.7
41	S41	Pump	Quad Volute Slurry Pump	QVSP	83	Diode	99		100	None	80	83.1
42	S42	Pump	Quad Volute Slurry Pump	QVSP	83	Diode	99	TK1 Tie-In	100	ARD	95	90.6
43	S43	Pump	Quad Volute Slurry Pump	QVSP	83	Diode	99	TK1 Tie-In	100	Chern	98	92.1
44	S44	Pump	Quad Volute Slurry Pump	QVSP	83	Diode	99	TK1 Tie-In	100	Sluicer	90	88.1
45	S45	Pump	Quad Volute Slurry Pump	QVSP	83	Diode	99	Hose-in-Hose	100	None	80	83.1
46	S46	Pump	Quad Volute Slurry Pump	QVSP	83	Diode	99	Hose-in-Hose	100	ARD	95	90.6
47	S47	Pump	Quad Volute Slurry Pump	QVSP	83	Diode	99	Hose-in-Hose	100	Chem	98	92.1
48	S48	Pump	Quad Volute Slurry Pump	QVSP	83	Diode	99	Hose-in-Hose	100	Sluicer	90	88.1
49	S49	Pump	Modified ADMP	Modified	89	ΠΡ	93	TK1 Tie-In	100	None	50	69.9
50	S50	Pump	Modified ADMP	Modified	89	TTP	93	TK1 Tie-In	100	ARD	95	92.4
51	S51	Pump	Modified ADMP	Modified	89	TTΡ	93	TK1 Tie-In	100	Chem	98	93.9
52	S52	Pump	Modified ADMP	Modified	89	ΠP	93	TK1 Tie-In	100	Sluicer	90	89.9
53	S53	Pump	Modified ADMP	Modified	89	ПΡ	93	TK1 Tie-In	100	Arm	95	92.4
54	S54	Pump	Modified ADMP	Modified	89	TTP	93	Hose-in-Hose	100	None	50	69.9
55	S55	Pump	Modified ADMP	Modified	89	ТТР	93	Hose-in-Hose	100	ARD	95	92.4
56	S56	Pump	Modified ADMP	Modified	89	TTP	93	Hose-in-Hose	100	Chem	98	93.9
57	S57	Pump	Modified ADMP	Modified	89	TTP	93	Hose-in-Hose	100	Sluicer	90	89.9
58	S58	Pump	Modified ADMP	Modified	89	TTP	93	Hose-in-Hose	100	Arm	95	92.4
59	S59	Pump	Modified ADMP	Modified	89	BIBO	95	TK1 Tie-In	100	None	50	70.1
60	S60	Pump	Modified ADMP	Modified	89	BIBO	95	TK1 Tie-In	100	ARD	95	92.6
61	S61	Pump	Modified ADMP	Modified	89	BIBO	95	TK1 Tie-In	100	Chem	98	94.1
62	S62	Pump	Modified ADMP	Modified	89	BIBO	95	TK1 Tie-In	100	Sluicer	90	90.1
63	S63		Modified ADMP	Modified		BIBO	95	TK1 Tie-In	100	Am	95	92.6
64	S64	Pump	Modified ADMP	Modified	89	BIBO	95	Hose-in-Hose	100	None	50	70.1
65	S65	Pump	Modified ADMP	Modified	÷	BIBO	95	Hose-in-Hose	100	ARD	95	92.6
66	S66		Modified ADMP	Modified		BIBO	95		100	Chem	98	94.1
67	S67		Modified ADMP		89	BIBO	95	Hose-in-Hose	100	Sluicer	90	90.1
68	S68		Modified ADMP	Modified	<u> </u>	BIBO	95	Hose-in-Hose		Arm	95	92.6
69	S69	`	Modified ADMP	Modified	89	Diode	99	TK1 Tie-In	100	None	50	70.5
. 70	S70 ·		Modified ADMP	_	89	Diode	99	TK1 Tie-In	100	ARD	95	93
71	S71	the second s	Modified ADMP	Modified		Diode	99	TK1 Tie-In	100	Chem	98	94.5
72	S72		Modified ADMP	Modified	· · · · · · · · · · · · · · · · · · ·	Diode	99	TK1 Tie-In	100	Sluicer	90	90.5
73	S73		Modified ADMP	Modified		Diode	99	TK1 Tie-In	100	Am	95	93
74	S74		Modified ADMP	Modified	÷	Diode	99	Hose-in-Hose	100	None	50	70.5
75	S75		Modified ADMP	-		Diode	99	Hose-in-Hose	100	ARD	95	93
76	S76		Modified ADMP	Modified		Diode	99		100	Chem	98	94.5
77	S77		Modified ADMP	Modified	89	Diode	99	Hose-in-Hose	100	Sluicer	90	90.5
78	S78	Pump	Modified ADMP		89	Diode	99	Hose-in-Hose	100	Arm	95	93
79	S79	Pump	Slurry Pumps	4SPs	92		93	TK1 Tie-In	100	None	85	88.6
80	S80	Pump	Slurry Pumps	4SPs	92		93	TK1 Tie-In	100	ARD	95	93.6
81	S81	Pump	Slurry Pumps	4SPs	92	ΠΡ	93	TK1 Tie-In	100	Chem	98	95.1
82	S82	Pump	Slurry Pumps	4SPs	92	TTP	93	TK1 Tie-In	100	Sluicer	90	91.1
83	S83	Pump	Slurry Pumps	4SPs	92	ΠΡ	93	TK1 Tie-In	100	Arm	95	93.6

Attachment 6: Strategy Scoring Table IV.3 Effectiveness Scores

Page 2 of 3

.

Attachment 6: Strategy Scoring Table IV.3 Effectiveness

84		Pump	Slurry Pumps	4SPs	92		93		100	None	85	88.6
85			Slurry Pumps	4SPs	92	TTP	93		100	ARD	95	93.6
86	<u>586</u>		Slurry Pumps		92	ŤΤΡ	93		100	Chem	98	95.1
87			Slurry Pumps	4SPs	92	TTP	93	Hose-in-Hose	100	Sluicer	90	91.1
88			Slurry Pumps		92		93	Hose-in-Hose	100	Am	95	93.6
89	S89	Pump	Slurry Pumps	4SPs	92	BIBO	95	TK1 Tie-In	100	None	85	88.8
90	S90	Pump	Slurry Pumps		92	BIBO	95	TK1 Tie-In	100	ARD	95	93.8
91	S91		Slurry Pumps	4SPs	92	BIBO	95	TK1 Tie-In	100	Chem	98	95.3
92	S92		Slurry Pumps		92	BIBO	95	TK1 Tie-In	100	Sluicer	90	91.3
93	S93		Slurry Pumps	4SPs	92	BIBO	95	TK1 Tie-In	100	Arm	95	93.8
94	S94		Slurry Pumps		92	BIBO	95	Hose-in-Hose	100	None	85	88.8
95	S95	Pump	Slurry Pumps	4SPs	92	BIBO	95	Hose-in-Hose	100		95	93.8
96	S96		Slurry Pumps	4SPs	92	BIBO	95	Hose-in-Hose	100	Chem	98	95.3
97	S97		Slurry Pumps	4SPs	92	BIBO	95	Hose-in-Hose	100	Sluicer	90	91.3
98	S98		Sturry Pumps	4SPs	92	8180	95	Hose-in-Hose	100	Arm	95	93.8
99	S99		Slurry Pumps	4SPs	92	Diode	99	TK1 Tie-In	100	None	85	89.2
100	S100	Pump	Slurry Pumps	4SPs	92	Diode	99	TK1 Tie-In	100	ARD	95	94.2
101	S101	Pump	Slurry Pumps	4SPs	92	Diode	99	TK1 Tie-In	100	Chem	98	95.7
102	S102	Pump	Slurry Pumps	4SPs	92	Diode	99	TK1 Tie-In	100	Sluicer	90	91.7
103	S103	Pump	Slurry Pumps	4SPs	92	Diode	99	TK1 Tie-In	100	Arm	95	94.2
104	S104	Pump	Slurry Pumps	4SPs	92	Diode	99	Hose-in-Hose	100	None	85	89.2
105	3105	Pump	Slurry Pumps	4SPs	92	Diode	99	Hose-in-Hose	100	ARD	95	94.2
106	S106	Pump	Slurry Pumps	4SPs	92	Diode	99	Hose-in-Hose	100	Chem	98	95.7
107	S107	Pump	Slurry Pumps	4SPs	92	Diode	99	Hose-in-Hose	100	Sluicer	90	91.7
108	S108	Pump	Slurry Pumps	4SPs	92	Diode	99	Hose-in-Hose	100	Arm	95	94.2
109	S109	Robotics	ARD	ARD	85	ARD	70	TK1 Tie-In	100	None	95	88.5
110		Robotics	ARD	ARD	85	ARD	70	Hose-in-Hose	100	None	95	88.5
111	S111	Robotics	Houdini/CSEE	Houdini	75	Houdini	70	TK1 Tie-In	100	None	95	84.5
112	S112	Robotics	Houdini/CSEE	Houdini	75	Houdini	70	Hose-in-Hose	100	None	95	84.5
113	\$113	Am	Am/CSEE	Arm	88	Arm	70	TK1 Tie-In	100	None	95	89.7
114	S114	Arm	Arm/CSEE	Arm	88	Am	70	Hose-in-Hose	100	None	95	89.7
115			Effectiveness N=F*.4+H*.1+L*.5		F		H		ĸ			N

Page 3 of 3

Attachment 6: Strategy Scoring Table IV.4 Complexity Scores

			Complexity N=F*.4+H*.05+J*.15+L*.4		F		Н		J		L	N
	Strat No	Туре	Strategy Description	F1	Complex	F2 PM	Complex	F2 RT	Complex	F3	Complex	Overal Score
1	S1	Pump	Advanced Design Mixer Pump	ADMP	87	ττρ	90	TK1 Tie-In	86	None	98	91.4
2	\$2	Pump	Advanced Design Mixer Pump	ADMP	87	ΠΡ	90	TK1 Tie-In	86	ARD	80	84.2
3	S 3	Pump	Advanced Design Mixer Pump	ADMP	87	TTP	90	TK1 Tie-In	86	Chem	71	80.6
4		Pump	Advanced Design Mixer Pump	ADMP	87	ΤΤΡ	90	TK1 Tie-In	86	Sluicer	70	80.2
5	S 5	Pump	Advanced Design Mixer Pump	ADMP	87	ΤΤΡ	90	Hose-in-Hose	83	None	98	90.95
6	S 6	Pump	Advanced Design Mixer Pump	ADMP	87	TTP	90	Hose-in-Hose	83	ARD	80	83.75
7	S7	Pump	Advanced Design Mixer Pump	ADMP	87	TTP	90	Hose-in-Hose	83	Chem	71	80.15
8	S8	Pump	Advanced Design Mixer Pump	ADMP	87	TTP	90		83	Sluicer	70	79.75
9	S9	Pump	Advanced Design Mixer Pump	ADMP	87	BIBO	86		86	None	98	91.2
10	S10	Pump	Advanced Design Mixer Pump		87	BIBO	86		86	ARD	84	8 5.6
11	S11	Pump	Advanced Design Mixer Pump		87	BIBO	86	TK1 Tie-In	86	Chem	71	80.4
12	S12	Pump	Advanced Design Mixer Pump		87	BIBO	86		86	Sluicer	70	80
13	S13	Pump	Advanced Design Mixer Pump		87	BIBO	86		83	None	98	90.75
14	S14	Pump_	Advanced Design Mixer Pump		87	BIBO	86	Hose-in-Hose		ARD	84	85.15
15	S15	Pump	Advanced Design Mixer Pump		87	BIBO	86	Hose-in-Hose		Chem	71	79.95
16	S16	Pump	Advanced Design Mixer Pump		87	BIBO	86		83	Sluicer	70	79.55
17	S17	Pump	Advanced Design Mixer Pump		87	Diode	87	TK1 Tie-In	86	None	98	91.25
18	S18	Pump	Advanced Design Mixer Pump		87	Diode	87		86	ARD	80	84.05
19	S19	Pump	Advanced Design Mixer Pump		87	Diode	87		86	Chem	71	80.45
20	S20	Pump	Advanced Design Mixer Pump	1	87	Diode	87	TK1 Tie-In	86	Sluicer	70	80.05
21	S21	Pump	Advanced Design Mixer Pump		87	Diode	87	Hose-in-Hose	83	None	98	90.8
22	S22	Pump	Advanced Design Mixer Pump	ADMP	87	Diode	87	Hose-in-Hose		ARD	80	83.6
23	S23	Pump	Advanced Design Mixer Pump	ADMP	87	Diode	87		83	Chem	71	80
24	S24	Pump	Advanced Design Mixer Pump		87	Diode	87	Hose-in-Hose		Sluicer	70	79.6
25	S25	Pump	Quad Volute Slurry Pump	QVSP	85	TTP	90	TK1 Tie-In	86	None	99	91
26	S26	Pump	Quad Volute Slurry Pump	QVSP	85	TΤΡ	90	TK1 Tie-In	86	ARD	80	83.4
27	S27 ·	Pump	Quad Volute Slurry Pump		85	ΠΡ	90	TK1 Tie-In	86	Chem	71	79.8
28	S28	Pump	Quad Volute Slurry Pump		85	TTP .	90	TK1 Tie-In	86	Sluicer	70	79.4
29	S29	Pump	Quad Volute Slurry Pump	QVSP	85	TTP	90	Hose-in-Hose		None	99	90.55
30	S30	Pump	Quad Volute Slurry Pump	QVSP	85	ΤΤΡ	90	Hose-in-Hose	÷	ARD	80	82.95
31	S31	Pump	Quad Volute Slurry Pump	QVSP	85	ΠΡ	90	Hose-in-Hose		Chem	71	79.35
32	S32	Pump	Quad Volute Slurry Pump		85	ΠP	90	Hose-in-Hose		Sluicer	70	78.95
33	S33	Pump	Quad Volute Slurry Pump	QVSP	85	BIBO	86	TK1 Tie-In	86	None	99	90.8
34	S34	Pump	Quad Volute Slurry Pump	QVSP	85 ·	BIBO	86	TK1 Tie-In	86	ARD	84	84.8
35	S35	Pump	Quad Volute Slurry Pump	QVSP	85	BIBO	86	TK1 Tie-In	86	Chem	71	79.6
36	S36	Pump	Quad Volute Slurry Pump	QVSP	85	BIBO	86	TK1 Tie-In	86	Sluicer	70	79.2
37	S37	Pump	Quad Volute Slurry Pump	QVSP	85	BIBO	86	Hose-in-Hose		None	99	90.35
38	S38	Pump	Quad Volute Slurry Pump	QVSP	85	BIBO	86	Hose-in-Hose		ARD	84	84.35
39	S39	Pump	Quad Volute Slurry Pump	QVSP	85	BIBO	86	Hose-in-Hose		Chem	71	79.15
40	S40	Pump	Quad Volute Slurry Pump	QVSP	85	BIBO	86	Hose-in-Hose		Sluicer	70	78.75
41		Pump	Quad Volute Slurry Pump		85	Diode	87		86	None	99	90.85
42	S42	Pump	Quad Volute Slurry Pump	QVSP	85	Diode	87	TK1 Tie-In	86	ARD	80	83.25
43	S43	Pump	Quad Volute Slurry Pump	QVSP	85	Diode	87	TK1 Tie-In	86	Chem	71	79.65
44	S44	Pump	Quad Volute Slurry Pump	QVSP	85	Diode	87	TK1 Tie-In	86	Sluicer	70	79.25
45	S45	Pump	Quad Volute Slurry Pump	QVSP	85	Diode	87	Hose-in-Hose		None	99	90.4
46	S46	Pump	Quad Volute Slurry Pump	QVSP	85	Diode	87	Hose-in-Hose	4	ARD	80	82.8
47	S47	Pump	Quad Volute Slurry Pump	QVSP	85	Diode	87	Hose-in-Hose		Chem	71	79.2
48	S48	Pump	Quad Volute Slurry Pump	QVSP	85	Diode	87	Hose-in-Hose		Sluicer		78.8
49	S49	Pump	Modified ADMP	Modified		TTP	90	TK1 Tie-In	86	None	98	87.4
50	S50	Pump	Modified ADMP	Modified		ΤΤΡ	90	TK1 Tie-In	86	ARD	80	80.2
51	S51	Pump	Modified ADMP	Modified		TTP	90	TK1 Tie-In	86	Chem	71	76.6
52	S52	Pump	Modified ADMP	Modified		TTP	90	TK1 Tie-In	86	Sluicer		76.2
53		Pump	Modified ADMP	Modified		TTP	90	TK1 Tie-In	86	Am	74	77.8
54		Pump	Modified ADMP	Modified		ΠΡ	90	Hose-in-Hose		None	98	86.95
55		Pump	Modified ADMP	Modified	77	ΠΡ	90	Hose-in-Hose		ARD	80	79.75
	S56	Pump	Modified ADMP	Modified	77	ΠΡ	90	Hose-in-Hose	183	Chem	71	76.15

.

Attachment 6: Strategy Scoring Table IV.4 Complexity Scores

				Table	IV.4 Comp	lexity Sco	res					·
57	S57	Pump	Modified ADMP	Modified	77	TTP	90	Hose-in-Hose			70	75.75
58	\$58		Modified ADMP	Modified	77		90	Hose-in-Hose	83	Arm -	74	77.35
59	S59			Modified	77	BIBO	86	TK1 Tie-In	86	None	98	87.2
60	S60			Modified	77	BIBO	86	TK1 Tie-In	86	ARD	84	81.6
61	S61			Modified	77	BIBO	86	TK1 Tie-In	86	Chem	71	76.4
62	S62			Modified	77	BIBO	86	TK1 Tie-In	86	Sluicer	70	76
63	S63						86	TK1 Tie-In	86	Am	74	77.6
	<u>563</u> S64						86	Hose-in-Hose	83	None	98	86.75
64				Modified		BIBO	86	Hose-in-Hose	83	ARD	84	81.15
65	S65			Modified		BIBO	86	Hose-in-Hose		Chem	71	75.95
66	S66				77		86	Hose-in-Hose			70	75.55
67	S67				77		86	Hose-in-Hose		Arm	74	77.15
68	S68				77		87		86	None	98	87.25
69	S69				77		87		86	ARD	80	80.05
70	S70		Modified ADMP				87		86	Chern	71	76.45
71	S71				77		87		86	Sluicer	70	76.05
72	S72				77	Diode				Am	74	77.65
73	S73		Modified ADMP		77	Diode	87	TK1 Tie-In	86			86.8
.74	S74			Modified		Diode	87		83	None ARD	98	79.6
75	S75				77	Diode	87	Hose-in-Hose			80 71	79.6
76	S76			Modified		Diode	87	Hose-in-Hose		Chem		75.6
77	S77			Modified		Diode	87	Hose-in-Hose		Sluicer	70	
78	S78				77	Diode	87		83	Am	74	77.2
79	S79	Pump	Slurry Pumps	4SPs	70	ΠΡ	90	TK1 Tie-In	86	None	98	84.6
80	S80	Pump	Slurry Pumps	4SPs	70	ŤΤΡ	90	TK1 Tie-In	86	ARD	80	77.4
81	S81	Pump	Slurry Pumps	4SPs	70	TTP	90	TK1 Tie-In	86	Chem	71	73.8
82	S82	Pump	Slurry Pumps	4SPs	70	TTP	90	TK1_Tie-In	86	Sluicer	70	73.4
83	S83	Pump	Slurry Pumps	4SPs	70	TTΡ	90	TK1 Tie-In	86	Am	74	75
84	\$84		Slurry Pumps	4SPs	70	TTP	90	Hose-in-Hose		None	98	84.15
85	S85		Siurry Pumps	4SPs	70	TTP	90	Hose-in-Hose	83	ARD	80	76.95
86	S86	Pump	Slurry Pumps	4SPs	70	ΤΤΡ	90	Hose-in-Hose	83	Chem	71	73.35
87	S87	Pump	Slurry Pumps	4SPs	70	TTP	90	Hose-in-Hose		Sluicer	70	72.95
88	S88	Pump	Siurry Pumps	4SPs	70	ΠΡ]90	Hose-in-Hose	83	Arm	74	74.55
89	S89 \	Pump	Slurry Pumps	4SPs	70	BIBO	86	TK1 Tie-In	86	None	98	84.4
90	S90	Pump	Slurry Pumps	4SPs	70	BIBO	86	TK1 Tie-In	86	ARD	84	78.8
91	S91	Pump	Slurry Pumps	4SPs	70	BIBO	86	TK1 Tie-In	86	Chem	71	73.6
92	S92	Pump	Slurry Pumps	4SPs	70	BIBO	86	TK1 Tie-In	86	Sluicer	70	73.2
93	S93	Pump	Slurry Pumps	4SPs	70	BIBO	86	TK1 Tie-In	86	Am	74	74.8
	<u> </u>	Pump	Slurry Pumps	4SPs	70	BIBO	86	Hose-in-Hose	83	None	98	83.95
94			Slurry Pumps	4SPs	70	BIBO	86	Hose-in-Hose		ARD	84	78.35
95	\$95 006	Pump	Slurry Pumps	4SPs	70	BIBO	86	Hose-in-Hose		Chem	71	73.15
96	S96	Pump		4SPs	70	BIBO	86	Hose-in-Hose		Sluicer	70	72.75
97	S97	Pump	Slurry Pumps	4SPs	70	BIBO	86	Hose-in-Hose		Arm	74	74.35
98	<u></u>	Pump	Slurry Pumps	45Ps	70	Diode	87	TK1 Tie-In	86	None	98	84.45
99	S99	Pump	Slurry Pumps	÷	70		87	TK1 Tie-In	86	ARD	80	77.25
100			Sturry Pumps	4SPs		Diode	87	TK1 Tie-In	86	Chem	71	73.65
101	S101	Pump	Slurry Pumps	4SPs	70	Diode	87	TK1 Tie-In	86	Sluicer		73.25
102	S102	Pump	Slurry Pumps	4SPs	70	Diode		TK1 Tie-In	86	Am	74	74.85
103		Pump	Slurry Pumps	4SPs	70	Diode	87			None	98	84
104		Pump	Slurry Pumps	4SPs	70	Diode	87	Hose-in-Hose		ARD	80	76.8
105		Pump	Slurry Pumps	4SPs	70	Diode	87	Hose-in-Hose				73.2
106	S106	Pump	Slurry Pumps	4SPs	70	Diode	87	Hose-in-Hose		Chern	71	
107	S107	Pump	Slurry Pumps	4SPs	70	Diode	87	Hose-in-Hose		Sluicer		72.8
108	S108	Pump	Slurry Pumps	4SPs	70	Diode	87	Hose-in-Hose		Arm	74	74.4
109		Robotics	ARD	ARD	82	ARD	82	TK1 Tie-In	86	None	93	87
110		Robotics		ARD	82	ARD	82	Hose-in-Hose		None	93	86.55
111	1		Houdini/CSEE	Houdini	74	Houdini	74	TK1 Tie-In	86	None	94	83.8
112			Houdini/CSEE	Houdini	74	Houdini	74	Hose-in-Hose		None	94	83.35
113		Arm	Am/CSEE	Arm	74	Arm	74	TK1 Tie-In	86	None	93	83.4
114	<u> </u>	Arm	Arm/CSEE	Arm	74	Am	74	Hose-in-Hose	83	None	93	82.95
115		<u> </u>	Complexity	1	F	1	H -		J		L	N
113			N=F*.4+H*.05+J*.15+L*.4	1		1						
	L	L	Tra	<u> </u>								

Attachment 6: Strategy Scoring Table IV.5 Authorization Basis Impacts Scores

			AB Impacts N=F*.1+H*.15+J*.4+L*.35		F		н		J		Ĺ	N
	Strat No	Туре	Strategy Description	F1	AB	F2 PM	AB	F2 RT	AB	F3	AB	Overall Score
1		Pump	Advanced Design Mixer Pump	ADMP	86	TTP	100	TK1 Tie-In	89	None	100	94.2
2	S2	Pump	Advanced Design Mixer Pump	ADMP	86	ТТР	100	TK1 Tie-In	89	ARD	81	87.55
3	S3	Pump	Advanced Design Mixer Pump		86	TTP	100	TK1 Tie-In	89	Chem	35	71.45
4	S4	Pump	Advanced Design Mixer Pump	ADMP	86	TTP	100	TK1 Tie-In	89	Sluicer	78	86.5
5	S5	Pump	Advanced Design Mixer Pump		86	ŤΤΡ	100		58	None	100	81.8
6	S6	Pump	Advanced Design Mixer Pump		86	TTP	100		58	ARD	81	75.15
7	S7	Pump	Advanced Design Mixer Pump		86		100		58	Chem	35	59.05
8	S8	Pump	Advanced Design Mixer Pump		86	ΠΡ	100		58	Sluicer	78	74.1
9	S9	Pump	Advanced Design Mixer Pump		86	BIBO	100	TK1 Tie-In	89	None	100	94.2
10	S10	Pump	Advanced Design Mixer Pump		86	BIBO	100	TK1 Tie-In	89	ARD	81	87.55
11	S11	Pump	Advanced Design Mixer Pump		86	BIBO	100	TK1 Tie-In	89	Chem	35 78	71.45 86.5
12	S12	Pump	Advanced Design Mixer Pump		86	BIBO	100	TK1 Tie-In	89 58	Sluicer	100	81.8
13	S13	Pump	Advanced Design Mixer Pump		86	BIBO	100	Hose-in-Hose		ARD	81	75.15
14	S14	Pump	Advanced Design Mixer Pump		86	BIBO	100	Hose-in-Hose	58	Chem	35	59.05
15	S15	Pump	Advanced Design Mixer Pump		86	BIBO BIBO	100		58 58	Sluicer	78	74.1
16	<u>S16</u>	Pump	Advanced Design Mixer Pump		86		90	TK1 Tie-In	50 89	None	100	92.7
17	S17	Pump	Advanced Design Mixer Pump		86 86	Diode Diode	90	TK1 Tie-In	89 89	ARD	81	86.05
18	S18	Pump	Advanced Design Mixer Pump		86 86	Diode	90	TK1 Tie-In	89	Chem	35	69.95
19	S19	Pump	Advanced Design Mixer Pump		86	Diode	90	TK1 Tie-In	89	Sluicer	78	85
20	S20	Pump	Advanced Design Mixer Pump Advanced Design Mixer Pump		86	Diode	90	Hose-in-Hose		None	100	80.3
21	S21	Pump	Advanced Design Mixer Pump		86	Diode	90	Hose-in-Hose		ARD	81	73.65
22	S22	Pump	Advanced Design Mixer Pump	ADMP	86	Diode	90	Hose-in-Hose		Chem	35	57.55
23	<u>S23</u>	Pump	Advanced Design Mixer Pump		86	Diode	90	Hose-in-Hose		Sluicer	78	72.6
24	S24 S25	Pump Pump	Quad Volute Slurry Pump		91	TTP	100	TK1 Tie-In	89	None	100	94.7
25		Pump	Quad Volute Slurry Pump	QVSP	91	TTP	100	TK1 Tie-In	89	ARD	81	88.05
26 27	\$20 \$27	Pump	Quad Volute Slurry Pump	QVSP	91	TTP	100	TK1 Tie-In	89	Chem	35	71.95
28		Pump	Quad Volute Slurry Pump	QVSP	91	ТТР	100	TK1 Tie-In	89	Sluicer	78	87
29		Pump	Quad Volute Slurry Pump	QVSP	91	TTP	100	Hose-in-Hose	58	None	100	82.3
30		Pump	Quad Volute Slurry Pump	QVSP	91	ΠΡ	100	Hose-in-Hose		ARD	81	75.65
31	S31	Pump	Quad Volute Slurry Pump	OVSP	91	TTP	100	Hose-in-Hose		Chem	35	59.55
32		Pump	Quad Volute Slurry Pump	QVSP	91	TTP	100	Hose-in-Hose	58	Sluicer	78	74.6
33		Pump	Quad Volute Slurry Pump	QVSP	91	BIBO	100	TK1 Tie-In	89	None	100	94.7
34	534	Pump	Quad Volute Slurry Pump	OVSP	91	BIBO	100	TK1 Tie-In	89	ARD	81	88.05
35		Pump	Quad Volute Slurry Pump	QVSP	91	BIBO	100 _	TK1 Tie-In	89	Chern	35	71.95
36		Pump	Quad Volute Slurry Pump	QVSP	91	BIBO	100	TK1 Tie-In	89	Sluicer	78	87
37	S37	Pump	Quad Volute Slurry Pump	QVSP	91 _	BIBO	100	Hose-in-Hose		None	100	82.3
38		Pump	Quad Volute Slurry Pump	QVSP	91	BIBO	100	Hose-in-Hose		ARD	81	75.65
39		Pump	Quad Volute Slurry Pump	QVSP	91	BIBO	100	Hose-in-Hose		Chem	35	59.55
40		Pump	Quad Volute Slurry Pump	QVSP_	91	BIBO	100	Hose-in-Hose	58	Sluicer	78	74.6
41		Pump	Quad Volute Slurry Pump	OVSP	91	Diode	90	TK1 Tie-In	89	None	100	93.2
42		Pump	Quad Volute Slurry Pump	OVSP	91	Diode	90	TK1 Tie-In	89	ARD	81	86.55
43		Pump	Quad Volute Slurry Pump	QVSP	91	Diode	90	TK1 Tie-In	89	Chem	35	70.45
44	S44	Pump	Quad Volute Slurry Pump	QVSP	91	Diode	90	TK1 Tie-In	89	Sluicer		85.5
45		Pump	Quad Volute Slurry Pump	QVSP	91	Diode	90	Hose-in-Hose		None	100	80.8
46		Pump	Quad Volute Slurry Pump	QVSP	91	Diode	90	Hose-in-Hose	_	ARD	81	74.15
47		Pump	Quad Volute Slurry Pump	QVSP	91	Diode	90	Hose-in-Hose	-	Chem	35	58.05
48		Pump	Quad Volute Slurry Pump	QVSP	91	Diode	90	Hose-in-Hose		Sluicer		73.1
49		Pump	Modified ADMP	Modified	-	TTP	100	TK1 Tie-In	89	None	100	94.2
50		Pump	Modified ADMP	Modified			100	TK1 Tie-In	89	ARD	81	87.55
51		Pump	Modified ADMP	Modified		TTP	100	TK1 Tie-In	89	Chem	35	71.45
52		Pump	Modified ADMP	Modified		TTP	100	TK1 Tie-In	89	Sluicer	_	86.5
5	3 S53	Pump	Modified ADMP	Modified		<u> </u>	100	<u>TK1 Tie-In</u>	89	Am	178	86.5
54		Pump	Modified ADMP	Modified		TTP	100	Hose-in-Hose		None	100	81.8
-55		Pump	Modified ADMP	Modified		TTP	100	Hose-in-Hose		ARD	81	
56	S \$56	Pump	Modified ADMP	Modified	[86	TTP	100	Hose-in-Hose	9 <u> 58</u>	Chem	35	59.05

,

Attachment 6: Strategy Scoring

57 58 59 60 61 62 63 64 65 66 65 66 67 68 69	S57 S58 S59 S60 S61 S62 S63 S64 S65	Pump Pump Pump Pump Pump	Modified ADMP Modified ADMP Modified ADMP	Modified Modified Modified	86	ΠΡ	100	Hose-in-Hose Hose-in-Hose	58		78 78	74.1
58 59 60 61 62 63 64 65 66 67 68	\$59 \$60 \$61 \$62 \$63 \$64	Pump Pump Pump Pump	Modified ADMP Modified ADMP	Modified						Am	78	74.1
59 60 61 62 63 64 65 66 67 68	S60 S61 S62 S63 S64	Pump Pump Pump	Modified ADMP		86	0.00		T				
60 61 62 63 64 65 66 67 68	S60 S61 S62 S63 S64	Pump Pump Pump				BIBO [100	TK1 Tie-In	89	None	100	94.2
61 62 63 64 65 66 67 68	S61 S62 S63 S64	Pump Pump		Modified	86	BIBO	100	TK1 Tie-In	89	ARD	81	87.55
62 63 64 65 66 67 68	S62 S63 S64	Pump	Modified ADMP	Modified	86	BIBO	100	TK1 Tie-In	89	Chem	35	71.45
63 64 65 66 67 68	S63 S64			Modified	86	BIBO	100	TK1 Tie-In	89	Sluicer	78	86.5
64 65 66 67 68	S64	Pump		Modified	86	BIBO	100	TK1 Tie-In	89	Am	78	86.5
65 66 67 68				Modified	86	BIBO	100	Hose-in-Hose	58	None	100	81.8
66 67 68	500 I			Modified	86	BIBO	100	Hose-in-Hose	58	ARD	81	75.15
67 68	S66			Modified		BIBO		Hose-in-Hose		Chem	35	59.05
68	S67			Modified		BIBO	100	Hose-in-Hose	58	Sluicer	78	74.1
	S68			Modified		BIBO	100	Hose-in-Hose	58	Arm	78	74.1
	S69			Modified			90	TK1 Tie-In	89	None	100	92.7
70	\$70			Modified			90	TK1 Tie-In	89	ARD	81	86.05
71	S71	*** *		Modified			90	TK1 Tie-In	89	Chem	35	69.95
72	S72			Modified			90		89		78	85
73	S73			Modified					89	Arm	78	85
74				Modified				Hose-in-Hose		None	100	80.3
75				Modified				Hose-in-Hose			81	73.65
75	\$75 \$76			Modified			90	Hose-in-Hose			35	57.55
-77	S70 S77			Modified			90	Hose-in-Hose			78	72.6
	S78			Modified		Diode	90	Hose-in-Hose		Am	78	72.6
78	<u>578</u> 579		Slurry Pumps	4SPs	89	TTP	100		89	None	100	94.5
79	<u>579</u> S80				89	TTP	100		89	ARD	81	87.85
80			Slurry Pumps		89	ТТР	100		89	Chem	35	71.75
81	S81				89	TTP	100	TK1 Tie-In	89	+	78	86.8
82	S82				89	TTP	100	TK1 Tie-In	89	Am	78	86.8
83	<u>\$83</u>		Slurry Pumps		89	TTP	100	Hose-in-Hose		None	100	82.1
84	<u>S84</u>		Slurry Pumps	4SPs	89	TTP	100	Hose-in-Hose	· · · · · · · · · · · · · · · · · · ·	ARD	81	75.45
85	S85		Slurry Pumps	4SPs	89	TTP	100	Hose-in-Hose		-	35	59.35
86	S86		Slurry Pumps	4SPs	89	ΠΡ	100	Hose-in-Hose	÷		78	74.4
87	S87		Slurry Pumps	4SPS 4SPs	89	ТТР	100	Hose-in-Hose		Arm	78	74.4
88	S88		Slurry Pumps			BIBO	100	TK1 Tie-In	30 . 89	None	100	94.5
89	S89 `		Slurry Pumps	4SPs	89 89	BIBO	100	TK1 Tie-In	89	ARD	81	87.85
90	S90		Slurry Pumps		89	BIBO	100	TK1 Tie-In	89	Chem	35	71.75
91	S91		Slurry Pumps	4SPs		BIBO	100	TK1 Tie-In	89	Sluicer	78	86.8
92	_ <u></u>		Slurry Pumps	4SPs	89		100	TK1 Tie-In	89	Am	78	86.8
93	S93		Slurry Pumps	4SPs	89	BIBO	+	Hose-in-Hose		None	100	82.1
94	<u>\$94</u>		Slurry Pumps	4SPs	89	BIBO	100			ARD	81	75.45
95	<u>S95</u>		Slurry Pumps	4SPs	89	BIBO	100	Hose-in-Hose		Chem	35	59.35
96	S96		Slurry Pumps	4SPs	89	BIBO	100	Hose-in-Hose			78	74.4
97	<u>S97</u>		Slurry Pumps	4SPs	89	BIBO	100	Hose-in-Hose	•		78	74.4
98	<u>\$98</u>	Pump	Slurry Pumps	4SPs	89	BIBO	100	Hose-in-Hose		Arm	100	93
99	<u>S99</u>		Slurry Pumps	4SPs	89	Diode	90	TK1 Tie-In	89	ARD	81	86.35
100	S100		Slurry Pumps	4SPs	89	Diode	90	TK1 Tie-In	89			70.25
101	S101		Slurry Pumps	4SPs	89	Diode	90	TK1 Tie-In	89	Chem	35	
102	S102		Slurry Pumps	4SPs	89	Diode	90	TK1 Tie-In	89		78	85.3
103	S103		Slurry Pumps	4SPs	89	Diode	90	TK1 Tie-In	89	Arm	78	85.3
104	S104	Pump	Slurry Pumps	4SPs	89	Diode	90	Hose-in-Hose		None	100	80.6
105	3105	Pump	Slurry Pumps	4SPs	89	Diode	90	Hose-in-Hose		ARD	81	73.95
106	S106	Pump	Slurry Pumps	4SPs	89	Diode	90	Hose-in-Hose		Chem	35	57.85
107	S107	Pump	Slurry Pumps	4SPs	89	Diode	90	Hose-in-Hose		Stuicer	78	72.9
108	S108	Pump	Slurry Pumps	4SPs	89	Diode	90	Hose-in-Hose		Am	78	72.9
109	S109		ARD	ARD	81	ARD	81	TK1 Tie-In	89	None	100	90.85
110	S110	Robotics	ARD	ARD	81	ARD	81	Hose-in-Hose	58	None	100	78.45
111	S111		Houdini/CSEE	Houdini	82	Houdini	82	TK1 Tie-In	89	None	100	91.1
112	S112		Houdini/CSEE	Houdini	82	Houdini	82	Hose-in-Hose	58	None	100	78.7
113	\$113	Arm	Arm/CSEE	Arm	78	Am	78	TK1 Tie-In	89	None	100	90.1
114	S114	Arm	Arm/CSEE	Ārm	78	Arm	78	Hose-in-Hose	58	None	100	77.7
115			AB Impacts	1	F	1	H -	T	J		L	N
			N=F*.1+H*.15+J*.4+L*.35					1_				

.

Attachment 6: Strategy Scoring Table IV.6 Strategy Unweighted Score Summary

1 2 3 4 5 6	Strat No S1 S2 S3 S4	Pump	Strategy Description	F1		Formula:		J	İκ	L	M	Ň	J+K+L+
1 2 3 4 5 6	No S1 S2 S3	Pump Pump		F1	1-0-0-0			Ī		-	NI I	1.4	M+N
2 3 4 5 6	S2 S3	Pump	Advanced Design Mixer	1	F2 PM	F2 RT	F3	Cost to Deploy	Cost	Effectiv eness	Complexity	AB Impacts	Raw Score
3 4 5 6	S3		Pump	ADMP	ттр	TK1 Tie-In	None	0	0	0	0	0	0
4 5 6			Advanced Design Mixer Pump	ADMP	TTP	TK1 Tie-In	ARD	67.75	3	94	84.2	87.55	334
5	S4	Pump	Advanced Design Mixer Pump	ADMP	ΠΡ	TK1 Tie-In	Chem	49.5	15	95.5	80.6	71.45	297
6		Pump	Advanced Design Mixer Pump	ADMP	ΠΡ	TK1 Tie-In	Sluicer	76.5	6.75	91.5	80.2	86.5	335
	S 5	Pump	Advanced Design Mixer Pump	ADMP	ттр	Hose-in-Hose	None	0	0	0	0	0	0
	S6	Pump	Advanced Design Mixer Pump	ADMP	ТТР	Hose-in-Hose	ARD	67.75	5	94	83.75	75.15	321
7	S7	Pump	Advanced Design Mixer	ADMP	ТТР	Hose-in-Hose	Chem	50.5	17	95.5	80.15	59.05	285
8	S8	Pump	Advanced Design Mixer Pump	ADMP	ΠΡ	Hose-in-Hose	Sluicer	77.5	8.75	91.5	79.75	74.1	323
9	S9	Pump	Advanced Design Mixer Pump	ADMP	BIBO	TK1 Tie-In	None	0	0	0	0	0	0
10 5	S10	Pump	Advanced Design Mixer Pump	ADMP	BIBO	TK1 Tie-In	ARD	72.75	15	94.2	85.6	87.55	340
11 5	S11	Pump	Advanced Design Mixer	ADMP	BIBO	TK1 Tie-In	Chem	55.5	27	95.7	80.4	71.45	303
12 5	S12	Pump	Advanced Design Mixer	ADMP	BIBO	TK1 Tie-In	Sluicer	82.5	18.75	91.7	80	86.5	341
13 5	S13	Pump	Advanced Design Mixer Pump	ADMP	BIBO	Hose-in-Hose	None	0	0	0	0	0	0
14 \$	S14	Pump	Advanced Design Mixer Pump	ADMP	BIBO	Hose-in-Hose.	ARD	73.75	17	94.2	85.15	75.15	328
15 5	S15	Pump	Advanced Design Mixer Pump	ADMP	BIBO	Hose-in-Hose	Chem	56.5	29	95.7	79.95	59.05	291
16 5	S16	Pump	Advanced Design Mixer Pump	ADMP	BIBO	Hose-in-Hose	Sluicer	83.5	20.75	91.7	79.55	74.1	329
17 5	S17	Pump	Advanced Design Mixer Pump	ADMP	Diode	TK1 Tie-In	None	0	0	0	0	0	0
18 5	S18	Pump	Advanced Design Mixer	ADMP	Diode	TK1 Tie-In	ARD	65.25	9	94.6	84.05	86.05	330
19 9	S19		Advanced Design Mixer Pump	ADMP	Diode	TK1 Tie-In	Chem	48	21	96.1	80.45	69.95	295
20 5	S20	Pump	Advanced Design Mixer Pump	ADMP	Diode	TK1 Tie-In	Sluicer	75	12.75	92.1	80.05	85	332
21	S21	Pump	Advanced Design Mixer Pump	ADMP	Diode	Hose-in-Hose	None	0	Ō	0	0	0	0
22	S22	Pump	Advanced Design Mixer	ADMP	Diode	Hose-in-Hose	ARD	66.25	11	94.6	83.6	73.65	318
23	S23	Pump	Advanced Design Mixer Pump	ADMP	Diode	Hose-in-Hose	Chem	49	23	96.1	80	57.55	283
24 \$	S24	Pump	Advanced Design Mixer Pump	ADMP	Diode	Hose-in-Hose	Sluicer	76	14.75	92.1	79.6	72.6	320
25	S25	Pump	Quad Volute Slurry Pump	QVSP	ΠΡ	TK1 Tie-In	None	0	0	0	0	0	0
	S26	Pump	Quad Volute Slurry Pump	QVSP	TTP	TK1 Tie-In	ARD	58.5	3	90	83.4	88.05	320
			Quad Volute Slurry Pump	QVSP	TTP	TK1 Tie-In	Chem	41.25	15	91.5	79.8	71.95	285
			Quad Volute Slurry Pump	QVSP	TTP	TK1 Tie-In	Sluicer	68.25	6.75	87.5	79.4	87	322
	S29		Quad Volute Slurry Pump			Hose-in-Hose		0	0	10 190	0	0	0
30 31 31			Quad Volute Slurry Pump Quad Volute Slurry Pump	QVSP QVSP	TTP TTP	Hose-in-Hose Hose-in-Hose		59.5 42.25	5 17	90.	82.95 79.35	75.65	308 273

.

Attachment 6: Strategy Scoring Table IV. 6 Strategy Unweighted Score Summary

	D	Oued Melute Skyrn Ryme	ÖVED I	ΤΤΡ Ι	Hoso in Hoso	Sluicer	69.25	8.75	87.5	78.95	74.6	310
32 \$32						None	-		0	0	0	0
33 S33						ARD	64.5		90.2	84.8	88.05	328
34 S34					TK1 Tie-In	Chem			91.7	79.6	71.95	291
35 S35					TK1 Tie-In		74.25		87.7	79.2	87	328
36 <u>S</u> 36						None		0	0	0	0	0
37 S37							65.5		90.2	84.35	75.65	316
38 S38					Hose-in-Hose		48.25		91.7	79.15	59.55	279
39 S39						Chem	75.25		87.7	78.75	74.6	316
40 S40					Hose-in-Hose	Sluicer		0	0	0	0	0
41 S41					TK1 Tie-In	None	0 57	9	90.6	83.25	86.55	317
42 S42				_	TK1 Tie-In	ARD	39.75	21	92.1	79.65	70.45	282
43 S43					TK1 Tie-In	Chem			88.1	79.25	85.5	320
44 S44		Quad Volute Slurry Pump			TK1 Tie-In	Sluicer	66.75 0	0	00.1	0	0	0
45 S45		Quad Volute Slurry Pump				None		11	90.6	82.8	74.15	306
46 S46		Quad Volute Slurry Pump	QVSP			ARD	58			79.2	58.05	270
47 S47		Quad Volute Slurry Pump				Chem	40.75	23	92.1		73.1	
48 S48		Quad Volute Slurry Pump				Sluicer	67.75		88.1	78.8	0	308
49 S49					TK1 Tie-In	None	0	0	0	0		0
50 S50		Modified ADMP			TK1 Tie-In	ARD	72	60	92.4	80.2 76.6	87.55	332
51 S51		Modified ADMP		TTP	TK1 Tie-In	Chem	53.25	72	93.9		86.5	295 334
52 S52		Modified ADMP		TTP	TK1 Tie-In	Sluicer	81		89.9	76.2	86.5	296
53 S53		Modified ADMP	Modified	TTP	TK1 Tie-In	Arm	39.75	60 0	92.4 0	0	0.08	296
54 S54	1	Modified ADMP	Modified			None	0	-	<u> </u>	79.75	75.15	320
55 S55		Modified ADMP	Modified	TTP	Hose-in-Hose	ARD	73	62	92.4		59.05	283
56 S56		Modified ADMP	Modified	ΠР	Hose-in-Hose	Chem	54.25	74	93.9	76.15	74.1	322
57 S57	_	Modified ADMP	Modified	TTP		Sluicer	82		89.9	75.75	74.1	285
58 S58		Modified ADMP	Modified	TTP		Arm	40.75	62	92.4	77.35 0	0	0
59 S59		Modified ADMP		BIBO	TK1 Tie-In	None	0 78	0	0 92.6	81.6	87.55	340
60 S60		Modified ADMP		BIBO	TK1 Tie-In	ARD		84		76.4	71.45	301
61 S61		Modified ADMP		BIBO	TK1 Tie-In	Chem	59.25 87	75.75	94.1 90.1	76.4	86.5	340
62 S62		Modified ADMP	Modified	BIBO	TK1 Tie-In	Sluicer	45.75	75.75	92.6	77.6	86.5	302
63 S63		Modified ADMP	Modified	BIBO	TK1 Tie-In	Arm	45.75	0	0	0	00.5	0
64 S64		Modified ADMP	Modified	BIBO	Hose-in-Hose	None ARD	79	74	92.6	81.15	75.15	328
65 S65	_	Modified ADMP	Modified Modified	BIBO BIBO	Hose-in-Hose Hose-in-Hose		60.25	86	94.1	75.95	59.05	289
66 S66		Modified ADMP	Modified	BIBO			88	77.75	90.1	75.55	74.1	328
67 S67	_	Modified ADMP	Modified		Hose-in-Hose		46.75	74	92.6	77.15	74.1	291
68 <u>S68</u>		Modified ADMP	Modified	Diode	TK1 Tie-In	None	0	0	0	0	0	0
69 S69		Modified ADMP		+	TK1 Tie-In	ARD	70.5	66	93	80.05	86.05	330
70 S70	_	Modified ADMP	Modified	Diode Diode	TK1 Tie-In	Chem	51.75	78	94.5	76.45	69.95	293
71 S71		Modified ADMP	Modified Modified	•	TK1 Tie-In	Sluicer	79.5	69.75	90.5	76.05	85	331
72 \$72		Modified ADMP	Modified	Diode	TK1 Tie-In	Am	38.25	66	93	77.65	85	294
73 573				Diode	Hose-in-Hose	None	00.20	0	0	0	0	0
74 574		Modified ADMP	Modified Modified		Hose-in-Hose		71.5	68	93	79.6	73.65	318
75 \$75		Modified ADMP			Hose-in-Hose		52.75	80	94.5	76	57.55	281
		Modified ADMP			Hose-in-Hose		80.5	71.75		75.6	72.6	319
77 \$77		Modified ADMP	4	<u>+</u>	Hose-in-Hose	+	39.25	68	93	77.2	72.6	282
			4SPs	TTP	TK1 Tie-In	None	0	0	0	0	0	0
/91 579		Slurry Pumps	4SPs 4SPs	TTP	TK1 Tie-In	ARD	45	0	93.6	77.4	87.85	304
		Slurry Pumps	4SPs 4SPs	TTP	TK1 Tie-In	Chem	28.5	12	95.1	73.8	71.75	269
81 S81		Slurry Pumps	4SPs	TTP	TK1 Tie-In	Sluicer	55.5	3.75	91.1	73.4	86.8	307
82 S82		Slurry Pumps	4SPs	TTP	TK1 Tie-In	Arm	13.5	0	93.6	75	86.8	269
83 S83		Sturry Pumps	4SPs		Hose-in-Hose		0	lō	0	10	- 00.0-+	0
84 S84		Slurry Pumps	4SPs		Hose-in-Hose		46	2	93.6	76.95	75.45	292
85 S85		Slurry Pumps	4SPs 4SPs	ΠΡ	Hose-in-Hose	*	29.5	14	95.1	73.35	59.35	257
86 586		Slurry Pumps	4SPs 4SPs	TTP	Hose-in-Hose		56.5	5.75	91.1	72.95	74,4	295
87 \$87		Slurry Pumps	4SPs 4SPs		Hose-in-Hose		14.5	2	93.6	74.55	74.4	257
88 S88		Slurry Pumps	4SPS 4SPs	BIBO	TK1 Tie-In	None	0	0	0	0	0	0
89 589		Slurry Pumps	4SPs	BIBO	TK1 Tie-In	ARD	151	12	93.8	78.8	87.85	311
90 S90		Slurry Pumps	14555		Trvi ne-m	IVUD	<u> </u>		100.0		1	

.

Attachment 6: Strategy Scoring Table IV.6 Strategy Unweighted Score Summary

116								J	ĸ	L	M	N	J+K+L+ M+N
115								IV.2 V	TAB IV.2 W	N	TAB IV.4 N	TAB IV.5 N	
	S114	Arm	Arm/CSEE	Am	Arm	Hose-in-Hose	None	61.75	32		82.95	77.7	312
113	S113		Arm/CSEE	Arm	Arm	TK1 Tie-In	None	60.75	30	89.7	83.4	90.1	324
112	S112	cs	Houdini/CSEE	Houdini	ni	Hose-in-Hose		85.75	32	84.5	83.35	78.7	332
		cs	Houdini/CSEE	Houdini	ni	TK1 Tie-In	None	84.75	30		83.8	91.1	344
	-	Roboti cs		ARD	ARD	Hose-in-Hose	None	97	32	88.5	86.55	78.45	351
109	S109	Roboti cs	ARD	ARD	ARD	TK1 Tie-In	None	96	30	88.5	87	90.85	362
108	S108	Pump	Slurry Pumps	4SPs	Diode	Hose-in-Hose	Arm	13	8	94.2	74.4	72.9	255
107	S107	Pump	Slurry Pumps	4SPs	Diode	Hose-in-Hose	Sluicer	55	11.75	91.7	72.8	72.9	292
		<u> </u>	Slurry Pumps	4SPs		Hose-in-Hose		28	20	95.7	73.2	57.85	255
	-		Slurry Pumps	4SPs		Hose-in-Hose		44.5	8	94.2	76.8	73.95	289
			Slurry Pumps	4SPs		Hose-in-Hose		0	lo	0	0	0	· 0
			Slurry Pumps	4SPs	Diode	TK1 Tie-In	Arm	12	6		74.85	85.3	266
			Slurry Pumps	4SPs	Diode	TK1 Tie-In	Sluicer	54	9.75	91.7	73.25	85.3	304
			Slurry Pumps	4SPs	Diode	TK1 Tie-In	Chem	27	18	95.7	73.65	70.25	267
			Slurry Pumps	4SPs	Diode	TK1 Tie-In	ARD	43.5	6	94.2	77.25	86.35	301
99			Slurry Pumps	4SPs	Diode		None	0	0		0	0	200
97 98	S97 S98		Sturry Pumps	4SPs 4SPs		Hose-in-Hose		20.5	114		74.35	74.4	263
96			Slurry Pumps	4SPs 4SPs		Hose-in-Hose		62.5			73.15	74.4	301
95			Slurry Pumps	4SPs 4SPs		Hose-in-Hose Hose-in-Hose		5∠ 35.5	26	95.3	78.35	75.45 59.35	263
94			Slurry Pumps	4SPs		Hose-in-Hose		52	14	93.8	0 78.35	75.45	300
93	S93		Slurry Pumps	4SPs			Am	19.5 0	0		74.8	86.8 0	275
92	\$92-		Slurry Pumps	4SPs	BIBO	TK1 Tie-In	Sluicer	61.5	15.75		73.2	86.8	313
91			Slurry Pumps	4SPs		÷	Chem	34.5	24		73.6	71.75	275

Page 3 of 3

•

.

.

Attachment IV.7 Tank 18 SEE Strategy Scoring Notes

Description	Initial Cost to Deploy	Score	Life Cycle Cost	Score
F1				
ADMP	TEC= 3M-1(TFA)=2M 0 (ADMP)+0.04 (Flygt)+X(Mods)-X(TFA)=0.04M Deployment: modify existing steel Relocate H&V 1 new drive new turntable	50	Ok for 18 Use with 11 and 4 center riser, but requires steel modification Not able to reuse	5
QVSP	no new riser TEC=2.8M-0(TFA)=2.8M 0.25 (QVSP)+0.04 (Flygt)+0.1(Mods)- 0(TFA)=0.39M Deployment: modify existing steel Relocate H&V 1 new drive no new riser	25	Ok for 18 Use with 11 and 4 center riser, but requires steel modification Not able to reuse	5
Modified ADMP	TEC=2.0M-0.5M(TFA)=1.5M 0.75 (Mod)+0(Mods)-0.375(TFA)=0.375M Deployment: D&R 1 SP 2 new drives	60	All tanks No additional steel work 3pumps would save ~15M over the Baseline for this period	100
4 SPs	TEC=4M-0M=4M 1.0 (Mod)+0.25(Mods)-0(TFA)=1.25M Deployment: D&R 2 SP New S riser New platform 4 new drives	0	All tanks; equal to the baseline Unable to reuse due to limited pump life	0
ARD	TEC=1M Specifications 50K Procurement 150K Design & Install 250K Riser Power Supply Housing for equipment Control Console TFA -150K	100	Reuse everything but robot Does not work in Type I, II, III tanks due to cooling coils Could be reused in Type IV tanks 21-24 after 8 yr LCC period	0
Houdini/CSE E	TEC=\$1.5 M Move TTP to west riser Put into NE riser Steel modifications Power to skids Tether management Electronic console Interface with equipment	60	Does not work in Type I, II, III tanks due to cooling coils Could be reused in Type IV tanks 21-24 after 8 yr LCC period	0
Arm/CSEE F2 PM	TEC=\$3.0 M Same as Houdini only harder to deploy Move TTP to west riser Put into NE riser Steel modifications Power to skids Tether management Electronic console Interface with equipment	20	Does not work in Type I, II, III tanks due to cooling coils Could be reused in Type IV tanks 21-24 after 8 yr LCC period	0

Attachment IV.7 Tank 18 SEE Strategy Scoring Notes

Description	Initial Cost to Deploy	Score	Life Cycle Cost	Score
TTP	Procure and deploy = 350K	50	Baseline	0
	Deployment: D&R 1 TTP		1,400 - 1,400 = 0K	
	Replace drive; cable			
BIBO	Procure and deploy = 100K	90	Lower up front costs	80
	Deployment: D&R 1 TTP		1,400 - 400 = 1,000K	-
Diode	Procure and deploy = 750-375(TFA)=375K	40	Reuse, cost to move in 2 more tanks	40
Diouc	Deployment: D&R 1 TTP		1,400 - 1,150 = 250K	
F2 RT				
Tk1 Tie-In	Shallow excavation	60	No savings, can only be used on Tk 18	0
IKI He-III	Interferences			
	No transfer concerns	1		
	2 hot tie-ins initial			
	1 hot tie-in at end			1
	Cost = 150K > x > 350K			
TT · TT		70	AB	20
Hose in Hose	Shallow excavation (much longer)	/0	CGD Hose	
	up rock bank; w/CLSM		Route	1
	No transfer concerns		Design for Tie-ins	
	2 hot tie-ins initial		Not reuse of hose	
	2 hot dis-connections at end		The need for the dedicated transfer routes for the	
	ALARA Concerns		Tanks within our plan do not exist.	
	D&R of hose		Tank 18 is not appropriate;	
	Cost = \$400/ft (X ft) - 400K(TFA) = 0K		Tank 4 already has a good route to	
			• -	1
			FDB-2;	
			Tank 11 has work underway to	
•			compete its transfer route (tie in with	
			new TTP);	
			Tank 26 is a Type III tank and has a	
			good transfer route;	
		i	Tank 15 is a high heat waste tank with	
			~15 leaks, the Hose-In-Hose may not	
		1	be the tank to do this for the first time	
			due to high Ci content.	
F3				
ARD	Specifications 50K	75	Reuse everything but robot	0
	Procurement 150K		Does not work in Type I, II, III tanks due to	
	Design & Install 250K		cooling coils	
	Riser		Could be reused in Type IV tanks 21-24 after 8	Ì
	Power Supply		yr LCC period	1
	Housing for equipment			
	Control Console			
	TFA -150			
	Total = 300K			
Chemical	R&D	10	Reuse as long as pump tank or agitated tank	80
Cleaning	Tank Chemistry: TK18, TK7, DWPF		available in route	
	Design & Install; Metering system	1	Raw material is the only major new cost	
	Raw Materials			
	Total = $2,500$ K			
Sluicer	Sluicer Procurement	90	Reuse in remaining tanks	25
Shucer	Nozeles		Commandeer inspection port/new hole as	
L	Streamline		needed	
		1	hourse hourse	
l	Spray wash Tank use	l		

,

Attachment IV.7 Tank 18 SEE Strategy Scoring Notes

Description	Initial Cost to Deploy	Score	Life Cycle Cost	Score
	Total = 100K			

ATTACHMENT 7

RISK ANALYSIS SHEETS

HLW	Tank	18	Waste	Removal	Systems	Engineering	Evaluation
Final	Repo.	rt					

WSRC-RP-2001-00024 Revision 0 Page 165 of 235

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Idea # <u>A-1</u>

Function _____

F-1

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose *No* risk to the project are identified as such. A *Low* risk is marked accordingly and should be justified under separate documentation. A *Yes* response indicates the potential for risk. If any of the questions are answered as *Yes*, a Risk Analysis is required.

Risk Screening Criteria	Pote	ntial for I	Risk?
-	No	Low	Yes
A. TECHNOLOGY	•	•	-
1. New technology?	X		
2. Unknown or unclear technology?	X		
3. New application of existing technology? Longer Shaft use		X	
4. Modernized/advanced technology in existing application?	X		
B. INTERFACES			
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X		
2. Multiple technical agencies an issue?	X		
3. Interfaces with operating SSCs during construction/installation present issues?	X	· · · -	
4. Interfaces with operating SSCs including testing present issues?	X	ļ	
5. Involves co-occupancy issues?	X		
6. H&V/Negative pressure loss issues?	x		
7. Multiple Project/Facility interfaces cause issues?	X		
C. SAFETY			
1. Criticality potential?	X		
2. Significant exposure/contamination potential?	X		
3. Any significant impact or challenge to the Facility's Authorization Basis?	X		
4. Hazardous material issues?	X		
5. Process hazard potential?	X		
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X		
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	X		
2. Additional releases?	X		<u> </u>
3. Undefined disposal methods?	X	L	
4. Requires substantial equipment D&R?		x	
5. Emergency transfers needed?	X		_
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	X		
E. DESIGN			
1. Undefined, incomplete or unclear functional requirements?	X		
2. Undefined, incomplete or unclear design criteria?	X		
3. Complex design features (e.g., controls, seismic, compatibility)?	X		
4. Difficult to perform functional test? TEST AT 55' LENGTH		X	
5. Issues with the content, number or clarity of assumptions?	X		
6. Precludes portability of infrastructure? -	X		
7. RAMI issues?	X		

.

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

.

•

Idea # A-1 Function F.1

Risk Screening Criteria	Poter	ntial for	Risk?
	No	Low	Yes
F. RESOURCES/CONDITIONS			
1 Are adequate and timely resources, material, or equipment a concern?	X		
2. Specialty resource requirements create concerns?	X		
3. Are existing utility locations a concern (above/below ground)?	X		
4. Are geological conditions a concern?	X -	1	
5. Is weather a concern?	X		
6. Are critical lifts a concern? TYPE IV TANK/DROPPED PUMP IN TANK		X	
7. Is there insufficient experience with the O&M of the proposed system?	X		
G. SCHEDULE			
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	X		
2. Fast track critical needs issues?	X		
H. PROCUREMENT			
1. Long lead items that may affect critical path? 6-7 MONTH PROCUREMENT		X	
2. Potential unavailable qualified vendors or contractors?	X	ļ	
3. Is the procurement strategy inadequate?	X	ļ	<u> </u>
4. Is it a first-use subcontractor/vendor that presents issues?	X	ļ	
5. Do vendor support issues exist?	Х		
I. OTHER		<u> </u>	
1. Contract issues?	X		
2. Direct hire/subcontract issues?	X		
3. Systems startup concerns?	X		
4. ECR Adequate		X	
Page 2 of 2			

.

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

ldea #	A-3	(Modified)

Function

F.1

Rev. 11/8/00

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose *No* risk to the project are identified as such. A *Low* risk is marked accordingly and should be justified under separate documentation. A *Yes* response indicates the potential for risk. If any of the questions are answered as *Yes*, a Risk Analysis is required.

k Screening Criteria		Potential for Ris	
	No	Low	Yes
A. TECHNOLOGY			
1. New technology?	X		
2. Unknown or unclear technology?	X		
3. New application of existing technology?	х		
4. Modernized/advanced technology in existing application? R & D New wet end of pump		Х	
B. INTERFACES			
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X		
2. Multiple technical agencies an issue?	X		
3. Interfaces with operating SSCs during construction/installation present issues?	х		
4. Interfaces with operating SSCs including testing present issues?	` X		
5. Involves co-occupancy issues?	Х		
6. H&V/Negative pressure loss issues?	x		
7. Multiple Project/Facility interfaces cause issues?	х		
C. SAFETY	•		
1. Criticality potential?	X		
2. Significant exposure/contamination potential?	X		
3. Any significant impact or challenge to the Facility's Authorization Basis?	Х		
4. Hazardous material issues?	X		
5. Process hazard potential? Compressed gas issue		X	L
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X		
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	X		
2. Additional releases?	X		
3. Undefined disposal methods?	X		
4. Requires substantial equipment D&R? Movement of SP		x	
5. Emergency transfers needed?	X		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	X		
E. DESIGN			
1. Undefined, incomplete or unclear functional requirements?	<u>x</u>	<u> </u>	
2. Undefined, incomplete or unclear design criteria?	<u>x</u>		<u> </u>
3. Complex design features (e.g., controls, seismic, compatibility)?	×	ļ	ļ
4. Difficult to perform functional test?	X	ļ	<u> </u>
5. Issues with the content, number or clarity of assumptions?	X		<u> </u>
6. Precludes portability of infrastructure?	x	L	ļ
7. RAMI issues?	x		

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

۰.

Idea # A-3(Modified) Function F.1

Risk Screening Criteria		Potential for Risk?		
		Low	Yes	
F. RESOURCES/CONDITIONS		<u> </u>		
1 Are adequate and timely resources, material, or equipment a concern?	<u> </u>			
2. Specialty resource requirements create concerns?	X			
3. Are existing utility locations a concern (above/below ground)? R & D	X	1		
4. Are geological conditions a concern?	X			
5. Is weather a concern?	X			
6. Are critical lifts a concern?		X		
7. Is there insufficient experience with the O&M of the proposed system?		<u> </u>		
G. SCHEDULE		<u> </u>		
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	X	1		
2. Fast track critical needs issues?			<u> </u>	
H. PROCUREMENT				
1. Long lead items that may affect critical path? NEW PUMP		X		
2. Potential unavailable qualified vendors or contractors?	X			
3. Is the procurement strategy inadequate?	X		1	
4. Is it a first-use subcontractor/vendor that presents issues? X			ļ	
5. Do vendor support issues exist?	X		1	
I. OTHER				
1. Contract issues?	<u> </u>			
2. Direct hire/subcontract issues?	X			
3. Systems startup concerns?	X		<u></u>	
4. ECR Adequate?		X	_	

Page 2 of 2

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number: H-1 Date: 1/11/01 Idea/Strategy Number: A-3
Idea/Strategy Title:Modidied QVSP/ADMP
A. Statement of Risk (What are we concerned about?) Time to develop and test new pump wet end may exceed allotted time
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence: Previous experience w/ R&D Activities
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: Orisis Critical Original Original Negligible Basis for Consequence Factor (State consequences):Non-compliance with FFA
D. Risk Level (RL):
C. Handling Strategy (RHS): Sole source R & D to ADMP vendor
Fast track R & D
Full Scale testing @ TNX
Estimated Cost:OSM\$0.5 MEstimated Schedule:18 Months
D. Impact of Strategy on Risk Level (RL _h):
New Probability (P _h):Basis:_Strong business growth potential
Very Likely Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis Critical OSignificant O Marginal ONegligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team Risk Screening Criteria

Rev. 11/8/00

Idea # A-4 (ADMP)

Function F.1

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose *No* risk to the project are identified as such. A *Low* risk is marked accordingly and should be justified under separate documentation. A *Yes* response indicates the potential for risk. If any of the questions are answered as *Yes*, a Risk Analysis is required.

Risk Screening Criteria	Potential for Risk?		Risk?
	No	Low	Yes
A. TECHNOLOGY			
1. New technology?	X		
2. Unknown or unclear technology?	X		
3. New application of existing technology?No Rad Experience		X	
4. Modernized/advanced technology in existing application?	X		
B. INTERFACES	х		
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X		
2. Multiple technical agencies an issue?	X		
3. Interfaces with operating SSCs during construction/installation present issues?	X		
4. Interfaces with operating SSCs including testing present issues?	X		
5. Involves co-occupancy issues?	X		
6. H&V/Negative pressure loss issues?	x		
7. Multiple Project/Facility interfaces cause issues?	X		
C. SAFETY	•		
1. Criticality potential?	X		I
2. Significant exposure/contamination potential?	X		
3. Any significant impact or challenge to the Facility's Authorization Basis?	X		
4. Hazardous material issues?	X		
5. Process hazard potential?Compressed gas Issue			X
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X	1	
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	X		
2. Additional releases?	X		
3. Undefined disposal methods?	X		
4. Requires substantial equipment D&R?Move out of center run		X	
5. Emergency transfers needed?	X		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	x		
E. DESIGN			
1. Undefined, incomplete or unclear functional requirements?	X		
2. Undefined, incomplete or unclear design criteria?	X		
3. Complex design features (e.g., controls, seismic, compatibility)?	X		
4. Difficult to perform functional test?Test at 55' length		X	
5. Issues with the content, number or clarity of assumptions?	X	<u> </u>	
6. Precludes portability of infrastructure?	X		
7. RAMI issues?Run for 4,000 hrs of testing refurbished		x	

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

ldea #	A-4	(ADMP)	Function	F.1	
iuea #	+			1.1	

Risk Screening Criteria		Potential for Risk?		
	No	Low	Yes	
F. RESOURCES/CONDITIONS				
1 Are adequate and timely resources, material, or equipment a concern?	Х			
2. Specialty resource requirements create concerns?	X			
3. Are existing utility locations a concern (above/below ground)?	Х	•		
4. Are geological conditions a concern?	X			
5. Is weather a concern?	X		ļ	
6. Are critical lifts a concern?Type IV tank/dropped pump in Tank		X		
7. Is there insufficient experience with the O&M of the proposed system?		<u>X</u> .		
G. SCHEDULE		_		
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	X			
2. Fast track critical needs issues?				
H. PROCUREMENT				
1. Long lead items that may affect critical path?	Х			
2. Potential unavailable qualified vendors or contractors? X				
3. Is the procurement strategy inadequate?	,X,		L	
4. Is it a first-use subcontractor/vendor that presents issues? X				
5. Do vendor support issues exist? X			_	
I. OTHER				
1. Contract issues?	X	ļ		
2. Direct hire/subcontract issues?	X	L		
3. Systems startup concerns?	X		ļ	
4. ECR adequate	-	X	ļ	
			l	

Page 2 of 2

.

ATTACHMENT 2

HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number: C5-1 Date: 1/11/01 Idea/Strategy Number: A-4
Idea/Strategy Title:ADMP
A. Statement of Risk (What are we concerned about?) The pump column contains high pressure gas in a contaminated vapor space
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence: <u>Engineered systems and passive controls exit to prevent the</u> occurrence.
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: O Crisis O Critical Significant Marginal Negligible
Basis for Consequence Factor (State consequences): _Release of airborne contamination to personnel & environment
D. Risk Level (RL):
E. Risk Handling Strategy (RHS): Assembly specs for pump; special handling instr; leak check prior to installation
Estimated Cost: Estimated Schedule:
F. Impact of Strategy on Risk Level (RL _h):
New Probability (P _h):
Very Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis OCritical OSignificant O Marginal ONegligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team Risk Screening Criteria

Idea # _ A-41 (Modified ADMP)

Function _____ F.1

Rev. 11/8/00

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose No risk to the project are identified as such. A Low risk is marked accordingly and should be justified under separate documentation. A Yes response indicates the potential for risk. If any of the questions are answered as Yes, a Risk Analysis is required.

Risk Screening Criteria	Potential for Risk?		
	No	Low	Yes
A. TECHNOLOGY			
1. New technology?	X		
2. Unknown or unclear technology?	x		
3. New application of existing technology?No Rad Experience	X	 	
4. Modernized/advanced technology in existing application?	X	<u> </u>	
B. INTERFACES	X	, – —	.
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X	ļ	ļ
2. Multiple technical agencies an issue?	X		· · ·
3. Interfaces with operating SSCs during construction/installation present issues?	<u> </u>	<u> </u>	
4. Interfaces with operating SSCs including testing present issues?	X	ļ	1
5. Involves co-occupancy issues?	X		
6. H&V/Negative pressure loss issues?	X		
7. Multiple Project/Facility interfaces cause issues?	x	<u> </u>	
C. SAFETY			· ····
1. Criticality potential?	X		<u> </u>
2. Significant exposure/contamination potential?	×		ļ
3. Any significant impact or challenge to the Facility's Authorization Basis?	X		ļ
4. Hazardous material issues?	×		
5. Process hazard potential?Compressed gas issue	X		
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?			
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	Х		ļ
2. Additional releases?	X	1	_
3. Undefined disposal methods?	X		
4. Requires substantial equipment D&R?Move out of center run	X		<u> </u>
5. Emergency transfers needed?	×		<u> </u>
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	X		
E. DESIGN			
1. Undefined, incomplete or unclear functional requirements?	X	_	
2. Undefined, incomplete or unclear design criteria?	X	_ 	ļ
3. Complex design features (e.g., controls, seismic, compatibility)?	×		ļ
4. Difficult to perform functional test?Test at 55' length	X		1
5. Issues with the content, number or clarity of assumptions?	X.	-	.l
6. Precludes portability of infrastructure?	X		ļ
7. RAMI issues?Run for 4,000 hrs of testing refurbished	X		1

Page 1 of 2

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Idea # A-41 (Modified ADMP) Function F.1

Rev. 11/8/00

.

.

Risk Screening Criteria		Potential for Risk?		
		Low	Yes	
F. RESOURCES/CONDITIONS				
1 Are adequate and timely resources, material, or equipment a concern?	Х			
2. Specialty resource requirements create concerns?	X			
3. Are existing utility locations a concern (above/below ground)?	X			
4. Are geological conditions a concern?	X			
5. Is weather a concern?	X			
6. Are critical lifts a concern?Type IV tank/dropped pump in Tank	X			
7. Is there insufficient experience with the O&M of the proposed system?	X			
G. SCHEDULE				
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?			X	
2. Fast track critical needs issues?				
H. PROCUREMENT				
1. Long lead items that may affect critical path?	X			
2. Potential unavailable qualified vendors or contractors?	X			
3. Is the procurement strategy inadequate?	X			
4. Is it a first-use subcontractor/vendor that presents issues? X				
5. Do vendor support issues exist?		1		
I. OTHER			<u> </u>	
1. Contract issues?	X			
2. Direct hire/subcontract issues?	X			
3. Systems startup concerns?	Х			
4. ECR adequate	X			

Page 2 of 2

.

ATTACHMENT 2

HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identifi HLW Tank 18 Waste Remov	
Risk Number: Date:1/11/01	Idea/Strategy Number:A-41
Idea/Strategy Title:Modified ADMP	
A. Statement of Risk (What are we concerned about?) The vendor may take too long to develop the pump	:
Basis for the risk: This is a completely new design tha	t must be ready to install in 18 months
B. Probability (P) (What is the probability that the "unhandled	
Probability of Occurrence: Very Likely Likely	Unlikely Very Unlikely
Basis for Probability of Occurrence: This is a very hig package.	gh capacity pump in a very small
C. Consequence (C) (What is/are the consequences if the "unh threatening, property damage, schedule delays, noncomplia	
Consequence Factor: Crisis Critical Sig Basis for Consequence Factor (State consequences): FF missed	
D. Risk Level (RL):	
E. Risk Handling Strategy (RHS): Provide \$500,000 incentive to vendor to accelerate serve as backup	
Estimated Cost: _\$500,000 Estimated	d Schedule:N/A
F. Impact of Strategy on Risk Level (RL _h):	
	Basis: Existing ADMP should be ready if needed.
	Basis: No change
Crisis Ocritical Significant O Marginal ONegligible	
Residual Risk Level (RL _h): High Moderate	

÷

HAVE A HAVE

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number:_E7-1 Date:1/11/01 Idea/Strategy Number:A-4
Idea/Strategy Title:
A. Statement of Risk (What are we concerned about?) ADMP had bearing failure at 4,000 hrs of operation
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence:Inspected; and retest refurbished ADMP will be completed prio to use for this application
Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: Oritical Significant Marginal Negligible Basis for Consequence Factor (State consequences):_ADMP fails before sludge removal complete
D. Risk Level (RL):
E. Risk Handling Strategy (RHS):
_Develop critical spare parts list
_Enhance heel removal _Purchase Spare
Estimated Cost: Estimated Schedule:
F. Impact of Strategy on Risk Level (RL _h):
New Probability (P _h): Basis:
Very Likely Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis Ocritical OSignificant O Marginal ONegligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form
HLW Tank 18 Waste Removal and Transfer
Risk Number:I4-1 Date:_1/11/01 Idea/Strategy Number:A-4
Idea/Strategy Title:ADMP
A. Statement of Risk (What are we concerned about?) Excess solids may be left in tank if ADMP also used for heel removal
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence: Testing at TNX showed potential for leaving bathtub ring of solids
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: Orisis Critical Significant Marginal Negligible Basis for Consequence Factor (State consequences):_May not be able to get to 4,000 gal of residual sludge
 D. Risk Level (RL): High O Moderate Low E. Risk Handling Strategy (RHS): Enhance mixing by adding additional mixer (0.2 m)
Estimated Cost: Estimated Schedule:No extension
F. Impact of Strategy on Risk Level (RL _h):
New Probability (P _h): Basis: _Backup methods provide assurance <
Very Likely Likely Unlikely Very Unlikely 1,000 Gal can be achieved
New Consequence (C _h): Basis
Crisis Critical Significant Marginal Negligible
Residual Risk Level (RL _h): High Moderate Low Eliminated
· · ·

ATTACHMENT I - HLW Tank 18 Waste Removal Team Risk Screening Criteria

Idea a	# /	\-43	(ARD)	

Function F.1

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose *No* risk to the project are identified as such. A *Low* risk is marked accordingly and should be justified under separate documentation. A *Yes* response indicates the potential for risk. If any of the questions are answered as *Yes*, a Risk Analysis is required.

Risk Screening Criteria		ntial for l	Risk?
-	No	Low	Yes
A. TECHNOLOGY			
1. New technology?	X		
2. Unknown or unclear technology?	X		ļ
3. New application of existing technology?No experience at SRS HLW tank		X	
4. Modernized/advanced technology in existing application?	X		<u> </u>
B. INTERFACES			
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X		
2. Multiple technical agencies an issue?	X		
3. Interfaces with operating SSCs during construction/installation present issues?	X	l	ļ
4. Interfaces with operating SSCs including testing present issues?	X		
5. Involves co-occupancy issues?	Х		
6. H&V/Negative pressure loss issues?	X		1
7. Multiple Project/Facility interfaces cause issues?	X		
C. SAFETY			
1. Criticality potential?	X		L
2. Significant exposure/contamination potential?	X		<u> </u>
3. Any significant impact or challenge to the Facility's Authorization Basis?	x		<u> </u>
4. Hazardous material issues?	<u>×</u>	ļ	
5. Process hazard potential?	X		
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X	1	<u> </u>
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	X		
2. Additional releases?	X	1	<u> </u>
3. Undefined disposal methods?	X	ļ	ļ
4. Requires substantial equipment D&R?	X		1
5. Emergency transfers needed?	x		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	X		
E. DESIGN			
1. Undefined, incomplete or unclear functional requirements?	X	<u> </u>	<u> </u>
2. Undefined, incomplete or unclear design criteria?	<u> </u>		 _
3. Complex design features (e.g., controls, seismic, compatibility)?installation & tie-in to transfer system		<u>×</u>	
4. Difficult to perform functional test?	<u> </u>		_
5. Issues with the content, number or clarity of assumptions?	<u> </u>		<u> </u>
6. Precludes portability of infrastructure?	X	<u> </u>	<u> </u>
7. RAMI issues?	X		

Page 1 of 2

.

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Idea # <u>A-43 (ARD)</u>

.

_____Function _____F.1

Risk Screening Criteria	Potential for Risk?		
		Low	Yes
F. RESOURCES/CONDITIONS			
1 Are adequate and timely resources, material, or equipment a concern?	X	[
2. Specialty resource requirements create concerns?	X		
3. Are existing utility locations a concern (above/below ground)?	Х		
4. Are geological conditions a concern?	X		
5. Is weather a concern?	X		
6. Are critical lifts a concern?	X	<u> </u>	
7. Is there insufficient experience with the O&M of the proposed system?		<u> </u>	X
G. SCHEDULE		_	
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	X		
2. Fast track critical needs issues?	X		
H. PROCUREMENT			
1. Long lead items that may affect critical path?Sole Source		X	
2. Potential unavailable qualified vendors or contractors?	X		
3. Is the procurement strategy inadequate?	X		
4. Is it a first-use subcontractor/vendor that presents issues?	X	<u> </u>	
5. Do vendor support issues exist?	<u> </u>		
1. OTHER			
1. Contract issues?	X		
2. Direct hire/subcontract issues?	X	1	
3. Systems startup concerns?	X		ļ
4. ECR adequate?	X	<u> </u>	
5. Pump requirements?		<u> </u>	<u>×</u>
6. Tether management?			X

-On board pump adequate to get to 7 -Footprint of the job

Page 2 of 2

ţ

ATTACHMENT 2

HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

	Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number: F7-1	Date:_1/11/01 Idea/Strategy Number:A-43
Idea/Strategy Title:ARD	
A. Statement of Risk (What a _SRS lacks robotic exp	are we concerned about?) perience in HLW tank
Basis for the risk:	
B. Probability (P) (What is th	ne probability that the "unhandled" risk will come true?)
Probability of Occurren	nce: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of	Occurrence: Training can be utilized
•	Factor (State consequences): _ARD may not work in our application thus High Moderate Low RHS):
Estimated Cost: F. Impact of Strategy on Ris	
New Probability (P _h):	Basis:
Very Likely Likely	Unlikely Very Unlikely
New Consequence (C _h)	Basis
Crisis Ocritical OSign	nificant O Marginal ONegligible
Residual Risk Level (R	L_h): High Moderate Low Eliminated
į

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number:I5-1 Date:1/11/01 Idea/Strategy Number:A-43
Idea/Strategy Title:_ARD
A. Statement of Risk (What are we concerned about?) Required on Board pump to pump sludge to Tk 7 may be too heavy for the robot
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence:off the shelf item
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: OCrisis OCritical OSignificant OMarginal ONegligible
Basis for Consequence Factor (State consequences):_Application may jeopardize FFA
D. Risk Level (RL): E. Risk Handling Strategy (RHS): Determine rheology Specs to vendor Utilize booster
Estimated Cost: _Incr. < \$100 k Estimated Schedule:None
F. Impact of Strategy on Risk Level (RL _h):
New Probability (Ph): Basis: Leaveraging vendor experience Very Likely Likely Unlikely Very Unlikely New Consequence (Ch): Basis Basis Crisis Critical Significant Marginal
Residual Risk Level (RL _h): High Moderate Low Eliminated

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number:I6-1 Date:_1/11/01 Idea/Strategy Number:A-43
Idea/Strategy Title:_ARD
A. Statement of Risk (What are we concerned about?) Cumbersome hose and cabling inhibit mobility of robot
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence: Previous experience at other facility
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: Crisis Critical Significant Marginal Negligible
Basis for Consequence Factor (State consequences): Cannot direct robot to all areas of tank in order Remove sludge will not meet FFA
D. Risk Level (RL):
E. Risk Handling Strategy (RHS):
Estimated Cost: Estimated Schedule:
F. Impact of Strategy on Risk Level (RL _h):
Very Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis Ocritical OSignificant O Marginal ONegligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

х

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team Risk Screening Criteria

	Rev	/. 11/8	3/00	
Idea # A-44 (Houdini) Function	F.1			
Screenings are performed to determine if the project or activity has the potential for risk. in determining whether the screening item results in a potential risk. Categories that pos- identified as such. A <i>Low</i> risk is marked accordingly and should be justified under sepa response indicates the potential for risk. If any of the questions are answered as <i>Yes</i> , a R	e <i>No</i> risk t rate docur	o the nentat	project ar	e
Risk Screening Criteria		Pote	ntial for F	lisk?
		No	Low	Yes
A. TECHNOLOGY		_	_	
1. New technology?		Х		
2. Unknown or unclear technology?		X		
3. New application of existing technology? No experience in HLW tanks			X	
4. Modernized/advanced technology in existing application?		Х		
B. INTERFACES				
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?		Х		
2. Multiple technical agencies an issue?		Х		
3. Interfaces with operating SSCs during construction/installation present issues?		X		
4. Interfaces with operating SSCs including testing present issues?		х		
5. Involves co-occupancy issues?		Х		
6. H&V/Negative pressure loss issues?		х		
7. Multiple Project/Facility interfaces cause issues?		х		
C. SAFETY				
1. Criticality potential?	•	Х		
2. Significant exposure/contamination potential?		Х		
3. Any significant impact or challenge to the Facility's Authorization Basis?		Х		
4. Hazardous material issues?		х		
5. Process hazard potential?		X		
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quanti	ties?	Х		
D. REGULATORY/ENVIRONMENTAL				
1. Environmental assessment/impact statement issues?		Х		
2. Additional releases?		Х		
3. Undefined disposal methods?		X		
4. Requires substantial equipment D&R?		X		
5. Emergency transfers needed?		X		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?		X		
E. DESIGN				
1. Undefined, incomplete or unclear functional requirements?		Х		
2. Undefined, incomplete or unclear design criteria?		Х		
3. Complex design features (e.g., controls, seismic, compatibility)?Installation & tie-in to transfer systemeters	əm		X	
4. Difficult to perform functional test?				X
5. Issues with the content, number or clarity of assumptions?		х		
6. Precludes portability of infrastructure?		X		1

7. RAMI issues?Houidini already in use; can't decon/test

-

Page 1 of 2

.

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

.

ldea #	<u>A-44 (</u>	<u>Houdini)</u>
--------	---------------	-----------------

Function _____ F.1

Risk Screening Criteria	Potential for Risk		Risk?
	No	Low	Yes
F. RESOURCES/CONDITIONS		·	
1 Are adequate and timely resources, material, or equipment a concern?	<u> </u>		
2. Specialty resource requirements create concerns?	X	L	<u> </u>
3. Are existing utility locations a concern (above/below ground)?	X		L
4. Are geological conditions a concern?	<u> </u>	ļ	
5. Is weather a concern?	X	L	<u> </u>
6. Are critical lifts a concern?	x		
7. Is there insufficient experience with the O&M of the proposed system?(No new)	•		<u> </u>
G. SCHEDULE			
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	<u> </u>		
2. Fast track critical needs issues?	X		
H. PROCUREMENT			-
1. Long lead items that may affect critical path?	X		
2. Potential unavailable qualified vendors or contractors?	X		
3. Is the procurement strategy inadequate?	X		
4. Is it a first-use subcontractor/vendor that presents issues?	X		
5. Do vendor support issues exist?	X	l	
I. OTHER			
1. Contract issues?	X		
2. Direct hire/subcontract issues?	<u> </u>		<u> </u>
3. Systems startup concerns?	X		
4. ECR Adequate		X	
5. Pump requirements	X		
6. Tether management (No new)			<u>×</u>

HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number: E4-1 Date: 1/11/01 Idea/Strategy Number: A-44
Idea/Strategy Title: Houdini w/CSEE
A. Statement of Risk (What are we concerned about?) _Houdini has significant operating hours; is contaminated and cannot be tested at TNX; reliability _ is questionable
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence:
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: O Crisis O Critical O Significant O Marginal O Negligible
Basis for Consequence Factor (State consequences):_ Untested system may not perform as required; thereby missing FFA
D. Risk Level (RL):
E. Risk Handling Strategy (RHS):
Buy new Houdini
Create testing area
Estimated Cost:0.25 M Estimated Schedule:no impact F. Impact of Strategy on Risk Level (RL _h):
New Probability (P _h): Basis:_New equipment & tested
Very Likely Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis Critical Significant Marginal Negligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number:_E7-2 Date:_1/12/01 Idea/Strategy Number:_A-44
Idea/Strategy Title:Houdini w/CSEE
A. Statement of Risk (What are we concerned about?) Due to extensive prior use, reliablility is questionable
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence: Extensive prior use
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: Crisis Critical Significant Marginal Negligible Basis for Consequence Factor (State consequences): Equipment may fail causing missed FFA commit- ment.
D. Risk Level (RL): E. Risk Handling Strategy (RHS): Procure additional Houdini (indulging supports/repair procedures) Set up contaminated test area and conduct complete
Estimated Cost:\$500 KEstimated Schedule:None
F. Impact of Strategy on Risk Level (RL _h):
New Probability (P _h): Basis:
Very Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis Ocritical OSignificant O Marginal ONegligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

-

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team Risk Screening Criteria

Idea # <u>A-70 (4 SPs)</u>	Function	<u> </u>			
Screenings are performed to determine if the project in determining whether the screening item results in identified as such. A <i>Low</i> risk is marked accordingly response indicates the potential for risk. If any of the	a potential risk. Categor y and should be justified	ies that pose No r under separate de	isk to the ocumentat	project a ion. A Y	ге
Risk Screening Criteria			Pote	ntial for l	Risk?
			No	Low	Yes
A. TECHNOLOGY	·······	-			L
1. New technology?			X		
2. Unknown or unclear technology?			X		
3. New application of existing technology?		·	X		
4. Modernized/advanced technology in existing application?			X		
B. INTERFACES					
1. Multiple system interfaces (e.g., canyons, transfer routes)	an issue?		X		
2. Multiple technical agencies an issue?			X		
3. Interfaces with operating SSCs during construction/installa	ation present issues?New ho	le in tank top			X
4. Interfaces with operating SSCs including testing present is	ssues?		x		
5. Involves co-occupancy issues?			X		
6. H&V/Negative pressure loss issues?			x		
7. Multiple Project/Facility interfaces cause issues?			x		
C. SAFETY					
1. Criticality potential?			X		
2. Significant exposure/contamination potential?				X	`
3. Any significant impact or challenge to the Facility's Author	ization Basis?		X		<u> </u>
4. Hazardous material issues?			X		
5. Process hazard potential?		<u> </u>	×		ļ
6. Will hazardous materials inventories exceed the OSHA or	Radiation Management Pla	n total quantities?	X	1	<u> </u>
D. REGULATORY/ENVIRONMENTAL	-				
1. Environmental assessment/impact statement issues?			<u> </u>		<u> </u>
2. Additional releases?			X		
3. Undefined disposal methods?			X	·	
4. Requires substantial equipment D&R?2 SP D & R					X
5. Emergency transfers needed?			x		
6. Political vulnerabilities (DOE, Congress, local governmen	t) create significant issues?		X		
E. DESIGN					
1. Undefined, incomplete or unclear functional requirements	?		×	<u> </u>	
2. Undefined, incomplete or unclear design criteria?			X	<u> </u>	
3. Complex design features (e.g., controls, seismic, compati	ibility)?		×	<u> </u>	<u> </u>
4. Difficult to perform functional test?	· · · · · · · · · · · · · · · · · · ·		×	ļ	
5. Issues with the content, number or clarity of assumptions	?		×	<u> </u>	
6. Precludes portability of infrastructure?			X		<u> </u>
7. RAMI issues?			x		

Page 1 of 2

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Idea # <u>A-70 (4 SPs)</u>

Function _____ F.1

sk Screening Criteria	Potential for Risk		Risk?
	No	Low	Yes
F. RESOURCES/CONDITIONS			
1 Are adequate and timely resources, material, or equipment a concern?	X		
2. Specialty resource requirements create concerns?	X		
3. Are existing utility locations a concern (above/below ground)?	X		
4. Are geological conditions a concern?	X		
5. Is weather a concern?	Х		
6. Are critical lifts a concern?		Х	
7. Is there insufficient experience with the O&M of the proposed system?	X		
G. SCHEDULE			
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	Х		
2. Fast track critical needs issues?	Х		
'H. PROCUREMENT			
1. Long lead items that may affect critical path?	x		
2. Potential unavailable qualified vendors or contractors?	X		
3. Is the procurement strategy inadequate?	X		
4. Is it a first-use subcontractor/vendor that presents issues?	X		
5. Do vendor support issues exist?	X		
I. OTHER			
1. Contract issues?	X		
2. Direct hire/subcontract issues?	X		
3. Systems startup concerns?	X		
4. ECR Adequate?		X	

HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number:_B3-1 Date:_1/11/00 Idea/Strategy Number:A-70
Idea/Strategy Title:4 SPs
A. Statement of Risk (What are we concerned about?) Installing new riser may compromise SS tank (Type IV) Structure
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence: <u>Completed similar activities on TK 19</u>
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: Crisis Critical Significant Marginal Negligible Basis for Consequence Factor (State consequences): Tank failure
D. Risk Level (RL): E. Risk Handling Strategy (RHS):
Estimated Cost: Estimated Schedule:
F. Impact of Strategy on Risk Level (RL _b):
New Probability (P _h): Basis:
Very Likely Unlikely Very Unlikely
New Consequence (C _h):
Crisis Critical Significant Marginal Negligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM
Risk Assessment Identification Form
HLW Tank 18 Waste Removal and Transfer
Risk Number: D4-1 Date: 1/11/01 Idea/Strategy Number: A-70
Idea/Strategy Title:4 SPs
A. Statement of Risk (What are we concerned about?) D & R of 2 highly contaminated and very large SPs
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence:_Extensive experience of disposing of CLE
 C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life-threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.) Consequence Factor:

ATTACHMENT I - HLW Tank 18 Waste Removal Team Risk Screening Criteria

Rev. 11/8/00

Idea # A-74 (ARM w/CSEE)

Function ______F.1

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose *No* risk to the project are identified as such. A *Low* risk is marked accordingly and should be justified under separate documentation. A *Yes* response indicates the potential for risk. If any of the questions are answered as *Yes*, a Risk Analysis is required.

isk Screening Criteria	Potential for Risk?		
_	No	Low	Yes
A. TECHNOLOGY			
1. New technology?	X	· · · · · · · · · · · · · · · · · · ·	
2. Unknown or unclear technology?	X		
3. New application of existing technology?Not as SRS		X	
4. Modemized/advanced technology in existing application?	X		
B. INTERFACES		_	
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X		
2. Multiple technical agencies an issue?	X		
3. Interfaces with operating SSCs during construction/installation present issues?	X		
4. Interfaces with operating SSCs including testing present issues?	x		
5. Involves co-occupancy issues?	X		
6. H&V/Negative pressure loss issues?	x		
7. Multiple Project/Facility interfaces cause issues?Huge Structure		X	
C. SAFETY			
1. Criticality potential?	X		
2. Significant exposure/contamination potential?	X		
3. Any significant impact or challenge to the Facility's Authorization Basis?	<u>×</u>		
4. Hazardous material issues?	X		
5. Process hazard potential?	X		
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X		<u> </u>
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	X		
2. Additional releases?	X		
3. Undefined disposal methods?	X		
4. Requires substantial equipment D&R?	X		
5. Emergency transfers needed?	X		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	X		
E. DESIGN			
1. Undefined, incomplete or unclear functional requirements?	X		<u> </u>
2. Undefined, incomplete or unclear design criteria?	<u> </u>		<u> </u>
3. Complex design features (e.g., controls, seismic, compatibility)? II/I	<u> </u>		<u>×</u>
4. Difficult to perform functional test?Contaminated	<u> </u>	×	ļ
5. Issues with the content, number or clarity of assumptions?	X	ļ	
6. Precludes portability of infrastructure?	x		<u> </u>
7. RAMI issues?			×

•

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Idea # A-74 (ARM w/CSEE)

Function _____F.1

Risk Screening Criteria	Pote	ntial for 1	or Risk?	
Nak Goldening Price a	No	Low	Yes	
F. RESOURCES/CONDITIONS	-			
1 Are adequate and timely resources, material, or equipment a concern?	X		[
2. Specialty resource requirements create concerns?	X			
3. Are existing utility locations a concern (above/below ground)?	X			
4. Are geological conditions a concern?	X			
5. Is weather a concern?25 mph wind constraint		X		
6. Are critical lifts a concern?		X		
7. Is there insufficient experience with the O&M of the proposed system?		X		
G. SCHEDULE				
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	X			
2. Fast track critical needs issues?	X	<u>.</u>		
H. PROCUREMENT				
1. Long lead items that may affect critical path?Fix of equip-long lead			X	
2. Potential unavailable qualified vendors or contractors?	X		<u> </u>	
3. Is the procurement strategy inadequate?	X		<u> </u>	
4. Is it a first-use subcontractor/vendor that presents issues?	<u>× '</u>			
5. Do vendor support issues exist?	X			
I. OTHER				
1. Contract issues?	X			
2. Direct hire/subcontract issues?	x			
3. Systems startup concerns?			<u> </u>	
			<u> </u>	
· · · · · · · · · · · · · · · · · · ·				

HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

[Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Ri	sk Number: E7-3 Date: 1/11/01 Idea/Strategy Number: A-74
	ea/Strategy Title:ARM w/CSEE
A.	Statement of Risk (What are we concerned about?) It is unknown if the equipment can be repaired in a timely manner
	Basis for the risk:
B.	Probability (P) (What is the probability that the "unhandled" risk will come true?)
	Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
	Basis for Probability of Occurrence:_1. Extensive prior use 2. Currently broken; 3. Equipment design not understood by SRS
C.	Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
	Consequence Factor: Crisis Critical Significant Marginal Negligible
	Basis for Consequence Factor (State consequences): Equipment may fail causing missed FFA Commit- ment
D.	Risk Level (RL):
E.	Risk Handling Strategy (RHS): Procure parts ASAP (including spare/repair procedures
	Estimated Cost:\$1.5 M Estimated Schedule: _2 yrs (currently in schedule)-no float_
F.	Impact of Strategy on Risk Level (RL _b):
	New Probability (P _b):Basis:_Up front work will be sufficient to elimi-
	Very Likely Unlikely Very Unlikely
	New Consequence (C _h): Basis:
	Crisis Critical Significant Marginal Negligible
	Residual Risk Level (RL _h): High Moderate Low Eliminated

٠

.

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

	ldea #	B4M	Hose	in Hose	
--	--------	-----	------	---------	--

Function F.3

Rev. 11/8/00

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose No risk to the project are identified as such. A Low risk is marked accordingly and should be justified under separate documentation. A Yes

Risk Screening Criteria	Pote	ntial for l	Risk?
	No	Low	Yes
A. TECHNOLOGY			
1. New technology?	X		
2. Unknown or unclear technology?	X		
3. New application of existing technology?Bigger/better hose		X	
4. Modernized/advanced technology in existing application?	X		
B. INTERFACES			
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X		
2. Multiple technical agencies an issue?	X		
3. Interfaces with operating SSCs during construction/installation present issues?	X		
4. Interfaces with operating SSCs including testing present issues?	X		
5. Involves co-occupancy issues?overlanding route (CR in the way)			X
6. H&V/Negative pressure loss issues?	x		
7. Multiple Project/Facility interfaces cause issues?(SEE B5)	X		
C. SAFETY		•	
1. Criticality potential?	X		
2. Significant exposure/contamination potential?(SEE B5/D4)	X		
3. Any significant impact or challenge to the Facility's Authorization Basis?		X	
4. Hazardous material issues?	X		
5. Process hazard potential?	X		
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X	<u> </u>	
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	X		
2. Additional releases?	X		
3. Undefined disposal methods?	X		
4. Requires substantial equipment D&R? D & R of hose in hose when comp.			x
5. Emergency transfers needed?	x		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	X		
E. DESIGN	<u> </u>		<u> </u>
1. Undefined, incomplete or unclear functional requirements?	X		
2. Undefined, incomplete or unclear design criteria?	X		
3. Complex design features (e.g., controls, seismic, compatibility)?	X		
4. Difficult to perform functional test?	X		
5. Issues with the content, number or clarity of assumptions?	X		
6. Precludes portability of infrastructure?	X		
7. RAMI issues?	x		

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

.

Rev. 11/8/00

Idea # <u>B4M (Hose in Hose)</u>

-

Function _____ F.3

Risk Screening Criteria	Pote	ntial for I	Risk?
	No	Low	Yes
F. RESOURCES/CONDITIONS			
1 Are adequate and timely resources, material, or equipment a concern?	X		
2. Specialty resource requirements create concerns?	X		
3. Are existing utility locations a concern (above/below ground)?	X		
4. Are geological conditions a concern?	X		
5. Is weather a concern?	X		
6. Are critical lifts a concern?	X		
7. Is there insufficient experience with the O&M of the proposed system?	X		
G. SCHEDULE			
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	X		
2. Fast track critical needs issues?	X		
H. PROCUREMENT			
1. Long lead items that may affect critical path?	X		
2. Potential unavailable qualified vendors or contractors?	X		
3. Is the procurement strategy inadequate?	X		
4. Is it a first-use subcontractor/vendor that presents issues?Used at RL		X	
5. Do vendor support issues exist?	X		
1. OTHER			
1. Contract issues?	X		
2. Direct hire/subcontract issues?	X		
3. Systems startup concerns?	X		
			L

HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

	Risk Assessment Ide HLW Tank 18 Waste R	
Risk Number: B5-1	Date:1/12/01	Idea/Strategy Number:B4M
Idea/Strategy Title:_Hose in Hose		·
become difficult	oute hose such that othe	r Tank Farm activities are minimally impacted
Basis for the risk:	•	
B. Probability (P) (What is the p	robability that the "unha	ndled" risk will come true?)
		ikely OUnlikely OVery Unlikely
		"unhandled" risk comes true? Examples are life- upliance with regulations or site requirements, etc.)
Consequence Factor:	Crisis Critical) Significant 🌑 Marginal 🔿 Negligible
•		Cost to route hose increases or Tk activities
D. Risk Level (RL):	High Modera	ate O Low
E. Risk Handling Strategy (RH Develop route away from	occupied areas r activities/outages to re	educe impacts
Estimated Cost:300K	Esti	imated Schedule:
F. Impact of Strategy on Risk I		
New Probability (P _h):		Basis:
Very Likely Likely)Unlikely 🛑 Very Unlikely	
New Consequence (C _h):		Basis:
Crisis Ocritical OSignific	ant () Marginal ()Negli	gible
Residual Risk Level (RL _h)		

÷.

÷

HI W TANK 19 WASTE DEM	ATTACHN MOVAL AND TRAN	MENT 2 SFER RISK IDENTIFICATION FORM
Ri	sk Assessment Identi	fication Form
	Tank 18 Waste Remo	
		lea/Strategy Number:_B4M
Idea/Strategy Title:_Hose in Hose		
A. Statement of Risk (What are we con D & R of Hose may create radi	ological & disposal is	ssues
Basis for the risk:		
B. Probability (P) (What is the probability	ility that the "unhandle	ed" risk will come true?)
Probability of Occurrence:	Very Likely Likely	Unlikely Very Unlikely
L		
Consequence Factor: Crisi Basis for Consequence Factor (Saresources to D & R) D. Risk Level (RL): E. Risk Handling Strategy (RHS): Develop D & R Plan Early	s Ocritical OS tate consequences):_C	Cost & schedule overruns;expend personnel
Dems/mockup D & R techniqu	es	•
	-	<u> </u>
Estimated Cost:100K		ed Schedule:
F. Impact of Strategy on Risk Level ((RL _h):	
New Probability (P _h):		Basis:
🔵 Very Likely 🔵 Likely 🔵 Unlike	ely 🔘 Very Unlikely	
New Consequence (C _h):		Basis
Crisis Ocritical OSignificant	Marginal ONegligible	e
Residual Risk Level (RL _h):	High () Moderate	Low Eliminated

*

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team Risk Screening Criteria

		Rev. 11/	B/00			
Idea # <u>B-8 (Bibo)</u>	Function	F.2				
Screenings are performed to determine if the project or in determining whether the screening item results in a p identified as such. A <i>Low</i> risk is marked accordingly a response indicates the potential for risk. If any of the qu	otential risk. Categories that pose ind should be justified under separ	No risk to the ate documenta	project al tion. A Y	re		
		Pote	Potential for Risk?			
Risk Screening Criteria		No	Low	Yes		
A. TECHNOLOGY	-			·		
1. New technology?		×				
2. Unknown or unclear technology?	· · · · · · · · · · · · · · · · · · ·	X		l		
3. New application of existing technology?	·····	<u> </u>				
4. Modemized/advanced technology in existing application?		X				
B. INTERFACES			·	т <u> </u>		
1. Multiple system interfaces (e.g., canyons, transfer routes) an	issue?	X	· · · · ·			
2. Multiple technical agencies an issue?		X	<u> </u>	ļ		
3. Interfaces with operating SSCs during construction/installatio		<u> </u>				
4. Interfaces with operating SSCs including testing present issu	es?	<u> </u>				
5. Involves co-occupancy issues?		X	ļ	ļ		
6. H&V/Negative pressure loss issues?		X	_	<u> </u>		
7. Multiple Project/Facility interfaces cause issues?		X		<u> </u>		
C. SAFETY	 			••••		
1. Criticality potential?		X				
2. Significant exposure/contamination potential?		X				
3. Any significant impact or challenge to the Facility's Authoriza	tion Basis?	X		ļ		
4. Hazardous material issues?		X		·		
5. Process hazard potential?		×				
6. Will hazardous materials inventories exceed the OSHA or Ra	adiation Management Plan total quantit	ies? X				
D. REGULATORY/ENVIRONMENTAL						
1. Environmental assessment/impact statement issues?		X		<u> </u>		
2. Additional releases?		X				
3. Undefined disposal methods?		X				
4. Requires substantial equipment D&R?			X	. 		
5. Emergency transfers needed?		X		<u> </u>		
6. Political vulnerabilities (DOE, Congress, local government) of	create significant issues?	X				
E. DESIGN	· · · · · · · · · · · · · · · · · · ·					
1. Undefined, incomplete or unclear functional requirements?		X		<u> </u>		
2. Undefined, incomplete or unclear design criteria?		X		1		
3. Complex design features (e.g., controls, seismic, compatibili	ity)?	×	<u> </u>	<u> </u>		
4. Difficult to perform functional test?		×				
5. Issues with the content, number or clarity of assumptions?		X				
6. Precludes portability of infrastructure?		<u>x</u>				
7. RAMI issues?		X				

Page 1 of 2

.

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

٠

Idea # <u>B-8 (Bibo)</u>

-

.

.

Function ______ F.2 _____

Risk Screening Criteria	Pote	ntial for I	Risk?
	No	Low	Yes
F. RESOURCES/CONDITIONS			
1 Are adequate and timely resources, material, or equipment a concern?	X		
2. Specialty resource requirements create concerns?	X		
3. Are existing utility locations a concern (above/below ground)?	X	ļ	
4. Are geological conditions a concern?	X	<u> </u>	
5. Is weather a concern?	X	ļ	
6. Are critical lifts a concem?		X	
7. Is there insufficient experience with the O&M of the proposed system? Rad field use		X	
G. SCHEDULE			
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	X		
2. Fast track critical needs issues?	<u> </u>	L.	ļ
H. PROCUREMENT		······································	
1. Long lead items that may affect critical path?	X		
2. Potential unavailable qualified vendors or contractors?	X		
3. Is the procurement strategy inadequate?	· X		<u> </u>
4. Is it a first-use subcontractor/vendor that presents issues?	<u> </u>		<u> </u>
5. Do vendor support issues exist?	X		1
I. OTHER			
1. Contract issues?	X		L
2. Direct hire/subcontract issues?	X		
3. Systems startup concerns?	X		

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Idea # B-16 (Diode)

Function F.2

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose *No* risk to the project are identified as such. A *Low* risk is marked accordingly and should be justified under separate documentation. A *Yes* response indicates the potential for risk. If any of the questions are answered as *Yes*, a Risk Analysis is required.

Risk Screening Criteria	Potential for Risk		
	No	Low	Yes
A. TECHNOLOGY			
1. New technology?	X		
2. Unknown or unclear technology?	X		
3. New application of existing technology?Not in US/Not in SRS	1	<u> </u>	X
4. Modemized/advanced technology in existing application?	X	<u> </u>	
B. INTERFACES		. <u></u>	
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X		
2. Multiple technical agencies an issue?(AEA)		X	
3. Interfaces with operating SSCs during construction/installation present issues?	<u>×</u>	_	
4. Interfaces with operating SSCs including testing present issues?	X	<u> </u>	
5. Involves co-occupancy issues?	X	1	\square
6. H&V/Negative pressure loss issues?	X		
7. Multiple Project/Facility interfaces cause issues?	X		
C. SAFETY			
1. Criticality potential?	Х	<u> </u>	ļ
2. Significant exposure/contamination potential?	x	.	<u> </u>
3. Any significant impact or challenge to the Facility's Authorization Basis? Atomisation of waste (in A3)			×
4. Hazardous material issues?	X	↓	┼───
5. Process hazard potential?	X	<u> </u>	
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X		1
D. REGULATORY/ENVIRONMENTAL			·
1. Environmental assessment/impact statement issues?	X	<u> </u>	
2. Additional releases?	X	-	1
3. Undefined disposal methods?	×		<u> </u>
4. Requires substantial equipment D&R?		X	<u> </u>
5. Emergency transfers needed?	x	<u> </u>	1
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	x		
E. DESIGN			
1. Undefined, incomplete or unclear functional requirements?	X	<u> </u>	1
2. Undefined, incomplete or unclear design criteria?	X	<u> </u>	<u> </u>
3. Complex design features (e.g., controls, seismic, compatibility)?	X		
4. Difficult to perform functional test?	X		1
5. Issues with the content, number or clarity of assumptions?	X	<u></u>	
6. Precludes portability of infrastructure?	X		<u> </u>
7. RAMI issues?	x	.	

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM
Risk Assessment Identification Form
HLW Tank 18 Waste Removal and Transfer
Risk Number:_HI-2 Date:1/12/01 Idea/Strategy Number:B-16 Idea/Strategy Title:Diode
A. Statement of Risk (What are we concerned about?)
A. Statement of Kisk (<i>what are we concerned about</i> .) Significant AB issue result in unknown costs and schedules to mitigate
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence: Previous experience; similar equipment
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: O Crisis Critical O Significant Marginal Negligible
Basis for Consequence Factor (State consequences): Missed FFA
D. Risk Level (RL): E. Risk Handling Strategy (RHS):
Estimated Cost: Estimated Schedule:
F. Impact of Strategy on Risk Level (RL _h):
New Probability (P _h): Basis:
Very Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis Ocritical OSignificant O Marginal ONegligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

HLW Tank 18 Waste Removal Systems Engineering Evaluation Final Report WSRC-RP-2001-00024 Revision 0 Page 204 of 235

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team Risk Screening Criteria

Rev. 11/8/00

Idea # _B-38 (TTP)

Function _____ F.2

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose *No* risk to the project are identified as such. A *Low* risk is marked accordingly and should be justified under separate documentation. A *Yes* response indicates the potential for risk. If any of the questions are answered as *Yes*, a Risk Analysis is required.

Risk Screening Criteria	Potential for Risk?		
Risk Screening Chiefia		Low	Yes
A. TECHNOLOGY			
1. New technology?	X		
2. Unknown or unclear technology?	X		_
3. New application of existing technology?	X	•	
4. Modernized/advanced technology in existing application?	X		<u> </u>
B. INTERFACES	•	·	
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X		ļ
2. Multiple technical agencies an issue?	X		ļ
3. Interfaces with operating SSCs during construction/installation present issues?	X	 	ļ
4. Interfaces with operating SSCs including testing present issues?	<u> </u>		<u> </u>
5. Involves co-occupancy issues?	X		
6. H&V/Negative pressure loss issues?	X		<u></u>
7. Multiple Project/Facility interfaces cause issues?	×		
C. SAFETY		·	· – –
1. Criticality potential?	X		ļ
2. Significant exposure/contamination potential?D & R/ Refurbished		X	<u> </u>
3. Any significant impact or challenge to the Facility's Authorization Basis?	X		<u> </u>
4. Hazardous material issues?	X	<u> </u>	
5. Process hazard potential?	X		
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X	l	<u> </u>
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	<u> </u>		<u> </u>
2. Additional releases?	X	·	<u> </u>
3. Undefined disposal methods?	<u> </u>	- 	<u> </u>
4. Requires substantial equipment D&R?		×	
5. Emergency transfers needed?	X		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	X		
E. DESIGN			
1. Undefined, incomplete or unclear functional requirements?	×		
2. Undefined, incomplete or unclear design criteria?	X		
3. Complex design features (e.g., controls, seismic, compatibility)?	X		_
4. Difficult to perform functional test?	<u> </u>		
5. Issues with the content, number or clarity of assumptions?	X		<u> </u>
6. Precludes portability of infrastructure?	x		
7. RAMI issues?	X		

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Idea	#	B-38

Risk Screening Criteria	Pote	ntial for F	or Risk?	
	No	Low	Yes	
F. RESOURCES/CONDITIONS				
1 Are adequate and timely resources, material, or equipment a concern?	X			
2. Specialty resource requirements create concerns?	X			
3. Are existing utility locations a concern (above/below ground)?	X			
4. Are geological conditions a concern?	X		1	
5. Is weather a concern?	X			
6. Are critical lifts a concem?	<u>x</u>	<u> </u>	<u> </u>	
7. Is there insufficient experience with the O&M of the proposed system?	X			
G. SCHEDULE				
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	X		<u> </u>	
2. Fast track critical needs issues?	X			
H. PROCUREMENT				
1. Long lead items that may affect critical path? Refurbished 6-9m		X	1	
2. Potential unavailable qualified vendors or contractors?	X			
3. Is the procurement strategy inadequate?	Х			
4. Is it a first-use subcontractor/vendor that presents issues?	X			
5. Do vendor support issues exist?	X		<u> </u>	
1. OTHER				
1. Contract issues?	X			
2. Direct hire/subcontract issues?	X			
3. Systems startup concerns?	X			
	X			

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev.	11/8/00
------	---------

Idea # <u>B43M (Tk1 Tie-in)</u>

Function _____ F.3

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose *No* risk to the project are identified as such. A *Low* risk is marked accordingly and should be justified under separate documentation. A *Yes* response indicates the potential for risk. If any of the questions are answered as *Yes*, a Risk Analysis is required.

Risk Screening Criteria		Potential for Risk?		
		Low	Yes	
A. TECHNOLOGY				
1. New technology?	X		<u> </u>	
2. Unknown or unclear technology?	X			
3. New application of existing technology?	X	L	ļ	
4. Modernized/advanced technology in existing application?	X			
B. INTERFACES				
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?Tk1 taken o/s;need to be returned		X		
2. Multiple technical agencies an issue?	×			
3. Interfaces with operating SSCs during construction/installation present issues?	X			
4. Interfaces with operating SSCs including testing present issues?	X			
5. Involves co-occupancy issues?	X			
6. H&V/Negative pressure loss issues?	x			
7. Multiple Project/Facility interfaces cause issues?Tk 7-on similar WR schedule		x		
C. SAFETY				
1. Criticality potential?	X			
2. Significant exposure/contamination potential?	X			
3. Any significant impact or challenge to the Facility's Authorization Basis?	X			
4. Hazardous material issues?	X		ļ	
5. Process hazard potential?	<u> </u>		<u> </u>	
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X		<u> </u>	
D. REGULATORY/ENVIRONMENTAL				
1. Environmental assessment/impact statement issues?	X			
2. Additional releases?	X		<u> </u>	
3. Undefined disposal methods?	X	<u> </u>		
4. Requires substantial equipment D&R?	X			
5. Emergency transfers needed?Need plan on Tk1 Emerg xier		X		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	x			
E. DESIGN		-		
1. Undefined, incomplete or unclear functional requirements?	X			
2. Undefined, incomplete or unclear design criteria?	X	<u> </u>	<u> </u>	
3. Complex design features (e.g., controls, seismic, compatibility)?	×			
4. Difficult to perform functional test? High pt vent; condition of old line; to do flowing water test	_	×	<u> </u>	
5. Issues with the content, number or clarity of assumptions?	X		<u> </u>	
6. Precludes portability of infrastructure?	X		<u> </u>	
7. RAMI issues?	x `			

Page 1 of 2

.

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Idea # _ B43 M (Tk 1 Tie-in)	Function	F.3_		
Risk Screening Criteria		Potential for Risk?		
Mak ourcening enterna		No	Low	Yes
F. RESOURCES/CONDITIONS			_	
1 Are adequate and timely resources, material, or equipment a co	ncern?	<u> </u>		
2. Specialty resource requirements create concerns?		<u>×</u>	L	
3. Are existing utility locations a concern (above/below ground)?		<u> </u>		
4. Are geological conditions a concern?		X		
5. Is weather a concern?		<u> </u>	<u> </u>	
6. Are critical lifts a concern?		<u>×</u>		
7. Is there insufficient experience with the O&M of the proposed s	ystem?	X	<u> </u>	
G. SCHEDULE				
1. Project Schedule uncertainties or restraints that may impact pro	oject completion or milestone dates?	X	<u> </u>	ļ
2. Fast track critical needs issues?		X		
H. PROCUREMENT				
1. Long lead items that may affect critical path?		X		
2. Potential unavailable qualified vendors or contractors?		X		
3. Is the procurement strategy inadequate?		X		ļ
4. Is it a first-use subcontractor/vendor that presents issues?		X		
5. Do vendor support issues exist?		<u> </u>		<u> </u>
I. OTHER				
1. Contract issues?		X		
2. Direct hire/subcontract issues?		X		
3. Systems startup concerns?		<u> </u>		<u> </u>
		X		
				1

Page 2 of 2

.

ATT	AC	ΗМ	ENT	2
				_

HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM
Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number:D5-1 Date:1/12/01 Idea/Strategy Number:B43M
Idea/Strategy Title:Tk 1 Tie-in
A. Statement of Risk (What are we concerned about?) Development and implementation of Emergency Transfer strategy during tie-in of Tk 18 transfer line maybe Difficult/expensive Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence:Needs to be sold to DOE
threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.) Consequence Factor: Crisis Critical Significant Marginal Negligible Basis for Consequence Factor (State consequences): Drive up cost (selling a cost-effective solution)
D. Risk Level (RL):
 E. Risk Handling Strategy (RHS): Plan Tk 18-Tk7 Cut over as to minimize time Tk 18 is w/o transfer emergency Cut Tk1 line first & test back to Tk 7; Have the spool piece fab'd ready or have qualified hose section available; Cut Tk 18 to FDB-1 line and test back to Tk 18; Tie-in spool piece; in event of emergency retie originial Configuration, tie in spool or hose (depend on how far along tie-in mod is)
Estimated Cost: Estimated Schedule:
F. Impact of Strategy on Risk Level (RL _h):
New Probability (Ph): Basis: Overy Likely Unlikely
New Consequence (C _h): Basis
Crisis OCritical OSignificant O Marginal O Negligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number: <u>E4-2</u> Date: <u>1/12/01</u> Idea/Strategy Number: <u>B43M</u>
Idea/Strategy Title:Tk 1 Tie-in
A. Statement of Risk (What are we concerned about?) Core Jacket pipe integrity may not be able to be proven adeq; has not been tested recently
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence:
 C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life-threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.) Consequence Factor: Orisis Oritical Significant OMarginal Original Original
Basis for Consequence Factor (State consequences):_Maybe come difficult to qualify lines and therefore
increase cost/schedule
D. Risk Level (RL):
 E. Risk Handling Strategy (RHS): Do earlier in project schedule; Design tie-in to facilitate pressure or water test of jacket; Flowing water Test core early; Flowing water, pressure test or He test jacket early; Fix as needed
Estimated Cost: Estimated Schedule:
Estimated Cost: Estimated Schedule:
New Probability (P _h): Basis:
Very Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis Ocritical O Significant O Marginal Negligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team **Risk Screening Criteria**

Rev	11/5

			Rev. 11/	8/00	
Idea # <u>C-21 (Chemical)</u>	Function	F.3			
Screenings are performed to determine if the project or activity in determining whether the screening item results in a potentia identified as such. A <i>Low</i> risk is marked accordingly and sho response indicates the potential for risk. If any of the question	I risk. Categor uld be justified	ies that pose <i>No</i> under separate of	risk to the locumenta	project as tion. A Y	re
Risk Screening Criteria			Potential for Risk		
			No	Low	Yes
A. TECHNOLOGY			. .	•	<u> </u>
1. New technology?			X		
2. Unknown or unclear technology?			X		
3. New application of existing technology?Chemical compatability w/ do	wn stream proce	SS			X
4. Modemized/advanced technology in existing application?		· · · ·	X		
B. INTERFACES					
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?N	leed an area to n	eutralize (see A3)			X
2. Multiple technical agencies an issue?			X		
3. Interfaces with operating SSCs during construction/installation preser	nt issues?	• •	X		
4. Interfaces with operating SSCs including testing present issues?			X		
5. Involves co-occupancy issues?		•	X	1	
6. H&V/Negative pressure loss issues?			x		
7. Multiple Project/Facility interfaces cause issues?DWPF glass issue (s	see A3)		x		
C. SAFETY					
1. Criticality potential?			X		
2. Significant exposure/contamination potential?			X		
3. Any significant impact or challenge to the Facility's Authorization Bas	is?		•	X	
4. Hazardous material issues?(Personnel)				X	

4. Hazardous material issues?(Personnel)		X	
5. Process hazard potential?(Process)		X	
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	Х		
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	Х		
2. Additional releases?	X		
3. Undefined disposal methods?	X		
4. Requires substantial equipment D&R?	x		
5. Emergency transfers needed?	X		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	x		
E. DESIGN			
1. Undefined, incomplete or unclear functional requirements?	х		
2. Undefined, incomplete or unclear design criteria?	x		
3. Complex design features (e.g., controls, seismic, compatibility)?	X		
4. Difficult to perform functional test?	Х		
5. Issues with the content, number or clarity of assumptions?	X		
6. Precludes portability of infrastructure?	x		
7. RAMI issues?	x		

Page 1 of 2

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Idea # <u>C-21 (Chemical)</u>

Function _____ F.3

Risk Screening Criteria	Pote	ntial for f	lisk?
· · · · · · · · · · · · · · · · · · ·	No	Low	Yes
F. RESOURCES/CONDITIONS		_	
1 Are adequate and timely resources, material, or equipment a concern?	X		
2. Specialty resource requirements create concerns?	<u> </u>	L	
3. Are existing utility locations a concern (above/below ground)?	X	<u> </u>	
4. Are geological conditions a concern?	X		
5. Is weather a concern?	X		
6. Are critical lifts a concern?	X	ļ	
7. Is there insufficient experience with the O&M of the proposed system?	X		
G. SCHEDULE R & D Process development		· ·	
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?(inA3)			<u>×</u>
2. Fast track critical needs issues?	<u> </u>	1	
H. PROCUREMENT		.	
1. Long lead items that may affect critical path?	X		
2. Potential unavailable qualified vendors or contractors?	X		
3. Is the procurement strategy inadequate?	<u>×</u>		
4. Is it a first-use subcontractor/vendor that presents issues?	X		
5. Do vendor support issues exist?	X		
I. OTHER			• · · · · · · · · · · · · · · · · · · ·
1. Contract issues?	X		
2. Direct hire/subcontract issues?	x		ļ
3. Systems startup concerns?	X		ļ
	<u> </u>		ļ

	REMOVAL AND TRANSFER RISK IDENTIFICATION FORM Risk Assessment Identification Form LW Tank 18 Waste Removal and Transfer
Risk Number: A3-2	Date:1/12/01 Idea/Strategy Number:C-21
Idea/Strategy Title:Chemical	
A. Statement of Risk (What are we Cost & Schedule to develop	e concerned about?) o chemical cleaning process compatible w/downstream process is unknown
Basis for the risk:	
	bability that the "unhandled" risk will come true?)
Probability of Occurrence:	Very Likely Unlikely Very Unlikely
	urrence:
C. Consequence (C) (What is/are t threatening, property damage, s	the consequences if the "unhandled" risk comes true? Examples are life- chedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor:	Crisis Critical O Significant O Marginal O Negligible
	or (State consequences):Doesn't support WR in Tk 18 in Accordance mpact
D. Risk Level (RL):	High Moderate Low
E. Risk Handling Strategy (RHS) Commission dedicated tean Testing on fast track (incre funding	m to develop process and facilities for neutralization; Conduct real waste emental cost of \$500K) to fast track; Leverage TFA
Estimated Cost:\$500K	Estimated Schedule:
F. Impact of Strategy on Risk Le	evel (RL _b):
New Probability (P _h):	Basis:
🔿 Very Likely 🔵 Likely 🌑 I	Unlikely Very Unlikely
New Consequence (C _h):	Basis
Crisis Critical OSignifican	nt () Marginal ()Negligible
Residual Risk Level (RL _b):	○ High ● Moderate ○ Low ○ Eliminated

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number:B1-1 Date: _1/12/01 Idea/Strategy Number:C-21
Idea/Strategy Title:Chemical Cleaning
A. Statement of Risk (What are we concerned about?) Need an area to neutralize (included in A3-2)
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely OLikely OUnlikely Very Unlikely Basis for Probability of Occurrence:
Basis for Probability of Occurrence.
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: Orisis Oritical O Significant Marginal O Negligible Basis for Consequence Factor (State consequences):
D. Risk Level (RL): OHigh OModerate Low E. Risk Handling Strategy (RHS):
Estimated Cost: Estimated Schedule:
F. Impact of Strategy on Risk Level (RL _h):
New Probability (P _h):Basis:
Very Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis OCritical OSignificant O Marginal ONegligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

ATTACHMENT 2 HLW TANK 18 WASTE REMOVAL AND TRANSFER RISK IDENTIFICATION FORM

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number: <u>G1-1</u> Date: <u>1/12/01</u> Idea/Strategy Number: <u>C-21</u>
Idea/Strategy Title:Chemical
A. Statement of Risk (What are we concerned about?) R & D and process development (included in A3-2)
Basis for the risk:
B. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence:
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
Consequence Factor: Crisis Critical Significant Marginal Negligible Basis for Consequence Factor (State consequences):
D. Risk Level (RL): O High O Moderate O Low C. Risk Handling Strategy (RHS):
Estimated Cost: Estimated Schedule:
D. Impact of Strategy on Risk Level (RL _h):
New Probability (P _h): Basis:
Very Likely Unlikely Very Unlikely
New Consequence (C _h): Basis
Crisis Ocritical OSignificant O Marginal ONegligible
Residual Risk Level (RL _h): High Moderate Low Eliminated

ATTACHMENT 1 - HLW Tank 18 Waste Removal Team Risk Screening Criteria

Rev. 11/8/00

Idea	Ħ	C-56 ((Sluice <u>r)</u>

Function _____

F.3

Screenings are performed to determine if the project or activity has the potential for risk. Judgement must be exercised in determining whether the screening item results in a potential risk. Categories that pose *No* risk to the project are identified as such. A *Low* risk is marked accordingly and should be justified under separate documentation. A *Yes* response indicates the potential for risk. If any of the questions are answered as *Yes*, a Risk Analysis is required.

Risk Screening Criteria	Pote	ntial for I	Risk?
	No	Low	Yes
A. TECHNOLOGY		,	
1. New technology?	×		
2. Unknown or unclear technology?	X		
3. New application of existing technology?	X		
4. Modernized/advanced technology in existing application?	X	Í	
B. INTERFACES		.	
1. Multiple system interfaces (e.g., canyons, transfer routes) an issue?	X		
2. Multiple technical agencies an issue?	X	L	
3. Interfaces with operating SSCs during construction/installation present issues?	X		
4. Interfaces with operating SSCs including testing present issues?	X		
5. Involves co-occupancy issues?	x		
6. H&V/Negative pressure loss issues?	×		
7. Multiple Project/Facility interfaces cause issues?			×
C. SAFETY			
1. Criticality potential?	X		
2. Significant exposure/contamination potential?	X		
3. Any significant impact or challenge to the Facility's Authorization Basis?	X		ļ
4. Hazardous material issues?	X		ļ
5. Process hazard potential?	X		<u> </u>
6. Will hazardous materials inventories exceed the OSHA or Radiation Management Plan total quantities?	X	_l	
D. REGULATORY/ENVIRONMENTAL			
1. Environmental assessment/impact statement issues?	X		ļ
2. Additional releases?	<u> </u>		
3. Undefined disposal methods?	X		
4. Requires substantial equipment D&R?	X		
5. Emergency transfers needed?	X		
6. Political vulnerabilities (DOE, Congress, local government) create significant issues?	x		
E. DESIGN			-
1. Undefined, incomplete or unclear functional requirements?	_		
2. Undefined, incomplete or unclear design criteria?	X		
3. Complex design features (e.g., controls, seismic, compatibility)?	<u> </u>		
4. Difficult to perform functional test?	X	-	<u> </u>
5. Issues with the content, number or clarity of assumptions?	<u>X</u>		
6. Precludes portability of infrastructure?	X		<u> </u>
7. BAMI issues?	X		

Page 1 of 2

ATTACHEMENT 1 - HLW Tank 18 Waste Removal Team

Risk Screening Criteria

Rev. 11/8/00

Function <u>F.3</u>

Risk Screening Criteria	Pote	ntial for l	Risk?
nisk Gutening Ontena	No	Low	Yes
F. RESOURCES/CONDITIONS			
1 Are adequate and timely resources, material, or equipment a concern?	X	<u> </u>	
2. Specialty resource requirements create concerns?	X		
3. Are existing utility locations a concern (above/below ground)?	X		
4. Are geological conditions a concern?	X		<u> </u>
5. Is weather a concern?	X		
6. Are critical lifts a concern?	X		ļ
7. Is there insufficient experience with the O&M of the proposed system?	X	<u> </u>	
G. SCHEDULE			
1. Project Schedule uncertainties or restraints that may impact project completion or milestone dates?	X		
2. Fast track critical needs issues?	X		
H. PROCUREMENT			
1. Long lead items that may affect critical path?	X		<u> </u>
2. Potential unavailable qualified vendors or contractors?	X		<u> </u>
3. Is the procurement strategy inadequate?	X		<u> </u>
4. Is it a first-use subcontractor/vendor that presents issues?	X		ļ
5. Do vendor support issues exist?	<u> </u>		<u> </u>
I. OTHER			
1. Contract issues?	X		
2. Direct hire/subcontract issues?	X		
3. Systems startup concerns?	X		
	1		

Page 2 of 2

Risk Assessment Identification Form HLW Tank 18 Waste Removal and Transfer
Risk Number:B7-1 Date:1/12/01 Idea/Strategy Number:C-56
Idea/Strategy Title:Sluicer
G. Statement of Risk (What are we concerned about?)
Amount of water required to remove residual sludge may exceed available receipt tank space
Basis for the risk:
H. Probability (P) (What is the probability that the "unhandled" risk will come true?)
Probability of Occurrence: Very Likely Likely Unlikely Very Unlikely
Basis for Probability of Occurrence:
C. Consequence (C) (What is/are the consequences if the "unhandled" risk comes true? Examples are life- threatening, property damage, schedule delays, noncompliance with regulations or site requirements, etc.)
inrealening, property damage, schedule delays, noncompliance with regulations of she requirements, etc.)
Consequence Factor: Crisis Critical O Significant Marginal O Negligible
Basis for Consequence Factor (State consequences): May have to slow down sluicer to conserve receipt
Tank space thus jeop. FFA and impacting other key scope activities.
D. Risk Level (RL): High Moderate Low
I. Risk Handling Strategy (RHS):
Develop enhanced sluicer nozzles (\$100K); high press, low volume, focused spray pattern; Test, mock
Up demo (\$100K)
Estimated Cost: \$200K Estimated Schedule:
Estimated Cost:\$200K Estimated Schedule:
J. Impact of Strategy on Risk Level (RL _h):
J. Impact of Strategy on Risk Level (RL _h): New Probability (P _h): Basis:
J. Impact of Strategy on Risk Level (RL _h): New Probability (P _h): Basis: Basis:
J. Impact of Strategy on Risk Level (RL _h): New Probability (P _h): Basis: Very Likely Likely New Consequence (C _h): Basis
J. Impact of Strategy on Risk Level (RL _h): New Probability (P _h): Basis: Basis:
J. Impact of Strategy on Risk Level (RL _h): New Probability (P _h): Basis: Very Likely Likely New Consequence (C _h): Basis
J. Impact of Strategy on Risk Level (RL _h): New Probability (P _h): Basis: Very Likely Likely New Consequence (C _h): Basis
J. Impact of Strategy on Risk Level (RL _h): New Probability (P _h): Basis: Very Likely Likely New Consequence (C _h): Basis
J. Impact of Strategy on Risk Level (RL _h): New Probability (P _h): Basis: Very Likely Likely New Consequence (C _h): Basis Crisis Critical Significant Marginal

٠

STRATEGY SENSITIVITY ANALYSIS
,

WSRC-RP-2001-00024 Revision 0 Page 219 of 235

	· · · · · · · · · · · · · · · · · · ·		T		T	TOTAL
STRATEGY	INITIAL COST	LIFE	EFFECTIVENESS			SCORE
	TO DEPLOY	CYCLE COST		COMPLEXITY	AB IMPACT	WEIGHTED
	(0.12)	(0.20)	(0.28)	(0.25)	(0.15)	
32	67.75	3	94	84.2	87.55	69.2
33	49.5	15	95.5	80.6	71.45	66.5
54	76.5	6.75	91.5	80.2	86.5	69.2
56	67.75	5	94	83.75	75.15	67.7
37	50,5	17	95.5	80.15	59.05	65.1
58	77.5	8.75	91.5	79.75	74.1	67.7
S10	72.75	15	94.2	85.6	87.55	72.6
511	55.5	27	95.7	80.4	71.45	69.7
512	82.5	18.75	91.7	80	86.5	72.3
514	73.75 •	17	94.2	85.15	75.15	71.2
S15	56.5	29	95.7	79.95	59,05	68.2
S16	83.5	20.75	91.7	79.55	74.1	70.8
S18	65.25	9	94.6	84.05	86.05	70.0
S19	48	21	96.1	80.45	69.95	67.5
520 *	75	12.75	92.1	80.05	85	70.1
S22	66.25	11	94.6	83.6	73.65	68.6
523	49	23	96.1	80	57.55	66.0
S24	76	14.75	92.1	79.6	72.6	68.6
S26	58.5	3	90	83.4	88.05	66.9
S27	41.25	15	91.5	79.8	71.95	64.3
S28	68.25	6.75	87.5	79.4	87	66.9
S30	59.5	5	90	82.95	75.65	65.4
S31	42.45	17	91.5	79.35	59.55	62.9
S32`	69.25	8.75	87.5	78.95	74.6	65.5
S34	64.5	15	90.2	84.8	88.05	70.4
S35	47.25	27	91.7	79.6	• 71.95	67.4
S36	74.25	18.75	87.7	79.2	87	70.1
S38	65.5	17	90.2	84.35	75.65	69.0
S39	48.25	29	91.7	79.15	59.55	66.0
S40 · ·	75.25	20.75	87.7	78.75	74.6	68.6
S42	57	9	90.6	83.25	86.55	67.8
S43	39.75	21	92.1	79.65	70.45	65.2
S44	66.75	12.75	88.1	79.25	85.5	67.9
S46	58	11	90.6	82.8	74.15	66.4
S47 -	40.75	23	92.1	79.2	58.05	63.8
S48	67.75	14.75	88.1	78.8	73.1	66.4
S50	72	60	92.4	80.2	87.55	79.7
S51 ·	53.25	72	93.9	76.6	71.45	76.9
\$52	81	63.75	89.9	76.2	86.5	79.7
<u>\$53</u>	39.75	60	92.4	77.8	86.5	75.1
S55	73	62	92.4	79.75	75.15	78.2
S56	54.25	74	93.9	76.15	59.05	75.5
S57	82	65.75	89.9	75.75	74.1	78.2
S58	40.75	62	92.4	77.35	74.1	73.6
S60	78	72	92.6	81.6	87.55	83.2

TANK 18: STRATEGY SCORING

STRATEGY	INITIAL COST TO DEPLOY (0.12)	LIFE CYCLE COST (0.20)	EFFECTIVENESS (0.28)	COMPLEXITY (0.25)	AB IMPACT	TOTAL SCORE WEIGHTED
S61	59.25	84	94.1	76.4	71.45	80.1
S62	87	75.75	90,1	76	86.5	82.8
S63	45.75	72	92.6	77.6	86.5	78.2
S65 ·	79	74	92.6	81.15	75.15	81.8
S66	60.25	86	94.1	75.95	59.05	78.6
S67	88	77.75	90.1	75.55	74.1	81.3
S68	46.75	74	92.6	77.15	74.1	76.7
S70	70.5	66	93	80.05	86.05	80.6
S71.	51.75	78	94.5	76,45	69.95	77.9
S72	79.5	69.75	90.5	76.05	85	80.6
S73	38.25	66	93	77.65	85	76.0
S75	71.5	68	93	79.6	73.65	79.2
S76	52.75	80	94.5	76	57.55	76.4
S77	80.5	71.75	90.5	75.6	72.6	79.1
S78	39.25	68	93	77.2	72.6	74.5
S80	45	0	93.6	77.4	87.85	64.1
S81	28.5	12	95.1	73.8	71.75	61.7
S82	55.5	3.75	91.1	73.4	86.8	64.3
S83	13.5	0	93.6	75	86.8	59.6
S85	46	2	93.6	76.95	75.45	62.7
S86	29.5	14	95.1	73.35	59.35	60.2
S87	56.5	5.75	91.1	72.95	74.4	62.8
S88	14.5	2	93.6	74.55	74.4	58.1
S90	51	12	93.8	78.8	87.85	67.7
S91	34.5	24	95.3	73.6	71.75	64.8
S92	61.5	15.75	91.3	73.2	86.8	67.4
S93	19.5	12	93.8	74.8	86.8	62.7
S95	52	14	93.8	78.35	75.45	66.2
S96	35.5	26	95.3	73.15	59.35	63.3
S97	62.5	17.75	91.3	72.75	74.4	66.0
S98	20.5	14	93.8	74.35	74.4	61.3
S100	43.5	6	94.2	77.25	86.35	65.1
S101	27	18	95.7	73.65	70.25	62.6
S102	54	9.75	91.7	73,25	85.3	65.2
S103	12	6	94.2	74.85	85.3	60.5
S105 -	44.5	8	94.2	76.8	73.95	63.6
S106	28	20	95.7	73.2	57.85	61.1
S107 · ·	55	11.75	91.7	72.8	72.9	63.8
S108 · ·	13	8	94.2	74.4	72.9	59.1
S109	96	30	88.5	87	90.85	77.7
S110 - ···	97	32	88.5	86.55	78.45	76.2
S111		30	84.5	83.8	91.1	74.4
S112 * **	85.75	32	84.5	83.35	78.7	73.0
S113	60.75	30	89.7	83.4	90.1	72.8
S114	61.75	32	89.7	82.95	77.7	71.3

TANK 18: STRATEGY SCORING (Contd)

STRATEGY	INITIAL COST TO DEPLOY (0.12)	LIFE CYCLE COST (0.20)	EFFECTIVENESS (0.28)	COMPLEXITY (0.25)	AB IMPACT (0.15)	TOTAL SCORE WEIGHTED
S60	78	72	92.6	81,6	87.55	83.2
S62	87	75.75	90.1	76	86.5	82.8
S65	79	74	92.6	81.15	75.15	81.8
S67	88	77.75	90.1	75.55	74.1	81,3
S70	70.5	66	93	80.05	86.05	80.6
S72	79.5	69.75	90.5	76.05	85	80.6
S61	59.25	84	94.1	76.4	71.45	80.1
S50	72	60	92.4	80.2	87.55	79.7
\$52	81	63.75	89.9	76.2	86,5	79.7
S75	71.5	68	93	79.6	73,65	79.2
<u>\$77</u>	80.5	71.75	90.5	75,6	72.6	79.1
S66	60.25	86	94.1	75.95	59.05	78.6
S55	73	62	92.4	79.75	75,15	78.2
<u>S57</u>	82	65.75	89.9	75.75	74,1	78.2
<u>563</u>	45.75	72	92.6	77.6	86.5	78.2
<u> </u>	51.75	78	94.5	76.45	69.95	77.9
S109	96	30	88.5	87	90.85	77.7
S51	53.25	72	93.9	76.6	71,45	76.9
S68	46.75	74	92.6	77.15	74.1	76.7
<u>500</u> S76	52.75	80	94.5	76	57.55	76.4
S110	97	32	88.5	86.55	78.45	76.2
S73	38.25	66	93	77.65	85	76.0
S56	54.25	74	93.9	76.15	59.05	75.5
S53	39.75	60	92.4	77.8	86.5	<u>75.1</u>
S78	39.25	68	93	77.2	72,6	74.5
S111	84.75	30	84.5	83.8	91.1	74.4
S58	40.75	62	92.4	77.35	74.1	73.6
S112	85.75	32	84.5	83.35	78,7	73.0
S113	60.75	30	89.7	83.4	90.1	72.8
S10	72.75	15	94.2	85.6	87.55	72.6
S12	82.5	18.75	91.7	80	86.5	72.3
S114	61.75	32	89.7	82.95	77.7	71.3
S14	73.75	17	94.2	85.15	75.15	71,2
S16	83.5	20.75	91.7	79.55	74.1	70.8
S34	64.5	15	90,2	84.8	88.05	
S20	75	12.75	92.1	80.05	85	
S36	74.25	18.75	87.7	79.2	87	70.1
S18	65.25	9	94.6	84.05	86.05	
S11	55.5	27	95.7	80.4	71.45	69.7
<u>\$2</u>	67.75	3	94	84.2	87.55	69.2
S4	76.5	6.75	91.5	80,2	86.5	69.2
S38	65.5	17	90.2	84.35	75.65	69.0
S22	66.25	11	94.6	83.6	73.65	68.6
S24	76	14.75	92.1	79.6	72.6	68.6
S40	75,25	20.75	87.7	78.75	74.6	68.6

TANK 18: STRATEGY RANKING SCORE (Contd)

STRATEGY	INITIAL COST TO DEPLOY (0.12)	LIFE CYCLE COST (0.20)	EFFECTIVENESS (0.28)	COMPLEXITY (0.25)	AB IMPACT (0.15)	TOTAL SCORE WEIGHTED
315	56.5	29	95.7	79.95	59.05	68.2
<u>515 </u>	66.75	12.75	88.1	79.25	85.5	67.9
42	57	9	90.6	83.25	86.55	67.8
<u>42</u>	67.75	5	94	83.75	75,15	67.7
8	77.5	8.75	91.5	79.75	74.1	67.7
8 90	51	12	93.8	78.8	87.85	67.7
319 1 19 1 19 1 19 1 19 1 19 1 19 1 19	48	21	96,1	80.45	69.95	67.5
35	40	27	91.7	79.6	71.95	67.4
<u>892 (^ + -)</u>	61.5	15.75	91,3	73.2	86.8	67,4
592 526	58.5	3	90	83.4	88.05	66.9
	68.25	6.75	87.5	79.4	87	66.9
	49.5	15	95.5	80.6	71.45	66.5
<u>3 </u>	58	11	90.6	82.8	74,15	66.4
	67.75	14.75	88.1	78.8	73,1	66.4
348	52	14	93.8	78.35	75.45	66.2
<u> </u>	49	23	96.1	80	57.55	66.0
<u>523</u>	49 48.25	29	91.7	79.15	59.55	66.0
39	62.5	17.75	91.3	72.75	74.4	66.0
<u> 397</u>	69.25	8.75	87.5	78.95	74.6	65.5
<u>332</u>	59.5	5	90	82.95	75.65	65.4
<u>530</u> 543	39.75	21	92.1	79.65	70.45	65.2
543 S102	54	9.75	91.7	73.25	85.3	65.2
	50.5	17	95.5	80.15	59.05	65,1
<u> 57</u>	43.5	6	94.2	77.25	86.35	65.1
<u>S100</u>	34.5	24	95.3	73.6	71.75	64.8
<u>591</u>	41.25	15	91.5	79,8	71.95	64.3
<u>S27 · </u>	55.5	3.75	91.1	73.4	86.8	64.3
<u>582</u>	45	0	93.6	77.4	87.85	64.1
<u>S80</u>	40.75	23	92.1	79.2	58.05	63.8
<u>\$47</u>	55	11.75	91.7	72.8	72.9	63,8
	44.5	8	94.2	76.8	73.95	63.6
<u>S105</u>		26	95.3	73.15	59.35	63.3
<u>S96</u>	42.45	17	91.5	79.35	59.55	62.9
<u>S31</u>	<u> </u>	5.75	91.1	72.95	74.4	62.8
<u>S87</u>		2	93.6	76.95	75.45	62.7
<u>S85</u>	<u>46</u> 19.5	12	93.8	74.8	86.8	62.7
<u>\$93</u>		18	95.7	73.65	70.25	62.6
<u>S101</u>		18	95.1	73.8	71.75	61,7
<u>S81 ~:</u>	- 28.5	14	93.8	74,35	74.4	61.3
<u>S98</u>	20.5	20	95.7	73.2	57.85	61.1
<u>S106</u>	28	6	94.2	74.85	85.3	60.5
<u> S103</u>	12		95.1	73.35	59.35	60.2
<u>586</u>	29.5	14		75	86.8	59.6
		0	93.6	74,4	72.9	· 59.1
S108 S88	<u>13</u> 14.5	8	94.2	74.55	74.4	58.1

TANK 18: STRATEGY RANKING SCORE (Contd)

COST SENSITIVITY DECREASED BY 10% Alternative Utility

SHIVITY OF OVERALL		COST SENSITIVITY DECRE	ASED B
Alternative	Utility	Alternative	Utility
S60 S62	0.832 0.828	S60	0.845 0.832
S65	0.818	562 565	0.832
\$67	0.813	50.7 \$70	0.825
\$70	0.806	550	0.819
\$72	0 806	\$72	0.816
S61	0.801	\$67	0.813
\$50	0.797	\$52	0.811
\$52	0.797	\$109	0.810
\$75	0.792	561	0 809
\$77	0.791	\$75	0 806
S66	0.786 0.782	\$63 577	0.806
\$55 \$57	0.782	555	0.800
S63	. 0 782	577 571	0.793
\$71	0,779	\$57	0.792
S109	0.777	5110	0.791
\$51	0.769	\$73	0.790
S68	0.767	566	0 790
\$76	0.764	\$51	0.787
5110	0.762	568	0.786
\$73	0.760	553	0.784
S56	0.755	S111	0.780
\$53	0.751 0.745	\$10	0.779
\$78 \$111	0.744	\$76 \$113	0.774 0.774
\$58	0.736	5115 578	0.771
5112	0.730	\$56	0.768
S113	0.728	S12	0.767
\$10	0.726	\$58	0.765
S12	0.723	\$112	0.761
\$114	0.713	514	0.760
\$14	0.712	518	0.759
516	0.708	\$34	0.758
\$34	0.704 0.701	\$114	0 755
S20 S36	0.701	S2	0.754
S18	0.700	S20 516	0.748
S11	0.697	536	0.746
52	0.692	S4	0.745
S4	0.692	SIL	0.744
\$38	0.690	S22	0.740
524	0.686	\$38	0.739
S40	0.686	\$42	0.738
S22	0.686	S90	0.737
S15	0.682	Só	0.734
S44 S42	0.679 0.678	\$26	0.732
542 58	0.677	· \$24 \$44	0.732
590	0.677	S14 S19	0.728
S6	0.677	S40	0.726
519	0.675	. 58	0.726
\$35	0.674	\$92	0.725
S92	0.674	\$15	0.725
S28	0.669	\$28	0.724
S26	0.669	\$35	0.723
\$3	0.665	\$3.	0.722
S48	0.664	546	0.719
S46	0.664 0.662	\$95	0.718
\$95 \$23	0.660	\$100	0.717 0.713
S39	0.660	S30 S48	0.711
S97	0.660	540 580	0.711
\$32	0.655	. S102	0.709
\$30	0.654	- \$23	0.709
S43	0.652	\$43	0 707
\$102	0.652	\$97	0.706
S7	0.651	532	0.705
S100	0.651 0.648	\$39	0.704
S91 S27	0.643	582	0.703
S82	0.643	\$7	0 703 0.702
580 S80	0.641	\$91 \$27	0.701
S47	0.638	5105	0.698
\$107	0.638	\$93	0.698
5105	0.636	\$85	0.692
596	0.633	\$107	0.690
\$31	0.629	547	0.688
587	0.628	S101	0.686
\$93	0.627	S87	0.684
585	0.627	596	0.683
S 101 S81	0.626	531	0.682
S81 S98	0.613	5103	0.682
S106	0.611	S81 598	0.681 0.679
5103	0.605	548 583	0.676
S86	. 0.602	505 S106	0.667
583	0.596	S108	0.663
\$108	0.591	586	0.661
588	0.581	S88	0.657
Member	Weight	Member	Weight
	13.0	INIT. COST/DEPLOY	8.2
INIT. COST/DEPLOY	12.0	LIFE CYCLE COST	8.2 13.8
LIFE CYCLE COST	20 0 28 0	EFFECTIVENESS	32.1
EFFECTIVENESS COMPLEXITY	25.0	COMPLEXITY	28.7
COMPLEXIT C			

Weight

,

and the second

SENSITIVITY OF OVERALL RANKING

h	11mbr	Alternative
diematise 60	Dubry 0.632	Alternative S62
62	0.824	560
65	11 * 1 *	567
67	0.013	S65
70	0.806	572
72	0.805	561
61	0 804 0 797	\$70 \$77
51 52	11 797	517 560
75	0.792	\$52
77	0.791	\$75
Ist;	0.786	\$50
55	0.782	S \$7
57	0.7×2	\$55
63 71	0782	\$71
300 	0777	563 576
51	6 769	551
2.x	0 767	568
76	0.764	S 109
11 0	0.762	S 56
73	0760	5110
156	0 755 0 751	\$73
53 578	0745	S78 S53
\$111	0744	555
5N	0.736	\$38
\$112	0 730	5112
\$113	0.728	\$113
sju 	0726	512
\$12	0723 0713	Si0
8114 814	0713	S114 516
515	0.704	S 16 S 14
510 SU	0 704	S14 S76
\$20	0701	\$20
536	D 701	S34
\$18	0.700	511
811	0.697 0.692	\$40
82 84	0.692	S 18
S38 .	0.690	524 538
824	Unite	515
540	0.686	S4
822	U 686	\$22
\$15	0.682	S2
544	0.679	\$8
542 59	0.678 0.677	544
594.1	a 677	\$35 \$92 .
56	0.677	S19
\$19	0.675	56
\$35	0.674	\$42
892	0.674	S 48
S28	D 669 0 669	\$90
\$26 \$3	0.665	\$39
54x	0.663	. 528 . 597
S-46	0.664	· \$23
895	0.662	S3
\$23	0.660	S46
\$39	CE CACHER	\$95
\$97	0.660	526
832 830	0.655 0.654	\$32
\$43	0.652	57
\$102	0.652	- \$43 530
\$7	0.651	5.00 S102
\$100	0.651	241
891	0.648	\$47
827	0.643	\$27
582 580	0643	S 107
547	0.638	5100 Ste
\$107	11634	\$96 582
\$105	0.636	\$31
54.	0.633	\$105
531	0.629 0.628	\$87
S87 S93	0.62%	SBO
895	0.627	S 101
8101	0.626	585 593
SRE	0.617	593 \$106
SUN	0.613	581
58.6	9611	\$98
S109 S44	0.605 0.602	\$86
SRG SR3	0.5%	\$103
585	0.591	\$108
588	0.581	583 588
Member	Weight	Member
		INIT COST/DEPLO
INIT COST/DEPLOY	12 G 20 O	LIFE CYCLE COST
		EFFECTIVENESS
LIFE CYCLE COST EFFECTIVENESS		
EFFECTIVENESS	28 O 25 O	COMPLEXITY
		COMPLEXITY AB INPACT

INIT. COST TO DEPLOY SENSITIVITY DECREASED BY 10%

Alternative	Utility	Alternative	Utility	
560	0.832 0.828	S60	0.838 0.824	
562 565	0 818	561 562	0.823	
567	0 813	30- S65	0.821	
\$70	0.806	S63	0.819	
\$72	0 806	\$70	0.818	
561	0.801	\$71	0.808	
S.50	0.797	\$72	0.807	
\$52	0.797 0 792	\$66	0.807 0.806	
575 577	0.791	\$67 \$50	0.806	
577 566	0.786	S73	0.803	
\$55	0 782	568 568	0.801	
\$57	0 782	\$75	0.800	
S63	0 782	\$\$1	0.796	
\$71	0.779	\$52	0.795	
S109	0 777	576	0.791	
551	0.769 0.767	\$53 \$77	0.791 0.790	
568 576	0.764	\$55	0.788	
\$110	0.762	578	0.786	
\$73	0.760	\$56	0.779	
\$56	0.755	\$\$7	0.778	
\$53	0.751	\$58	0.773	
\$78	0.745 0.744	\$109	0.756 0.741	
S111 S58	0.736	5113 5110	Q.739	
S112	0.730	5111	0.733	
5113	0.728	S10	0.726	
\$10	0.726	\$114	0.724	
S12	0.723	5112	0.715	
S114	0.713	511	0.713	
514	0.712 0.708	S12 S34	0.711	
S16 S34	0.704	534 514	0.709	
\$20	0.701	518	0.706	
\$36	0.701	\$35	0.697	
518	0.700	\$19	0.697	
511	0.697	\$36	0 696	
S2	0.692	590	0.696 0.696	
S4	0.692 0.690	S15 S20	0.695	
538 524	0.686	516	0.694	
S40	0.686	\$2	0.694	
S22 ·	0.686	\$38	0.693	
\$15	0.682	S42	0.690	
544	0.679	\$22	0.689	
S42	0.678	S3 S4	0.683	
58 590	0.677 0.677	- 591	0.682	
56	0.677	\$43	0.681	
\$19	0.675	592	0.681	
\$35	0.674	\$39	0.680	
\$92	0.674	S44	0.680	
S28	0.669	\$23 \$40	0.680 0.679	
S26 S3	0.669	526	0.678	
54B	0.664	595	0.678	
S46	0.664	524	0.678	
595	0.662	S6	0.676	
S23	0.660	593	0.676	
\$39	0.660	\$100 514	0.675 0.673	
597	0.660	S46 S27	0.669	
532 530	0.654	528	0.668	
S43	0 652	\$7	0.668	
\$102	0 652	\$101	0.666	
57	0.651	58 502	0.666	
S100	0.651	596 5102	0.665	
591 527	0 648 0.643	S102 S47	0.664	
S27 S82	0.643	\$97	0.664	
580	0.641	580	0.663	
S47	0.638	S48	0.663	
S 107	0.638	530 5103	0.661 0.660	
S105	0.636	S 103 S 98	0.659	
596	0.633 0.629	598 \$105	0.658	
S31 587	0.628	S81	0.654	
593	0.627	\$82	0.653	
\$8.5	0.627	\$31	0.652	
5101	0.626	S32 5104	0.651	
S81	0.617	\$106 \$83	0.649 0.648	
598	0.613 0.611	583 5107	0.648	
S106 S103	0.605	\$85	0.646	
586	0.602	. \$103	0.643	
583 -	0.596	586	0.637	
S108	0.591	SB7	0.636	
588	0.581	\$88 <u>.</u>	0.631	
Member	Weight	Member	Weight	
	130	INT. COST/DEPLOY	2.0	44
INIT. COST/DEPLOY LIFE CYCLE COST	12.0	LIFE CYCLE COST	22.3	
EFFECTIVENESS	26 0	EFFECTIVENESS	31.2	_
COMPLEXITY	25 0	COMPLEXITY	27.8	
AB IMPACT	150	54 K102/T	167	

.

.

SEN	SITIVITY OF OVERA			INIT. COST TO	DEPLOY SENSITIV		SED BY 10%
			5		Alternative	Utility	
	Alternative	Utility			\$62	0.833	
	60	0.832			560	0.826	
	62 65	0.828 0.818			\$67	0 821	
	67	0.813			\$65	0.815	
	70	0.806			\$72	0.805	
	572	0 806			\$52	0.798 0.798	
	61	0.801			\$109 \$70	0.795	
	50	0.797			\$77	0.793	
	52	0.797			\$50	0 788	
	75 77	0.792 0.791			\$57	0.786	
	66	0.786			S110	0.786	
	55	0.782			575	0.783	
	57	0.782			561	0.777 0 776	
	63	0.782			\$55 \$66	0.765	
	71	0.779			\$111	0.756	
	109	0.777 0.769	_		\$71	0.749	
	51 68	0.767			\$63	0.745	
	76	0.764			\$112	0.744	
	110	0.762			\$51	0.743	
	73	0.760			\$76 \$12	0.737	
	56	0.755			S68	0.733	
	53	0.751 0.745			\$56	0.731	
	578 5111	0.744			\$10	0.727	
	58	0.736			516	0.723	
	\$112	0.730			573	0.717	
	5113	0.728			S14	0.715	
	510	0.726			\$113 \$53	0.711	
	512	0.723			\$20	0.707	
	5114 * 514	0.713 0.712			S36	0.705	
	516	0.708			\$78	0.705	
	534	0.704			5114	0.702	
	520	0.701			S1	0.700 0.699	
	536	0.701			\$58 \$34	0.697	
	518	0.700			S18	0.695	
	511	0.697			\$24	0.695	
	52 54	0.692 0.692			\$40	0.694	
	538	0.690			52	0.691	
	\$24	0.686			S8	0.688	
	540	0.686			\$38 \$22	0.686 0.683	
	\$22	0.686			S11	0.681	
	515	0.682			\$44	0.677	
	544 542	0.679 0.678			S6	0.677	
	542 58	0.675			S28	0.671	
	\$90	0.677			\$15	0.669	
	56	0.677			\$92	0.667 0.666	
	S19	0.675			542 548	0.666	
	\$35	0.674			526	0.659	
	\$92	0.674			\$32	0.659	
	S28 S26	0.669 0.669			590	0.658	
	\$3	0.665			597	0.656	
	S48	0.664	•		\$46	0.654 0.653	
	546	0.664			S19 S35	0.651	
	S95	0.662			\$30	0.648	
	S23	0.660			53	0.646	
	S39 S97	0.660 0.660			595	0.646	
	\$32	0.655			\$23	0.641	
	530	0.654			\$39 \$102	0.640 0.639	
	S43	0.652				0.634	
	\$102	0.652			S82	0.633	
	S7	0.651			\$107	0.628	
	S100 S91	0 65 l 0.648			\$100	0.626	
	S27	0.643			S43	0.623	
	\$82	0.643			587 580	0.621 0.620	
	\$80	0.641			580 527	0.620	
	\$47	0.638			\$105	0.614	
	S107	0.638			591	0.613	
	S105 S96	0.636 0.633			\$47	0.612	
	531	0.629			58.5	0.608	
	\$87	0.628			\$31	0.606	
	\$93	0.627			596 5101	0.602 0.585	
	\$85	0.627			581	0.579	
	S101	0.626			\$93	0.578	
	S81	0.617			5106	0.574	
	S98	0.613 0.611			586	0.567	
	S106 S103	0.605			598	0.566	
	S86	0.602			S 103	0.550	
	S83 -	0.596			S83 5108	0.544 0.538	•
	\$108	0.591			S88-	0.538	
	S88	0.581 Weinbi			Member	Weight	
	Member	Weight	and the second se				STREET STORE
	INIT. COST/DEPLOY	12.0			INIT. COST/DEPLOY	22.0	
	LIFE CYCLE COST	20.0			LIFE CYCLE COST	17,7	
	EFFECTIVENESS	28.0			EFFECTIVENESS	24.8	
	COMPLEXITY	25.0			COMPLEXITY AB IMPACT	22 2 13 3	
	AB IMPACT	15.0				••••	

Y 10%

01/30/01

•

LIFE CYCLE COST SENSITIVITY DECREASED BY 10%

.

SENSITIVITY OF OVER	ALL RANK	ING
Alternative	Utility	
S60	O B32	
562 565	0.828 0.818	
S67	0.813	
\$70	0.806	
S72 S61	0.800	
\$50	0.797	
S \$2	0.797 0.792	
\$75 \$77	0.791	•
S66	0.786	
S55 S57	0.782 0.782	
563	0.782	
\$71	0.779	
5109 551	0.777 0.769	
568	0.767	
S76 S110	0.764 0.762	
\$73	0.760	
S56	0.755	
S53 S78	0.751 0.745	
S111	0.744	
S58 S112	0.736 0.730	
S112 S113	0.728	
510	0.726	
S12 S114	0.723 0.713	
\$14	0.712	
S16	0.703	
534 520	0.704 0.701	
S36	0.701	
S 18 S 1 1	0.700	
S2 .	0.692	
S4	0.692	
S38 S24	0.690 0.686	
540	0.686	
\$22 \$15	0.686 0.682	
S44	0.679	
\$42	0.678	
S8 590	0.677 0.677	
S6	0.677	
S 19 S 35	0.675 0.674	
\$92	0.674	
S28 S26	0.669 0.669	
S30	0.665	
S48	0.664	
S46 S95	0.664	
\$23	0.660	
S39 597	0.660 0.660	
\$32	0.655	
\$30	0.654	
S43 S102	0.652 0.652	
\$7	0.651	
S100 S91	0.651 0.648	
527	0.643	
. 582	0.643	
SB0 547	0.641 0.638	
S107	0.638	
\$105	0.636	
\$96 \$31	0.633 0.629	
S87	0.628	
593 585	0.627 0.627	
S101	0.626	
581	0.617	
S98 S106	0.613	
5103	0.605	
S86	0.602	
543 5108	0.591	
S88	0.581	
Member	Weight	N. COMP.
INIT. COST/DEPLOY	12.0	
LIFECYCLECOST	20.0	
EFFECTIVENESS COMPLEXITY	28.0	
AB IMPAC'I	15.0	

YCLE COST SENSITIVITY	DECRE
Alternative	Uulary
\$60	0.846
562	0.837
5109	0.836
565	0.827
570	0.824
550	0.822
\$72	0 819
567 5110	0818
\$52	D 817
575	0.806
555	0.803
S77	0.801
S111	0.800
S10	0 798
557	0.798
561	0.796
S12	0.790
S63	0.790
5113	0.781
ST12	0.781
ST4	0.780
S71	0.779
S66	0.777
S18	0.777
S51	0.776
S2	0.775
S34	0.773
S20	0.773
\$73	0.772
S16	0.771
S68	0.771
S4	0 770
S53	0 770
\$36	0 765
5114	0 762
\$76	0.760
522	0 7.58 0 7.57
5.56 56	0.755
538	0.7.54
524	0.754
578 542	0 754 0.752
58	0.751
5.58	0.751
511	0.750
S26	0.749
544	0.748
590	0.746
540	0.746
· S28	0.745
\$92	0.739
· S19	0.733
S46	0.733
\$15	0.731
\$3	0.730
\$30	0.730
\$48	0.729
\$95	0.727
S32 S35	0.726
5100	0.724
580	0.722
5102	0.721
597	0.720
582	0.719
\$23	0.714
57	0.711
543	0.708
539 5105	0.706
\$27	0.705
585	0.703
5107	0.703
587	0.700
591	0.699
\$93	0.691
S47	0.689
S31	0.686
S 101 S96	0.682
581	0.679
5103	0.673
598	0.672
583	0.670
5106	0.663
586	0.660
\$106	0.655
588	0.652
Member	Weight
INIT. COST/DEPLOY	13.5
LIFE CYCLE COST	10 0
EFFECTIVENESS	31.5
COMPLEXITY	28.1
АВ ІМРАСТ	169

,

-

SENSITIVITY OF OVERALL RANKING

Page 229 of 235

SENSITIVITTOP	OVERALE RANKING	INIT: COST TO DEPEOT SENSITI	
	Ma Luc	Alternative	Unlity
Alternative S60	Unity O 832	562	0.833
562	0 828	S60	0.826
S65	0 818	567	0.821
\$67	0 813	S65	0.815
570	0 806	\$72 \$52	0.805 0.798
\$72	0 806	S109	0.798
S61	0 801	\$70	0.795
5.50 5.52	0 797 0 797	\$17	0.793
575	0.792	\$.50	0.788
\$77	0.791	\$57	0.786
S66	0 786	\$110	0.786
\$55	0 782	\$75 \$61	0.783 - 0.777
5.57	0 782	S61 S55	0.776
563	0 782 0 779	566	0.765
571 5109	0777	\$11)	0.7.56
\$51	0.769	\$71	0.749
S68	0.767	\$63	0.745
576	0 764	5112	0.744
\$110	0 762	\$51 \$76	0.743
\$73	0 760	576 512	0.737 0.735
5.56	0.755	568	0.733
\$53 \$78	0751 0745	\$56	0.731
5111	0.744	510	0.727
\$58	0736	\$16	0.723
\$112	0.730	\$73	0.717
\$113	0.728	S14	0.715
S10	0726	5113	0.714 0.711
512	0723	553 520	0.707
5114 514	0.713 0712	536	0.705
\$16	0.708	\$78	0.705
\$34	0 704	\$114	0.702
\$20	0.701	54	0.700
\$36	0.701	\$58	0.699
S18	0 700	S34 518	0.697 0.695
SII	0.697 0.692	\$10 \$24	0.695
52 54	0.692	\$40	0.694
538	0.690	52	0.691
524	0.686	S8	0.688
S40	0 686	\$38	0.686
\$22	0.686	522	0.683
515	0 662	S11 544	0.681 0.677
S44 S42	0.679 0.678	- S6	0.677
58	0.677	S28	0.671
\$90	0.677	\$15	0.669
S6	0.677	\$92	0.667
\$19	0.675	542	0.666
\$35	0.674	\$48	0.666
592	0.674	\$26 \$32	0.659 0.659
S 28 S 26	0.669 0.669	\$90	0.658
\$3	0.665	597	0.656
S48	0.664	S46	0.654
S46	0.664	\$19	0.653
\$95	0.662	\$35	0.651
\$23	0.660	\$30	0.648 0.646
539 597	0.660 0.660	\$3 \$95	0.646
\$32	0.615	\$23	0.641
\$30	0.654	\$39	0.640
\$43	0.652	\$102	0.639
\$102	0.652	\$7	0.634
57	0.651	582	0.633
5100 591	0.611 0.648	\$107 \$100	0.628 0.626
\$27	0.643	\$43	0.623
582	0.643	587	0.621
\$80	0.641	580	0.620
\$47	0.638	\$27	0.617
\$107	0.638	\$105	0.614
S 105 S 96	0.636 0.633	\$91 517	0.613 0.612
546 531	0.633	S47 S85	0.608
\$87	0.629	585 S31	0.606
\$93	0.627	596	0.602
\$85	0.627	\$101	0.585
S101	0.626	S81	0.579
581	0.617	\$93	0.578
598 5106	0.613 0.611	S 106	0.574
5103	0.605	586 \$98	0.567 0.566
586	0.602	5103	0.550
\$83	0.596	\$83	0.544 .
\$108	0.593	8012	0.538
\$88	0.581	\$88	- 0.532
Member	Weight	Member	Weight
.:			
INIT, COSTADEI LIFE CYCLE CO		INIT. COST/DEPLOY LIFE CYCLE COST	22.0 17.7
EFFECTIVENES		EFFECTIVENESS	24.K
COMPLEXITY	25.0	COMPLEXITY	22.2
АВ ІМРАСТ	15.0	AB IMPACT	13.3

1/30/01

NSITIVITY OF OVER			Unliny
Alternative	Utilny	S60	0.819
560	0.832	S62	0.818
S62	0.828	S65	0.803
565	0.818	S67	0.801
S67	0.813	\$72	
\$70	0.806		0.792
\$72	0.806	\$70	0.789
561	0.801	\$52	0.782
\$50	0.797	S61	0.781
\$52	0.797	S50	0.779
\$7.5	0.792	\$77	0.776
		\$75	0 772
\$77	0.791	\$57	0.766
566	0.786	566	0.765
\$55	0.782	\$55	0.763
\$57	0.782	563	0.762
S63	0 782		
\$71	0.779	\$109	0.763
S109	0.777	\$71	0.756
\$51	0.769	\$51	0.746
S68	0.767	S68	0.745
\$76	0.764	S110	0.745
5110	0.762	\$76	0.739
		573	0.736
\$73	0.760	\$111	0.730
S56	0.755	S56	0.729
\$53	0.751	5.70 5.53	0.727
S78	0.745		
S111	0.744	\$78	0.720
S.58	0.736	S112	0.714
\$112	0.730	\$58	0.710
\$113	0.728	S113	0.704
\$10	0.726	510	0.696
	0.723	512	0.696
S12		S114	0.688
S114	0.713	S14	0.680
\$14	0.712		
516	0.708	S16	0.680
\$34	0.704	\$34	0.677
S20	0.701	\$36	0.676
\$36	0.701	\$20	0 670
S18	0.700	518	0.666
\$11	0.697	S4	0.661
S2	0.692	511	0.661
	0.692	\$38	0.660
S4		S40	0.660
\$38	0.690	S2	0.658
524	0.686		
\$40	0.686	\$24	0.654
S22	0.686	544	0.651
\$15	0.682	S22	0.650
S44	0.679	<u>S42</u>	0.646
\$42	0.678	58	0.644
58	0.677	\$15	0.644
		\$92	0.641
590	0.677	S28	0.641
56	0.677	\$35	0.641
\$19	0.675		
\$3.5	0.674	\$90	0.640
592	0.674	\$6	0.640
S28	0.669	526	0.637
\$26	0.669	\$19	0.635
\$3	0.665	S48	0.634
548	0.664	S46	0.630
S46	0.664	\$3	0.625
		S97	
\$95	0.662	\$32	0.624
\$23	0.660		
539	0.660	539	0.624
S97	0.660	\$95 	0.624
\$32	0.655	\$30	0.620
\$30	0.654	\$23	0.618
543	0.652	\$102	0.615
\$102	0.652	S43	0.615
\$7	0.651	S100	0.610
	0.651	S7	0 609
S100		552	0.606
591	0.648	581	0.605
\$27	0.643		
\$82	0.643	\$27	0.605
S80	0.641	\$80	0.600
S47	0.638	S107	0.599
\$107	0.638	S47	0.599
\$105	0.636	\$105	0.594
596	0.633	587	0.589
\$31	0.629	\$31	0.589
		S96	0.589
587	0.628		
\$93	0.627	593	0.584
S85	0.627	585	0.584
5101	0.626	S 101	0.580
S81	0.617	\$81	0.570
598	0.613	\$98	0.568
	0.611	5106	0.563
S106			
S103	0.605	5103	0.558
S86	0.602	\$86	0.554
	0.596	\$83	0.549
583	0.591	S108	0.542
S83 S108	0.581	S88_	0.532
S108		-	
S 108 S 88		Member	Weight
S108 S88 Member	Weight		
S108" S88 Member / INIT, COST/DEPLOY	Weight 12.0	INIT, COST/DEPLOY	13.7
S108" S88 Viember INIT: COST/DEPLOY LIFE CYCLE COST	Weight 12.0 1110 20.0 1110	LIFE CYCLE COST	13.7 22.8
S108" S88 Member ' INIT. COST/DEPLOY LIFE.CYCLE.COST EFFECTIVENESS	Weight 12.0 200 28.0	LIFE CYCLE COST EFFECTIVENESS	13.7 22.8 18.0
S108" S88 Viember INIT: COST/DEPLOY LIFE CYCLE COST	Weight 12.0 1110 20.0 1110	LIFE CYCLE COST	13.7 22.8

			1 480 201	<i>U</i> j			
SENSITIVITY OF OVERALL RANKING		EFFECTIVENESS SENSITIVITY INCR	EFFECTIVENESS SENSITIVITY INCREASED BY 10%				
Alternative	Utility	Alternative	Uulity				
S60	0.832	\$60 543	0.845 0.838				
562	0.828	562 \$65	0.833				
S65	0.818	\$67	0.826				
\$67 \$70	0.813 0.806	\$70	0 823				
\$72	0.806	561 572	0 820 0.820				
\$61	0.801	572	0.815				
550	0 797	\$75	0811				
\$52 \$75	0.797 0.792	\$52	0.811 808 0				
\$77	. 0.791	566 S77	0 807				
S66	0.786	\$55	0.802				
\$55	0 782	S63	0.802				
5.57 563	0.782 0.782	\$71	0.802 0.798				
571	0.779	557 551	0.793				
\$109	0.777	\$109	0.793				
S51	0.769 0.767	S68	0.789				
S68 S76	0.764	S76 S73	0 789 0.784				
\$110	0.762	575 556	0.781				
\$73	0.760	\$110	0 7 7 9				
S56	0.755 0.751	\$53	0 775				
S53 S78	0.745	\$78 \$58	0.771 0.762				
SIL	0.744	S111	0.758				
\$.58	0.736	S10 ·	0.756				
S112	0.730	\$113	0.751				
\$113 \$10	0.728	S12 S112	0.750 0.746				
\$12	0.723	S14	0.744				
S114	0.713	2114	0.739				
S14	0.712	S16	0.737 0.734				
516 534	0.708	S18 S11	0.733				
S20	0 701	S20	0.732				
S36	0.701	S34	0.732				
\$18	0.700 0.697	S2 S36	0.727				
511 52	0.692	536 54	0.723				
S4	0.692	\$22	0.722				
5.38	0.690	\$15	0.720				
\$24	0.686 0.686	\$24 \$38	0.719 0.719				
S40 S22	0.686	S10	0.714				
\$15	0.682	S6	0.713				
S44	0.679	S90	0.713 0.713				
S42	0.678 0.677	540 58	0.710				
58 590	0.677	\$42	0.710				
S6	0.677	\$35	0.708				
\$19	0.675	592 544	0.707 0.707				
\$35 \$92	0.674 0.674	\$3	0.706				
\$28 \$28	0.669	\$23	0.702				
\$26	0.669	\$26	0.701 0.700				
53	0.665	595 528	0.698				
S48 S46	0.664 0.664	\$46	0.697				
595	0.662	\$39	0.696				
\$23	0.660	597 S48	0.695 0.694				
S39	0.660	S*0 S7	0.693				
S97 S32	0.660	\$100	0.691				
\$30	0.654	\$91 -	0.690				
543	0.652	543 \$102	0.690 0.689				
5102	0.652 0.651	\$30	0.688				
\$7 • \$100	0.651	\$32	0.685				
S91	0.648	580 527	0.682 0.681				
\$27	0.643	527 \$82	0.680				
582	0.643 0.641	S105	0.679				
580 547	0.638	Ý \$96	0.678				
S107	0.638	S47	0.677 0.676				
\$105	0.636	S 107 S 101	0.672				
596	0.633 0.629	593	0.670				
531 587	0.628	\$85	0.670				
\$93	0.627	531 587	0.669 0.668				
S85	0.627	587 581	0.663				
S101	0.626 0.617	\$106	0.659				
S81 S98	0.613	\$98	0.658				
S106	0.611	S 103 S 86	0.652 0.651				
5103	0.605	580	0.643				
S86	0.602	\$108	0.640				
S83 S108	0.596 0.591	\$88	0 631				
S88 Member	0.581 Weight	Member	Weight				
Member			1.5	-			
INIT. COST/DEP		ISITCOSIDEFEO	10.3				
LIFECYCLECO	ST 20.0	LIFE CYCLE COST EFFECTIVENESS	17.2				
EFFECTIVENES		COMPLEXITY	21.5				
TOMPLEXITY AB IMPACT	25.0 15 0	AB IMPACT	12.9				

COMPLEXITY SENSITIVITY DECREASED BY 10% SENSITIVITY OF OVERALL RANKING Utiliny 0.837 0.834 Alternative Alternative Unhry S62 S60 560 562 565 565 567 570 0 832 567 0 821 0 818 0.819 565 572 0 813 0 806 570 0 807 572 0 806 S61 S52 0.806 S61 S50 0.801 0.801 550 577 575 0 796 \$52 0.797 0 7 96 \$75 \$77 0.792 0 791 0 791 S66 5.57 0 790 S66 S55 S57 0.786 0.785 0.782 0.782 \$63 0 783 \$71 \$55 0.781 S63 0.782 0.780 571 5109 0.779 0.777 \$51 0 770 S68 0.767 551 0.769 \$76 0.765 S68 0.767 \$109 0.764 **\$76** 0.764 0.7.58 S73 \$110 0.762 556 \$73 0.760 5110 0748 S56 0.755 \$53 0.747 \$53 0.751 0.742 578 578 0.745 \$111 0.732 SIII 0.744 S58 S112 0.731 S58 0.736 S112 S113 0.730 \$113 0.714 0.728 \$12 0.713 0.709 S10 0.726 510 0 723 \$12 \$114 0.698 5114 0.713 S16 S14 0.697 0.712 514 0 693 S16 536 0 688 \$34 0 704 \$20 0.688 S20 0.701 \$34 0.685 \$36 0.701 511 0.682 518 0.700 \$18 0.682 \$11 52 0.697 **S**4 0.677 0.692 S40 S2 0.673 0.672 54 0.692 S38 S24 0.690 **S**24 0.672 0.686 S38 515 0.669 540 522 0.686 0.667 0.686 S92 0.666 \$15 0.682 522 544 0 666 544 0.679 0 663 \$42 0.678 **\$90** 0.662 58 590 0.677 58 535 0.661 0.677 0.658 56 0.677 542 519 0.657 519 0.675 \$35 0.674 S6 0.655 \$92 0.674 S28 597 0.653 528 0.669 S26 0.669 S48 0.648 S3 548 S26 S3 0.647 0.664 0.647 S46 S95 0.664 \$95 0.646 S39 S46 0.642 523 539 597 0.660 0.642 0.660 523 0.642 0 641 \$102 \$32 0.655 \$32 0.637 530 543 0.654 591 0.636 \$100 0.634 5102 0.652 \$43 0.633 S7 S100 0.651 0.651 \$30 0.631 \$7 0.631 S91 0 648 \$82 0 631 S27 582 0.643 0.643 5107 0.626 \$80 0.624 S80 0.641 \$27 0.622 S47 S107 0.638 0.638 S96 0.620 \$105 0.618 \$105 0.636 \$47 0.617 596 531 587 0.633 S87 0.615 593 0.611 0.628 \$101 0.611 \$93 \$85 0.627 585 0.608 0.627 531 581 0 607 S 101 0.626 0.600 581 0.617 598 0.595

INIT: COST/DEPLOY 12.0 LIFE CYCLE COST EFFECTIVENESS 20.0 26.0 25 0 15 0

0.613

0.611

0.605

0.602 0.596

0.591

0.581 Weight

S98

\$106

5103

586

S83

5108

S88 Member

COMPLEXITY

АВ ІМРАСТ

Member
INIT. COST/DEPLOY
LIFE CYCLE COST
EFFECTIVENESS
COMPLEXITY
AB IMPACT

0.586

0.585

0.575

0.570

0.560

Weight

13.6

31.7

150 170

5106 5103

586 583

5108

S88

	SENSITIVITY OF OVERALL	RANKING		COMPLEX	TY SENSITIVITY IN	CREASED BY 10%
	Alternative	Utiluy				Utility
	S60	0.832		56		0.830
	S62	0.828		S6		0.819
	S65	0.818		56		0 817
	S67	0.813 0.806		S6 \$7		0.806 0.805
01/30/01	570 572	0 806		\$7		0.800
	561	0.801		55		0 798
	5.50	0.797		S6		0 796
	\$52	0.797		\$7	5	0 792
	\$7.5	0 792		\$5		0 792
	S77	0.791 0.786		\$1 \$7		0 789 0 787
	S66 S55	0.782		55		0.784
	\$57	0 782		56		0 783
	563	0.782		56		0.781
	571	0 779		\$5		0 779
	\$109	0.777		\$1		0 777
	S51 S68	0.769 0.767		S!	10	0 776 0.769
	576	0.764		Se		0.768
	\$110	0.762		ST		0 764
	\$73	0.760		ST		0.762
	S56	0.755			111	0.757
	\$53	0.751		S		0 756
	578 5111	0.745 0.744		S: S:		0.754 0.749
	\$58	0.736			112	0.744
	S112	0.730		5		0.744
	5113	0.728		S	113	0.742
	510	0.726		S	58	0.741
	512	0.723			12	0733
	5114 514	0.713 0.712			14 114	0 730 0.729
	S14 S16	0.708			34	0.723
	\$34	0.704			16	0.720
	520	0.701		5	18	0.719
	\$36	0.701			20	0.714
	518	0.700			36	0.713
	S11 S2	0.697 0.692		S	2 11	0.712 0.711
	54 -	0.692			38	0710
	\$38	0.690		s		0.706
	\$24	0.686			22	0.706
	· 540	0.686			24	0.701
	\$22	0.686			40	0.700
	S15 S44	0.682 0.679			42	0.699 0.698
	· S42	0.678		S	8 15	0.698
	- 58	0.677			44	0.694
	590	0.677		5		0 693
	S6	0.677			19	0.692
	519	0.675			90	0.691
	\$35 592	0.674 0.674			26 35	0.691
	528	0.669			28	0.686
	\$26	0.669			46	0.685
	\$3	0.665		S	3	D.684
	S48	0.664			92	0.682
	S46 S95	0.664 0.662			48 23	0.681 0.679
	S23	0.660		-	95	0.678
	539	0.660			30	0.678
	S97	0.660		5	39	0.677
	532	0.655			32	0.673
	\$30 \$13	0.654 0.652			i43	0.672 0.671
	S43 5102	0.652			57 597	0.669
	\$7	0.651			5100	0.667
	S100	0.651		5	527	0.664
	591	0.648			5102	0.663
	S27	0.643 0.643			591	0.660 0.659
	582 580	0.641			580 547	0.658
	550 547	0.638			582	0.655
	\$107	0.638			\$105	0.654
	\$105	0.636		5	531	0.651
	596	0.633			5107	0.650
	531	0.629 0.628			596 596	0.646
	587 593	0.628			585 593	0.646 0.643
	S85	0.627			587	0.642
	SIOI	0.626			S101	0.641
	581	0.617			581	0.633
	598	0.613			898	0.630
	S106	0.611 0.605			S106	0.627 0.624
	S 103 S86	0.602			S 103 586	0.620
	585	0.596			583	0.617
	5108	0.591			S108	0.611
	588	0.581			S88.	. 0.603.
	Member	Weight			Member	Weight
		EAUTO CONTRACTOR				
	INIT, COST/DEPLOY	12.0			INIT, COST/DEPLOY	10.4
	LIFE CYCLE COST EFFECTIVENESS	20.0 28.0			LIFE CYCLE COST EFFECTIVENESS	17.3
	COMPLEXITY	25.0			COMPLEXITY	35.0
•	ABIMPACT	15.0			AB IMPACT	13.0

0818

0 806

0 806 0 801

0 797

0 792

0 791

0 782

0782

0 782

0 779 0 777

0 769

0 767

0 764

0 762 0 760

0.755

0 745

0744

0723

0 704

0 701 0 701

0 700 0 697

0 692

0 682

0 679

0 677

0 677 0 677

0 675

0 674

0 669 0 669

0.665

0 664

0.652 0.651

0.651

0 627 0 627

0 626

0 6 1 7

0 6 1 3

0.611

0.581

Weight

12.0

20 0

28.0 25.0

15.0

AB IMPACT SENSITIVITY DECREASED BY 10%

	Alternative
	560 562
1/30/01	S65
	567
	570
	572
	561
	5.50
	\$52 \$75
	\$77
	S66
	\$55
	\$57
	S63 S71
	\$109
	\$51
	568
	\$76
	5110
	\$73 \$56
	\$53
	578
	S111
	S.58
	S112 S113
	S10
	\$12
	S114
	\$14
	516
	534 520
	\$36
	\$18
	\$11
	S2
	S4 S38
	\$71
	S40
	522
	\$15
	S44
	S42 S8
	\$90
	56
	\$19
	\$35
	S92 S28
	\$26
	\$3
	\$48
	S46
	\$95 \$23
	\$39
	\$97
	532
	\$30
	543
	S 102 S7
	5100
	\$91
	\$27
	\$82
	580
	S47 S107
	S105
	596

Ż

30/01

3+3
S 102
\$7
\$100
\$91
\$27
\$82
\$80
\$47
S107
\$105
S96
\$31
587
593
SB5
5101
\$81
\$98
\$106
\$103
S86
SI)
S108
588
Member
£
INIT, COST/DEPLOY
LIFE CYCLE COST
EFFECTIVENESS
COMPLEXITY
AB IMPACT

;

EFFECTIVENESS

COMPLEXITY AB IMPACT

ENSITIVITY	DECREASED BY
Alternative	Utibry
569 565	0.827 0.825
562	0.824
567	0 822
S61 S66	0 811
S72	0 809 0 801
\$70	0.800
\$77	0.799
\$75 \$52	0 798
571	0.789 0.788
\$,50	0 788
517	0 787
\$76 \$55	0.786
500 551	0.776
\$56	0.774
\$63	0.772
568 5109	0.771 0.761
5110	0.760
\$73	0.749
\$78	0.748
S53 S58	0.737 0.736
SIII	0.725
\$112	0.723
\$10	0.709
ST13 ST4	0 707 0,707
\$12	0.706
S114	0.706
S16	0.705
511 515	0 695 0.693
520	0.683
534	0.683
524	0.682
S38 S18	0.682 0.682
536	0.681
522	0.680
540	0.679
519 54	0.672 0.671
52	0 671
523	0.670
58	0.670
S35 S6	0.669 0.668
\$39	0.667
\$3	0 660
\$7	0.658
544 548	0.658 0.656
\$42	0.656
546	0.654
590	0.653
592 593	0.651 0.651
\$97	0.650
543	0 646
528	0.646
547 532	0.645
\$26	0.644
\$30	0.642
591	0.640
596 527	0.638 0.634
\$31	0.633
\$102	0.629
S 107	0 627
S 100 S 105	0 626 0 624
5101	0617
\$82	0.616
\$106	0.615
587 580	0.615 0.613
585	0.613
\$81	0.605
586	0.603
593	0.599
598 5103	0.597 0.576
5105	0.574
583	0.564
588	0 562
Member	Weight
INIT. COSTA LIFE CYCLE	
EFFECTIVE	

31.3 27.9 5.0

•

SENSITIVITY OF OVER	ALL RANKI	ING		SENSITIVITY INCRE		19 /
Alternative	Utilny		AB IMP ACT	Alternative	Villiny	76
560	0 832			\$60	0.837	
562	0 828			562	0.832	
S65	0.818		•	570	0.813	
S67	0813			\$72	0.811	
\$70 \$72	0 806 0 806			565	0.810	
S61	0 801			\$.50	0.806	
5.50	0.797			\$67 \$52	0.805	
\$52	0 797			S109	0.805 0.792	
\$75	0.792			\$63	0.792	
577	0 791			561	0.791	
\$66	0 786			\$75	0.785	
\$55	0.782			\$77	0.784	
557 563	0 782 0.782			\$55	0.779	
505	0.779			\$\$7	0.777	
S109	0.777			\$73	0.771	
551	0.769			S71 S110	0.769 0.765	
S68	0.767			568	0.764	
\$76	0.764			\$53	0.764	
5110	0.762			5111	0.764	
\$73	0.760			\$66	0.763	
\$56	0.755			\$51	0.763	
553 578	0.751			\$113	0.748	
S111	0.744			S 10 S 78	0.744	
\$58	0.736			576	0.743 0.742	
5112	0.730			512 -	0.740	
\$113	0.728			\$.58	0.737	
510	0.726			S112	0.737	
\$12	0.723			\$.56	0.736	
5114	0.713			\$34	0.725	
514	0.712			\$114	0.721	
516 534	0.708 0.704			\$36	0.721	
\$20	0.701			518	0.719	
536	0.701			S20 S14	0.719 0.717	
518	0.700			S2	0.714	
S11	0.697			\$16	0.712	
\$2	0.692			54	0.712	
S4	0.692			\$90	0.700	
\$38	0.690			\$42	0.700	
\$24	0.686	,		544	0.699	
S40	0.686 0.686			S11	0.699	
\$22 \$15	0.682			\$38	0.697	
S44	0 679			592 526	0.697 0.694	
. 542	0.678			\$40	0.693	
58	0.677			528	0.693	
590	0.677			\$22	0.692	
S6	0 677			\$24	0.691	
\$19	0.675			S6	0.685	
\$35	0.674			S8	0.685	
592 528	0.674			\$35	0.680	
S26	0.669		•	S 19 S 102	0.678 0.676	
\$3	0.665			S102	0.676	
548	0.664			\$95	0.673	
S46	0.664			S46	0.673	
595	0.662			S48 ·	0.672	
\$23	0.660			\$15	0.671	
539	0.660			53	0.671	
\$97 \$32	0.660			597	0.670	
S30 ·	0.654			582 580	0.669 0.669	
543	0.652			\$30	0.666	
\$102	0.652			\$32	0.666	
\$7	0.651			\$43	0.659	
S100	0.651			S91	0.656	
S91	0.648			\$93	0.656	
\$27 \$82	0.643 0.643			539	0.652	
580	0.641			\$27 \$23	0.652 0.650	
S47	0.638			\$107	0.648	
S107	0.638			\$105	0.648	
S 105	0.636			57	0.644	
S96	0.633			587	0.642	
\$31	0.629			\$85	0.642	
587	0.628			5101	0.635	
S93	0.627	-		\$103	0.634	
585 S 101	0.627 0.626			547 504	0.631	
5101	0.617			596 581	0.629 0.628	
598	0.613			596	0.628	
\$106	0.611			\$83	0.628	
5103	0.605			\$31	0.625	
S86	0.602			5106	0.607	
S83	0.596			5108	0.607	
S108 -	0.591			586	0.601	
588	0.581			588	0.601	
Member	Weight			Member	Weight	
·		and there are a briefly a				and the second
INIT. COST/DEPLOY	12.0			INIT: COST/DEPLOY	10.6	
LIFE CYCLE COST EFFECTIVENESS	20 0 28 0			LIFE CYCLE COST OTTO TAY INTENDES	17.6 24.7	
COMPLEXITY	25.0			EFFECTIVENESS COMPLEXITY	24.7 22.1	
AB IMPACT	15.0			ABIMPACT	25.0	