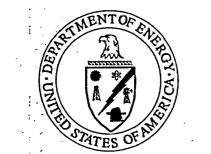
and the second second


### ultari art The Current and Planned Low-Level Waste Disposal Capacity Report Revision 2 •

:-.

CONTRACT OF

December 2000

U.S. Department of Energy Office of Environmental Management



1..;



## TABLE OF CONTENTS

| EXECUTIVE SUMMARY ES-1                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 INTRODUCTION 1-1                                                                                                                                                                                                                       |
| 1.1 Summary of Report Sections 1-1                                                                                                                                                                                                         |
| 1.2 History of Past DOE Low-Level Waste Disposal Operations 1-2                                                                                                                                                                            |
| 1.3 Current Status of the Low-Level and Mixed Low-Level Waste Disposal Configuration 1-3                                                                                                                                                   |
| 1.4 Methodology for Base Case and Alternative Scenarios Analyses                                                                                                                                                                           |
| 1.5 Radiological Assessments 1-7                                                                                                                                                                                                           |
| 1.6 Data Sources for Waste Disposal Volumes, Waste Radiological Profiles, and Disposal<br>Facility Capacities                                                                                                                              |
| 1.7 Assumptions 1-9                                                                                                                                                                                                                        |
| 2.0 VOLUMETRIC PROJECTIONS AND CAPACITY                                                                                                                                                                                                    |
| 2.1 Volumetric Capacity Analysis Methodology2-32.1.1 Past Waste Disposal Volume Data2-32.1.2 Projected Future Waste Disposal Volume Data2-32.1.3 Facility Disposal Capacity Data2-4                                                        |
| 2.2 Projected Volumetric Disposal Needs       2-5         2.2.1 Projections from Activities Other than Environmental Restoration       2-5         2.2.2 Environmental Restoration Generation Projections       2-10                       |
| 2.3 LLW Disposal Volumes       2-13         2.3.1 Waste Operations Disposal Facilities       2-13         2.3.2 Environmental Restoration CERCLA Facilities       2-15         2.3.3 Disposal in Commercial Disposal Facilities       2-15 |
| 2.4 MLLW Disposal Volumes2-152.4.1 Waste Operations Disposal Facilities2-152.4.2 Environmental Restoration CERCLA Facilities2-172.4.3 Disposal in Commercial Disposal Facilities2-17                                                       |

i

## TABLE OF CONTENTS (CONTINUED)

| 2.5 Base Case Comparison of Volumetric Projections and Disposal Capacity | 2-17 |
|--------------------------------------------------------------------------|------|
| 2.5.1 Waste Operations LLW Disposal Facilities                           | 2-20 |
| 2.5.1.1 Hanford Site 200 Area Burial Grounds                             | 2-20 |
| 2.5.1.2 INEEL RWMC                                                       | 2-22 |
| 2.5.1.3 LANL TA-54 Area G                                                | 2-23 |
| 2.5.1.4 NTS Areas 3 and 5 RWMS                                           | 2-24 |
| 2.5.1.5 ORR IWMF                                                         | 2-26 |
| 2.5.1.6 SRS Waste Operations LLW Disposal Facilities                     | 2-27 |
| 2.5.1.6.1 LAW Vaults                                                     | 2-27 |
| 2.5.1.6.2 ILW Vaults                                                     | 2-29 |
| 2.5.1.6.3 E-Area Trenches                                                | 2-30 |
| 2.5.2 Waste Operations MLLW Disposal Facilities                          | 2-31 |
| 2.5.2.1 Hanford Site Mixed Waste Trenches 31 and 34                      | 2-31 |
| 2.5.2.2 NTS Area 5 Mixed Waste Disposal Unit                             |      |
| 2.5.3 Existing/Approved Environmental Restoration CERCLA Facilities      | 2-32 |
| 2.5.3.1 Fernald OSDF                                                     |      |
| 2.5.3.2 Hanford ERDF                                                     | 2-33 |
| 2.5.3.3 ORR EMWMF                                                        | 2-33 |
|                                                                          |      |
| 2.6 Alternative Scenarios for LLW                                        |      |
| 2.6.1 Hanford Site 200 Area Burial Grounds                               | 2-35 |
| 2.6.2 NTS Areas 3 and 5 RWMS                                             | 2-36 |
|                                                                          |      |
| 2.7 Alternative Scenarios for MLLW                                       | 2-37 |
| 2.7.1 Hanford Site Mixed Waste Trenches 31 and 34                        |      |
| 2.7.2 NTS Area 5 Mixed Waste Disposal Unit                               | 2-39 |
| 2.8 Other Wastes and Materials Excluded from the Capacity Analysis       | 2-40 |
| 2.8.1 Low-Activity Waste Fraction at Hanford Site, SRS, and INEEL        |      |
| 2.8.2 Naval Reactor Waste Disposed in the E-Area Pad at SRS              |      |
| 2.8.3 Depleted Uranium Oxide Produced from Stabilization of Depleted     |      |
| Uranium Hexafluoride                                                     | 2-41 |
|                                                                          |      |

ii

1 .

## TABLE OF CONTENTS (CONTINUED)

| 3.0 RADIOLOGICAL PROJECTIONS AND CAPACITY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>3.1 Methodology of the Radiological Disposal Capacity Analysis</li></ul>                                                                                                                                                                                                                                                                                                                                                                            |  |
| 3.2 Radionuclide Inventory Projections for Low-Level and Mixed Low-Level Waste 3-4                                                                                                                                                                                                                                                                                                                                                                           |  |
| 3.3 Sources of Uncertainty in the Analysis       3-8         3.3.1 Uncertainty in Disposal Limits       3-8         3.3.2 Uncertainty in Estimation and Projection of Radionuclide Inventories       3-8         3.3.2.1 Assigning Radionuclide Concentration Profiles to Waste Stream8       3-9         3.3.2.2 Estimating Aggregate Radionuclide Profiles at Year 2070       3-9         3.3.2.3 Assigning Disposal Locations for Waste Streams       3-9 |  |
| 3.4 Base Case Facility-Specific Radiological Projections and Capacities3-93.4.1 Hanford Site 200 Area Burial Grounds and Mixed Waste Trenches 31 and 343-103.4.2 INEEL RWMC3-103.4.3 LANL TA-54 Area G3-113.4.4 NTS Areas 3 and 5 and Area 5 Mixed Waste Disposal Facility3-113.4.5 ORR IWMF3-113.4.6 SRS3-123.4.6.1 LAW Vaults3-123.4.6.2 ILW Vaults3-123.4.6.3 E-Area Trenches3-12                                                                         |  |
| <ul> <li>3.5 Alternative Scenarios Facility-Specific Radiological Projections and Capacities</li></ul>                                                                                                                                                                                                                                                                                                                                                       |  |
| 4.0 SUMMARY AND CONCLUSIONS 4-1                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 4.1 Summary 4-1                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 4.2 Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

iii

## TABLE OF CONTENTS (CONTINUED)

**APPENDIX A - Disposal Facility Summaries** 

APPENDIX B - Radiological Projection and Capacity Analysis

**B-1:** Sum-of-Fractions Calculations

B-2: Guidance for Reporting Radionuclide Concentration in Integrated Planning,

Accountability, and Budgeting System (IPABS)

**B-3:** Notes for Sum-of-Fractions Calculations

APPENDIX C - Key Radionuclides and Generation Processes

APPENDIX D - Waste Stream Supplemental Information

D-1: Master List of Waste Streams Included in Volumetric Capacity Analysis

D-2: Radiological Profiles of Waste Streams Used in Radiological Capacity Analysis

iv

APPENDIX E - Definitions and References

## List of Tables

| Table ES-1. | Estimated Volume and Projected Disposition of DOE's LLW and MLLW ES-3         |
|-------------|-------------------------------------------------------------------------------|
| Table 1-1.  | Disposal Facility Names and Acronyms/Short Names 1-6                          |
| Table 1-2.  | Data Sources                                                                  |
| Table 2-1.  | Projected LLW and MLLW Disposal by Destination                                |
| Table 2-2.  | Projected LLW Disposal Volumes by Generator Site                              |
| Table 2-3.  | Projected MLLW Disposal Volumes by Generator Site                             |
| Table 2-4.  | LLW Media from Environmental Restoration Activities                           |
| Table 2-5.  | MLLW Media from Environmental Restoration Activities                          |
| Table 2-6.  | Past and Projected LLW Volumes Destined for Disposal 2-14                     |
| Table 2-7.  | Past and Projected MLLW Volumes Destined for Disposal                         |
| Table 2-8.  | Volumetric Capacities of Existing/Approved DOE LLW and MLLW Disposal          |
|             | Facilities                                                                    |
| Table 2-9.  | Planned DOE LLW and MLLW Disposal Facilities                                  |
| Table 2-10. | Capacity of Hanford Site 200 Area Burial Grounds                              |
| Table 2-11. | Additional LLW Included in Alternative Scenarios                              |
| Table 2-12. | Additional MLLW Included in Alternative Scenarios                             |
| Table 2-13. | Past and Projected Low-Activity Waste Fraction Destined for Dedicated         |
|             | Facilities                                                                    |
| Table 3-1.  | Assumed Distribution for Natural Uranium                                      |
| Table 3-2.  | Site-Specific Documents Used for Disposal Limits in the Radiological Capacity |
|             | Analysis                                                                      |
| Table 3-3.  | Base Case and Alternative Scenario Low-Level and Mixed Low-Level Waste        |
|             | Radioactivity Inventories (1988-2070) by Disposal Facility                    |
| Table 3.4.  | Base Case Sum-of-Fractions Results for Low-Level and Mixed Low-Level Waste    |
|             | Disposal                                                                      |
| Table 3.5.  | Alternative Scenario Sum-of-Fractions Analysis for Low-Level and Mixed Low-   |
|             | Level Waste Disposal                                                          |
| Table 4-1.  | Volumetric and Radiological Capacity for Disposal of LLW and MLLW 4-2         |

v

## List of Figures

1......

| Figure 1-1.  | Current Configuration for Department Low-Level and Mixed Low-Level Waste Disposal |
|--------------|-----------------------------------------------------------------------------------|
| Figure 2-1.  | Hanford Site 200 Area Burial Grounds LLW Disposal Volume Capacity and             |
|              | Projections                                                                       |
| Figure 2-2.  | INEEL RWMC LLW Disposal Volume Capacity and Projections 2-22                      |
| Figure 2-3.  | LANL TA-54 LLW Disposal Volume Capacity and Projections                           |
| Figure 2-4.  | NTS Areas 3 and 5 RWMS LLW Disposal Volume Capacity and Projections 2-25          |
| Figure 2-5.  | ORR IWMF LLW Disposal Volume Capacity and Projections 2-26                        |
| Figure 2-6.  | SRS LAW Vaults LLW Disposal Volume Capacity and Projections 2-28                  |
| Figure 2-7.  | SRS ILW Vault LLW Disposal Volume Capacity and Projections 2-29                   |
| Figure 2-8.  | SRS E-Area Trenches LLW Disposal Volume Capacity and Projections 2-30             |
| Figure 2-9.  | LLW Alternative Scenario for Hanford Site 200 Area Burial Grounds 2-35            |
| Figure 2-10. | LLW Alternative Scenario for NTS Areas 3 and 5 RWMS 2-36                          |
| Figure 2-11. | MLLW Alternative Scenario for Hanford Site Mixed Waste                            |
| 0            | Trenches 31 and 34                                                                |
| Figure 2-12. | MLLW Alternative Scenario for NTS Area 5 Mixed Waste Disposal Unit 2-39           |

1.

vi

## List of Acronyms and Abbreviations

| AEC            | Atomic Energy Commission                                              |
|----------------|-----------------------------------------------------------------------|
| am             | activated metal                                                       |
| CA             | composite analysis                                                    |
| CERCLA         | Comprehensive Environmental Response, Compensation, and Liability Act |
| Ci             | curie                                                                 |
| cm             | centimeter                                                            |
| DNFSB          | Defense Nuclear Facilities Safety Board                               |
| DOE            | Department of Energy                                                  |
| EMWMF          | Environmental Management Waste Management Facility                    |
| ERDF           | Environmental Restoration Disposal Facility (Hanford)                 |
| FY             | fiscal year                                                           |
| ha             | hectare                                                               |
| ICDF           | Idaho CERCLA Disposal Facility                                        |
| ILAW           | Immobilized Low Activity Waste (Hanford)                              |
| ILNT           | Intermediate Level Non-Tritiated (SRS)                                |
| ILT            | Intermediate Level Tritiated (SRS)                                    |
| ILW            | Intermediate Level Waste (SRS)                                        |
| INEEL          | Idaho National Engineering and Environmental Laboratory               |
| IPABS          | Integrated Planning, Accountability, and Budgeting System             |
| IWMF           | Interim Waste Management Facility                                     |
| km             | kilometer                                                             |
| LANL           | Los Alamos National Laboratory                                        |
| LAW            | Low Activity Waste (SRS)                                              |
| LFRG           | Low-Level Waste Disposal Facility Federal Review Group                |
| LLW            | low-level waste                                                       |
| m              | metastable                                                            |
| m <sup>3</sup> | cubic meters                                                          |
| mi             | mile                                                                  |
| mR/hr          | millirem per hour                                                     |
| MLLW           | mixed low-level waste                                                 |
| NTS            | Nevada Test Site                                                      |
| ORNL           | Oak Ridge National Laboratory                                         |
| ORR            | Oak Ridge Reservation                                                 |
| OSDF           | On-Site Disposal Facility (Fernald)                                   |
| PA             | performance assessment                                                |
| PE             | Performance Evaluation                                                |
| RCRA           | Resource Conservation and Recovery Act                                |
| ROD            | record of decision                                                    |
| RWMC           | Radioactive Waste Management Complex (INEEL)                          |
| RWMS           | Radioactive Waste Management Site (NTS)                               |
| SDD .          | Stream Disposition Data (part of IPABS)                               |
| SOF            | sum-of-fractions                                                      |
| SRS            | Savannah River Site                                                   |
| TA-54          | Technical Area 54 (LANL)                                              |
| WAC            | waste acceptance criteria                                             |
|                |                                                                       |

## WM PEIS Waste Management Programmatic Environmental Impact Statement

• .

.

viii

. . .

### Table 2-2. Projected LLW Disposal Volumes by Generator Site (2000-2070, cubic meters) \*

:2

. •

:

|                                                            | Envir,      | z: Other.     |           | Projected 1                                        |                                                    |
|------------------------------------------------------------|-------------|---------------|-----------|----------------------------------------------------|----------------------------------------------------|
| Generator Site                                             | Restoration | Activities 33 | Total 255 | Disposal Facility                                  | Facility Type                                      |
| Ames Laboratory                                            |             | 120           | 120       |                                                    |                                                    |
| Argonne National Laboratory - East                         | 1,600       | 11,000        | 13,000    |                                                    |                                                    |
| Bettis Atomic Power Lab                                    |             | 1,500         | 1,500     |                                                    | · ·                                                |
| Brookhaven National Laboratory                             | 2,200       | 6,800         | 9,000     |                                                    | J                                                  |
| Columbus Environmental Management Project -                | 2 800       |               | 0.000     |                                                    | [                                                  |
| West Jefferson                                             | 2,800       |               | 2,800     |                                                    |                                                    |
| Energy Technology Enginæring Center                        | 1,500       |               | 1,500     |                                                    |                                                    |
| Fermi National Accelerator Laboratory                      |             | 1,800         | 1,800     | Hanford 200 Area                                   |                                                    |
| Hanford Site                                               | 340         | 91,000        | 92,000    | Burial Grounds                                     | [                                                  |
| Knolls Atomic Power Lab-Schenectady                        |             | 690           | 690       | (130,000 m <sup>3</sup> )                          | ĺ                                                  |
| Laboratory for Energy-Related Health Research              |             | 11            | 11        |                                                    | •                                                  |
| Lawrence Berkeley National Laboratory                      |             | 270           | 270       |                                                    |                                                    |
| Massachusetts Institute of Technology*                     |             | 11            | 11        |                                                    | · · ·                                              |
| Paducah Gascous Diffusion Plant                            |             | 320           | 320       |                                                    | 1                                                  |
| Parks Township *                                           |             | 2,800         | 2,800     |                                                    |                                                    |
| Portsmouth Gascous Diffusion Plant                         |             | 290           | 290       |                                                    | 1                                                  |
| Princeton Plasma Physics Laboratory                        |             | 2,300         | 2,300     |                                                    |                                                    |
| Stanford Linear Accelerator Center                         |             | 790           | 790       |                                                    | 1                                                  |
| Idaho National Engineering and Environmental<br>Laboratory | . 10,000    | 9,800         | 20,000    | INEEL RWMC<br>(20,000 m <sup>3</sup> )             | Waste Operations                                   |
| Los Alamos National Laboratory                             | 34,000      | 88,000        | 120,000   | LANL TA-54 Area G<br>(120,000 m <sup>3</sup> )     | Disposal Facilities<br>(1,200,000 m <sup>3</sup> ) |
| Ashtabula Environmental Management Project                 | 40          | 380           | 420       |                                                    | (1,200,000 m)                                      |
| Energy Technology Enginæring Center                        | 270         |               | 270       |                                                    | 1                                                  |
| Fernald Environmental Management Project                   | 64,000      |               | 64,000    |                                                    |                                                    |
| Inhalation Toxicology Research Institute                   |             | 2,200         | 2,200     |                                                    |                                                    |
| Kansas City Plant                                          |             | 24            | 24        |                                                    |                                                    |
| Lawrence Livermore National Laboratory - Main<br>Site      |             | 14,000        | 14,000    | NTS<br>Areas 3 & 5 RWMS                            |                                                    |
| Miamisburg Environmental Management Project                | 18,000      |               | 18,000    | (780,000 m³)                                       |                                                    |
| Nevada Test Site                                           | 120,000     | 560           | 120,000   |                                                    | F                                                  |
| Oak Ridge Reservation                                      | 360         | 400,000       | 400,000   |                                                    |                                                    |
| Pantex Plant                                               | 190         | 54            | 250       |                                                    |                                                    |
| Rocky Flats Environmental Technology Site                  | 150,000     | 11,000        | 160,000   |                                                    | l                                                  |
| Sandia National Laboratory - New Mexico                    | 600         | 2,700         | 3,300     |                                                    |                                                    |
| Oak Ridge Reservation                                      |             | 1,800         | 1,800     | ORR IWMF<br>(1,800 m <sup>3</sup> )                |                                                    |
| Savannah River Site                                        |             | 38,000        | 38,000    | SRS LAW Vaults<br>(38,000 m <sup>3</sup> )         |                                                    |
| Savannah River Site                                        |             | 5,100         | 5,100     | SRS ILW Vaults<br>(5,100 m <sup>3</sup> )          |                                                    |
| Savannah River Site                                        |             | 63,000        | 63,000    | SRS E-Area Trenches<br>(63,000 m <sup>3</sup> )    |                                                    |
| Fernald Environmental Management Project <sup>a</sup>      | 1,600,000   |               | 1,600,000 | Fernald OSDF<br>(1,600,000 m <sup>3</sup> )        | Existing/Approved                                  |
| Hanford Site                                               | 5,000,000   |               | 5,000,000 | Hanford ERDF<br>(5,000,000 m <sup>3</sup> )        | Environmental<br>Restoration                       |
| Oak Ridge Reservation                                      | 890,000     |               | 890,000   | ORR EMWMF<br>(890,000 m <sup>3</sup> )             | CERCLA Facilities<br>(7,500,000 m <sup>3</sup> )   |
| Idaho National Engineering and Environmental<br>Laboratory | 76,000      |               | 76,000    | INEEL ICDF<br>(76,000 m <sup>3</sup> )             | Planned<br>Environmental<br>Restoration            |
| Idaho National Engineering and Environmental<br>Laboratory | 90,000      |               | 90,000    | INEEL Remediation<br>Unit (90,000 m <sup>3</sup> ) | CERCLA Facilities<br>(170,000 m <sup>3</sup> )     |

2-6

| · · · · · · · · · · · · · · · · · · ·                         |               | ontinuea)                             |            |                                                                                                                 |
|---------------------------------------------------------------|---------------|---------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|
|                                                               | Envir.        | Other                                 |            | Projected Disposal                                                                                              |
| Generator Site                                                | * Restoration | Activities                            | Total .    | Disposal Facility                                                                                               |
| Brookhaven National Laboratory                                | 8,000         | · · · · · · · · · · · · · · · · · · · | 8,000      |                                                                                                                 |
| General Electric Vallecitos Nuclear Center                    | 20            |                                       | 20         | · .                                                                                                             |
| Idaho National Engineering and Environmental                  | 760           | 69,000                                | 70,000     | and the second second second                                                                                    |
| Laboratory                                                    | 100 -         | 09,000                                | 70,000     |                                                                                                                 |
| Laboratory for Energy-Related Health Research                 | · . 5         |                                       | 5          |                                                                                                                 |
| Los Alamos National Laboratory                                |               | 27                                    | 27         | To Be Determined                                                                                                |
| Oak Ridge Reservation                                         | 26,000        | 20                                    | 26,000     | (280,000 m <sup>3</sup> )                                                                                       |
| Portsmouth Gaseous Diffusion Plant                            |               | 6,900                                 | 6,900      |                                                                                                                 |
| Princeton Plasma Physics Laboratory                           |               | 700                                   | · 700      |                                                                                                                 |
| Savannah River Site                                           | • • • 6,100   |                                       | 6,100 ·    | a a ser e se                                                                                                    |
| Separations Process Research Unit                             | 8,200         | 1                                     | 8,200      |                                                                                                                 |
| West Valley Demonstration Project                             |               | 150,000                               | 150,000    |                                                                                                                 |
| Ames Laboratory                                               |               | . 100                                 | 100        |                                                                                                                 |
| Argonne National Laboratory - East                            |               | 5,000                                 | · 5,000    |                                                                                                                 |
| Ashtabula Environmental Management Project                    | 5,500         |                                       | 5,500      |                                                                                                                 |
| Brookhaven National Laboratory                                | 39,000        | 4,500                                 | 43,000     |                                                                                                                 |
| Columbus Environmental Management Project -<br>West Jefferson | 9,500         |                                       | 9,500      |                                                                                                                 |
| Energy Technology Engineering Center                          | 15,000        |                                       | 15,000     |                                                                                                                 |
| Fernald Environmental Management Project                      | 500,000       |                                       | 500,000    |                                                                                                                 |
| Grand Junction Office                                         | 70            |                                       | 70         | ·                                                                                                               |
| Laboratory for Energy-Related Health Research                 | 3,200         | 140                                   | 3,400      |                                                                                                                 |
| Lawrence Berkeley National Laboratory                         | 220           | 2.200                                 | 2,400      | Commercial Disposal                                                                                             |
| Lawrence Livermore National Laboratory - Main<br>Site         | • •           | 160                                   | 160        | (1,000,000 m <sup>3</sup> )                                                                                     |
| Miamisburg Environmental Management Project                   | 72,000        |                                       | 72,000     |                                                                                                                 |
| Oak Ridge Reservation                                         | 110,000       | 75,000                                | 190,000    |                                                                                                                 |
| Paducah Gaseous Diffusion Plant                               | 100,000       | 6,500                                 | 110,000    |                                                                                                                 |
| Portsmouth Gaseous Diffusion Plant                            | 110,000       | 11,000                                | 11,000     | a a ser a |
| Princeton Plasma Physics Laboratory                           | <u> </u>      | 51                                    | 51         |                                                                                                                 |
| Rocky Flats Environmental Technology Ste                      | · ·           | · 110                                 | 110        |                                                                                                                 |
| Sandia National Laboratory - New Mexico                       | 1,500         |                                       | 1,500      |                                                                                                                 |
| Savannah River Site                                           | 30,000        | 14,000                                | 43,000     |                                                                                                                 |
| West Valley Demonstration Project                             |               | 5,700                                 | 5,700      |                                                                                                                 |
| Totals "                                                      | 0 000 000     |                                       | 10,100,000 |                                                                                                                 |
| 101315                                                        | 9,000,000     | 1,100,000                             | 10,100,000 | فقدهم فالمعرجات فالتناسي المراجع                                                                                |

## Table 2-2. Projected LLW Disposal Volumes by Generator Site (2000-2070, cubic meters) \* (Continued)

. . .

\* Volume projections and disposal facility designations are based on the June 26, 2000, Integrated Planning, Accountability, and Budgeting System Stream Disposition Data (IPABS SDD). Some projections do not represent final decisions and will require further assessment under the National Environmental Policy Act. These data and the subsequent volumetric analysis do not include LLW resulting from treatment of highlevel waste, which is discussed in Section 2.8.1, other excluded waste and materials discussed in Section 2.8, and disposition projections not documented in the June 26, 2000, IPABS SDD. It is expected that the responsible DOE sites will document these disposition projections in future versions of the IPABS SDD.

Volumes have been rounded to two significant figures. The volumes of waste attributed to environmental restoration in this table differ from the corresponding volumes identified in DOE's Central Internet Database, which served as the primary data source for this analysis. The volumes cited here reflect an analysis of how the "parent" waste streams were originally generated prior to treatment, off-site shipment, or comingling with other waste streams.

\* Because of rounding, some totals may not equal the sum of their components.

\* See Table 1-1 for full facility names. Facility names have been shortened in this table to improve data presentation.

\* Massachusetts Institute of Technology and Parks Township are not DOE sites.

INEEL RWMC disposal volumes include LLW from the Argonne National Laboratory - West, which is contiguous to INEEL.

For the Fernald OSDF, the 2000-2070 projected volume of 1.6 million m<sup>3</sup> differs from the 1.9 million m<sup>3</sup> volume reported in the CID. The 1.6 million m<sup>3</sup> volume reflects the projected compacted waste volume in the OSDF, while the 1.9 million m<sup>3</sup> volume reflects the uncompacted volume prior to disposal.

Low-Level Waste Disposal Capacity Report, Revision 2

# Table 2-3. Projected MLLW Disposal Volumes by Generator Site (2000-2070, cubic meters) \*

|                                                               | Envir       | Other      | a de la compañía de la | Projected                                                                   | Disposal                                                                                 |  |  |  |
|---------------------------------------------------------------|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Generator Site                                                | Restoration | Activities | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Disposal Facility                                                           | Facility Type                                                                            |  |  |  |
| Hanford Site                                                  | 340         | 62,000     | 63,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hanford Site Mixed<br>Waste Trenches<br>31 & 34<br>(63,000 m <sup>3</sup> ) | Waste Operations<br>Disposal Facilities                                                  |  |  |  |
| Nevada Test Site                                              |             | 0.3        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NTS Area 5 Mixed<br>Waste Disposal Unit<br>(0.3 m <sup>3</sup> )            | (63,000 m <sup>3</sup> )                                                                 |  |  |  |
| Fernald Environmental Management Project                      | _ 90        |            | . 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fernald OSDF<br>(90 m <sup>3</sup> )                                        | Existing/Approved<br>Environmental<br>Restoration                                        |  |  |  |
| Oak Ridge Reservation                                         | 200,000     | ÷          | 200,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ORR EMWMF<br>(200,000 m <sup>3</sup> )                                      | CERCLA Facilities<br>(200,000 m <sup>3</sup> )                                           |  |  |  |
| Idaho National Engineering and Environmental<br>Laboratory    | 37,000      |            | 37,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INEEL ICDF<br>(37,000 m³)                                                   | Planned<br>Environmental<br>Restoration<br>CERCLA Facilities<br>(37,000 m <sup>3</sup> ) |  |  |  |
| Columbus Environmental Management Project - West<br>Jefferson | . 3         |            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             |                                                                                          |  |  |  |
| Energy Technology Engineering Center                          | . 2         |            | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                                                                          |  |  |  |
| Fernald Environmental Management Project                      | 20          |            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                                          |  |  |  |
| Grand Junction Office                                         | <1          |            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                                          |  |  |  |
| Hanford Site                                                  |             | 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             | •                                                                                        |  |  |  |
| Idaho National Engineering and Environmental<br>Laboratory    |             | 3          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             | -                                                                                        |  |  |  |
| Laboratory for Energy-Related Health Research                 | <1          |            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | To Be Determined<br>(5,100 m <sup>3</sup> )                                 |                                                                                          |  |  |  |
| Lawrence Berkeley National Laboratory                         | · · ·       | <1         | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                                          |  |  |  |
| Los Alamos National Engineering Laboratory                    |             | 8          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             |                                                                                          |  |  |  |
| Nevada Test Site                                              |             | <1         | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                                          |  |  |  |
| Oak Ridge Reservation                                         | 94          |            | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]                                                                           |                                                                                          |  |  |  |
| Portsmouth Gaseous Diffusion Plant                            |             | 1,200      | 1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                           |                                                                                          |  |  |  |
| Sandia National Laboratory - New Mexico                       |             | 19         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                                          |  |  |  |
| Savannah River Site                                           |             | 3,700      | 3,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             |                                                                                          |  |  |  |
| Separations Process Research Unit                             | 70          |            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \ \                                                                         |                                                                                          |  |  |  |

December 2000

.

•

2-8

| Table 2-3. | Projected MLLW Disposal Volumes by Generate | or Site |
|------------|---------------------------------------------|---------|
|            | (2000-2070, cubic meters) *                 |         |

(Continued)

| Generator SiteEnvir.<br>RestorationOther<br>ActivitiesTotal :Ames Laboratory11Argonne National Laboratory - East180Argonne National Laboratory - West3Argonne National Laboratory - West3Shtabula Environmental Management Project50Columbus Environmental Management Project - West11Energy Technology Engineering Center1,400Control Columbus Environmental Management Project2Idaho National Engineering and Environmental202,4002,400General Atomics1Inhalation Toxicology Resarch Institute71Laboratory For Energy-Related Health Research1Laboratory For Energy-Related Health Research1Laboratory Engineering Laboratory2,400Lostatory for Energy-Related Health Research1Laboratory Faiter National Laboratory2,400Laboratory For Energy-Related Health Research1Laboratory for Energy-Related Health Research1Laboratory For String Laboratory2,400Miamisburg Environmental Management Project<1Columbus Environmental Management Project<1Cok Kidge Reservation940< | and the state of the share of the second           |                                                    | in acay | · · ·   | and the second second second                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------|---------|------------------------------------------------------------------------------------------------------------------|
| Argonne National Laboratory - East180390560Argonne National Laboratory - West33Ashtabula Environmental Management Project5050Brookhaven National Laboratory120340460Columbus Environmental Management Project - West1111Enfersion1111Energy Technology Engineering Center1,4001,400Fernald Environmental Management Project4,7004,700General Atomics11Inditional Engineering and Environmental202,400Laboratory110110Laboratory for Energy-Related Health Research11Lawrence Erkeley National Laboratory - Minin Site140140Los Alamos National Engineering Laboratory2,4002,5004,800Miamisburg Environmental Management Project<111Los Alamos National Laboratory - Minin Site1401403Los Alamos National Engineering Laboratory2,4002,5004,800Miamisburg Environmental Management Project<1<13Oak Ridge Reservation94052,00053,00033,000Paducah Gaseous Diffusion Plant23,0003,80039,000Sandia National Laboratory - New Mexico3,3009304,200                                                                                                                                                                                                                                                                                                    | Generator Site                                     | 7.00.00.00.00.00.00.00.00                          |         | Total   | The second s   |
| Argonne National Laboratory - West33Ashtabula Environmental Management Project5050Brookhaven National Laboratory120340460Columbus Environmental Management Project - West1111Jefferson1,4001,400Fernald Environmental Management Project4,7004,700General Atomics11Grand Junction Office22Idaho National Engineering and Environmental202,4002,400Laboratory110110Inhalation Toxicology Research Institute7171Laboratory for Energy-Related Health Research11Lawrence Erkeley National Laboratory2,4002,500Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ames Laboratory                                    |                                                    | 1       | ·, 1    |                                                                                                                  |
| Asitabula Environmental Management Project5050Brookhaven National Laboratory120340460Columbus Environmental Management Project - West1111Jefferson1111Energy Technology Engineering Center1,4001,400Fernald Environmental Management Project4,7004,700General Atomics11Grand Junction Office22Idaho National Engineering and Environmental202,400Laboratory7171Inhalation Toxicology Research Institute7171Laboratory for Energy-Related Health Research11Lawrence Erkeley National Laboratory2,4002,500Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Argonne National Laboratory - East                 | 180                                                | 390     | 560     |                                                                                                                  |
| Brookhaven National Laboratory120340460Columbus Environmental Management Project - West1111Energy Technology Engineering Center1,4001,400Fernald Environmental Management Project4,7004,700General Atomics11Grand Junction Office22Iaboratory22,400Laboratory202,400Laboratory or Energy-Related Health Research11Lawrence Berkeley National Laboratory110110Lawrence Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Argonne National Laboratory - West                 | 1. 1. 1. 1. N. | 3       | - 3     |                                                                                                                  |
| Columbus Environmental Management Project - West1111Jefferson1,4001,400Energy Technology Engineering Center1,4001,400Fernald Environmental Management Project4,7004,700General Atomics11Grand Junction Office22Idaho National Engineering and Environmental202,400Laboratory7171Inhalation Toxicology Research Institute7171Laboratory of Energy-Related Health Research11Lawrence Berkeley National Laboratory110110Lawrence Livermore National Engineering Laboratory2,4002,500Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ashtabula Environmental Management Project         | 50                                                 |         | 50      |                                                                                                                  |
| Jefferson1111Energy Technology Engineering Center1,4001,400Fernald Environmental Management Project4,7004,700General Atomics11Grand Junction Office22Idaho National Engineering and Environmental<br>Laboratory202,4002,400Inhalation Toxicology Research Institute7171Laboratory for Energy-Related Health Research11Lawrence Berkeley National Laboratory110110Lawrence Livermore National Laboratory2,4002,500Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Brookhaven National Laboratory                     | 120                                                | . : 340 | • 460   | and the second second second                                                                                     |
| Fernald Environmental Management Project4,7004,700General Atomics11Grand Junction Office22Idaho National Engineering and Environmental<br>Laboratory202,4002,400Inhalation Toxicology Research Institute7171Laboratory for Energy-Related Health Research11Lawrence Berkeley National Laboratory110110Lawrence Berkeley National Laboratory2,4002,500Lawrence Livermore National Laboratory2,4002,500Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | $(e^{it}) \in [1]$                                 |         | . 11    |                                                                                                                  |
| General Atomics11Grand Junction Office22Idaho National Engineering and Environmental202,400Laboratory202,4002,400Inhalation Toxicology Research Institute7171Laboratory for Energy-Related Health Research11Lawrence Berkelcy National Laboratory110110Lawrence Berkelcy National Laboratory110110Lawrence Livermore National Laboratory - Main Site140140Los Alamos National Engineering Laboratory2,4002,5004,800Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy Technology Engineering Center               | 1,400                                              | 1       | 1,400   |                                                                                                                  |
| Grand Junction Office22Idaho National Engineering and Environmental<br>Laboratory202,4002,400Inhalation Toxicology Research Institute7171Laboratory for Energy-Related Health Research11Lawrence Berkeley National Laboratory110110Lawrence Livermore National Laboratory2,4002,500Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fernald Environmental Management Project           | 4,700                                              | · ·     | 4,700   |                                                                                                                  |
| Idaho National Engineering and Environmental<br>Laboratory202,4002,400Commercial Disposal<br>(150,000 m³)Inhalation Toxicology Research Institute717171Laboratory for Energy-Related Health Research111Lawrence Berkeley National Laboratory110110140Lawrence Livermore National Laboratory2,4002,5004,800Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | General Atomics                                    | · · · ····                                         | 1       | · · · 1 |                                                                                                                  |
| Laboratory202,4002,400(150,000 m³)Inhalation Toxicology Research Institute7171Laboratory for Energy-Related Health Research11Lawrence Berkeley National Laboratory110110Lawrence Livermore National Laboratory2,4002,500Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Grand Junction Office                              | 2                                                  |         | 2       |                                                                                                                  |
| Laboratory for Energy-Related Health Research11Lawrence Berkeley National Laboratory110110Lawrence Livermore National Laboratory - Main Site140140Los Alamos National Engineering Laboratory2,4002,5004,800Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | 20                                                 | 2,400   | 2,400   |                                                                                                                  |
| Laboratory11Lawrence Berkeley National Laboratory110110Lawrence Livermore National Laboratory - Main Site140140Los Alamos National Engineering Laboratory2,4002,5004,800Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inhalation Toxicology Research Institute           |                                                    | 71      | 71      |                                                                                                                  |
| Lawrence Livermore National Laboratory - Main Site140140Los Alamos National Engineering Laboratory2,4002,5004,800Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Laboratory for Energy-Related Health Research      |                                                    | 1       | 1       | and the second |
| Los Alamos National Engineering Laboratory2,4002,5004,800Miamisburg Environmental Management Project<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lawrence Berkeley National Laboratory              | 1                                                  | - 110   | 110     |                                                                                                                  |
| Miamisburg Environmental Management Project<1<1Oak Ridge Reservation94052,00053,000Paducah Gaseous Diffusion Plant23,0005,10028,000Portsmouth Gaseous Diffusion Plant9709,10010,000Rocky Flats Environmental Technology Site35,0003,80039,000Sandia National Laboratory - New Mexico3,3009304,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lawrence Livermore National Laboratory - Main Site |                                                    | 140     | . 140   | When the state of the second                                                                                     |
| Oak Ridge Reservation94052,000\$3,000Paducah Gaseous Diffusion Plant23,0005,10028,000Portsmouth Gaseous Diffusion Plant9709,10010,000Rocky Flats Environmental Technology Site35,0003,80039,000Sandia National Laboratory - New Mexico- 3,3009304,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Los Alamos National Engineering Laboratory         | 2,400                                              | 2,500   | 4,800   |                                                                                                                  |
| Paducah Gaseous Diffusion Plant23,0005,10028,000Portsmouth Gaseous Diffusion Plant9709,10010,000Rocky Flats Environmental Technology Site35,0003,80039,000Sandia National Laboratory - New Mexico3,3009304,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Miamisburg Environmental Management Project        |                                                    | <1      | <1      |                                                                                                                  |
| Portsmouth Gaseous Diffusion Plant9709,10010,000Rocky Flats Environmental Technology Site35,0003,80039,000Sandia National Laboratory - New Mexico- 3,3009304,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oak Ridge Reservation                              | 940                                                | 52,000  | 53,000  |                                                                                                                  |
| Rocky Flats Environmental Technology Site35,0003,80039,000Sandia National Laboratory - New Mexico3,3009304,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paducah Gaseous Diffusion Plant                    | 23,000                                             | 5,100   | 28,000  | ]                                                                                                                |
| Sandia National Laboratory - New Mexico 3,300 930 4,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Portsmouth Gaseous Diffusion Plant                 | 970                                                | 9,100   | 10,000  |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rocky Flats Environmental Technology Site          | 35,000                                             | 3,800   | 39,000  |                                                                                                                  |
| Totals* 310.000 140.000 450.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sandia National Laboratory - New Mexico            | 3,300                                              | 930     | · 4,200 | Let Albert 1 1 - Let a                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Totals *                                           | 310,000                                            | 140,000 | 450,000 |                                                                                                                  |

\* See Table 1-1 for full facility names. Facility names have been shortened in this table to improve data presentation. Volume projections and disposal facility designations are based on the June 26, 2000 Integrated Planning, Accountability, and Budgeting System Stream Disposition Data (IPABS SDD). Some projections do not represent final decisions and will require further assessment under the National Environmental Policy Act. These data and the subsequent volumetric analysis do not include waste and materials discussed in Section 2.8 and disposition projections not documented in the June 26, 2000, IPABS SDD. It is expected that the responsible DOE sites will document these disposition projections in future versions of the IPABS SDD.

The volumes of waste attributed to environmental restoration in this table differ from the corresponding volumes identified in DOE's Central Internet Database, which served as the primary data source for this analysis. The volumes cited here reflect an analysis of how the "parent" waste streams were originally generated prior to treatment, off-site shipment, or co-mingling with other waste streams.

Because of rounding, some totals may not equal the sum of their components.

. .

· () 21

2-9

December 2000

1999 - C. 19

· \* .

#### **Environmental Restoration Generation Projections** 2.2.2 - - ....

DOE environmental restoration activities generate larger volumes of LLW and MLLW than any other DOE activities. Waste-generating environmental restoration activities include assessment. remediation, and facility decommissioning. Across the complex, environmental restoration activities are projected to generate a total of 35 million  $m^3$  of LLW media and 2.5 million  $m^3$  of MLLW media, excluding large volume wastewater, groundwater, and surface water media. Estimates of media volumes refer to "in-place" volumes of contaminated soil, previously disposed materials, buildings, and other in-place materials. These in-place volumes reflect DOE's current understanding of contaminated media and facilities, and these volumes may increase or decrease in the future as site characterization activities continue. At each site, the volume of LLW or MLLW, if any, that will be generated and eventually disposed will depend on the specific response strategies and methodologies used. These response strategies and methodologies will be developed by the Department through discussions with Federal and State regulators. The general response strategies used by the Department range from "no further" action" to removal of all contaminated media for disposal in an engineered facility.

Tables 2-4 and 2-5 present the estimated media volumes expected to be managed in place (insitu) and waste volumes expected to be generated by environmental restoration activities at each site (excluding large volume wastewater, groundwater, and surface water media). For the environmental restoration waste generated at each site, Tables 2-4 and 2-5 each show five different disposition pathways, including DOE treatment or processing prior to disposal, direct disposal in DOE CERCLA facilities, direct disposal in DOE waste operations facilities, transfer to commercial facilities, or to be determined.

The volumes of material presented in Tables 2-4 and 2-5 are related to, but often different from, those shown in Tables 2-2 and 2-3. Tables 2-2 and 2-3 reflect final disposition volumes for newly generated and existing inventories of waste, and Tables 2-4 and 2-5 reflect initial disposition strategies of newly generated environmental restoration waste. These quantities can differ whenever the waste undergoes processing or treatment or there is already an existing inventory of waste. For environmental restoration wastes that are treated prior to disposal, Tables 2-2 and 2-3 include post-treatment volumes going to disposal, while Tables 2-4 and 2-5 include pre-treatment volumes. For some generators, waste volumes in Tables 2-2 and 2-3 are the same as those in Tables 2-4 and 2-5 because the waste goes directly from initial generation to final disposition without treatment and there are no existing inventories. For other generators, the volumes in the tables differ for the reasons outlined above.

Of the 35 million m<sup>3</sup> of LLW media shown in Table 2-4, 9.0 million m<sup>3</sup> of LLW is projected to be generated through ex-situ response strategies. Similarly, of the 2.5 million m<sup>3</sup> of MLLW media shown in Table 2-5, 280,000 m<sup>3</sup> of MLLW is projected to be generated through ex-situ response strategies.

December 2000

÷.

|                                                            | Solid LLW                             | Volume                                                  | of Solid LLW                          |                                                      | n Environmental                         |                                    | 0-2070)                                  |            |
|------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|---------------------------------------|------------------------------------------------------|-----------------------------------------|------------------------------------|------------------------------------------|------------|
| Site                                                       | Media<br>Volume<br>Managed<br>In-Situ | Treatment<br>or<br>Processing<br>In DOE 7<br>Facilities | Disposal<br>In DOE<br>CERCLA<br>Cells | Disposal in<br>DOE Waste<br>Operations<br>Facilities | Transfer to<br>Commercial<br>Facilities | Disposition<br>to be<br>Determined | Total Ex-<br>Situ<br>Volume<br>Generated | Totals 4   |
| Argonne National Laboratory -<br>East                      |                                       |                                                         |                                       | 1,200                                                |                                         |                                    | 1,200                                    | 1,200      |
| Argonne National Laboratory -<br>West                      | 14,000                                | 3                                                       |                                       | . 110                                                | · <b>•</b> ··                           |                                    | - 110                                    | 14,000     |
| Ashtabula Environmental<br>Management Project              | · · ·                                 | 23,000                                                  |                                       | 420                                                  | 200                                     |                                    | 24,000                                   | 24,000     |
| Brookhaven National<br>Laboratory                          |                                       |                                                         | · · ·                                 | - 1,100                                              | 36,000                                  |                                    | 37,000                                   | 37,000     |
| Columbus Environmental<br>Management Project               | , ·                                   | •                                                       | ;                                     | 1,000                                                | 11,000                                  |                                    | 12,000                                   | 12,000     |
| Energy Technology Engineering<br>Center                    | ·                                     |                                                         |                                       | 2,300                                                | 13,000                                  |                                    | 15,000                                   | 15,000     |
| Fernald Environmental<br>Management Project                | · •••                                 | 450,000                                                 | 1,800,000                             | 20,000                                               | 43,000                                  |                                    | 2,400,000                                | 2,400,000  |
| General Electric Vallecitos<br>Nuclear Center              |                                       | • •                                                     |                                       |                                                      |                                         |                                    | 20                                       | 20         |
| Grand Junction Office                                      | <b>1</b> 0 000 000                    |                                                         |                                       |                                                      | 5                                       |                                    | 5                                        | 5          |
| Hanford Site                                               | 20,000,000                            | ·                                                       | 5,000,000                             |                                                      | • • • •                                 |                                    | 5,000,000                                | 25,000,000 |
| Idaho National Engineering and<br>Environmental Laboratory | 400,000                               | 53,000                                                  | 76,000                                | 3                                                    | ·                                       | 10                                 | 130,000                                  | 530,000    |
| Laboratory for Energy-Related<br>Health Research           | •                                     | 1,900                                                   |                                       |                                                      |                                         |                                    | 1,900                                    | 1,900      |
| Lawrence Berkeley National<br>Laboratory                   |                                       | -                                                       |                                       |                                                      | 220                                     |                                    |                                          | 220        |
| Los Alamos National<br>Laboratory                          | 290,000                               |                                                         |                                       | 34,000                                               |                                         |                                    | 34,000                                   | 330,000    |
| Miamisburg Environmental<br>Management Project             | ,<br>i                                |                                                         |                                       | 18,000                                               | • 72,000                                |                                    | 90,000                                   | 90,000     |
| Nevada Test Site                                           | 2,100,000                             | 110,000                                                 |                                       | 8,500                                                |                                         | 10.000                             | 120,000                                  | 2,200,000  |
| Oak Ridge Reservation                                      | 1,600,000                             | • 190,000                                               | 700,000                               | 460                                                  | 110,000                                 | 40,000                             | 1,000,000                                | 2,700,000  |
| Paducah Gaseous Diffusion<br>Plant                         |                                       |                                                         |                                       |                                                      | 5,700                                   |                                    | 5,700                                    | 5,700      |
| Pantex Plant                                               |                                       | ·                                                       | ļ                                     | ļ1                                                   | l                                       |                                    | 1                                        | <b>1</b>   |
| Portsmouth Gaseous Diffusion<br>Plant                      | :                                     |                                                         |                                       | •                                                    | 110                                     |                                    | 110                                      | 110        |
| Sandia National Laboratones -<br>New Mexico                |                                       |                                                         |                                       | . 330                                                | 1,500                                   | • · ·                              | 1,800                                    | 1,800      |
| Savannah River Site                                        | 1,400,000                             | l                                                       |                                       | · · · ·                                              | 52,000                                  | 1 1                                | 52,000                                   | 1,400,000  |
| Separations Process Research<br>Unit                       | • •                                   |                                                         | ·                                     | · · · · · · · · · · · · · · · · · · ·                |                                         | 7,800                              | 7,800                                    | 7,800      |
| Totals *                                                   | 26,000,000                            | 830,000                                                 | 7,700,000                             | 88,000                                               | 350,000                                 | 48,000                             | 9,000,000                                | 35,000,000 |

### Table 2-4. LLW Media from Environmental Restoration Activities (cubic meters)<sup>a</sup>

\* Data compiled from DOE IPABS/SDD June 26, 2000, data set. Volumes exclude large-volume liquids categorized as wastewater,

groundwater, or surface water. Volumes shown as being disposed in DOE CERCLA and DOE waste operations facilities are a subset of the corresponding environmental restoration LLW volumes shown in Table 2-2. When comparing these categories, volume differences occur where either there is already an existing inventory of LLW or some LLW is to be processed in DOE facilities prior to disposal (third column from left in this table). The processing can change the waste volume.

\* Transfer to Commercial Facilities category includes commercial treatment, disposal, and recycle.

• To Be Determined category includes volumes for which the management location (i.e., DOE or commercial) is not yet determined.

<sup>4</sup> Because of rounding, some totals may not equal the sum of their components.

1

### Table 2-5. MLLW Media from Environmental Restoration Activities

status a segura de la constatu (cubic meters) \* de la constatua de la fue

|                                                            |                                       |                                                    |                                       |                                                          |                                            | a a la a la a la a                         |                                          |           |
|------------------------------------------------------------|---------------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------|-----------|
|                                                            | Solid S                               |                                                    | Volume of MILI                        | .W Generated                                             | from Environm<br>-2070)                    | ental Responses                            |                                          |           |
| Sile                                                       | Media<br>Volume<br>Managed<br>In-Situ | Treatment or<br>Processing in<br>DOE<br>Facilities | Disposal in<br>DOE<br>CERCLA<br>Cells | Disposal<br>in DOE<br>Waste<br>Operation<br>s Facilities | Transfer to<br>Commercia<br>I Facilities * | Disposition to be<br>to be<br>Determined s | Total Ex-<br>Sita<br>Volume<br>Generated | Totals !  |
| Argonne National Laboratory -<br>East                      |                                       |                                                    |                                       | -                                                        | 160                                        | · 11                                       | 170                                      | 170       |
| Argonne National Laboratory -<br>West                      | 150                                   |                                                    |                                       |                                                          |                                            |                                            |                                          | 150       |
| Ashtabula Environmental<br>Management Project              |                                       | 1,600                                              |                                       |                                                          | . 50                                       |                                            | 1,600                                    | 1,600     |
| Brookhaven National<br>Laboratory                          |                                       | · ·                                                |                                       |                                                          | 110                                        |                                            | 110                                      | 110       |
| Columbus Environmental<br>Management Project               |                                       | 5                                                  |                                       |                                                          | 11                                         | ·                                          | 16                                       | 16        |
| Energy Technology<br>Engineering Center                    |                                       |                                                    |                                       |                                                          | 1,300                                      |                                            | 1,300                                    | 1,300     |
| Fernald Environmental<br>Management Project                | -                                     | 25                                                 |                                       |                                                          | . 7,800                                    |                                            |                                          | 7,900     |
| Grand Junction Office                                      |                                       |                                                    |                                       |                                                          | <1                                         | <1                                         | <1                                       | <1        |
| Hanford Site                                               |                                       | 51                                                 | 260                                   |                                                          |                                            |                                            | 310                                      | 310       |
| Idaho National Engineering<br>and Environmental Laboratory | 730,000                               | 120                                                | 37,000                                |                                                          |                                            | 77                                         | 37,000                                   | 770,000   |
| Los Alamos National<br>Laboratory                          | 30,000                                |                                                    |                                       |                                                          | 2,400                                      |                                            | 2,400                                    | 32,000    |
| Nevada Test Site                                           | 13,000                                | . 50                                               |                                       |                                                          |                                            |                                            | <sup>·</sup> 50                          | 14,000    |
| Oak Ridge Reservation                                      | 1,400,000                             | 110,000                                            | 86,000                                |                                                          | 110                                        | · 250                                      | 200,000                                  | 1,600,000 |
| Paducah Gaseous Diffusion<br>Plant                         | 3,000                                 |                                                    |                                       |                                                          | 23,000                                     |                                            | 23,000                                   | 26,000    |
| Portsmouth Gaseous Diffusion<br>Plant                      | 27                                    |                                                    |                                       |                                                          | 970                                        |                                            | 970                                      | 1,000     |
| Sandia National Laboratorics -<br>NM                       | 2,800                                 | ••                                                 |                                       |                                                          | 3,300                                      |                                            | 3,300                                    | 6,100     |
| Savannah River Site                                        | 25,000                                |                                                    | ,                                     |                                                          |                                            |                                            |                                          | 25,000    |
| Separations Process Research<br>Unit                       |                                       |                                                    |                                       |                                                          |                                            | 50                                         | . 50                                     | 50        |
| Totals <sup>d</sup>                                        | 2,200,000                             | 110,000                                            | 120,000                               |                                                          | 39,000                                     | 410                                        | 280,000                                  | 2,500,000 |

Data compiled from DOE IPABS/SDD June 26, 2000, data set. Volumes exclude large-volume liquids categorized as wastewater, groundwater, and surface water. Volumes shown here as being disposed in DOE CERCLA and DOE waste operations facilities are a subset of the corresponding environmental restoration MLLW volumes shown in Table 2-3. When comparing these categories, volume differences occur where either there is already an existing inventory of waste or some waste is to be processed in DOE facilities prior to disposal (third column from left in this table). The processing can change both the waste volume and the waste type.

\* Transfer to Commercial Facilities category includes commercial treatment, disposal, and recycle.

\* To Be Determined category includes volumes for which the management location (i.e., DOE or commercial) is not yet determined.

\* Because of rounding, some totals may not equal the sum of their components.

### A.5 Oak Ridge Reservation

#### A.5.1 Background

Location: Oak Ridge Reservation (ORR) is located in a valley between the Cumberland and southern Appalachian mountain ranges in eastern Tennessee about 25 km west of Knoxville. ORR covers an area of 35,252 acres and contains three major facilities: Oak Ridge National Laboratory (ORNL), the Oak Ridge East Tennessee Technology Park (formerly called the "K-25" site), and the Oak Ridge Y-12 Plant.

Historical Activities: ORR was originally constructed as a research and development facility to support plutonium production and research. Today, ORR conducts research on the fission nuclear fuel cycle and nuclear fusion. ORNL is the only facility of the three at ORR that currently operates a disposal site for LLW: the Interim Waste Management Facility (IWMF) at Solid Waste Storage Area (SWSA) 6.

#### A.5.2 IWMF

. . 1. . . . .

A.5.2.1 Facility Description

Status: Located about 40 km west of Knoxville, in Melton Valley (MV) in the southwest region of ORR, the 28-ha (68-acre) SWSA 6 has been used by the ORNL since 1969 for the disposal of on-site generated LLW. Until 1986, all LLW generated at ORNL (including MLLW) was disposed of by shallow land burial, generally in unlined trenches and auger holes. This practice came under closer scrutiny by federal and state regulators and DOE officials, and as a result, in 1986 major changes in the operation of SWSA 6 were initiated. Because of the disposal practices conducted before 1986, some areas in SWSA 6 were remediated under a Resource Conservation and Recovery Act interim status closure agreement with the Tennessee Department of Environment and Conservation. The remediation activities were coordinated with ongoing Greater Confinement Disposal units waste operations. Remediation of SWSA 6 and all of MV will occur under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A Record of Decision (ROD) for MV is expected to be signed by the end of Fiscal Year 2000.

*Waste Materials:* SWSA 6 does not accept any mixed waste for disposal. On-site generated MLLW will be treated on site and sent for permanent disposal either to Hanford or NTS. The radioactive solid waste disposal facility, the IWMF, was constructed in 1991 for solid LLW disposal. While SWSA 6 also served as a disposal site for fission-product LLW in Greater Confinement Disposal units and for waste in shallow land burial units, the IWMF is the only currently active disposal unit at SWSA 6. In 1999, the IWMF was filled to 80% capacity.

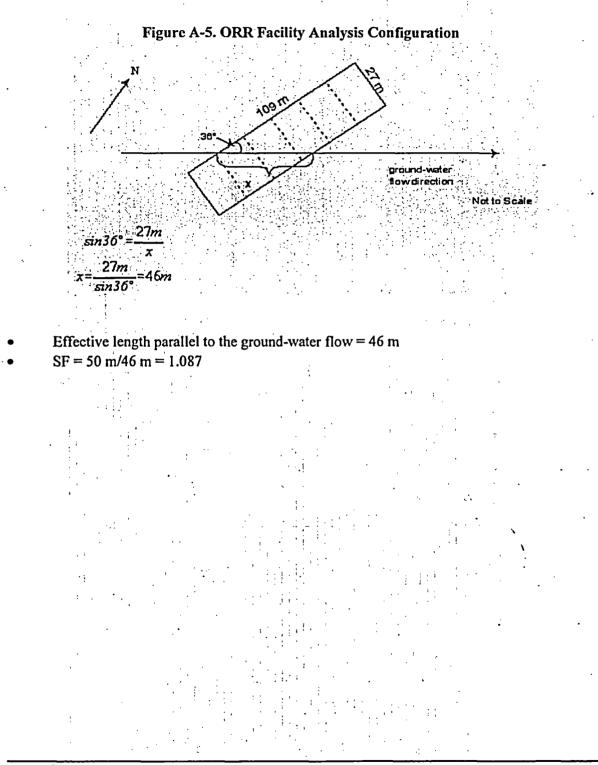
December 2000

A-14

*General Design Features:* Below-grade disposal methods used at SWSA 6 include concrete silos, wells in concrete silos, pipe-lined auger hole wells, unlined trenches, and landfills. ORNL began phasing out below-grade disposal operations in December 1992 at a Tennessee Department of Environment and Conservation request. Below-ground disposal operations ceased January 1, 1994. The wells in concrete silos and the pipe-lined auger hole wells in SWSA 5N are still used for retrievable storage of very high-range, remote-handled LLW.

The IWMF is the only active above-grade tumulus disposal facility in SWSA 6, occupying an area of approximately 3.8 ha (9.5 acres) in the southwest portion of SWSA 6. The IWMF began operation in December 1991 and provides for disposal of solid LLW. The original facility was designed for six tumulus pads. Each tumulus pad is approximately 18.2 m x 27.4 m (60 ft x 90 ft) and 38.1 cm (15 in) thick, constructed using high-density concrete and reinforced with epoxy-coated steel. The pad has concrete curbs 0.30 m (1 ft) high on the north, south, and west sides. The east side is used for vehicle access. Each pad provides disposal for approximately 330 vaults, approximately 897 m<sup>3</sup> (31,680 ft<sup>3</sup>) stacked three high.

The IWMF is designed to divert water into three sumps, located in a monitoring station adjacent to the tumulus pads. The monitoring station is equipped for receiving, monitoring, and collecting sample from flows received from storm water, underpad, and infiltration drain systems. The underpad sump allows monitoring of any ground water that may accumulate under the pads. The storm water sump collects water from the pad in operation. The infiltration sump collects water from the pads filled with vaults. A principal feature of tumulus disposal is the inherent capability for monitoring ground water and surface water for contamination. The sealed concrete pad is the primary barrier from ground water. The pad is sloped 1 percent to one side where a curb and gutter collect all surface pad runoff and drain the water to a monitoring station. A liner below the pad provides a secondary barrier from the ground water and collects any water that may have penetrated the pad, which is then also diverted to the monitoring station.


A.5.2.2 Scaling Factor

Assumptions for determining scaling factor:

- IWMF is the only active disposal facility (U.S. DOE, 1997, pages 3-45 to 3-68).
- Ground-water flow is roughly west to east.
- IWMF consists of Pads 1 through 6, each 27 m by 18.2 m (U.S. DOE, 1997, p. 3-65).
- Orientation of the IWMF with ground-water flow as shown (U.S. DOE, 1997, p. E-28).
- Use PE tumulus values.

December 2000

A-15



December 2000

A-16

### NTS Areas 3 and 5 RWMS and Area 5 Mixed Waste Disposal Unit

| Stram Name:               | 3540; Treated BFV Burn<br>Sol | 3691: LLW from RMI<br>(Aentabule EMP) | 3692 LLW from ORR  | 4136: U2bu Lead<br>Contaminated Sol   | 4283: Treated Bulk Load | 4284: Treated EMAD | 4285; Treated TTF<br>Solvents | 4269; Trested A-12 Liquid | 4287: Trested Sealed<br>Sources       |
|---------------------------|-------------------------------|---------------------------------------|--------------------|---------------------------------------|-------------------------|--------------------|-------------------------------|---------------------------|---------------------------------------|
| Gen Ste:                  | Walte Control Spec            | Aerestate                             | Oak Ridge          | Nevada Test 64.0                      | Waste Control Spec      | Waste Control Spec | Waste Control Spec            | Wante Control Spec        | Waste Control Spec                    |
| FY98-70 M3                |                               | 621                                   | 403.076            | 20                                    |                         | 12                 | - la-                         |                           | la                                    |
| Profile Source;           | Reported after 6/26/00        | No Avalable Data                      | NTS Generator Data | Reported after 6/26/00                | Rev. 1 p. DI-NV-3 MLLW- |                    | Reported after 6/26/00        | Reported after 6/25/00    | Reported after 6/26/00                |
| <u>.</u>                  |                               | 1                                     | 2.39€+01           | · · · · · · · · · · · · · · · · · · · |                         | 3.416-08           |                               |                           | · · · · · · · · · · · · · · · · · · · |
| 43<br>C-14                |                               | +                                     | 2.875-04           |                                       |                         |                    |                               |                           | 4.01E-05                              |
| C-14am                    |                               | 1                                     |                    |                                       |                         |                    |                               |                           |                                       |
| 4+28<br>2+36<br>K-40      |                               |                                       |                    |                                       |                         |                    |                               |                           |                                       |
| 24-36                     |                               | 1                                     | 0,796-04           |                                       | -1                      |                    |                               |                           |                                       |
| K-40                      |                               |                                       | 1,25E-05           |                                       | 1                       | 1.47E-00           |                               |                           |                                       |
| Co-60                     |                               |                                       | 2115-01            | 3.51E-06                              |                         | 7.51E-05           |                               |                           |                                       |
| N-59                      |                               |                                       | 9,29E-07           |                                       |                         | ·                  |                               |                           | <u> </u>                              |
| NH63                      |                               |                                       | 3,795+00           |                                       |                         |                    |                               |                           | <u> </u>                              |
| NI-63am                   |                               | ·                                     |                    |                                       |                         |                    |                               |                           | ł                                     |
| 5-79<br>5r-90             |                               | ·                                     | 1.51E-02           | 6,355-07                              |                         |                    |                               | -}                        | <u> </u>                              |
| 21-93                     |                               |                                       | L31E=02            |                                       |                         | 7.00E-06           | 4.17E-00                      |                           |                                       |
| ND-93m                    |                               |                                       |                    |                                       |                         |                    |                               |                           | ·                                     |
| ND-94                     |                               |                                       |                    |                                       |                         |                    |                               |                           |                                       |
| 68-01                     |                               |                                       | 1.68E-06           |                                       |                         |                    |                               |                           | · · · · · · · · · · · · · · · · · · · |
| 26-113m                   |                               |                                       |                    |                                       |                         |                    |                               |                           | +                                     |
| 5n-121m                   |                               |                                       |                    |                                       |                         | 1                  |                               | 1                         | <u></u>                               |
| Sn-128                    |                               | 1                                     |                    |                                       |                         |                    |                               |                           |                                       |
| F129                      |                               |                                       | 6,45E-08           |                                       |                         |                    |                               |                           | I                                     |
| C=135                     |                               |                                       |                    |                                       |                         |                    |                               |                           |                                       |
| C+137                     |                               | 1                                     | 1,44E+00           | 8.78E-07                              | 5.90E-06                | 39E-07             | 4.17E-00                      |                           |                                       |
| 8+133                     |                               |                                       | 4.54E-04           |                                       |                         |                    | _ <u></u>                     |                           | 7.00E-04                              |
| Sm-151                    |                               | +                                     | 4,36E-09           | · · · · · · · · · · · · · · · · · · · |                         | <u> </u>           |                               |                           |                                       |
| Eu-152                    |                               | <u> </u>                              | 1.15E-01           |                                       |                         | ·                  | +                             | _ <u> </u>                |                                       |
| Eu-154                    |                               |                                       | 3,605-03           | 2.26E-06                              |                         | 3.626-07           |                               |                           | <u> </u>                              |
| Re-226                    |                               |                                       | 1.485-04           |                                       |                         | 15/5-9/            |                               |                           | ······                                |
| Re-228                    |                               |                                       | 5.076-07           |                                       |                         | +                  |                               |                           | <u> </u>                              |
| Th-230                    | <del>_</del>                  |                                       | 2,565-06           |                                       |                         |                    | 2.08E-07                      |                           |                                       |
| h.212                     |                               |                                       | 1.10E-05           | 2.89E-06                              |                         |                    |                               |                           | <u>├</u>                              |
| n-232<br>a-231            |                               |                                       | 231E-07            |                                       |                         |                    |                               |                           | ·                                     |
| J-232                     |                               |                                       | 1.06E-07           | <u></u>                               |                         |                    |                               |                           |                                       |
| 1-233                     |                               |                                       | 1.17E-05           |                                       |                         |                    |                               |                           | 1                                     |
| 1-233<br>1-234            | 1                             |                                       | 1.046-03           |                                       |                         | 4,05E-06           |                               | 1                         |                                       |
| 1235<br>1236<br>1238      |                               |                                       | 4.72E-05           |                                       | 1                       | 1.76E-07           | 6.63E-00                      |                           |                                       |
| 1-236                     |                               | 1                                     | 8,996-08           |                                       |                         |                    |                               |                           | 1                                     |
| 238                       |                               |                                       | 5.11E-04           |                                       |                         | 1.546-07           |                               |                           | I                                     |
| ND-237                    |                               |                                       | 1,16E-05           |                                       |                         |                    | 1.64E-08<br>6.79E-08          |                           |                                       |
| 24238<br>24-239<br>24-240 |                               | · · · · · · · · · · · · · · · · · · · | 1.236-05           |                                       | _ <del></del>           | 6,355-00           | 6.79E-00                      | 4,43E-11                  | }                                     |
| V-239                     | 2.24E-07                      |                                       | 1,106-05           | 1,30E-00                              |                         | 6.81E-08           | 3,866-08                      | 8.04E-10                  |                                       |
|                           | 2.245-07                      | <u> </u>                              | 6.596-05           |                                       | - <del> </del>          | ·                  | ·                             |                           |                                       |
| <u>v-241</u>              |                               | +                                     |                    |                                       |                         | <u> </u>           |                               | -{                        | <u> </u>                              |
| <u>v-242</u>              |                               | +                                     | 1.07E-08           |                                       |                         | <u>}</u>           |                               |                           | <u> </u>                              |
| 30-244<br>Vm-241          | 2.245-07                      | +                                     | 3,095-05           | 1.50E-08                              |                         |                    |                               | 4,005-07                  | 6.41E-07                              |
| Vm-243                    |                               | +                                     | 4,446-05           |                                       |                         |                    |                               |                           |                                       |
| 2m-243                    |                               | +                                     |                    |                                       |                         | <u>}</u>           |                               |                           | t                                     |
| m-244                     |                               | +                                     | 1.895-02           |                                       |                         |                    |                               |                           | t                                     |
| 2017 6 4 1                |                               |                                       |                    |                                       |                         | <u> </u>           |                               |                           |                                       |

### LLW Alternative

ادی میں میں ایر میں وال .... •. .

| Ban Eda Mama                                   | I on Alamon              | li na Alamoa                | ILEHR                   | Oak Ridge             | Oek Ridge                               | IOak Ridge          | Oak Ridge         | Qsk Ridge                             | Oek Ridge            |
|------------------------------------------------|--------------------------|-----------------------------|-------------------------|-----------------------|-----------------------------------------|---------------------|-------------------|---------------------------------------|----------------------|
| Rep 5de Name:<br>Stream Name;                  | 3895; LLW - Accepted for | 3907: LLW + Accepted for    | 2659: Cobalt 60 source- | 4340; RH LLW-4        | 4402: DRS - K1420 Screp                 |                     | 4404: DR8 - K1420 | 4407: BNFL - K29/31/33                | 5022 LLW/Debne/Other |
| Steam Name:                                    | Storage, from Licensed   | Storage (Greater than       | ready for disposal      | (Berystum Reflectors) | - Metal (L-020)                         | Construction Debris | Asbestos          | Classified                            | Solds                |
|                                                |                          |                             | invest for disposat     | (Berystom Resectore)  | Militar (124020)                        | Conservation Debris |                   |                                       | 30000                |
|                                                | Activities (Greater than | Class C)                    |                         |                       |                                         | <b>.</b>            | 1                 | • • • • • •                           |                      |
| Source Site:                                   | TBO - Off-Site           | TBD + Off-Ste               | LEHR                    | Oak Ridge             | Oak Ridge                               | Oak Ridge           | Oek Ridge         | Oak Ridge                             | Oek Ridge            |
| FY00+ Disg                                     | 114                      | 13                          | 15                      | 120                   | 44                                      | 29                  | 12                | 22.897                                | 118                  |
| Profile Source:                                | No Avelable Data         | No Available Data           | Reported in 6/26/00 SDD | Rev. 1 p. D1-OR-2     | Rev. 1 p. D2-OR-3                       | Rev.1 p. D2-OR-3    | Rev. 1 p. D2-OR-2 | Rev.1 p. D2-OR-2                      | Rev.1 p. D2-OR-3     |
| r toite bource.                                |                          |                             |                         |                       |                                         |                     |                   |                                       |                      |
|                                                |                          |                             |                         |                       |                                         | 5                   | · · · · · ·       | _1                                    |                      |
| · · · · · ·                                    |                          |                             | • • • •                 |                       |                                         | ******              |                   |                                       |                      |
| H-3                                            |                          | 1                           |                         | 1 2,40E+01            |                                         |                     |                   |                                       |                      |
| C-14                                           |                          |                             |                         | 2,03E-04              |                                         |                     |                   |                                       |                      |
| C-14am                                         |                          | 1                           |                         | -                     |                                         |                     |                   |                                       |                      |
| AL-26                                          |                          |                             |                         |                       |                                         |                     |                   |                                       |                      |
| CI-36                                          |                          |                             |                         | 6,81E-04              |                                         |                     |                   |                                       |                      |
| K-40                                           |                          |                             |                         | 1,266-05              |                                         | I                   |                   |                                       | 1                    |
| Co-60                                          |                          |                             | 1.12E+02                | 2.126-01              |                                         |                     |                   |                                       | 1                    |
| Co-60<br>NL59                                  |                          | 1                           |                         | 9.32E-07              |                                         |                     |                   |                                       |                      |
| NH63                                           |                          |                             |                         | 3,80€+00              |                                         |                     |                   |                                       | - I                  |
| N+63am                                         |                          |                             |                         |                       |                                         | 1                   | - <b>I</b>        |                                       |                      |
| Se-79                                          |                          |                             |                         | 1                     |                                         | I                   |                   |                                       |                      |
| 84-90                                          |                          | In the second second second |                         | 1.51E-02              | 1,74E-05                                | 3,74E-05            | 4,805-04          | 3,74E-05                              | 3746-05              |
| Zr-03                                          |                          |                             |                         |                       |                                         | I                   |                   |                                       |                      |
| Nb-93m                                         |                          |                             |                         | <u> </u>              |                                         | Į                   |                   |                                       |                      |
| ND-94                                          |                          |                             | l                       | 1                     |                                         |                     |                   |                                       |                      |
| To-99                                          |                          |                             |                         | 1.69E-06              |                                         |                     |                   |                                       | -l                   |
| Cd-113m                                        |                          |                             |                         | 1                     |                                         | 1                   |                   |                                       |                      |
| Sn-121m                                        |                          |                             |                         |                       |                                         |                     |                   |                                       |                      |
| Sn-126                                         |                          | lut and i and               |                         | <u> </u>              |                                         | <u> </u>            |                   |                                       |                      |
| 129                                            |                          |                             |                         | 6,47E-08              |                                         |                     |                   |                                       |                      |
| Ce-135                                         |                          |                             |                         |                       |                                         |                     |                   |                                       |                      |
| C+137                                          |                          |                             |                         | 1,43E+00              | 3.74E-05                                | 1746-05             | 4,806-04          | 3.74E-05                              | 3,746-05             |
| B-133                                          |                          |                             | <u></u>                 | 4,55E-04              |                                         |                     |                   |                                       | · · · · ·            |
| Sm-151                                         |                          |                             |                         | 4.37E-09              |                                         | <u> </u>            |                   |                                       |                      |
| Eu-152                                         |                          |                             |                         | 1,16E-01              |                                         | <u> </u>            |                   |                                       |                      |
| Eu-154                                         |                          | <u> </u>                    |                         | 3,81E-03              |                                         |                     | · · · ·           |                                       |                      |
| R= 226                                         |                          | <u> </u>                    |                         | 1.498-04              |                                         | <b>-</b>            |                   |                                       |                      |
| Ra-228                                         |                          |                             |                         | 1.01E-05              |                                         | +                   |                   |                                       |                      |
| Th-229<br>Th-230                               |                          | Į                           |                         | 283E-11<br>257E-06    |                                         |                     |                   |                                       |                      |
| [h-230                                         |                          |                             |                         | 1,11E-05              |                                         |                     |                   |                                       |                      |
| Th-232                                         |                          | ·                           | <u> </u>                | 2.32E-07              |                                         | +                   |                   |                                       |                      |
| P+231<br>U-232<br>U-233<br>U-234               |                          | +                           | +                       | 1,666-07              |                                         | 1                   |                   |                                       |                      |
| 0-232                                          |                          |                             |                         | 1,176-05              |                                         | 1                   |                   | -1                                    |                      |
| 0-233                                          |                          |                             | <u> </u>                | 1,056-03              | 4,986-05                                | 4,96E-05            |                   | 4,965-05                              | 4,96E-05             |
| 0-234                                          |                          |                             | I—                      | 4,74E-05              | 2,225-06                                | 2,225-06            |                   | 2,225-00                              | 2.226-06             |
| U-235<br>U-236<br>U-236                        |                          | <b> </b>                    | +                       | 9.02E-08              |                                         |                     |                   |                                       |                      |
| 0.230                                          |                          |                             | ·····                   | 5,12E-04              | 4.82E-05                                | 4.826-05            |                   | 4.82E-05                              | 4,825-05             |
| 0-230                                          |                          |                             | 1                       | 1.178-05              | <u>````````````````````````````````</u> |                     |                   |                                       |                      |
| Np-237<br>Pu-238<br>Pu-239<br>Pu-240<br>Pu-241 |                          | +                           | 1                       | 1,01E-05              |                                         | <u> </u>            |                   |                                       |                      |
| PU-418                                         |                          | +                           | <u> </u>                | 1,10E-05              |                                         | 1                   |                   |                                       |                      |
| PU-239                                         | ·                        |                             | <u>+</u> ·              | 6,612-05              |                                         | <u> </u>            |                   |                                       |                      |
| PU-240                                         |                          | ·····                       | <u> </u>                | 6,32E-09              | -1                                      | 1                   |                   |                                       | 1                    |
| 0.241                                          |                          |                             | +                       | 1,66E-08              |                                         | i .                 |                   |                                       |                      |
| Pu-242                                         |                          | +                           |                         |                       | -1                                      | 1                   |                   |                                       |                      |
| Pu-244                                         |                          | +                           | <u> </u>                | 3,105-05              |                                         | 1                   |                   |                                       | 1                    |
| Am-241                                         |                          |                             | 1                       | 4,456-05              |                                         |                     |                   |                                       |                      |
| Am-243                                         |                          | ·                           |                         |                       | -1                                      | 1                   |                   | - <u> </u>                            |                      |
| Cm-243                                         | <u> </u>                 |                             |                         | 1.696-02              |                                         | 1                   | -1                | · · · · · · · · · · · · · · · · · · · |                      |
| Çm-244                                         |                          |                             | L                       | 1.000.004             |                                         |                     |                   |                                       |                      |

£.,

· .

Appendix D-2, Page 13

## LLW Alternative

| Rep Ste Name:    | Oat Ridge                       | Oak Ridge                             | Oak Ridge                             | Partex                   | Pantex                                | Partex                  | Portamouth                            | Princeton               | Princeton                             |
|------------------|---------------------------------|---------------------------------------|---------------------------------------|--------------------------|---------------------------------------|-------------------------|---------------------------------------|-------------------------|---------------------------------------|
| Stream Name:     | 5024; LLW/Debre/Other<br>Solids | 5033:                                 | 5035:<br>LLW/Sol/Sludge/Sediment      | 3597: Organic Liquids    | 3599: Soldfied Water                  | 3605; Inorganic Liquid  | 4074: LLW Incinerable<br>Soft Solids  | 3927: Non-Compectable   | 3928: Compacted Waste                 |
|                  | · ·                             |                                       |                                       | •                        | 1                                     |                         |                                       | -                       |                                       |
| Source Site:     | Oak Ridge                       | Oak Ridge                             | Oak Ridge                             | Pentex                   | Pantex                                | Pantex                  | Portamouth                            | Princeton               | Princeton<br>200                      |
| Profile Source:  | 123<br>Rev.1 p. 02-08-3         | 1 500<br>Rev. 1 p. D2-OR-3            | 1.548<br>Rev.1 p. D2-OR-3             | Reported in \$/26/00 SDD | 0                                     | 0                       | 0.009                                 | 500                     | 200                                   |
| rtulie goorce,   |                                 | AND DECIMANNESS .                     |                                       | Kepoites in a zono auto  | Reported in \$/26/00 800              | Reported in 6/26/00 800 | Rev.1 p. D2-OR-7                      | Reported in 6/26/00 600 | Reported in \$/25/00 SDD              |
| 41               |                                 | T                                     | ·                                     | 9.015-04                 | 8.73E-18                              | 9.01E-04                |                                       | 8.506+02                | 1\$.47E-Q1                            |
| +3               |                                 | 1                                     |                                       |                          |                                       |                         | 1                                     |                         |                                       |
| C-14am           |                                 | 1                                     |                                       |                          | 1                                     |                         |                                       | 1                       |                                       |
| AL 20<br>CL-36   |                                 |                                       |                                       |                          |                                       |                         |                                       |                         |                                       |
| CI-36            |                                 |                                       |                                       |                          |                                       |                         |                                       |                         |                                       |
| C40<br>Co-80     | ····                            |                                       | }                                     | }                        | · · · · · · · · · · · · · · · · · · · | <u></u>                 |                                       | 5,006-03                | 5,006-03                              |
| NH-59            |                                 |                                       |                                       |                          |                                       |                         |                                       | 5,00E-03                | 5,006-03                              |
| NH63             |                                 |                                       |                                       |                          | ······                                |                         |                                       |                         | {                                     |
| Ni-63em          |                                 |                                       |                                       |                          |                                       |                         |                                       |                         |                                       |
| NI-63am<br>Se-79 |                                 |                                       |                                       |                          |                                       |                         | · · · · · · · · · · · · · · · · · · · |                         |                                       |
| Sr-90            | 1.746-05                        | 1.74E-05                              | 1746-05                               |                          |                                       |                         |                                       |                         |                                       |
| Zr-93            |                                 | · · · · · · · · · · · · · · · · · · · |                                       |                          | <u> </u>                              |                         | <u> </u>                              |                         | · · · · · · · · · · · · · · · · · · · |
| ND-93m           |                                 |                                       |                                       |                          | <u> </u>                              | <u> </u>                | +                                     |                         | ·                                     |
| 10-99            |                                 |                                       | · · · · · · · · · · · · · · · · · · · |                          | ·                                     | <u>+</u>                | 4.985-05                              |                         |                                       |
| Cd-113m          |                                 |                                       |                                       |                          |                                       | 1                       |                                       |                         | ·                                     |
| Sn-121m          |                                 |                                       |                                       |                          |                                       |                         | 1                                     |                         | 1                                     |
| Sn-126           |                                 |                                       |                                       |                          |                                       |                         |                                       |                         |                                       |
| -129             |                                 | · · · · · · · · · · · · · · · · · · · |                                       |                          | <u> </u>                              |                         | ┼─────                                |                         |                                       |
| Ce-135           | 3.74E-05                        | 174E-05                               | 3.74E-05                              |                          | <b></b>                               | <u> </u>                | ╎╧╍╍╍╍╍╍                              |                         | }                                     |
| 8+133            |                                 | 1                                     | A/46-VJ                               |                          |                                       |                         |                                       |                         | · · · · · · · · · · · · · · · · · · · |
| Sm-151           |                                 |                                       |                                       | ·                        | <u> </u>                              |                         |                                       |                         |                                       |
| Eu-152           |                                 |                                       |                                       |                          | 1                                     | 1                       | 1                                     |                         |                                       |
| Eu-154           |                                 |                                       |                                       |                          | 1                                     | 1                       |                                       |                         |                                       |
| Re-226<br>Re-228 |                                 |                                       |                                       |                          |                                       |                         | I                                     |                         |                                       |
| Ra-228           |                                 |                                       |                                       | ·                        | 1                                     |                         |                                       |                         |                                       |
| h-229<br>h-230   |                                 |                                       |                                       | [                        |                                       | <u> </u>                |                                       |                         | <u> </u>                              |
| Th-232           |                                 |                                       |                                       |                          | 1                                     |                         |                                       |                         | <u>├</u>                              |
| Pe-231           |                                 | 1                                     |                                       |                          | <u> </u>                              | <del> </del>            | <u></u> _                             |                         | · · · · · · · · · · · · · · · · · · · |
| J-232            |                                 | 1                                     |                                       |                          | 1                                     |                         | 1                                     |                         |                                       |
| 1233             |                                 |                                       |                                       |                          |                                       |                         | 1                                     |                         |                                       |
| J-234            | 4,96E-05                        | 4,95E-05<br>2,22E-06                  | 4,96E-05<br>2,22E-06                  | ·                        |                                       |                         |                                       |                         |                                       |
| J-235<br>J-236   | 2.22E-06                        | 2.226-06                              | Z 22E-06                              |                          | <u> </u>                              |                         | 1.61E-07                              |                         |                                       |
| 1-236<br>1-230   | 4.82E-05                        | 4.82E-05                              | 4.82E-05                              | 2.25E-04                 |                                       | 2.256-04                | 8.815-04                              |                         | · · · · · · · · · · · · · · · · · · · |
| Np-237           |                                 | 1.945-144                             |                                       |                          | t                                     |                         |                                       |                         | ·                                     |
| Pu 238           |                                 | 1                                     |                                       |                          |                                       |                         | · · · · · · · · · · · · · · · · · · · |                         | ·                                     |
| Pu-239           |                                 |                                       |                                       |                          |                                       |                         | 1                                     |                         |                                       |
| PU-240           |                                 |                                       |                                       |                          |                                       |                         |                                       |                         | I                                     |
| Py-241           |                                 |                                       |                                       |                          |                                       |                         |                                       |                         |                                       |
| Pu-242           |                                 |                                       |                                       |                          | <u> </u>                              | <u> </u>                |                                       |                         |                                       |
| 244              |                                 |                                       |                                       |                          | ł                                     |                         |                                       |                         |                                       |
| Vm-241           |                                 |                                       | h                                     |                          |                                       | <u> </u>                | <u> </u>                              |                         | <u> </u>                              |
| Cm-243           |                                 |                                       |                                       |                          |                                       | ·                       | 1                                     |                         | <u> </u>                              |
| Cm-244           |                                 |                                       | ·                                     |                          | · · · · · · · · · · · · · · · · · · · | <u> </u>                | 1                                     |                         |                                       |

Appendix D-2, Page 14

#### Appendix D-2, Page 18

|                      | • | • |   |
|----------------------|---|---|---|
| Annendiy D-2 Page 18 |   |   | • |

| lep Site Name:       | Idaho                                   | idaho                                 | Ideho                  | Ideho                                 | Lawrence Berkeley                         | Los Alemos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ILEHR                                   | Neveda Test Site                              | Oek Ridge         |
|----------------------|-----------------------------------------|---------------------------------------|------------------------|---------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------|
| ream Name;           | 2462 WAG 1 MLLW                         | 2471: WAG & MLLW ICDF                 | 3629: ER TSCA Laboacka | 4337: WAG 3 MLL WICOF                 | 1762 [Treated] Tritiated                  | 3910: MLLW - Deposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4117; Southwest Trench                  | 2868; Picetinny                               | 4400 DRS - K1420  |
|                      | TREATEDACOF                             |                                       | in Storage at WROC     |                                       | Weter on Get                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | poly buck disposal                      |                                               | : Liquids (WW-02) |
|                      | TREATED/ICDF                            | · ·                                   |                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hour many methoder                      |                                               | - Indone (uumos)  |
|                      |                                         |                                       |                        |                                       | 1 · · ·                                   | · • . • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                               |                   |
| •                    |                                         | [                                     |                        | -                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                               | 1                 |
|                      |                                         |                                       |                        |                                       | Le como como como como como como como com |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                               |                   |
| ource Ster           |                                         | idaho                                 | ktehg                  | lideho                                | Lawrence Berkeley                         | IBD - Off-Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LEHR                                    | Neveda Test Ste                               | Oak Ridge         |
|                      |                                         |                                       | 3                      | 23.412                                | 19.1                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.36                                    | 0.04                                          | 2                 |
| rofile Source;       | Composite of SOD profiles               | Reported in 6/26/00 SDD               | Rev. 1 p. D1-10-8      | Reported in 6/26/00 SDD               | Rev.1 p. D1-OK-2                          | Rev.1 B. D1-AL-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rev. 1 p. D2-OK-10                      | Reported after 6/26/00                        | Rev.1 p. D2-OR-3  |
|                      | for streams destined to                 |                                       |                        | 1                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1500                                          |                   |
|                      | ICDF                                    |                                       | · · · · ·              | 1 -                                   |                                           | 1 · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.                                      |                                               |                   |
|                      |                                         |                                       |                        |                                       | · ·                                       | 1 · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 .                                     |                                               |                   |
|                      |                                         |                                       |                        |                                       | A                                         | 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                               |                   |
|                      |                                         |                                       | 8.716-06               | T                                     | 8,51E+01                                  | 1.07E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.956-08                                | · · · · · · · · · · · · · · · · · · ·         |                   |
| -14                  |                                         |                                       | 9.( ) E-Y9             |                                       | 0.016001                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.425-00                                | · · · · · · · · · · · · · · · · · · ·         |                   |
|                      |                                         |                                       |                        | <u> </u>                              | 1.68E-04                                  | 1.495-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| 14am                 |                                         |                                       | 3,496-04               |                                       |                                           | 5,99E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| -28                  |                                         |                                       |                        |                                       |                                           | 1.21E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·   |                                               |                   |
| -36                  |                                         |                                       |                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                               |                   |
| 40                   |                                         |                                       | 3,535-04               |                                       |                                           | 4,72E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| 0-60                 |                                         |                                       | 8,76E-03               |                                       |                                           | 1.15E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| -59                  |                                         |                                       |                        |                                       | 1                                         | 3,495-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       |                                               | 1                 |
| -63                  |                                         |                                       | 6,666-06               | <u></u>                               | 1                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                       | · · · · · · · · · · · · · · · · · · ·         |                   |
| H63am                |                                         |                                       | XXXX                   |                                       | 1                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + · · · · · · · · · · · · · · · · · · · | 1                                             |                   |
| HOJAM                |                                         |                                       |                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                               |                   |
| -79                  | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | · · · · · · · · · · · · · · · · · · · |                        |                                       | ł                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                               |                   |
| -90                  | 1.98E-04                                |                                       | 2,435-04               | 8,85E-04                              |                                           | 3,75E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,925-04                                | <u> </u>                                      | 3746-05           |
| -93                  |                                         |                                       | l                      |                                       | t                                         | 192E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                               |                   |
| b-93m                |                                         |                                       |                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ·                                             |                   |
| p-94                 |                                         |                                       |                        |                                       |                                           | 5,63E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| -99                  |                                         |                                       | 1.665-06               |                                       | 1                                         | 1.64E-02<br>3.77E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                               |                   |
| d-113m               |                                         |                                       | 1.22E-05               |                                       | 1                                         | 377E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | <u>†                                     </u> |                   |
| n-121m               |                                         |                                       |                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       |                                               |                   |
|                      |                                         |                                       |                        |                                       | +                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                               |                   |
| n-128                |                                         |                                       |                        |                                       |                                           | 1.955-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| 129                  |                                         |                                       |                        |                                       |                                           | 1.925-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| ►135                 |                                         |                                       |                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <u> </u>                                      |                   |
| ► <u>137</u>         | 5.06E-03                                | 1.02E-05                              | 1,035-01               | 1.736-02                              | 3.346-03                                  | 1,136-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.70E-07                                | <u> </u>                                      | 3,746-05          |
| -133                 |                                         |                                       |                        |                                       |                                           | 7.56E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| m-151                |                                         |                                       | 1,325-04               |                                       |                                           | 4,08E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| 4-152                | 2.84E-04                                |                                       | 3,89E-06               |                                       |                                           | 9,31E-03<br>1,55E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 .                                     | 1                                             |                   |
| 0-154                | 2.21E-04                                |                                       | 5.50E-05               | 7.66E-05                              | 1                                         | 1.556-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       | 1                                             |                   |
| a-226                | 2,37E-00                                | 6,60E-07                              | 7,21E-08               |                                       | 5,89E-10                                  | 1.68E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,565-08                                | 1                                             |                   |
| +228                 |                                         |                                       |                        |                                       |                                           | 1.68E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
|                      |                                         |                                       |                        |                                       | 3.09E-10                                  | 1.100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | <u> </u>                                      |                   |
| n-229                |                                         |                                       | 0.100.04               |                                       | 3,02210                                   | A 105 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| n-230                |                                         |                                       | 3,486-08               |                                       |                                           | 2.49E-06<br>1.92E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                               |                   |
| ~232                 |                                         |                                       | 3,495-08               |                                       | 3,10E-05                                  | 1.92E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.256-00                                | ·                                             |                   |
| -231                 |                                         |                                       | ł                      | I                                     | 4.63E-11                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       |                                               | 1                 |
| 232                  |                                         | · · · ·                               | 7,055-11               | 1                                     | I                                         | 5,29E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| .233                 |                                         |                                       | 1.656-07               |                                       | 2,02E-06                                  | 3,736-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       |                                               |                   |
| 234<br>235<br>236    |                                         |                                       | 2.665-04               | · · · · · · · · · · · · · · · · · · · | 4.57E-10                                  | 3.46E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       | 6.63E-04                                      | 4,96E-05          |
| 225                  | · · · · · · · · · · · · · · · · · · ·   |                                       | 5,795-08               |                                       | 1,73E-09                                  | 1,13E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       | +                                             | 2,226-08          |
| 514                  |                                         |                                       |                        | i                                     | 1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t                                       | 1                                             |                   |
| x 30                 |                                         |                                       | 1.675-04               |                                       | 1.76E-07                                  | 5.67E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       | 7,186-03                                      | 4.82E-05          |
| 238                  |                                         |                                       |                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł                                       | (.)0E-03                                      | 4.042-00          |
| -231                 |                                         |                                       | 2.546-06               |                                       | 6.30E-07                                  | 6.726-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                               |                   |
| -238                 |                                         |                                       | L775-07                |                                       | 1.52E-05                                  | 2.585-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                       |                                               |                   |
| -238<br>-239<br>-240 | 3,365-07                                |                                       | / 7.036-07             |                                       | 1,196-05                                  | 2,58E-02<br>6,04E-02<br>6,34E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                       |                                               |                   |
| -240                 |                                         |                                       |                        | l                                     | 1                                         | 6,346-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 1                                             |                   |
| -241                 |                                         |                                       |                        |                                       |                                           | 9,41E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.256-04                                |                                               |                   |
| 242                  |                                         |                                       |                        |                                       | 1                                         | 3.07E-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 1.                                            |                   |
| +242<br>+244         |                                         |                                       |                        |                                       | <u> </u>                                  | here and her | I                                       | t                                             | +                 |
|                      | 2.66E-08                                |                                       | 5,135-08               | 1.19E-05                              | 2436-05                                   | 4.166-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>                                 | t                                             |                   |
| m-241                | T005-00                                 |                                       |                        | 1.196403                              | 1,46E-08                                  | 1,956-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                                       | ł                                             |                   |
| n-243                |                                         |                                       |                        |                                       | 1.465-08                                  | 1.905-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>!</b>                                | I                                             |                   |
| m-243                | L                                       |                                       |                        |                                       | <b></b>                                   | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1                                             | 1                 |
| m-244                |                                         |                                       | 2,435-08               |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                               | 1                 |

....

З

MLLW Alternative

### **MLLW** Alternative

| Rep Ste Name:            | Qak Ridge                | Portamouth                                 | Portamouth                                                                                                     | Portamouth                            | Rocky Flats             | Rocky Flata            | Savannah                                                                                                         | Savannah                               | Savannah                                                                                                       |
|--------------------------|--------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Stream Name:             | 4401; DRS - K1420 Debris | 1979: Incineratile Solute                  | 1983: Incineralite Solids                                                                                      | 478: TSCA Soft Solida                 | 3993; Deposed Sort to   | 4260; Desposal Sort to | 1908; Meets treatment                                                                                            | 1912 CIF Stablized                     | 1918: Macroencepeulated                                                                                        |
| Gu a mit feditie.        |                          | (to TBO)                                   | (to TBO)                                                                                                       |                                       | Cless C Disposal        | DOE LLM Deposal        | standard .                                                                                                       |                                        | Wasta                                                                                                          |
|                          | (MW-008)                 | [((1) [ 1) [ 1) [ 1) [ 1] [ 1] [ 1] [ 1] [ | (@ 100)                                                                                                        | 1                                     | Come o Debora           | DOE CON Deboen         |                                                                                                                  |                                        | THERE .                                                                                                        |
|                          | 1                        | 1                                          | 1                                                                                                              |                                       |                         |                        | •• •••                                                                                                           | Constituents                           |                                                                                                                |
|                          |                          |                                            | 1                                                                                                              |                                       | •                       |                        | 1 ·                                                                                                              | 1                                      |                                                                                                                |
|                          |                          |                                            |                                                                                                                |                                       |                         |                        |                                                                                                                  |                                        |                                                                                                                |
| Source Site              | Oak Ridge                | Portamouth                                 | Persenesen                                                                                                     | Portamouth                            | Redor Flata             | Recky Flata            | Savannah                                                                                                         | Savannah                               | Commercial - TBD                                                                                               |
| FY00+ Disg               | 93                       | 816                                        | 63                                                                                                             | 309                                   |                         |                        | 65                                                                                                               | 2.101                                  | 013                                                                                                            |
| Profile Source:          | Rev. 1 p. D2-OR-3        | Rev.1 p. D2-OR-7                           | Rev. 1 p. D2-OR-7                                                                                              | Rev.1 p. D2-OR-7                      | Assume 50 % of Class C  | Rev.1 & D2-RF-5        | Reported after 6/26/00                                                                                           | Reported in \$/25/00 SOO               | Reported after 6/26/00                                                                                         |
|                          |                          | 1                                          | 1                                                                                                              |                                       | max concentrations from |                        | 500                                                                                                              | 4                                      | SDD                                                                                                            |
|                          |                          | · ·                                        | <b>i</b> .                                                                                                     | 1                                     | 10CFR61.55 onty puct    | 1 :                    | [                                                                                                                | -                                      | -                                                                                                              |
|                          |                          | L                                          |                                                                                                                | 1                                     | them Plant 1 profiles   | L                      |                                                                                                                  |                                        |                                                                                                                |
|                          |                          |                                            |                                                                                                                |                                       |                         |                        |                                                                                                                  |                                        |                                                                                                                |
| H-3<br>G-14              | 1                        |                                            | 1                                                                                                              | 1                                     | 1                       | 1.71E-03               | 1.18E+01                                                                                                         | 1,90E+00                               | 1,18E+01                                                                                                       |
| C-14                     |                          |                                            | 1                                                                                                              |                                       |                         |                        | B.82E-08                                                                                                         |                                        | 8.82E-08                                                                                                       |
| C-14am                   |                          | 1                                          |                                                                                                                |                                       |                         |                        |                                                                                                                  |                                        |                                                                                                                |
|                          |                          |                                            | ·                                                                                                              | <u> </u>                              |                         |                        |                                                                                                                  |                                        | }                                                                                                              |
| AL-26<br>CL-36           |                          |                                            | ·                                                                                                              | · /                                   |                         |                        | 4 445 00                                                                                                         |                                        | 4,46E-09                                                                                                       |
| CL-36                    |                          |                                            |                                                                                                                |                                       |                         |                        | 4.46E-09                                                                                                         |                                        |                                                                                                                |
| K-40<br>Co-60            |                          |                                            | +                                                                                                              |                                       |                         |                        | 6,64E-09                                                                                                         |                                        | 6,64E-09                                                                                                       |
| Co-60                    |                          |                                            |                                                                                                                | <u>+</u>                              |                         |                        | 1.595-04                                                                                                         |                                        | 3,696-04                                                                                                       |
| NI-59                    | 1                        |                                            |                                                                                                                |                                       |                         | 1                      | 1,58E-08<br>2,22E-04                                                                                             | ······································ | 3,585-06                                                                                                       |
| NH63                     |                          |                                            |                                                                                                                | · · · · · · · · · · · · · · · · · · · |                         | 1                      | 2.22E-04                                                                                                         |                                        | 2.22E-04                                                                                                       |
| NL-63am                  |                          |                                            |                                                                                                                |                                       |                         |                        |                                                                                                                  |                                        |                                                                                                                |
| 8-79                     |                          |                                            |                                                                                                                | 1                                     |                         |                        | 1,75E-06                                                                                                         |                                        | 1,75E-06                                                                                                       |
| Sr.90<br>Zi-93           | 3,74E-05                 | 1                                          |                                                                                                                |                                       | 3.50E+03                | 2,306-10               | 1,755-08                                                                                                         |                                        | 2 45E-03                                                                                                       |
| 76.93                    |                          | 1                                          | 1                                                                                                              |                                       |                         | 1                      | 3,49E-10                                                                                                         | 1                                      | 3.49E-10                                                                                                       |
| Np-93m                   |                          |                                            |                                                                                                                |                                       |                         |                        | 5.89E-08                                                                                                         |                                        | 5.69E-08                                                                                                       |
| ND-94                    |                          | <u>}</u>                                   |                                                                                                                | 1                                     |                         |                        | 1.97E-13                                                                                                         |                                        | 1.97E-13                                                                                                       |
| 10-99                    |                          | 4.986-05                                   | 4.986-05                                                                                                       | 4.98E-05                              |                         |                        | 2.05E-06                                                                                                         |                                        | 2.05E-08                                                                                                       |
| 10.07                    |                          |                                            |                                                                                                                |                                       |                         | +                      |                                                                                                                  |                                        |                                                                                                                |
| Cd-113m                  |                          |                                            |                                                                                                                | ·                                     |                         |                        |                                                                                                                  |                                        |                                                                                                                |
| Sn-121m                  |                          | ·                                          |                                                                                                                |                                       |                         | ·                      |                                                                                                                  |                                        |                                                                                                                |
| Sn-126                   |                          | <u> </u>                                   |                                                                                                                |                                       |                         |                        | 1.81E-08                                                                                                         |                                        | 1,81E-08                                                                                                       |
| L129                     |                          |                                            |                                                                                                                | +                                     |                         |                        | 1.026-08                                                                                                         |                                        | 1,02E-08                                                                                                       |
| Ca-135<br>Ca-137         |                          | L                                          |                                                                                                                |                                       |                         |                        | 2,915-14                                                                                                         |                                        | 2.01E-14                                                                                                       |
| Cs-137                   | 3.746-05                 | l                                          |                                                                                                                |                                       | 230E+03                 | 8.26E-08               | 265E-03                                                                                                          |                                        | 2,65E-03                                                                                                       |
| Be-133                   | -r                       |                                            |                                                                                                                |                                       |                         |                        | 1.53E-10                                                                                                         |                                        | 1.53E-10                                                                                                       |
| 3m-151                   |                          |                                            |                                                                                                                |                                       |                         | 1                      | 3,97E-09                                                                                                         |                                        | 3,07E-09                                                                                                       |
| Eu-152                   |                          |                                            |                                                                                                                |                                       |                         |                        | 1.61E-04                                                                                                         |                                        | 1.61E-04                                                                                                       |
| Eu-154                   |                          |                                            |                                                                                                                | 1                                     |                         |                        | 1.176-04                                                                                                         |                                        | 1.17E-04                                                                                                       |
| Ra 220                   |                          |                                            |                                                                                                                |                                       |                         | 2.99E-09               | 8.50E-09<br>2.49E-07                                                                                             |                                        | 0.50E-00                                                                                                       |
| R - 228                  |                          |                                            |                                                                                                                |                                       |                         |                        | 2 496-07                                                                                                         |                                        | 2.496-07                                                                                                       |
| Th-229                   |                          |                                            | · /                                                                                                            |                                       |                         | 1                      |                                                                                                                  |                                        |                                                                                                                |
| Th-230                   |                          |                                            |                                                                                                                |                                       |                         |                        | 1.605-07                                                                                                         |                                        | 1.606-07                                                                                                       |
| 10-230                   |                          | ·                                          | +                                                                                                              |                                       |                         |                        | 1.865-07                                                                                                         |                                        | 1.005-07                                                                                                       |
| Th-232                   |                          |                                            | +                                                                                                              |                                       |                         |                        |                                                                                                                  |                                        | vvc/                                                                                                           |
| P=-231                   |                          |                                            |                                                                                                                |                                       |                         | -{                     |                                                                                                                  |                                        |                                                                                                                |
| 0-232                    |                          |                                            |                                                                                                                |                                       |                         |                        | 4.50E-07<br>2,08E-05                                                                                             | -{                                     | 4,50E-07                                                                                                       |
| P=-231<br>U-232<br>U-233 |                          | I                                          |                                                                                                                |                                       |                         | 1,53E-00               | 2,08E-05                                                                                                         |                                        | 2.085-05                                                                                                       |
| U-234<br>U-235           | 4,966-05                 |                                            | 1                                                                                                              |                                       |                         | 7.70E-05               | 2.00E-04                                                                                                         | -1                                     | 2.00E-04                                                                                                       |
| U-235                    | 2.226-06                 | 1.61E-07                                   | 1.616-07                                                                                                       | 1.61E-07                              | _1                      | 3.71E-00               | 6.936-08                                                                                                         |                                        | 6_P3E-00                                                                                                       |
| U-236                    |                          |                                            |                                                                                                                |                                       |                         |                        | 1,426-00                                                                                                         |                                        | 1.425-00                                                                                                       |
| U-236<br>U-238           | 4,825-05                 | 6.81E-Q4                                   | 6,816-04                                                                                                       | 6.01E-04                              |                         | 6.48E-05_              | 3,025-04                                                                                                         |                                        | 3.02E-04                                                                                                       |
| Np-237                   |                          | · · · · · · · · · · · · · · · · · · ·      | 1                                                                                                              | 1                                     | 1                       | 1                      | 7.71E-07                                                                                                         |                                        | 3.02E-04<br>7.71E-07                                                                                           |
| 0                        |                          |                                            |                                                                                                                | 1                                     |                         | 1                      | 1,59E-04                                                                                                         | 1                                      | 1.596-04                                                                                                       |
| Pu-238<br>Pu-239         |                          | t                                          | 1                                                                                                              | 1                                     | 5.00E+01                | 4.405-03               | 8 95E-05                                                                                                         |                                        | 0,956-05                                                                                                       |
| 1-0-638                  |                          |                                            | · /                                                                                                            |                                       |                         | 4.40E-03<br>1.13E-05   | 6.95E-05<br>2.02E-05                                                                                             |                                        | 2.026-05                                                                                                       |
| Pu-240<br>Pu-241         |                          | {                                          |                                                                                                                | +                                     | 1.75E+03                | 1,135-03               | 495.04                                                                                                           |                                        |                                                                                                                |
| Py-241                   |                          | f                                          | ·   ··································                                                                         |                                       |                         | -{                     | 1495-04                                                                                                          |                                        | 8,495-04                                                                                                       |
| Pu-242                   |                          | ·                                          | <u> </u>                                                                                                       | · }                                   |                         | +                      | 3,236-07                                                                                                         |                                        | 3.236-07                                                                                                       |
| Pu-244                   |                          | 1                                          | .I                                                                                                             |                                       |                         |                        | 8,59E-20                                                                                                         |                                        | 8.595-20                                                                                                       |
| Am-241                   |                          |                                            |                                                                                                                |                                       |                         | 1.05E-03               | 2436-09                                                                                                          |                                        | 2,436-05                                                                                                       |
| Am-243                   |                          |                                            |                                                                                                                | 1                                     |                         |                        | 14E-06                                                                                                           | 1                                      | 3,145-08                                                                                                       |
| Cm-243                   |                          |                                            | 1                                                                                                              | 1                                     |                         |                        | 5,67E-10                                                                                                         |                                        | 5,67E-10                                                                                                       |
| Cm-244                   |                          | 1                                          | 1                                                                                                              | · · · · · · · · · · · · · · · · · · · |                         |                        | 1,00E-08                                                                                                         |                                        | 3,005-05                                                                                                       |
|                          |                          |                                            | the second s |                                       |                         |                        | and the second |                                        | the second s |

. •

Nevada Test Site, Nevada Test Site Waste Acceptance Criteria, DOE/NV-325, Revision 2

Oak Ridge National Laboratory, Performance Assessment for Continuing and Future Operations at Solid Waste Storage Area 6, DOE/OR/01-1913/V1

Oak Ridge National Laboratory (ORNL), Composite Analysis for Solid Waste Storage Area 6, Lockheed Martin Energy Research Corp, ORNL-6929, 1997.

Parsons, *Technical Site Information: Fernald Environmental Management Project*, Rev. 0, Prepared by Parsons for Fernald Environmental Restoration Management Corporation, Fairfield, OH, September 1993.

Price, L.L., and F.A. Durán, *Characteristics of Special-Case Wastes Potentially Destined for Disposal at the Nevada Test Site*, SAND94-2106, Sandia National Laboratory, Albuquerque, NM, 1994.

U.S. Department of Energy, Analysis of the Technical Capabilities of DOE Sites for Disposal of Residuals from the Treatment of Mixed Low-Level Waste. SAND97-1098. Albuquerque, NM: Sandia National Laboratories for the U.S. Department of Energy, Office of Waste Management, Federal Facility Compliance Act Disposal Workgroup, 1997.

Savannah River Site, Radiological Performance Assessment for the E-Area Vaults Disposal Facility, WSRC-RP-94-218, Revision 1

Savannah River Site, E-Area Vaults Low-Level Radioactive Solid Waste Acceptance Criteria, WSRC 1S, Procedure 3.10, Revision 2

Savannah River Site, SRS Radioactive Soil and Rubble Management Program and Waste Acceptance Criteria, WSRC 1S, Procedure 3.15, Revision 1

Savannah River Site, SRS Waste Acceptance Criteria Manual, Low-Level Radioactive Waste Acceptance Criteria, WSRP Procedure WAC 3.17, Revision 3

U.S. Department of Energy, *Performance Assessment for Continuing and Future Operations at Solid Waste Storage Area 6*, ORNL-6783/R1, Oak Ridge National Laboratory for the U.S. Department of Energy, Oak Ridge, TN, September 1997.

U.S. Department of Energy, *The Current and Planned Low-Level Waste Disposal Capacity Report*, Revision 0, July 30, 1996.

U.S. Department of Energy, *The Current and Planned Low-Level Waste Disposal Capacity Report*, Revision 1, September 18, 1998.

U.S. Department of Energy, Framework For DOE Low-Level and Mixed Low-Level Waste Disposal: Current Overview, DOE/ID-10484, June 1994.