

26A6642BL Revision 0 August 2005

ESBWR Design
Control Document
Tier 2
Chapter 13
Conduct of
Operations

(Conditional Release - pending closure of design verifications)

Contents

13.1 Organizational Structure Of Applicant	13.1-1
13.1.1 COL Information	
13.2 Training	13.2-1
13.2.1 Reactor Operator Training	13.2-1
13.2.2 Training for Non-Licensed Plant Staff	13.2-1
13.2.3 COL Information	13.2-1
13.2.3.1 Incorporation of Operating Experience.	13.2-1
13.2.3.2 Training Requirements for Preoperational and Low-Power Testing	13.2-1
13.3 Emergency Planning	13.3-1
13.3.1 Preliminary Planning	13.3-1
13.3.2 Emergency Plan	13.3-1
13.3.3 COL License Information	13.3-1
13.3.3.1 Identification of OSC and Communication Interfaces with Control Ro	
13.3.3.2 Identification of EOF and Communication Interfaces with Control Ro	oom and TSC
13.3.3.3 Decontamination Facilities	
13.4 Review And Audit	
13.4.1 COL Information	
13.5 Plant Procedures.	
13.5.1 Administrative Procedures	
13.5.2 Operating and Maintenance Procedures	
13.5.3 COL Information	
13.5.3.1 Plant Operating Procedures Development Plan	13.5-1
13.5.3.2 Emergency Procedures Development	13.5-1
13.5.3.3 Implementation of the Plan	13.5-1
13.5.3.4 Procedures Included In Scope Of Plan	13.5-2
13.5.4 References	
13.6 Physical Security	
13.6.1 Preliminary Planning	
13.6.1.1 Site Physical Security	
13.6.1.2 Security Policies and Procedures	13.6-3
13.6.1.3 COL Information	
13.6.1.4 References	13.6-3

List of Tables

- NONE -

List of Illustrations

- NONE -

Abbreviations And Acronyms

<u>Term</u> <u>Definition</u>

10 CFR Title 10, Code of Federal Regulations

A/D Analog-to-Digital

AASHTO American Association of Highway and Transportation Officials

AB Auxiliary Boiler

ABS Auxiliary Boiler System

ABWR Advanced Boiling Water Reactor

ac / AC Alternating Current
AC Air Conditioning

ACF Automatic Control Function
ACI American Concrete Institute
ACS Atmospheric Control System
AD Administration Building

ADS Automatic Depressurization System

AEC Atomic Energy Commission
AFIP Automated Fixed In-Core Probe

AGMA American Gear Manufacturer's Association

AHS Auxiliary Heat Sink
AHU Air Heating Unit

AISC American Institute of Steel Construction

AISI American Iron and Steel Institute

AL Analytical Limit

ALARA As Low As Reasonably Achievable
ALWR Advanced Light Water Reactor
ANS American Nuclear Society

ANSI American National Standards Institute

AOO Anticipated Operational Occurrence

AOV Air Operated Valve

API American Petroleum Institute

APLHGR Average Planar Linear Head Generation Rate

APRM Average Power Range Monitor
APR Automatic Power Regulator

APRS Automatic Power Regulator System

ARI Alternate Rod Insertion

ARMS Area Radiation Monitoring System ASA American Standards Association

ASD Adjustable Speed Drive

ASHRAE American Society of Heating, Refrigerating, and Air Conditioning Engineers

ASME American Society of Mechanical Engineers

AST Alternate Source Term

ESBWR

Design Control Document/Tier 2

<u>Term</u> <u>Definition</u>

ASTM American Society of Testing Methods

AT Unit Auxiliary Transformer

ATLM Automated Thermal Limit Monitor
ATWS Anticipated Transients Without Scram

AV Allowable Value

AWS American Welding Society

AWWA American Water Works Association

B&PV Boiler and Pressure Vessel
BAF Bottom of Active Fuel
BHP Brake Horse Power
BOP Balance of Plant
BPU Bypass Unit

BPWS Banked Position Withdrawal Sequence

BRE Battery Room Exhaust

BRL Background Radiation Level
BTP NRC Branch Technical Position

BTU British Thermal Unit
BWR Boiling Water Reactor

BWROG Boiling Water Reactor Owners Group

CAV Cumulative absolute velocity

C&FS Condensate and Feedwater System

C&I Control and Instrumentation

C/C Cooling and Cleanup
CB Control Building

CBGAHVS Control Building General Area

CBHVAC Control Building HVAC

CBHVS Control Building Heating, Ventilation and Air Conditioning System

CCI Core-Concrete Interaction
CDF Core Damage Frequency
CFR Code of Federal Regulations
CIRC Circulating Water System
CIS Containment Inerting System
CIV Combined Intermediate Valve

CLAVS Clean Area Ventilation Subsystem of Reactor Building HVAC

CM Cold Machine Shop

CMS Containment Monitoring System
CMU Control Room Multiplexing Unit
COL Combined Operating License
COLR Core Operating Limits Report

CONAVS Controlled Area Ventilation Subsystem of Reactor Building HVAC

ESBWR

Design Control Document/Tier 2

<u>Term</u> <u>Definition</u>

CPR Critical Power Ratio

CPS Condensate Purification System

CPU Central Processing Unit

CR Control Rod

CRD Control Rod Drive

CRDA Control Rod Drop Accident
CRDH Control Rod Drive Housing

CRDHS Control Rod Drive Hydraulic System

CRGT Control Rod Guide Tube

CRHA Control Room Habitability Area

CRHAHVS Control Room Habitability Area HVAC Sub-system

CRT Cathode Ray Tube

CS&TS Condensate Storage and Transfer System

CSDM Cold Shutdown Margin
CS / CST Condensate Storage Tank
CT Main Cooling Tower

CTVCF Constant Voltage Constant Frequency

CUF Cumulative usage factor
CWS Chilled Water System

D-RAP Design Reliability Assurance Program

DAC Design Acceptance Criteria

DAW Dry Active Waste
DBA Design Basis Accident

dc / DC Direct Current

DCD Design Control Document
DCS Drywell Cooling System

DCIS Distributed Control and Information System

DEPSS Drywell Equipment and Pipe Support Structure

DF Decontamination Factor

D/F Diaphragm Floor
DG Diesel-Generator
DHR Decay Heat Removal

DM&C Digital Measurement and Control

DOF Degree of freedom

DOI Dedicated Operators Interface
DOT Department of Transportation
dPT Differential Pressure Transmitter
DPS Diverse Protection System

DPV Depressurization Valve
DR&T Design Review and Testing

ESBWR

Design Control Document/Tier 2

<u>Term</u> <u>Definition</u>

DS Independent Spent Fuel Storage Installation

DTM Digital Trip Module

DW Drywell

EB Electrical Building

EBAS Emergency Breathing Air System

EBHV Electrical Building HVAC

ECCS Emergency Core Cooling System

E-DCIS Essential DCIS (Distributed Control and Information System)

EDO Environmental Qualification Document EFDS Equipment and Floor Drainage System

EFPY Effective full power years
EFU Emergency Filter Unit

EHC Electrohydraulic Control (Pressure Regulator)

ENS Emergency Notification System EOC Emergency Operations Center

EOC End of Cycle

EOF Emergency Operations Facility
EOP Emergency Operating Procedures
EPDS Electric Power Distribution System
EPG Emergency Procedure Guidelines
EPRI Electric Power Research Institute
EQ Environmental Qualification

ERICP Emergency Rod Insertion Control Panel

ERIP Emergency Rod Insertion Panel
ESF Engineered Safety Feature
ETS Emergency Trip System
FAC Flow-Accelerated Corrosion

FAPCS Fuel and Auxiliary Pools Cooling System
FATT Fracture Appearance Transition Temperature

FB Fuel Building

FBHV Fuel Building HVAC
FCI Fuel-Coolant Interaction
FCM File Control Module

FCS Flammability Control System

FCU Fan Cooling Unit

FDDI Fiber Distributed Data Interface

FFT Fast Fourier Transform

FFWTR Final Feedwater Temperature Reduction

FHA Fire Hazards Analysis
FIV Flow-Induced Vibration

ESBWR

Design Control Document/Tier 2

<u>Term</u> <u>Definition</u>

FMCRD Fine Motion Control Rod Drive FMEA Failure Modes and Effects Analysis

FPS Fire Protection System

FO Diesel Fuel Oil Storage Tank
FOAKE First-of-a-Kind Engineering

FPE Fire Pump Enclosure

FTDC Fault-Tolerant Digital Controller

FTS Fuel Transfer System

FW Feedwater

FWCS Feedwater Control System
FWS Fire Water Storage Tank
GCS Generator Cooling System
GDC General Design Criteria

GDCS Gravity-Driven Cooling System

GE General Electric Company
GE-NE GE Nuclear Energy

GEN Main Generator System

GETAB General Electric Thermal Analysis Basis

GL Generic Letter

GM Geiger-Mueller Counter
GM-B Beta-Sensitive GM Detector
GSIC Gamma-Sensitive Ion Chamber
GSOS Generator Sealing Oil System

GWSR Ganged Withdrawal Sequence Restriction

HAZ Heat-Affected Zone
HCU Hydraulic Control Unit
HCW High Conductivity Waste
HDVS Heater Drain and Vent System

HEI Heat Exchange Institute
HELB High Energy Line Break
HEP Human error probability

HEPA High Efficiency Particulate Air/Absolute

HFE Human Factors Engineering

HFF Hollow Fiber Filter

HGCS Hydrogen Gas Cooling System

HIC High Integrity Container
HID High Intensity Discharge
HIS Hydraulic Institute Standards
HM Hot Machine Shop & Storage

HP High Pressure

ESBWR

Design Control Document/Tier 2

<u>Term</u> <u>Definition</u>

HPNSS High Pressure Nitrogen Supply System

HPT High-pressure turbine

HRA Human Reliability Assessment
HSI Human-System Interface

HSSS Hardware/Software System Specification
HVAC Heating, Ventilation and Air Conditioning

HVS High Velocity Separator HWC Hydrogen Water Chemistry

HWCS Hydrogen Water Chemistry System

HWS Hot Water System HX Heat Exchanger

I&C Instrumentation and Control

I/O Input/Output

IAS Instrument Air System

IASCC Irradiation Assisted Stress Corrosion Cracking

IBC International Building Code

IC Ion Chamber

IC Isolation Condenser

ICD Interface Control Diagram
ICS Isolation Condenser System
IE Inspection and Enforcement

IEB Inspection and Enforcement Bulletin
IED Instrument and Electrical Diagram

IEEE Institute of Electrical and Electronic Engineers

IFTS Inclined Fuel Transfer System

IGSCC Intergranular Stress Corrosion Cracking

IIS Iron Injection SystemILRT Integrated Leak Rate TestIOP Integrated Operating ProcedureIMC Induction Motor Controller

IMCC Induction Motor Controller Cabinet

IRM Intermediate Range Monitor
ISA Instrument Society of America

ISI In-Service Inspection
ISLT In-Service Leak Test

ISM Independent Support Motion

ISMA Independent Support Motion Response Spectrum Analysis

ISO International Standards Organization

ITA Inspections, Tests or Analyses

ITAAC Inspections, Tests, Analyses and Acceptance Criteria

ESBWR

Design Control Document/Tier 2

<u>Term</u> <u>Definition</u>

ITA Initial Test Program

LAPP Loss of Alternate Preferred Power LCO Limiting Conditions for Operation

LCW Low Conductivity Waste

LD Logic Diagram
LDA Lay down Area

LD&IS Leak Detection and Isolation System

LERF Large early release frequency
LFCV Low Flow Control Valve
LHGR Linear Heat Generation Rate

LLRT Local Leak Rate Test
LMU Local Multiplexer Unit

LO Dirty/Clean Lube Oil Storage Tank

LOCA Loss-of-Coolant-Accident

LOFW Loss-of-feedwater

LOOP Loss of Offsite Power

LOPP Loss of Preferred Power

LP Low Pressure

LPCILow Pressure Coolant InjectionLPCRDLocking Piston Control Rod DriveLPMSLoose Parts Monitoring SystemLPRMLocal Power Range Monitor

LPSP Low Power Setpoint

LWMS Liquid Waste Management System
MAAP Modular Accident Analysis Program

MAPLHGR Maximum Average Planar Linear Head Generation Rate

MAPRAT Maximum Average Planar Ratio

MBB Motor Built-In Brake
MCC Motor Control Center

MCES Main Condenser Evacuation System
MCPR Minimum Critical Power Ratio

MCR Main Control Room

MCRP Main Control Room Panel
MELB Moderate Energy Line Break

MLHGR Maximum Linear Heat Generation Rate

MMI Man-Machine Interface

MMIS Man-Machine Interface Systems

MOV Motor-Operated Valve

MPC Maximum Permissible Concentration

MPL Master Parts List

ESBWR

Design Control Document/Tier 2

TermDefinitionMSMain Steam

MSIV Main Steam Isolation Valve

MSL Main Steamline

MSLB Main Steamline Break

MSLBA Main Steamline Break Accident MSR Moisture Separator Reheater

MSV Mean Square Voltage
MT Main Transformer
MTTR Mean Time To Repair
MWS Makeup Water System
NBR Nuclear Boiler Rated
NBS Nuclear Boiler System

NCIG Nuclear Construction Issues Group
NDE Nondestructive Examination

NE-DCIS Non-Essential Distributed Control and Information System

NDRC National Defense Research Committee

NDT Nil Ductility Temperature

NFPA National Fire Protection Association

NIST National Institute of Standard Technology NICWS Nuclear Island Chilled Water Subsystem

NMS Neutron Monitoring System
NOV Nitrogen Operated Valve
NPHS Normal Power Heat Sink
NPSH Net Positive Suction Head

NRC Nuclear Regulatory Commission
NRHX Non-Regenerative Heat Exchanger
NS Non-seismic (non-seismic Category I)

NSSS Nuclear Steam Supply System

NT Nitrogen Storage Tank
NTSP Nominal Trip Setpoint
O&M Operation and Maintenance

O-RAP Operational Reliability Assurance Program

OBCV Overboard Control Valve
OBE Operating Basis Earthquake

OGS Offgas System

OHLHS Overhead Heavy Load Handling System

OIS Oxygen Injection System

OLMCPR Operating Limit Minimum Critical Power Ratio

OLU Output Logic Unit
OOS Out-of-service

ESBWR

Design Control Document/Tier 2

Term Definition

ORNL Oak Ridge National Laboratory
OSC Operational Support Center

OSHA Occupational Safety and Health Administration

OSI Open Systems Interconnect

P&ID Piping and Instrumentation Diagram

PA/PL Page/Party-Line

PABX Private Automatic Branch (Telephone) Exchange

PAM Post Accident Monitoring

PAR Passive Autocatalytic Recombiner

PAS Plant Automation System

PASS Post Accident Sampling Subsystem of Containment Monitoring System

PCC Passive Containment Cooling

PCCS Passive Containment Cooling System

PCT Peak cladding temperature
PCV Primary Containment Vessel
PFD Process Flow Diagram
PGA Peak Ground Acceleration

PGCS Power Generation and Control Subsystem of Plant Automation System

PH Pump House PL Parking Lot

PM Preventive Maintenance

PMCS Performance Monitoring and Control Subsystem of NE-DCIS

PMF Probable Maximum Flood

PMP Probable Maximum Precipitation
PQCL Product Quality Check List
PRA Probabilistic Risk Assessment

PRMS Process Radiation Monitoring System
PRNM Power Range Neutron Monitoring

PS Plant Stack

PSD Power Spectra Density
PSS Process Sampling System
PSWS Plant Service Water System

PT Pressure Transmitter

PWR Pressurized Water Reactor

QA Quality Assurance

RACS Rod Action Control Subsystem

RAM Reliability, Availability and Maintainability

RAPI Rod Action and Position Information

RAT Reserve Auxiliary Transformer

RB Reactor Building

ESBWR

Design Control Document/Tier 2

<u>Term</u> <u>Definition</u>

RBC Rod Brake Controller

RBCC Rod Brake Controller Cabinet

RBCWS Reactor Building Chilled Water Subsystem

RBHV Reactor Building HVAC RBS Rod Block Setpoint

RBV Reactor Building Vibration

RC&IS Rod Control and Information System
RCC Remote Communication Cabinet

RCCV Reinforced Concrete Containment Vessel
RCCWS Reactor Component Cooling Water System

RCPB Reactor Coolant Pressure Boundary

RCS Reactor Coolant System
RDA Rod Drop Accident

RDC Resolver-to-Digital Converter

REPAVS Refueling and Pool Area Ventilation Subsystem of Fuel Building HVAC

RFP Reactor Feed Pump RG Regulatory Guide

RHR Residual heat removal (function)
RHX Regenerative Heat Exchanger

RMS Root Mean Square

RMS Radiation Monitoring Subsystem

RMU Remote Multiplexer Unit

RO Reverse Osmosis
ROM Read-only Memory

RPS Reactor Protection System
RPV Reactor Pressure Vessel
RRPS Reference Rod Pull Sequence

RSM Rod Server Module

RSPC Rod Server Processing Channel
RSS Remote Shutdown System
RSSM Reed Switch Sensor Module

RSW Reactor Shield Wall

RTIF Reactor Trip and Isolation Function(s)

 RT_{NDT} Reference Temperature of Nil-Ductility Transition

RTP Reactor Thermal Power RW Radwaste Building

RWBCR Radwaste Building Control Room RWBGA Radwaste Building General Area

RWBHVAC Radwaste Building HVAC

RWCU/SDC Reactor Water Cleanup/Shutdown Cooling

ESBWR

Design Control Document/Tier 2

<u>Term</u> <u>Definition</u>

RWE Rod Withdrawal Error RWM Rod Worth Minimizer

SA Severe Accident

SAR Safety Analysis Report

SB Service Building

S/C Digital Gamma-Sensitive GM Detector

SC Suppression Chamber S/D Scintillation Detector

S/DRSRO Single/Dual Rod Sequence Restriction Override

S/N Signal-to-Noise
S/P Suppression Pool
SAS Service Air System

SB&PC Steam Bypass and Pressure Control System

SBO Station Blackout

SBWR Simplified Boiling Water Reactor SCEW System Component Evaluation Work

SCRRI Selected Control Rod Run-in

SDC Shutdown Cooling SDM Shutdown Margin

SDS System Design Specification
SEOA Sealed Emergency Operating Area

SER Safety Evaluation Report SF Service Water Building

SFP Spent fuel pool

SIL Service Information Letter
SIT Structural Integrity Test
SIU Signal Interface Unit
SJAE Steam Jet Air Ejector
SLC Standby Liquid Control

SLCS Standby Liquid Control System

SLMCPR Safety Limit Minimum Critical Power Ratio

SMU SSLC Multiplexing Unit SOV Solenoid Operated Valve

SP Setpoint

SPC Suppression Pool Cooling

SPDS Safety Parameter Display System

SPTMS Suppression Pool Temperature Monitoring Subsystem of Containment Monitoring System

SR Surveillance Requirement SRM Source Range Monitor

SRNM Startup Range Neutron Monitor

ESBWR

Design Control Document/Tier 2

Term Definition

SDO Serier Reset

SRO Senior Reactor Operator SRP Standard Review Plan

SRS Software Requirements Specification
SRSRO Single Rod Sequence Restriction Override

SRSS Sum of the squares SRV Safety Relief Valve

SRVDL Safety relief valve discharge line
SSAR Standard Safety Analysis Report
SSC(s) Structure, System and Component(s)

SSE Safe Shutdown Earthquake

SSLC Safety System Logic and Control SSPC Steel Structures Painting Council

ST Spare Transformer
STP Sewage Treatment Plant

STRAP Scram Time Recording and Analysis Panel

STRP Scram Time Recording Panel

SV Safety Valve SWH Static water head

SWMS Solid Waste Management System

SY Switch Yard

TAF Top of Active Fuel

TASS Turbine Auxiliary Steam System

TB Turbine Building

TBCE Turbine Building Compartment Exhaust

TEAS Turbine Building Air Supply
TBE Turbine Building Exhaust

TBLOE Turbine Building Lube Oil Area Exhaust

TBS Turbine Bypass System
TBHV Turbine Building HVAC
TBV Turbine Bypass Valve

TC Training Center

TCCWS Turbine Component Cooling Water System

TCS Turbine Control System
TCV Turbine Control Valve
TDH Total Developed Head

TEMA Tubular Exchanger Manufacturers' Association

TFSP Turbine first stage pressure

TG Turbine Generator

TGSS Turbine Gland Seal System
THA Time-history accelerograph

ESBWR

Design Control Document/Tier 2

<u>Term</u> <u>Definition</u>

TLOS Turbine Lubricating Oil System

TLU Trip Logic Unit
TMI Three Mile Island

TMSS Turbine Main Steam System
TRM Technical Requirements Manual
TS Technical Specification(s)
TSC Technical Support Center

TSI Turbine Supervisory Instrument

TSV Turbine Stop Valve
UBC Uniform Building Code
UHS Ultimate heat sink

UL Underwriter's Laboratories Inc.
UPS Uninterruptible Power Supply

USE Upper Shelf Energy
USM Uniform Support Motion

USMA Uniform support motion response spectrum analysis
USNRC United States Nuclear Regulatory Commission

USS United States Standard

UV Ultraviolet

V&V Verification and Validation
Vac / VAC Volts Alternating Current
Vdc / VDC Volts Direct Current
VDU Video Display Unit

VW Vent Wall

VWO Valves Wide Open WD Wash Down Bays

WH Warehouse
WS Water Storage
WT Water Treatment

WW Wetwell XMFR Transformer

ZPA Zero period acceleration

13. CONDUCT OF OPERATIONS

This chapter provides information relating to the operational plans for the ESBWR. The purpose of this chapter is to provide reasonable assurance that the COL applicant's organization will be able to operate the ESBWR in a manner that protects the public health and safety.

13.1 ORGANIZATIONAL STRUCTURE OF APPLICANT

This section is the responsibility of the COL applicant. The organizational structure must be consistent with the human system interface design assumptions described used in the ESBWR. These assumptions are described in DCD Chapter 18.

13.1.1 COL Information

COL applicant referencing the ESBWR will submit documentation that demonstrates that their organizational structure is consistent with the ESBWR design.

13.2 TRAINING

13.2.1 Reactor Operator Training

To be provided by the COL applicant.

13.2.2 Training for Non-Licensed Plant Staff

To be provided by the COL applicant.

13.2.3 COL Information

13.2.3.1 Incorporation of Operating Experience

The results of reviews of operating experience shall be incorporated into training and retraining programs in accordance with the provisions of TMI Action Item I.C.5, Appendix 1A. The organizational responsibilities for accomplishing this shall be clearly identified.

13.2.3.2 Training Requirements for Preoperational and Low-Power Testing

A training program for the plant staff will be developed. The program will include all phases of plant operation including preoperational testing and low-power operation in accordance with the provisions of TMI Action Item I.G.1.

13.3 EMERGENCY PLANNING

Emergency planning is not within the scope of the ESBWR design. However, design features, facilities, functions, and equipment necessary for emergency planning are considered in the design bases of the standard plant.

The ESBWR Standard Plant complies with all the TSC design requirements. Specifically, a TSC of sufficient size to support 26 people is located in the electrical building. Display capability in the TSC is described in Subsection 18.4.2.11.

The TSC is environmentally controlled to provide room air temperature, humidity and cleanliness appropriate for personnel and equipment.

The room is provided with radiological protection and monitoring equipment necessary to ensure that radiation exposure to any person working in the TSC would not exceed 5 rem whole body, or its equivalent, to any part of the body. The level of protection is similar to the main control room. However, in the event that all off-site and on-site AC power is unavailable, the TSC would be evacuated and the TSC management function would be transferred to the control room operators as described in Section 6.4.

The TSC is provided with reliable voice and data communication with the main control room and EOF and reliable voice communications with the OSC, NRC Operations Centers and state and local operations centers. Control room data communication through the emergency response data system (ERDS) with the NRC Operations Centers will also be provided as appropriate.

13.3.1 Preliminary Planning

Not required.

13.3.2 Emergency Plan

To be provided by the COL applicant.

13.3.3 COL License Information

13.3.3.1 Identification of OSC and Communication Interfaces with Control Room and TSC

The COL applicant is responsible for identifying the OSC and the communication interfaces for inclusion in the detailed design of the control room and TSC. The detailed requirements are provided in Section 3 of NUREG-0696.

The habitability requirements of the available OSC locations in the ESBWR are not comparable to that of the control room. Thus, the COL applicant's emergency plan shall include provisions for evacuation of OSC personnel in the event of a large radioactive release.

The OSC communications system shall have at least one dedicated telephone extension to the control room, one dedicated telephone extension to the TSC, and one touch-tone telephone capable of reaching on-site and off-site locations, as a minimum. Any portable radio communications are also to be specified by the COL applicant.

The COL applicant will identify the operational support center (OSC) and the communication interfaces for inclusion in the detailed design of the control room and the technical support center (TSC).

13.3.3.2 Identification of EOF and Communication Interfaces with Control Room and TSC

The EOF is not within the scope of the ESBWR Standard Plant. It is the responsibility of the COL applicant to identify the EOF and the communication interfaces for inclusion in the detailed design of the TSC and control room. The detailed requirements are provided in Section 4 of NUREG-0696.

The COL applicant will identify the Emergency Operating Facility (EOF) and the communication interfaces for inclusion in the detail design of the TSC and control room.

13.3.3.3 Decontamination Facilities

In a building adjacent to the main change rooms, decontamination facilities for use by on-site individuals will be provided. Showers and waste collection equipment will be used to ensure spread of contamination is controlled and disposal cost of waste material is minimized. The central location is convenient to health physics support personnel who will supervise this activity.

The COL applicant will provide decontamination facilities and supplies at the site for decontamination of on-site individuals in the reactor building adjacent to the main change rooms.

13.4 REVIEW AND AUDIT

To be provided by the COL applicant.

13.4.1 COL Information

The COL applicant shall provide a plan for conducting reviews of operating phase activities that are important to safety. The provisions for the plant operations review of operational activities, for the independent review of plant operations and for the independent assessment of activities for safety enhancement shall be provided in accordance with 10 CFR 50.40 (b), TMI Action Item I.B.1.2, and ANSI 18.7/ANS 3.2 or subsequent NRC-approved version of ANSI/ANS 3.2 elected by the COL applicant.

13.5 PLANT PROCEDURES

13.5.1 Administrative Procedures

To be provided by the COL applicant.

13.5.2 Operating and Maintenance Procedures

To be provided by the COL applicant.

13.5.3 COL Information

13.5.3.1 Plant Operating Procedures Development Plan

A Plant Operating Procedures Development Plan shall be generated which establishes:

- That the scope encompassed by the procedures development process includes those operating procedures defined in Subsection 13.5.3.4, which direct operator actions during normal, abnormal and emergency operations, including consideration of plant operations during periods when plant systems/equipment are undergoing test, maintenance or inspection.
- The methods and criteria for the development, verification and validation, implementation, maintenance and revision of procedures. The methods and criteria shall be in accordance with TMI Items I.C.1 and I.C.9.

13.5.3.2 Emergency Procedures Development

In addition to the above, for Emergency Procedures development, the plan shall establish:

- That a writer's guide shall be developed and implemented which defines the process for developing emergency procedures. The writer's guide will contain objective criteria that require that the emergency procedures developed are consistent in organization, style, content and usage of terms.
- The form and content of the documentation describing the emergency procedure development activity results which includes, but is not limited to:
 - the objectives of the emergency procedure development process,
 - the methods employed during emergency procedure development,
 - deviations from generic technical guidelines approved by the NRC and
 - discussion of any design change recommendations and/or negative implications that the current design may have on safe operation as a result of emergency procedures development plan implementation.

13.5.3.3 Implementation of the Plan

Implementation of the Plant Operating Procedures Development Plan shall establish:

• Procedures that are consistent with the requirements of 10 CFR Part 50 and the TMI requirements described in NUREG-0737 and Supplement 1 to NUREG-0737.

- Requirements that the procedures developed shall include, as necessary, the elements described in ANSI 18.7/ANS-3.2 or subsequent NRC-approved version of ANSI/ANS-3.2 elected by the COL applicant.
- That the operator actions identified in the vendors task analysis and PRA efforts in support of the Standardized Design certification, Standardized Plant Design Emergency Procedure Guidelines and consideration of plant-specific equipment selection and site-specific elements such as the service water intake structure and the ultimate heat sink shall be used as a basis for specifying plant operating procedures.
- The definition of the methods through which specific operator skills and training needs, as may be considered necessary for reliable execution of the procedures, will be identified and documented.
- That the procedures specified above shall be made available for the purposes of the Human Factors V&V Implementation Plan described in Article VII of Table 18E-1.
- Procedures for the incorporation of the results of operating experience and the feedback of pertinent information into plant procedures in accordance with the provisions of TMI I.C.5.

13.5.3.4 Procedures Included In Scope Of Plan

The following procedures shall be included in the scope of the Plant Operating Procedures Development Plan described above:

System Procedures

Procedures as delineated in Section A3 of ANSI/ANS-3.2 shall be prepared as appropriate.

Procedures For Off-Normal Or Alarm Conditions

Procedures for off-normal or alarm conditions that require operator action in the MCR and RSS shall be prepared as appropriate.

General Plant Operating Procedures

As discussed in Section A5 of ANSI/ANS-3.2, procedures shall be prepared for the integrated operations of the plant.

Procedures for Combating Emergencies and Other Significant Events

As discussed in Section A10 of ANSI/ANS-3.2, procedures shall be provided to guide operations in emergencies and other significant events.

Procedures for Maintenance and Modification

Maintenance and modification procedures that require operator actions to be taken in the MCR or RSS shall be prepared as appropriate.

Procedures for Radiation Control

Procedures for the control of radioactive releases as discussed in Section A7(d) of ANSI/ANS-3.2 shall be prepared as appropriate.

Procedures for Calibration, Inspection and Testing

Calibration, inspection and testing procedures that require operator actions to be taken in the MCR or RSS shall be prepared as appropriate.

13.5.4 References

None

13.6 PHYSICAL SECURITY

13.6.1 Preliminary Planning

13.6.1.1 Site Physical Security

13.6.1.1.1 Security Organization

13.6.1.1.2 Physical Barriers

- ullet
- •
- •

13.6.1.1.7 Security Power Supply

13.6.1.1.8 Testing and Maintenance of Security Systems

13.6.1.2 Security Policies and Procedures

- •
- •
- •
- •
- •
- •
- •

13.6.1.3 COL Information

13.6.1.3.1 Physical Security Plan

13.6.1.3.2 Contingency Plan

13.6.1.3.3 Guard Force Training Plan

13.6.1.3.4 Physical Security Systems Design

13.6.1.3.5 Security System Testing and Maintenance

13.6.1.4 References