L. M. Stinson (Mike) Vice President Southern Nuclear Operating Company, Inc. 40 Inverness Center Parkway Post Office Box 1295 Birmingham, Alabama 35201

Tel 205.992.5181 Fax 205.992.0341

November 10, 2005

Docket No.: 50-364

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D. C. 20555-0001

Joseph M. Farley Nuclear Plant – Unit 2 Cycle 18 Core Operating Limits Report

Ladies and Gentlemen:

In accordance with Technical Specification 5.6.5.d, Southern Nuclear Operating Company submits the enclosed Core Operating Limits Report (COLR) for Farley Nuclear Plant Unit 2 Cycle 18.

This letter contains no NRC commitments. If there are any questions, please advise.

Sincerely,

hul t

L. M. Stinson

LMS/CHM/sdl

Enclosure: FNP Core Operating Limits Report Unit 2 - Cycle 18, July 2005

 cc: <u>Southern Nuclear Operating Company</u> Mr. J. T. Gasser, Executive Vice President Mr. J. R. Johnson, General Manager – Plant Farley RTYPE: CFA04.054; LC# 14350

> <u>U. S. Nuclear Regulatory Commission</u> Dr. W. D. Travers, Regional Administrator Mr. R. E. Martin, NRR Project Manager – Farley Mr. C. A. Patterson, Senior Resident Inspector – Farley

Joseph M. Farley Nuclear Plant – Unit 2 Cycle 18 Core Operating Limits Report

Enclosure

FNP Core Operating Limits Report Unit 2 – Cycle 18, July 2005

JOSEPH M. FARLEY NUCLEAR PLANT

CORE OPERATING LIMITS REPORT

UNIT 2 - CYCLE 18

JULY 2005

REVISION 0

APPROVED FOR ISSUE:

PERATIONS MANAGER 1 DATE

1.0 CORE OPERATING LIMITS REPORT

This Core Operating Limits Report (COLR) for FNP UNIT 2 CYCLE 18 has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The Technical Requirement affected by this report is listed below:

13.1.1 SHUTDOWN MARGIN - MODES 1 and 2 (with $k_{eff} \ge 1$)

The Technical Specifications affected by this report are listed below:

- 2.1.1 Reactor Core Safety Limits for THERMAL POWER
- 3.1.1 SHUTDOWN MARGIN MODES 2 (with $k_{eff} < 1$), 3, 4 and 5
- 3.1.3 Moderator Temperature Coefficient
- 3.1.5 Shutdown Bank Insertion Limits
- 3.1.6 Control Bank Insertion Limits
- 3.2.1 Heat Flux Hot Channel Factor $F_o(Z)$
- 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor $F_{\Lambda H}^{N}$
- 3.2.3 Axial Flux Difference
- 3.3.1 Reactor Trip System Instrumentation Overtemperature ΔT (OT ΔT) and Overpower ΔT (OP ΔT) Setpoint Parameter Values for Table 3.3.1-1
- 3.4.1 RCS DNB Parameters for Pressurizer Pressure, RCS Average Temperature, and RCS Total Flow Rate
- 3.9.1 Boron Concentration

2.0 OPERATING LIMITS

The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC-approved methodologies, including those specified in Technical Specification 5.6.5.

2.1 <u>SHUTDOWN MARGIN - MODES 1 AND 2 (with $k_{eff} \ge 1.0$)</u> (Technical Requirement 13.1.1)

2.1.1 The SHUTDOWN MARGIN shall be greater than or equal to 1.77 percent $\Delta k/k$.

2.2 <u>SHUTDOWN MARGIN - MODES 2 (with $k_{eff} < 1.0$), 3, 4 and 5 (Specification 3.1.1)</u>

- 2.2.1 Modes 2 ($k_{eff} < 1.0$), 3 and 4 The SHUTDOWN MARGIN shall be greater than or equal to 1.77 percent $\Delta k/k$.
- 2.2.2 Mode 5 The SHUTDOWN MARGIN shall be greater than or equal to 1.0 percent $\Delta k/k$.
- 2.3 <u>Moderator Temperature Coefficient</u> (Specification 3.1.3)
 - 2.3.1 The Moderator Temperature Coefficient (MTC) limits are:

The BOL/ARO/HZP-MTC shall be less than or equal to +0.7 x $10^{-4} \Delta k/k^{\circ}$ F for power levels up to 70 percent RTP with a linear ramp to $0 \Delta k/k^{\circ}$ F at 100 percent RTP.

The EOL/ARO/RTP-MTC shall be less negative than -4.3 x $10^{-4} \Delta k/k/^{\circ}F$.

2.3.2 The MTC Surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to $-3.65 \times 10^{-4} \Delta k/k/^{\circ}F$.

The 100 ppm/ARO/RTP-MTC should be less negative than -4.0 x $10^{-4} \Delta k/k/^{\circ}F$.

- where: BOL stands for Beginning of Cycle Life
 ARO stands for All Rods Out
 HZP stands for Hot Zero THERMAL POWER
 EOL stands for End of Cycle Life
 RTP stands for RATED THERMAL POWER
- 2.4 Shutdown Bank Insertion Limits (Specification 3.1.5)
 - 2.4.1 The shutdown banks shall be withdrawn to a position greater than or equal to 225 steps.

2.5 Control Bank Insertion Limits (Specification 3.1.6)

2.5.1 The control rod banks shall be limited in physical insertion as shown in Figure 1.

2.6 <u>Heat Flux Hot Channel Factor</u> - $F_Q(Z)$ (Specification 3.2.1)

2.6.1
$$F_Q(Z) \le \frac{F_Q^{RTP}}{P} * K(Z)$$
 for P > 0.5

$$F_Q(Z) \le \frac{F_Q^{RTP}}{0.5} * K(Z)$$
 for P ≤ 0.5

where:
$$P = \frac{THERMALPOWER}{RATEDTHERMALPOWER}$$

- 2.6.2 $F_Q^{RTP} = 2.50$
- 2.6.3 K(Z) is provided in Figure 2.

2.6.4
$$F_Q(Z) \le \frac{F_Q^{RTP} * K(Z)}{P * W(Z)}$$
 for P > 0.5

$$F_Q(Z) \le \frac{F_Q^{RTP} * K(Z)}{0.5 * W(Z)}$$
 for P \le 0.5

- 2.6.5 W(Z) values are provided in Table 4.
- 2.6.6 The $F_Q(Z)$ penalty factors are provided in Table 1.

2.7 <u>Nuclear Enthalpy Rise Hot Channel Factor</u> - $F_{\Delta H}^{N}$ (Specification 3.2.2)

2.7.1
$$F_{\Delta H}^{N} \leq F_{\Delta H}^{RTP} * (1 + PF_{\Delta H} * (1 - P))$$

where:
$$P = \frac{THERMAL POWER}{RATED THERMAL POWER}$$

2.7.2 $F_{\Delta H}^{RTP} = 1.70$

2.7.3 $PF_{\Delta H} = 0.3$

- 2.8 <u>Axial Flux Difference</u> (Specification 3.2.3)
 - 2.8.1 The Axial Flux Difference (AFD) acceptable operation limits are provided in Figure 3.
- 2.9 <u>Boron Concentration</u> (Specification 3.9.1)
 - 2.9.1 The boron concentration shall be greater than or equal to 2000 ppm.¹
- 2.10 <u>Reactor Core Safety Limits for THERMAL POWER</u> (Specification 2.1.1)
 - 2.10.1 In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 4.
- 2.11 Reactor Trip System Instrumentation Overtemperature ΔT (OT ΔT) and Overpower ΔT (OP ΔT) Setpoint Parameter Values for Table 3.3.1-1 (Specification 3.3.1)
 - 2.11.1 The Reactor Trip System Instrumentation Overtemperature ΔT (OT ΔT) and Overpower ΔT (OP ΔT) setpoint parameter values for TS Table 3.3.1-1 are listed in COLR Tables 2 and 3.
- 2.12 <u>RCS DNB Parameters for Pressurizer Pressure, RCS Average Temperature, and RCS Total Flow</u> <u>Rate</u> (Specification 3.4.1)
 - 2.12.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:
 - a. Pressurizer pressure \geq 2209 psig;
 - b. RCS average temperature \leq 580.3°F; and
 - c. The minimum RCS total flow rate shall be $\geq 263,400$ GPM when using the precision heat balance method and $\geq 264,200$ GPM when using the elbow tap method.

¹ This concentration bounds the condition of $k_{eff} \le 0.95$ (all rods in less the most reactive rod) and subcriticality (all rods out) over the entire cycle. This concentration includes additional boron to address uncertainties and B¹⁰ depletion.

Table 1

F_Q(Z) Penalty Factor

Cycle Burnup (MWD/MTU)	F _Q (Z) Penalty Factor	
4849	1.020	
5053	1.021	
5258	1.022	
5462	1.020	

Notes:

- 1. The Penalty Factor, to be applied to $F_Q(Z)$ in accordance with SR 3.2.1.2, is the maximum factor by which $F_Q(Z)$ is expected to increase over a 39 EFPD interval (surveillance interval of 31 EFPD plus the maximum allowable extension not to exceed 25% of the surveillance interval per SR 3.0.2) starting from the burnup at which the $F_Q(Z)$ was determined.
- 2. Linear interpolation is adequate for intermediate cycle burnups.
- 3. For all cycle burnups outside the range of the table, a penalty factor of 1.020 shall be used.

Table 2

Reactor Trip System Instrumentation - Overtemperature △T (OT△T) Setpoint Parameter Values

T′ ≤ 577.2°F	P' = 2235 ps	ig
$K_1 = 1.17$	$K_2 = 0.017/^{\circ}$	F $K_3 = 0.000825/psi$
$\tau_1 \ge 30 \sec \tau_4 = 0 \sec \tau_4$	$\tau_2 \leq 4 \sec \tau_5 \leq 6 \sec \tau_5$	$\tau_6 \leq 6 \text{ sec}$
$f_1(\Delta I) =$	$-2.48\{23+(0,-0)\}$	when $(a_{1} - a_{2}) < -23\%$ RTP

$f_1(\Delta I) =$	$-2.48 \{23 + (q_t - q_b)\}$	when $(q_t - q_b) \le -23\%$ RTP
	0% of RTP	when -23% RTP < $(q_t - q_b) \le 15\%$ RTP
	2.05 { $(q_t - q_b) - 15$ }	when $(q_t - q_b) > 15\%$ RTP

Table 3

Reactor Trip System Instrumentation - Overpower ΔT (OP ΔT) Setpoint Parameter Values

T‴ ≤ 577.2°F					
K ₄ = 1.10	$K_5 = 0.02/^{\circ}F$ for increasing T_{avg} $K_5 = 0/^{\circ}F$ for decreasing T_{avg}	$K_6 = 0.00109$ /°F when $T > T''$ $K_6 = 0$ /°F when $T \le T''$			
$\tau_3 \ge 10 \text{ sec}$ $\tau_4 = 0 \text{ sec}$ $\tau_5 \le 6 \text{ sec}$ $\tau_6 \le 6 \text{ sec}$					
$f_2(\Delta I) = 0\%$ RTP for all ΔI					

	Axial Point	Elevation (feet)	150 MWD/MTU	4000 MWD/MTU	10000 MWD/MTU	18000 MWD/MTU
+	1	12.00	1.0000	1.0000	1.0000	1.0000
٠	2	11.80	1.0000	1.0000	1.0000	1.0000
٠	3	11.60	1.0000	1.0000	1.0000	1.0000
+	4	11.40	1.0000	1.0000	1.0000	1.0000
٠	5	11.20	1.0000	1.0000	1.0000	1.0000
٠	6	11.00	1.0000	1.0000	1.0000	1.0000
+	7	10.80	1.0000	1.0000	1.0000	1.0000
٠	8	10.60	1.0000	1.0000	1.0000	1.0000
*	9	10.40	1.0000	1.0000	1.0000	1.0000
+	10	10.20	1.0000	1.0000	1.0000	1.0000
	11	10.00	1.2155	1.2519	1.2292	1.2077
	12	9.80	1.2055	1.2409	1.2210	1.2005
	13	9.60	1.1996	1.2289	1.2121	1.1966
	14	9.40	1.1963	1.2157	1.2029	1.1962
	15	9.20	1.1895	1.2017	1.1930	1.1994
	16	9.00	1.1814	1.1911	1.1810	1.2010
	17	8.80	1.1844	1.1931	1.1794	1.2108
	18	8.60	1.1952	1.2023	1.1891	1.2269
	19	8.40	1.2045	1.2094	1.2013	1.2410
	20	8.20	1.2111	1.2142	1.2105	1.2528
	21	8.00	1.2153	1.2165	1.2173	1.2622
	22	7.80	1.2172	1.2167	1.2218	1.2691
	23	7.60	1.2166	1.2145	1.2241	1.2790
	24	7.40	1.2142	1.2106	1.2242	1.2867
	25	7.20	1.2109	1.2057	1.2221	1.2915
	26	7.00	1.2059	1.1993	1.2193	1.2941
	27	6.80	1.1993	1.1913	1.2151	1.2948
	28	6.60	1.1912	1.1820	1.2091	1.2933
	29	6.40	1.1818	1.1715	1.2016	1.2893
	30	6.20	1.1714	1,1600	1,1927	1.2831
<u> </u>	31	6.00	1.2063	1,1936	1.2301	1.3002
<u> </u>	32	5.80	1.1938	1,1796	1.2173	1.2899
	33	5.60	1.1861	1.1683	1.2073	1.2764
	34	5.40	1,1976	1.1680	1.2060	1.2626
	35	5.20	1.2070	1.1728	1.2074	1.2576
	36	5.00	1.2156	1.1773	1.2080	1.2535
	37	4.80	1.2236	1.1806	1.2071	1.2493
	38	4.60	1.2306	1,1842	1.2053	1.2448
	39	4.40	1.2367	1,1893	1.2021	1.2378
	40	4.20	1.2418	1,1943	1,1978	1.2288
	41	4.00	1.2457	1.1985	1.1923	1.2178
	42	3.80	1.2483	1.2016	1.1856	1.2050
	43	3.60	1.2504	1.2037	1.1802	1.1906
	44	3.40	1.2518	1.2049	1.1777	1.1750
	45	3.20	1.2538	1.2069	1.1763	1.1593
	46	3.00	1.2733	1.2158	1.1825	1.1569
	47	2.80	1.3005	1.2281	1.1938	1.1631
	48	2.60	1.3250	1.2430	1.2033	1.1789
	49	2.40	1.3498	1.2635	1.2131	1.1931
	50	2.20	1.3744	1.2837	1.2228	1.2073
	51	2.00	1.3983	1.3059	1.2325	1.2215
*	52	1.80	1.0000	1.0000	1.0000	1.0000
*	53	1.60	1.0000	1.0000	1.0000	1.0000
*	54	1.40	1.0000	1.0000	1.0000	1.0000
*	55	1,20	1.0000	1.0000	1.0000	1.0000
*	56	1.00	1.0000	1.0000	1.0000	1.0000
*	57	0.80	1.0000	1.0000	1.0000	1.0000
+	58	0,60	1.0000	1,0000	1.0000	1.0000
*	59	0,40	1,0000	1.0000	1.0000	1.0000
+	60	0.20	1,0000	1.0000	1.0000	1.0000
+	61	0.00	1.0000	1.0000	1.0000	1.0000

Table 4 RAOC W(Z)

* Top and bottom 15% excluded per Technical Specification B3.2.1.

Figure 1 Rod Bank Insertion Limits versus Rated Thermal Power

Fully Withdrawn - 225 to 231 steps, inclusive

Note: The Rod Bank Insertion Limits are based on the control bank withdrawal sequence A, B, C, D and a control bank tip-to-tip distance of 128 steps.

 $\label{eq:Figure 2} Figure \ 2 \\ K(Z) - Normalized \ F_Q(Z) \ as \ a \ Function \ of \ Core \ Height$

Figure 3 Axial Flux Difference Limits as a Function of Rated Thermal Power for RAOC

Figure 4 Reactor Core Safety Limits

