

NRC-FPL Meeting Turkey Point License Amendment Request Spent Fuel Pool Boraflex Remedy (Metamic Inserts and Storage Rules)

October 19, 2005

FPL Fuel Storage Organization

Fuel Storage Projects

- Carl Bible Manager
- Glenn Adams Project Licensing
- Yuan Kao Project Engineer
- Pete Sharp Project Engineer, nuclear criticality
- Carl O'Farrill Supervisor, Nuclear Fuels
- Plant Staff
 - Paul Czaya Turkey Point licensing
 - Bob Tomonto Reactor Engineering

Spent Fuel Storage Status

Loss of Full Core Reserve (LOFCR)

	LOFCR	ISFSI	
	Date	Start Const	First Load
PSL Unit 1	2008	2006	2007
PSL Unit 2	2010	2006	2009
PTN Unit 3	2010	2007	2009
PTN Unit 4	2012	2007	2010
Seabrook	2009	2006	2008

Turkey Point Boraflex Remedy

- Meeting Objectives
 - Brief NRC Staff on license amendment request
 - Facilitate review
 - Preliminary Staff comments
 - Reduce RAIs, rules of engagement
 - Address current SFP Boraflex status
 - Staff concurrence on review schedule

Turkey Point Background

- Gamma-induced Boraflex degradation
 Potential loss of reactivity hold-down
- 2nd Areal density (BADGER) test in 2004
 - Racks continue to meet design basis reqmts
 - Administrative controls to manage dose on high duty racks
- Next BADGER test in 2007
- New Cask Area Racks (Boral) not affected

Project Objectives

- Maintain spent fuel pool storage capacity
- Eliminate reliance on Boraflex
 - Ensure rack reactivity margin
 - Eliminate Boraflex surveillance testing
- Minimize fuel moves
 - Westinghouse fuel assembly top nozzle issue
- Flexibility in reactivity management
 - Variety of storage patterns, inserts

Project Scope

- License Amendment Request
 - New rack loading patterns
 - disperses high-reactivity fuel
 - Metamic inserts (neutron absorber)
 - TS Program to evaluate other configurations
- Fuel movement campaign
 - Several hundred fuel moves per pool
 - Approximately 500 Metamic inserts per pool

Metamic Inserts

- Metamic panels
 - formed or welded
 - chevron shape
- Aluminum head
- Full length
- 24 lbs each
- Inserted around fuel

Metamic Inserts

- Supplier Holtec – Metamic LLC
- Quality Assurance
- Mill oxidized finish

Fuel Loading Patterns

FIGURE 5.5-2

ALLOWABLE REGION II STORAGE PATTERNS

DEFINITION^{1,4}

ILLUSTRATION1.2.34

<u>Region II 2x2 Array II-A</u> Category II-1 assembly in three of every four cells: One of every four cells is empty (water-filled).

11-1	.1	
11-1	E	

Region II 2x2 Array II-B

Category II-2 assembly in every cell: Two of every four cells contain a Metamic insert (or full length RCCA in the assembly).

11.2 11.2	112	11.25 11-2
11-2 11-2	11-2 11-2	11.2 11.2

11-3

13 115

11.5

Region II 2x2 Array II-C

Checkerboard pattern of Category II-3 and II-5 assemblies: One of every four cells contains a Metamic insert (or full length RCCA in the assembly). Metamic inserts (or RCCAs) may be in either II-3 or II-5 cells.

Region II 2x2 Array II-D

Category II-4 assembly in every cell: One of every four cells contains a Metamic insert (or full length RCCA in the assembly).

114	114	
114	14	

11.3

11.5 1132

115

Schedule Objectives

- Timely restoration of SFP reactivity margin

 Currently meets reqmts, but degrading
- Preclude next Boraflex test (2007)
 If possible
- Continue to meet storage requirements

 Not affecting full core reserve at this time

Schedule

- Submit LAREarly 2006RAI (if needed)8 mos after submittalAmendment12 mos after submittalImplementationDuring 2007 *
- * Date negotiable. Interim configurations comply with old and new TS.

LAR Preparation

- Modeled after St. Lucie Boraflex Remedy
 - Unit 1 amendment 193 (9/23/2004)
- Applied other precedent
- RAI historical review
- Holtec QA vendor
- NSHC compliant with RIS 2001-22

LAR Structure

- Wraparound Evaluation by FPL
 - Roadmap of evaluation, analysis
 - Information to supplement Holtec Report
 - FPL (non-Holtec) evaluations
 - Specific discussion of precedent
 - Specific discussion of related RAIs
- Holtec Report
- NSHC, EIC, TS Markup, Bases

Applicable Precedent

- Administrative controls loading patterns – St. Lucie Unit 1, Unit 2
- Use of Metamic in Spent Fuel Pools
 Topical Evaluation 6/17/2003
- Use of rack inserts in Spent Fuel Pools
 ANO submittal review

Affected Tech Specs

- LCO Refueling Boron Concentration
- LCO Spent Fuel Storage
 - Establish new fuel loading reqmts per TS 5.5
 - Relocate max fuel enrichment to TS 5.5
 - Remove applicability of TS 3.0.3
- Design Features Fuel Storage Criticality
 - Describe new fuel loading patterns
 - Describe use of rack and fuel inserts
 - Alternative loading patterns per NRC methodology

Physical Changes Evaluated

- More complex loading patterns
- Significant fuel movement campaign
- Metamic inserts reduce water inventory
- Metamic inserts reduce local convective flow
- Metamic inserts change seismic response
- Metamic potential for adverse chem reaction
- Metamic insertion may damage fuel
- Metamic surveillance requirements

Structural Evaluation

- Metamic inserts into racks
 - contribute < 0.1% of gross wt on slab
- Whole Pool Multi-Rack WPMR Analysis
 - (DYNARACK)
- Previously-NRC-accepted method

Thermal-Hydraulic Evaluation

- Bulk THA displaced water within margins
- Local THA
 - Metamic insert blocks two side flow channels
 - Computational Fluid Dynamics analysis
 - Local water temp peak is 206°F (<241°F sat.)
 - Peak clad temp is 250°F (>241°F sat.)
 - insufficient heat flux for DNB

Criticality

- Experienced vendor (Holtec International)
- Acceptance criteria per 10 CFR 50.68(b)
 Soluble boron credit for Keff 0.95 is 560 ppm or less
- Previously-accepted codes, uncertainty methods
 - Explicit 3D analysis of fuel/rack geometry (MCNP4a)
 - Fuel burnup isotopics calculated (CASMO-4)

Criticality Review

- Loading patterns, correlation table
- Previous RAIs incorporated:
 - Criticality criterion 10 CFR 50.68(b)
 - Sample Keff calculation
 - Quality controls on fuel, materials
 - Verification of calculated burnup
 - Integrity of RCCAs for neutron absorption
 - Configuration control on inserts
 - Unit differences
 - Managing new fuel types
- Boron Dilution Event (bounded)

Materials - Metamic Guidance

- Metamic Surveillance Program
- Inspect inservice inserts, not coupons
- B-10 composition, distribution assured by QA/QC
- Simulation of scratches (monitor actual scratches)
- Frequency (start within 48 mos. of service)
- Tests (visual)
- Mill oxidized finish, not anodized
- Cleaning technique glass beading
- Limitation of 31 wt percent boron carbide

Proposed Rules of Engagement

- FPL extensive use of precedent
- FPL consideration of previous RAIs
- FPL points of contact for Staff questions
 - Example Metamic insert tolerance
- One RAI within 8 months
 - LIC-101 threshold for formal questions

Summary

- Summary
 - Comprehensive analyses per guidance
 - Previously-approved methods, precedent
 - One-year review schedule
 - Potential for future TS Program for fuel storage
 - Proposed rules of engagement
- Questions / Followup Items