447 March Road Ottawa, ON K2K 1X8 Canada **'// - 7297** Tel: +1 613 592 2790 Fax: +1 613 592 6937 www.mds.nordion.com

September 1, 2005

Mr. John D. Monninger Section Chief Licensing Section Spent Fuel Project Office Office of Nuclear Material Safety and Safeguards Mail Stop: 13 D13 United States Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Rockville, MD 20852-2738

RE: Amendment to the Certificate of Compliance USA/9299/B(U)-85 for the F-423 Transport Package

Dear Mr. Monninger:

MDS Nordion is requesting an amendment to the Certificate of Compliance USA/9299/B(U)-85 to revise the Information Drawing F642301-001 for the F-423 Transport Package. The changes were necessary in order to allow operational and manufacturing flexibility.

The most significant changes and their justification are as follows:

- 1. The weights of the individual components in the Table of Weights were revised based on measurements of the actual production units. The design weight remains unchanged.
- 2. All references to "SST 304L" were changed to "SST 304". The low carbon stainless steel was initially specified in order to prevent carbide precipitation caused by welding. However, much of this stainless steel is welded to the carbon steel hollow structural sections, and therefore the welds will become contaminated by carbon. This defeats the purpose of using the 304L material.
- 3. The material specifications for the GC220 were simplified. For example, all references to ASTM specifications were deleted. This is because many GC220's were manufactured 40 or more years ago, and MDS Nordion does not have sufficient manufacturing records to demonstrate what materials were used in their construction.

Attached are seven proprietary copies of the revised drawings F642301-001 sheet 1, revision F and drawing F642301-001 sheet 2, revision D. I have attached an affidavit to support MDS Nordion's request to withhold the above-mentioned drawings from public

MMSSOI

disclosure. These drawings are specific to the design and fabrication of the F-423 transport packages and would enable a third party to manufacture similar transport packages.

In addition, MDS Nordion submitted by email July 19, 2004, to Ms. Barto and Mr. Brown a revised Certificate of Compliance and Safety Evaluation Report for the F-423. As a result of the USNRC review of the certificate of compliance 9310 for the F-431, which contained proprietary information, MDS Nordion also reviewed both the Certificate of Compliance 9290 for the F-430 and 9299 for the F-423. The Certificate of Compliance 9310 and 9290 were revised and the proprietary information was removed. However, the safety evaluation report and Certificate of Compliance 9299 for the F-423 were not revised and still contain information that MDS Nordion has indicated to be proprietary. Please find attached the Certificate of Compliance and the Safety Evaluation Report with the black out sections that MDS Nordion has asked to be withheld from public disclosure. Please review this information and revise as required the Certificate of Compliance 9299 as well as the Safety Evaluation Report.

The information on the revised F423 Information Drawing has been reorganized in order to reduce the drawing from 4 sheets to 2 sheets. This was achieved by adding the details from sheets 2 and 3 to sheet 1. The following is a summary of the changes to each sheet of the drawing.

Sheet 1:

- References to sheets 2 and 3 deleted.
- The side elevation view of the Overpack, Lower Crush Pad and Inner Bundle was replaced with the views from sheet 2.
- The exploded view of the Inner Bundle Assembly was replaced with the side elevation view from sheet 3.
- The Bonnet Plan view was added from sheet 3.
- The table of weights was updated and tolerances were added. The total design weight is unchanged.
- The material description of the lid gasket was changed.
- Note 1 (AECB Certification Pending) was deleted.
- Note 6 (related to welding) was modified such that CSA W59 is defined as the "approved equivalent" welding standard.
- In the Table of Fasteners, all bolts lengths are now shown as minimum lengths.
- Some weld symbols were corrected.

Sheet 2:

- The side elevation view of the Overpack, Lower Crush Pad and Lid were moved to sheet 1, complete with annotations and weld symbols.
- The lifting slings on the Overpack, Lower Crush Pad and Lid were removed.
- The material for the Lower Crush Pad lifting lug was corrected to be carbon steel per ASTM A36.
- The MDS Nordion part numbers for the Radiation Caution Plate and the Shipping Container Identification plates were removed. The quantity of each was changed to a minimum of 2.

- The material specification for the HSS tubing was modified to include ASTM A500-03A as an alternative to CSA G40.21-50W. This change does not apply to the stainless steel HSS used in the Inner Frame.
- All references to "SST 304L" were changed to "SST 304"
- Detail 2 was deleted and the annotations and weld symbols were moved to the side elevation view.

Sheet 3:

- All information from this sheet was moved to sheet 1.
- The material specification for the Inner Frame rub bars was changed from "AMPCO 8" to "non-ferrous"
- The supplier part number for the Inner Frame clamping pads was deleted.

Sheet 4:

- Redesignated as sheet 2.
- Added table of tolerances. This table is consistent with the tolerances used on the Information Drawings for MDS Nordion's F294, F-430 and F-431 transport packages.
- The ASTM specification number was deleted from all stainless steel material descriptions.
- The material description for the lead was changed to remove the purity.
- The annotation for the GC220 centre of gravity was replaced with a symbol.

If you have any questions or require further information please feel free to contact me by telephone at (613) 592-3400 extension 2421 or by email at <u>mcharette@mds.nordion.com</u>.

Yours sincerely

Man - hudi Charthe

Marc-André Charette International Transport & Nuclear Initiatives Manager, Regulatory Affairs

Attached: F642301-001 sheet 1, revision F; F642301-001 sheet 2, revision D

Copy to: Rick Boyle, US Department of Transportation Mike Krzaniak, Blair Menna, Luc Desgagne, MDS Nordion

AFFIDAVIT

I, E. S. Martell, in my capacity as Senior Vice President, Quality & Regulatory Affairs, having been duly authorized to apply for withholding from disclosure of proprietary information by and on behalf of MDS Nordion, a division of MDS (Canada) Inc., ("MDS Nordion"), do depose and say:

- 1. I, E.S. Martell, am the Senior Vice President, Quality & Regulatory Affairs, of MDS Nordion.
- 2. The information contained in the MDS Nordion's document No. F642301-001 sheet 1, revision F and F642301-001 sheet 2, revision D, "F-423/GC-220 Transportation Package Information Drawing" are the property of MDS Nordion. These documents contain proprietary information related to the design of the F-423 transport package.
- 3. MDS Nordion, has expended extensive funds and manpower in developing the aforementioned document and any release for disclosure of such information to third parties would enable and assist third parties to use the information to fabricate and register similar transport packages without incurring any development costs. This could compromise MDS Nordion's, ability to compete in the marketplace. Therefore, MDS Nordion, submits that the following MDS Nordion document No. F642301-001 sheet 1, revision F and F642301-001 sheet 2, revision D, "F-423/GC-220 Transportation Package Information Drawing" should be withheld from public disclosure.
- 4. The information has been held in confidence by MDS Nordion, and any disclosure thereof for developmental purposes, has been accompanied by a confidentiality agreement protecting the trade secrets contained herein.
- 5. The information has been transmitted to and received by the Nuclear Regulatory Commission in the United States in confidence.
- 6. This information is not available in public sources.
- 7. The information contained in this affidavit is to the best of my knowledge true and correct.

Sworn before me this 1st day of Saturda, 2005 in the City of Ottawa, Ontario, Canada.

per:

E. S. Martell

Senior V.P., Quality and Regulatory Affairs MDS Nordion, a division of MDS (Canada) Inc.

Neil Gotfrit Notary Public in and for the Province of Ontario, Canada

IRC FORM 618 8-2000) 0 CFR 71		CERTIFICA	TE OF COMPL		SULATORY COM	MISSIC
		FOR RADIOAC	TIVE MATERIAL P	ACKAGES	1.000	
. CERTIFICA		D. REVISION ROMBER	TA 0000		PAGE	PAG
	9299	U	1 /1-9299	USA/9299/B(U)-85		-
. PREAMBLE a. This cer	tificate is issued to certify t Title 10. Code of Federal R	hat the package (packag egulations. Part 71, "Pac	ing and contents) descr kacing and Transportati	ibed in Item 5 below meets the applic ion of Radioactive Material."	cable safety stand	lards so
b. This cer other ap	tificate does not relieve the plicable regulatory agencie	e consignor from compliants, including the governme	nce with any requirement lent of any country through	nt of the regulations of the U.S. Depa igh or into which the package will be	rtment of Transported.	ortation
a. ISSUED) TO (Name and Address)	TE BASIS OF A SAFE I	b. TITLE AND I	DENTIFICATION OF REPORT OF A		
447 W Kanat 4. CONDITION This certifica	a, Ontario, Canada S te is conditional upon fulfill	K2K 1X8	0 CFR Part 71, as appli	icable; and the conditions specified b	elow.	
^{5.} (a) Pac	kaging					
(1)	Model No.: F-4	23				
(2)	Description					
	A double-walled Gammacell 220 stainless steel s overpack wall th steel on top, a s	i welded stainless (GC220) gamma hells separated by lickness heet of 1/4-inch the heet of 1/4-inch the heet of 1/4-inch the	steel overpack-fo irradiator. The p rpack lid is constr nick cold-rolled sto he package is clo	ackaging consists of conce ackaging consists of conce and solution the ructed of a sheet of 1/2-inc eel on the bottom based by bolting the lid to the	within the entric box-like e overall h thick stain e body	ess D
	along with an in Shielding is pro	ner steel frame an vided by the GC22	o inside the cavity	h is a welded steel lead-fill	ed device. T	he

i

.

GC220 is a lead-filled shielding head mounted on a steel stand. The GC220 shielding head consists of inner and outer steel shells with lead in between. The nominal lead thickness is 10 inches. The GC220 has an irregular shape, however, the base is 60-inches long by 40-inches wide. In its shipping configuration, the GC220 is 58-inches high. The GC220 shielding plug is welded from 304 stainless steel and lead filled. The GC220 drawer is welded from 304 stainless steel and is lead filled.

NRC FORM 618			U.S. NUCLEAR REG	ULATORY	COMM	SSION
						[]
	FOR RADIOACTIVE MATERIAL PACKAGES					
1. 8. CERTIFICATE NUMBER	b. REVISION NUMBER	C. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
9299	0	71-9299	USA/9299/B(U)-85	2	OF	3

5(a) (2) (continued)

The maximum package weight (including contents) is 21,000 lbs (9,530 kgs). The approximate package component dimensions and weights are as follows:

Component	Weight () (lbs//kg)	Nominal Dimensions (Lex Wix Hinches)
Overpack Lid	1,046 / 474	67.50 x 55.00 x 4.75
Inner Frame 🛫 💄	1,038/470	/ , 60.50 x 48.00 x 54.13
Bonnet 💭 🗡	846 / 384	∽52.00 x 41.50 x 36.75
GC220	8,575 / 3,890	60.00 x 40.00 x 58.00
Overpack Body	8,750 / 3,969	
Lower Crush Pad	354 / 160 /	47.00 x 31.00 x 7.00
		5

(3) Drawings

The packaging is constructed in accordance with MDS Nordion Drawing No. F642301-001: Sheet 1, Revision D

Sheet 2, Revision C Sheet 3, Revision B Sheet 4, Revision A

(b) Contents

- (1) Type and form of material
 - i. Cobalt-60 as sealed sources that meet the requirements of special form radioactive material.
 - ii. Cobalt-60 as sealed sources described in Condition No. 6 below.
- (2) Maximum quantity of material per package

26,000 curies, a maximum of 48 sources per package, and a maximum of 5,000 curies per source.

NRC FORM 618 (6-2000) 10 CFR 71 U.S. NUCLEAR REGULATORY COMMISSION CERTIFICATE OF COMPLIANCE						ISSION
	FOR RADIOACT	IVE MATERIAL PA	ACKAGES			
1. a. CERTIFICATE NUMBER	b. REVISION NUMBER	C. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
9299	0	71-9299	USA/9299/B(U)-85	3	OF	3

- 6. Sealed sources limited to MDS Nordion sealed source capsules manufactured before February 19, 1973: C-166, C-167, and C-185. In addition, these sources must meet the following:
 - (a) Sources must conform to the specifications identified in the application in Figure 4.2 for the C-166 source, Figure 4.3 for the C-167 source, and Figure 4.4 for the C-185 source;
 - (b) Sources must be shown to not be leaking within six months prior to shipment; and
 - (c) Sources must not have been damaged during their service life.
- 7. In addition to the requirements of Subpart G of 10 CFR Part 71:
 - (a) The package must be prepared for shipment and operated in accordance with the Operating Procedures in Chapter 7 of the application.
 - (b) Each packaging must be acceptance tested and maintained in accordance with the Acceptance Tests and Maintenance Program in Chapter 8 of the application.
- 8. The package authorized by this certificate is hereby approved for use under the general license provisions of 10 CFR 71.12.
- 9. Expiration date: August 31, 2006.

MDS Nordion application dated June 28, 2000

Supplements dated: May 11 and June 28, 2001

FOR THE U.S. NUCLEAR REGULATORY COMMISSION

William Such

E. William Brach, Director Spent Fuel Project Office Office of Nuclear Material Safety and Safeguards

Date August 23, 2001

SAFETY EVALUATION REPORT

•

Docket No. 71-9299 Model No. F-423 Package Certificate of Compliance No. 9299 Revision No. 0

TABLE OF CONTENTS

.

• •

SEC										P/	AGE
Sur	nmary		•								1
1.0	General Information					•					1
	1.1 Packaging										1
	1.2 Drawings										2
	1.3 Contents	•		•	•		•	•			2
20	Structural Evaluation	ı									2
2.0	2.1 General Descrit	tion	•	•	•	•	•	•	•	•	2
	2.2 Lifting and Tie-F	Jown Fea	atures	•	•	•	•	•	•	•	2
	2.2 Enting and the c	ons of Tra		•	•	•	•	•	•	•	2
	2.5 Normal Conduct	cident C	anditions	•	•	•	•	•	•	•	2
	2.4 Hypothetical Ac		Juniona		•	•	٠	•	•	•	3
~ ~	Thermal Cuelustien										F
3.0	Inermal Evaluation	1		•	•	•	•	•	•	•	5
	3.1 Description of I	nermai L	Jesign	·		•	•	•	•	•	5
	3.2 Material Propert	lies and (Compon	ent Sp	ecificati	ons.	•	•	•	•	6
	3.3 Thermal Evalua	tion Und	er Norm	al Con	ditions of	of Trans	sport	•	•	-	6
	3.3.1 Analytical	Model	•	•		•		•	•		6
	3.3.2 Test Mod	eł .		•		•		•			7
	3.3.3 Maximum	Temper	atures	-				•	-		7
	3.3.4 Maximum	Normal	Operatii	ng Tem	peratur	e.					8
	3.4 Evaluation Unde	er Hypoth	netical A	cciden	Condit	ions					9
	3.4.1 Thermal I	Model		•							9
	3.4.2 Maximum	Temper	atures								9
	3.4.3 Maximum	Pressur	e.	_							10
	3.5 Evaluation Find	inas		-	-	•	•	•	•	•	10
			•	•	•	•	•	•	•	•	
4.0	Containment Evalua	tion .	•	-	•		•	•	•		11
5.0	Shielding Evaluation	•		•	•	•					11
6.0	Operating Procedure	es.		•				•	•		12
7.0	Acceptance Tests an	d Mainte	nance F	Progran	ı.	•					13
Cor	nditions			-	•			•			13
Cor	clusion .			•				•	•		13

SAFETY EVALUATION REPORT

Docket No. 71-9299 Model No. F-423 Package Certificate of Compliance No. 9299 Revision No. 0

SUMMARY

By application dated June 28, 2000, as supplemented May 11 and June 28, 2001, MDS Nordion requested that the U.S. Nuclear Regulatory Commission approve the Model No. F-423 transportation package as a Type B(U)-85 package. Based on the statements and representations in the application, as supplemented, and the conditions listed below, the staff concludes that the package meets the requirements of 10 CFR Part 71.

1.0 GENERAL INFORMATION

1.1 Packaging

The Model No. F-423 is a double-walled welded stainless steel overpack for shipping sealed sources within the Gammacell 220 (GC220) gamma irradiator. The packaging consists of concentric box-like stainless steel shells separated by Grannel and the gamma irradiator in the gamma irradiator.

constructed of a sheet of 1/2-inch thick stainless steel on top, a sheet of 1/4-inch thick cold-rolled steel on the bottom, a sheet of 1/4-inch thick stainless steel on top, a sheet of 1/4-inch thick cold-rolled steel on the bottom, a sheet of 1/4-inch thick stainless steel on top.

The GC220 irradiator is positioned inside the cavity formed by the inner stainless steel shell, along with an inner steel frame and **Graphing in the state of the**

Shielding is provided by the GC220 irradiator, which is a welded steel leadfilled device. The GC220 is a lead-filled shielding head mounted on a steel stand. The GC220 shielding head consists of inner and outer steel shells with lead in between. The nominal lead thickness is 10 inches. The GC220 has an irregular shape, however, the base is 60-inches long by 40-inches wide. In its shipping configuration, the GC220 is 58-inches high. The GC220 shielding plug is welded from 304 stainless steel and lead filled. The GC220 drawer is welded from 304 stainless steel and is lead filled.

Components	Weight (lbs//kg)	Nominal Dimensions
Overpack Lid	1,046 / 474	67.50 x 55.00 x 4.75
Inner Frame	1,038 / 470	60.50 x 48.00 x 54.13
Bonnet	846 / 384	52.00 x 41.50 x 36.75
GC220	8,575 / 3,890	60.00 x 40.00 x 58.00
Overpack Body	8,750 / 3,969	86.50 x 66.00 x 80.37
Lower Crush Pad	354 / 160	47.00 x 31.00 x 7.00

The maximum package weight (including contents) is 21,000 lbs (9,530 kgs). The approximate package component dimensions and weights are as follows:

1.2 Drawings

The packaging is constructed in accordance with MDS Nordion Drawing No. F642301-001:

Sheet 1, Revision D Sheet 2, Revision C Sheet 3, Revision B Sheet 4, Revision A

1.3 Contents

The contents of the Model No. F-423 consist of the GC220 irradiator with up to 26,000 curies of ⁶⁰Co in up to 48 special form capsules, and a maximum of 5,000 curies per source. The special form capsules are sealed sources that meet the requirements of special form radioactive material. or meet the following conditions:

Sealed sources limited to MDS Nordion sealed source capsules manufactured before February 19, 1973: C-166, C-167, and C-185. These sources must meet the following:

- Sources must conform to the specifications identified in the application in Figure 4.2 for the C-166 source, Figure 4.3 for the C-167 source, and Figure 4.4 for the C-185 source;
- Sources must be shown to not be leaking within six months prior to shipment; and
- Sources must not have been damaged during their service life.

2.0 STRUCTURAL EVALUATION

2.1 General Description

The staff reviewed the Model No. F-423 application for compliance with the general standards for transportation packages as specified in 10 CFR 71.43 and found that the package met the applicable requirements: Minimum size, tamper-proof feature, positive closure, and chemical and galvanic reactions. The GC220 provides the containment for the package. The containment system includes the inner shell of the GC220 shielding head, head plug, drawer, source cage, sealed sources, shipping cover, and the lower shipping bracket. Positive closure is provided by securing the GC220 shipping cover with four 3/4-inch nominal diameter socket-head bolts. In addition, the GC220 is installed under the inner frame and bonnet assembly, which are then secured in the F-423 overpack. This prevents inadvertent opening of the GC220. A lock wire between two adjacent bolts on the overpack lid acts as a tamper-proof feature during a loaded shipment.

The materials used in fabrication of the package are stainless steel, lead, carbon steel, and the stainless steel or galvanic reaction between any of these materials, or the stainless steel sources containing the ⁶⁰Co material.

2.2 Lifting and Tie-Down Features

The staff reviewed the Model No. F-423 application for compliance with the lifting and tie-down standards for transportation packages as specified in 10 CFR 71.45 and found that the package met the applicable requirements. For lifting, the package is equipped with four lift lugs welded to the top of the package. The four lift lugs were shown by analyses to be capable of lifting three times the maximum package weight without yielding.

Four rings are used for tie-down, two located at each end of the package. The applicant evaluated the integrity of the tie-down components under 2g (vertical), 10g (horizontal) and 5g (horizontal transverse) loads acting concurrently on the package. Evaluation of the stresses in the tie-down rings for the concurrent 2g, 10g and 5g tie-down loads specified in 10 CFR 71.45 showed that the stresses did not exceed yield.

2.3 Normal Condition of Transport

The staff reviewed the Model No. F-423 application for compliance with the normal conditions of transport as specified in 10 CFR 71.71 and found that the package met the applicable requirements: resistance to heat and cold, reduced and increased external pressure, vibration, water spray, free drop, and penetration. The package will not be affected by ambient temperatures in the range of -40°F to 100°F. The applicant's analysis showed that the Model No. F-423 lid can withstand an external pressure of 25 psig without yielding. The analysis also showed that an increased external pressure of 20 psia or a reduced external pressure of 3.5 psia would have no effect on the package.

-3-

The applicant's shock and vibration analysis and operational experience with a similar package shows that the package will maintain its structural integrity under normal transport vibration conditions. The applicant demonstrated that the water spray test would have no significant effect on the package's integrity.

The applicant performed a 3-foot bottom end drop on a full-scale test package. The test results demonstrated that the containment, shielding and impact protection were maintained. The feet on the Model No. F-423 package showed some minor buckling. However, this damage would not result in any reduction in the effectiveness of the packaging. The packaging maintained its structural integrity under the normal condition free-drop test.

The exterior of the Model No. F-423 overpack is completely covered by 0.5 inches thick of 304L stainless steel. The applicant demonstrated through analysis that a 13-pound steel cylinder dropped through a distance of 40-inches onto the most vulnerable section of the package would not affect the integrity of the package.

2.4 Hypothetical Accident Conditions

The applicant combined full-scale testing, engineering analysis, and a comparison with similar packages to evaluate the structural integrity of the package under hypothetical accident conditions in accordance with 10 CFR 71.73. The applicant demonstrated by engineering analysis that an end-drop onto the top left or right edge, with the center-of-gravity located directly over the point of impact, would be the worst-case scenario by potentially causing the lid of the package to be dislodged.

The applicant physically tested a single full-scale model package in the following sequence:

- (1) A 3-foot bottom end drop;
- (2) A 30-foot center-of-gravity over the top left corner oblique-drop to attempt to dislodge the overpack lid;
- (3) A 40-inch oblique puncture-test impact on the edge of the lid near the left corner to further attempt to dislodge the lid;
- (4) A puncture-test drop onto the left side through the center-of-gravity to attempt to breach the overpack skin;
- (5) A puncture-test impact on the left front corner at mid-height through the center-ofgravity to further attempt to breach the overpack skin; and
- (6) A puncture-test impact on the front end to further attempt to breach the overpack skin.

The results of the physical testing were as follows: (1) there were no cracks or breaches in the GC220 shielding head; (2) the C-198 capsules were not damaged and they passed the post-drop helium test; (3) the Model No. F-423 lid remained in place, retained by 14 of 26 bolts. There were several dents in the overpack, but only a minor breach in the skin.

in.

The applicant evaluated the maximum stresses that would be produced in the package under the fire test conditions and determined that the stresses were within acceptable limits.

The applicant demonstrated that the effect of 21 psig external pressure due to the package being immersed under 50-feet of water would not affect the integrity of the package.

Based on a review of the test results and analysis in the application, the staff concludes that the structural design of the packaging meets the requirements of 10 CFR Part 71.

3.0 THERMAL EVALUATION

3.1 Description of Thermal Design

The Model No. F-423 overpack for the GC220 irradiator consists of concentric box-like stainless steel shells separated by an **GC220** irradiator consists of concentric box-like the state of the state o

stainless steel shell, along with an inner steel frame and a rigid polyurethane foam bonnet and lower crush pad. **Constitution** bound by the overpack shell and internal components acts to protect the GC220 during the drop tests and also to insulate the lead shielding and contents during the thermal tests.

encountered under hypothetical accident conditions.

the stainless steel shell. During a fire, polyethylene vent hole plugs will melt to allow smoke and gases, and the state of the state o

The contents of the Model No. F-423 consist of the GC220 irradiator with up to 26,000 curies of ⁶⁰Co in special form capsules, or in sealed source capsules meeting the requirements discussed in Section 4 of this SER. The GC220 consists of a lead-filled shielding head mounted on a steel stand. The shielding head is formed by a mild steel outer shell, consisting of a middle cylindrical section and top and bottom conical sections, a central cylindrical steel shell of varying diameter which forms the source cavity, an annular stainless steel, lead-filled shielding plug, and a cylindrical stainless steel, lead-filled drawer with a stainless steel drain tube through its entire length. The volume between the outer and inner mild steel shells of the shielding head is filled with lead, forming a nominal shielding thickness of ten inches. A ring of up to 48 source capsules is centered within the shielded cavity. The annular shielding plug is directly on top of the source ring, with the cylindrical drawer taking up the volume inside the source ring and the shielding plug.

3.2 Material Properties and Component Specifications

Material properties for all package materials which affect the thermal evaluation are shown in Tables 3.1 and 3.2 of the application. The steel, lead, and neoprene used in the package design are commercially available and meet the specifications given in Table 3.3 of the application. The specification for the specification given in Appendix 3.1 of the application, Attachment F, **Constitution** Material Property Information." The specification for the specification of a specification of a specification of a specification of the application o

3.3 Thermal Evaluation Under Normal Conditions of Transport

3.3.1 Analytical Model

The package was modeled using the ANSYS finite element code version 5.5.3 to simulate the thermal requirements under normal conditions of transport. The model consisted of a three-dimensional eighth-section of the package. The bottom eighth-section was used for the model, since this represented the shortest conduction path into the overpack. The solar load intended for the top of the package was conservatively applied to the bottom in the analytical model. Material properties used in the analytical model are listed in Tables 1 and 2 of Appendix 3.1 of the application, "Thermal Simulation of IAEA Fire Test on the F-423 Overpack, MDS Nordion Report No. IN/TR 1644 F423."

Radiation heat transfer across the internal air space of the package is modeled by a radiation enclosure, with the GC220 surface having an emissivity of 0.8 and the surfaces of the inner frame and floor of the overpack having an emissivity of 0.5. The symmetry surfaces of the enclosure are assumed to have an emissivity of 0.01 to act as a mirrored surface and effectively reflect radiation back into the enclosure. This radiation model is conservative since the blocking effects of the package internal structure are neglected. For radiation on the external surfaces of the package, the applicant assumed an ambient temperature of 38°C with a stainless steel surface emissivity of 0.5.

Convection and conduction across the internal airspace is accounted for by an effective thermal conductivity. This effective thermal conductivity (k_{eff}) is the thermal conductivity that a stationary fluid must have to transfer the same amount of heat as a moving fluid. The k_{eff} is calculated using correlations, given in Attachment C of Appendix 3.1 of the application, which approximate internal convection in the package as that between long concentric cylinders or concentric spheres. The k_{eff} calculated in this way represents 99% of the conduction area between the GC220 and the inside of the overpack. The other 1% is represented by conduction through the steel package internal structure (see Attachment C of Appendix 3.1). Of the total package conductivity, 1% is attributed to the steel and is combined with the k_{eff} for the air in the void between the extent of the GC220 and the interior of the overpack.

-6-

Internal heat generation for the sources inside the GC220 is assumed to be 400 W, which is slightly higher than the decay heat for the maximum allowed 26,000 curies of ⁶⁰Co. The decay heat was modeled as a heat flux on the inside surface of the inner cavity shell, with 60% of the flux in the radial direction, 30% to the top of the cavity, and 10% to the bottom. Since only the bottom of the package is present in the eighth-section model, the bottom of the inner cavity is conservatively modeled to receive 40% of the heat flux. The lead-to-steel contact resistance at the outside of the GC220 shielding head was modeled by adding the thermal resistance of a 0.02-inch air gap to the conductivity of the outer steel.

For convection on the exterior of the package, the applicant assumed a 38° C bulk-fluid temperature with a surface convection coefficient as calculated in Attachment D of Appendix 3.1. The heat transfer coefficient was calculated using a correlation for a square in the cross flow of air at 1.0 m/s (3.3 ft/s). Insolation on the exterior of the package was assumed to be 400 W/m² on the sides of the package and 800 W/m² on the flat bottom surface. This is conservative with respect to the insolation requirements of 10 CFR 71.71(c)(1). The applicant evaluated package temperatures at the end of a twelve-hour insolation cycle, and compared these temperatures to those calculated at steady state with constant insolation.

3.3.2 Test Model

In addition to the analytical model, the applicant tested a full scale prototype for steady state temperatures under normal conditions of transport. The test was performed at an ambient temperature of 21 °C with 22,000 curies of ⁶⁰Co loaded in the GC220. Temperatures were recorded at several key locations in the GC220 and the Model No. F-423 overpack. The applicant compared the results of this test to the results of an ANSYS run of the analytical model using the ambient temperature and decay heat of the actual test.

3.3.3 Maximum Temperatures

The following table presents the maximum measured temperatures for key locations in the test model, along with the temperatures evaluated using the analytical model at actual test conditions, regulatory conditions with a twelve-hour insolation cycle, and regulatory conditions with constant insolation:

Maximun	Maximum Measured Temperatures for Test and Analytical Models						
Transacture Lecellor:	Tost 21 c ambient 22kGi Norsolar kozel	Analytical 21 (C antoan 221(C) No Solar Loto	Analytical Serie ambian 25kG 122a Insolation	Analytical 88/6 ambient 26k6/ Const Insciation			
Source	109°C	125°C	<177°C*	<177°C*			
GC220 Inner Cavity Wall	68°C	77°C	104°C	154°C			
GC220 Shielding Head, Outside	59°C	65°C	97°C	145°C			
F-423 Inner Frame, Inside Wall	46°C	51°C	96°C	138°C			
F-423 Inner Frame, Outside Wall	32°C	34°C	83°C	115°C			
F-423 Exterior	23°C	23°C	88°C	95°C			
F-423 Lid, Underside	40°C	43°C	110°C	136°C			
F-423 Lid, Topside	29°C	30°C	115°C	137°C			

Table 1	
Maximum Measured Temperatures for Test and Analytical Mo	dels

Note:

* - 177°C is the source temperature calculated under hypothetical accident conditions. Temperatures under normal conditions of transport will be less than 177°C.

The applicant also evaluated the analytical model of the package with the maximum decay heat, a 38°C ambient temperature, and no insolation. The results of this evaluation showed that no accessible surface of the Model No. F-423 package will exceed 50°C, as required by 10 CFR 71.43(g) for non-exclusive use shipments.

3.3.4 Maximum Normal Operating Pressure

Since the GC220 inner cavity is not sealed, the containment system will only experience the increase in pressure associated with that of the neoprene-sealed overpack cavity, which is at a lower average air temperature. The applicant has calculated the maximum normal operating pressure of the package to be 4 psig. The applicant demonstrated in Section 2 of the application that the package can withstand an internal pressure of 25 psig. The source capsules are sealed at atmospheric pressure and room temperature. The applicant calculated the pressure rise in the capsules to be 8 psig under hypothetical accident conditions. The pressure rise under normal conditions of

transport will be less than 8 psig. Stresses in the capsule due to this pressurization are negligible.

- 3.4 Evaluation Under Hypothetical Accident Conditions
- 3.4.1 Thermal Model

The thermal model for hypothetical accident conditions is the same as the analytical model for normal conditions of transport, with several different assumptions and modified heat loads. The resulting temperatures for the normal conditions evaluation of the package with 26,000 curies ⁶⁰Co, 38°C ambient temperature, at steady state, were used as the initial conditions for the hypothetical accident conditions thermal transient. The 30 minute, 800°C fire temperature applied to the exterior surfaces of the package was followed by a 1 minute ramp-down to normal conditions of transport ambient temperatures, followed by a 14.5 hour cool-down period, including a 12 hour period of insolation at the level applied under normal conditions of transport.

The lead-to-steel contact resistance used in the normal conditions model was conservatively removed during hypothetical accident conditions to allow more heat to the interior of the package. Any construction of the package of the defendence of th

3.4.2 Maximum Temperatures

The following table presents the maximum evaluated temperatures for several key locations for the Model No. F-423 package under the hypothetical accident conditions fire transient:

-9-

Table	2
-------	---

Maximum Evaluated Temperatures Under Hypothetical Accident Conditions

Temperature Location	Hypothetical Accident % Conditions Femperature	Timelafter-Start of
Source	177°C	7
GC220 Inner Cavity Wall	129°C	7
GC220 Shielding Head, Outside	132°C	1.7
F-423 Inner Frame, Inside Wall	143°C	1.7
F-423 Inner Frame, Outside Wall	152°C	1.7
F-423 Exterior	785°C	0.5
F-423 Lid, Underside	341°C	0.7
F-423 Lid, Topside	757°C	0.5

The maximum temperature reached by the lead due to the fire transignt (129°C) was 198°C below its melting temperature. Therefore, the shielding provided by the GC220 inside the Model No. F-423 will be maintained under hypothetical accident conditions.

3.4.3 Maximum Pressure

Since the GC220 inner cavity is not sealed, and the neoprene seal on the overpack cavity will no longer be functioning due to the fire, the containment system will not experience a pressure rise under hypothetical accident conditions. The source capsules are sealed at atmospheric pressure and room temperature. The applicant has calculated the pressure rise in the capsules to be 8 psig under hypothetical accident conditions.

3.5 Evaluation Findings

Based on a review of the statements and representations in the application, the staff concludes that the thermal design of the Model No. F-423 package has been adequately described and evaluated, and that the thermal performance of the package meets the thermal requirements of 10 CFR Part 71.

4.0 Containment Evaluation

The containment boundary of the Model No. F-423 package is defined as the enclosure formed by the lower shipping bracket, the inner shell of the GC220 shielding head, and the shipping cover, surrounding the drawer and head plug assemblies. The shipping cover is secured by four 0.75-inch socket cap screws. The lower bolted closure consists of either the bottom shipping cap secured by ten 0.75-inch socket cap screws, or the bottom shipping bracket secured by four 0.75-inch socket cap screws. Section 2 of the application showed that there was no damage to the containment system as a result of the hypothetical accident conditions free drop or puncture tests.

The contents of the package are 60 Co sealed sources. The containment system is not sealed and depends on the sealed sources to meet the requirements of 10 CFR 71.51(a). The sealed sources consist of either C-198 special form capsules, or the following MDS Nordion sealed source capsules manufactured before February 19, 1973: C-166, C-167, and C-185.

Additional shipping requirements for the C-166, C-167, and C-185 sealed source contents will be as follows:

- Sources must conform to the specifications identified in the application in Figure 4.2 for the C-166 source, Figure 4.3 for the C-167 source, and Figure 4.4 for the C-185 source
- Sources must be shown to not be leaking within six months prior to shipment
- Sources must not have been damaged during their service life.

The applicant has shown that the sources remain inside the containment boundary under both normal conditions of transport and hypothetical accident conditions.

Based on a review of the statements and representations in the application, the staff concludes that the containment design has been adequately described and evaluated and that the package design meets the containment requirements of 10 CFR Part 71.

5.0 Shielding Evaluation

Shielding in the Model No. F-423 package is provided primarily by the GC220 irradiator. The GC220 irradiator is designed to reduce dose rates on its exterior to less than 200 mrem/hr. When loaded in the overpack, dose rates will be much lower due to the shielding provided by the steel shells and the distance provided by the dimensions of the package.

The contents of the package are up to 26,000 curies of ⁶⁰Co. Shielding in the GC220 is provided by a nominal lead thickness of 10 inches between the steel shells of the shielding head. The top of the GC220 is shielded by the annular steel, lead filled head plug and the cylindrical steel, lead filled drawer. The structural evaluation in Section 2 of the application shows there will be no lead slump in any component of the GC220, and

the thermal evaluation in Section 3 of the application shows there will be no melting of the lead.

Surveys of a full scale Model No. F-423 package were performed before and after the drop tests using a source of approximately 22,000 curies of ⁶⁰Co. Actual source values for each of the surveys are given in Table 5.1 of the application. The measurements were normalized to the maximum 26,000 curies of ⁶⁰Co. The maximum normalized surface and 1-meter dose rates for the Modei No. F-423 package before and after the drop tests are given in the following table:

Maximum N	lormalized Surface	and 1-Meter Dose I	Rates Before and A	fter Drop Tests
Location	Surface Measu	rement (mR/m) m	and ilm Measure	ment (mR/hr) (*
	Before Drop	After Dropa	BeloreDiop	After.Drop
Side	1.6	1.5	0.33	0.29
Тор	0.8	1.2	0.5	1.2
Bottom	12	12	1.2	1.2

The change in dose rates after the drop tests was due to the relocation of the GC220 shielding head inside the package overpack. The dose rate listed above for the top of the package neglects a localized "hot spot" with a significantly higher dose rate. This hot spot was due to the removal of a tungsten shield plug from the source loading tube in the head plug, which resulted in a direct streaming path to the contents. This shield plug was removed to insert test instrumentation into the inner cavity, and is impossible to remove during transportation due to the presence of the shipping cover.

Based on a review of the statements and representations in the application, the staff concludes that the shielding design has been adequately described and evaluated and that the package meets the external radiation requirements of 10 CFR Part 71.

6.0 Operating Procedures

Operating Procedures for the package are specified in Chapter 7 of the application. The chapter includes sections on (1) loading ⁶⁰Co sources into the GC220, (2) loading the GC220 into the Model No. F-423 overpack and preparation for shipment, (3) securing the Model No. F-423 package on road vehicles, (4) unloading the Model No. F-423 package, (5) unloading ⁶⁰Co sources from the GC220, and (6) preparing an empty package for transport.

Based on the review of statements and representations in the application, the staff concludes that the operating procedures meet the requirements of 10 CFR Part 71 and

that these procedures are adequate to assure that the package will be operated in a manner consistent with its evaluation for approval.

7.0 Acceptance Tests and Maintenance Program

Package acceptance tests and maintenance program are specified in Chapter 8 of the application. The acceptance tests prior to first use include visual examinations, structural and pressure tests, leak tests, component tests, shielding integrity tests, and thermal acceptance tests.

The maintenance program includes structural and pressure tests prior to shipment, inspections of certain structural components (inner frame, bonnet assembly, lower crush pad, and hoist ring screws) either annually or prior to shipment, inspection of gaskets and sealing surfaces prior to each shipment, and radiation surveys prior to each shipment.

Based on the review of the statements and representations in the application, the staff concludes that the operating procedures meet the requirements of 10 CFR Part 71 and that these procedures are adequate to assure that the package will be acceptance tested and maintained in a manner consistent with its evaluation for approval.

CONDITIONS

In addition to the requirements of Subpart G of 10 CFR Part 71:

- (a) The package must be prepared for shipment and operated in accordance with the Operating Procedures in Chapter 7 of the application.
- (b) Each packaging must be acceptance tested and maintained in accordance with the Acceptance Tests and Maintenance Program in Chapter 8 of the application.

CONCLUSION

Based on the review of the statements and representations in the application, as supplemented, and the conditions listed above, the staff concludes that the design has been adequately described and evaluated and that the package meets the requirements of 10 CFR Part 71.

Issued with Certificate of Compliance No. 9299, Revision No. 0 on <u>August 23</u>, , 2001.