<u>Agenda</u> <u>Public Meeting</u> <u>September 30, 2005</u> <u>GSI-191 Chemical Effects</u>

.

TOPIC - PUBLIC MEETING	PRESENTER	<u>TIME</u>
Meeting Opening/Introductions	Hopkins/All	9:00 am
Opening Remarks - Meeting Objective	NRC - Sheron/Martin/Mayfield	9:10 am
Information Notice 2005-26, Chemical Effects Head Loss Data	NRC - Klein/Tregoning	9:30 am
Break		10:15 am
Industry Activity, IN 2005-26	Industry	10:30 am
Lunch		11:50 am
Industry Activities in Chemical Effects	Industry	1:00 pm
NRC Address Public Comments		2:00 pm
Closing Comments	NRC	2:30 pm
Adjourn Public Meeting		

.

•

~

Outstanding Issues

TSP plants without CalSil interactions need to assess plant specific materials to determine whether other sources of calcium (e.g., insulation, concrete) could react with TSP to form sufficient concentrations of calcium phosphate that would be of concern to the staff.

H

IC Object develo	ET: Test Description tive: Determine and characteriz p in representative post-LOCA PV 00-day tests conducted; each	n e chemical reaction produ VR containment sump/spr intended to simulate a	icts that may ay environment a subset of
 Tests 	Intended to be representative of i	important sump pool varia	bles
Primai Test Number	y Variables: pH (buffering agent Buffering Agent) and Insulation materials Insulation Material	Completion Date
Primai Test Number 1	y Variables: pH (buffering agent Buffering Agent Sodium Hydroxide: pH ≈ 10) and Insulation materials Insulation Material 100% Fibrous (NUKON)	Completion Date 12/20/04
Primai Test Number 1 2	y Variables: pH (buffering agent Buffering Agent Sodium Hydroxide: pH ≈ 10 Tri-sodium Phosphate: pH ≈ 7) and Insulation materials Insulation Material 100% Fibrous (NUKON) 100% Fibrous (NUKON)	Completion Date 12/20/04 3/7/05
Primai Test Number 1 2 3	y Variables: pH (buffering agent Buffering Agent Sodium Hydroxide: pH ≈ 10 Tri-sodium Phosphate: pH ≈ 7 Tri-sodium Phosphate: pH ≈ 7) and Insulation materials Insulation Material 100% Fibrous (NUKON) 100% Fibrous (NUKON) 80% Particulate (CalSil) 20% Fibrous (NUKON)	Completion Date 12/20/04 3/7/05 5/5/05
Primai Test Number 1 2 3 4	y Variables: pH (buffering agent Buffering Agent Sodium Hydroxide: pH ≈ 10 Tri-sodium Phosphate: pH ≈ 7 Tri-sodium Phosphate: pH ≈ 7 Sodium Hydroxide: pH ≈ 10) and Insulation materials Insulation Material 100% Fibrous (NUKON) 100% Fibrous (NUKON) 80% Particulate (CalSil) 20% Fibrous (NUKON) 80% Particulate (CalSil) 20% Fibrous (NUKON)	Completion Date 12/20/04 3/7/05 5/5/05 6/23/05

GL 2004-02 Actions and Longer-term Considerations

- GL 2004-02
 - Removal of Cal-Sil
 - Larger screens/Active strainers
 - Reduction in approach velocities
- Longer-term
 - pH buffer replacement research and implementation

\emptyset		
Effect of Pool pH on C	a concentrati	on
• For a Cal-Sil debris quantity	• of 6 g/l at t=~4 h	rs
pH	Conc (ppm)]
4.0	196	
4.5	156	-
7.0	88	-
10.1		-
* "Nominal" v	 alue = 4.1	

O Succession of the second sec

Effect of Cal-Sil Availability on Ca concentration

• For a pH of 7.0 at t=~4 hrs

Cal-Sil (g/l)	Conc (ppm)
2.0	45
6.0	88
25.00	69
* "Nominal" val	ue = 25

Effect of Cal-Sil Availability on Ca concentration

• For a pH of 7.0 with 2 g/l of Cal-Sil

Time	Conc (ppm)
4 hrs	45
24-hrs	73
* Nominally at s	teady-sate

Ø	504e 7
Comparison of Conditions	Plant Conditions to Argonne Test
 "Early" Pool pH RCS -~7.0 RWST -~4.6 Accumulator-~4.6 Mix -~5+ Cal-Sil Quantity 	
 Argonne Typical Maximum Cal-Sil Debris 	- 25g/l based on 4000 cu-ft debris - 10-120 cu-ft debris based on Debris Gen Analysis - at ~150 cu-ft, this translates to ~1 g/l
ArgonneTypical	- 100% fines - ~50% fines (based on Canadian data)
 Time at Low pH Typical 	- TSP dissolution starts very quickly - Significant dissolution at recirc mode switchover - Earlier dissolution/mixing dependent on TSP location

Other Consideration Timing of Debris Deposition Relative to Calcium Phosphate Formation Argonne tests: Ca Phosphate forms subsequent to debris bed formation and deposits on the surface of bed Typical: Ca Phosphate forms concurrent with debris bed formation and deposits within the bed Based on Analogy with other debris combinations (Cal-Sil plus fiber) Dispersed particulate has significantly lower head loss impact than "layered" bed

5

1İ

igodom

Conclusion

- Industry Recognizes the Significance of Calcium
 Phosphate Head Loss Impact
- Results from Argonne Represent an Extremely
 Conservative Bound on Impact
- Engineering Assessment of Conditions Suggests the
- Impact Magnitude to be Significantly Less than Argonne Result
- Argonne Testing Has Provided Key Insights to Defining a Success Path for Resolution

Approach	to Resolution of Chemical Effects n Head Loss Uncertainty
	NRC/Industry Meeting on GSI-191
	September 30, 2005
Ø	
ALION SCIEVE AND TECHNOLOGY	

Tī

1

\mathbf{Q}

Generic Chemical Effects Algorithm - Approach

- 1) Replicate Basic Reaction Products
- Obtain baseline data on head loss for ICET material
- Obtain reference data on head loss for same debris
 w/o chemical reaction products
- Replicate ICET materials based on "known" chemistry
- Obtain head loss data for appropriate quantity of replicated material
- Compare head loss data to "validate" determination of "known" chemistry
- Quantify Effect of reaction products

Generic Chemical Effects Algorithm - Approach

2) Incorporate Effect of Supplemental Testing (If Generic)

- Repeat head loss testing on replicated material with addition of supplemental reaction products
- Quantify effect of supplemental reaction products
- 3) Develop Standard Chemical Reaction Product Mixture
- Constituents
- Quantities

