Maria Korsnick Site Vice President R.E. Ginna Nuclear Power Plant, LLC 1503 Lake Road Ontario, New York 14519-9364 585.771.3494 585.771.3943 Fax maria.korsnick@constellation.com

September 26, 2005

U. S. Nuclear Regulatory Commission Washington, DC 20555

Generation Group

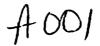
ATTENTION: Document Control Desk

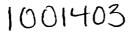
SUBJECT: R.E. Ginna Nuclear Power Plant Docket No. 50-244

Constellation Energy[•]

Transmittal of Core Operating Limits Report (COLR)

In accordance with the R.E. Ginna Nuclear Power Plant Improved Technical Specification 5.6.5, which requires the submittal of revisions to the COLR, the attached report is hereby submitted. Should there be any questions, please contact George Wrobel at (585) 771-3535 or george.wrobel@constellation.com.


Very truly yours,


nick

Mary G. Korsnick

Enclosure

cc: S. J. Collins, NRC P. D. Milano, NRC Resident Inspector, NRC

R.E. Ginna Nuclear Power Plant

Core Operating Limits Report COLR

Cycle 32

Revision 1

4

Responsible Manager Géorge Wrobel

· _ _

Effective Date:

9-21-2005 9/21/2005

Controlled Copy No.

Record Cat.# 4.43.2

R.E. Ginna Nuclear Power Plant

COLR-1

Revision 1

COLR Cycle 32

1.0 CORE OPERATING LIMITS REPORT

This Core Operating Limits Report (COLR) for the R.E. Ginna Nuclear Power Plant has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The Technical Specifications affected by this report are listed below:

2.1 Safety Limits (SLs)

l

I

- 3.1.1 SHUTDOWN MARGIN (SDM)
- 3.1.3 MODERATOR TEMPERATURE COEFFICIENT (MTC)
- 3.1.5 Shutdown Bank Insertion Limit
- 3.1.6 Control Bank Insertion Limits
- 3.2.1 Heat Flux Hot Channel Factor (F_Q(Z))
- 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (F^N_{AH})
- 3.2.3 AXIAL FLUX DIFFERENCE (AFD)
- 3.3.1 Reator Trip System (RTS)
 - 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits
 - 3.9.1 Boron Concentration

2.0 OPERATING LIMITS

The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Technical Specification 5.6.5. All items that appear in capitalized type are defined in Technical Specification 1.1, Definitions.

2.1 SAFETY LIMITS (SLs)¹

(2.1)

Į

2.1.1 In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) average temperature, and pressurizer pressure shall not exceed the SLs specified in Figure COLR - 1.

2.2 SHUTDOWN MARGIN¹

(LCO 3.1.1)

- 2.2.1 The SHUTDOWN MARGIN in MODE 2 with K_{eff} < 1.0 and MODES 3 and 4 shall be greater than or equal to the limits specified in Figure COLR 2 for the number of reactor coolant pumps in operation (non main feedwater operation).
- 2.2.2 The SHUTDOWN MARGIN in MODE 4 when both reactor coolant pumps are not OPERABLE and in operation and in MODE 5 shall be greater than or equal to the one loop operation curve of Figure COLR - 2.
- 2.2.3 The SHUTDOWN MARGIN required in LCO 3.1.4, LCO 3.1.5, LCO 3.1.6, LCO 3.1.8, and LCO 3.4.5 shall be greater than the limits specified in Figure COLR 2 for the number of reactor coolant pumps in operation and the status of the main feedwater system.

2.3 MODERATOR TEMPERATURE COEFFICIENT¹

(LCO 3.1.3)

2.3.1 The Moderator Temperature Coefficient (MTC) limits are:

The BOL ARO/HZP - MTC shall be less positive than +5.0 pcm/°F for power levels below 70% RTP and less than or equal to 0 pcm/°F for power levels at or above 70% RTP.

The EOL ARO/RTP - MTC shall be less negative than -42.9 pcm/°F.

where:

ARO stands for All Rods Out

BOL stands for Beginning of Cycle Life

EOL stands for End of Cycle Life

HZP stands for Hot Zero Power

RTP stands for RATED THERMAL POWER

2.4 Shutdown Bank Insertion Limit¹

ł

ł

(LCO 3.1.5)

- 2.4.1 The shutdown bank shall be fully withdrawn which is defined as \geq 221 steps.
- 2.5 Control Bank Insertion Limits¹

(LCO 3.1.6)

- 2.5.1 The control banks shall be limited in physical insertion as shown in Figure COLR 3.
- 2.5.2 The control banks shall be moved sequentially with a 100 (\pm 5) step overlap between successive banks.
-] 2.6 Heat Flux Hot Channel Factor $(F_Q(Z))^2$

(LCO 3.2.1)

2.6.1 $F_Q(Z) \le ((F_Q) * K(Z) / P)$ when P > 0.5

 $F_Q(Z) \le ((F_Q) * K(Z) / 0.5)$ when $P \le 0.5$

where:

Z is the height in the core,

F_Q = 2.45,

- K(Z) is provided in Figure COLR 4, and
 - P = THERMAL POWER / RATED THERMAL POWER

.. .

J 2.7 Nuclear Enthalpy Rise Hot Channel Factor $(F^{N}_{\Delta H})^{1}$

(LCO 3.2.2)

where:

I

I

F^{RTP}ΔH⁼ 1.75,

 $PF_{\Delta H} = 0.3$, and

P = THERMAL POWER / RATED THERMAL POWER

2.8 AXIAL FLUX DIFFERENCE³

(LCO 3.2.3)

- 2.8.1 The AXIAL FLUX DIFFERENCE (AFD) target band is \pm 5%. The actual target bands are provided by Procedure RE-11.1.
- 2.8.2 The AFD acceptable operation limits are provided in Figure COLR 5.

2.9 Reactor Trip System (RTS) Setpoints⁵

(LCO 3.3.1)

·.

2.9.1 Overtemperature ΔT Setpoint Parameter Values

•

Parameter_		Value
Overtemperature ΔT reactor trip setpoint		K ₁ ≤ 1.20
Overtemperature ∆T reactor trip depressurization setpoint penalty coefficier		K ₂ ≥ 0.000900/psi nt
Overtemperature ΔT reactor trip heatup setpoint coefficient		$K_3 \ge 0.0209/°F$ penalty
Measured lead time constant		$\tau_1 \ge 25$ seconds
Measured lag time constant		$\tau_2 \leq 5$ seconds
f(∆I) constants	f(∆I) = 0	when $q_t - q_b$ is $\leq + 13\%$ RTP
	f(ΔI) = 1.3 {(q _t - q _b) - 13	} when q _t - q _b is > + 13% RTP
Overpower ∆T S	Setpoint Parameter Values	
Parameter		Value
Overpower ∆T r	eactor trip setpoint	K ₄ ≤ 1.077
-	• • •	K ₅ = 0/°F for T < T′ ≥ 0.0011/°F for T ≥ T′
•		$f_6 \ge 0.0262/^{\circ}$ F for increasing T = 0.00/°F for decreasing T
Measured impulse/lag time constant		$\tau_3 \le 10$ seconds
f(∆I) constants	$f(\Delta I) = 0$	when $q_t - q_b$ is $\leq + 13\%$ RTP
	f(ΔI) = 1.3 {(q _t - q _b) - 13}	when q _t - q _b is > + 13% RTP
Pressure, Tempe 4	rature, and Flow Departu	re from Nucleate Boiling (DNB)
	Overtemperatur Overtemperatur depressurization Overtemperatur setpoint coefficie Measured lead to Measured lag tin $f(\Delta I)$ constants Overpower ΔT s <u>Parameter</u> Overpower ΔT r Overpower ΔT r penalty coefficie Overpower ΔT r time delay setpo Measured imput $f(\Delta I)$ constants	Overtemperature ΔT reactor trip setpoint Overtemperature ΔT reactor trip depressurization setpoint penalty coefficie Overtemperature ΔT reactor trip heatup setpoint coefficient Measured lead time constant Measured lag time constant f(ΔI) constants f(ΔI) = 0 f(ΔI) = 1.3 {($q_t - q_b$) - 13 Overpower ΔT Setpoint Parameter Values <u>Parameter</u> . Overpower ΔT reactor trip setpoint Overpower ΔT reactor trip heatup setpoint penalty coefficient Overpower ΔT reactor trip heatup setpoint penalty coefficient Overpower ΔT reactor trip thermal time delay setpoint penalty Measured impulse/lag time constant f(ΔI) constants f(ΔI) = 0 f(ΔI) = 1.3 {($q_t - q_b$) - 13} Pressure, Temperature, and Flow Departure

2.10

I

- 2.10.2 The RCS average temperature shall be \leq 577.5 °F.
- 2.10.3 The RCS total flow rate shall be ≥ 177,300 gpm (includes 4% minimum flow uncertainty per Revised Thermal Design Methodology).

2.11 Boron Concentration¹

ł

I

ł

(LCO 3.9.1)

2.11.1 The boron concentrations of the hydraulically coupled Reactor Coolant System, the refueling canal, and the refueling cavity shall be \geq 2300 ppm.

3.0 REFERENCES

- 1. WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Methodology, July 1985.
- 2. WCAP-10054-P-A and WCAP-10081-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.
- 3. WCAP-10924-P-A, Volume 1, Revision 1, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 1: Model Description and Validation Responses to NRC Questions," and Addenda 1,2,3, December 1988.
- 4. WCAP-10924-P-A, Volume 2, Revision 2, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 2: Application to Two-Loop PWRs Equipped with Upper Plenum Injection," and Addendum 1, December 1988.
- 5. WCAP-10924-P-A, Volume 1, Revision 1, Addendum 4, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 1: Model Description and Validation, Addendum 4: Model Revisions," March 1991.
- WCAP-13677-P-A, "10 CFR 50.46 Evaluation Model Report: WCOBRA/TRAC Two-Loop Upper Plenum Injection Model Updates to Support ZIRLOTM Cladding Option," February 1994.
- 7. WCAP-12610-P-A, "VANTAGE + Fuel Assembly Reference Core Report," April 1995.
- 8. WCAP-8385, "Power Distribution Control and Load Following Procedures Topical Report,", September 1974.
- 9. WCAP-11397-P-A, "Revised Thermal Design Procedure", April 1989.

۰.

10. WCAP-8745, "Design Basis for the Thermal Overpower Delta T and Thermal Overtemperature Delta T Trip Functions", March 1977.

and the second

R.E. Ginna Nuclear Power Plant

COLR-7

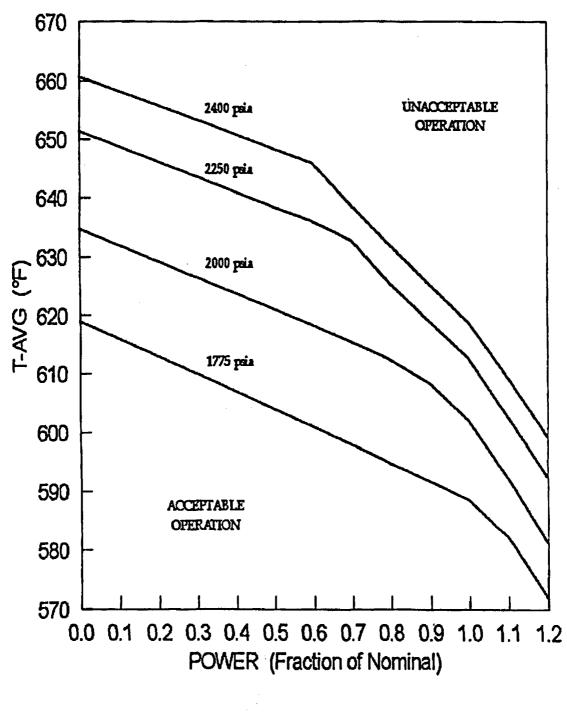
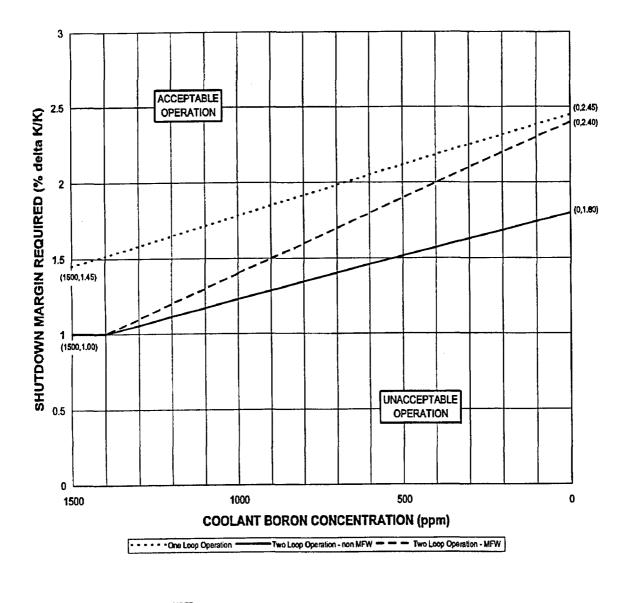
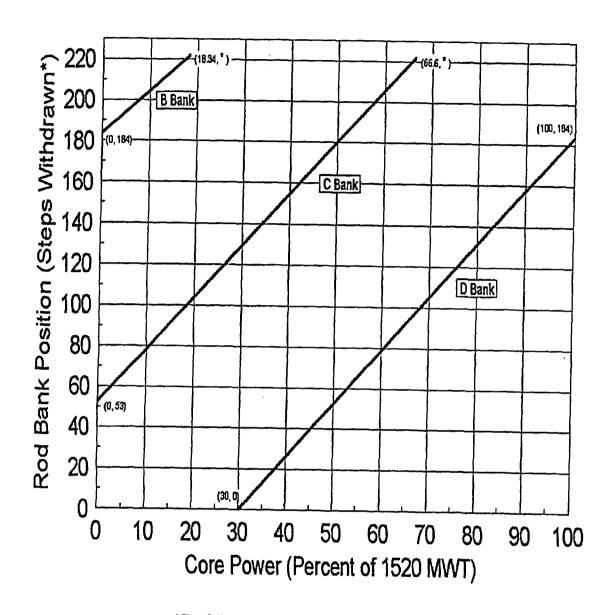



Figure COLR - 1 Reactor Safety Limits

COLR-8


NOTE:

.

Two Loop Operation - non MFW means that the main feedwater system is not supplying the steam generators.

Two Loop Operation - $\ensuremath{\mathsf{MFW}}$ means that the main feedwater system is supplying the steam generators.

Figure COLR - 2 REQUIRED SHUTDOWN MARGIN

*The fully withdrawn position is defined as \geq 221 steps.

Figure COLR - 3 CONTROL BANK INSERTION LIMITS

COLR-10

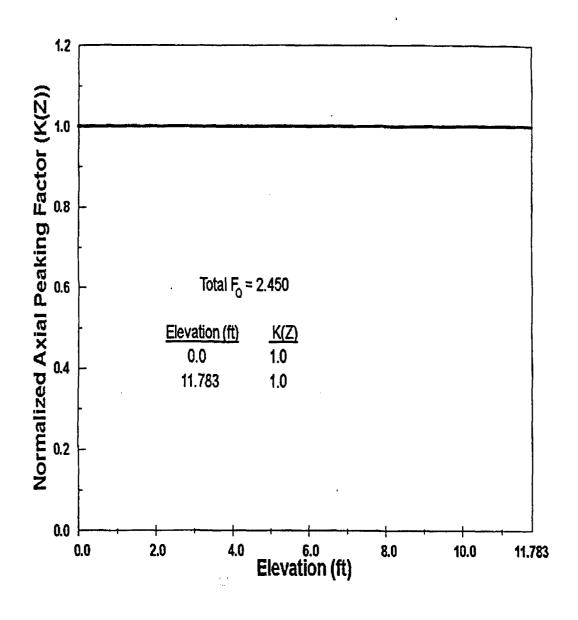
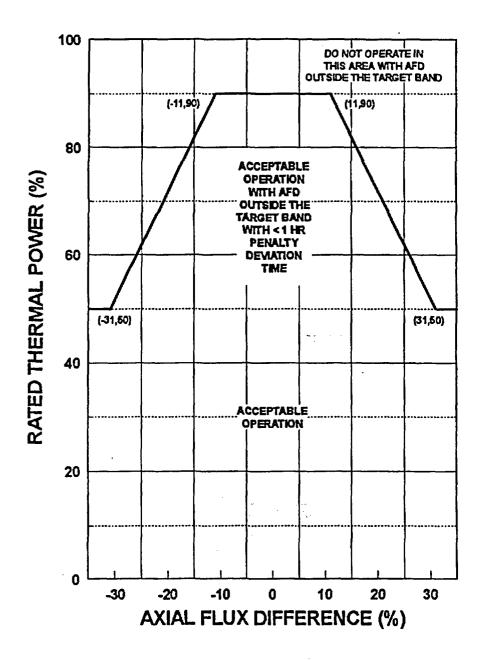
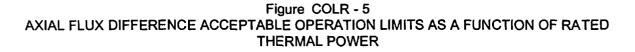




FIGURE 3

Figure COLR - 4 K(Z) - NORMALIZED $F_Q(Z)$ AS A FUNCTION OF CORE HEIGHT

. . .

٠

COLR-12

÷,

Revision 1

END NOTES

•

I

- 1. (Limits generated using Reference 1)
- 2. (Limits generated using References 1 through 7)
- 3. (Limits generated using References 1 and 8)
- 4. (Limits generated using Reference 9)
- 5. (Limits generated using Reference 10)