2.1 SLs

2.1.1 Reactor Core SLs

- 2.1.1.1 In MODES 1 and 2, the maximum local fuel pin centerline temperature shall be \leq 5080 - (6.5 x 10⁻³ x (Burnup, MWD/MTU)°F) for TACO2 applications and \leq 4642 - (5.8 x 10⁻³ x (Burnup, MWD/MTU)°F) for TACO 3 applications.
- 2.1.1.2 In MODES 1 and 2, the departure from nucleate boiling ratio shall be maintained greater than the limits of 1.3 for the BAW-2 correlation, 1.18 for the BWC correlation, and 1.132 for the BHTP correlation.
- 2.1.1.3 In MODES 1 and 2, Reactor Coolant System (RCS) core outlet temperature and pressure shall be maintained above and to the left of the Variable Low RCS Pressure-Temperature Protective Limits as specified in the Core Operating Limits Report, so that the safety limits are met.

2.1.2 RCS Pressure SL

In MODES 1, 2, 3, 4, and 5, the RCS pressure shall be maintained \leq 2750 psig.

2.2 SL Violations

With any SL violation, the following actions shall be completed:

- 2.2.1 In MODE 1 or 2, if SL 2.1.1.1 or SL 2.1.1.2 is violated, be in MODE 3 within 1 hour.
- 2.2.2 In MODE 1 or 2, if SL 2.1.1.3 is violated, restore RCS pressure and temperature within limits <u>AND</u> be in MODE 3 within 1 hour.
- 2.2.3 In MODE 1 or 2, if SL 2.1.2 is violated, restore compliance within limits <u>AND</u> be in MODE 3 within 1 hour.
- 2.2.4 In MODES 3, 4, and 5, if SL 2.1.2 is violated, restore RCS pressure to \leq 2750 psig within 5 minutes.
- 2.2.5 Within 1 hour, notify the NRC Operations Center, in accordance with 10 CFR 50.72.

4.0 DESIGN FEATURES

4.2 Reactor Core

4.2.1 Fuel Assemblies

The reactor shall contain 177 fuel assemblies. Each assembly shall consist of a matrix of Zircaloy or M5 clad fuel rods with an initial composition of natural or slightly enriched uranium dioxide (UO_2) as fuel material. Limited substitutions of stainless steel filler rods for fuel rods, in accordance with approved applications of fuel rod configurations, may be used. Fuel assemblies shall be limited to those fuel designs that have been analyzed with applicable NRC staff approved codes and methods, and shown by tests or analyses to comply with all fuel safety design bases. A limited number of lead test assemblies that have not completed representative testing may be placed in nonlimiting core regions.

4.2.2 Control Assemblies

The reactor core shall contain 60 safety and regulating CONTROL ROD assemblies and 8 APSR assemblies. The CONTROL ROD assembly control material shall be a silver-indium-cadmium alloy and the APSR assembly control material shall be an Inconel alloy, as approved by the NRC.