NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 050426-3

SRR: 27509 SDG: 262217 CASE: CNWRA

VTSR: April 25, 2005

PROJECT#: 06002.01.242

FINAL REPORT

SAMPLE ANALYSIS DATA SHEET 0

010002

Sample ID CAL41

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262217

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	7.29	0.250
Magnesium	0.859	0.250
Silicon	12.6	0.125
Potassium	4.84	1
Sodium	77.2	1
Strontium	< 0.0250	0.0250

SOUTHWEST RESEARCH INSTITUTE DUPLICATE SUMMARY 010003

Sample ID CAL41

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262217D

SRR: 27509

	Original Sample	Duplicate	
Analysis	Result (mg/L)	Result (mg/L)	RPD
Calcium	7.29	7.28	0.00%
Magnesium	0.859	0.837	2.59%
Silicon	12.6	12.6	0.00%
Potassium	4.84	4.75	1.88%
Sodium	77.2	76.6	0.78%
Strontium	< 0.0250	< 0.0250	0.00%

SAMPLE ANALYSIS DATA SHEET

010004

Sample ID CAL42

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262218

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	7.68	0.250
Magnesium	0.888	0.250
Silicon	12.7	0.125
Potassium	4.14	1
Sodium	77.9	1
Strontium	< 0.0250	0.0250

MATRIX SPIKE SUMMARY

010005

Sample ID CAL42

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262218S

SRR: 27509

	Original Sample	Spike	Spike	
Analysis	Result (mg/L)	Result (mg/L)	Added (mg/L)	Recovery
Calcium	7.68	99.9	100	92.2%
Magnesium	0.888	93.1	100	92.2%
Silicon	12.7	31.5	20.0	94.0%
Potassium	4.14	95.6	100	91.5%
Sodium	77.9	169	100	91.1%
Strontium	< 0.0250	19.6	20.0	98.0%

SOUTHWEST RESEARCH INSTITUTE SAMPLE ANALYSIS DATA SHEET 010006

Sample ID CAL43

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262219

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	7.44	0.250
Magnesium	0.848	0.250
Silicon	12.5	0.125
Potassium	4.92	1
Sodium	78.5	1
Strontium	< 0.0250	0.0250

SAMPLE ANALYSIS DATA SHEET 010007

Sample ID CAL44

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262220

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	7.45	0.250
Magnesium	0.903	0.250
Silicon	12.7	0.125
Potassium	4.13	1
Sodium	78.4	1
Strontium	< 0.0250	0.0250

SAMPLE ANALYSIS DATA SHEET

010008

Sample ID

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Water

Lab System ID: 262221

Client: Division 20

Date Received: 04/25/05

Project No.: 06002.01.242

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	7.13	0.250
Magnesium	0.836	0.250
Silicon	12.6	0.125
Potassium	3.96	1
Sodium	78.5	1
Strontium	< 0.0250	0.0250

SAMPLE ANALYSIS DATA SHEET

010009

Sample ID CAL46

Lab Name: Southwest Research Institute

Lab Code: SwRI Matrix: Water

Lab System ID: 262222

Client: Division 20

Date Received: 04/25/05

Project No.: 06002.01.242

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	7.46	0.250
Magnesium	0.878	0.250
Silicon	12.8	0.125
Potassium	4.35	1
Sodium	78.0	1
Strontium	< 0.0250	0.0250

SAMPLE ANALYSIS DATA SHEET 010010

Sample ID
CAL47

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262223

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	7.28	0.250
Magnesium	0.829	0.250
Silicon	12.8	0.125
Potassium	6.21	1
Sodium	79.0	1
Strontium	< 0.0250	0.0250

SAMPLE ANALYSIS DATA SHEET

010011

Sample ID CAL48

Lab Name: Southwest Research Institute

Matrix: Water

Lab Code: SwRI

Lab System ID: 262224

Client: Division 20

Date Received: 04/25/05

Project No.: 06002.01.242

SRR: 27509

	Sample	Reporting
Analysis Analysis	Result (mg/L)	Limit (mg/L)
Calcium	7.22	0.250
Magnesium	0.837	0.250
Silicon	12.8	0.125
Potassium	4.20	1
Sodium	79.8	1
Strontium	<0.0250	0.0250

SAMPLE ANALYSIS DATA SHEET 010012

Sample ID CAL49

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262225

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	6.53	0.250
Magnesium	0.758	0.250
Silicon	12.8	0.125
Potassium	4.48	1
Sodium	79.4	1
Strontium	<0.0250	0.0250

SOUTHWEST RESEARCH INSTITUTE SAMPLE ANALYSIS DATA SHEET 010013

Sample ID CAL410

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262226

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	2.65	0.250
Magnesium	0.487	0.250
Silicon	13.7	0.125
Potassium	4.77	1
Sodium	109	1
Strontium	< 0.0250	0.0250

SOUTHWEST RESEARCH INSTITUTE SAMPLE ANALYSIS DATA SHEET 010014

Sample ID CAL411

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: 04/25/05

Matrix: Water

Project No.: 06002.01.242

Lab System ID: 262227

SRR: 27509

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	1.24	0.250
Magnesium	1.11	0.250
Silicon	25.4	0.125
Potassium	4.57	1
Sodium	172	1
Strontium	< 0.0250	0.0250

LABORATORY CONTROL SAMPLE 010015

Sample ID

LCSW - E15H1 / E16H1

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: NA

Matrix: Water

Project No.: 06002.01.242

Lab System ID: NA

SRR: 27509

Task Order: 050426-3

	Sample	True	
Analysis	Result (mg/L)	Value (mg/L)	Recovery
Calcium	93.5	100	93.5%
Magnesium	93.1	100	93.1%
Silicon	18.7	20.0	93.5%
Potassium	89.8	100	89.8%
Sodium	89.6	100	89.6%
Strontium	19.2	20.0	96.0%

NA- Not Applicable.

BLANK SUMMARY

010016

Sample ID

PBW - E15H1 / E16H1

Lab Name: Southwest Research Institute

Client: Division 20

Lab Code: SwRI

Date Received: NA

Matrix: Water

Project No.: 06002.01.242

Lab System ID: NA

SRR: 27509

Task Order: 050426-3

	Sample	Reporting
Analysis	Result (mg/L)	Limit (mg/L)
Calcium	< 0.250	0.250
Magnesium	< 0.250	0.250
Silicon	< 0.125	0.125
Potassium	<1.00	1
Sodium	<1.00	1
Strontium	< 0.0250	0.0250

NA- Not Applicable.

NUCLEAR PROJECT

CLIENT: Division 20

010017

TASK ORDER: 050426-3

SRR: 27509 SDG: 262217 CASE: CNWRA

VTSR: April 25, 2005

PROJECT#: 06002.01.242

Task Orders/01-QPP-015

Laboratory Task Order

TO #: 050426-3 Revision: 1

SDG: 262217 VTSR: 04/25/05 CASE: CNWRA SRR #'s: 27509 Client(s): Div. 20 Project(s): 06002.01.242 Manager(s): DAMMANN, MIKE

To PM: 05/20/05 To QA: 06/06/05

To Client: 06/20/05 010018

Instructions

DIVISION 20 - CNWRA. 4-WEEK TAT.

Point of Contact is BRADLEY WERLING (x6565). ELEVEN samples received for SILICON, CALCIUM, MAGNESIUM, SODIUM, POTASSIUM and STRONTIUM by ICP.

Work is 10 CFR 50 Appendix B, 10 CFR Part 21. CONTACT Charlie Butcher (ext. 5928, pager 271-5172) BEFORE STARTING ANY WORK ON THIS TASK ORDER. If Charlie Butcher is not available, contact MARK EHNSTROM (ext. 3530) or JOANN BOYD (ext. 2169)

CONTACT PM WITH ANY ADDITIONAL QUESTIONS.

Rev1 (JR052505) - Prelim results were emailed to Bradley Werling on 5/20/05, revised to QAU and to client dates.

Documents Related to this task order: 16856[COC 27509]

Test: DIL-DILUTION

Section: METALPREP

Holding: 28 days from CED

Prep, Dilution

Cnt: 11

System ID	Type	Cont	Matrix	Customer ID	CED	Method Date
262217		1	Water	CAL41	22 Apr 05	20 May 05
262218		1	Water	CAL42	22 Apr 05	20 May 05
262219		1	Water	CAL43	22 Apr 05	20 May 05
262220		1	Water	CAL44	22 Apr 05	20 May 05
262221		1	Water	CAL45	22 Apr 05	20 May 05
262222		1	Water	CAL46	22 Apr 05	20 May 05
262223		1	Water	CAL47	22 Apr 05	20 May 05
262224		1	Water	CAL48	22 Apr 05	20 May 05
262225		1	Water	CAL49	22 Apr 05	20 May 05
262226		1	Water	CAL410	22 Apr 05	20 May 05
262227		1	Water	CAL411	22 Apr 05	20 May 05

Test: ICP-SWRI Section: METALS Holding: 180 days from CED

ICP Analysis by SwRI Method

Cnt: 11

System ID	Type	Cont	Matrix	Customer ID	CED CED	Method Date
262217		1	Water	CAL41	22 Apr 05	19 Oct 05
262218		1	Water	CAL42	22 Apr 05	19 Oct 05
262219		1	Water	CAL43	22 Apr 05	19 Oct 05
262220		1	Water	CAL44	22 Apr 05	19 Oct 05
262221		1	Water	CAL45	22 Apr 05	19 Oct 05
262222		1	Water	CAL46	22 Apr 05	19 Oct 05
262223		1	Water	CAL47	22 Apr 05	19 Oct 05
262224		1	Water	CAL48	22 Apr 05	19 Oct 05
262225		1	Water	CAL49	22 Apr 05	19 Oct 05
262226		1	Water	CAL410	22 Apr 05	19 Oct 05
262227		1	Water	CAL411	22 Apr 05	19 Oct 05

010019

01-QPP-015 Division 01 Revision 5 June 2004

Document No.

Chemistry and Chemical Engineering Division

QUALITY PROJECT PLAN FOR

PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

SOUTHWEST RESEARCH INSTITUTE Chemistry and Chemical Engineering Division 6220 CULEBRA ROAD, SAN ANTONIO, TEXAS 78238

Quality Assurance Engineer

01-QPP-015 Division 01 Rev 5/June 2004 Page i

010020

QUALITY PROJECT PLAN FOR PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIONMENTAL CHEMISTRY

SWRI AUTHORIZATION SIGNATORIES

This is to certify that this Quality Project Plan of Southwest Research Institute (SwRI) has been reviewed and approved by the following personnel:

JO ANN BOYD

Quality Assurance Manager

(210) 522-2169

REZA KARIMI

Director, Department of Analytical and Environmental Chemistry

MICHAEL G. MACNAUGHTON

Vice President, Chemistry and Chemical Engineering Division

CHRISTOPHER HOSSON

(210) 522-5838

LATE

(210) 522-2169

DATE

(210) 522-2169

DATE

(210) 522-2169

DATE

01-QPP-015 Division 01 Rev 5/June 2004 Page ii

TABLE OF CONTENTS

	<u>P</u> i	age
1.0 INTR	ODUCTION	1
2.0 SCOF	PE	1
3.0 REFE	RENCES	1
4.0 APPL	ICABLE SECTIONS OF SWRI PROGRAM QUALITY PLAN (PQP-NUCLEAR)	1
4.1	Indoctrination and Training	1
4.2	Qualification of Personnel	2
4.3	Design Control	
4.4	Right of Access	
4.5	Control of Supplier-Generated Documents	
4.6	Acceptance of Services Only	3
4.7	Commercial Grade Items	
4.8	Inspection	5
4.9	Inspection and Testing	
4.10	Handling, Storage, Packaging, Preservation, and Delivery	5
4.11	Quality Assurance Records	
4.12	10 CFR, Part 21	
4.13	Certified Test Report	
4.14	Valid Documents List	
5.0 HISTO	DRY OF REVISIONS	7

01-QPP-015 Division 01 Rev 5/June 2004 Page 1 of 7

PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

1.0 INTRODUCTION

This Quality Project Plan (QPP) defines the Quality Assurance (QA) program requirements for personnel providing the chemical analyses for commercial nuclear power plants. Southwest Research Institute (SwRI) *Program Quality Plan (PQP-Nuclear)*, *Nuclear Services* shall implement the QA requirements. Project activities controlled by the PQP-Nuclear shall be accomplished as specified by the appropriate sections of 01-QAP-004, *Quality Assurance Plan for Analytical and Environmental Services* and/or nationally recognized testing methods as specified on individual purchase orders. This QPP shall be applied to all projects initiated for nuclear utilities in the Department of Analytical and Environmental Chemistry. If, as a result of complexity, duration, or other factors, it is determined that a unique, project-specific quality plan is required, the project QAE shall notify the Project Manager and a project-specific quality plan shall be generated in accordance with SOP-01-4.2.1, *Preparation and Revision of Documented Procedures*.

2.0 SCOPE

This Quality Project Plan shall be applied to the chemical analyses performed for commercial nuclear power plants by the Department of Analytical and Environmental Chemistry within the Chemistry and Chemical Engineering Division. Although the majority of the work performed for nuclear facilities resides within the Department of Analytical and Environmental Chemistry, other departments within the division may utilize this Quality Project Plan as deemed necessary when nuclear projects are conducted.

3.0 REFERENCES

- 3.1 SwRI Quality System Manual 2000
- 3.2 10 CFR 50, Appendix B, ASME NQA-1
- 3.3 SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services
- 3.4 01-QAP-004, Quality Assurance Plan for Analytical and Environmental Services

4.0 APPLICABLE SECTIONS OF SWRI PROGRAM QUALITY PLAN (PQP-NUCLEAR)

4.1 Indoctrination and Training

4.1.1 Personnel performing duties affecting quality shall receive quality training to the SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services prior to performing any work on projects for nuclear utilities. This training will be conducted either by Institute Quality Systems (IQS) or Division 01 Quality Assurance personnel and documentation shall be evident in the personnel training files maintained in Division

Southwest Research Institute Proprietary

01-QPP-015 Division 01 Rev 5/June 2004 Page 2 of 7

01 Quality Assurance.

4.1.2 Indoctrination and training of personnel shall be conducted in accordance with SOP-01-6.2.1, *Qualification and Training*.

4.2 Qualification of Personnel

- 4.2.1 Testing personnel shall be designated as qualified to perform applicable project activities as specified in SOP-01-6.2.1, Qualification and Training.
- 4.2.2 During the performance of each testing process, testing personnel shall have access to the necessary documented procedures, i.e., QPP, QAP, Task Order, Division Quality System Standard Operating Procedures (SOPs), and applicable test/analytical procedures (TAPs) available for ready reference.
- 4.2.3 Any person who has not performed testing activities associated with any particular method being used for nuclear utilities projects for a period of one year shall be reevaluated prior to the conduct of the test.
- 4.2.4 Quality Assurance personnel witnessing the testing process for nuclear utilities shall have documented evidence of qualifications maintained by Institute Quality Systems or Division 01 Quality Assurance.

4.3 Design Control

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

4.4 Right of Access

- 4.4.1 Procurement documents shall provide for access to the suppliers' facilities and records for surveillance, inspection, or audit by SwRI and clients.
- 4.4.2 Where appropriate, quality clause **Q32** shall be noted on the procurement documents to indicate that right of access for inspection and surveillance of activities associated with the order shall be afforded to SwRI and clients.

4.5 Control of Supplier-Generated Documents

- 4.5.1 Client documents shall be controlled in accordance with SOP-01-4.2.1, *Preparation and Revision of Documented Procedures*. These procedures provide the requirements for the preparation, review, approval, issue, distribution, and revision of documents controlled by the Chemistry and Chemical Engineering Division.
- 4.5.2 Documents may be controlled as Plans or Work Instructions and shall be accessible through the Division Intranet link, *Contract Requirements* as PDF files.
- 4.5.3 Nationally recognized test methods shall be of the most current issue or as specified in the purchase order. Task orders shall identify the applicable test methods to be used on the nuclear project.

Southwest Research Institute Proprietary

01-QPP-015 Division 01 Rev 5/June 2004 Page 3 of 7

4.6 Acceptance of Services Only

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

4.7 Commercial Grade Items

- 4.7.1 Where an item is to be incorporated into a test or deliverable to a client, and that item is not subject to design or specification requirements that are unique to nuclear facilities, used in applications other then nuclear facilities, and procured from the supplier on the specifications set forth in the manufacturers' published product and description, the item shall be considered "commercial grade".
- 4.7.2 Chemical reagents and standards used for testing purposes shall be ordered to specific chemical grades and certificates of analysis shall be required with each lot.
- 4.7.3 Controls for procurement planning, supplier selection, supplier performance evaluation, and acceptance of procured items and services other than chemical reagents and standards shall be as identified in SOP-01-7.4.1, Purchasing, and any referenced document within that procedure.
- 4.7.4 Receipt inspection of chemical reagents, standards, and test items for use on nuclear safety-related projects shall be performed by department personnel and documented on the SwRl Receipt Traveler or FRM-109, Item Receipt Report, as specified in SOP-01-8.2.4, Monitoring and Measurement. Any discrepancy such as a damaged container or container label shall be documented on the form and the client shall be contacted for disposition.
- 4.7.5 Prior or acceptance of a commercial grade item, the receipt inspection shall determine the following:
 - (a) Damage was not sustained during shipment;
 - (b) The item has satisfied the specified acceptance criteria; and
 - (c) Specified documentation, as applicable to the item, was received and is acceptable.
- 4.7.6 Receipt inspection of chemical reagents and standards shall also consist of verification of chemical type, grade, container integrity, certificate of analysis, and shelf life, where applicable. Upon acceptance of chemical reagents and standards, the containers shall be labeled with the following:
 - (a) Chemical name;
 - (b) Chemical grade;
 - (c) Lot code;

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 5/June 2004 Page 4 of 7

- (d) Date received; and
- (e) Shelf life, when applicable.
- 4.7.7 Expired shelf life items shall not be used for testing purposes.
- 4.7.8 Lot codes of chemical reagents and standards used during equipment standardization and testing shall be recorded on the individual testing data sheets to provide traceability.
- 4.7.9 Samples supplied to SwRI for testing shall be received by the Sample Custodian and logged into the laboratory logbook. Sample documentation and sample custody shall be maintained in accordance with TAP-01-0407-001, Sample Receipt Inspection, and TAP-01-0407-035, Organic and Inorganic Sample Security.
- 4.7.10 Samples supplied to SwRI for testing shall be labeled with the following:
 - (a) Sample control number;
 - (b) Purchase order number;
 - (c) Purchase order line item number, as applicable;
 - (d) Task order number;
 - (e) Nuclear QA label; and
 - (f) Sample retention date, when applicable.
- In the event that samples are damaged upon receipt, a Sample Discrepancy **Record** shall be generated from the Division Intranet.
- 4.7.12 The testing task order shall list the project number, tests required, test methods required, and shall be labeled Nuclear Quality.
- 4.7.13 Identification and traceability shall be maintained in accordance with SOP-01-7.5.1, Item Identification and Traceability.

01-QPP-015 Division 01 Rev 5/June 2004 Page 5 of 7

4.8 Inspection

- 4.8.1 Inspection for acceptance shall be performed by qualified persons other than those who conduct or directly supervise the work being inspected.
- 4.8.2 Institute Quality System (IQS) personnel shall perform surveillance activities as required to ensure compliance with the contract and this Quality Project Plan. Specific areas in which IQS may perform surveillance activities include, but are not limited to, the following:
 - (a) Receiving inspection and labeling of chemical reagents, standards, and testing samples;
 - (b) Testing processes;
 - (c) Calibration and major equipment;
 - (d) Sample and record retention; and
 - (e) Test records.

4.9 Inspection and Testing

- 4.9.1 Required tests for acceptance shall be conducted under appropriate environmental conditions using the tools and equipment necessary to conduct the test in a manner to fulfill test requirements and acceptance criteria.
- 4.9.2 Tests shall be conducted, controlled, and verified in accordance with **SOP-01-8.2.4**, *Monitoring and Measurement*.
- 4.9.3 Controls for measuring and test equipment shall be as specified in SOP-01-7.6.1, Control of Measuring and Test Equipment.
- 4.9.4 Controls for identification, segregation, reporting, and resolution of nonconforming items and conditions shall be as specified in SOP-01-8.3.1, *Nonconformance Reporting*.

4.10 Handling, Storage, Packaging, Preservation, and Delivery

- 4.10.1 Controls for handling, storage, packaging, preservation, and delivery of items are identified in SOP-01-7.5.3, Handling, Storage, Packaging, Protection, and Delivery of Items.
- 4.10.2 Samples specified on the purchase order to be returned to the client shall be prepared and packaged as specified on the purchase order. Each package shall be marked legibly and indelibly with the purchase order/release number and line item number(s) relevant to the package.

01-QPP-015 Division 01 Rev 5/June 2004 Page 6 of 7

4.11 Quality Assurance Records

- 4.11.1 Quality assurance records shall furnish documentary evidence that items or activities meet specified quality requirements. Documents that ensure this evidence include TAP-01-0407-014, Inventory of Case File Purges, and SOP-01-4.2.4, Storage and Maintenance of Quality Records. These documents and this QPP ensure that QA records shall be legible, identifiable, retrievable, and maintained in dual storage.
- 4.11.2 Records shall be traceable to associated items and activities and shall accurately reflect the work accomplished or information required.
- 4.11.3 Documents shall be considered valid records only if stamped, initialed or signed and dated by authorized personnel or otherwise authenticated.
- 4.11.4 Records of test analyses performed by the Department of Analytical and Environmental Chemistry are classified as nonpermanent and shall be retained for a minimum of five years. Nonpermanent records are those required to show evidence that an activity was performed in accordance with the applicable requirements, but need not be retained for the life of the item. Based on the use of the final data, the client shall be responsible for determining and implementing permanent storage requirements.
- 4.11.5 In order to satisfy duplicate storage requirements, one copy of the QA record shall maintained by the Project Manager in Building 70 and a separate copy shall be maintained in the Division Quality Assurance Archives in Building 201. Storage requirements shall be as stated in SOP-01-4.2.4, Storage and Maintenance of Quality Records, to ensure protection against the risk of damage or destruction.

4.12 10 CFR, Part 21

- 4.12.1 SwRI procurement documents shall include requirements for reporting and approving disposition of supplier nonconformances and, when required, compliance to 10 CFR, Part 21.
- 4.12.2 The Manager of Institute Quality Assurance or Director of Institute Quality Systems shall determine if a nonconforming condition is reportable under 10 CFR, Part 21, and initiate reporting and condition in accordance with the SwRI Operating Policies and Procedures (OPP). Safety hazards or defects that could create a substantial safety hazard shall be reported. Substantial safety hazard means a loss of safety function to the extent that there is a major reduction in the degree of protection provided to public health and safety.

4.13 Certified Test Report

The Project Manager and Institute Quality Assurance Manager as complying with all contractual requirements shall certify test reports. The certified test report shall reference the purchase order/release number, the test methods performed, and the purchase

Southwest Research Institute Proprietary

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 5/June 2004 Page 7 of 7

order/release line item number.

4.14 Valid Documents List

The Department of Analytical and Environmental Chemistry task order shall specify all applicable documents and appropriate document revision level for each document. The task order shall then serve as the Valid Documents List (VDL) for each individual project.

5.0 HISTORY OF REVISIONS

Versions 0 through 3 of this plan are maintained on record in Division 01 Quality Assurance.

Revision 4

Title of document changed from the Standard Project Quality Plan SPQP-CH/AN to Quality Project Plan, QPP-015

Extensive revision to comply with Project Quality Plan PQP-Nuclear, *Nuclear Services*, which replaces SwRI NQAPM, *Nuclear Quality Assurance Program Manual*.

Revision 5

Revised 4.1.1 to include designated Division 01 QA staff to conduct pertinent nuclear training sessions to the SwRI Program Quality Plan (PQP-Nuclear), *Nuclear Services*Revised step 4.2.4 to include Division QA as an entity along with IQS, to maintain documented evidence of qualifications

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 050426-3

SRR: 27509 SDG: 262217 CASE: CNWRA VTSR: April 25, 2005

PROJECT#: 06002.01.242

Chain of Custody/Login Paperwork

BRAD WERLING CNWRA-DWZO BI457 SAMPLE LIST/CHAIN OF CUSTODY Requested Turnaround: ☐ 2 Weeks Southwest Research Institute® 3 Weeks Chemistry and Chemical Engineering Division Other: Haks 6220 Culebra Road San Antonio, Texas 78238-5166 Client Purchase Order/Other ID Site/Zone ID SwRI Contact Client Mike Dammann **Analyses Requested** REMARKS Sample Collection Date (mm/dd/yy) Sample Collection Time Preservation a = HCI to $pH \le 2$ # of Containers Sample Type $c = H_2SO_4$ to pH <2 Matrix Type $\mathbf{d} = \text{NaOH to pH} > 12$ $e = Cool (4^{\circ}C \pm 2^{\circ}C)$ f = Other (specify) Sample ID w 4-22-05 CLIVIT RAD SIN INTACT Matrix Types: Sample Types: Relinquished by (Print/Signature) Date Time SwRI Project#: A - Air Sao Bows / Received by (Print/Signature D - Duplicate B - Biota 1,20,06,002,01,247 Received by SwRI Lab: **ER** - Equipment Rinsate D - Dust ES - Environmental Sample Date Time E - Emission/Stack FB - Field Blank (Signature) L - Liquid FD - Field Duplicate P - Product MS - Matrix Spike Relinquished by (Print/Signature) Date Time Sd - Solid MSD - Matrix Spike Dup S - Soil TB - Trip Blank Date Time SED - Sediment T - Tissue 04/25/05 Received by (Print/Signature) Date Time W - Water Samples Disposed: WP - Wipe Date Time Temp: 22.00 PADIOACTIVE- MAX NP237 values 1.7x10-6Mar 2.8x10-4Mci/mL Relinquished by (Print/Signature) Date Time Samples Disposed by:

Div 01 COC Form 01-01-001, Rev 8/02

Page of Z

										16	856
Shipper Name, Address Address Pray Shipper Name, Bry	WER A- DU 57	111V	0 0		SAMPLE LIST/CHAIN OF CUSTODY Southwest Research Institute® Chemistry and Chemical Engineering Division 6220 Culebra Road San Antonio, Texas 78238-5166				Requested Turnaround: 2 Weeks 3 Weeks Other: 4 wks		
Client			Ada	9,	5		alyses Requeste	Site/Zone	טוי		wke Drawann
Sample ID CAL 411 4-27	(mm/dd/yy) Sample Collection Time	Matrix Type	Sample Type	X Si, Cq, M3;		All	aryses nequeste		21.677 RAO 5111	INTRUT	REMARKS Preservation a = HCl to pH <2 b = HNO ₃ to pH <2 c = H ₂ SO ₄ to pH <2 d = NaOH to pH >12 e = Cool (4°C±2°C) f = Other (specify)
											POC-Brad Werling X 6565 - Fax 5784
Matrix Types: A - Air B - Biota	Sample To D - Duplica ER – Equi	ate pment Rir		5	uished by (Print)	00	3		Date 2/25/05	Time - 4.30	SwRI Project#: 1.20.06002,01,242 Received by SwRI Lab:
D - Dust E - Emission/Stack L - Liquid P - Product Sd - Solid S - Soil SED - Sediment ES - Environmental Sample FB - Field Blank FD - Field Duplicate MS - Matrix Spike MSD - Matrix Spike Dup TB - Trip Blank			Received by (Print/Signature) Relinquished by (Print/Signature)				Date	Time	(Signature) Lynn Hyanev Date Time		
T - Tissue W - Water WP - Wipe Temp: 7 2.n° U	Therm #:	מצי			ed by (Print/Sigr				Date	Time	Oy/25/05 /630 F Samples Disposed: Date Time
Comments: RADIOA V2 luc 596/111	HCTIVE: 05 1.7×10 1.8×10-4	MED 1 DEM MCI,	10237	7 Relinqu	uished by (Print/	Signature)			Date	Time	Samples Disposed by:

Lab	Name Southwest Rese	earch Institute				Page 1 of 1
Rece	eived By (Print Name)					Log-in Date 04/25/2005
Rece	CYNTHIA SAUCEDA cived By (Signature)	Cynt & Janual -	April 1			
Case	Number CNWRA	<u> </u>	Sample Delivery Gro	up No.		SAS Number N/A
Ren	narks: 06002.01.242			Corre	sponding	Remarks: Condition of Sample
1.	Custody Seal(s)	Present/Asent	EPA Sample #	Sample Tag #	Assigned Lab #	Shipment, etc
	custody sources	Intact/Broken	CAL41	None	262217	Intact
2.	Custody Seal Nos.	NIA	CAL42	None	262218	Intact
			CAL43	None	262219	Intact
3.	Chain-of Custody Records	resent Absent*	CAL44	None	262220	Intact
4.	Traffic Reports or Packing Lists	Present Absent	CAL45	None	262221	Intact
5.	Airbill	Airbill/Sticker resent/Absent*	CAL46	None	262222	Intact
6.	Airbill No.	HAND DELIVERED	CAL47	None	262223	Intact
			CAL48	None	262224	Intact
7.	Sample Tags	Present Absent	CAL49	None	262225	Intact
	Sample Tag Numbers	Listed Not listed on Chain of	CAL410	None	262226	Intact
8.	Sample Condition	Custody Intack/Broken*/	CAL411	None	262227	Intact
9.		Leaking 22.0C				
10.	Cooler Temperature Does Information	(es)No*				
	on custody records, traffic reports, and sample tags agree?	ecs).io				
11.	Date Received at Lab	04/25/2005				
12.	Time Received	16:30:00				
	Sample	e Transfer				
Frac	tion WORGANIE PRAD	Praction				
Are:		Area #				
	YNTHIA SAUCEDA	By On				
On 0	4/25/2005	On				
	Contact SMO and attach recor			- I		
Rev	iewed By Cynthin A. 04/25/2005	. Soucioa		Logbook No. Logbook Page No.	Sample Recei	
Date	04/25/2000			LOGOOOK Page No.	5418 (SECTIO	41-205-2 \

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 050426-3

SRR: 27509 SDG: 262217 CASE: CNWRA VTSR: April 25, 2005

PROJECT#: 06002.01.242

Copies of Login Book

Sample Login Book Apr 25, 2005

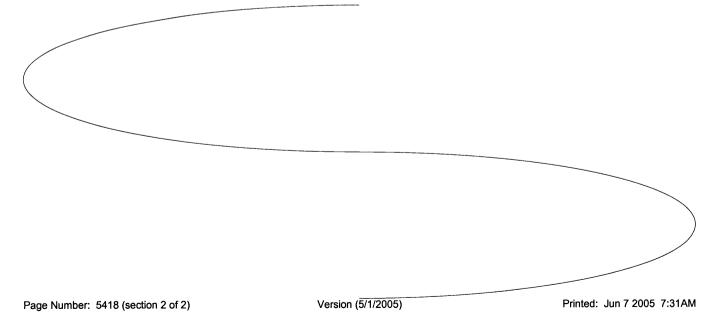
SwRI Login Area Division 1

Sample Receipt: 27507 VTSR Date: Apr 25, 2005		Project: 069.On Hold.	Client: Accutest Labora
		VTSR Time: 08:25:00	Manager: DAMMANN, MIK
System ID	Customer Sample ID		Matrix
262204	ARL-170, Batch #11553-	4	Liquid
262205	Caustic Soda 50%, Batc	h 544B102	Liquid
262206	City Water		Drk Water
262207	CM-88 Emulsifier, Batch	503-094	Liquid
262208	Corsamul 410, Batch #8	874	Liquid
262209	Corsamul 80, Batch #69	50	Liquid
262210	Corsamul 800, Batch #9	652	Liquid
262211	Corsapave 17, Batch #9	041	Liquid
262212	Muriatic Acid 31-5%, Bar		Liquid
262213	#7847-01-01 Propylene Glycol, Batch		Liquid
262214	#2103160512 Texanol, Batch #0506		Liquid
262215	UMTP NAPTHA, Batch	\$ 2104140514	Liquid

Sample Receipt: 27508 VTSR Date: Apr 25, 2005		Project: 06053.06.056 VTSR Time: 08:04:00	Client: UNITED STATES EN Manager: SPIES, RADONNA
System ID	Customer Sample ID		Matrix
262216	EVSR2005-13		Liquid

Sample Rece VTSR Date:	eipt: 27509 Apr 25, 2005	Project: 06002.01.242 VTSR Time: 16:30:00	Manager: DAN	Client: Div. 20 MMANN, MIKE
System ID	Customer Sample ID	1100		Matrix
262217	CAL41			Water
262218	CAL42			Water
262219	CAL43			Water
262220	CAL44			Water
262221	CAL45			Water
262222	CAL46			Water
262223	CAL47			Water
262224	CAL48			Water

Sample Login Book Apr 25, 2005


SwRI Login Area Division 1

Sample Rece VTSR Date:	eipt: 27509 Apr 25, 2005	Project: 06002.01.242 VTSR Time: 16:30:00	Client: D Manager: DAMMANN,	
System ID	Customer Sample ID			Matrix
262225	CAL49			Water
262226	CAL410			Water
262227	CAL411			Water

Sample Receipt: 27510 VTSR Date: Apr 26, 2005		Project: 10192.02.10X	Client: Lynx, LTD. Manager: SUN, GANG	
		VTSR Time: 13:30:00		
System ID	Customer Sample ID	The state of the s	Matrix	
262230	0504210836		Aqueous	
262231	0504211055		Aqueous	
262232	0504211204		Aqueous	
262233	0504211304		Aqueous	
262234	0504211336		Aqueous	
262235	0504211338		Aqueous	
262236	0504211406		Aqueous	
262237	0504250831		Aqueous	
262238	0504250915		Aqueous	
262239	0504251005		Aqueous	
262240	0504251047		Aqueous	

Number of samples for today: 35

Number of Containers for today: 37

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 050426-3

SRR: 27509 SDG: 262217 CASE: CNWRA VTSR: April 25, 2005

PROJECT#: 06002.01.242

RAW DATA

TRACE METALS PREPARATORY LABORATORY DIGESTION LOG

SOUTHWEST RESEARCH INSTITUTE
SAN ANTONIO, TEXAS 78228

BOOK / PAGE: 60 208

	B): Div 20					010037
	RDER(S): 050426-3		SDG	(S): <u>Z62</u>	217	
PROJEC	TNO(S): 06062.01.24	2				
METHOD	:3005A3050B3050B-7.5	3010A 3	020A 7	760A77	40AHCI	O ₄ HCIO ₄ /H ₂ SO ₄
	veFusion Teflon Rocl					1 2 1
	Water Soil Biota Solid			OTHER	4	,
	MENT: GFAA ICP ICP-MS					
	RG #: HNO3#_5219 HC					
	L STD: Sc @ 10 PPM <u></u> Be @				G#4691	1EXP: 7/06 AMT: 1
oven/Hot	plate/ Block ID:	Temperature (°	C):			
					\mathcal{A}	الآمر ا
					The state of the s	
					/	5
						•
	Sample Identification	-	DAME :			-
	Sample Identification	df	WT(g)	I.V.(ml)	F.V.(ml)	
	PBW-E16H1			10	10	
	LCSW-E16H1*			10	10	
	262217	5		2	10	
	262217d			2	10	
	262218			2	10	
	262218s	5		2	10	
	262219	5		2	10	
	262220	5		2	10	
	262221	5		2	10	
	262222	5		2	10	
	262223	5		2	10	
	262224	5		2	10	
	262225	5	-	2	10	
	262226 262227			2	10	
	202221	5		2	10	
-	* 40uL ICAL-1 Spex#4837 ex *40ul Si IV #5046 exp. 3/06 ar PBW&LCSW are prepared as	nd 40ul Sr IV #4	633 exp. 8	05	. 3/06	
						<u> </u>
	//					I
		X				
	5/16	4,				LOCATION
						LOCATION:
					1	
	D BY: D			ATE:	-16-05	· ·
EPAREI						
EPAREI VIEWEI				ATE: 6	16 105	,

TRACE METALS PREPARATORY LABORATORY DIGESTION LOG

SOUTHWEST RESEARCH INSTITUTE
SAN ANTONIO, TEXAS 78228

BOOK / PAGE: 61 017

	: Div 20						7.7	010038
	DER(S): 057426-3				SDG	i(S): <u>Z L Z</u>	217	010038
	NO(S): <u>Ubooz.el.</u>							
								HClO*\H*2O*
	eFusionTeflon							
	Water8oilBiota						,	
	ENT: GFAAICP_\(\sigma\)							
	RG #: HNO3#_5719							
NTERNAL	. STD: Sc @ 10 PPM	Be @ 10	PPM	SOU	RCE:	INOR	G# <u>4961</u> E	XP: 7/0C AMT: 5000
ven/Hotpl	late/ Block ID: wa	Tem	perature	(°C)	::::::::			44/
							\mathcal{V}^{r}	<u> د ند</u>
<u> </u>					NACT ()	11.77 (15		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Sample Identification		df		WT(g)	I.V.(ml)	F.V.(ml)	
	PBW-E19H1	 		1		5	5	
	LCSW-E19H1*	 	+			5	5	
	262217	 	 	5		1	5	ļ
	262217d			5		1	5	
	262217s	L		5		11	5	
		age of the control of	والمعادل والمستول المائية بإناء مدار والمور والمستوج	a commence description of	and the second of the second o			
	the state of the s		nggan yang pangganggang dan d				+>	
							1	
						and the second second		
							 	
								1
					J.*			
			0 ² /	and the second s				
			٥٦٠					
		4	٥٦٨					
		A 53	ا کران					
	J	45)	07/					
	J	5,1	٥٦٤					
		31	07/					
		53	٥٦٤					
	<u></u>		0					
		53	٥٦٠					
		5,1	67					LOCATION:
		53	٥٦٤					
REPAREC	DBY:		07			DATE:	15-05	 .
REPARED) & <	07/				-15-05 -19-05	 .

FRM-191 (Rev 4/Jan 05)

SOUTHWEST RESEARCH INSTITUTE®

6220 Culebra Rd San Antonio, Texas 78228

010039

		SPECTR	O ICP DAILY LO	G ·	
ANALYST			DATE_S	-16-05	·
POWER:12	ن (ر		FLOWS:		
10112111			1 20110.	Aux_40	
				Coolant 60 Mass Flow Contro	Hor ML
CURRENT	PROPO	SED	7	Wass I low Contro	1161 <u>330</u>
5781	5078	020	Na .		•
4772	4777		Fe		
4935	4935		Sr	•	
7127			J 01	CLP STD1 SC	151-7
QC PREP DATE:			7	CLP_STD1_SC	
			1	CLP_STD2_SC	
CCV/ICV			1	CLP_STD3_SC	
CR	 			CLP_STD4_SC	
ICSA				CLP_STD5_SC	
ICSAE	05KBZ			BLK_SC	05K0Z
50.5	CLIENT	TO#	220 1507 110	METHOD	
FILE	CLIENT	TO#	PROJECT NO.	METHOD	PREP PAGE
250516	CHZM-WG	050428-K	06355,56.00		60-184
050516A	DIVEO	050476-3	06002.01.242	SWLI	60-208
<u> </u>					
	+	+-A	16 05		
	·	1//5	16		
					
L					
COMMENTS:					
					-
MAINTENANCE:		0.7	uen.		
Cleaned Torch:	YES	011	HER:		
Changed Pump Tut					
Cleaned Optics:	YES				
Polished Optics:	YES				
<u> </u>					
	~				
REVIEWED BY:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			DATE: 5 -	25-2005

SOUTHWEST RESEARCH INSTITUTE®

6220 Culebra Rd San Antonio, Texas 78228

010040

SPECTRO ICP DAILY LOG

	1	0. 2011	JIOI DAILI LO	_	
ANALYST			DATE_S	-19-55	
POWER: 17	mi)		FLOWS:		
PUWEN: 12			1 20110.	Aux 40	
				Coolant 60	- 111
			T	Mass Flow Control	ler_886
CURRENT	PROPOS	SED			
5062	5070		Na		•
4762	4772		Fe		
4920	4736		Sr	•	
1100	1.3]~.	CLP_STD1_SC	05607
0.0.0000.0.475			1	CLP_STD2_SC	
QC PREP DATE:					
CCV/ICV	05 Fee 2			CLP_STD3_SC	
CRI				CLP_STD4_SC	75
ICSA			1	CLP_STD5_SC	
ICSAB	05ker			BLK_SC	05602
FILE	CLIENT	TO#	PROJECT NO.	METHOD	PREP PAGE
050519	DIYW	050426-3	06002.01.242	SWLI	61-017
0505191	Bechter	0535018		60.2007	61-05
03031179	7,300,000	0 30301 1	0.00011.41000	_	
					>
	37	 			
	<u>)</u>	 	14-07		
		10			
			·		
COMMENTS:					
					·
	· · · · · · · · · · · · · · · · · · ·				
MAINTENANCE:		0.7	urb.		
	VES	01	HER:	<u> </u>	
Cleaned Torch: Changed Pump Tub	oing: YES				
Changed Pump Tub Cleaned Optics:	YES				
Polished Optics:	YES	,			
DEVIEWED BY:	B-2m			DATE: 5-	25-2005
HEVIEWED BY:	1			DAIL.	-

BOOK/PAGE 09 212

SOUTHWEST RESEARCH INSTITUTE®

6220 Culebra Rd San Antonio, Texas 78228 010041

TJA_2 TRACE ICP DAILY LOG

ANALYST		·	DATE	5-16-05	
As 189.042 Prof	ile Line		•	As Intensity: 38 2,7	41
PEAK POSITION	V .0370	41			
VERNIER POSIT				STDs PREP DATE:	•
				CLP_STD1_SC	05607
				CLP_STD2_SC	
QC PREP DATE	: :		}	CLP_STD3_SC	
CCV/ICV	05400]	CLP_STD4_SC	
CRI			'	CLP_STD5_SC	
ICSA				CLP_STD6_SC	
ICSAB	OSEOT	<u> </u>		BLK_SC	USKOZ
COMMENTS	FILE	CLIENT	TO#	PROJECT NO.	METHOD
B5042X12		CHZM	050428-12	06355.56.006	6010S 60-189
6504263	YUSMAL	Divzo	050426-3	06007.01.242	SUKI
B505048A	YUSMAX	Bethre	050504-8		61-00 61-00
B505112	YUSMAY	Westin	050511-2	SA 02811.02.00	161-008
	, N		/		3
	<u> </u>	1 5.160	>		
		3			
	-				
1.					
COMMENTS:			,		
-					
MAINTENANCE					
	Change	gump tu	5		
					<u>·</u>
•					
REVIEWED BY:	13-	·		DATE: 5	125/05

ICP ICV/CCV SOLUTION

CCV-05EGZ

010042

Date Prepared: 5-2-5 Prepared By:

HN03 INORG #: 5では HCI INORG #: 5088

Make up as needed in 1000ml volumetric flask in 1% HNO3 AND 5% HCl.

Element	Std Conc	Amt added	Check	Source	Inorg #	Stock Conc	Exp Date
	(ppm)					(ppm)	
Sc	10	1ml		INORGVENT	5175	10000	5-1-06
В	5	5ml		SPEX	4966	1000	1-15-66
Li	5	5ml		SPEX	4846	1000	10-30-05
Мо	5	5ml		SPEX	4847	1000	16-30-65
Р	5	5ml		SPEX	4758	1000	8-30-05
Si	5	5ml		SPEX	५७३५	1000	2-28-66
Ti	5	5ml	/	SPEX	5040	1000	2-28-06
Sr	5	5ml		SPEX	4759	1000	8-30-05
Sn	5	5ml		SPEX	5237	1000	2-28-66
Bi	5	5ml		SPEX	4912	1000	11-30-05
La	5	5ml		SPEX	4845	1000	10-30-5
Υ	5	5ml		SPEX	4913	1000	11-30-65
Pd	1	1mi		SPEX	4967	1000	1-15-06
S	1	1ml		SPEX	4617	1000	6-30-05
Th	1 :	1ml	/	SPEX	4760	1000	4-30-05
U	1	1ml	/	SPEX	4619	1000	6-30-05
W	1	1ml		SPEX	4661	1000	7-30-65
Zr	5	5ml	/	SPEX	5039	1000	2-26-6
Na	10	1ml		SPEX	4998	10000	1-30-06
ICV-2A	vary	10ml		SPEX	4909	mix	11-30-05
ICV-2B	vary	1ml		SPEX	4911	mix	11-30-05
ICV-2C	vary	10ml		SPEX	4710	mix	11-30-05

Expiration Date: 6-30-05

ICP Calibration Blank/ICB/C	CB Solution	13 004
Date Prepared: 2-14-05 Make up as needed in 1000ml volumetric flask.	A	
Date Prepared: 2-14-05	Prepared By:	01004 3
•		
Added 10 ml HNO3 INORG #: 4985		
Added 50 ml HCL_INORG #: 4993		
Added 1000ul of 10000ppm Sc (INORG. VEN	T.) EXP. Date: 10-1-05	NORG #: 4761
ICP Calibration Blank/ICB/C	CB Solution	i.
ID: BLK-05CO!	1	•
Date Prepared: 3-1-05 Make up as pooded in 1000ml volumetric flack	Prepared By:	-
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #: 4979		
1 7 7 1	10 -1-15	
Added 50 ml HCL INORG #: 4596 Added 1000ul of 10000ppm Sc (INORG. VEN	T.) EXP. Date: 4 + 65 11/1	NORG #: 4761
ICP Calibration Blank/ICB/C	CB Solution	
ID: BLK-05001	0	
Date Prepared: 4-1-0<	Prepared By:	
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #: 5166		
Added 50 mil HCL INORG #: 57059		1
Added 1000ul of 10000ppm Sc (INORG. VEN	T.) EXP. Date: <u>10-1-౮</u> I	NORG #: 4761
IOD Calibration Blank/ICB/C	CR Solution	
ICP Calibration Blank/ICB/C	CD Solution	
1D: BLK-05 Kes Z		
Date Prepared: 5-255	Prepared By:	
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #: 5217		
Added V 50 ml HCL INORG #: 5086		NODO # 510 T
Added 1000ul of 10000ppm Sc (INORG. VEN	T.) EXP. Date: <u>5-1-06</u>	NORG #: 2142

FRM-296 (Rev 0/May 02) ICP Calibration Standards

13 030

Date Prepared: 5-2-5

Prepared By:

HNO3 INORG #: 5217

HCI INORG #:____5088

010044

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCI.

Prepare	d Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date
	Name		(ppm)	ml				(ppm)	
[
	STD1-	Al	50	2.50		INORVENT	4762	10000	10-105
		Ca	50	2.50	レ	INORVENT	4988	10000	2-1-06
	05502	Fe	50	2.50		INORVENT	5048	10000	3-1-06
150	15600	K	50	2.50	L	INORVENT	4907	10000	12-1-05
5-750	0.	Mg	25	1.25	L	INORVENT	4656	10000	81-45
		Na	50	2.50	V	INORVENT	4657	10000 -	8-1-05/
		Li	10	5.00	V	INORVENT	462X	1000	8-1-05
		Sc	10	0.500	ن	INORVENT	5175	10000	5-1-06
	STD2-	Ва	10	5.00		INORVENT	5027	1000	3-1-06
	·	Be	5	2.50	1	INORVENT	4542	1000	6-1-05
	. 1	Cr	10	5.00	<u>س</u>	INORVENT	4906	1000	12-1-05
}	ustur	Cu	10	5.00	r	INORVENT	5049	1000	3-1-06
		Ni	10	5.00	·/	INORVENT	5843	1000	3-1-06
		Sc	10	0.500		INORVENT	5135	10000	5-1-06
	STD3-	Cd	10	5.00	-	INORVENT	5041	1000	3-1-06
		Со	10	5.00	V	INORVENT	5044	1000	3-1-06
	,	Mn	10	5.00	~	INORVENT	4989	1000	Z-1-06
	OSEAZ	V	10	5.00	س	INORVENT	4516	1000	1-1-06
	03	Zn	10	5.00	~	INORVENT	4915	1000	1-1-06
		Sc	10	0.500		INORVENT	5175	10000	5-1-6
							 		2 - 2 - 2
	STD4-	Ag	2	1.00		INORVENT	4764	1000	10-1-03
		As	10	5.00		INORVENT	49857	1000	7-1-06
		Pb	10	5.00		INORVENT	4774	1000	3-1-06
	1.1	Sb	10	5.00	~	INORVENT	5042	1000	
	USEUL	Se	10	5.00	-	INORVENT	4630	1000	8-1-65
		TL	10	5.00	_/	INORVENT	ASSO	1000	2-1-06
		Sc	10	0.500		INORVENT	5175	10000	5-1-06
						INIODVENE	- 13	1000	7 1-1/-
	STD5-	В	10	5.00		INORVENT	5047	1000	3-1-06
		Mo	10	5.00		INORVENT	5050	1000 1000	3-1-06
		P	10	5.00	<u> </u>	INORVENT	4593	1000	6-1-05
	İ	Si	10	5.00		INORVENT		1000	3-1-06
	. 1	Ti	10	5.00	~	INORVENT	4635	1000	4-1-05
1	USTEDI	Sr	10	5.00	<u></u>	INORVENT		1000	5-1-06
		Sn	10	5.00	<u></u>	INORVENT	5174	1000	8-1-05
		Bi	5	2.50		INORVENT	4658	1000	51-06
		Sc	10	0.500		INURVENT	\$175	10000	ا الله
	CTDC		10	5.00		INORVENT	4763	1000	10-1-05
	STD6-	La	10		-	INORVENT	4657	10000	8-1-03
1		Na	10	0.05				1000	3-106
1		Pd	10	5.00		INORVENT	5045	1000	1-106
\		S	10	5.00 5.00		INORVENT	4917	1000	101-10
15	OSTOR	Th	10	5.00	<u></u>	INORVENT	4844	1000	11-1-05
5.2.03	05	U	10 5	2.50	-	INORVENT	4428	1000	4-105
		W			-	INORVENT	4660	1000	3-1-06
		Y 7.	10	5.00 5.00		INORVENT	444C	1000	8-1-05
		Zr	10		<u></u>	INORVENT		10000	5-106
		SC	10	0.500		INORVENT	5175	10000	3,06

Expiration Dates:

STD4: 87-05

STD2: 6-1-65

STD5: 6-1-05

STD3: かりゃく

STD6: 8 -1-05

FRM-299 (Rev 0/May 02)

010045

Div 20 to#050426-3 06002.01.242 Margh 5/17/06

) in 5/26/05

262217 for (a 1.45786 hg/hl x AFS = 7.29mg/L

Sample ID	Element	Result	Qual (C)	Qual (Q) Units	RL	%RPD	%Recovery	TV	rl	mg/L	sigwt	Dilution	Calc RL	ug/ml	Date	Time
pbw-E15H1	Ca3179	0.250	U	mg/L	0.25				0.05	0.03855	0.0386	5	0.25	0.00771	05/16/05	14:00
pbw-E15H1	Mg2790	0.250	U	mg/L	0.25				0.05	0.00295	0.00295	5	0.25	0.00059	05/16/05	14:00
pbw-E15H1	Si2881	0.125	U	mg/L	0.125				0.025	0.1064	0.106	5	0.125	0.02128	05/16/05	14:00
pbw-E15H1	Sr4215	0.0250	U	mg/L	0.025				0.005	0.00015	0.00015	5	0.025	0.00003	05/16/05	14:00
lcsw-E15H1	Ca3179	93.5		mg/L	0.25		93.5%	100	0.05	93.48075	93.5	5	0.25	18.69615	05/16/05	14:05
lcsw-E15H1	Mg2790	93.1		mg/L	0.25		93.1%	100	0.05	93.07545	93.1	5	0.25	18.61509	05/16/05	14:05
lcsw-E15H1	Si2881	18.7		mg/L	0.125		93.5%	20	0.025	18.72535	18.7	5	0.125	3.74507	05/16/05	14:05
lcsw-E15H1	Sr4215	/ 19.2		mg/L	0.025		96.0%	20	0.005	19.23635	19.2	5	0.025	3.84727	05/16/05	14:05
262217	Ca3179	/ 7.29		mg/L	0.25				0.05	7.2893	7.29	5	0.25	1.45786	05/16/05	14:09
262217	Mg2790	0.859		mg/L	0.25				0.05	0.8588	0.859	5	0.25	0.17176	05/16/05	14:09
262217	Si2881	12.6		mg/L	0.125				0.025	12.58005	12.6	5	0.125	2.51601	05/16/05	14:09
262217	Sr4215	0.0250		mg/L	0.025				0.005	0.02035	0.0204	5	0.025	0.00407	05/16/05	14:09
262217d	Ca3179	7.28		mg/L	0.25	0.1%			0.05	7.27945	7.28	5	0.25	1.45589	05/16/05	14:14
262217d	Mg2790	0.837		mg/L	0.25	2.6%			0.05	0.83705	0.837	5	0.25	0.16741	05/16/05	14:14
262217d	Si2881	12.6		mg/L	0.125	0.0%			0.025	12.5699	12.6	5	0.125	2.51398	05/16/05	14:14
262217d	Sr4215	0.0250	U	mg/L	0.025	0.0%			0.005	0.02	0.02	5	0.025	0.004	05/16/05	14:14
262218	Ca3179	7.68		mg/L	0.25				0.05	7.6818	7.68	5	0.25	1.53636	05/16/05	14:19
262218	Mg2790	0.888		mg/L	0.25				0.05	0.888	0.888	5	0.25	0.1776	05/16/05	14:19
262218	Si2881	12.7		mg/L	0.125				0.025	12.7289	12.7	5	0.125	2.54578	05/16/05	14:19
262218	Sr4215	0.0250		mg/L	0.025				0.005	0.02065	0.0207	5	0.025	0.00413	05/16/05	14:19
262218s	Ca3179	99.9		mg/L	0.25		92.2%	100	0.05	99.9183	99.9	5	0.25	19.98366	05/16/05	14:24
262218s	Mg2790	93.1		mg/L	0.25		92.2%	100	0.05	93.06685	93.1	5	0.25	18.61337	05/16/05	14:24
262218s	Si2881	31.5		mg/L	0.125		94.0%	20	0.025	31.46455	31.5	5	0.125	6.29291	05/16/05	14:24
262218s	Sr4215	19.6		mg/L	0.025		98.0%	20	0.005	19.6025	19.6	5	0.025	3.9205	05/16/05	14:24
262219	Ca3179	7.44		mg/L	0.25				0.05	7.43895	7.44	5	0.25	1.48779	05/16/05	14:28
262219	Mg2790	0.848		mg/L	0.25				0.05	0.84835	0.848	5	0.25	0.16967	05/16/05	14:28
262219	Si2881	12.5		mg/L	0.125				0.025	12.5407	12.5	5	0.125	2.50814	05/16/05	14:28
262219	Sr4215	0.0250		mg/L	0.025				0.005	0.02025	0.0203	5	0.025	0.00405	05/16/05	14:28
262220	Ca3179	7.45		mg/L	0.25				0.05	7.45465	7.45	5	0.25		05/16/05	
262220	Mg2790	0.903		mg/L	0.25				0.05	0.9034	0.903	5	0.25	0.18068	05/16/05	14:33
262220	Si2881	12.7		mg/L	0.125				0.025	12.6862	12.7	5	0.125	2.53724	05/16/05	14:33
262220	Sr4215	0.0250	U	mg/L	0.025				0.005	0.0207	0.0207	5	0.025	0.00414	05/16/05	14:33
262221	Ca3179	7.13		mg/L	0.25				0.05	7.12755	7.13	5	0.25	1.42551	05/16/05	14:38
262221	Mg2790	0.836		mg/L	0.25				0.05	0.83615	0.836	5	0.25	0.16723	05/16/05	14:38
262221	Si2881	12.6		mg/L	0.125				0.025	12.61	12.6	5	0.125	2.522	05/16/05	14:38
262221	Sr4215	0.0250	U	mg/L	0.025				0.005	0.01955	0.0196	5	0.025	0.00391	05/16/05	14:38
262222	Ca3179	7.46		mg/L	0.25				0.05	7.45535	7.46	5	0.25	1.49107	05/16/05	14:43
262222	Mg2790	0.878		mg/L	0.25				0.05	0.87815	0.878	5	0.25	0.17563	05/16/05	14:43

Div 20 to#050426-3 06002.01.242

Sample ID	Element	Result Qual (C)	Qual (Q)	Units	RL	%RPD	%Recovery	TV	rl	mg/L	sigwt	Dilution	Calc RL	ug/ml	Date	Time
262222	Si2881	12.8	1	mg/L	0.125				0.025	12.7512	12.8	5	0.125	2.55024	05/16/05	14:43
262222	Sr4215	0.0250 U	1	mg/L	0.025				0.005	0.0206	0.0206	5	0.025	0.00412	05/16/05	14:43
262223	Ca3179	7.28	ı	mg/L	0.25				0.05	7.28165	7.28	5	0.25	1.45633	05/16/05	15:06
262223	Mg2790	0.829	1	mg/L	0.25				0.05	0.8286	0.829	5	0.25	0.16572	05/16/05	15:06
262223	Si2881	12.8	ı	mg/L	0.125				0.025	12.78815	12.8	5	0.125	2.55763	05/16/05	15:06
262223	Sr4215	0.0250 U		mg/L	0.025				0.005	0.0203	0.0203	5	0.025	0.00406	05/16/05	15:06
262224	Ca3179	7.22	1	mg/L	0.25				0.05	7.2169	7.22	5	0.25	1.44338	05/16/05	15:11
262224	Mg2790	0.837	ı	mg/L	0.25				0.05	0.83735	0.837	5	0.25	0.16747	05/16/05	15:11
262224	Si2881	12.8	1	mg/L	0.125				0.025	12.75335	12.8	5	0.125	2.55067	05/16/05	15:11
262224	Sr4215	0.0250 U	I	mg/L	0.025				0.005	0.0199	0.0199	5	0.025	0.00398	05/16/05	15:11
262225	Ca3179	6.53	ı	mg/L	0.25				0.05	6.52925	6.53	5	0.25	1.30585	05/16/05	15:16
262225	Mg2790	0.758	ı	mg/L	0.25				0.05	0.7579	0.758	5	0.25	0.15158	05/16/05	15:16
262225	Si2881	12.8	1	mg/L	0.125				0.025	12.81235	12.8	5	0.125	2.56247	05/16/05	15:16
262225	Sr4215	0.0250 U		mg/L	0.025				0.005	0.0182	0.0182	5	0.025	0.00364	05/16/05	15:16
262226	Ca3179	2.65	1	mg/L	0.25				0.05	2.6457	2.65	5	0.25	0.52914	05/16/05	15:20
262226	Mg2790	0.487	1	mg/L	0.25				0.05	0.48715	0.487	5	0.25	0.09743	05/16/05	15:20
262226	Si2881	13.7	1	mg/L	0.125				0.025	13.68625	13.7	5	0.125	2.73725	05/16/05	15:20
262226	Sr4215	0.0250 U	r	mg/L	0.025				0.005	0.01165	0.0117	5	0.025	0.00233	05/16/05	15:20
262227	Ca3179	1.24	ı	mg/L	0.25				0.05	1.23665	1.24	5	0.25	0.24733	05/16/05	15:25
262227	Mg2790	1.11	1	mg/L	0.25				0.05	1.11415	1.11	5	0.25	0.22283	05/16/05	15:25
262227	Si2881	25.4	ı	mg/L	0.125				0.025	25.43395	25.4	5	0.125	5.08679	05/16/05	15:25
262227	Sr4215	0.0250 U		mg/L	0.025				0.005	0.01375	0.0138	5	0.025	0.00275	05/16/05	15:25

☐ 200.7 TAP No. 0 ☐ 6010B TAP No. 0 ☐ Other <u>Suas</u>	01-0406-130 Rev			QC STD. ID'S CCV oscol CRI ICSA ICSABoscol	ICP CAL.S ID's Std0 OSE Std1 Std2 Std3 Std4 Std5 Std6 Std6	eZ
Ca Mg		TO //	DATE			.0047
PROJ. NO.					LOGBK PG	
INSTRUM	ENT: \(\(\)	 NCE Z	FIL	ENAME: 🚜	524763	

Method: Run Time	DAILY2 e: 05/16/05		rd: blk			0	10048
Elem Avge SDev %RSD	Ag3280 0000 .0000 65.92	Al3082 .0004 .0000 .8754	As1890 0001 .0000 23.50	B_2496 .0002 .0000 6.914	Ba4934 0000 .0000 114.3	Be3130 0001 .0000 1.084	Bi2230 0000 .0000 103.9
#1 #2	0000 0000	.0004	0001 0001	.0001 .0002	0000 0000	0001 0001	0000 0000
Elem Avge SDev %RSD	Ca3179 .0000 .0000 6.635	Cd2265 0000 .0000 268.7	Co2286 0000 .0000 47.57	Cr2677 .0000 .0000 199.9	Cu3247 .0002 .0000 1.924	Fe2714 .0000 .0000 141.4	K_7664 .0003 .0001 17.88
#1 #2	.0000	.0000	0000 0000	0000 .0000	.0002	.0000	.0003
Elem Avge SDev %RSD	La3988 .0000 .0000 84.54	Li6707 0000 .0000 87.25	Mg2790 .0000 .0000 141.4	Mn2576 .0000 .0000 47.57	Mo2020 0000 .0000 402.0	Na3302 0001 .0000 23.10	Na5889 0185 .0001 .8085
#1 #2	.0000	0000 0000	.0000	.0000	0000 .0000	0001 0001	0184 0186
Elem Avge SDev %RSD	Ni2316 .0000 .0001 41060.	P_1782 .0000 .0000 74.14	2203/1 0000 .0001 1218.	2203/2 .0000 .0000 125.6	Pd3404 .0001 .0000 2.656	S_1820 .0006 .0000 3.615	Sb2068 0011 .0000 1.237
#1 #2	0000 .0000	.0000	.0001 0001	.0000	.0001	.0006	0010 0011
Elem Avge SDev %RSD	Sc3613 71.46 .35 .4923	1960/1 0000 .0001 136.6	1960/2 .0000 .0001 289.6	Si2881 .0012 .0000 1.048	Sn1899 .0000 .0001 659.1	Sr4215 .0000 .0000 236.6	Th2837 .0000 .0000 106.3
#1 #2	71.71 71.21	0000 0001	0000 .0001	.0012	0000 .0001	.0000 0000	.0000
Elem Avge SDev %RSD	Ti33490001 .0000 36.67	Tl19080002 .0000 8.423	U_4090 0003 .0001 14.71	V_2924 0000 .0000 4.772	W_2079 .0003 .0000 9.067	Y_3710 .0000 .0000 52.52	Zn2062 .0000 .0000 356.1
#1 #2	0001 0001	0002 0002	0003 0004	0000 0000	.0002	.0000	.0000
Elem Avge SDev %RSD	Zr3496 .0001 .0001 159.4		5-16-05	m	/		
#1 #2	0000 .0001		\	12/1	5		

010049

IntStd Mode Elem Wavlen Avge SDev	*Counts Sc 361.384 714531 3480.380	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 	
%RSD #1	.4870859 716992	10000						
#2	712070	10000						

Method: Run Time	010	0 50					
Elem Avge SDev %RSD	Ag3280 .0776 .0001 .1136	As1890 .0961 .0001 .0498	2203/1 .2760 .0002 .0606	2203/2 .2406 .0002 .0764	Sb2068 .1377 .0002 .1137	1960/1 .1860 .0007 .3985	1960/2 .1995 .0013 .6584
#1 #2	.0775 .0776	.0961 .0960	.2758 .2761	.2405 .2407	.1376 .1378	.1854 .1865	.1985 .2004
Elem Avge SDev %RSD	Tl1908 .1780 .0003 .1425						
#1 #2	.1778 .1782						
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 707338 229.1026 .0323894	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	707500 707176	10000 10000		 			

Method: Run Time	010051						
Elem Avge SDev %RSD	Al3082 .0937 .0000 .0457	Ca3179 .2154 .0001 .0572	Fe2714 .0846 .0001 .1484	K_7664 .2301 .0004 .1738	Li6707 3.519 .003 .0842	Mg2790 .0816 .0000 .0385	Na3302 .0078 .0000 .2940
#1 #2	.0937 .0937	.2155	.0845	.2298 .2304	3.521 3.517	.0816 .0816	.0077 .0078
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 697781 684.4794 .0980937	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	698265 697297	10000 10000		, 			

	-	_		1			
	DAILY2 : 05/16/05	Standar 11:30:17	010052				
Elem Avge SDev %RSD	B_2496 .1398 .0003 .2320	Bi2230 .0251 .0001 .4154	Mo2020 .2482 .0002 .0762	P_1782 .0261 .0000 .0958	Si2881 .1434 .0004 .3152	Sn1899 .1288 .0002 .1448	Sr4215 2.665 .000 .0184
#1 #2	.1395 .1400	.0251 .0250	.2481	.0261 .0261	.1437	.1287 .1290	2.664 2.665
Elem Avge SDev %RSD	Ti3349 2.641 .003 .1089						
#1 #2	2.639 2.643						
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 724412 714.1779 .0985872	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	724917 723907	10000 10000					

Method: DAILY2 Standard: clp std2 Run Time: 05/16/05 11:33:58 010053 Cr2677 Cu3247 Ni2316 Be3130 Elem Ba4934 .2940 .2860 .3766 1.194 1.355 Avge .001 .0002 .0008 .000 .0002 SDev %RSD .0492 .0756 .2719 .0981 .0364 1.195 1.355 .3768 1.356 .3765 .2862 .2934 #1 .2859 .2945 #2 1.193 5 6 7 4 IntStd 1 NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED Mode *Counts Time --_ _ Elem Sc --_ -___ Wavlen 361.384 _ _ _ _ _ --Avge 709926 10000 SDev 3238.549 .0000000 --709926 10000 _ _ ------_ -_ _ SDev 3238.549 %RSD .4561812 --.0000000 --712216 10000 --707636 10000 --_ _ #1 - -- ---#2

- -

10000

10000

_ _

737115

733932

#1

#2

Standard: clp std3 Method: DAILY2 010054 Run Time: 05/16/05 11:37:18 V 2924 Zn2062 Mn2576 Co2286 Cd2265 $.\overline{1}$ 811 .2486 .7812 .1776 .8436 Avge .0007 .0001 .0004 .0010 .0010 SDev .0253 .2869 .1257 .2061 %RSD .1152 .2491 .7819 .1811 .1778 .8443 #1 .7805 .1811 .2481 .1773 .8430 #2 7 5 6 IntStd 1 NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED *Counts Time Mode ___ _ _ _ _ Sc _ _ Elem _ _ _ _ _ _ Wavlen 361.384 _ _ _ _ _ _ 10000 735524 Avqe --.0000000 --_ _ 2250.721 SDev .0000000 --%RSD .3060026

Scandard.	izacion Rp	.				64601	
Method: I Run Time	DAILY2 : 05/16/05		d: clp_std	16		0100	55
Elem Avge SDev %RSD	La3988 .5153 .0001 .0290	Na5889 .0455 .0002 .4274	Pd3404 .1980 .0002 .0813	S_1820 .0273 .0001 .3161	Th2837 .0965 .0001 .1075	U_4090 .0696 .0001 .0823	W_2079 .1709 .0001 .0719
#1	.5154 .5152	.0453	.1979 .1981	.0273 .0274	.0966	.0697 .0696	.1710 .1708
Elem Avge SDev %RSD	Y_3710 .7775 .0003 .0431	Zr3496 1.951 .001 .0490					
#1 #2	.7778 .7773	1.952 1.950					
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 707688 1750.089 .2472966	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	706451 708926	10000 10000	 				

Method: DAILY2 Slope = Conc(SIR)/IR

010056

			1	• •		040000
Ag3280 Al3082 As1890 B_2496 Ba4934 Be3130 Bi2230 Cd2265 Cc2677 Cd2265 Cr2677 Cu3247 Fe2714 K_7664 La3988 Li6707 Mg2790 Mn2576 Mo2020 Na3302 Na5889 Ni2316 P_1782 2203/1 2203/2 Pd3404 S_1820 Sb2068 Sc3613 1960/1 1960/2 Si2881 Pb220 Se196	Wavelen 328.068 308.215 189.042 249.678 493.409 313.042 223.061 317.933 226.502 228.616 267.716 324.753 271.441 766.491 398.853 670.784 279.078 257.610 202.030 330.232 588.991 231.604 178.287 220.351 220.352 340.458 182.040 206.838 361.384 196.021 196.022 288.158 220.353 196.026	High std clp_std1 clp_std4 clp_std5 clp_std5 clp_std5 clp_std5 clp_std3 clp_std3 clp_std3 clp_std1 clp_std1 clp_std1 clp_std1 clp_std1 clp_std4 clp_std5 clp_std5 clp_std4 clp_std5 clp_std5 clp_std5 clp_std5 clp_std6 clp_std6 clp_std6 clp_std6 clp_std6 clp_std6 clp_std6 clp_std4 clp_std6 clp_std4 clp_std6 clp_std4 clp_std6 clp_std4 clp_std6	Low std blk	Slope 25.7768 535.650 104.031 71.6331 8.37316 3.68867 197.578 232.193 11.8497 56.3129 26.5520 34.9935 591.716 19.4230 2.84199 306.306 12.84199 306.306 12.84199 306.306 12.84199 306.306 12.8526 34.0157 383.517 36.2351 41.5646 51.8773 374.022 72.0843 1.39939 50.1449 70.0705 1.00000 1.000000 1.00000000000000000	Y-intercept .000741 194531 .006264 011030 .000123 .000465 .004158 003738 .000092 .000118 008619 008665 068083 000203 .000042 002777 000081 .000307 .797427 .290482 000004 012367 .000418 000522 003267 224842 .076068 .000000 .002189 001202 086545 .000000 .000000	Date Standardized 05/16/05 11:40:59 05/16/05 11:
		clp_std5				
Se196	196.026	NONE	NONE			
Sn1899 Sr4215 Th2837	189.989 421.552 283.730	<pre>clp_std5 clp_std5 clp_std6</pre>	blk blk blk	3.75271 108.197	000823 000008 001822	05/16/05 11:40:59 05/16/05 11:40:59 05/16/05 11:40:59
Ti3349 Tl1908 U_4090	334.941 190.864 409.014	clp_std5 clp_std4 clp_std6	blk blk blk	3.78602 56.1151 151.130	.000424 .009972 .051521	05/16/05 11:40:59 05/16/05 11:40:59 05/16/05 11:40:59
V_2924 W_2079 Y_3710 Zn2062	292.402 207.914 371.030 206.200	<pre>clp_std3 clp_std6 clp_std6 clp_std3</pre>	blk blk blk blk	55.2145 29.2952 12.8592 40.2321	.001275 007771 000171 000112	05/16/05 11:40:59 05/16/05 11:40:59 05/16/05 11:40:59 05/16/05 11:40:59
Zr3496	349.621	clp_std6	blk	5.60265	000307	05/16/05 11:40:59

05/16/05 11:51:27 AM

Method: DAILY2 Sample Name: icv/ccv Run Time: 05/16/05 11:46:53 Operator:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.9849	9.829	5.101	4.914	10.06	.9888	5.067
SDev	.0005	.015	.003	.025	.01	.0006	.004
%RSD	.0503	.1520	.0561	.5177	.1110	.0572	.0798
#1	.9846	9.818	5.099	4.896	10.05	.9892	5.064
#2	.9853	9.839	5.103	4.932	10.07	.9884	5.070
Errors	QC Pass	QC Pass	QC Pass				
Value	1.000	10.00	5.000	5.000	10.00	1.000	5.000
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem Units Avge SDev %RSD	Ca3179 ppm 20.08 .05 .2390	Cd2265 ppm 1.035 .000	Co2286 ppm 5.189 .000	Cr2677 ppm 1.982 .001 .0518	Cu3247 ppm 2.031 .006 .2920	Fe2714 ppm 10.60 .03 .3188	K_7664 ppm 18.61 .06
#1	20.12	1.034	5.189	1.983	2.027	10.63	18.57
#2	20.05	1.035	5.189	1.982	2.035	10.58	18.64
Errors	QC Pass	QC Pass	QC Pass				
Value	20.00	1.000	5.000	2.000	2.000	10.00	20.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem Units Avge SDev %RSD	La3988 ppm 4.930 .009	Li6707 ppm 5.200 .009 .1701	Mg2790 ppm 20.06 .00	Mn2576 ppm 1.044 .000	Mo2020 ppm 5.155 .009 .1822	Na3302 ppm 27.99 .07 .2452	Na5889 ppm Q41.45 .08 .2029
#1	4.923	5.194	20.06	1.044	5.148	27.94	Q41.39
#2	4.936	5.206	20.06	1.044	5.161	28.04	Q41.51
Errors	QC Pass	QC Pass	QC Fail				
Value	5.000	5.000	20.00	1.000	5.000	30.00	30.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem Units Avge SDev %RSD	Ni2316 ppm 4.976 .003 .0540	P_1782 ppm 5.138 .034 .6627	2203/1 ppm 4.905 .019 .3810	2203/2 ppm 4.930 .000	Pd3404 ppm .9932 .0016 .1666	S_1820 ppm .9698 .0072 .7425	Sb2068 ppm 1.016 .005 .5231
#1	4.978	5.162	4.892	4.930	.9944	.9749	1.020
#2	4.974	5.114	4.918	4.930	.9920	.9647	1.013
Errors Value Range	QC Pass 5.000 10.00	QC Pass 5.000 10.00	NOCHECK	NOCHECK	QC Pass 1.000 10.00	QC Pass 1.000 10.00	QC Pass 1.000 10.00
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis	lysis Report QC Standard		dard	05/16	page 2		
Units Avge SDev %RSD	%R 99.22 .50 .5085	ppm 5.141 .048 .9434	ppm 5.179 .004 .0676	ppm 5.120 .008 .1559	ppm 4.922 .006 .1244	010058 5.166 .018 .3581	ppm 4.923 .007
#1 #2	98.87 99.58	5.106 5.175	5.176 5.181	5.114 5.126	4.917 4.926	5.153 5.179	4.918 4.929
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00
Elem Units Avge SDev %RSD	Sr4215 ppm 5.196 .010 .1957	Th2837 ppm .9914 .0013 .1305	Ti3349 ppm 4.974 .007 .1376	Tl1908 ppm 5.192 .024 .4612	U_4090 ppm Q.8390 .0007 .0786	V_2924 ppm 5.072 .003 .0657	W_2079 ppm 1.019 .009 .8502
#1 #2	5.189 5.203	.9904 .9923	4.969 4.979	5.175 5.209	Q.8395 Q.8386	5.075 5.070	1.013 1.025
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Fail 1.000 10.00	QC Pass 5.000 10.00	QC Pass 1.000 10.00
Elem Units Avge SDev %RSD	Y_3710 ppm 5.000 .004 .0705	Zn2062 ppm 1.046 .004 .3716	Zr3496 ppm 4.856 .006 .1163				
#1 #2	4.997 5.002	1.048 1.043	4.852 4.860				
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00				

Analysis Report QC		QC Stan	QC Standard		05/16/05 11:51:27 AM		
						010059	9
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc						
Wavlen	361.384						
Avge	709018	10000					
SDev	3632.407	.0000000					
%RSD	.5123149	.0000000					
#1	706450	10000					
#2	711587	10000					

Analysis Report Blank Sample 05/16/05 11:58:09 AM page 1

Operator 010060

Method: DAILY2 Sample Name: icb/ccb

Run Time: 05/16/05 11:53:30

Comment:

ľ	Mode: COI	NC Corr.	Factor: 1	L				
	Elem Units Avge SDev %RSD	Ag3280 ppm 0002 .0011 481.7	Al3082 ppm 0022 .0029 134.9	As1890 ppm H.0050 .0028 56.70	B_2496 ppm .0063 .0004 7.037	Ba4934 ppm 0000 .0000 73.77	Be3130 ppm 0000 .0000 365.7	Bi2230 ppm .0055 .0027 49.66
	#1 #2	0010 .0005	0043 0001	H.0070 .0030	.0066 .0060	0000 0001	.0000 0000	.0036 .0074
	Errors High Low	LC Pass .0050 0050	LC Pass .0500 0500	LC High .0050 0050	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0100 0100
	Elem Units Avge SDev %RSD	Ca3179 ppm0012 .0009 78.17	Cd2265 ppm .0001 .0000 21.45	Co2286 ppm 0000 .0006 1789.	Cr2677 ppm 0006 .0005 79.94	Cu3247 ppm .0003 .0008 253.2	Fe2714 ppm 0041 .0022 53.57	K_7664 ppm 0078 .0124 160.0
	#1 #2	0019 0005	.0001	0004 .0004	0010 0003	0002 .0009	0056 0025	0165 .0010
	Errors High Low	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0250 0250	LC Pass .1000 1000
	Elem Units Avge SDev %RSD	La3988 ppm .0000 .0007 25580.	Li6707 ppm .0001 .0000 25.89	Mg2790 ppm 0055 .0081 147.4	Mn2576 ppm 0001 .0000 56.23	Mo2020 ppm .0016 .0003 15.42	Na3302 ppm L3516 .2724 77.47	Na5889 ppm .0088 .0034 39.06
	#1 #2	0005	.0001	0112 .0002	0001 0000	.0014 .0018	L5442 L1590	.0064 .0113
	Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0050 0050		LC Pass .0500 0500
	Elem Units Avge SDev %RSD	Ni2316 ppm 0006 .0011 173.6	P_1782 ppm L0103 .0174 168.9	2203/1 ppm .0040 .0030 75.93	2203/2 ppm 0025 .0037 146.6	Pd3404 ppm .0004 .0023 599.4	S_1820 ppm L0588 .0136 23.07	Sb2068 ppm .0066 .0062 94.02
	#1 #2	.0001 0014	.0020 L0225	.0018 .0061	.0001 0051		L0492 L0684	H.0110 .0022
	Errors High Low	LC Pass .0050 0050	LC Low .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Low .01000100	LC Pass .01000100
	Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis	Report	Blank S	Sample	05/16/	/05 11:58:0		page 2 10061
Units Avge SDev %RSD	%R 100.5 .7 .6865	ppm 0032 .0009 28.94	ppm .0014 .0003 19.08	ppm .0040 .0044 111.8	ppm 0003 .0014 448.7	ppm 0001 .0001	ppm .0010 .0021 213.8
#1 #2	101.0	0025 0038	.0012 .0016	.0008 .0071	.0007 0013	0000 0002	0005 .0024
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Avge SDev %RSD	Sr4215 ppm .0000 .0000 1253.	Th2837 ppm 0008 .0005 61.69	Ti3349 ppm .0001 .0001 54.19	Tl1908 ppm .0018 .0007 36.65	U_4090 ppm 0302 .0008 2.550	V_2924 ppm 0002 .0004 177.8	W_2079 ppm 0028 .0012 42.83
#1 #2	0000 .0000	0012 0005	.0001	.0013	0308 0297	.0001 0005	0020 0037
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0000 .4123	Zn2062 ppm 0002 .0003 142.5	Zr3496 ppm .0002 .0007 384.8				
#1 #2	0001 0001	0004 .0000	0003 .0007				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Analysis Report		Blank Sample		05/16/	page 3		
T=+C+4	1	2	2	4	5	6	10062
IntStd Mode	*Counts	Z Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	/ NOTUSED
		111110	MOTOBED	NOTOBED	NOTOBED	NOTOBED	MOTOBED
Elem	Sc						
Wavlen	361.384						
Avge	718244	10000					
SDev	4995.002	.0000000					
%RSD	.6954464	.0000000					
#1	721776	10000					
#2	714712	10000					

Analysis Report QC Standard 05/16/05 12:03:00 PM page 1

Operator: 010063

Method: DAILY2 Sample Name: cri Run Time: 05/16/05 11:58:20

Comment:
Mode: CONC Corr. Factor: 1

M	ode: CON	NC Corr.	Factor: 1					
	Elem Units Avge SDev %RSD	Ag3280 ppm .0203 .0006 2.690	Al3082 ppm .1000 .0006 .5953	As1890 ppm .0254 .0036 13.98	B_2496 ppm .1046 .0001 .1392	Ba4934 ppm .0206 .0001 .5856	Be3130 ppm .0098 .0000 .1226	Bi2230 ppm .0040 .0022 54.36
	#1 #2	.0200	.0995 .1004	.0279 .0229	.1047 .1045	.0206 .0207	.0098 .0098	.0025
	Errors Value Range	QC Pass .0200 50.00	QC Pass .1000 50.00	QC Pass .0200 50.00	QC Pass .1000 50.00	QC Pass .0200 50.00	QC Pass .0100 50.00	NOCHECK
	Elem Units Avge SDev %RSD	Ca3179 ppm 0008 .0005 59.55	Cd2265 ppm .0108 .0000	Co2286 ppm .1020 .0000 .0378	Cr2677 ppm .0193 .0008 4.272	Cu3247 ppm .0492 .0001 .2889	Fe2714 ppm .1163 .0085 7.290	K_7664 ppm .0017 .0099 587.6
	#1 #2	0011 0005	.0107 .0108	.1020 .1019	.0187 .0199	.0491	.1103 .1223	0053 .0087
	Errors Value Range	NOCHECK	QC Pass .0100 50.00	QC Pass .1000 50.00	QC Pass .0200 50.00	QC Pass .0500 50.00	QC Pass .1000 50.00	NOCHECK
	Elem Units Avge SDev %RSD	La3988 ppm0004 .0006 130.8	Li6707 ppm .0785 .0001 .1102	Mg2790 ppm 0021 .0036 168.9	Mn2576 ppm .0313 .0000 .1398	Mo2020 ppm .0211 .0003 1.508	Na3302 ppm 1098 .0611 55.67	Na5889 ppm .0053 .0031 57.57
	#1 #2	0008 0000	.0784 .0785	0046 .0004	.0313 .0314	.0209 .0213	1530 0666	.0032 .0075
	Errors Value Range	NOCHECK	QC Pass .1000 50.00	NOCHECK	QC Pass .0300 50.00	QC Pass .0200 50.00	NOCHECK	NOCHECK
	Elem Units Avge SDev %RSD	Ni2316 ppm .0808 .0010 1.245	P_1782 ppm .1048 .0033 3.120	2203/1 ppm .0073 .0003 4.371	2203/2 ppm .0062 .0014 21.89	Pd3404 ppm .0021 .0026 123.7	S_1820 ppm 0626 .0161 25.74	Sb2068 ppm .1275 .0018 1.392
	#1 #2	.0816 .0801	.1025 .1071	.0075 .0070	.0072	.0003	0512 0740	.1263 .1288
	Errors Value Range	QC Pass .0800 50.00	QC Pass .1000 50.00	NOCHECK	NOCHECK	NOCHECK	NOCHECK	QC Pass .1200 50.00
	Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis	Report	QC Stan	dard	05/16/	05 12:03:0		page 2 00 64
Units Avge SDev %RSD	%R 99.28 .19 .1875	ppm .0051 .0026 51.56	ppm .0148 .0025 16.86	ppm .1070 .0071 6.608	ppm .0066 .0010 15.40	ppm .0116 .0008 6.848	ppm .1020 .0004 .3493
#1 #2	99.42 99.15	.0069	.0130 .0165	.1020 .1120	.0073 .0059	.0110 .0121	.1023 .1018
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass .1000 50.00	QC Pass .0060 50.00	QC Pass .0100 50.00	QC Pass .1000 50.00
Elem Units Avge SDev %RSD	Sr4215 ppm .0215 .0000 .1300	Th2837 ppm .0024 .0001 3.994	Ti3349 ppm .0201 .0001 .6185	Tl1908 ppm .0224 .0031 13.82	U_4090 ppm .1900 .0043 2.274	V_2924 ppm .1015 .0002 .1951	W_2079 ppm 0018 .0019 106.7
#1 #2	.0215 .0215	.0023	.0200	.0202 .0246	.1869 .1930	.1017 .1014	0004 0032
Errors Value Range	QC Pass .0200 50.00	NOCHECK	QC Pass .0200 50.00	QC Pass .0200 50.00	QC Pass .2000 50.00	QC Pass .1000 50.00	NOCHECK
Elem Units Avge SDev %RSD	Y_3710 ppm .0000 .0000 989.7	Zn2062 ppm .0411 .0002 .4782	Zr3496 ppm .0918 .0005 .5840				
#1 #2	.0000	.0409	.0914 .0922				
Errors Value Range	NOCHECK	QC Pass .0400 50.00	QC Pass .1000 50.00				

Analysis Report		QC Standard		05/16/05 12:03:00 PM			page 3
IntStd Mode Elem Wavlen	1 *Counts Sc 361.384 709408	2 Time 10000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 010 NOTUSED	00,65 NOTUSED
Avge SDev %RSD	1294.713 .1825062	.0000000			 	 ,	
#1 #2	710323 708492	10000 10000	 				 ,

Analysis Report QC Standard 05/16/05 12:07:50 PM page 1

Operator:

Method: DAILY2 Sample Name: icsa Run Time: 05/16/05 12:03:12

010066 Comment: Mode: CONC Corr. Factor: 1

Mode: Col	NC COII.	raccor. z					
Elem Units Avge SDev %RSD	Ag3280 ppm 0012 .0006 50.29	Al3082 ppm 513.6 .6 .1212	As1890 ppm .0081 .0046 56.35	B_2496 ppm 0123 .0009 7.553	Ba4934 ppm .0023 .0000 1.321	Be3130 ppm 0000 .0000 28.12	Bi2230 ppm .0092 .0023 24.62
#1 #2	0016 0008	514.0 513.2	.0049	0117 0130	.0023 .0023	0000 0000	.0109 .0076
Errors Value Range	NOCHECK	QC Pass 500.0 20.00	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK
Elem Units Avge SDev %RSD	Ca3179 ppm 463.2 1.6 .3422	Cd2265 ppm 0014 .0003 23.29	Co2286 ppm .0003 .0002 81.19	Cr2677 ppm 0016 .0006 39.99	Cu3247 ppm .0023 .0000 1.528	Fe2714 ppm 191.5 .3 .1627	K_7664 ppm 0197 .0174 88.59
#1 #2	462.1 464.4	0012 0016	.0001	0020 0011	.0023	191.3 191.7	0320 0073
Errors Value Range	QC Pass 500.0 20.00	NOCHECK	NOCHECK	NOCHECK	NOCHECK	QC Pass 200.0 20.00	NOCHECK
Elem Units Avge SDev %RSD	La3988 ppm .0040 .0009 22.46	Li6707 ppm .0003 .0001 24.37	Mg2790 ppm 540.6 .5 .0918	Mn2576 ppm 0031 .0001 2.113	Mo2020 ppm 0001 .0001 73.89	Na3302 ppm 0663 .1704 256.9	Na5889 ppm 0211 .0021 9.881
#1 #2	.0034	.0002	540.3 541.0	0032 0031	0001 0002	1868 .0541	0225 0196
Errors Value Range	NOCHECK	NOCHECK	QC Pass 500.0 20.00	NOCHECK	NOCHECK	NOCHECK	NOCHECK
Elem Units Avge SDev %RSD	Ni2316 ppm .0017 .0016 91.01	P_1782 ppm 0195 .0081 41.68	2203/1 ppm .0423 .0015 3.633	2203/2 ppm 0324 .0033 10.18	Pd3404 ppm .0099 .0006 6.352	S_1820 ppm 0423 .0022 5.249	Sb2068 ppm .0121 .0029 23.66
#1 #2	.0006 .0029	0253 0138	.0412	0301 0348	.0095 .0104	0438 0407	.0141
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis	Report	QC Standard		05/16/	05 12:07:5	010067 page 2		
	%R 91.61 .51 .5583	ppm .0000 .0140 1412000.	ppm 0015 .0084 555.6	ppm 0081 .0044 54.60	ppm 0075 .0017 22.49	ppm 0010 .0009 94.27	ppm 0015 .0007 44.41	
• • • • • • • • • • • • • • • • • • • •	91.97 91.25	0099 .0099	.0044	0112 0050	0063 0087	0003 0017	0010 0020	
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	
	Sr4215 ppm .0168 .0000 .1697	Th2837 ppm .0151 .0025 16.66	Ti3349 ppm 0011 .0001 12.89	T11908 ppm .0133 .0016 11.84	U_4090 ppm 0271 .0210 77.61	V_2924 ppm .0002 .0011 571.7	W_2079 ppm 0036 .0032 89.06	
#1 #2	.0168 .0168	.0169	0010 0012	.0144	0420 0122	.0010 0006	0013 0059	
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	
Elem Units Avge SDev %RSD	Y_3710 ppm 0004 .0001 12.12	Zn2062 ppm .0074 .0001 .6364	Zr3496 ppm 0006 .0003 50.18					
#1 #2	0005 0004	.0074	0004 0009					
Errors Value	NOCHECK	NOCHECK	NOCHECK					

Range

Analysis Report		QC Standard		05/16,	page 3		
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 654550 3656.449 .5586199	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	0,068 NOTUSED
#1 #2	657136 651965	10000 10000		 			

Analysis Report QC Standard 05/16/05 12:12:40 PM

page 1

Operator: 010069 Method: DAILY2 Sample Name: icsab Run Time: 05/16/05 12:08:02

Comment:

ľ	Mode: Col	NC COII.	ractor: 1					
	Elem Units Avge SDev %RSD	Ag3280 ppm 1.094 .002 .1569	Al3082 ppm 516.4 .4 .0834	As1890 ppm 1.046 .008 .7228	B_2496 ppm 1.057 .007 .6261	Ba4934 ppm .5318 .0001 .0236	Be3130 ppm .4857 .0000 .0025	Bi2230 ppm .0100 .0010 10.25
	#1 #2	1.093 1.095	516.7 516.1	1.041 1.052	1.052 1.061	.5319 .5317	.4857 .4857	.0093
	Errors Value Range	QC Pass 1.000 20.00	QC Pass 500.0 20.00	QC Pass 1.000 20.00	QC Pass 1.000 20.00	QC Pass .5000 20.00	QC Pass .5000 20.00	NOCHECK
	Elem Units Avge SDev %RSD	Ca3179 ppm 467.3 1.1 .2300	Cd2265 ppm .9880 .0018 .1846	Co2286 ppm .4983 .0019 .3733	Cr2677 ppm .4831 .0006 .1257	Cu3247 ppm .5480 .0008 .1415	Fe2714 ppm 192.7 .1	K_7664 ppm 0107 .0047 43.36
	#1 #2	468.1 466.6	.9867 .9893	.4996 .4970	.4827 .4835	.5475 .5486	192.7 192.8	0140 0074
	Errors Value Range	QC Pass 500.0 20.00	QC Pass 1.000 20.00	QC Pass .5000 20.00	QC Pass .5000 20.00	QC Pass .5000 20.00	QC Pass 200.0 20.00	NOCHECK
	Elem Units Avge SDev %RSD	La3988 ppm .0043 .0006 15.02	Li6707 ppm 1.297 .003 .2236	Mg2790 ppm 545.5 .1	Mn2576 ppm .5091 .0003 .0617	Mo2020 ppm 1.052 .000	Na3302 ppm .1521 .2873 188.9	Na5889 ppm 0229 .0060 25.96
	#1 #2	.0038	1.295 1.299	545.5 545.4	.5089 .5094	1.052 1.052	0510 .3552	0271 0187
	Errors Value Range	NOCHECK	NOCHECK	QC Pass 500.0 20.00	QC Pass .5000 20.00	QC Pass 1.000 20.00	NOCHECK	NOCHECK
	Elem Units Avge SDev %RSD	Ni2316 ppm .9435 .0004 .0443	P_1782 ppm 1.054 .007 .6812	2203/1 ppm 1.024 .001 .0589	2203/2 ppm .9543 .0105 1.097	Pd3404 ppm .0119 .0005 4.287	S_1820 ppm 0467 .0004 .7504	Sb2068 ppm 1.065 .000
	#1 #2	.9432 .9438	1.059 1.049	1.024	.9617 .9469	.0115 .0122	0470 0465	1.065 1.065
	Errors Value Range	QC Pass 1.000 20.00	NOCHECK	NOCHECK	NOCHECK	NOCHECK	NOCHECK	QC Pass 1.000 20.00
	Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

05/16/05 12	:12:40 PM
-------------	-----------

	-	-				010	070
Units Avge SDev %RSD	%R 91.20 .87 .9513	ppm 1.037 .012 1.188	ppm 1.028 .013 1.262	ppm 1.068 .007 .7014	ppm .9776 .0068 .6940	ppm 1.031 .005 .4404	ppm 1.018 .002 .1840
#1 #2	90.59 91.82	1.028 1.046	1.037	1.062 1.073	.9824 .9728	1.034 1.028	1.017 1.019
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 1.000 20.00	QC Pass 1.000 20.00	QC Pass 1.000 20.00	QC Pass 1.000 20.00
Elem Units Avge SDev %RSD	Sr4215 ppm 1.087 .001 .0894	Th2837 ppm .0179 .0046 25.46	Ti3349 ppm 1.002 .000	Tl1908 ppm 1.018 .007 .7210	U_4090 ppm 1.039 .018 1.684	V_2924 ppm .5133 .0002 .0407	W_2079 ppm 0021 .0013 59.46
#1 #2	1.087 1.088	.0147 .0212	1.002 1.002	1.013 1.023	1.027 1.052	.5132 .5134	0030 0012
Errors Value Range	QC Pass 1.000 20.00	NOCHECK	NOCHECK	QC Pass 1.000 20.00	QC Pass 1.000 20.00	QC Pass .5000 20.00	NOCHECK
Elem Units Avge SDev %RSD	Y_3710 ppm 0004 .0000 10.78	Zn2062 ppm 1.007 .001 .1187	Zr3496 ppm .9217 .0017 .1815				
#1 #2	0004 0004	1.008 1.006	.9205 .9229				
Errors Value Range	NOCHECK	QC Pass 1.000 20.00	QC Pass 1.000 20.00				

Analysis Report		QC Standard		05/16/05 12:12:40 PM			page 3
						01	0071
IntStd	1	2	3	4	5	6	7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc						~ ~
Wavlen	361.384						,
Avge	651711	10000		- -			
SDev	6160.315	.0000000					
%RSD	.9452525	.0000000					
#1	647355	10000					
#2	656067	10000					

Analysis Report QC Standard 05/16/05 12:21:08 PM

page 1

Method: DAILY2 Sample Name: icv/ccv Operator: 010072

Run Time: 05/16/05 12:16:33

Comment:

noue. co.	iic coll.	140001. 1					
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.9828	9.818	5.089	4.909	10.07	.9879	5.069
SDev	.0028	.013	.012	.030	.03	.0008	.004
%RSD	.2872	.1290	.2404	.6190	.2970	.0756	.0718
#1	.9808	9.809	5.080	4.888	10.05	.9884	5.067
#2	.9848	9.827	5.098	4.931	10.09	.9874	5.072
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	1.000	10.00	5.000	5.000	10.00	1.000	5.000
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	20.01	1.034	5.177	1.978	2.030	10.61	18.65
SDev	.05	.001	.003	.004	.006	.03	.09
%RSD	.2251	.0516	.0514	.2054	.3155	.2400	.4963
#1	20.04	1.034	5.176	1.981	2.026	10.63	18.58
#2	19.98	1.033	5.179	1.975	2.035	10.60	18.72
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass
Value	20.00	1.000	5.000	2.000	2.000	10.00	20.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem	La3988 ppm 4.925 .002 .0493	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		5.210	20.05	1.045	5.152	28.15	Q41.53
SDev		.014	.02	.001	.007	.08	.15
%RSD		.2666	.0748	.0901	.1339	.2780	.3529
#1	4.923	5.201	20.06	1.044	5.147	28.21	Q41.42
#2	4.927	5.220	20.04	1.046	5.157	28.10	Q41.63
Errors	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Pass	QC Fail
Value	5.000	5.000	20.00	1.000	5.000	30.00	30.00
Range	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	4.981	5.140	4.931	4.953	.9919	.9399	1.022
SDev	.011	.006	.020	.010	.0026	.0030	.003
%RSD	.2287	.1197	.4119	.2028	.2659	.3169	.2742
#1	4.989	5.136	4.916	4.960	.9900	.9378	1.024
#2	4.973	5.144	4.945	4.946	.9937	.9420	1.020
Errors Value Range	QC Pass 5.000 10.00	QC Pass 5.000 10.00	NOCHECK	NOCHECK	QC Pass 1.000 10.00	QC Pass 1.000 10.00	QC Pass 1.000 10.00
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis	Report	QC Stand	dard	05/16/	05 12:21:0	8 PM	page 2
	-					01	0073
Units Avge SDev %RSD	%R 99.30 .28 .2869	ppm 5.191 .055 1.065	ppm 5.224 .017 .3259	ppm 5.134 .003 .0515	ppm 4.945 .000 .0015	ppm 5.213 .007 .1358	ppm 4.927 .001 .0220
#1 #2	99.10 99.51	5.152 5.230	5.236 5.212	5.133 5.136	4.945 4.945	5.208 5.218	4.928 4.926
Errors Value Range	NOCHECK	NOCHECK	NOCHECK	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00
Elem Units Avge SDev %RSD	Sr4215 ppm 5.190 .008 .1471	Th2837 ppm .9855 .0023 .2331	Ti3349 ppm 4.975 .004 .0858	Tl1908 ppm 5.186 .028 .5446	U_4090 ppm Q.8315 .0137 1.648	V_2924 ppm 5.070 .005 .1041	W_2079 ppm 1.015 .008 .7657
#1 #2	5.185 5.196	.9839 .9871	4.972 4.978	5.166 5.206	Q.8412 Q.8218	5.067 5.074	1.009 1.020
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00	QC Pass 5.000 10.00	QC Fail 1.000 10.00	QC Pass 5.000 10.00	QC Pass 1.000 10.00
Elem Units Avge SDev %RSD	Y_3710 ppm 4.996 .000	Zn2062 ppm 1.045 .001 .0747	Zr3496 ppm 4.861 .006 .1248				
#1 #2	4.996 4.996	1.045 1.044	4.856 4.865				
Errors Value Range	QC Pass 5.000 10.00	QC Pass 1.000 10.00	QC Pass 5.000 10.00				

Analysis Report		QC Standard		05/16/	05 12:21:08	B PM	page 3	
•	-					010074		
IntStd Mode	1 *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED	
Elem	Sc			- -	- -			
	361.384 709538	10000					- -	
SDev	2047.074	.0000000						
%RSD	.2885082	.0000000						
#1	708090	10000						
#2	710985	10000						

Analysis Report Blank Sample 05/16/05 12:27:49 PM page 1

Method: DAILY2 Sample Name: icb/ccb Operator: 010075

Comment:

			_				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0001	0011	.0049	.0064	.0000	0000	.0021
SDev	.0001	.0023	.0008	.0032	.0001	.0000	.0033
%RSD	90.37	207.0	15.81	50.68	213.4	.7854	160.4
#1	.0000	0027	.0043	.0087	.0001	0000	0003
#2		.0005	H.0054	.0041	0000	0000	.0044
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0500	.0050	.0500	.0050	.0050	.0100
Low	0050	0500	0050	0500	0050	0050	0100
Elem Units Avge SDev %RSD	Ca3179 ppm0011 .0015 127.4	Cd2265 ppm .0003 .0003	Co2286 ppm 0003 .0004 160.6	Cr2677 ppm .0000 .0004 7978.	Cu3247 ppm .0001 .0009 1208.	Fe2714 ppm .0102 .0052 50.71	K_7664 ppm .0028 .0143 511.8
#1	0022	.0001	0006	0003	.0007	.0065	0073
#2	0001		.0000	.0003	0006	.0138	.0129
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem Units Avge SDev %RSD	La3988 ppm0004 .0011 264.8	Li6707 ppm .0001 .0000	Mg2790 ppm 0058 .0040 68.26	Mn2576 ppm .0000 .0001 202.5	Mo2020 ppm .0021 .0005 22.68	Na3302 ppm L3305 .0528 15.98	Na5889 ppm .0081 .0064 79.31
#1 #2	0011 .0003	.0001	0086 0030	.0001	.0018 .0024	L3678 L2931	.0036 .0126
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Low	LC Pass
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0004	.0064	0001	0002	.0011	L0821	.0027
SDev	.0008	.0008	.0076	.0017	.0064	.0043	.0020
%RSD	220.5	11.88	14920.	832.8	560.4	5.275	72.50
#1 #2	.0009 0002	.0069	0054 .0053	.0010 0014	0034 H.0057	L0790 L0852	.0041
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Low .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis	Report	Blank S	ample	05/16/	05 12:27:4		page 2 0076
Units Avge SDev %RSD	%R 100.1 .1 .0892	ppm .0003 .0018 590.0	ppm .0046 .0012 26.19	ppm .0006 .0011 186.0	ppm 0001 .0014 1090.	ppm .0032 .0014 44.46	ppm 0012 .0014 119.0
#1 #2	100.2 100.1	0010 .0016	.0037	0002 .0014	0011	.0022	0021 0002
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Avge SDev %RSD	Sr4215 ppm .0000 .0000 62.27	Th2837 ppm .0026 .0039 149.2	Ti3349 ppm .0002 .0000 5.624	Tl1908 ppm .0040 .0022 54.29	U_4090 ppm 0066 .0361 550.1	V_2924 ppm 0003 .0000 10.10	W_2079 ppm 0031 .0005 16.46
#1 #2	.0000	.0053 0001	.0002	.0055 .0024	0321 .0190	0003 0003	0027 0035
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev %RSD	Y_3710 ppm .0001 .0000 53.41	Zn2062 ppm 0001 .0001 71.13	Zr3496 ppm .0005 .0004 80.47				
#1 #2	.0001	0001 0002	.0009				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Analysis Report		Blank Sample		05/16/05 12:27:49 PM			page 3	
imarysis	шорчан	•				010077		
IntStd Mode	1 *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED	
Elem	Sc				-			
Wavlen	361.384						, 	
Avge	715384	10000	- -					
SDev	596.0910	.0000000				- -		
%RSD	.0833247	.0000000						
#1	715805	10000						
#2	714962	10000						

05/16/05 12:32:35 PM

Operator: 010078 Method: DAILY2 Sample Name: pbw-E04E1 pg60-184 Run Time: 05/16/05 12:28:01

Comment:

Mode: CO	NC Corr.	Factor: 1					
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0009	0012	.0034	.0049	0000	.0001	.0054
SDev	.0004	.0049	.0013	.0006	.0000	.0000	.0043
%RSD	42.95	409.5	38.12	12.98	182.2	17.83	79.40
#1 #2	.0012	.0022 0046	.0043	.0044	.0000	.0000	.0084 .0024
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0500	.0050	.0500	.0050	.0050	.0100
Low	0050	0500	0050	0500	0050	0050	0100
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0041	.0001	0001	0007	.0005	.0032	.0094
SDev	.0003	.0006	.0004	.0000	.0003	.0076	.0005
%RSD	7.930	508.1	543.1	1.553	56.05	239.4	5.597
#1 #2	.0043	.0005 0003	0003 .0002	0007 0007	.0003	0022 .0085	.0091 .0098
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La3988 ppm0001 .0006 775.7	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.0001	.0065	.0001	.0012	.0164	.0344
SDev		.0001	.0033	.0000	.0008	.0130	.0006
%RSD		48.99	50.08	46.79	67.96	79.23	1.891
#1 #2	.0003 0005	.0001	.0089	.0001	.0017 .0006	.0256 .0072	.0339 .0348
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0000	.0022	.0004	0002	.0018	L1007	.0092
SDev	.0000	.0063	.0004	.0029	.0022	.0062	.0063
%RSD	328.9	282.7	86.66	1288.	120.8	6.145	68.34
#1 #2	0000 .0000	0022 .0067	.0007	.0018 0022	.0034	L1051 L0963	H.0136 .0047
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Low .01000100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Units	%R	mqq	ppm	ppm	ppm	ppm 01	10079
Avge SDev	106.2	0021	.0053	H.1472 .0047	.0000	.0029	0004 .0010
%RSD	.6216	239.0	4.665	3.171	12740.	62.46	238.0
#1 #2	105.8 106.7	0055 .0014	.0052 .0055	H.1439 H.1505	.0014	.0016 .0042	.0003 0011
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC High .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units	Sr4215 ppm	Th2837 ppm	Ti3349 ppm	Tl1908 ppm	U_4090 ppm	V_2924 ppm	W_2079 ppm
Avge SDev	.0000	.0019	.0002	.0012	.0259	0003 .0004	0015 .0014
%RSD	19.24	168.2	.2186	181.2	50.55	105.1	91.20
#1 #2	.0000	.0041 0004	.0002 .0002	.0026 0003	.0351 .0166	0001 0006	0005 0024
Errors High	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
Low	0050	0100	0050	0100	1000	0050	0100
Elem Units Avge SDev %RSD	Y_3710 ppm 0000 .0000 131.1	Zn2062 ppm .0010 .0000 3.004	Zr3496 ppm .0007 .0001 21.77				
#1 #2	0001 0000	.0010 .0010	.0008				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

Analysis Report

05/16/05 12:32:35 PM

page 3 **010080**

IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 759068 4746.808 .6253464	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1	755712	10000					
#2	762425	10000			-		

05/16/05 12:37:21 PM page 1

Operator: 010081 Method: DAILY2 Sample Name: lcsw-E04E1 Run Time: 05/16/05 12:32:47

Comment:

Mode: C	ONC COLL	. Factor:	1				
Elem Units Avge SDev %RSD	Ag3280 ppm .0963 .0004 .4602	Al3082 ppm 3.705 .002 .0648	As1890 ppm 3.819 .000	B_2496 ppm .0024 .0004 16.76	Ba4934 ppm 3.866 .000 .0081	Be3130 ppm .0957 .0001 .1269	Bi2230 ppm .0007 .0041 579.0
#1	.0966	3.706	3.819	.0021	3.866	.0958	0022
#2	.0959	3.703	3.819	.0027	3.866	.0956	.0036
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	18.90	.0993	.9783	.3838	.4820	2.072	15.56
SDev	.02	.0007	.0011	.0003	.0001	.015	.03
%RSD	.0840	.6940	.1176	.0764	.0204	.7196	.1616
#1	18.91	.0998	.9775	.3836	.4819	2.083	15.57
#2	18.89	.0988	.9791	.3840	.4821	2.061	15.54
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0002	.0002	18.84	.9957	.0004	16.97	24.33
SDev	.0004	.0000	.01	.0003	.0000	.23	.03
%RSD	236.7	9.783	.0722	.0312	9.627	1.384	.1400
#1 #2	0001 .0005	.0002	18.83 18.85	.9954 .9959	.0004	17.14 16.81	24.35 24.30
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.9502	.0019	.9519	.9499	.0037	0910	.9907
SDev	.0013	.0076	.0028	.0046	.0013	.0046	.0027
%RSD	.1314	395.3	.2963	.4798	35.32	5.073	.2740
#1	.9511	0034	.9539	.9531	.0027	0942	.9888
#2	.9493	.0072	.9499	.9467	.0046	0877	.9926
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	105.7	3.804	3.809	.1069	.9506	3.807	.0001
SDev	.0	.008	.014	.0008	.0040	.007	.0020
%RSD	.0452	.2150	.3697	.7345	.4186	.1750	2588.
#1	105.8	3.810	3.799	.1074	.9534	3.803	0013
#2	105.7	3.798	3.819	.1063	.9478	3.812	.0015
Elem	Sr4215	Th2837 ppm0172 .0012 7.038	Ti3349	T11908	U_4090	V_2924	W_2079
Units	ppm		ppm	ppm	ppm	ppm	ppm
Avge	.0007		.0001	3.929	.0098	.9704	0029
SDev	.0000		.0001	.013	.0000	.0019	.0013
%RSD	.5910		103.9	.3399	.2500	.1973	45.40
#1 #2	.0007	0163 0181	.0002	3.920 3.939	.0099	.9717 .9690	0020 0038

Elem Units Avge SDev %RSD	Y_3710 ppm 0002 .0000 15.57	Zn2062 ppm .9775 .0003 .0299	Zr3496 ppm .0005 .0001 13.42				
#1 #2	0002 0003	.9773 .9777	.0004				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 755408 399.5153 .0528873	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	755691 755126	10000 10000				, 	

05/16/05 12:42:11 PM

Method: DAILY2 Sample Name: 262380 Operator: 010083

Comment:

nouc. cc	2110 0011	. 140001.	_				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0005	.1513	.0053	.0534	.0388	.0000	.0077
SDev	.0005	.0022	.0012	.0011	.0003	.0000	.0026
%RSD	97.96	1.476	22.46	2.068	.6451	15.11	33.91
#1 #2	.0009	.1529 .1497	.0044 .0061	.0542 .0526	.0390 .0386	.0000	.0095 .0058
Elem Units Avge SDev %RSD	Ca3179 ppm 39.92 .00	Cd2265 ppm .0001 .0001 211.3	Co2286 ppm0002 .0000 .8462	Cr2677 ppm .0020 .0002 8.840	Cu3247 ppm .0057 .0006 9.647	Fe2714 ppm .2598 .0071 2.721	K_7664 ppm 3.084 .015 .4815
#1	39.92	0000	0002	.0022	.0061	.2548	3.073
#2	39.92	.0001	0002	.0019	.0053	.2648	3.094
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0001	.0255	12.82	.0094	.0003	32.03	45.05
SDev	.0001	.0001	.00	.0001	.0009	.07	.02
%RSD	114.2	.3514	.0253	1.356	338.9	.2141	.0351
#1 #2	.0002	.0254 .0255	12.83 12.82	.0094	.0010 0004	31.98 32.07	45.04 45.06
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0002	.4911	.0081	.0001	.0021	6.173	.0058
SDev	.0002	.0192	.0040	.0026	.0001	.036	.0018
%RSD	78.99	3.900	50.07	1885.	6.430	.5840	31.64
#1	0001	.4775	.0052	.0020	.0020	6.147	.0071
#2	0003	.5046	.0109	0017	.0022	6.198	.0045
Elem Units Avge SDev %RSD	Sc3613 %R 104.9 .1 .0641	1960/1 ppm 0035 .0007 18.98	1960/2 ppm .0032 .0004 11.73	Si2881 ppm 17.57 .00	Pb220 ppm .0028 .0004 13.78	Se196 ppm .0010 .0000 2.729	Sn1899 ppm 0025 .0004 17.67
#1	105.0	0040	.0035	17.57	.0031	.0010	0022
#2	104.9	0031	.0029	17.57		.0009	0028
Elem	Sr4215	Th2837 ppm0092 .0015 15.98	Ti3349	T11908	U_4090	V_2924	W_2079
Units	ppm		ppm	ppm	ppm	ppm	ppm
Avge	.1543		.0058	.0005	.0122	.0058	0035
SDev	.0001		.0004	.0050	.0014	.0012	.0001
%RSD	.0697		7.226	985.9	11.47	20.87	2.465
#1	.1542	0082	.0055	.0040	.0112	.0066	0036
#2	.1544	0103	.0061	0030	.0132	.0049	0035

Elem Units Avge SDev %RSD	Y_3710 ppm 0002 .0001 53.57	Zn2062 ppm .0224 .0001 .2706	Zr3496 ppm .0002 .0005 305.3			•	
#1 #2	0002	.0223	0002				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 749610 505.5814 .0674459	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	749968 749253	10000					,

Operator: 010085

Method: DAILY2 Sample Name: 262380d

Run Time: 05/16/05 12:42:22

Comment:
Mode: CONC Corr. Factor: 1

Mode: CC	NC Corr.	Factor:	1				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0002	.1361	.0057	.0532	.0385	.0000	.0055
SDev	.0008	.0010	.0019	.0005	.0000	.0000	.0006
%RSD	334.0	.7156	34.18	.9045	.0329	13.52	10.68
#1 #2	0003 .0008	.1368 .1354	.0043	.0528 .0535	.0385 .0385	.0000	.0051
Elem	Ca3179	Cd2265	Co2286 ppm0005 .0002 39.79	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm		ppm	ppm	ppm	ppm
Avge	40.04	.0002		.0014	.0066	.2652	3.077
SDev	.08	.0000		.0004	.0005	.0199	.002
%RSD	.1904	11.30		27.76	7.080	7.504	.0518
#1 #2	39.98 40.09	.0002	0007 0004	.0011 .0017	.0069 .0062	.2512	3.076 3.079
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0005	.0254	12.84	.0094	.0008	31.83	44.84
SDev	.0000	.0000	.01	.0001	.0008	.16	.06
%RSD	6.910	.0610	.0832	.5454	100.2	.4947	.1360
#1	0005	.0253	12.83	.0094	.0002	31.95	44.88
#2	0005	.0254	12.84	.0094		31.72	44.80
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0007	.4992	.0034	.0006	.0026	6.139	.0071
SDev	.0002	.0141	.0027	.0006	.0025	.003	.0057
%RSD	31.97	2.822	80.36	97.34	95.50	.0471	80.18
#1 #2	.0006	.4892 .5091	.0054	.0010 .0002	.0008	6.141 6.137	.0111
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	103.5	.0013	.0033	17.48	.0016	.0027	0020
SDev	.6	.0080	.0009	.00	.0013	.0033	.0016
%RSD	.5348	613.1	26.62	.0242	83.84	121.6	81.80
#1	103.9	.0070	.0040	17.48	.0025	.0050	0031
#2	103.1	0043		17.48	.0006	.0004	0008
Elem Units Avge SDev %RSD	Sr4215 ppm .1539 .0002 .1522	Th2837 ppm0104 .0050 47.67	Ti3349 ppm .0049 .0002 4.955	Tl1908 ppm0011 .0016 137.3	U_4090 ppm .0140 .0212 151.6	V_2924 ppm .0059 .0001 1.731	W_2079 ppm 0012 .0015 130.7
#1	.1541	0069	.0051	0022	0010	.0058	0023
#2	.1538	0139	.0047	0000	.0289	.0060	0001

Elem Units Avge SDev %RSD	Y_3710 ppm 0002 .0000	Zn2062 ppm .0230 .0003 1.205	Zr3496 ppm .0006 .0001 23.80			01	0086
#1 #2	0002 0002	.0228	.0007				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 739628 3944.949 .5333689	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	742418 736839	10000					

05/16/05 12:51:43 PM

010087

Operator:

Method: DAILY2 Sample Name: 262380L df5 Run Time: 05/16/05 12:47:09

Comment:

Īv	iode: Cor	ic corr.	ractor: 1					
	Elem Units Avge SDev %RSD	Ag3280 ppm .0003 .0003 91.50	Al3082 ppm .0332 .0032 9.555	As1890 ppm .0044 .0006 12.95	B_2496 ppm .0114 .0011 9.730	Ba4934 ppm .0082 .0000 .0488	Be3130 ppm 0000 .0000 245.1	Bi2230 ppm .0092 .0023 25.15
	#1 #2	.0001	.0354	.0048	.0106 .0121	.0082	0000 .0000	.0108 .0076
	Elem Units Avge SDev %RSD	Ca3179 ppm 8.445 .017 .1968	Cd2265 ppm .0003 .0002 95.08	Co2286 ppm0005 .0002 31.61	Cr2677 ppm .0005 .0000 6.774	Cu3247 ppm .0018 .0002 8.950	Fe2714 ppm .0741 .0044 5.913	K_7664 ppm .5111 .0040 .7901
	#1 #2	8.433 8.457	.0001	0004 0006	.0005 .0005	.0017 .0019	.0772 .0710	.5139 .5082
	Elem Units Avge SDev %RSD	La3988 ppm 0004 .0004 108.8	Li6707 ppm .0047 .0000 .5195	Mg2790 ppm 2.672 .003 .1230	Mn2576 ppm .0020 .0000 .9481	Mo2020 ppm 0003 .0006 191.8	Na3302 ppm 5.722 .092 1.617	Na5889 ppm 8.076 .022 .2714
	#1 #2	0007 0001	.0047	2.675 2.670	.0020 .0019	0007 .0001	5.787 5.657	8.061 8.092
	Elem Units Avge SDev %RSD	Ni2316 ppm .0010 .0001 14.00	P_1782 ppm .1072 .0027 2.502	2203/1 ppm .0019 .0009 45.66	2203/2 ppm .0001 .0024 2306.	Pd3404 ppm .0020 .0031 150.3	S_1820 ppm 1.226 .008 .6495	Sb2068 ppm .0062 .0032 51.34
	#1 #2	.0009	.1091 .1053	.0025 .0013	0016 .0018	.0042 0001	1.231 1.220	.0085
	Elem Units Avge SDev %RSD	Sc3613 %R 101.4 .3 .2500	1960/1 ppm 0006 .0032 545.3	1960/2 ppm .0007 .0003 44.59	Si2881 ppm 3.709 .010 .2611	Pb220 ppm .0007 .0013 178.1	Se196 ppm .0003 .0009 328.3	Sn1899 ppm 0011 .0010 89.94
	#1 #2	101.6	.0017	.0005	3.703 3.716	0002 .0016	.0009 0003	0018 0004
	Elem Units Avge SDev %RSD	Sr4215 ppm .0324 .0001 .3356	Th2837 ppm 0032 .0004 12.41	Ti3349 ppm .0022 .0013 59.84	Tl1908 ppm .0022 .0002 11.29	U_4090 ppm .0050 .0060 119.4	V_2924 ppm .0012 .0000 .2919	W_2079 ppm 0032 .0003 9.660
	#1 #2	.0323	0035 0029	.0031	.0023	.0093	.0012 .0012	0029 0034

Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0001 100.2	Zn2062 ppm .0049 .0001 1.855	Zr3496 ppm .0004 .0003 78.53			010	880
#1 #2	0002 0000	.0049	.0007				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 724635 1854.034 .2558576	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	725946 723324	10000 10000					

05/16/05 12:56:29 PM page 1

Operator: Method: DAILY2 Sample Name: 262380s Run Time: 05/16/05 12:51:55

Comment:

Mode: CONC Corr. Factor: 1

MOC	ie: CO	NC Corr.	Factor: 1					
Ur Av SI	lem nits 7ge Dev RSD	Ag3280 ppm .0485 .0005 1.058	Al3082 ppm 2.063 .001 .0406	As1890 ppm 1.954 .001 .0573	B_2496 ppm .0515 .0004 .7097	Ba4934 ppm 1.989 .002 .0885	Be3130 ppm .0482 .0001 .1174	Bi2230 ppm .0016 .0060 377.1
#1 #2		.0481	2.063	1.953 1.955	.0517	1.988 1.990	.0482 .0481	.0058 0026
Ur Av SI	lem nits /ge Dev RSD	Ca3179 ppm 58.20 .03 .0468	Cd2265 ppm .0489 .0000	Co2286 ppm .4878 .0003 .0506	Cr2677 ppm .1937 .0014 .7045	Cu3247 ppm .2508 .0004 .1547	Fe2714 ppm 1.299 .012 .9573	K_7664 ppm 21.28 .00
#1		58.21 58.18	.0488 .0489	.4880 .4876	.1946 .1927	.2511 .2505	1.308 1.290	21.28 21.29
Ur Ar SI	lem nits /ge Dev RSD	La3988 ppm0005 .0002 40.53	Li6707 ppm .0269 .0001 .3135	Mg2790 ppm 31.79 .01	Mn2576 ppm .5079 .0001 .0187	Mo2020 ppm .0005 .0010 213.2	Na3302 ppm 51.84 .07 .1441	Na5889 ppm 73.48 .10 .1398
#1 #2		0007 0004	.0269 .0270	31.79 31.79	.5080 .5079	0002 .0011	51.89 51.79	73.56 73.41
Ur Av SI	lem nits vge Dev RSD	Ni2316 ppm .4719 .0005 .1123	P_1782 ppm .5083 .0105 2.059	2203/1 ppm .4796 .0008 .1718	2203/2 ppm .4753 .0011 .2241	Pd3404 ppm .0005 .0002 39.85	S_1820 ppm 6.211 .027 .4309	Sb2068 ppm .5000 .0009 .1736
#2 #2		.4715 .4722	.5157	.4790 .4802	.4745 .4760	.0007	6.230 6.193	.5006 .4994
Ur Av SI	lem nits vge Dev RSD	Sc3613 %R 104.6 .7 .6787	1960/1 ppm 1.927 .014 .7203	1960/2 ppm 1.926 .001 .0747	Si2881 ppm 17.52 .01	Pb220 ppm .4767 .0010 .2053	Se196 ppm 1.926 .004 .1904	Sn1899 ppm 0014 .0001 5.072
# 2 # 2		104.1 105.1	1.936 1.917	1.925 1.927	17.52 17.53	.4761 .4774	1.929 1.924	0013 0014
Ur Ar SI	lem nits vge Dev RSD	Sr4215 ppm .1531 .0001 .1007	Th2837 ppm0283 .0016 5.747	Ti3349 ppm .0060 .0001 2.094	Tl1908 ppm 1.986 .009 .4630	U_4090 ppm .0099 .0044 45.11	V_2924 ppm .4942 .0022 .4495	W_2079 ppm 0033 .0021 64.21
#2		.1530 .1532	0295 0272	.0059 .0061	1.979 1.992	.0067 .0130	.4927	0048 0018

Elem Units Avge SDev %RSD	Y_3710 ppm 0003 .0002 65.50	Zn2062 ppm .5093 .0006 .1105	Zr3496 ppm .0005 .0001 29.28			01	10090
#1 #2	0004 0001	.5097 .5089	.0006 .0004				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 747580 5122.282 .6851817	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	743958 751202	10000 10000					

Method: DAILY2 Sample Name: 262380sd Run Time: 05/16/05 12:56:41

Comment:

Mode: CONC Corr. Factor: 1

Operator: 010091

		raccor.	-				
Elem Units Avge SDev %RSD	Ag3280 ppm .0488 .0007 1.468	Al3082 ppm 2.061 .000	As1890 ppm 1.958 .001 .0536	B_2496 ppm .0516 .0001 .1952	Ba4934 ppm 1.989 .001 .0302	Be3130 ppm .0482 .0000 .0261	Bi2230 ppm .0034 .0029 86.00
#1 #2	.0483	2.061 2.061	1.957 1.959	.0517 .0516	1.990 1.989	.0482	.0055
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	58.22	.0495	.4890	.1928	.2504	1.328	21.32
SDev	.14	.0008	.0011	.0002	.0019	.004	.04
%RSD	.2461	1.552	.2167	.0926	.7486	.3070	.1760
#1	58.12	.0489	.4883	.1927	.2517	1.325	21.34
#2	58.32		.4898	.1930	.2491	1.330	21.29
Elem Units Avge SDev %RSD	La3988 ppm .0005 .0012 244.8	Li6707 ppm .0270 .0001 .3285	Mg2790 ppm 31.81 .05 .1539	Mn2576 ppm .5081 .0005 .0905	Mo2020 ppm 0007 .0008 110.8	Na3302 ppm 51.97 .10 .1849	Na5889 ppm 73.29 .01
#1	0004	.0269	31.78	.5078	0002	51.90	73.29
#2	.0014	.0271	31.84	.5084	0013	52.03	73.28
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.4711	.5182	.4838	.4810	.0018	6.212	.5028
SDev	.0002	.0093	.0035	.0021	.0025	.025	.0039
%RSD	.0369	1.799	.7152	.4272	140.6	.4075	.7741
#1 #2	.4713 .4710	.5248	.4862 .4813	.4796 .4825	.0000	6.229 6.194	.5001 .5056
Elem Units Avge SDev %RSD	Sc3613 %R 105.7 .5 .4822	1960/1 ppm 1.946 .000	1960/2 ppm 1.950 .004 .2163	Si2881 ppm 17.50 .03 .1788	Pb220 ppm .4819 .0002 .0448	Se196 ppm 1.949 .003 .1367	Sn1899 ppm .0018 .0011 65.89
#1	106.0	1.946	1.947	17.52	.4818	1.947	.0026
#2	105.3	1.946	1.953	17.48	.4821	1.951	.0009
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.1533	0240	.0058	1.974	.0134	.4952	0008
SDev	.0001	.0007	.0004	.014	.0090	.0011	.0038
%RSD	.0868	2.956	6.364	.6847	67.29	.2251	506.2
#1	.1534	0245	.0061	1.965	.0070	.4960	0035
#2	.1532	0235	.0056	1.984	.0197	.4944	.0020

Elem Units Avge SDev %RSD	Y_3710 ppm 0003 .0000 3.846	Zn2062 ppm .5099 .0003 .0549	Zr3496 ppm .0004 .0000 4.476			010	0092
#1 #2	0003 0003	.5101 .5097	.0004				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 755186 3602.709 .4770622	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	757734 752639	10000 10000				 	

				, , , ,			6466
	: 05/16/05		me: 262380	aspk melie slive	op win so	erator: ころがとり出す	64003
Comment: Mode: CC	ONC Corr.	Factor: 1			Co	1 FCAL-1#6	
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0477	1.998	1.896	.0509	1.939	.0470	.0084
SDev	.0008	.002	.001	.0011	.003	.0001	.0097
%RSD	1.769	.1167	.0461	2.098	.1331	.1502	116.5
#1	.0471	1.999	1.897	.0501	1.941	.0469	.0015
#2		1.996	1.896	.0516	1.937	.0470	.0152
Elem	Ca3179 ppm 58.19 .21 .3576	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.0478	.4744	.1881	.2444	1.279	21.17
SDev		.0001	.0020	.0007	.0002	.009	.09
%RSD		.1860	.4274	.3491	.0799	.7192	.4362
#1	58.05	.0477	.4730	.1877	.2445	1.272	21.23
#2	58.34	.0479	.4758	.1886	.2442	1.285	21.10
Elem	La3988 ppm0002 .0003 110.4	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.0272	31.68	.4946	.0008	51.98	73.51
SDev		.0000	.07	.0011	.0001	.16	.09
%RSD		.0815	.2328	.2140	6.387	.3036	.1254
#1	0004	.0272	31.63	.4938	.0008	51.87	73.57
#2	0001	.0272	31.74	.4953		52.10	73.44
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.4568	.5115	.4666	.4606	0007	6.255	.4667
SDev	.0022	.0008	.0072	.0012	.0034	.029	.0020
%RSD	.4834	.1537	1.540	.2600	505.2	.4695	.4344
#1	.4584	.5120	.4717	.4615	0030	6.234	.4681
#2	.4552	.5109	.4616	.4598	.0017	6.275	.4652
Elem Units Avge SDev %RSD	Sc3613 %R 103.2 1.1 1.054	1960/1 ppm 1.877 .011	1960/2 ppm 1.884 .002 .0947	Si2881 ppm 17.66 .00	Pb220 ppm .4627 .0032 .6905	Se196 ppm 1.882 .002 .1312	Sn1899 ppm 0010 .0027 264.0
#1 #2	103.9 102.4	1.869	1.886	17.66 17.66	.4649 .4604	1.880 1.884	0029 .0009
Elem Units Avge SDev %RSD	Sr4215 ppm .1544 .0001 .0390	Th2837 ppm0283 .0010 3.414	Ti3349 ppm .0055 .0000	Tl1908 ppm 1.939 .003 .1369	U_4090 ppm 0025 .0238 953.2	V_2924 ppm .4821 .0006 .1325	W_2079 ppm 0010 .0007 63.58
#1	.1545	0276	.0055	1.941	0193	.4816	0006
#2	.1544	0290		1.937	.0143	.4825	0015

Elem Units Avge SDev %RSD	Y_3710 ppm 0003 .0001 29.28	Zn2062 ppm .4965 .0027 .5407	Zr3496 ppm0002 .0007 358.0			01	10094
#1 #2	0004 0003	.4946	0006 .0003				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 737119 7706.050 1.045428	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	742568 731670	10000 10000	·				·

05/16/05 01:10:47 PM

Operator: Method: DAILY2 Sample Name: 262381 010095 Run Time: 05/16/05 13:06:13

Comment:

Mode: COI	NC Corr.	Factor: 1					
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0001	.7703	.0108	.0482	.0518	.0001	.0076
SDev	.0002	.0261	.0010	.0006	.0001	.0000	.0095
%RSD	293.3	3.394	9.229	1.146	.1700	7.788	125.2
#1	0002	.7888	.0115	.0486	.0518	.0001	.0009
#2	.0001	.7519	.0101	.0478	.0517	.0001	.0143
Elem Units Avge SDev %RSD	Ca3179 ppm 48.36 .05 .1042	Cd2265 ppm .0000 .0002 536.2	Co2286 ppm .0001 .0003 439.4	Cr2677 ppm .0158 .0008 4.999	Cu3247 ppm .0113 .0001 1.016	Fe2714 ppm .7316 .0007 .0978	K_7664 ppm 7.232 .031 .4316
#1	48.39	0001	0002	.0163	.0114	.7321	7.210
#2	48.32	.0002	.0003	.0152	.0112	.7311	7.254
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0002	.0192	11.74	.0202	.0245	15.80	22.66
SDev	.0002	.0000	.02	.0000	.0003	.12	.07
%RSD	93.57	.1443	.2016	.1267	1.179	.7468	.3297
#1	.0001	.0192	11.76	.0203	.0243	15.72	22.61
#2		.0192	11.72	.0202	.0247	15.89	22.71
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0022	.1108	.0050	0006	.0024	42.90	.0119
SDev	.0003	.0076	.0004	.0030	.0000	.08	.0001
%RSD	15.00	6.910	8.720	536.1	.3002	.1975	1.107
#1 #2	.0024 .0019	.1054	.0053	.0015 0027	.0024 .0024	42.84 42.96	.0118 .0120
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	105.0	0019	.0053	5.420	.0013	.0029	0026
SDev	.3	.0015	.0012	.076	.0021	.0003	.0003
%RSD	.2460	81.80	23.06	1.409	161.6	10.15	11.46
#1	104.8	0030	.0061	5.474	.0028	.0031	0028
#2	105.2	0008	.0044	5.366	0002	.0027	0024
Elem	Sr4215	Th2837 ppm0098 .0009 9.159	Ti3349	T11908	U_4090	V_2924	W_2079
Units	ppm		ppm	ppm	ppm	ppm	ppm
Avge	.1581		.0326	.0013	.0055	.0181	0005
SDev	.0001		.0014	.0063	.0035	.0002	.0021
%RSD	.0465		4.445	475.6	63.28	1.070	412.4
#1	.1580	0091	.0337	0031	.0079	.0182	0020
#2	.1581	0104	.0316	.0058		.0179	.0010

#1

#2

748776 10000 --751393 10000 --

Elem Units Avge SDev %RSD	Y_3710 ppm .0002 .0001 50.67	Zn2062 ppm .0123 .0002 1.901	Zr3496 ppm .0016 .0003 15.20			01	L0096
#1 #2	.0001	.0122 .0125	.0018 .0015				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 750084 1850.498 .2467053	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED

05/16/05 01:15:33 PM

#2

.1837

Sample Name: 262383 Operator: Method: DAILY2 010097 Run Time: 05/16/05 13:10:59 Comment: Mode: CONC Corr. Factor: 1 Ag3280 A13082 B 2496 Ba4934 Be3130 Bi2230 Elem As1890 Units ppm ppmppm ppm ppm ppm ppm .0000 .1646 .0252 .0002 Avge -.0002 .0150 .0034 .0003 .0000 .0000 .0043 SDev .0002 .0041 .0014 %RSD 27.59 42.01 .1880 .0755 208.3 2090. 102.3 .0253 -.0000 -.0028 #1 .0024 .1644 -.0004 .0121 #2 -.0001 .0179 .0045 .1648 .0252 .0000 .0032 K 7664 Elem Co2286 Cr2677 Cu3247 Fe2714 Ca3179 Cd2265 ppm ppm Units ppm ppm ppm mqq mqq -.0007 -.0000 .0049 .2080 51.60 Avge 42.72 -.0002 .0029 .30 SDev .01 .0001 .0004 .0001 .0003 %RSD 35.33 933.2 17.85 6.947 1.420 .5888 .0322 -.0006 .0046 .2059 42.73 -.0001 -.0003 51.38 #1 51.81 #2 42.71 -.0002 .0003 -.0007 .0051 .2101 Mg2790 Mn2576 Mo2020 Na3302 Na5889 Elem La3988 Li6707 ppm ppm ppm ppm Units ppm ppm ppm .0018 173.8 134.1 .0218 Avge -.0004 .0537 23.65 .0007 . 3 .0000 .0004 .03 .0001 . 1 SDev .7551 .3022 41.66 .2334 .0378 %RSD 11.21 .1133 .0218 .0012 133.9 173.8 -.0003 23.67 #1 .0535 134.3 173.8 #2 -.0004 .0540 23.63 .0219 .0023 S 1820 2203/1 2203/2 Pd3404 Sb2068 Elem Ni2316 P 1782 ppm ppm Units ppm ppm ppm ppm ppm .0077 .0023 -.0003 .0011 14.42 Avge .0033 11.03 .02 .0032 .0021 .0013 SDev .0010 .03 .0016 .1689 41.34 69.80 630.5 120.5 %RSD 28.99 .2553 .0099 .0002 14.40 11.05 .0012 -.0018 #1 .0040 .0020 14.44 .0054 .0026 11.01 .0035 .0011 #2 Se196 Sn1899 1960/2 Si2881 Pb220 1960/1 Elem Sc3613 Units %R ppm ppm ppm ppm ppm ppm 106.0 .0006 .0009 -.0004 Avge -.0080 .0053 22.30 .0040 .01 .0019 .0006 .0001 .0029 . 4 SDev 67.76 20.43 54.34 .0297 335.3 49.72 %RSD .3518 .0005 -.0003 105.8 -.0052 .0032 22.30 -.0008 #1 .0073 22.31 .0019 .0013 -.0004 #2 106.3 -.0108 V 2924 Tl1908 U 4090 W 2079 Ti3349 Sr4215 Th2837 Elem ppm ppm ppm ppm ppm ppm Units ppm -.0000 -.0047 Avge .1837 -.0227 .0018 .0001 -.0159 .0000 .0010 .0001 .0012 .0070 .0000 .0019 SDev 584.0 7.170 858.7 43.61 41.04 .0086 4.438 %RSD .0000 -.0110 -.0061 #1 .1837 -.0234 .0017 -.0007

.0019

-.0220

.0010

-.0209

-.0000

-.0033

Elem Units Avge SDev %RSD	Y_3710 ppm 0004 .0000 9.972	Zn2062 ppm .0108 .0001 .6692	Zr3496 ppm 0002 .0002 81.91			01	L009 8
#1 #2	0004 0003	.0108 .0109	0001 0004				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 757706 2694.077 .3555570	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	755801 759611	10000 10000	 				 ,

05/16/05 01:24:01 PM

Method: DAILY2 Sample Name: ccv2

Run Time: 05/16/05 13:19:26

Comment:

Mode: CONC Corr. Factor: 1

Operator: **010099**

Elem Units Avge SDev %RSD	Ag3280 ppm .9832 .0008 .0847	Al3082 ppm 9.816 .003 .0272	As1890 ppm 5.083 .012 .2453	B_2496 ppm 4.881 .012 .2517	Ba4934 ppm 10.06 .00	Be3130 ppm .9870 .0007 .0664	Bi2230 ppm 5.058 .023 .4529
#1	.9838	9.818	5.074	4.872	10.06	.9875	5.042
#2	.9826	9.814	5.092	4.889	10.07	.9866	5.075
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	1.100	11.00	5.500	5.500	11.00	1.100	5.500
Low	.9000	9.000	4.500	4.500	9.000	.9000	4.500
Elem Units Avge SDev %RSD	Ca3179 ppm 19.94 .03 .1709	Cd2265 ppm 1.032 .002 .1727	Co2286 ppm 5.166 .001 .0208	Cr2677 ppm 1.976 .002 .0760	Cu3247 ppm 2.030 .000	Fe2714 ppm 10.60 .00	K_7664 ppm 18.66 .02 .1209
#1	19.97	1.030	5.166	1.977	2.030	10.60	18.68
#2	19.92	1.033	5.167	1.975		10.61	18.65
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	22.00	1.100	5.500	2.200	2.200	11.00	22.00
Low	18.00	.9000	4.500	1.800	1.800	9.000	18.00
Elem Units Avge SDev %RSD	La3988 ppm 4.929 .002 .0404	Li6707 ppm 5.201 .002 .0322	Mg2790 ppm 19.97 .03 .1409	Mn2576 ppm 1.045 .000	Mo2020 ppm 5.144 .002 .0379	Na3302 ppm 28.09 .08 .2967	Na5889 ppm H41.34 .01 .0295
#1	4.928	5.202	19.99	1.045	5.143	28.15	H41.35
#2	4.930	5.199	19.95	1.045	5.145	28.03	H41.34
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High
High	5.500	5.500	22.00	1.100	5.500	33.00	33.00
Low	4.500	4.500	18.00	.9000	4.500	27.00	27.00
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	4.940	5.057	4.931	4.931	.9941	L.8929	1.021
SDev	.017	.009	.018	.026	.0009	.0199	.002
%RSD	.3385	.1706	.3691	.5301	.0861	2.234	.1852
#1	4.928	5.063	4.918		.9935	.9070	1.019
#2	4.952	5.051	4.944		.9947	L.8788	1.022
Errors High Low	LC Pass 5.500 4.500	LC Pass 5.500 4.500	NOCHECK	NOCHECK	LC Pass 1.100 .9000	LC Low 1.100 .9000	LC Pass 1.100 .9000
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

pac	qе	2

05/16/05 01:24:01 PM

Analysis Report

						•	
Units Avge SDev %RSD	%R 99.10 .15 .1495	ppm 5.186 .022 .4152	ppm 5.192 .005 .0985	ppm 5.119 .009 .1836	ppm 4.931 .011 .2304	ppm 5.190 .004 .0726	ppm 4.920 .007 .1515
#1 #2	99.21 99.00	5.170 5.201	5.196 5.188	5.125 5.112	4.939 4.923	5.187 5.193	4.914 4.925
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 5.500 4.500
Elem Units Avge SDev %RSD	Sr4215 ppm 5.195 .008 .1605	Th2837 ppm .9894 .0068 .6850	Ti3349 ppm 4.971 .001	Tl1908 ppm 5.180 .009 .1805	U_4090 ppm L.8597 .0085 .9846	V_2924 ppm 5.056 .000 .0051	W_2079 ppm 1.018 .006 .5547
#1 #2	5.189 5.201	.9942 .9847	4.972 4.971	5.174 5.187	L.8656 L.8537	5.056 5.057	1.022 1.014
Errors High Low	LC Pass 5.500 4.500	LC Pass 1.100 .9000	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Low 1.100 .9000	LC Pass 5.500 4.500	LC Pass 1.100 .9000
Elem Units Avge SDev %RSD	Y_3710 ppm 4.993 .003	Zn2062 ppm 1.041 .001 .1038	Zr3496 ppm 4.863 .005 .1078				
#1 #2	4.991 4.995	1.042 1.041	4.860 4.867				
Errors High Low	LC Pass 5.500 4.500	LC Pass 1.100 .9000	LC Pass 5.500 4.500				

Analysis	Report			05/16/	05/16/05 01:24:01 PM			
IntStd	1	2	3	4	5	6	19101	
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED	
Elem	Sc							
Wavlen	361.384							
Avge	708100	10000						
SDev	1093.187	.0000000						
%RSD	.1543831	.0000000						
#1	708873	10000						
#2	707327	10000			-		 ,	

Operator: 010102

Method: DAILY2 Sample Name: ccb2 Run Time: 05/16/05 13:26:03

Comment:
Mode: CONC Corr. Factor: 1

Mode: CO	NC Corr.	Factor: 1					
Elem Units Avge SDev %RSD	Ag3280 ppm .0001 .0003 283.2	Al3082 ppm 0015 .0042 274.5	As1890 ppm .0029 .0013 44.47	B_2496 ppm .0034 .0001 3.200	Ba4934 ppm .0001 .0001 213.4	Be3130 ppm .0000 .0000 68.98	Bi2230 ppm .0037 .0021 56.25
#1 #2	0001 .0003	0044 .0014	.0038	.0035	0000 .0001	.0000	.0052
Errors High Low	LC Pass .0050 0050	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev %RSD	Ca3179 ppm .0006 .0002 30.94	Cd2265 ppm 0001 .0000 9.691	Co2286 ppm 0007 .0004 59.51	Cr2677 ppm 0009 .0011 123.0	Cu3247 ppm 0002 .0002 119.5	Fe2714 ppm0111 .0116 104.4	K_7664 ppm .0027 .0100 371.0
#1 #2	.0007	0001 0001	0010 0004	0016 0001	0003 0000	0029 0193	.0098 0044
Errors High Low	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0250 0250	LC Pass .1000 1000
Elem Units Avge SDev %RSD	La3988 ppm0001 .0000 15.70	Li6707 ppm .0002 .0000 20.19	Mg2790 ppm 0034 .0008 24.06	Mn2576 ppm .0000 .0000 2.128	Mo2020 ppm .0011 .0006 50.63	Na3302 ppm L1277 .0141 11.00	Na5889 ppm .0265 .0042 15.81
#1 #2	0001 0001	.0002	0040 0028	.0000	.0015	L1178 L1376	.0295
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0500 0500	LC Pass .0050 0050			
Elem Units Avge SDev %RSD	Ni2316 ppm 0001 .0006 461.7	P_1782 ppm 0031 .0004 11.56	2203/1 ppm .0033 .0028 85.91	2203/2 ppm 0021 .0006 28.92		.0180	Sb2068 ppm .0016 .0004 26.69
#1 #2	.0003	0029 0034	.0013	0017 0026		L1064 L1319	.0018 .0013
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	.0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

page 2 **010103**

						~	
Units Avge SDev %RSD	%R 101.5 .2 .2142	ppm .0006 .0018 303.1	ppm 0002 .0034 1593.	ppm .0051 .0025 49.94	ppm 0003 .0005 157.4	ppm .0001 .0017 2799.	ppm .0006 .0004 80.49
#1 #2	101.7 101.4	.0018 0007	0026 .0022	.0033 .0069	0007 .0000	0011 .0013	.0009
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Avge SDev %RSD	Sr4215 ppm .0000 .0000 66.49	Th2837 ppm .0020 .0030 148.6	Ti3349 ppm .0002 .0001 81.34	Tl1908 ppm .0018 .0035 195.6	U_4090 ppm 0072 .0069 96.17	V_2924 ppm 0004 .0003 59.65	W_2079 ppm 0024 .0020 83.65
#1 #2	.0000	0001 .0041	.0001	0007 .0043	0121 0023	0006 0002	0010 0039
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0001 109.4	Zn2062 ppm .0001 .0000 29.72	Zr3496 ppm 0001 .0004 318.5				
#1 #2	0002 0000	.0001	0004 .0001				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

						-		
IntStd Mode	1 *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED	
Elem	Sc							
Wavlen	361.384							
Avge	725254	10000						
SDev	1563.413	.0000000						
%RSD	.2155675	.0000000		- -				
#1	726360	10000						
#2	724149	10000						

05/16/05 01:35:23 PM

Operator:

010105

Method: DAILY2 Sample Name: cri Run Time: 05/16/05 13:30:49

Comment:

ľ	Mode: COI	NC Corr.	Factor: 1					
	Elem Units Avge SDev %RSD	Ag3280 ppm .0206 .0014 6.640	Al3082 ppm .1007 .0133 13.23	As1890 ppm .0236 .0045 19.09	B_2496 ppm .1024 .0000 .0377	Ba4934 ppm .0206 .0000 .0571	Be3130 ppm .0099 .0000 .1076	Bi2230 ppm .0055 .0039 71.20
	#1 #2	.0196 .0215	.0913	.0204 .0267	.1024 .1024	.0206 .0206	.0099	.0027
	Errors High Low	LC Pass .0300 .0100	NOCHECK	LC Pass .0300 .0100	LC Pass .1500 .0500	LC Pass .0300 .0100	LC Pass .0150 .0050	NOCHECK
	Elem Units Avge SDev %RSD	Ca3179 ppm0001 .0015 1210.	Cd2265 ppm .0108 .0001 1.101	Co2286 ppm .1006 .0017 1.714	Cr2677 ppm .0192 .0003 1.435	Cu3247 ppm .0498 .0001 .1918	Fe2714 ppm .1144 .0027 2.376	K_7664 ppm 0014 .0242 1755.
	#1 #2	0012 .0009	.0107 .0109	.0993 .1018	.0190 .0194	.0498 .0499	.1124 .1163	0185 .0158
	Errors High Low	NOCHECK	LC Pass .0150 .0050	LC Pass .1500 .0500	LC Pass .0300 .0100	LC Pass .0750 .0250	LC Pass .1500 .0500	NOCHECK
	Elem Units Avge SDev %RSD	La3988 ppm .0000 .0021 5161.	Li6707 ppm .0784 .0001 .0750	Mg2790 ppm .0006 .0134 2161.	Mn2576 ppm .0314 .0001 .4078	Mo2020 ppm .0210 .0004 2.029	Na3302 ppm 0655 .3931 600.5	Na5889 ppm .0216 .0096 44.63
	#1 #2	0014 .0015	.0784	0089 .0101	.0315 .0313	.0207 .0213	3434 .2125	.0148 .0284
	Errors High Low	NOCHECK	LC Pass .1500 .0500	NOCHECK	LC Pass .0450 .0150	LC Pass .0300 .0100	NOCHECK	NOCHECK
	Elem Units Avge SDev %RSD	Ni2316 ppm .0795 .0002 .2111	P_1782 ppm .0989 .0113 11.44	2203/1 ppm .0091 .0039 43.18	2203/2 ppm .0048 .0010 20.30	Pd3404 ppm .0017 .0063 372.3	S_1820 ppm 1158 .0029 2.527	Sb2068 ppm .1269 .0006 .5131
	#1 #2	.0796 .0794	.0909 .1069	.0063 .0118	.0055 .0041	0027 .0061	1179 1138	.1264 .1274
	Errors High Low	LC Pass .1200 .0400	LC Pass .1500 .0500	NOCHECK	NOCHECK	NOCHECK	NOCHECK	LC Pass .1800 .0600
	Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

page 2 010106

						· ·	110106
Units Avge SDev %RSD	%R 100.5 .3	ppm .0063 .0025 39.23	ppm .0127 .0069 54.44	ppm .1145 .0065 5.694	ppm .0063 .0006 10.38	ppm .0106 .0038 35.89	ppm .1029 .0006 .5574
#1 #2	100.7	.0045	.0176 .0078	.1099 .1191	.0058 .0067	.0133 .0079	.1033 .1025
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .1500 .0500	LC Pass .0090 .0030	LC Pass .0150 .0050	LC Pass .1500 .0500
Elem Units Avge SDev %RSD	Sr4215 ppm .0216 .0001 .3887	Th2837 ppm 0003 .0035 1389.	Ti3349 ppm .0201 .0001 .3486	Tl1908 ppm .0168 .0031 18.38	U_4090 ppm .2188 .0491 22.44	V_2924 ppm .1010 .0005 .4752	W_2079 ppm .0017 .0033 198.6
#1 #2	.0215 .0217	.0022 0027	.0202	.0146	.1841 .2536	.1006 .1013	0007 .0040
Errors High Low	LC Pass .0300 .0100	NOCHECK	LC Pass .0300 .0100	LC Pass .0300 .0100	NOCHECK	LC Pass .1500 .0500	NOCHECK
Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0001 69.81	Zn2062 ppm .0411 .0002 .4293	Zr3496 ppm .0926 .0003 .2756				
#1 #2	0000 0001	.0413 .0410	.0928 .0925				
Errors High Low	NOCHECK	LC Pass .0600 .0200	NOCHECK				

Analysis	Report			05/16/0	B PM	page 3	
IntStd	1	2	3	4	5	6 01	.010 7
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc						
Wavlen	361.384						
Avge	717875	10000		- -			
SDev	2462.146	.0000000					
%RSD	.3429770	.0000000					
#1	719616	10000					
#2	716134	10000					

05/16/05 01:40:10 PM

Operator:

Method: DAILY2

Run Time: 05/16/05 13:35:35 010108 Comment: Mode: CONC Corr. Factor: 1 B 2496 Bi2230 Elem Aq3280 A13082 As1890 Ba4934 Be3130 ppm Units mqq ppm ppm mqq ppm mqq .0023 -.0010 512.3 .0161 .0037 -.0153 -.0000 Avge .0021 .0000 .0000 .0052 .0009 . 1 .0015 SDev 13.57 .3115 171.0 32.06 %RSD 91.01 .0170 39.98 -.0000 -.0003 512.4 .0027 -.0138 .0024 .0125 #1 .0023 .0000 .0198 512.2 -.0167 #2 -.0016 .0048 Errors NOCHECK LC Pass NOCHECK NOCHECK NOCHECK NOCHECK NOCHECK High 600.0 400.0 Low Elem Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Fe2714 K 7664 ppm Units ppm ppm ppm ppm ppm ppm .0127 .0015 191.7 463.5 .0006 -.0011 -.0010 Avqe .0008 .0006 .0134 1.3 .0005 . 4 SDev .0002 %RSD .2857 20.44 88.54 78.82 41.10 .2244 105.1 464.5 192.0 #1 -.0012.0009 -.0005 .0019 .0221 -.0009 .0002 -.0017 .0011 191.4 .0033 #2 462.6 LC Pass NOCHECK NOCHECK LC Pass NOCHECK NOCHECK NOCHECK Errors 600.0 240.0 High Low 400.0 160.0 Mo2020 Na3302 Na5889 Elem La3988 Li6707 Mq2790 Mn2576 ppm mqq mqq Units ppm ppm ppm ppm -.0035 .2627 -.0061 .0042 .0004 540.1 -.0023 Avge .0005 .0009 .1853 .3 .0000 .0001 .0000 SDev .6434 70.54 15.11 24.04 %RSD 2.198 9,487 .0502 -.0019 .3938 -.0055 .0043 .0004 540.3 -.0035 #1 -.0068 -.0035 -.0027 .1317 .0042 .0004 539.9 #2 NOCHECK NOCHECK NOCHECK NOCHECK LC Pass NOCHECK NOCHECK Errors 600.0 High 400.0 Low S 1820 Sb2068 2203/1 2203/2 Pd3404 Elem Ni2316 P 1782 ppm ppm Units ppm ppm ppm ppm ppm .0002 -.1129 .0129 .0024 .0439 -.0339 Avge -.0105 .0019 .0008 .0004 .0039 SDev .0023 .0012 .0043 1.655 9.750 1.169 30.28 415.5 %RSD 95.43 11.88 -.0004 .0157 -.1116 -.0342 #1 .0040 -.0114 .0470 -.1142 .0007 -.0336 .0101 #2 .0008 -.0096 .0409 NOCHECK NOCHECK NOCHECK NOCHECK NOCHECK NOCHECK NOCHECK Errors High Low Elem Sc3613 1960/1 1960/2 Si2881 Pb220 Se196 Sn1899

Sample Name: icsa

Analysis	Report			05/16/	05 01:40:1		10109 ²
Units Avge SDev %RSD	%R 90.71 .86 .9453	ppm .0037 .0027 73.49	ppm 0002 .0029 1258.	ppm 0064 .0029 45.51	ppm 0079 .0012 14.68	ppm .0011 .0010 94.42	ppm 0058 .0045 78.34
#1 #2	90.11 91.32	.0056	0023 .0018	0043 0085	0071 0088	.0004	0090 0026
Errors High Low	NOCHECK						
Elem Units Avge SDev %RSD	Sr4215 ppm .0168 .0000 .2400	Th2837 ppm .0137 .0009 6.874	Ti3349 ppm 0012 .0000 2.108	Tl1908 ppm .0072 .0025 34.78	U_4090 ppm .0385 .0474 123.1	V_2924 ppm .0007 .0001 12.44	W_2079 ppm 0036 .0028 76.93
#1 #2	.0169 .0168	.0144	0011 0012	.0090	.0720 .0050	.0008	0056 0017
Errors High Low	NOCHECK						
Elem Units Avge SDev %RSD	Y_3710 ppm 0003 .0000 12.89	Zn2062 ppm .0075 .0005 6.513	Zr3496 ppm .0001 .0001 161.2				
#1 #2	0004 0003	.0072 .0079	.0002 0000				
Errors High Low	NOCHECK	NOCHECK	NOCHECK				

Ana	ly	sis	Repo	ort

05/16/05 01:40:10 PM

page 3

IntSto Mode Elem Wavler Avge SDev %RSD	*Counts Sc	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 	
#1	643850	10000						
#2	652546	10000						

05/16/05 01:44:56 PM

Method: DAILY2 Sample Name: icsab Run Time: 05/16/05 13:40:22

Comment:

Mode: CONC Corr. Factor: 1

Operator:

Elem Units Avge SDev %RSD	Ag3280 ppm 1.091 .000	Al3082 ppm 516.2 .2	As1890 ppm 1.041 .004 .4263	B_2496 ppm 1.051 .005 .4570	Ba4934 ppm .5305 .0005 .0952	Be3130 ppm .4849 .0002 .0320	Bi2230 ppm .0065 .0082 125.3
#1 #2	1.091 1.091	516.3 516.0	1.038 1.044	1.047 1.054	.5302 .5309	.4850 .4848	.0007
Errors High Low	LC Pass 1.200 .8000	LC Pass 600.0 400.0	LC Pass 1.200 .8000	LC Pass 1.200 .8000	LC Pass .6000 .4000	LC Pass .6000 .4000	NOCHECK
Elem Units Avge SDev %RSD	Ca3179 ppm 464.1 .1	Cd2265 ppm .9821 .0009 .0924	Co2286 ppm .4961 .0011 .2199	Cr2677 ppm .4818 .0009 .1798	Cu3247 ppm .5506 .0015 .2718	Fe2714 ppm 192.3 .2 .1217	K_7664 ppm 0111 .0096 86.70
#1 #2	464.2 464.0	.9828 .9815	.4954 .4969	.4824 .4812	.5516 .5495	192.4 192.1	0179 0043
Errors High Low	LC Pass 600.0 400.0	LC Pass 1.200 .8000	LC Pass .6000 .4000	LC Pass .6000 .4000	LC Pass .6000 .4000	LC Pass 240.0 160.0	NOCHECK
Elem Units Avge SDev %RSD	La3988 ppm .0045 .0005 11.23	Li6707 ppm H1.297 .001 .0639	Mg2790 ppm 543.0 .0	Mn2576 ppm .5082 .0001 .0137	Mo2020 ppm 1.048 .000	Na3302 ppm .0881 .0270 30.64	Na5889 ppm 0089 .0071 79.63
#1 #2	.0049	H1.296 H1.298	543.0 543.0	.5083 .5082	1.048 1.048	.1072 .0690	0138 0039
Errors High Low	NOCHECK	LC High 1.200 .8000	LC Pass 600.0 400.0	LC Pass .6000 .4000	LC Pass 1.200 .8000	NOCHECK	NOCHECK
Elem Units Avge SDev %RSD	Ni2316 ppm .9366 .0078 .8312	P_1782 ppm 1.012 .024 2.353	2203/1 ppm 1.010 .007 .7057	2203/2 ppm .9464 .0057 .6044	Pd3404 ppm .0131 .0030 23.15	S_1820 ppm 0944 .0148 15.69	Sb2068 ppm 1.065 .000
#1 #2	.9311 .9421	.9956 1.029	1.005 1.015	.9423 .9504	.0109 .0152	0839 1049	1.065 1.065
Errors High Low	LC Pass 1.200 .8000	LC Pass 1.200 .8000	NOCHECK	NOCHECK	NOCHECK	NOCHECK	LC Pass 1.200 .8000
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

					010	112	
Units Avge SDev %RSD	%R 91.05 .11 .1195	ppm 1.019 .002 .2213	ppm 1.027 .002 .2340	ppm 1.071 .005 .4917	ppm .9677 .0062 .6389	ppm 1.024 .001 .0830	ppm 1.015 .003 .3291
#1 #2	90.97 91.13	1.021 1.018	1.025 1.029	1.068 1.075	.9633 .9720	1.024 1.025	1.018 1.013
Errors High Low	NOCHECK	NOCHECK	NOCHECK	NOCHECK	LC Pass 1.200 .8000	LC Pass 1.200 .8000	LC Pass 1.200 .8000
Elem Units Avge SDev %RSD	Sr4215 ppm 1.089 .000	Th2837 ppm .0132 .0008 5.956	Ti3349 ppm 1.002 .000	Tl1908 ppm 1.006 .001 .1203	U_4090 ppm 1.038 .009 .8592	V_2924 ppm .5110 .0005 .0920	W_2079 ppm 0049 .0037 74.54
#1 #2	1.089	.0138 .0127	1.002 1.002	1.005 1.007	1.032 1.044	.5107 .5113	0023 0075
Errors High Low	LC Pass 1.200 .8000	NOCHECK	LC Pass 1.200 .8000	LC Pass 1.200 .8000	NOCHECK	LC Pass .6000 .4000	NOCHECK
Elem Units Avge SDev %RSD	Y_3710 ppm 0004 .0000 6.521	Zn2062 ppm 1.002 .002 .2039	Zr3496 ppm .9325 .0010 .1065				
#1 #2	0004 0004	1.004	.9318 .9332				
Errors High Low	NOCHECK	LC Pass 1.200 .8000	NOCHECK				

010113 7 4 2 IntStd NOTUSED NOTUSED NOTUSED NOTUSED NOTUSED Time *Counts Mode - ---_ _ Sc - -Elem ___ 361.384 --Wavlen _ _ _ _ 10000 650573 Avge _ _ .0000000 ----731.1484 SDev _ _ - -.1123853 _ -%RSD .0000000 650056 10000 #1 --- -10000 _ _ 651090 #2

Method: DAILY2 Sample Name: ccv3 Run Time: 05/16/05 13:48:50

Comment:

Mode: CONC Corr. Factor: 1

Operator:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.9809	9.825	5.076	4.884	10.04	.9879	5.048
SDev	.0010	.013	.002	.018	.01	.0001	.007
%RSD	.1054	.1356	.0395	.3779	.0836	.0097	.1416
#1	.9816	9.816	5.075	4.871	10.04	.9880	5.043
#2	.9802	9.835	5.078	4.898	10.05	.9878	5.053
Errors	LC Pass LC Pass						
High	1.100	11.00	5.500	5.500	11.00	1.100	5.500
Low	.9000	9.000	4.500	4.500	9.000	.9000	4.500
Elem Units Avge SDev %RSD	Ca3179 ppm 19.94 .01 .0420	Cd2265 ppm 1.027 .002 .1751	Co2286 ppm 5.159 .002 .0318	Cr2677 ppm 1.977 .002 .0951	Cu3247 ppm 2.032 .000	Fe2714 ppm 10.54 .01	K_7664 ppm 18.72 .03 .1699
#1	19.95	1.026	5.161	1.976	2.031	10.54	18.70
#2	19.94	1.029	5.158	1.978	2.032	10.54	18.74
Errors	LC Pass LC Pass						
High	22.00	1.100	5.500	2.200	2.200	11.00	22.00
Low	18.00	.9000	4.500	1.800	1.800	9.000	18.00
Elem Units Avge SDev %RSD	La3988 ppm 4.929 .002 .0397	Li6707 ppm 5.210 .003 .0526	Mg2790 ppm 19.99 .00	Mn2576 ppm 1.045 .001 .1197	Mo2020 ppm 5.156 .002 .0360	Na3302 ppm 28.37 .09 .3287	Na5889 ppm H41.46 .02 .0516
#1	4.928	5.208	20.00	1.044	5.155	28.30	H41.44
#2	4.931	5.212	19.99	1.046	5.158	28.43	H41.47
Errors	LC Pass LC High						
High	5.500	5.500	22.00	1.100	5.500	33.00	33.00
Low	4.500	4.500	18.00	.9000	4.500	27.00	27.00
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	4.927	5.083	4.924	4.941	.9984	L.8942	1.018
SDev	.006	.010	.026	.040	.0002	.0039	.004
%RSD	.1149	.1892	.5236	.8005	.0224	.4381	.4307
#1	4.932	5.076	4.906	4.969	.9982	L.8914	1.021
#2	4.923	5.090	4.943	4.913	.9985	L.8970	1.015
Errors High Low	LC Pass 5.500 4.500	LC Pass 5.500 4.500	NOCHECK	NOCHECK	LC Pass 1.100 .9000	LC Low 1.100 .9000	LC Pass 1.100 .9000
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis	Report			05/16	/05 01:53:2	010115	page 2
Units Avge SDev %RSD	%R 99.06 .08 .0796	ppm 5.213 .033 .6241	ppm 5.229 .046 .8704	ppm 5.122 .001 .0210	ppm 4.935 .018 .3601	ppm 5.224 .019 .3733	ppm 4.912 .008 .1644
#1 #2	99.00 99.11	5.190 5.236	5.261 5.197	5.122 5.123	4.948	5.237 5.210	4.906 4.918
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 5.500 4.500
Elem Units Avge SDev %RSD	Sr4215 ppm 5.193 .007 .1394	Th2837 ppm .9875 .0055 .5581	Ti3349 ppm 4.975 .000	Tl1908 ppm 5.178 .005 .1016	U_4090 ppm L.8704 .0122 1.399	V_2924 ppm 5.060 .001 .0106	W_2079 ppm 1.012 .001 .0905
#1 #2	5.188 5.198	.9914 .9836	4.975 4.975	5.174 5.182	L.8618 L.8790	5.060 5.059	1.011 1.012
Errors High Low	LC Pass 5.500 4.500	LC Pass 1.100 .9000	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Low 1.100 .9000	LC Pass 5.500 4.500	LC Pass 1.100 .9000
Elem Units Avge SDev %RSD	Y_3710 ppm 4.995 .002 .0301	Zn2062 ppm 1.044 .000	Zr3496 ppm 4.892 .002				
#1 #2	4.996 4.994	1.044 1.044	4.891 4.894				
Errors High Low	LC Pass 5.500 4.500	LC Pass 1.100 .9000	LC Pass 5.500 4.500				

05/16/05 01:53:24 PM page 3

IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 707806 579.1205 .0818191	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED 	
#1	707396	10000						
#2	708215	10000						

05/16/05 02:00:01 PM

Method: DAILY2 Sample Name: ccb3 Run Time: 05/16/05 13:55:26

Comment:

Mode: CONC Corr. Factor: 1

Operator: **010117**

Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0000	0014	.0025	.0046	.0001	.0001	.0049
SDev	.0007	.0025	.0037	.0017	.0000	.0000	.0045
%RSD	1705.	178.8	146.9	37.42	59.48	11.42	92.25
#1 #2	.0005 0005	.0004 0032	H.0051 0001	.0058	.0000	.0001	.0081 .0017
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0500	.0050	.0500	.0050	.0050	.0100
Low	0050	0500	0050	0500	0050	0050	0100
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0003	0000	.0000	0005	.0008	.0016	.0054
SDev	.0003	.0001	.0010	.0000	.0004	.0040	.0123
%RSD	94.33	968.7	26150.	3.433	46.07	251.5	229.3
#1 #2	.0006	.0000 0001	.0007 0007	0005 0005	.0011	.0044 0012	.0141 0033
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0004	.0002	0007	0000	.0012	L1589	.0195
SDev	.0001	.0000	.0017	.0001	.0009	.3090	.0053
%RSD	20.95	9.547	251.0	180.0	74.49	194.5	27.00
#1	0004	.0002	.0005	0001	.0019	H.0596	.0158
#2	0003	.0001	0019	.0000	.0006	L3774	.0232
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Low	LC Pass
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0009	0004	0019	.0014	.0006	L1235	.0092
SDev	.0008	.0139	.0007	.0018	.0016	.0031	.0076
%RSD	87.66	3330.	37.79	135.9	262.6	2.480	82.40
#1	.0014	L0102	0014	.0027	0005	L1256	H.0145
#2		.0094	0024	.0001	.0017	L1213	.0038
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Low .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

						OTOTEO	
Units Avge SDev %RSD	%R 100.4 1.0 .9634	ppm 0061 .0004 6.059	ppm .0016 .0009 59.07	ppm .0058 .0029 50.10	ppm .0003 .0015 524.6	ppm 0010 .0005 52.45	ppm .0001 .0009 631.5
#1 #2	99.73 101.1	0059 0064	.0009	.0078 .0037	.0013	0013 0006	.0008 0005
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Avge SDev %RSD	Sr4215 ppm .0000 .0000 131.1	Th2837 ppm .0014 .0026 193.2	Ti3349 ppm .0002 .0001 40.41	Tl1908 ppm .0020 .0053 264.4	U_4090 ppm .0093 .0123 131.1	V_2924 ppm 0002 .0008 392.6	W_2079 ppm 0011 .0029 260.7
#1 #2	.0000	.0032	.0002	0018 .0058	.0180	.0004	0032 .0010
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev %RSD	Y_3710 ppm .0001 .0001 92.71	Zn2062 ppm 0001 .0003 288.2	Zr3496 ppm .0009 .0009 101.1				
#1 #2	.0001	.0001 0003	.0015				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

05/16/05 02:00:01 PM page 3

_						01011	9_
IntStd	1	2	3	4	5	6	/
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc						
Wavlen	361.384						
Avge	717484	10000					
SDev	6972.780	.0000000					
%RSD	.9718370	.0000000					
#1	712554	10000					- -
#2	722415	10000					

Method: DAILY2 Sample Name: pbw-E15H1 ph s 16 0 Operator: Run Time: 05/16/05 14:00:13 PBW-E16H1

Comment:

Mode: Co	ONC Corr	. Factor:	l			01012	n
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0005	0084	.0022	.0008	.0001	.0001	0006
SDev	.0005	.0033	.0021	.0004	.0001	.0000	.0050
%RSD	116.9	39.34	97.95	59.17	46.23	4.381	817.6
#1 #2	.0001	0060 0107	.0007	.0011	.0002 .0001	.0001	0041 .0029
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0500	.0050	.0500	.0050	.0050	.0100
Low	0050	0500	0050	0500	0050	0050	0100
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0077	0000	.0002	0006	.0005	.0022	.0017
SDev	.0006	.0002	.0001	.0003	.0003	.0065	.0087
%RSD	7.786	323.3	68.60	53.02	56.20	302.3	513.8
#1 #2	.0073 .0081	.0001 0002	.0001	0008 0004	.0007	0025 .0068	0045 .0078
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0004	.0001	.0006	.0000	.0003	0114	.0375
SDev	.0001	.0000	.0055	.0001	.0004	.2782	.0070
%RSD	19.24	46.50	928.5	1617.	146.8	2448.	18.73
#1 #2	.0003	.0001	0033 .0045	.0001 0001	.0006 0000	L2081 H.1854	.0325 .0425
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0001	0048	.0001	0009	.0004	L1302	.0026
SDev	.0003	.0078	.0041	.0018	.0009	.0084	.0043
%RSD	377.2	161.7	4871.	190.4	211.3	6.456	166.7
#1	0003	.0007	.0030	.0003	0002	L1243	.0056
#2	.0001	L0104	0028	0022	.0011	L1362	0005
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Low .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

						01012	21
Units Avge SDev	%R 107.1 .5	ppm .0022 .0029	ppm .0022 .0025	ppm H.0213 .0001	ppm 0006 .0025	ppm .0022 .0007	ppm 0014 .0028
%RSD	.4943	131.3	112.7	.6978	444.7	31.20	199.9
#1 #2	106.7 107.5	.0002	.0040 .0005	H.0212 H.0214	.0012 0024	.0027 .0017	0034 .0006
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC High .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Avge SDev %RSD	Sr4215 ppm .0000 .0000 64.38	Th2837 ppm .0012 .0023 185.1	Ti3349 ppm .0003 .0000 4.630	Tl1908 ppm .0022 .0020 91.19	U_4090 ppm .0221 .0057 25.96	V_2924 ppm 0001 .0004 297.8	W_2079 ppm 0029 .0004 13.65
#1 #2	.0001	.0029 0004	.0003	.0008 .0036	.0180 .0261	0004 .0001	0027 0032
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev %RSD	Y_3710 ppm .0000 .0001 388.2	Zn2062 ppm .0006 .0001 12.51	Zr3496 ppm .0010 .0001 7.094				
#1 #2	.0001 0001	.0005 .0006	.0010 .0011				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

AHALYSIS KEDULL	Anal	vsis	Report
-----------------	------	------	--------

05/16/05 02:04:48 PM page 3

IntStd	1	2	3	4	5	6 01	10,122	
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED	
Elem	Sc		- -					
Wavlen	361.384							
Avge	765243	10000						
SDev	3767.465	.0000000						
%RSD	.4923227	.0000000						
#1	762579	10000						
#2	767907	10000						

Method: DAILY2 Sample Name: lesw-E15H1 0H 5-16-05 Operator: Run Time: 05/16/05 14:05:00 Lesw-E16H1

Comment:

Elem Units Avge SDev %RSD	Ag3280 ppm .0460 .0004 .8657	Al3082 ppm 1.753 .000	As1890 ppm 1.833 .009 .4636	B_2496 ppm .0009 .0015 169.4	Ba4934 ppm 1.823 .003 .1745	Be3130 ppm .0456 .0000	Bi2230 ppm 0017 .0050 286.3
#1	.0457	1.753	1.839	0002	1.821	.0456	.0018
#2		1.752	1.827	.0019	1.825	.0457	0052
Elem Units Avge SDev %RSD	Ca3179 ppm 18.70 .01	Cd2265 ppm .0470 .0001 .2317	Co2286 ppm .4593 .0012 .2555	Cr2677 ppm .1800 .0006 .3461	Cu3247 ppm .2267 .0001 .0643	Fe2714 ppm 1.024 .012 1.164	K_7664 ppm 15.72 .01
#1	18.69	.0469	.4585	.1805	.2266	1.015	15.71
#2	18.70	.0471	.4601	.1796	.2268	1.032	15.73
Elem Units Avge SDev %RSD	La3988 ppm0004 .0004 108.9	Li6707 ppm .0002 .0001 51.75	Mg2790 ppm 18.62 .01	Mn2576 ppm .4699 .0004 .0937	Mo2020 ppm 0005 .0009 177.9	Na3302 ppm 16.57 .20 1.180	Na5889 ppm 23.95 .04 .1803
#1	0007	.0001	18.62	.4696	0012	16.43	23.98
#2	0001		18.61	.4702	.0001	16.71	23.91
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm						
Avge	.4433	0089	.4503	.4507	0005	1299	.4448
SDev	.0013	.0025	.0010	.0014	.0058	.0019	.0047
%RSD	.2893	28.13	.2168	.3097	1257.	1.430	1.059
#1	.4442	0106	.4510	.4497	0046	1286	.4415
#2	.4424	0071	.4496	.4517	.0037	1312	.4481
Elem Units Avge SDev %RSD	Sc3613 %R 106.6 .7 .6138	1960/1 ppm 1.907 .007 .3452	1960/2 ppm 1.892 .005 .2478	Si2881 ppm 3.745 .000	Pb220 ppm .4506 .0006 .1343	Se196 ppm 1.897 .001 .0508	Sn1899 ppm .0003 .0032 1040.
#1	107.0	1.902	1.895	3.745	.4502	1.898	.0026
#2	106.1	1.912	1.889	3.745	.4510	1.896	0019
Elem Units Avge SDev %RSD	Sr4215 ppm 3.847 .000	Th2837 ppm 0152 .0018 11.72	Ti3349 ppm .0001 .0001 82.29	Tl1908 ppm 1.856 .009 .4778	U_4090 ppm 0390 .0296 75.77	V_2924 ppm .4565 .0018 .3874	W_2079 ppm 0053 .0023 42.82
#1	3.847	0165	.0001	1.849	0599	.4577	0037
#2	3.847	0139		1.862	0181	.4552	0069

Elem Units Avge SDev %RSD	Y_3710 ppm 0002 .0001 27.75	Zn2062 ppm .4657 .0007 .1529	Zr3496 ppm .0004 .0005 128.0			(010124
#1 #2	0003 0002	.4652 .4662	.0000				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 761474 4644.984 .6099995	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	764758 758189	10000 10000			 		

010125 Method: DAILY2 Sample Name: 262217 Operator:

Run Time: 05/16/05 14:09:50

Comment:

Mode: CC	one corr.	Factor: 1	L				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0004	0087	.0016	.0127	.1108	.0001	.0004
SDev	.0002	.0006	.0003	.0001	.0001	.0000	.0027
%RSD	56.85	6.759	16.99	.6170	.1032	8.012	762.3
#1	0006	0091	.0014	.0127	.1107	.0001	0016
#2	0003	0082	.0017	.0126	.1109		.0023
Elem Units Avge SDev %RSD	Ca3179 ppm 1.458 .002 .1522	Cd2265 ppm 0000 .0000 139.1	Co2286 ppm 0003 .0003 105.6	Cr2677 ppm 0007 .0005 64.52	Cu3247 ppm 0006 .0003 41.09	Fe2714 ppm .0075 .0004 5.987	K_7664 ppm .6989 .0085
#1	1.456	0000	0005	0004	0004	.0078	.6928
#2	1.459	0001	0001	0011	0008	.0071	.7049
Elem	La3988 ppm0007 .0007 95.21	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.0007	.1718	.0005	0001	13.30	18.08
SDev		.0000	.0039	.0000	.0004	.10	.04
%RSD		6.244	2.262	6.303	715.0	.7679	.2244
#1	0012	.0006	.1690	.0005	.0002	13.23	18.11
#2	0002	.0007	.1745		0003	13.38	18.05
Elem Units Avge SDev %RSD	Ni2316 ppm .0003 .0003 111.8	P_1782 ppm .0176 .0022 12.63	2203/1 ppm .0026 .0000	2203/2 ppm .0005 .0015 304.7	Pd3404 ppm .0008 .0032 412.7	S_1820 ppm 1.586 .016 .9917	Sb2068 ppm .0053 .0016 29.86
#1 #2	.0001	.0192 .0161	.0026 .0026	.0016 0006	0015 .0030	1.597 1.575	.0064
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	108.2	.0054	.0006	2.516	.0012	.0022	.0000
SDev	.8	.0057	.0033	.003	.0010	.0003	.0001
%RSD	.7700	105.2	542.5	.1015	82.59	14.99	274.7
#1	108.8	.0014	.0030	2.514	.0019	.0025	0000
#2	107.7		0017	2.518	.0005	.0020	.0001
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0041	.0004	.0002	.0041	0104	0005	0036
SDev	.0000	.0003	.0000	.0059	.0086	.0001	.0011
%RSD	1.000	95.31	5.907	143.6	83.30	28.55	31.01
#1 #2	.0041	.0001	.0002	0001 .0083	0165 0043	0006 0004	0044 0028

Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0000 21.86	Zn2062 ppm .0173 .0002 1.414	Zr3496 ppm .0003 .0004 146.1			0	10126
#2	0001	.0172	.0006				
IntStd Mode	1 *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Sc						
Wavlen	361.384						
Avge	773472	10000					
SDev	5987.073	.0000000					
%RSD	.7740512	.0000000					
#1	777706	10000					
#2	769239	10000					

Method: DAILY2 Sample Name: 262217d

Run Time: 05/16/05 14:14:36

Comment:

Mode: CONC Corr. Factor: 1

Operator: **010127**

Mode: CO	NC Corr.	factor: 1	-				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0002	0102	.0035	.0125	.1108	.0001	.0027
SDev	.0003	.0056	.0005	.0003	.0002	.0000	.0054
%RSD	186.2	54.81	14.77	2.488	.2162	8.781	198.4
#1 #2	0004 .0001	0062 0141	.0038	.0123 .0127	.1110 .1107	.0001	.0066 0011
Elem Units Avge SDev %RSD	Ca3179 ppm 1.456 .002 .1251	Cd2265 ppm 0001 .0000 17.67	Co2286 ppm 0004 .0002 56.21	Cr2677 ppm 0002 .0004 208.8	Cu3247 ppm .0000 .0003 1452.	Fe2714 ppm 0056 .0038 67.20	K_7664 ppm .6865 .0022
#1	1.457	0001	0005	0005	0002	0082	.6881
#2	1.455	0002	0002	.0001	.0002	0029	.6850
Elem	La3988 ppm0009 .0004 42.32	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.0006	.1674	.0005	0003	13.16	18.08
SDev		.0000	.0001	.0000	.0014	.09	.05
%RSD		3.445	.0664	3.770	446.0	.6851	.2716
#1 #2	0006 0012	.0006	.1673 .1675	.0005	.0007 0013	13.10 13.22	18.12 18.05
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0005	.0064	.0026	0000	0037	1.571	.0028
SDev	.0013	.0002	.0012	.0020	.0009	.014	.0043
%RSD	260.1	3.248	44.47	6152.	23.16	.9223	153.0
#1	0004	.0063	.0035	.0014	0043	1.561	.0059
#2	.0014	.0066	.0018	0015	0031	1.581	0002
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	108.4	0033	.0011	2.514	.0009	0003	.0022
SDev	1.1	.0055	.0036	.002	.0017	.0006	.0012
%RSD	1.048	169.3	321.4	.0823	199.9	172.6	55.48
#1	109.2	.0006	0014	2.513	.0021	0007	.0014
#2	107.6	0071	.0037	2.515	0004	.0001	
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0040	.0023	.0003	.0039	0164	0003	0026
SDev	.0000	.0021	.0001	.0014	.0145	.0000	.0004
%RSD	.1316	88.74	25.91	36.24	88.37	6.140	15.57
#1 #2	.0040	.0038	.0002	.0049	0062 0267	0003 0003	0023 0028

Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0000 64.45	Zn2062 ppm .0169 .0002 1.114	Zr3496 ppm .0002 .0005 251.6			01	10128
#1 #2	0000 0001	.0170 .0167	.0006 0002				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 774825 8164.255 1.053690	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	780598 769052	10000 10000	 	 		 	

Method: DAILY2 Sample Name: 262218 Run Time: 05/16/05 14:19:23

Comment:

Mode: CONC Corr. Factor: 1

Operator:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0005	0084	0002	.0117	.0946	.0001	.0015
SDev	.0002	.0078	.0038	.0003	.0005	.0000	.0076
%RSD	36.55	92.43	1586.	2.535	.5325	8.007	519.0
#1	0004	0029	.0024	.0115	.0943	.0001	0039
#2	0006	0140	0029	.0120	.0950		.0069
Elem Units Avge SDev %RSD	Ca3179 ppm 1.536 .000	Cd2265 ppm 0000 .0001 311.4	Co2286 ppm .0002 .0001 28.10	Cr2677 ppm 0005 .0001 27.13	Cu3247 ppm .0002 .0004 162.8	Fe2714 ppm .0042 .0032 76.47	K_7664 ppm .6989 .0031 .4459
#1	1.537	0001	.0002	0004	.0005	.0019	.6967
#2	1.536	.0000	.0001	0006	0000	.0064	.7011
Elem	La3988 ppm0004 .0008 182.8	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.0007	.1776	.0005	0005	13.23	18.26
SDev		.0000	.0058	.0000	.0004	.16	.12
%RSD		4.315	3.263	6.354	88.17	1.237	.6310
#1	.0001	.0007	.1817	.0005	0008	13.11	18.17
#2	0010		.1735	.0006	0002	13.34	18.34
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0004	.0124	0012	.0031	.0006	1.581	.0049
SDev	.0001	.0026	.0003	.0011	.0008	.043	.0015
%RSD	14.15	20.85	29.27	35.87	120.7	2.691	30.38
#1 #2	0004 0005	.0142 .0105	0009 0014	.0023	.0012	1.551 1.611	.0039 .0060
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	107.4	.0020	.0017	2.546	.0017	.0018	.0006
SDev	.5	.0019	.0027	.010	.0006	.0024	.0003
%RSD	.4305	94.07	161.7	.3869	37.22	135.0	48.00
#1 #2	107.1 107.7	.0034	.0036 0002	2.539 2.553	.0012 .0021	.0035	.0004
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0041	.0018	.0004	0008	.0034	0001	0044
SDev	.0000	.0023	.0000	.0002	.0052	.0003	.0004
%RSD	.0738	131.9	5.124	19.26	153.3	411.6	10.14
#1 #2	.0041	.0001 .0034	.0004	0007 0010	.0071 0003	.0001 0002	0041 0047

Elem Units Avge SDev %RSD #1 #2	Y_3710 ppm 0001 .0000 43.52 0001 0000	Zn2062 ppm .0169 .0003 1.529 .0171 .0167	Zr3496 ppm .0005 .0001 13.06 .0005 .0004			0	10130
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 767614 3300.067 .4299126	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	765280 769947	10000 10000					

Method: DAILY2 Sample Name: 262218s Run Time: 05/16/05 14:24:09

Comment:

Mode: CONC Corr. Factor: 1

Operator:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm						
Avge	.0458	1.779	1.850	.0116	1.916	.0456	.0040
SDev	.0004	.005	.002	.0004	.003	.0000	.0004
%RSD	.7900	.3021	.0925	3.203	.1677	.0367	9.199
#1	.0461	1.783	1.848	.0113	1.918	.0456	.0043
#2	.0455	1.775	1.851	.0119	1.913	.0456	
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm						
Avge	19.98	.0466	.4603	.1798	.2293	1.023	17.74
SDev	.01	.0001	.0003	.0005	.0001	.007	.04
%RSD	.0284	.2078	.0727	.2982	.0355	.6926	.2198
#1	19.98	.0465	.4601	.1801	.2294	1.018	17.76
#2	19.99	.0467	.4606	.1794	.2292	1.028	17.71
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm						
Avge	.0001	.0009	18.61	.4703	0011	31.90	45.28
SDev	.0007	.0000	.00	.0001	.0003	.16	.16
%RSD	486.3	.7136	.0159	.0317	24.36	.4935	.3572
#1	.0006	.0009	18.61	.4702	0009	31.79	45.39
#2	0004		18.62	.4705	0013	32.01	45.16
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm						
Avge	.4446	.0195	.4511	.4440	.0017	1.598	.4528
SDev	.0041	.0055	.0007	.0002	.0034	.006	.0027
%RSD	.9303	28.38	.1583	.0535	205.0	.3936	.5858
#1	.4417	.0156	.4506	.4438	0008	1.602	.4509
#2	.4475	.0234	.4516	.4442	.0041	1.593	.4546
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	107.8	1.929	1.922	6.293	.4464	1.924	0003
SDev	.8	.013	.008	.014	.0004	.001	.0031
%RSD	.7442	.6576	.4222	.2149	.0896	.0632	898.2
#1	108.3	1.938	1.916	6.302	.4461	1.924	0025
#2	107.2	1.920	1.928	6.283	.4466	1.925	.0018
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm						
Avge	3.921	0119	.0004	1.862	0389	.4578	0042
SDev	.003	.0016	.0002	.004	.0031	.0009	.0019
%RSD	.0865	13.53	51.25	.2376	7.957	.1919	44.57
#1	3.923	0108	.0002	1.858	0367	.4571	0056
#2	3.918	0131		1.865	0411	.4584	0029

Elem Units Avge SDev %RSD	Y_3710 ppm 0001 .0001 44.98	Zn2062 ppm .4837 .0002 .0382	Zr3496 ppm .0004 .0002 40.72			0 1	.0132
#1 #2	0001 0002	.4836 .4839	.0003				
IntStd Mode	1 *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED
Elem	Sc						
Wavlen	361.384	10000					
Avge SDev	770138 5762.213	10000					
%RSD	.7482058	.0000000					
#1	774212	10000					
#2	766063	10000					

Operator: 010133

Method: DAILY2 Sample Name: 262219 Run Time: 05/16/05 14:28:59

Comment:

Mode: CC	NC COII.	ractor: 1	•				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0002	0112	.0009	.0127	.1105	.0001	.0029
SDev	.0006	.0017	.0046	.0007	.0004	.0000	.0016
%RSD	303.2	15.56	524.3	5.600	.3414	17.40	55.89
#1 #2	0002 .0006	0100 0124	.0042 0024	.0132 .0122	.1108	.0001	.0041
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	1.488	0001	.0003	.0005	.0006	.0094	.6529
SDev	.002	.0000	.0007	.0009	.0005	.0122	.0141
%RSD	.1494	29.24	205.2	202.5	79.87	130.0	2.158
#1	1.486	0002	.0008	0002	.0003	.0008	.6430
#2	1.489	0001	0001	.0011		.0180	.6629
Elem	La3988 ppm0006 .0012 218.2	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.0007	.1697	.0003	0002	13.29	18.16
SDev		.0001	.0040	.0000	.0001	.23	.02
%RSD		13.37	2.371	3.311	63.01	1.756	.1076
#1 #2	0014 .0003	.0006	.1725 .1668	.0003	0001 0003	13.12 13.45	18.18 18.15
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0003	.0120	.0003	0012	0002	1.592	.0011
SDev	.0009	.0022	.0038	.0012	.0004	.003	.0015
%RSD	286.8	18.73	1127.	100.3	178.0	.1835	141.0
#1	0009	.0104	0024	0004	.0001	1.594	.0000
#2	.0003		.0031	0021	0005	1.590	.0021
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	108.2	0007	0004	2.508	0007	0005	.0003
SDev	.6	.0087	.0005	.005	.0005	.0026	.0009
%RSD	.5705	1293.	122.3	.1850	66.18	562.9	307.5
#1	108.6	.0055	0007	2.505	0010	.0014	0003
#2	107.7	0068	0001	2.511	0004	0023	.0009
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0041	.0013	.0003	.0053	0024	.0003	0038
SDev	.0000	.0004	.0000	.0002	.0099	.0003	.0016
%RSD	.3627	30.34	13.08	4.313	409.5	114.3	41.28
#1 #2	.0041	.0010 .0016	.0002	.0054 .0051	0094 .0046	.0005	0049 0027

Elem Units Avge SDev %RSD #1 #2	Y_3710 ppm .0001 .0001 40.57 .0001	Zn2062 ppm .0192 .0001 .3836 .0192 .0191	Zr3496 ppm .0006 .0001 24.36 .0005 .0007			01	0134
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 772828 4437.095 .5741371	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	775966 769691	10000 10000		 			

Operator: **010135**

Method: DAILY2 Sample Name: 262220

Run Time: 05/16/05 14:33:45

Comment:

Mode: C	LONC COII.	ractor.	т				
Elem Units Avge SDev %RSD	Ag3280 ppm .0008 .0002 28.67	Al3082 ppm 0013 .0044 347.4	As1890 ppm .0031 .0010 34.29	B_2496 ppm .0112 .0004 3.897	Ba4934 ppm .1193 .0003 .2186	Be3130 ppm .0001 .0000 16.00	Bi2230 ppm .0100 .0003 3.457
#1 #2	.0006 .0010	0044 .0019	.0038	.0109 .0115	.1191 .1195	.0001	.0102 .0097
Elem Units Avge SDev %RSD	Ca3179 ppm 1.491 .003 .1693	Cd2265 ppm .0002 .0003 113.3	Co2286 ppm .0003 .0001 18.98	Cr2677 ppm0008 .0004 48.42	Cu3247 ppm .0003 .0009 270.2	Fe2714 ppm .0153 .0075 49.13	K_7664 ppm .6269 .0000
#1 #2	1.493 1.489	.0000	.0002	0005 0011	0003 .0010	.0206 .0100	.6269 .6269
Elem Units Avge SDev %RSD	La3988 ppm .0008 .0006 82.62	Li6707 ppm .0007 .0000 3.478	Mg2790 ppm .1807 .0000 .0044	Mn2576 ppm .0003 .0000 12.79	Mo2020 ppm .0003 .0015 442.6	Na3302 ppm 13.51 .01	Na5889 ppm 18.29 .03
#1 #2	.0003 .0012	.0007	.1807 .1807	.0003	.0014 0007	13.52 13.51	18.27 18.31
Elem Units Avge SDev %RSD	Ni2316 ppm 0007 .0008 124.0	P_1782 ppm .0176 .0010 5.719	2203/1 ppm .0022 .0024 109.3	2203/2 ppm .0007 .0026 389.1	Pd3404 ppm .0017 .0006 32.96	S_1820 ppm 1.597 .002 .1036	Sb2068 ppm .0076 .0001 .7765
#1 #2	0013 0001	.0169 .0183	.0005	.0025 0012	.0021 .0013	1.596 1.598	.0077 .0076
Elem Units Avge SDev %RSD	Sc3613 %R 108.2 .1	1960/1 ppm 0002 .0009 400.3	1960/2 ppm 0011 .0019 175.6	Si2881 ppm 2.537 .001 .0268	Pb220 ppm .0012 .0010 81.34	Se196 ppm 0008 .0010 126.3	Sn1899 ppm .0011 .0026 239.0
#1 #2	108.1 108.3	0008 .0004	.0003 0025	2.537 2.538	.0019 .0005	0001 0015	0007 .0029
Elem Units Avge SDev %RSD	Sr4215 ppm .0041 .0000 .8676	Th2837 ppm 0010 .0008 80.12	Ti3349 ppm .0002 .0003 215.4	Tl1908 ppm .0047 .0044 94.02	U_4090 ppm .0433 .0169 38.96	V_2924 ppm 0002 .0001 60.44	W_2079 ppm 0019 .0007 35.68
#1 #2	.0041	0015 0004	0001 .0004	.0016 .0078	.0314 .0552	0003 0001	0024 0014

Elem Units Avge SDev %RSD	Y_3710 ppm 0002 .0000 30.35	Zn2062 ppm .0569 .0000 .0134	Zr3496 ppm .0002 .0005 269.0			010	136
#1 #2	0001 0002	.0569 .0570	0002 .0005				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 773274 891.6616 .1153100	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	772643 773904	10000 10000	- -		 	 	

Method: DAILY2 Sample Name: 262221 Operator:

Run Time: 05/16/05 14:38:32

Comment:

Mode: CONC Corr. Factor: 1

			-				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0004	0114	.0052	.0112	.1155	.0001	.0021
SDev	.0004	.0045	.0038	.0023	.0002	.0000	.0038
%RSD	102.6	39.57	73.80	20.46	.1943	12.58	178.5
#1 #2	.0001	0145 0082	.0025 .0078	.0128 .0096	.1156 .1153	.0001	.0048 0006
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	1.426	.0001	0005	0004	.0002	0036	.6082
SDev	.001	.0002	.0002	.0019	.0016	.0114	.0169
%RSD	.0593	270.7	29.31	521.5	757.5	320.9	2.778
#1	1.425	0001	0004	.0010	.0014	0117	.5962
#2	1.426	.0002	0007	0017	0009	.0045	.6201
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0000	.0007	.1672	.0002	.0000	13.39	18.25
SDev	.0001	.0001	.0044	.0001	.0001	.17	.01
%RSD	854.3	9.399	2.654	39.33	231.6	1.243	.0749
#1 #2	.0001 0000	.0006	.1641 .1704	.0003	.0001 0000	13.51 13.27	18.26 18.24
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0000	.0031	.0017	0006	.0010	1.588	.0031
SDev	.0000	.0057	.0020	.0021	.0018	.002	.0019
%RSD	75.67	181.7	119.7	361.2	168.1	.1095	62.53
#1 #2	.0000	.0071 0009	.0003	.0009 0021	0002 .0023	1.587 1.590	.0045 .0017
Elem Units Avge SDev %RSD	Sc3613 %R 107.4 .0	1960/1 ppm .0012 .0001 9.353	1960/2 ppm 0022 .0043 193.7	Si2881 ppm 2.522 .000 .0155	Pb220 ppm .0002 .0007 376.3	Se196 ppm 0011 .0029 273.3	Sn1899 ppm 0013 .0026 193.2
#1	107.5	.0013	.0008	2.522	.0007	.0010	.0005
#2	107.4		0052	2.522	0003	0031	0032
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0039	.0020	.0004	.0006	0015	0000	0042
SDev	.0000	.0044	.0003	.0009	.0305	.0008	.0024
%RSD	.1960	221.6	75.61	151.9	2011.	3672.	58.34
#1 #2	.0039	.0051 0011	.0005	0000 .0012	0231 .0200	.0005 0006	0059 0025

Elem Units Avge SDev %RSD #1 #2	Y_3710 ppm .0000 .0003 870.4 .0002 0002	Zn2062 ppm .0141 .0000 .2367 .0141	Zr3496 ppm .0006 .0005 90.67 .0010			010	138
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 767768 301.9346 .0393263	2 Time -1 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	767981 767554	10000 10000	 			- - 	

Method: DAILY2 Sample Name: 262222

Operator:

	: 05/16/05	14:43:22	me: Della		940	010	120
Comment: Mode: CO	NC Corr.	Factor: 1				010	139
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0007	0032	.0018	.0111	.1168	.0001	.0079
SDev	.0005	.0027	.0008	.0007	.0002	.0000	.0011
%RSD	64.46	85.61	46.01	6.395	.1965	1.895	13.84
#1 #2	.0010	0012 0051	.0012	.0106 .0116	.1170 .1166	.0001	.0087 .0071
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	1.491	.0003	0001	0009	.0003	.0084	.7063
SDev	.002	.0001	.0010	.0002	.0005	.0162	.0117
%RSD	.1505	36.47	688.6	18.73	182.3	192.5	1.658
#1	1.493	.0004	.0006	0008	.0006	0030	.6981
#2	1.489		0009	0010	0001	.0198	.7146
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0001	.0007	.1756	.0001	0009	13.56	18.35
SDev	.0011	.0001	.0061	.0001	.0012	.38	.04
%RSD	887.3	7.545	3.498	48.36	128.2	2.803	.2406
#1 #2	.0009 0007	.0006	.1800 .1713	.0001	0001 0018	13.29 13.83	18.39 18.32
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0004	.0136	.0012	0002	.0008	1.590	.0032
SDev	.0006	.0100	.0023	.0012	.0060	.021	.0009
%RSD	153.1	73.58	188.4	550.0	769.0	1.352	28.88
#1	.0009	.0206	.0028	0011	0035	1.575	.0025
#2	0000	.0065	0004	.0006	.0050	1.605	
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	108.4	0020	.0006	2.550	.0003	0003	.0001
SDev	.6	.0006	.0001	.004	.0000	.0001	.0016
%RSD	.5671	27.91	27.47	.1425	14.43	29.67	1352.
#1 #2	108.9 108.0	0016 0024	.0005	2.553 2.548	.0003	0002 0003	0010 .0013
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0041	0043	.0002	.0037	.0310	0005	0043
SDev	.0000	.0009	.0000	.0013	.0269	.0000	.0002
%RSD	.4149	19.97	5.892	34.91	86.80	3.964	3.581
#1 #2	.0041	0037 0050	.0002	.0028	.0500 .0120	0005 0004	0044 0042

Elem Units Avge SDev %RSD	Y_3710 ppm 0002 .0001 27.35	Zn2062 ppm .0117 .0005 4.122	Zr3496 ppm .0000 .0004 1547.			01	0140
#1 #2	0003 0002	.0121 .0114	.0003 0003				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 774728 4364.263 .5633284	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	777814 771642	10000 10000	 	 	 	 	

Method: DAILY2 Sample Name: ccv4 Run Time: 05/16/05 14:55:06

Comment:

Mode: CONC Corr. Factor: 1

Operator:

Elem Units Avge SDev %RSD	Ag3280 ppm .9789 .0002 .0189	Al3082 ppm 9.824 .009	As1890 ppm 5.039 .002 .0471	B_2496 ppm 4.866 .018 .3726	Ba4934 ppm 9.950 .007 .0694	Be3130 ppm .9882 .0004 .0421	Bi2230 ppm 5.018 .002 .0383
#1	.9790	9.817	5.041	4.853	9.945	.9885	5.019
#2	.9788	9.830	5.038	4.879	9.955	.9879	5.016
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	1.100	11.00	5.500	5.500	11.00	1.100	5.500
Low	.9000	9.000	4.500	4.500	9.000	.9000	4.500
Elem Units Avge SDev %RSD	Ca3179 ppm 20.05 .05	Cd2265 ppm 1.022 .004 .3863	Co2286 ppm 5.141 .004 .0712	Cr2677 ppm 1.977 .002 .1024	Cu3247 ppm 2.029 .000	Fe2714 ppm 10.55 .00	K_7664 ppm 18.69 .06
#1	20.08	1.024	5.143	1.978	2.029	10.55	18.65
#2		1.019	5.138	1.975	2.028	10.55	18.73
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	22.00	1.100	5.500	2.200	2.200	11.00	22.00
Low	18.00	.9000	4.500	1.800	1.800	9.000	18.00
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	4.926	5.198	19.99	1.042	5.140	27.84	H41.36
SDev	.002	.002	.01	.001	.006	.13	.02
%RSD	.0372	.0465	.0629	.1007	.1249	.4653	.0364
#1	4.927	5.200	19.99	1.042	5.144	27.94	H41.35
#2	4.925	5.196	19.98	1.041	5.135	27.75	H41.37
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC High
High	5.500	5.500	22.00	1.100	5.500	33.00	33.00
Low	4.500	4.500	18.00	.9000	4.500	27.00	27.00
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	4.878	5.004	4.911	4.925	.9983	L.8530	1.021
SDev	.003	.013	.018	.011	.0039	.0040	.008
%RSD	.0633	.2501	.3704	.2207	.3943	.4633	.7887
#1	4.876	5.013	4.923	4.933	.9955	L.8558	1.026
#2	4.881	4.995	4.898	4.918	1.001	L.8502	1.015
Errors High Low	LC Pass 5.500 4.500	LC Pass 5.500 4.500	NOCHECK	NOCHECK	LC Pass 1.100 .9000	LC Low 1.100 .9000	LC Pass 1.100 .9000
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Units Avge SDev %RSD	%R 97.75 .29 .3015	ppm 5.176 .016 .3175	ppm 5.201 .017 .3310	ppm 5.124 .017 .3277	ppm 4.920 .013 .2705	ppm 5.193 .006 .1156	.000 .0007
#1 #2	97.96 97.54	5.187 5.164	5.189 5.213	5.136 5.112	4.930 4.911	5.188 5.197	4.909 4.909
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 5.500 4.500
Elem Units Avge SDev %RSD	Sr4215 ppm 5.205 .002 .0380	Th2837 ppm .9866 .0026 .2588	Ti3349 ppm 4.964 .003 .0595	Tl1908 ppm 5.131 .010 .2002	U_4090 ppm L.8444 .0123 1.457	V_2924 ppm 5.050 .002 .0323	W_2079 ppm 1.006 .001 .0825
#1 #2	5.203 5.206	.9884 .9848	4.966 4.962	5.138 5.124	L.8531 L.8357	5.051 5.049	1.005 1.006
Errors High Low	LC Pass 5.500 4.500	LC Pass 1.100 .9000	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Low 1.100 .9000	LC Pass 5.500 4.500	LC Pass 1.100 .9000
Elem Units Avge SDev %RSD	Y_3710 ppm 4.988 .008 .1511	Zn2062 ppm 1.041 .002 .1537	Zr3496 ppm 4.925 .003 .0699				
#1 #2	4.993 4.982	1.042 1.040	4.922 4.927				
Errors High Low	LC Pass 5.500 4.500	LC Pass 1.100 .9000	LC Pass 5.500 4.500				

05/16/05 02:59:41 PM page 3

IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 698412 2093.036 .2996850	2 Time 10000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	0,10143 NOTUSED
#1 #2	699892 696932	10000 10000			- <i>-</i>		

Method: DAILY2 Sample Name: ccb4 Run Time: 05/16/05 15:01:43

Comment:

Mode: CONC Corr. Factor: 1

Operator:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0006	0065	.0029	.0031	.0002	.0001	.0059
SDev	.0005	.0029	.0006	.0005	.0000	.0000	.0032
%RSD	92.91	44.66	21.42	15.85	23.76	7.532	54.12
#1 #2	.0002 .0010	0044 0085	.0024	.0035	.0001	.0002 .0001	.0036 .0081
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0500	.0050	.0500	.0050	.0050	.0100
Low	0050	0500	0050	0500	0050	0050	0100
Elem	Ca3179	Cd2265	Co2286 ppm0000 .0008 1796.	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm		ppm	ppm	ppm	ppm
Avge	.0011	.0003		0001	.0011	.0027	.0143
SDev	.0017	.0004		.0001	.0001	.0123	.0052
%RSD	156.0	129.4		223.9	13.47	449.7	36.35
#1	0001	.0000	0006	0002	.0010	0060	.0180
#2	.0022		.0005	.0000	.0013	.0115	.0106
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0500	.0050	.0050	.0050	.0050	.0250	.1000
Low	0500	0050	0050	0050	0050	0250	1000
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0002	.0002	.0012	0000	.0012	0196	.0182
SDev	.0006	.0001	.0051	.0000	.0003	.0079	.0014
%RSD	225.5	24.58	434.2	78.18	27.69	40.12	7.688
#1	0001	.0002	0024	0000	.0009	0141	.0172
#2	.0006		.0047	0000	.0014	0252	.0192
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass	LC Pass
High	.0050	.0050	.0500	.0050	.0050	.0500	.0500
Low	0050	0050	0500	0050	0050	0500	0500
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0014	0075	.0011	0019	.0012	L1317	.0073
SDev	.0002	.0107	.0046	.0006	.0003	.0000	.0028
%RSD	17.13	142.2	400.6	29.41	24.31	.0048	37.94
#1	0015	.0000	.0044	0015	.0014	L1317	.0053
#2	0012	L0151	0021	0023	.0010	L1317	.0092
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Low .0100 0100	LC Pass .0100 0100
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

_						61	.0145
Units Avge SDev %RSD	%R 99.44 .00 .0032	ppm .0011 .0003 27.51	ppm .0005 .0019 397.6	ppm H.0107 .0024 22.81	ppm 0009 .0019 215.5	ppm .0007 .0011 165.2	ppm .0006 .0016 252.5
#1 #2	99.44 99.43	.0013	0008 .0018	.0090 H.0124	.0005 0022	0001 .0015	0005 .0018
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC High .0100 0100	LC Pass .0030 0030	LC Pass .0050 0050	LC Pass .0050 0050
Elem Units Avge SDev %RSD	Sr4215 ppm .0001 .0001 110.5	Th2837 ppm 0006 .0016 273.0	Ti3349 ppm .0002 .0000 18.76	Tl1908 ppm .0004 .0005 132.8	U_4090 ppm .0234 .0220 93.66	V_2924 ppm 0001 .0009 1531.	W_2079 ppm 0009 .0002 25.84
#1 #2	.0000	.0005 0017	.0002	.0000	.0079 .0390	0007 .0006	0011 0008
Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .0050 0050	LC Pass .0100 0100	LC Pass .1000 1000	LC Pass .0050 0050	LC Pass .0100 0100
Elem Units Avge SDev %RSD	Y_3710 ppm .0000 .0001 222.3	Zn2062 ppm .0001 .0002 275.2	Zr3496 ppm .0005 .0009 168.1				
#1 #2	0000 .0001	.0002 0001	0001 .0011				
Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050				

IntStd	1	2	3	4	5	6 01	0146
Mode	*Counts	Time	NOTUSED	NOTUSED	NOTUSED	NOTUSED	NOTUSED
Elem	Sc						
Wavlen	361.384						
Avge	710464	10000		-			
SDev	16.26346	.0000000	- -				
%RSD	.0022891	.0000000					
#1	710475	10000					
#2	710452	10000					

05/16/05 03:11:14 PM

Operator: 010147

Method: DAILY2 Sample Name: 262223

Run Time: 05/16/05 15:06:31

Comment:

Mode: CONC Corr. Factor: 1

Mode: CC	onc Corr.	Factor: 1	•				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0003	0047	.0036	.0136	.1181	.0001	.0044
SDev	.0004	.0037	.0004	.0005	.0003	.0000	.0020
%RSD	119.3	77.02	10.29	3.975	.2099	8.984	44.75
#1 #2	0006 0001	0073 0022	.0034	.0140 .0132	.1179 .1183	.0002	.0030
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	1.456	0000	.0001	.0002	.0003	.0055	1.011
SDev	.007	.0002	.0002	.0002	.0003	.0010	.004
%RSD	.4815	462.7	262.7	72.08	76.15	17.48	.3922
#1 #2	1.461 1.451	.0001 0002	.0002 0001	.0001	.0005	.0048	1.008 1.014
Elem	La3988 ppm0006 .0003 43.61	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.0006	.1657	.0002	.0005	13.53	18.43
SDev		.0000	.0011	.0000	.0001	.13	.02
%RSD		3.737	.6477	5.449	23.58	.9824	.1172
#1 #2	0008 0004	.0006	.1665 .1650	.0002	.0004	13.63 13.44	18.41 18.44
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0001	.0080	.0027	0010	0019	1.585	.0018
SDev	.0008	.0056	.0009	.0023	.0004	.002	.0035
%RSD	1299.	69.26	32.55	233.0	23.36	.1030	195.4
#1	0005	.0041	.0033	0026	0022	1.586	0007
#2	.0006	.0120		.0006	0016	1.584	.0043
Elem Units Avge SDev %RSD	Sc3613 %R 107.8 .3	1960/1 ppm .0065 .0018 27.78	1960/2 ppm .0049 .0035 71.22	Si2881 ppm 2.558 .006 .2248	Pb220 ppm .0003 .0012 477.7	Se196 ppm .0054 .0029 53.72	Sn1899 ppm .0002 .0009 397.3
#1	107.5	.0078	.0073	2.554	0006	.0075	.0009
#2	108.0	.0052	.0024	2.562	.0011	.0034	0004
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0041	.0028	.0005	0010	0115	0002	0019
SDev	.0000	.0014	.0000	.0021	.0106	.0006	.0013
%RSD	.3671	49.55	2.071	206.2	92.67	279.1	65.95
#1 #2	.0041	.0018	.0005	.0005 0025	0040 0190	0006 .0002	0010 0028

Elem Units Avge SDev %RSD	Y_3710 ppm .0000 .0000 29.95	Zn2062 ppm .0107 .0001 1.356	Zr3496 ppm .0004 .0003 90.59				
#1 #2	.0000	.0108 .0106	.0006 .0001				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 769992 2446.589 .3177422	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	768262 771722	10000 10000					

05/16/05 03:16:00 PM

Operator: 010149 Method: DAILY2 Sample Name: 262224

Run Time: 05/16/05 15:11:26

Comment:

Mode: CONC Corr. Factor: 1

			_				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0006	0074	.0036	.0099	.1162	.0001	.0001
SDev	.0003	.0008	.0034	.0001	.0001	.0000	.0013
%RSD	47.52	11.29	93.77	1.523	.0495	22.65	1393.
#1	0008	0080	.0060	.0098	.1163	.0001	0008
#2	0004	0068	.0012	.0100	.1162		.0010
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	1.443	0001	0008	0008	0004	.0005	.6764
SDev	.009	.0003	.0008	.0010	.0000	.0034	.0162
%RSD	.6527	340.5	102.1	121.9	.4654	618.4	2.395
#1	1.437	0003	0014	0015	0004	0018	.6649
#2	1.450	.0001	0002	0001	0004	.0029	.6878
Elem	La3988	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0007	.0006	.1675	.0001	0003	13.37	18.44
SDev	.0009	.0001	.0026	.0000	.0011	.14	.01
%RSD	126.6	15.10	1.555	54.71	352.2	1.046	.0625
#1 #2	0014 0001	.0006	.1656 .1693	.0000	.0005 0011	13.27 13.46	18.45 18.43
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	0003	.0052	.0033	.0011	0011	1.612	.0001
SDev	.0003	.0023	.0015	.0022	.0039	.002	.0015
%RSD	100.4	43.73	45.48	204.0	358.1	.1472	2437.
#1	0001	.0069	.0043	0005	0039	1.614	0010
#2	0004	.0036		.0027	.0017	1.611	.0011
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	108.1	.0060	0001	2.551	.0018	.0019	0002
SDev	1.1	.0002	.0001	.003	.0010	.0001	.0023
%RSD	1.021	3.801	107.4	.1185	53.63	7.510	1464.
#1	108.9	.0062	0000	2.549	.0011	.0020	0018
#2	107.3	.0058	0002	2.553	.0025	.0018	.0015
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0040	.0006	.0002	.0030	0101	0012	0017
SDev	.0001	.0024	.0004	.0015	.0287	.0010	.0036
%RSD	1.528	408.0	202.0	49.52	283.2	86.47	215.1
#1	.0039	0011	0001	.0020	0304	0019	.0009
#2		.0023	.0004	.0041	.0102	0005	0043

Elem Units Avge SDev %RSD #1	Y_3710 ppm 0002 .0001 80.09 0003 0001	Zn2062 ppm .0077 .0002 2.500 .0076	Zr3496 ppm 0009 .0008 92.58 0015 0003			010	0150
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 772651 7926.667 1.025905	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	778256 767046	10000 10000					

Method: DAILY2 Sample Name: 262225

Run Time: 05/16/05 15:16:12

Comment:

Mode: CONC Corr. Factor: 1

Operator:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4934	Be3130	Bi2230
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0000	0043	.0027	.0108	.1156	.0002	0009
SDev	.0009	.0035	.0007	.0006	.0001	.0000	.0065
%RSD	3137.	81.80	25.50	5.972	.0837	.0742	767.9
#1 #2	0006 .0007	0018 0068	.0031	.0104	.1157 .1156	.0002	0055 .0038
Elem	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	Fe2714	K_7664
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	1.306	.0001	0009	0002	.0003	.0168	.7053
SDev	.002	.0001	.0001	.0001	.0000	.0032	.0126
%RSD	.1322	65.84	11.90	40.64	2.104	18.88	1.784
#1 #2	1.307 1.305	.0000	0008 0009	0003 0002	.0003	.0146 .0191	.7142 .6965
Elem	La3988 ppm0006 .0001 25.84	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Na5889
Units		ppm	ppm	ppm	ppm	ppm	ppm
Avge		.0007	.1516	.0002	0006	13.72	18.46
SDev		.0001	.0003	.0001	.0003	.13	.02
%RSD		8.487	.1710	40.89	48.71	.9282	.1125
#1	0007	.0006	.1514	.0001	0008	13.63	18.44
#2	0005	.0007	.1518		0004	13.81	18.47
Elem	Ni2316	P_1782	2203/1	2203/2	Pd3404	S_1820	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0009	.0046	.0028	.0009	.0016	1.618	.0018
SDev	.0005	.0070	.0050	.0002	.0004	.001	.0059
%RSD	55.61	153.4	181.1	25.32	26.16	.0696	330.9
#1 #2	.0013	0004 .0096	.0063 0008	.0011	.0013 .0018	1.617 1.619	0024 .0059
Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899
Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	107.7	.0009	.0023	2.562	.0016	.0019	.0039
SDev	.1	.0016	.0019	.007	.0018	.0007	.0003
%RSD	.0472	175.8	80.19	.2719	117.4	39.11	9.122
#1	107.7	.0020	.0010	2.567	.0028	.0014	.0036
#2	107.8	0002	.0037	2.558		.0024	.0041
Elem	Sr4215	Th2837	Ti3349	Tl1908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	.0036	.0034	.0005	0024	0344	.0000	0057
SDev	.0000	.0008	.0000	.0005	.0018	.0002	.0010
%RSD	.3360	24.31	.8131	18.99	5.371	687.3	17.06
#1 #2	.0037 .0036	.0028	.0005	0021 0027	0357 0331	0001 .0002	0063 0050

Elem Units Avge SDev %RSD	Y_3710 ppm 0000 .0001 486.9	Zn2062 ppm .0052 .0002 4.248	Zr3496 ppm .0005 .0004 73.97			01	10152
#1 #2	0001 .0000	.0050 .0053	.0003				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 769780 388.9087 .0505221	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	769505 770055	10000 10000					

05/16/05 03:25:32 PM

010153

Method: DAILY2 Sample Name: 262226

Run Time: 05/16/05 15:20:58

Comment:

Mode: CONC

.0023

#2

.0033

.0016

-.0019

.0093

-.0005

-.0038

Operator:

Corr. Factor: 1 B 2496 Ba4934 Elem Aq3280 A13082 Be3130 As1890 Bi2230 ppm Units mag mag mqq mag mag mag .0003 .1189 .0001 .0014 Avqe .0410 .0035 .0157 .0002 .0015 .0003 .0000 .0067 .0053 .0041 SDev %RSD 79.53 12.86 117.5 9.769 .2135 12.84 484.4 #1 .0001 .0447 .0064 .0146 .1188 .0002 .0062 #2 .0005 .0373 .0006 .0167 .1191 .0001 -.0034 Co2286 K 7664 Elem Ca3179 Cd2265 Cr2677 Cu3247 Fe2714 ppm ppm ppm Units mqq mqq mqq mqq .0001 .5291 .0000 .0005 -.0009 .0284 .7349 Avae .0018 .0001 .0003 .0221 .0083 SDev .0003 .0003 %RSD .3472 1351. 32.24 30.79 363.1 77.82 1.126 #1 .5304 .0002 .0006 -.0011 -.0001 .0440 .7407 .5278 -.0007 #2 -.0002 .0004 .0003 .0128 .7290 Elem La3988 Li6707 Mq2790 Mn2576 Mo2020 Na3302 Na5889 mqq ppm Units ppm ppm ppm ppm ppm .0001 .0008 .0974 .0005 -.0005 19.04 26.07 Avge .0003 .0001 .0007 .07 .09 SDev .0009 .0001 647.9 6.912 .3391 20.17 140.5 .3698 .3503 %RSD #1 .0008 .0008 .0977 .0006 -.0000 19.09 26.00 #2 -.0005 .0008 .0972 .0004 -.0010 18.99 26.13 2203/1 2203/2 Pd3404 S 1820 Sb2068 Elem Ni2316 P 1782 Units mag mag mag mag mqq mag mag Avqe .0007 -.0019 .0031 -.0011 .0034 1.599 .0038 SDev .0011 .0000 .0010 .0004 .0047 .019 .0059 137.3 1.210 158.5 %RSD 158.6 1.914 31.29 30.89 -.0001 -.0019 .0024 -.0009 .0067 1.613 .0080 #1 .0015 #2 -.0019 .0038 -.0014 .0001 1.585 -.0005 1960/2 Si2881 Pb220 Se196 Sn1899 Elem Sc3613 1960/1 ppm Units %R ppm mag ppm ppm ppm .0118 .0024 .0003 .0055 107.3 2.737 .0024 Avqe .5 .0016 .0013 .000 .0001 .0014 .0014 SDev 25.31 58.12 %RSD .4488 13.23 55.25 .0149 30.06 .0129 .0033 .0002 #1 106.9 2.738 .0065 .0033 #2 107.6 .0107 .0015 2.737 .0004 .0045 .0014 Elem Sr4215 Th2837 Ti3349 T11908 U 4090 V 2924 W 2079 Units ppm mqq mqq mag mag mqq mqq -.0042 -.0002 .0023 .0025 .0016 -.0030 .0220 Avae .0007 .0001 .0010 .0001 .0015 .0180 .0005 SDev 81.85 312.6 15.54 %RSD 2.220 41.74 3.999 51.44 .0018 -.0041 .0347 .0002 -.0047 #1 .0024 .0015

Elem Units Avge SDev %RSD	Y_3710 ppm .0000 .0001 199.9	Zn2062 ppm .0038 .0001 3.374	Zr3496 ppm .0008 .0005 63.91			0 1 6	154
#1 #2	0000 .0001	.0039 .0037	.0012 .0005				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 766428 3494.522 .4559491	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	763957 768899	10000 10000		 	 	 	

Method: DAILY2 Sample Name: 262227

Run Time: 05/16/05 15:25:44

Comment:

Mode: CONC Corr. Factor: 1

Operator: 010155

Elem Units Avge SDev %RSD	Ag3280 ppm .0001 .0004 386.3	Al3082 ppm .6754 .0148 2.190	As1890 ppm .0017 .0006 34.74	B_2496 ppm .0514 .0005 1.028	Ba4934 ppm .2504 .0003 .1384	Be3130 ppm .0002 .0000 5.806	Bi2230 ppm .0034 .0013 37.12
#1 #2	0002 .0004	.6858 .6649	.0013 .0021	.0510 .0518	.2507 .2502	.0002	.0042
Elem Units Avge SDev %RSD	Ca3179 ppm .2473 .0024 .9657	Cd2265 ppm .0001 .0001 78.93	Co2286 ppm 0002 .0002 95.36	Cr2677 ppm 0004 .0001 26.93	Cu3247 ppm .0002 .0000 5.362	Fe2714 ppm .2396 .0019 .7799	K_7664 ppm .7861 .0180 2.294
#1 #2	.2456 .2490	.0000	0003 0001	0004 0005	.0002	.2409 .2382	.7734 .7989
Elem Units Avge SDev %RSD	La3988 ppm 0007 .0013 193.4	Li6707 ppm .0025 .0000	Mg2790 ppm .2228 .0072 3.224	Mn2576 ppm .0048 .0001 2.370	Mo2020 ppm 0001 .0002 185.9	Na3302 ppm 31.15 .40 1.292	Na5889 ppm 42.85 .10 .2218
#1 #2	0016 .0003	.0025 .0025	.2279 .2178	.0048	.0000	30.86 31.43	42.91 42.78
Elem Units Avge SDev %RSD	Ni2316 ppm 0005 .0003 58.53	P_1782 ppm .0039 .0050 127.2	2203/1 ppm .0030 .0008 27.91	2203/2 ppm 0022 .0000	Pd3404 ppm 0041 .0055 134.8	S_1820 ppm 1.604 .019 1.161	Sb2068 ppm .0040 .0053 131.3
#1 #2	0007 0003	.0004	.0024	0022 0022	0080 0002	1.591 1.617	.0003
Elem Units Avge SDev %RSD	Sc3613 %R 108.3 .8 .7336	1960/1 ppm .0077 .0069 89.71	1960/2 ppm .0006 .0019 319.9	Si2881 ppm 5.087 .093 1.828	Pb220 ppm 0005 .0003 63.88	Se196 ppm .0030 .0010 34.92	Sn1899 ppm .0056 .0002 3.051
#1 #2	108.9 107.8	.0028 .0126	.0019 0008	5.153 5.021	0007 0003	.0022	.0058 .0055
Elem Units Avge SDev %RSD	Sr4215 ppm .0028 .0000 1.095	Th2837 ppm0003 .0000 6.944	Ti3349 ppm .0151 .0005 3.265	Tl1908 ppm0017 .0010 57.56	U_4090 ppm 0093 .0219 234.5	V_2924 ppm 0002 .0004 238.8	W_2079 ppm 0055 .0020 36.69
#1 #2	.0027	0003 0003	.0154 .0147	0010 0024	0248 .0062	0005 .0001	0041 0069

						61	0156
Elem Units Avge SDev %RSD	Y_3710 ppm .0001 .0000 2.485	Zn2062 ppm .0162 .0000 .1547	Zr3496 ppm .0017 .0006 37.57			01	.0130
#1 #2	.0001	.0162 .0162	.0013 .0022				
IntStd Mode Elem Wavlen Avge SDev %RSD	1 *Counts Sc 361.384 773966 5716.251 .7385662	2 Time 10000 .0000000 .0000000	3 NOTUSED 	4 NOTUSED 	5 NOTUSED 	6 NOTUSED 	7 NOTUSED
#1 #2	778008 769924	10000 10000	 				

05/16/05 03:38:46 PM

Operator: 010157

Method: DAILY2 Sample Name: ccv5

Run Time: 05/16/05 15:34:12

Comment:

Mode: CONC Corr. Factor: 1

\ 2 8	Elem Units Avge SDev &RSD	Ag3280 ppm .9776 .0014 .1451	Al3082 ppm 9.832 .013 .1271	As1890 ppm 5.027 .001 .0109	B_2496 ppm 4.865 .020 .4024	Ba4934 ppm 9.929 .014 .1437	Be3130 ppm .9885 .0001 .0084	Bi2230 ppm 5.013 .013 .2584
	#1 #2	.9766 .9786	9.823 9.841	5.028 5.027	4.852 4.879	9.918 9.939	.9885 .9886	5.004 5.023
I	Errors High Low	LC Pass 1.100 .9000	LC Pass 11.00 9.000	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 11.00 9.000	LC Pass 1.100 .9000	LC Pass 5.500 4.500
T 2	Elem Jnits Avge SDev &RSD	Ca3179 ppm 20.05 .01 .0321	Cd2265 ppm 1.023 .004 .3748	Co2286 ppm 5.138 .002 .0443	Cr2677 ppm 1.976 .002 .0924	Cu3247 ppm 2.029 .001 .0698	Fe2714 ppm 10.53 .01 .1398	K_7664 ppm 18.74 .05 .2545
	#1 #2	20.06 20.05	1.020 1.026	5.136 5.140	1.977 1.974	2.028 2.030	10.52 10.54	18.71 18.78
Ι	Errors High Low	LC Pass 22.00 18.00	LC Pass 1.100 .9000	LC Pass 5.500 4.500	LC Pass 2.200 1.800	LC Pass 2.200 1.800	LC Pass 11.00 9.000	LC Pass 22.00 18.00
T 2	Elem Jnits Avge SDev &RSD	La3988 ppm 4.926 .006 .1239	Li6707 ppm 5.207 .002 .0335	Mg2790 ppm 19.99 .00	Mn2576 ppm 1.040 .000	Mo2020 ppm 5.132 .020 .3965	Na3302 ppm 28.07 .29 1.033	Na5889 ppm H41.32 .02 .0584
	#1 #2	4.922 4.930	5.208 5.206	19.99 19.99	1.040 1.040	5.117 5.146	27.87 28.28	H41.33 H41.30
I	Errors High Low	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 22.00 18.00	LC Pass 1.100 .9000	LC Pass 5.500 4.500	LC Pass 33.00 27.00	LC High 33.00 27.00
T 2	Elem Jnits Avge SDev &RSD	Ni2316 ppm 4.846 .005 .1135	P_1782 ppm 5.064 .033 .6473	2203/1 ppm 4.896 .008 .1595	2203/2 ppm 4.892 .018 .3594	Pd3404 ppm 1.000 .005 .4800	S_1820 ppm L.8583 .0234 2.732	Sb2068 ppm 1.015 .004 .4296
	#1 #2	4.842 4.850	5.041 5.087	4.902 4.890	4.879 4.904	.9970 1.004	L.8749 L.8417	1.012 1.018
I	Errors High Low	LC Pass 5.500 4.500	LC Pass 5.500 4.500	NOCHECK	NOCHECK	LC Pass 1.100 .9000	LC Low 1.100 .9000	LC Pass 1.100 .9000
I	Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Units	%R	ppm	ppm	ppm	ppm	ppm	ppm
Avge	99.10	5.180	5.143	5.122	4.893	5.155	4.902
SDev	.28	.021	.017	.001	.009	.004	.001
%RSD	.2827	.4082	.3347	.0113	.1863	.0859	.0294
#1	99.30	5.195	5.131	5.123	4.887	5.152	4.903
#2	98.90	5.165	5.155	5.122	4.900	5.158	4.901
Errors High Low	NOCHECK	NOCHECK	NOCHECK	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 5.500 4.500	LC Pass 5.500 4.500
Elem	Sr4215	Th2837	Ti3349	T11908	U_4090	V_2924	W_2079
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avge	5.202	.9833	4.960	5.131	L.8538	5.046	1.011
SDev	.010	.0015	.002	.005	.0152	.009	.002
%RSD	.1900	.1495	.0480	.0886	1.775	.1824	.2125
#1	5.195	.9823	4.959	5.128	L.8431	5.039	1.012
#2	5.209	.9843	4.962	5.134	L.8645	5.052	1.009
Errors	LC Pass	LC Pass	LC Pass	LC Pass	LC Low	LC Pass	LC Pass
High	5.500	1.100	5.500	5.500	1.100	5.500	1.100
Low	4.500	.9000	4.500	4.500	.9000	4.500	.9000
Elem Units Avge SDev %RSD	Y_3710 ppm 4.990 .000	Zn2062 ppm 1.041 .002 .1912	Zr3496 ppm 4.951 .003 .0523				
#1 #2	4.990 4.990	1.043 1.040	4.949 4.952				
Errors High Low	LC Pass 5.500 4.500	LC Pass 1.100 .9000	LC Pass 5.500 4.500				

						□	0.7.00	
IntStd Mode	1 *Counts	2 Time	3 NOTUSED	4 NOTUSED	5 NOTUSED	6 NOTUSED	7 NOTUSED	
Elem	Sc					- -	- -	
Wavlen	361.384							
Avge	708081	10000						
SDev	2008.183	.0000000						
%RSD	.2836093	.0000000						
#1	709501	10000						
#2	706661	10000						

05/16/05 03:45:27 PM

Operator:

Method: DAILY2 Sample Name: ccb5

Run Time: 05/16/05 15:40:51

Comment:

010160 Mode: CONC Corr. Factor: 1

1,	iode: coi	NC COII.	ractor. I					
	Elem Units Avge SDev %RSD	Ag3280 ppm 0005 .0001 11.12	Al3082 ppm 0145 .0028 19.58	As1890 ppm .0042 .0007 17.20	B_2496 ppm .0026 .0006 24.33	Ba4934 ppm .0002 .0003 192.4	Be3130 ppm .0002 .0000 .7673	Bi2230 ppm .0055 .0012 21.41
	#1 #2	0006 0005	0165 0125	.0037	.0031	0001 .0004	.0002	.0047 .0064
	Errors High Low	LC Pass .0050 0050	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0100
	Elem Units Avge SDev %RSD	Ca3179 ppm .0009 .0025 273.3	Cd2265 ppm .0002 .0000 10.32	Co2286 ppm 0003 .0007 191.7	Cr2677 ppm 0004 .0001 24.14	Cu3247 ppm .0012 .0008 69.23	Fe2714 ppm 0019 .0275 1429.	K_7664 ppm .0129 .0306 236.8
	#1 #2	0009 .0027	.0002	.0001 0008	0004 0003	.0006 .0018	0213 .0175	0087 .0346
	Errors High Low	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0250 0250	LC Pass .1000 1000
	Elem Units Avge SDev %RSD	La3988 ppm 0005 .0004 72.67	Li6707 ppm .0003 .0003 99.40	Mg2790 ppm 0048 .0058 122.2	Mn2576 ppm .0001 .0001 185.9	Mo2020 ppm .0011 .0003 24.31	Na3302 ppm L0983 .2859 290.8	Na5889 ppm .0276 .0150 54.28
	#1 #2	0008 0003	.0001	0089 0006	0000 .0002		L3005 H.1039	.0170 .0382
	Errors High Low	LC Pass .0050 0050	LC Pass .0050 0050	LC Pass .0500 0500	LC Pass .0050 0050	LC Pass .0050 0050	LC Low .0500 0500	LC Pass .0500 0500
	Elem Units Avge SDev %RSD	Ni2316 ppm .0011 .0004 41.84	P_1782 ppm 0014 .0005 32.22	2203/1 ppm .0009 .0010 112.6	2203/2 ppm .0014 .0031 215.7	Pd3404 ppm .0014 .0050 361.3	S_1820 ppm L1420 .0194 13.66	Sb2068 ppm .0086 .0014 15.94
	#1 #2	.0014	0011 0017	.0002 .0016	.0036 0008		L1558 L1283	.0096 .0077
	Errors High Low	LC Pass .0050 0050	LC Pass .0100 0100	NOCHECK	NOCHECK	LC Pass .0050 0050	LC Low .0100 0100	LC Pass .0100 0100
	Elem	Sc3613	1960/1	1960/2	Si2881	Pb220	Se196	Sn1899

Analysis Report 05/16/05 03:45:27 PM page 2 010161 %R ppm Units mqq ppm ppm mqq mqq 100.4 -.0001 .0070 .0013 .0007 Avge -.0014 -.0005 SDev .6 .0043 .0025 .0044 .0017 .0031 .0018 .5993 317.2 2882. 62.51 134.8 626.2 266.4 %RSD .0017 .0017 .0039 -.0006 #1 100.0 .0025 .0017 .0001 .0020 H.0101 -.0027 #2 100.9 -.0044 -.0019 LC Pass NOCHECK LC Pass LC Pass LC Pass Errors NOCHECK NOCHECK .0100 .0030 .0050 .0050 High -.0050 -.0050 -.0100 -.0030 Low V 2924 W 2079 Sr4215 Th2837 Ti3349 Tl1908 U 4090 Elem ppm ppm Units ppm ppm ppm ppm mqq -.0033 .0025 -.0141 -.0003 .0010 .0002 Avqe .0001 SDev .0000 .0025 .0002 .0012 .0003 .0000 .0160 186.2 .0037 113.4 13.09 74.64 %RSD 185.6 115.1 .0002 -.0001 -.0255 -.0003 -.0050 -.0000 .0025 #1 .0002 -.0003 -.0016 #2 .0018 .0004 .0025 -.0028 LC Pass Errors .0100 .0050 .0050 .0100 .0050 .0100 .1000 High -.0100 -.0100 -.0050 -.1000 -.0050 -.0100 Low -.0050 Y 3710 Zn2062 Zr3496 Elem Units mqq ppm ppm .0000 .0003 Avge .0001 .0002 .0006 .0001 SDev 685.7 188.0 128.8 %RSD #1 .0000 -.0001 -.0001 .0007 #2 .0002 .0002 LC Pass LC Pass LC Pass Errors .0050 .0050 .0050

High

Low

-.0050

-.0050

-.0050

Analysis Report

05/16/05 03:45:27 PM

page 3

		_	_		
<u>֝</u> ֝֞֞֝֞֝֞֞֝֞֞֝֞֝	1)	1	6	?

	• = 0 = 0 =
IntStd 1 2 3 4 5 Mode *Counts Time NOTUSED NOTUSED NOTUSED	6 7 SED NOTUSED NOTUSED
Elem Sc	DED NOTOBED NOTOBED
Wavlen 361.384	
Avge 717667 10000	
SDev 4276.582 .0000000	
%RSD .5959006 .0000000	
#1 714643 10000	
#2 720691 10000	

Div 20 to#050426-3 06002.01.242

Marph

262217 For K 0.9671 Mul x df5 = 4.84mg L

Sample ID	Element	Result Qual (C)	Qual (Q) Units	RL	%RPD	%Recovery	TV	rl	mg/L	sigwt	Dilution	Calc RL	ug/ml	Date	Time
pbw-E16H1	K_766	1.00 U	mg/L	1				0.2	0.281971069	0.282	5	1	0.056394214		2:58 PM
pbw-E16H1	Na589	1.00 U	mg/L	1				0.2	-0.13145931	-0.131	5	1	-0.026291861	05/16/05	2:58 PM
lcsw-E16H1	K_766	89.8	mg/L	1		89.8%	100	0.2	89.7577896	89.8	5	1	17.95155792		3:00 PM
lcsw-E16H1	Na589	89.6	mg/L	1		89.6%	100	0.2	89.62290487	89.6	5	1	17.92458097	05/16/05	3:00 PM
262217	K_766	✓ 4.84	mg/L	1				0.2	4.8355	4.84	5	1	0.9671	05/19/05	10:18 AM
262217	Na589	77.2	mg/L	1				0.2	77.23841546	77.2	5	1	15.44768309	05/16/05	3:02 PM
262217d	K_766	4.75	mg/L	1	1.9%			0.2	4.752796919	4.75	5	1	0.950559384	05/16/05	3:03 PM
262217d	Na589	76.6	mg/L	1	0.8%			0.2	76.58136373	76.6	5	1	15.31627275	05/16/05	3:03 PM
262218	K_766	4.14	mg/L	1				0.2	4.135720056	4.14	5	1	0.827144011	05/16/05	3:05 PM
262218	Na589	77.9	mg/L	1				0.2	77.89711895	77.9	5	1	15.57942379	05/16/05	3:05 PM
262218s	K_766	95.6	mg/L	1		91.5%	100	0.2	95.61386443	95.6	5	1	19.12277289	05/16/05	3:10 PM
262218s	Na589	169	mg/L	1		91.1%	100	0.2	168.8476668	169	5	1	33.76953337	05/16/05	3:10 PM
262219	K_766	4.92	mg/L	1				0.2	4.915226006	4.92	5	1	0.983045201	05/16/05	3:14 PM
262219	Na589	78.5	mg/L	1				0.2	78.45547469	78.5	5	1	15.69109494	05/16/05	3:14 PM
262220	K_766	4.13	mg/L	1				0.2	4.128945334	4.13	5	1	0.825789067	05/16/05	3:17 PM
262220	Na589	78.4	mg/L	1				0.2	78.36569424	78.4	5	1	15.67313885	05/16/05	3:17 PM
262221	K_766	3.96	mg/L	1				0.2	3.961475918	3.96	5	1	0.792295184	05/16/05	3:19 PM
262221	Na589	78.5	mg/L	1				0.2	78.50750215	78.5	5	1	15.70150043	05/16/05	3:19 PM
262222	K_766	4.35	mg/L	1				0.2	4.35309364	4.35	5	1	0.870618728	05/16/05	3:22 PM
262222	Na589	78.0	mg/L	1				0.2	77.96257559	78	5	1	15.59251512	05/16/05	3:22 PM
262223	K_766	6.21	mg/L	1				0.2	6.206267403	6.21	5	1	1.241253481	05/16/05	3:32 PM
262223	Na589	79.0	mg/L	1				0.2	79.03269137	79	5	1	15.80653827	05/16/05	3:32 PM
262224	K_766	4.20	mg/L	1				0.2	4.198247901	4.2	5	1	0.83964958	05/16/05	3:35 PM
262224	Na589	79.8	mg/L	1				0.2	79.78106086	79.8	5	1	15.95621217	05/16/05	3:35 PM
262225	K_766	4.48	mg/L	1				0.2	4.479267798	4.48	5	1	0.89585356	05/16/05	3:38 PM
262225	Na589	79.4	mg/L	1				0.2	79.40269525	79.4	5	1	15.88053905	05/16/05	3:38 PM
262226	K_766	4.77	mg/L	1				0.2	4.773457999	4.77	5	1	0.9546916		3:41 PM
262226	Na589	109	mg/L	1				0.2	109.0915944	109	5	1	21.81831888		3:41 PM
262227	K_766	4.57	mg/L	1				0.2	4.56862071	4.57	5	1	0.913724142		3:44 PM
262227	Na589	172	mg/L	1				0.2	171.593542	172	5	1	34.31870839		3:44 PM

/3/5/26/05

200.7 TAP No. 0	1-0406-028 Rev2	/Mar02		QC STD. ID's CCV OSEOZ CRI ICSA ICSAB	ID's	
☐ 6010B TAP No.	01-0406-130 Rev	3/Mar05	L		Std3	
Other Swil					Std4 Std5 Std6	25
						010164
K+Na						
PROJ. NO.	PROJECT	TO#	DATE	MATRIX	LOGBK P	G
06002.01.242	Div 20	050426-3	3 5-16 05	LATE	60-208	
INSTRUM	ENT: Spec	10	FIL	ENAME: 09	50516A	

Keep last result visible enabled ...

Starting run ...

Creating high priority queue entries ...

BACKGROUND CORRECTED INTENSITIES

Identity 1 : BLK_SC Identity 2 : Type : STD
Weight : 1.0000 Volume : 1.00 Printed : 2:46:10 PM May 16, 2005

	K_766	Na589	Sc361
# 1	14.0	31.0	4959.0
# 2	10.0	39.0	4885. 0
Mean	12.0	35.0	4922.0
SD	2.8	5.7	52.3
%RSD	23.6	16.2	1.1

INTENSITIES

Identity 1 : BLK_SC Identity 2 : Type : STD

Weight: 1.0000 Volume: 1.00 Printed: 2:46:10 PM Nay 16, 2005

	K_766	Na589	Sc361
# 1	0.0	0.0	4959. 0
# 2	0.0	0.0	4885. 0
Mean	0.0	0.0	4922.0
SD	0.0	0.0	52.3
%RSD	22.5	17.2	1.1

BACKGROUND CORRECTED INTENSITIES

	K_766	Na589
# 1	4677.5	26364.0
# 2	4625.5	26146.0
lean	4651.5	26255.0
SD C	36.8	154. 1
(RSD	0.8	0.6

INTENSITIES

	K_766	Na589
# 1	0.9	5.3
# 2	0. 9	5.3
lean	0.9	5.3
SD	0.0	0.0
KRSD	0.2	0.4

BACKGROUND CORRECTED INTENSITIES

Weight: 1.0000 Volume: 1.00 Printed: 2:51:54 PM May 16, 2005

	K_766	Na589	Sc	Sc361
# 1	1891.0	15910.5	5004.0	5004.0
# 2	1865 . 0	15749.5	4945. 0	4945.0
Mean	1878.0	15830.0	4974.5	4974.5
SD	18.4	113.8	41.7	41.7
xrsd	1.0	0.7	0.8	0. 8

5-16-05

Jan 1/05

APPARENT CONCENTRATIONS

EVOLUTION by Micro-Active Australia Pty Ltd 2:58:48 PM May 16, 2005

Identity 1 : CLP_CCV_SC Identity 2 : Type : CV
Weight : 1.0000 Volume : 1.00 Printed : 2:51:54 PM May 16, 2005

010166

weight .	1.0000 103	rame : 1.00	rrinced:	ZiJIiJ4 FR	пау 1	.6, 2003
	K_766	Na589	Sc	Sc361		
	ppm	ppm		ppm		
# 1	20.0155	29.9249	5004.000 H	101.6680		
# 2	19.9755	29. 9756	4945.000 H	100.4679		
Mean	19. 9955		4974.500 H	101.0679		
SD	0.0282	0.0359	41.719	0.8486		
KRSD	0.1412	0. 1198	0. 839	0. 8397		
	calibration					
	1 : CLP_CCV					
	ame Lov	/ 11m1t	Value Hi	_		
K_766 Na589		18.000 27.000	19.996	22.000 33.000		
	ND CORRECTE			33.000		
			Identity 2	. Type :	CR	
deight :	1.0000 Vol	lume : 1.00	Printed:	2:55:48 PM	May 1	6, 2005
-					-, -	,
	K_766	Na589	Sc	Sc361		
# 1	32.5	38.0	5016.0	5016.0		
# 2	23.5	36.0	5021.0	5021.0		
lean	28.0	37.0	5018.5	5018.5		
SD	6.4	1.4	3.5	3.5		
KRSD	22.7	3.8	0. 1	0.1		
	CONCENTRATI		Talambaka A		CD	
laight :	1 : Calibra	TION DIENK	Identity 2 Printed:	: Type :	RP 4	c 2005
eranc :	T. AAAA 401	.ume ; 1.00	triuced :	2:33:48 PM	nay 1	o, 2003
	K_766	Na589	Sc	Sc361		
	ppm	ppm		ppm		
# 1 # 2	0.2154		5016.000 H			
₩ Z	0.1195	0.000 6	5021.000 H	102.0138		
lean	0.1675	0.0025	5018.500 H	101.9630		
SD	0.0 678	0.0027	3.536	0.0719		
RSD	40. 4877	109. 5852	0.070	0.0705		
	calibration					
			Identity 2	:		
Report na	186		Value			
766		0.100		ontaminated		
la589		0.050	0.002			
rackaborn 20361	ID CORRECTED	0.000	101.963			
			э y2: Туре	. SAMDIE		
			y 2 : Type Printed :		May 1	6, 2005
	K_766	Na589	Sc	Sc361		
# 1	19.5	24.5	5453.5	5453.5		
# 2	18.5	22.5	5415.5	5415.5		
lean	19.0	23.5	5434.5	5434.5		
D	0.7	1.4	26.9	26.9		
DCD	27		A =	A E		

PPARENT CONCENTRATIONS

3.7

RSD

dentity 1 : pbw-E16H1 Identity 2 : Type : SAMPLE

6.0 0.5

0.5

Weight: 1.0000 Volume: 1.00 Printed: 2:58:40 PM May 16, 2005

010167

	K_766	Na589	Sc	Sc361
	ppm	ppm		ppm
# 1	0.0606 L	-0.0247	5453.500 H	110.8116
# 2	0.0521 L	-0.0279	5415.500 H	110.0386
Mean	0.0564 L	-0.0263	5434.500 H	110. 4251
SD	0.0060	0.0023	26.870	0.5466
xRSD	10.6657	8. 5693	0.494	0.4950

BACKGROUND CORRECTED INTENSITIES

Identity 1 : lcsw-E16H1 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 3:00:22 PM May 16, 2005

	K_766	Na589	Sc	Sc361
# 1	1921.5	10785.5	5637.0	5637.0
# 2	1880.5	10594.5	5572.0	5572.0
Mean	1901.0	10690.0	5604.5	5604.5
SD	29.0	135. 1	46.0	46.0
XRSD	1.5	1.3	0.8	0.8

APPARENT CONCENTRATIONS

Identity 1 : lcsw-E16H1 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 3:00:22 PM May 16, 2005

K_766	Na589	Sc	Sc361	
	ppm	ppm		ppm
# 1	18.0417	17.9810	5637.000 H	114.5443
# 2	17.8614	17.8682	5572.000 H	113. 2221
lean	17. 9516	17.9246	5604.500 H	113.8832
3D	0. 1275	0.0798	45. 9 62	0.9349
KRSD	0.7101	0.4450	0.820	0.8210

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 262217 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 3:02:06 PM May 16, 2005

	K_766	Na589	Sc	Sc361
# 1	130.0	9272.0	5640.0	5640.0
# 2	135. 0	9365.0	5691.0	5691.0
lean	132.5	9318.5	5665.5	5665.5
3D	3.5	65.8	36.1	36.1
:RSD	2.7	0.7	0.6	0.6

PPARENT CONCENTRATIONS

Identity 1 : 262217 Identity 2 : Type : SAMPLE

leight: 1.0000 Volume: 1.00 Printed: 3:02:06 PM May 16, 2005

	K_766	Na589	Sc	Sc361
	ppm	ppm		ppm
# 1	1.0988	15. 4401	5640.000 H	114.6054
# 2	1.1346	15. 4553	5691.000 H	115.6428
lean	1.1167	15. 4477	5665.500 H	115. 1241
iD Gi	0.0253	0.0107	36.062	0. 7336
RSD	2. 2685	0.0695	0. 637	0. 6372

eep last result visible enabled ...

ACKGROUND CORRECTED INTENSITIES

dentity 1 : 262217d Identity 2 : Type : SAMPLE

K_766 Na589 Sc361 Sc # 1 115.0 9221.0 5674.0 5674.0 # 2 114.0 9204.0 5624.0 5624.0 Mean 114.5 9212.5 5649.0 5649.0 SD 0.7 12.0 35.4 35.4 KRSD 0.6 0.1 0.6 0.6 APPARENT CONCENTRATIONS Identity 1 : 262217d Identity 2 : Type : SAMPLE K 766 Na589 Sc Sc361 ppm ppm ppm # 1 0.9505 15.2624 5674.000 H 115.2970 # 2 0.9506 15.3702 5624.000 H 114.2799 5649.000 H 114.7884 0.9506 15.3163 Mean GD 0.0001 **0.0762** 35.355 0.7192 KRSD 0.0094 0.4976 0.626 0.6265 BACKGROUND CORRECTED INTENSITIES Identity 1 : 262218 Identity 2 : Type : SAMPLE K_766 Sc Na589 Sc361 # 1 9275.5 5613.5 5613.5 96.5 # 2 105.5 9385.5 5636.5 5636.5 lean 101.0 9330.5 5625.0 5625.0 77.8 SD 6.4 16.3 16.3 (RSD 6.3 0.8 0.3 0.3 APPARENT CONCENTRATIONS Identity 1 : 262218 Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 3:05:34 PM May 16, 2005 K_766 Na589 Sc361 Sc ppm ppm ppm 5613.500 H # 1 0.7865 15.5192 114.0663 # 2 0.8678 15.6397 5636.500 H 114.5342 lean 0.8271 15.5794 5625.000 H 114.3002 CZ 0.0575 0.0852 16.263 0.3308 (RSD 6.9571 0.5469 0.289 0.2894 Geep last result visible enabled ... Starting run ... Creating high priority queue entries ... BACKGROUND CORRECTED INTENSITIES [dentity 1 : 262218s Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 3:10:00 PM May 16, 2005 K_766 Na589 Sc Sc361 # 1 2026.0 19976.0 5597.0 5597.0 # 2 1998.0 19991.0 5545.0 5545.0 2012.0 19983.5 lean 5571.0 5571.0 Œ 19.8 10.6 36.8 36.8

APPARENT CONCENTRATIONS

1.0

0.1

0.7

0.7

RSD

Identity 1 : 262218s Identity 2 : Type : SAMPLE

010169

361
ppm
7307
6729
2018
7480
6607

Keep last result visible enabled ...

Starting run ...

Creating high priority queue entries ...

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 262219 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 3:14:12 PM May 16, 2005

	K_766	Na589	Sc	Sc361
# 1	121.0	9329.5	5606.0	5606.0
# 2	112.0	9310.5	5552.0	5552. 0
Mean	116.5	9320.0	5579. 0	5579. 0
5D	6.4	13.4	38.2	38.2
KRSD	5, 5	0.1	0.7	0.7

APPARENT CONCENTRATIONS

Identity 1 : 262219 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 3:14:12 PM May 16, 2005

K_766	Na589	Sc	Sc361
ppm	ppm		ppm
1.0207	15.6309	5606.000 H	113.9138
0. 9454	15.7513	5552.000 H	112.8153
0. 9830	15.6911	5579.000 H	113. 3645
0.0532	0.0851	38. 184	0. 7767
5. 4110	0.5426	0.684	0. 6852
	ppm 1.0207 0.9454 0.9830 0.0532	ppm ppm 1.0207 15.6309 0.9454 15.7513 0.9830 15.6911 0.0532 0.0851	ppm ppm 1.0207 15.6309 5606.000 H 0.9454 15.7513 5552.000 H 0.9830 15.6911 5579.000 H 0.0532 0.0851 38.184

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 262220 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 3:17:04 PM May 16, 2005

	K_766	Na589	Sc	Sc361
# 1	109.0	9279.0	5557.5	5557.5
# 2	90.0	9240.0	5540.5	5540.5
iean	99.5	9259.5	5549.0	5549.0
D	13.4	27.6	12.0	12.0
RSD	13.5	0. 3	0.2	0.2

APPARENT CONCENTRATIONS

K 766

Identity 1 : 262220 Identity 2 : Type : SAMPLE

leight: 1.0000 Volume: 1.00 Printed: 3:17:04 PM May 16, 2005

Sc

Sc361

	ppm	ppm		ppm
# 1	0. 9156	15.6822	5557.500 H	112.9272
# 2	0. 736 0	15.6641	5540.500 H	112.5814
lean	0. 8258	15.6731	5549.000 H	112.7543
D	0.1270	0.0128	12.021	0.2445
RSD	15, 3792	0.0815	0, 217	0.2169

Na589

EVOLUTION by Micro-Active Australia Pty Ltd 3:25:42 PM May 16, 2005 BACKGROUND CORRECTED INTENSITIES 010170 Identity 1 : 262221 Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 3:19:56 PM May 16, 2005 K 766 Na589 Sc361 Sc # 1 100.5 9424.5 5633.0 5633.0 # 2 93.5 9318.5 5579.0 5579.0 Mean 97.0 9371.5 5606.0 5606.0 SD 4.9 75.0 38.2 38.2 XRSD 0.8 0.7 0.7 5. 1 APPARENT CONCENTRATIONS Identity 1 : 262221 Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 3:19:56 PM May 16, 2005 K_766 Na589 Sc Sc361 ppm ppm ppm # 1 0.8211 15.7147 5633.000 H 114.4630 # 2 **0.** 7635 15.6883 5579.000 H 113.3645 **0.7923** Hean 15.7015 5606.000 H 113.9138 SD 0.0408 0.7767 0.0187 38. 184 KRSD 5.1479 0.1192 0.681 0.6819 BACKGROUND CORRECTED INTENSITIES Identity 1 : 262222 Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 3:22:48 PM May 16, 2005 K_766 Na589 Sc361 Sc # 1 110.5 9363.0 5651.0 5651.0 # 2 100.5 9295.0 5588.0 5588.0 105.5 lean 9329.0 5619.5 5619.5 SD 7.1 48.1 44.5 44.5 KRSD 6.7 0.5 0.8 0.8 APPARENT CONCENTRATIONS Identity 1 : 262222 Identity 2 : Type : SAMPLE Weight: 1.0000 Volume: 1.00 Printed: 3:22:48 PM May 16, 2005 K_766 Na589 Sc Sc361

	ppm	ppm		ppm
# 1	0.9124	15. 5618	5651.000 H	114.8291
# 2	0. 8288	15.6232	5588.000 H	113.5476
lean	0. 87 0 6	15. 5925	5619.500 H	114. 1884
SD	0.0591	0.0434	44.548	0.90 62
(RSD	6.7937	0. 2785	0. 793	0. 7936

BACKGROUND CORRECTED INTENSITIES

Weight: 1.0000 Volume: 1.00 Printed: 3:25:40 PM May 16, 2005

	K_766	Na589	Sc	Sc361
# 1	1900.5	15970.5	5109.0	5109.0
# 2	1876.5	15 904 . 5	5051.0	5051.0
iea n	1888.5	15937.5	5080.0	5080.0
SD	17.0	46.7	41.0	41.0
RSD	0.9	0.3	0.8	0.8

010171

	v_\00	MaJos	30	20301
	pp m	ppm		ppm
# 1	19.7006	29.4193	5109.000 H	103.8039
# 2	19.6750	29.6346	5051.000 H	102.6241
Mean	19.6878	29. 5269	5080.000 H	103.2140
SD	0.0181	0.1523	41.012	0.8343
krsd	0. 0919	0.5157	0.807	0. 8083

Checking calibration verification ...

 Report name
 Low limit
 Value
 High limit

 K_766
 18.000
 19.688
 22.000

 Na589
 27.000
 29.527
 33.000

Na500

BACKGROUND CORRECTED INTENSITIES

¥ 766

[dentity 1 : Calibration blank Identity 2 : Type : CB

Weight: 1.0000 Volume: 1.00 Printed: 3:29:34 PM May 16, 2005

Ca.

C-261

	"_\OO	MEJOJ	36	20201
# 1	2.5	25.5	5061.0	5061.0
# 2	13.5	31.5	5047.0	5047.0
lean	8.0	28.5	5054.0	5054. 0
SD GE	7.8	4.2	9.9	9.9
KRSD	97. 2	14.9	0.2	0.2

APPARENT CONCENTRATIONS

Identity 1 : Calibration blank Identity 2 : Type : CB

Weight: 1.0000 Volume: 1.00 Printed: 3:29:34 PM May 16, 2005

		K_766		Na589	Sc	Sc361
		ppm		ppm		ppm
# 1	L	-0.1036	L	-0.0195	5061.000 H	102.8275
# 2		0.0126	L	-0.0082	5047.000 H	102.5427
lean	L	-0. 0455	L	-0.0139	5054.000 H	102.6851
3D		0.0822		0.0080	9. 899	0.2014
(RSD		180.6565		57.8184	0. 196	0.1961

Checking calibration blank ...

 Report name
 CRDL
 Value

 [_766
 0.100
 -0.046

 la589
 0.050
 -0.014

 3c361
 0.000
 102.685

BACKGROUND CORRECTED INTENSITIES

dentity 1 : 262223 Identity 2 : Type : SAMPLE

leight : 1.0000 Volume : 1.00 Printed : 3:32:26 PM May 16, 2005

	K_766	Na589	Sc	Sc361
# 1	143.5	9444.0	5606.0	5606.0
# 2	143.5	9333.0	5552.0	5552.0
iean	143.5	9388.5	5579.0	5579.0
iD	0.0	78.5	38.2	38.2
RSD	0.0	0.8	0.7	0.7

PPARENT CONCENTRATIONS

dentity 1 : 262223 Identity 2 : Type : SAMPLE

2005

2005

2005

EVOLUTIO	N by Micro-	Active Austr	alia Pty Ltd	3:41:16 P	M May
Weight :	1.0000 Vol	lume : 1.00	Printed: 3	3:32:26 PM Ma	y 16,
	K_766	Na589	Sc	Sc361	
	pp m	ppm		ppm	
# 1	1.2346	15.8236	5606.000 H	113. 9138	
# 2	1.2479	15. 7895	5552.000 H	112.8153	
Mean		15.8065	5579.000 H	113.3645	
SD	0.0094	0.0241	38. 184	0. 7767	
KRSD	0.7561	0.1522	0. 68 4	0. 6852	
		INTENSITIE			
Identity	1 : 262224	Identity 2	: Type:S	AMPLE	
Weight :	1.0000 Vol	lume : 1.00	Printed: 3	3:35:22 PM Ma	y 16,
	K_766		Sc	Sc361	
# 1	99.0	9440.0		5583. 5	
# 2	104.0	9519.0	5577.5	5577.5	
Mean	101.5				
3D	3.5	55. 9	4.2	4.2	
KRSD	3.5	0.6	0. 1	0. 1	
	CONCENTRATI				
[dentity	1 : 262224	Identity 2	: Type : S	AMPLE	
#eight :	1.0000 Vol	ume : 1.00	Printed: 3	:35:22 PM Na	y 16,
	K_766	Na589	Sc	Sc361	
	ppm	ppm		ppm	
# 1			5583.500 H		
# 2	0.8641	16. 0316	5577.500 H	113. 3340	
lean			558 0.500 H	113.3950	
SD C	0.0345	0.1066	4. 243	0.086 3	
(RSD	4.1102	0. 6681	0. 0 76	0. 0761	
		INTENSITIE			
			: Type : S		
/eight :	1.0000 Vol	ume : 1.00	Printed: 3	:38:14 PM Na	y 16,
	K_766	Na589	Sc	Sc361	
# 1	117.5	9494.0	5602.0	5602.0	
# 2	98.5	9487.0	5625.0	5625.0	

2005

	,	Mana		20301
# 1	117.5	9494.0	5602.0	5602.0
# 2	98.5	9487.0	5625.0	5625.0
lean	108.0	9490.5	5613.5	5613.5
SD C	13.4	4.9	16.3	16.3
:RSD	12.4	0.1	0. 3	0.3

PPARENT CONCENTRATIONS

dentity 1 : 262225 Identity 2 : Type : SAMPLE

leight: 1.0000 Volume: 1.00 Printed: 3:38:14 PM May 16, 2005

	K_766	Na589	Sc	Sc361
	ppm	ppm		ppm
# 1	0. 9882	15. 9191	5602.000 H	113.8324
# 2	0. 8035	15.8420	5625.000 H	114.3002
lean	0. 8959	15. 8805	5613.500 H	114.0663
iD	0.1306	0.0545	16.263	0.3308
RSD	14.5737	0.3433	0.290	0.2900

ACKGROUND CORRECTED INTENSITIES

dentity 1 : 262226 Identity 2 : Type : SAMPLE

eight: 1.0000 Volume: 1.00 Printed: 3:41:08 PM May 16. 2005

	K_766	Na589	Sc	Sc361			010173	?
# 1	118.5		5646.0	5646.0			010110	,
# 2	109.5	12871.0	5557.0	5557.0				
Mean	114.0	12996.5	5601.5	5601.5				
SD	6.4	177.5	62.9	62. 9				
KRSD	5.6	1.4	1.1	1.1				
	CONCENTRAT							
			: Type: 5					
Weight :	1.0000 Vo.	lume : 1.00	Printed: 3	3:41:08 PM	May 16,	2005		
	K_766	Na589	Sc	Sc361				
	ppm	ppm		ppm				
# 1	0. 9889		5646.000 H					
# 2	0. 9205	21.7808	5557. 000 H	112.9170				
iean			5601.500 H					
5D	0.0484	0.0530	62. 933	1.2802				
KRSD	5. 0675	0.2429	1.123	1.1247				
	ND CORRECTE							
dentity	1 : 262227	Identity 2	: Type : S	AMPLE				
Weight :	1.0000 Vol	lume : 1.00	Printed: 3	:44:00 PM	May 16,	2005		
	K_766	Na589	Sc	Sc361				
# 1		20678.0	5680.5	5680.5				
# 2	105.0	20653.0	5657.5	5657.5				
lean	111.0	20665.5	5669.0	5669.0				
3D	8.5	17.7	16.3	16.3				
KRSD	7.6	0. 1	0.3	0.3				
	CONCENTRATI							
			: Type : S		Y 15	0005		
ergne .	1.0000 101	.ume : 1.00	Printed: 3	144:00 FN	пау 16,	2003		
	K_766	Ne589	Sc	Sc361				
	ppm	ppm		ppm				
# 1	0. 9680	34. 2698	5680.500 H					
# 2	0.8594	34. 3677	5657.500 H	114.9614				
lean	0.9137		5669.000 H					
SD	0.0768	0.0692	16. 263	0. 33 0 8				
RSD	8. 4050	0. 2017	0. 287	0. 2872				
	ND CORRECTED							
dentity	1 : CLP_CCV	_SC Identi	ty 2: Type	: CV				
eight :	1.0000 Vol	ume : 1.00	Printed: 3	:46:52 PM	May 16,	2005		
	K_766	Na589	Sc	Sc361				
# 1		15943.5		5047.0				
# 2	1904.0	15874.5	5030.0	5030. 0				
ean		15909.0	5038.5					
iD	12.7	48.8	12.0	12.0				
RSD	0.7	0.3	0. 2	0.2				
	CONCENTRATI							
dentity	1 : CLP_CCV	_SC Identit	ty 2: Type	: CV				
eight :	1.0000 Vol	ume : 1.00	Printed: 3	:46:52 PM	May 16,	2005		

K 766 Na589 Sc Sc361

	ppm	ppm		ppm			
# 1	19.7910	2 9. 731 0					01017
# 2	20. 0491	29.70 23	5030.000 H	102. 1969			01017
ean	19. 9201	29.7167	5038.500 H				
D	0. 1825	0.0203	12.021	0. 2445			
RSD	0.9162	0.068 3	0. 239	0. 2389			
Checking	calibration	verificati	on				
	1 : CLP_CCV						
		limit	•	gh limit			
766		18.000	19.920	22.000			
_ la589		27.000	29.717	33.000			
BACKGROUI	ND CORRECTED	INTENSITIE	S				
[dentity	1 : Calibra	tion blank	Identity 2	: Type:	CB		
			Printed:			2005	
	K_766	Na589	Sc	Sc361			
# 1	20.5	28. 0	5086.5	5086. 5			
# 2	15.5	25.0	5015.5	5015.5			
lean	18.0	26.5	5051.0	5051.0			
SD	3.5	2.1	50. 2	50. 2			
RSD	19.6	8.0	1.0	1.0			
	CONCENTRATI						
			Identity 2				
leight :	1.0000 Vol	ume : 1.00	Printed : 3	3:50:44 PM	May 16,	2005	
	K_766	Na589	Sc	Sc361			
	ppm	ppm		ppm			
# 1	0.0849 L		5086.500 H	103.3462			
# 2	0.0348 L	-0.0201	5015.500 H	101.9020			
_	0.0598 L	-0.0176	5051.000 H	102.6241			
lean							
lean SD SRSD	0. 0354	0.0035	50. 205	1.0212			

Identity 2:

Value

0.060

-0.018

102.624

Thecking calibration blank ...

[dentity 1 : Calibration blank

CRDL

0.100

0.050

0.000

leport name

766

la589

ic361

☐ 200.7 TAP No. 01-0406-☐ 6010B TAP No. 01-0406☐ Other Swlī			QC STD. ID's CCV 65 60 c CRI ICSA ICSAB		Std0 ostor Std1 ostor Std2 Std3 Std4 v v v v Std5 Std5
					010175
لا					
PROJ. NO. PRO					
					·
INSTRUMENT:	Spectro	FIL	ENAME: <u>0</u> s	75 ⁻ 19	

Keep last result visible enabled ...

Starting run ...

Creating high priority queue entries ...

BACKGROUND CORRECTED INTENSITIES

Identity 1 : BLK_SC Identity 2 : Type : STD
Weight : 1.0000 Volume : 1.00 Printed : 10:00:56 AM May 19, 2005

010176

	K_766	Na589	Sc361
# 1	26.0	38.5	4522.5
# 2	12.0	12.5	4392.5
Mean	19.0	25.5	4457.5
SD	9.9	18.4	91.9
%RSD	52.1	72.1	2.1

INTENSITIES

Identity 1 : BLK_SC Identity 2 : Type : STD

Weight: 1.0000 Volume: 1.00 Printed: 10:00:56 AM May 19, 2005

	K_766	Na589	Sc361
# 1	0.0	0.0	4522.5
# 2	0.0	0.0	4392.5
Mean	0.0	0.0	4457.5
SD	0.0	0.0	91.9
XRSD	50. 3	70.6	2.1

BACKGROUND CORRECTED INTENSITIES

Weight: 1.0000 Volume: 1.00 Printed: 10:03:46 AM May 19, 2005

	K_766	Najey
# 1	4710.5	26974.5
# 2	4662.5	26708.5
lean	4686.5	26841.5
SD	33.9	188. 1
RSD	9.7	0.7

INTENSITIES

Weight: 1.0000 Volume: 1.00 Printed: 10:03:46 AM May 19, 2005

	K_766	Na589
# 1	1.0	5.8
# 2	1.0	5.8
lean	1.0	5.8
SD C	0.0	0.0
RSD	0.3	0.3

BACKGROUND CORRECTED INTENSITIES

Identity 1 : CLP_CCV_SC Identity 2 : Type : CV

Weight: 1.0000 Volume: 1.00 Printed: 10:06:40 AM May 19, 2005

	K_766	Na589	Sc	Sc361
# 1	1927.0	16384.5	4736.0	4736.0
# 2	1906.0	16351.5	4696.0	4696.0
fean	1916.5	16368. 0	4716.0	4716.0
SD	14.8	23.3	28.3	28.3
KRSD	0.8	0.1	0.6	0.6

5-19-05

EVOLUTION by Micro-Active Australia Pty Ltd 10:13:48 AM May 19, 2005

Identity 1 : CLP_CCV_SC Identity 2 : Type : CV

Weight: 1.0000 Volume: 1.00 Printed: 10:06:40 AM May 19, 2005

	K_766	Na589	Sc	Sc361	64 04 77
	ppm	ppm		pp m	010177
# 1	19.9833	29.8339	4736.000 H	1 06. 2563	
# 2	19. 9334	30.0278	4696.000 H	105. 3577	
Mean	19. 9583	29. 9308	4716.000 H	105.8070	
SD	0.0353	0.1371	28. 284	0. 6354	
%RSD	0. 1769	0.4 579	0.600	0.6005	

Checking calibration verification ...

Report name Low limit Value High limit 19. 958 29. 931 K 766 22.000 18.**000** 27.000 33.000 Na589

BACKGROUND CORRECTED INTENSITIES

Identity 1 : Calibration blank Identity 2 : Type : CB

	K_766	Na589	Sc	Sc361
# 1	29.0	11.5	4612.0	4612.0
# 2	24.0	22.5	4577.0	4577.0
Mean	26.5	17.0	4594.5	4594.5
SD	3.5	7.8	24.7	24.7
XRSD	13.3	45.8	0.5	0.5

APPARENT CONCENTRATIONS

Identity 1 : Calibration blank Identity 2 : Type : CB

Weight: 1.0000 Volume: 1.00 Printed: 10:10:32 AM May 19, 2005

	K_766	Na589	Sc	Sc361
	ppm	ppm		ppm
# 1	0.1005 L	-0.0279	4612.000 H	103.4707
# 2	0.0487 L	-0.0070	4577.000 H	102.6845
iean	0.0746 L	-0.0174	4594.500 H	103.0776
3D	0.0367	0.0148	24.749	0. 5560
(DCD	40 4004	04 0644	A E00	A 5004

(RSD 49. 1224 84.9644 **0.** 539 0.5394

Checking calibration blank ...

Identity 1 : Calibration blank Identity 2 :

Report name CRDL Value 766 0.100 0.075 la589 0.050 -0.0173c361 9.000 103.078

BACKGROUND CORRECTED INTENSITIES

Identity 1 : pbw-E19H2 Identity 2 : Type : SAMPLE

leight: 1.0000 Volume: 1.00 Printed: 10:13:24 AM May 19, 2005

	K_766	Na589	Sc	Sc361
# 1	17.5	10.0	4399.0	4399.0
# 2	25.5	20.0	4395.0	4395.0
lean	21.5	15.0	4397.0	4397.0
iD Ci	5.7	7.1	2.8	2.8
RSD	26.3	47.1	0.1	0.1

PPARENT CONCENTRATIONS

dentity 1 : pbw-E19H2 Identity 2 : Type : SAMPLE

EVOLUTION by Micro-Active Australia Pty Ltd 10:21:18 AM May 19, 2005

Weight: 1.0000 Volume: 1.00 Printed: 10:13:24 AM May 19, 2005

		K_766	Na589	Sc	Sc361	
		ppm	ppm		ppm -	640470
# 1	L	-0.0141 L	-0.0298	4399.000	98. 6858	010178
# 2		0.0764 L	-0.0101	4395.000	98.5960	
Mean		0.0312 L	-0.0199	4397.000	98.6409	
SD		0.0640	0.0139	2.828	0.0 635	
%RSD		205. 4817	69.7496	0.064	0.0644	

BACKGROUND CORRECTED INTENSITIES

Identity 1 : lcsw-E19H2 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 10:15:06 AM May 19, 2005

	K_766	Na589	Sc	Sc361
# 1	1778.0	10037.5	4430.5	4430.5
# 2	1771.0	10032.5	4447.5	4447.5
Mean	1774.5	10035.0	4439.0	4439. 0
SD	4.9	3.5	12.0	12.0
%RSD	0.3	0.0	0.3	0.3

APPARENT CONCENTRATIONS

Identity 1 : lcsw-E19H2 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 10:15:06 AM May 19, 2005

	K_766	Na589	Sc	Sc361
	ppm	ppm		ppm
# 1	19.7066	19. 5201	4430.500	99. 3935
# 2	19. 5524	19.4356	4447.500	99.7754
Kean	19.6295	19. 4779	4439.000	99. 5844
3D	0. 1091	0.0598	12.021	0.2700
KRSD	0. 5557	0.3068	0, 271	0, 2712

BACKGROUND CORRECTED INTENSITIES

[dentity 1 : 262217 Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 10:18:00 AM May 19, 2005

	K_766	Na589	Sc	Sc361
# 1	107.0	9052. 5	4448.0	4448.0
# 2	104.0	9005.5	4437.0	4437.0
lean	105.5	9029.0	4442.5	4442.5
3D	2. 1	33.2	7.8	7.8
(RSD	2.0	0.4	0.2	0.2

APPARENT CONCENTRATIONS

Identity 1 : 262217 Identity 2 : Type : SAMPLE

leight: 1.0000 Volume: 1.00 Printed: 10:18:00 AM May 19, 2005

	K_766	Na589	Sc	Sc361
	ppm	ppm		ppm
# 1	0. 9824	17.5303	4448.000	99.7866
# 2	0. 9518	17.4824	4437.000	99. 5395
lean	0. 9671	17.5063	4442.500	99.6630
SD C	0.0216	0.0339	7.778	0.1747
RSD	2.2372	0.1935	0.175	0. 1753

ACKGROUND CORRECTED INTENSITIES

dentity 1 : 262217d Identity 2 : Type : SAMPLE

leight: 1.0000 Volume: 1.00 Printed: 10:20:52 AM May 19. 2005

EVOLUTION by Micro-Active Australia Pty Ltd 10:26:52 AM May 19, 2005

	Na589	Sc	Sc361	
117.0	8982.0	4457.0	4457.0	040400
119.0	8999.0	4418.0	4418.0	010179
118.0	8 990. 5	4437.5	4437.5	
1.4	12.0	27.6	27.6	
1.2	0.1	0.6	0.6	
	119.0 118.0 1.4	117.0 8982.0 119.0 8999.0 118.0 8990.5 1.4 12.0	117.0 8982.0 4457.0 119.0 8999.0 4418.0 118.0 8990.5 4437.5 1.4 12.0 27.6	117.0 8982.0 4457.0 4457.0 119.0 8999.0 4418.0 4418.0 118.0 8990.5 4437.5 4437.5 1.4 12.0 27.6 27.6

APPARENT CONCENTRATIONS

Identity 1 : 262217d Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 10:20:52 AM May 19, 2005

K 766 Na589 ppm ppm ppm # 1 17.3582 4457.000 1.0913 99. 9888 # 2 1.1253 17.5451 4418.000 99, 1127 Mean 1.1083 17.4516 4437.500 99.5507

SD 0.0240 0.1322 27.577 0.6195 XRSD 2.1673 0.7573 0.621 0.6223 19. 2005
Not stud Reported From Purious Stibles
Spaper

BACKGROUND CORRECTED INTENSITIES

Identity 1 : 262217s Identity 2 : Type : SAMPLE

Weight: 1.0000 Volume: 1.00 Printed: 10:23:44 AM May 19, 2005

K_766 Na589 Sc361 Sc # 1 1923.5 19359.0 4497.5 4497.5 # 2 1910.5 19134.0 4419.5 4419.5 Mean 1917.0 19246.5 4458.5 4458.5 3D 9.2 159.1 55.2 55.2 KRSD 0.5 0.8 1.2 1.2

APPARENT CONCENTRATIONS

Identity 1: 262217s Identity 2: Type: SAMPLE

Veight: 1.0000 Volume: 1.00 Printed: 10:23:44 AM May 19, 2005

K 766 Na589 Sc361 Sc ppm ppm ppm # 1 21.0156 37.1314 4497.500 H 100.8986 # 2 21.2442 37.3479 4419.500 99.1464 37.2397 21.1299 4458.500 H 100.0225 lean 3D 0.1617 0.1531 55. 154 1.2390 RSD 0.7651 0.4110 1.237 1.2387

BACKGROUND CORRECTED INTENSITIES

Identity 1 : CLP_CCV_SC Identity 2 : Type : CV

leight: 1.0000 Volume: 1.00 Printed: 10:26:42 AM May 19, 2005

	K_766	Ne589	Sc	Sc361
# 1	1934.0	16323.0	4805.5	4805.5
# 2	1915.0	16248.0	4771.5	4771.5
lean	1924.5	16285.5	4788.5	4788.5
3D	13.4	53.0	24.0	24.0
RSD	0.7	0.3	0.5	0.5

PPARENT CONCENTRATIONS

identity 1 : CLP_CCV_SC Identity 2 : Type : CV

leight: 1.0000 Volume: 1.00 Printed: 10:26:42 AM May 19, 2005

K 766 Na589

Sc

Sc361

```
EVOLUTION by Micro-Active Australia Pty Ltd 10:33:34 AM May 19, 2005
          ppm
                     ppm
                                         ppm
                  29. 2912
# 1
        19.7635
                           4805.500 H 107.8176
# 2
        19.7082
                  29.3645
                           4771.500 H 107.0538
Mean
        19.7359
                  29.3278
                           4788.500 H 107.4357
                                                               010180
                            24.042
SD
        0.0391
                  0.0518
                                      0.5401
XRSD
         0.1981
                   0.1767
                             0.502
                                       0.5027
Checking calibration verification ...
Low limit Value
Report name
                                  High limit
K_766
                 18.000
                           19.736
                                      22.000
Na589
                 27.000
                           29.328
                                      33.000
```

BACKGROUND CORRECTED INTENSITIES

Identity 1 : Calibration blank Identity 2 : Type : CB

	K_766	Na589	Sc	Sc361
# 1	22.0	15.5	4655.5	4655.5
# 2	25.0	37.5	4597.5	4597.5
Mean	23.5	26.5	4626.5	4626.5
SD	2.1	15.6	41.0	41.0
XRSD	9.0	58.7	0. 9	0.9

APPARENT CONCENTRATIONS

Identity 1 : Calibration blank Identity 2 : Type : CB

Weight: 1.0000 Volume: 1.00 Printed: 10:30:36 AM May 19, 2005

	K_766	Na589	Sc	Sc361
	ppm	ppm		pp m
# 1	0.0230	L -0.0207	4655.500 H	104.4479
# 2	0. 0 583	0.0210	4597.500 H	103.1450
Mean	0.0407	0.0002	4626.500 H	103.7965
SD	0. 0250	0. 0295	41.012	0.9213
KRSD	61.4710	15302, 6533	0.886	9.8876

Checking calibration blank ...

Identity 1 : Calibration blank Identity 2:

Report name CRDL Value K_766 0.100 0.041 Na589 0.050 0.000 Sc361 0.000 103.796 SOUTHWEST RESEARCH INSTITUTE 010181

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 050426-3

SRR: 27509 SDG: 262217 CASE: CNWRA

VTSR: April 25, 2005 PROJECT#: 06002.01.242

Certificates of Analysis

INDRGANIC LABS/RADCHEM LABS

DATE RECEIVED: DATE EXPIRED:

TRACEMETAL GRADE NITRIC ACID **CERTIFICATE OF ANALYSIS**

B M: Kelvey Dr. B. McKelvey QA/QC Manager

CATALOG NUMBER: A509 LOT NUMBER: 1104120 RELEASE DATE: January, 2005 EXPIRY DATE: January, 2008

Tests	Maximum Specification	Actual Value	Units
ASSAY (HNO3, w/w):	67 - 70%	70%	% by w/w
Color:	10	<10	APHA
	Maximum	Actual	

COL.		- 10	74.44		
	Maximum	Actual		Maximum	Actual
Analyte	Specification	Value (in ppb)	Analyte	Specification	Value (in ppb)
Aluminum (Al)	1 ppb	<0.5	Neodymium (Nd)	0.5 ppb	<0.1
Antimony (Sb)	1 ppb	<0.1	Nickel (Ni)	1 ppb	. <0.1
Arsenic (As)	1 ppb	<0.1	Niobium (Nb)	0.5 ppb	<0.1
Barium (Ba)	1 ppb	<0.1	Palladium (Pd)	0.5 ppb	<0.1
Beryllium (Be)	1 ppb	<0.1	Platinum (Pt)	0.5 ppb	<0.1
Bismuth (Bi)	1 ppb	<0.1	Potassium (K)	1 ppb	<0.2
Boron (B)	1 ppb	<0.5	Praseodymium (Pr)		<0.1
Cadmium (Cd)	1 ppb	<0.1	Rhenium (Re)	0.5 ppb	<0.1
Calcium (Ca)	1 ppb	<0.5	Rhodium (Rh)	0.5 ppb	<0.1
Cerium (Ce)	0.5 ppb	<0.1	Rubidium (R b)	0.5 ppb	<0.1
Cesium (Cs)	0.5 ppb	<0.1	Ruthenium (Ru)	0.5 ppb	<0.1
Chromium (Cr)	1 ppb	<0.2	Samarium (Sm)	0.5 ppb	<0.1
Cobalt (Co)	1 ppb	<0.1	Scandium (Sc)	0.5 ppb	<0.1
Copper (Cu)	1 ppb	<0.1	Selenium (Se)	1 ppb	<0.1
Dysprosium (Dy)	0.5 ppb	<0.1	Silver (Ag)	1 ppb	<0.1
Erbium (Er)	0.5 ppb	<0.1	Sodium (Na)	1 ppb	<0.2
Europium (Eu)	0.5 ppb	<0.1	Strontium (Sr)	1 ppb	<0.1
Gadolinium (Gd)	0.5 ppb	< 0.1	Tantalum (Ta)	Information Only	<0.1
Gallium (Ga)	0.5 ppb	<0.1	Tellurium (Te)	0.5 ppb	<0.1
Germanium (Ge)	0.5 ppb	<0.1	Terbium (Tb)	0.5 ppb	<0.1
Gold (Au)	0.5 ppb	<0.1	Thallium (TI)	0.5 ppb	<0.1
Hafnium (Hf)	0.5 ppb	<0.1	Thorium (Th)	1 ppb	<0.1
Holmium (Ho)	0.5 ppb	<0.1	Thulium (Tm.)	0.5 ppb	<0.1
Indium (in)	0.5 ppb	<0.1	Tin (Sn)	1 ppb	<0.1
Iron (Fe)	1 ppb	<0.5	Titanium (Ti)	1 ppb	<0.1
Lanthanum (La)	0.5 ppb	<0.1	Tungsten (W)	0.5 ppb	<0.1
Lead (Pb)	1 ppb	<0.1	Uranium (U)	1 ppb	<0.1
Lithium (LI)	1 ppb	<0.1	Vanadium (V)	1 ppb	<0.1
Lutetium (Lu)	0.5 ppb	<0.1	Ytterbium (Yb)	0.5 ppb	<0.1
Magnesium (Mg)	1 ppb	<0.2	Yttrium (Y)	0.5 ppb	<0.1
Manganese (Mn)	1 ppb	<0.1	Znc (Zn)	1 ppb	<0.2
Mercury (Hg)	1 ppb	<0.2	Zirconium (Zr)	1 ppb	<0.1
Molybdenum (Mo)	1 ppb	<0.1	(C)	, ppu	
			l Italians alsama alama	nto in nortinular Ce	CI K No D Al Ma R

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

For customer service, call 1-800-766-7000. To fax an order, use 1-800-925-1165.

To order online: www.fishersci.com

TRACEMETAL GRADE HYDROCHLORIC ACID CERTIFICATE OF ANALYSIS

B Mc Kelvey Dr. B. McKelvey QA/QC Manager

CATALOG NUMBER: A508
LOT NUMBER: 4104090
RELEASE DATE: Novembe r, 2004
EXPIRY DATE: Novembe r, 2007

Tests	Maximum	. Actual	Units		
	Specification	Value		,	
ASSAY (HCL, w/w):	34 - 37%	36%	% by w/w		
Color:	10	<10	APHA		
GO.G.					
	Maximum	Actual		Maximum	Actual
Analyte	Specification	Value (inppb)	Analyte	Specification	Value (inppb)
	4 1	<0.5	11d	0.5 ppb	<0.1
Aluminum (Al)	1 ppb	<0.5 <0.1	Neodymium (Nd) Nickel (Ni)	1 ppb	<0.1
Antimony (Sb)	1 ppb	<0.1 <0.1	Niobium (Nb)	0.5 ppb	<0.1
Arsenic (As)	1 ppb		Palladium (Pd)	Information Only	<0.5
Bartum (Ba)	1 ppb	<0.1		Information Only	<0.5
Beryllium (Be)	1 ppb	<0.1	Platinum (Pt)		<0.1
Bismuth (Bi)	1 ppb	<0.1	Potassium (K)	1 ppb	<0.1
Boron (B)	1 ppb	<0.5	Praseodymium (Pr)	0.5 ppb	<0.1
Cadmium (Cd)	1 ppb	<0.1	Rhenium (Re)	0.5 ppb	<0.1
Caldum (Ca)	1 ppb	<0.5	Rhodium (Rh)	0.5 ppb	<0.1 <0.1
Carium (Ce)	0.5 ppb	<0.1	Rubidium (Rb)	0.5 ppb	
Cesium (Cs)	0.5 ppb	<0.1	Ruthenium (Ru)	0.5 ppb	<0.1
Chromium (Cr)	1 ppb	<0.1	Samarium (Sm)	0.5 ppb	<0.1
Cobalt (Co)	1 ppb	<0.1	Scandium (Sc)	0.5 ppb	<0.1
Copper (Cu)	1 ppb	<0.1	Selenium (Se)	1 ppb	<0.1
Dysprosium (Dy)	0.5 ppb	<0.1	Silver (Ag)	1 ppb	<0.1
Erbium (Er)	0.5 ppb	^<0.1	Sodium (Na)	1 ppb	<0.5
Europium (E v)	0.5 ppb	<0.1	Strontium (Sr)	1 ppb	<0.1
Gadolinium (Gd)	0.5 ppb	<0.1	Tantalum (Ta)	Information Only	<1
Gallium (Ga)	0.5 ppb	<0.1	Tellurium (Te)	0.5 ppb	<0.1
Gold (Au)	0.5 ppb	<0.1	Terbium (Tb)	0.5 ppb	<0.1
Hafnium (Hf)	0.5 ppb	<0.1	Thallium (TI)	0.5 ppb	<0.1
Holmium (Ho)	0.5 ppb	<0.1	Thorium (Th)	1 ppb	<0.1
Indium (In)	0.5 ppb	<0.1	Thullum (Tm)	0.5 ppb	<0.1
Iron (Fe)	1 ppb	<0.5	Tin (Sn)	1 ppb	<0.1
Lanthanum (La)	0.5 ppb	<0.1	Titanium (Ti)	1 ppb	<0.1
Lead (Pb)	1 ppb	<0.1	Tungsten (W)	0.5 ppb	<0.1
Lithlum (Li)	1 ppb	<0.1	Uranium (U)	1 ppb	<0.1
Lutetium (Lu)	0.5 ppb	<0.1	Vanadium (V)	1 ppb	<0.1
Magnesium (Mg)	1 ppb	<0.5	Ytterbium (Yb)	0.5 ppb	<0.1
Manganese (Mn)	1 ppb	<0.1	Yttrium (Y)	0.5 ppb	<0.1
Mercury (Hg)	1 ppb	<0.2	Znc (Zn)	1 ppb	<0.5
Molybdenum (Mo)	1 ppb	<0.1	Zirconium (Zr)	1 ppb	<0.1
	• •		-		

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

For customer service, call 1-800-766-7000. To fax an order, use 1-800-925-1165. To order online: www.fishersci.com

DATE RECEIVED: 3112015 HABS

DATE EXPIRED: 3112015 HABS

DATE OPENED: 3133105 F557049

INDRG: 5085-35040 PD: F557049

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Scandium IN 5% HNO₃ (abs)

Catalog Number: CGSC1-1and CGSC1-5

Lot Number: W-SC02058

Starting Material: Starting Material Purity: Starting Material Lot No: Sc₂D₃ 99.99% 632-5721 INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 01/15/05

DATE EXPIRED: 3/1/06 / DATE OPENED: 01/16/05 / INORG: 496/ PO: F55/3

CERTIFIED CONCENTRATION: 1005 \pm 2 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\bar{x}) = $\frac{\sum x_i}{n}$

Uncertainty (±) = $2[(\sum_{s})^2]^{1/2}$ (n)^{1/2}

M Pr

< 0.000030

 $(\hat{x}) = mean$

< 0.070

0

 $x_i = individual results$

M Dy <0.00060

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1007 ± 3 µg/mL

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 1005 \pm 2 μ g/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3148a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

< 0.0010

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu_{\rm B}/{\rm mL}$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

M Li

_														
M	Sb	< 0.000050	M	Er	< 0.00050	M	Łu	< 0.000040	<u>M</u>	Re	< 0.00010	<u>M</u>	Tb<	0.000030
M	As	< 0.0010	M	Eu	< 0.00030	<u>M</u>	Mg	< 0.0030	<u>M</u>	Rh	< 0.00010	<u>M</u>	TI	< 0.00010
M	Ba	< 0.0010	M	Gđ	< 0.00010	<u>M</u>	Mn	< 0.00040	M	Rb	< 0.00010	<u>M</u>	Th	0.0028
M	Be	< 0.000050	M	Ga	< 0.00010	<u>0</u>	Hg	ì	M	Ru	< 0.00020	<u>M</u>	Tm	< 0.000040
M	8í	0.0043	M	Ge	< 0.00060	M	Mo	< 0.00020	<u>M</u>	Sm	< 0.00010	M	Sn	< 0.00050
<u>o</u>	8	< 0.020	M	Au	< 0.00030	M	Nd	< 0.00020	<u>s</u>	Sc		<u>M</u>	Ti	< 0.0050
M	Cd	<0.00030	M	Hf	0.0030	<u> </u>	Ni	<0.084	<u>o</u>	Se	< 0.67	<u>M</u>	W	< 0.0010
Q	Ca	0.016	M	Ho	< 0.000050	<u>M</u>	Nb	< 0.000050	<u>o</u>	Şi	< 0.034	<u>M</u>	U	< 0.00020
M	Ce	< 0.00050	M	In	< 0.00010	Ū	Os		M	Ag	0.0050	₩	٧	< 0.00020
M	Ċs	< 0.000030	M	ir	< 0.00050	M	Pd	< 0.00050	<u>o</u>	Na	< 0.16	M	Yb	< 0.00010
M	Cr	< 0.00050	<u>o</u>	Fe	< 0.16	<u>0</u>	P	į	<u>M</u>	Sr	< 0.000050	<u>M</u>	Υ	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050	M	Pt	< 0.00020	<u>n</u>	s		<u>M</u>	Zn	0.0075
M	Сu	< 0.00060	M	Pb	0.00050	. <u>o</u>	K	< 5.01	<u>M</u>	Ta	< 0.00070	<u>M</u>	Zr	0.032
М -	check	ed by ICP-MS	0 - 0	hecke	d by ICP-OES	i - sp	ectral	interference	n - not	checi	ked for	s - solutio	n sta	ndard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.038 g/mL

QA:KL REV.010804DN

Quality Assurance Manager

Paul R Haines

Expires:

01 2006

< 0.0030

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Siovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production - Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2

m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

Certificate of Reference Alaterial

Catalog Number:

ICAL-1

Lot No.: 28-64AS

Description:

Instrument Calibration Standard 1

Matrix:

5% Nitric Acid

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	5,000	5011.87	3109a
K	5,000	5011.80	3141a
Mg	5,000	5020.86	3131a
Na	5,000	4995.13	3152a

Spex Reference Multi: Lot #6-28VY, 6-104VY, 25-178AS-REF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/-2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

OCT - - 2004

Certifying Officer: N. Kocherlakela

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = T rue value (Labeled Value), U = E xpanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{c-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

4837

Certificate of Reference Material

Catalog Number:

SPIKE-1

Lot No.: 28-176AS

Description:

Spike Sample Standard 1

Matrix:

5% Nitric Acid/tr Tartaric Acid - HF

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Al	200	198.56	3101a	Pb	50	50.06	3128
As	200	197.01	3103a	Sb	50	48.62	3102a
Ba	200	199.49	3104a	V	50	49.87	3165
Se	200	198.51	3149	Zn	50	49.70	3168a
TL	200	199.25	3158	Cu	25	25.15	3114
Fe	100	98.90	3126a	Cr	20	19.81	3112a
Co	50	50.04	3113	Ag	5	4.96	3151
Mn	50	49.90	3132	Вe	5	4.92	3105a
Ni	50	. 50.16	3136	Cd	5	4.96	3108

Spex Reference Multi: Lot #4-24BD, 2-61BD, 17-55AS, 16-68AS

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

APR. - - 2005 Certifying Officer: _

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megolum. double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025. ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s=s^2m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ex} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

5197

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer:

Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are
determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates
and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials,"
and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Lithium in 0.1% (abs) HNOs

Catalog Number:

CGLI1-1 and CGLI1-5

Lot Number:

Matrix:

3.0

W-LI02073

Starting Material:

Li2CO3

Starting Material Purity (%):

99.997165

Starting Material Lot No.

1123

CERTIFIED VALUES AND UNCERTAINTIES

1123

0.1% (abs) HNO₃

INDRGANIC LABS/RADCHEM LABS 19-146

DATE RECEIVED: __OT/OVOH_

DATE EXPIRED: 08/01/3005 403

INDRG: 468 PD: F53406

Certified Concentration:

 $995 \pm 2 \mu g/mL$

Certified Density:

1.004 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C)≡ mean

x_i = individual results

il attitude of a smith

n = number of measurements

Uncertainty $(\pm) = 2[(\underline{\alpha} + \underline{s})]^{2/2}$ BS = The su

BS = The summation of all significant estimated errors.
(Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

995 ± 2 µg/mL

ICP Assay NIST SRM 3129a Lot Number: 000505

Assay Method #2

995 ± 6 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O Al 0.00120	M Dy < 0.01199	<u>Ş</u> Li	M Pr < 0.00060	M Te < 0.05994
M Sb < 0.00100	<u>M</u> Er < 0.00999	<u>M</u> Lu < 0.00080	<u>M</u> Re < 0.00200	M Tb < 0.00060
<u>M</u> As < 0.01998	<u>M</u> Eu < 0.00599	Q Mg 0.00650	M Rh < 0.00200	M TI < 0.00200
M Ba < 0.01998	M Gd < 0.00200	<u>O</u> Mn 0.00006	M Rb < 0.00200	<u>M</u> Th < 0.00200
O Be < 0.00020	<u>M</u> Ga < 0.00200	O Hg < 0.01500	M Ru < 0.00400	M Tm < 0.00080
<u>M</u> Bi < 0.00080	M Ge < 0.01199	M Mo < 0.00400	<u>M</u> Sm < 0.00200	Q Sn < 0.00600
<u>O</u> B 0.00020	M Au < 0.00599	<u>M</u> Nd < 0.00400	<u>M</u> Sc < 0.01998	<u>O</u> Ti < 0.00070
M Cd < 0.00599	M Hf < 0.00400	Q Ni < 0.00230	<u>M</u> Se < 0.01598	<u>O</u> W < 0.00400
<u>O</u> Ca 0.04050	<u>M</u> Ho < 0.00100	M Nb < 0.00100	Q Si 0.04650	M U < 0.00400
<u>M</u> Ce < 0.00999	<u>O</u> In < 0.00400	n Os	<u>M</u> Ag < 0.00400	<u>O</u> V 0.00009
M Cs < 0.00060	M tr < 0.00999	M Pd < 0.00999	<u>O</u> Na 0.03200	<u>M</u> Yb < 0.00200
<u>M</u> Cr < 0.00999	Q Fe 0.00200	<u>O</u> P < 0.00250	<u>O</u> Sr 0.00026	<u>M</u> Y < 0.07992
<u>M</u> Co < 0.00599	M La < 0.00100	M Pt < 0.00400	<u>Q</u> S 0.01250	<u>O</u> Zn 0.00145
Q Cu 0.00100	<u>M</u> Pb < 0.00599	<u>O</u> K 0.00950	<u>M</u> Ta < 0.01399	<u>M</u> Zr < 0.00999
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly seeled when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 6.941; +1; (6); Li'(aq) large effective radius due to hydration sphere (Coordination Number in parentheses is assumed, not certain.)

Chemical Competibility - Soluble in HCl, HNO_x, H₂SO₄ and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1% HNO_x /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO_x /LDPE container.

Li Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water); Ores (Sodium carbonate fusion in Pt^o followed by HCI dissolution-blank levels of Li in sodium carbonate critical); Organic Matrices (Sulfuric / perceide digestion or nitric / sulfuric / perceide decomposition).

Atomic Spectroscopic Information (ICP-DES D.L.s are given as radial/axia) view):

Technique		Estimated D.L.		Type	
ICP-OES 6	670.784 nm	0.002 / 0.00002 ug/mL	1	atom	2 rd order radiation from R.E.s on some optical designs
ICP-OES	460.286 nm	0.9 / 0.04 µg/mL	1	atom	Zr, Th
ICP-OES 3	323.261 mm	1.1 / 0.05 µg/mL	1	atom	Sb, Th, Ni
ICP-MS	7 amu	10 ppt		n/a	M'

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC	LABS/R	RADCHE	EM LAI	6 26. PT 25
DATE	RECEIV	ED:	07/01/	CH	him 1614 bith show the s Man
	EXPIRE				
DATE	OPENED	;	DIO	H9	
	3: 463		PO:		

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mil low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 12, 2003

Expiration Date:

EXPIRES

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Strutters Known der Park Lain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

Custom-Grade 10000 µg/mL Scandium in 5% (abs) HNO3 **DESCRIPTION OF CRM** 2.0

Catalog Number:

CGSC10-1, CGSC10-2, and CGSC10-5

Lot Number:

X-SC02061

Starting Material:

Sc2O3

Starting Material Purity (%):

99.996918

Starting Material Lot No

BSC-632-1-5736

Matrix:

5% (abs) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certifled Concentration:

 $10,007 \pm 21 \mu g/mL$

Certified Density:

1.071 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\mathbf{x}) = $\sum \mathbf{x}$

(s) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(\sum_{s_i})^2]^{1/2}$

 $\Sigma S = The summation of all significant estimated errors.$ (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM-certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

- · *Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or International standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $10,005 \pm 26 \,\mu g/mL$

ICP Assay NIST SRM 3148a Lot Number: 792111

Assay Method #2

10,007 ± 21 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

INORGANIC LABS/RADCHEM LABS DATE EXPIRED: 5/1/100 DATE OPENED: 3/3/103
INORG: 5/75 PD: 72/106

トリコム

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

_				
O AI < 0.00100	<u>M</u> Dy < 0.00598	<u>M</u> Li < 0.00997	M Pr < 0.00030	M Te < 0.02990
<u>M</u> Sb < 0.00050	<u>M</u> Er < 0.00498	<u>M</u> Lu < 0.00040	M Re < 0.00100	<u>M</u> Tb < 0.00030
<u>M</u> As < 0.00997	<u>M</u> Eu < 0.00299	Q Mg 0.00100	M Rh < 0.00100	M TI < 0.00100
<u>M</u> Ba < 0.00997	<u>M</u> Gd < 0.00100	<u>M</u> Mn < 0.00399	M Rb < 0.00100	M Th 0.11759
<u>M</u> Be < 0.00050	<u>M</u> Ga < 0.00100	<u>Q</u> Hg < 0.01000	M Ru < 0.00199	<u>M</u> Tm < 0.00040
M BI < 0.00040	<u>M</u> Ge < 0.00598	<u>M</u> Mo < 0.00199	<u>M</u> Sm < 0.00100	<u>M</u> Sn < 0.00498
<u>M</u> B < 0.06976	<u>M</u> Au < 0.00299	M Nd < 0.00199	<u>ş</u> Sc	<u>Q</u> Ti < 0.00100
M Cd < 0.00299	<u>M</u> Hf < 0.00199	<u>O</u> Ni < 0.00090	M Se < 0.00797	<u>M</u> W < 0.00997
O Ca 0.11500	<u>M</u> Ho < 0.00050	M Nb < 0.00050	<u>O</u> Si 0.02000	M U < 0.00199
M Ce < 0.00498	<u>M</u> In < 0.00997	<u>n</u> Os	M Ag < 0.00199	<u>M</u> V < 0.00199
M Cs < 0.00030	<u>M</u> ir < 0.00498	<u>M</u> Pd < 0.00498	Q Na < 0.09000	<u>M</u> Yb < 0.00100
O Cr 0.00470	<u>O</u> Fe 0.00370	<u>n</u> P	<u>M</u> Sr < 0.00050	<u>O</u> Y < 0.00100
M Co < 0.00299	<u>M</u> La < 0.00050	M Pt < 0.00199	<u>O</u> S < 0.02500	<u>Q</u> Zn 0.00600
<u>O</u> Cu < 0.00140	<u>M</u> Pb < 0.00299	<u>Q</u> K < 0.10000	<u>M</u> Ta < 0.00698	<u>O</u> Zr 0.23000
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & NewtStrig - Keep tightly sealed when not in use. Store and use at $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

Attende Weight; Valences, Coordination Number; Chemical Form in Solution - 44.95591; +3, 6; So(H₂O), 12

Character Commentativity Soluble in HCI, H₂SO₄ and HNO₃. Avoid HF, H₂PO₄ and neutral to basic media. Stable with most metals and morganic anions forming an insoluble carbonate, oxide, oxidete, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride. The fluoride is soluble in excess HF forming ScF₂*(not recommended for standard preparations).

Stability - 2-100 ppb levels stable for months in 1% HNO₂ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 5-10% HNO₂ / LDPE container. Small atomic radius increases hydrolysis requiring higher acid levels than other Rare Earths. Sc Containing Sampline (Proparation and Solution) - Metal (Solution acids); Oxide (Dissolve by heating in H₂O / HNO₂); Ores (Carbonote tusion in Pt* followed by HCl dissolution). Organic Matrices (Dry ash and dissolve in 1:1 H₂O / HCl or HNO₂); (Aqua Regia or nitric / perchloric / sulturic acid digestions can be used. Exercise caution when using perchloric acid.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Jung Futimated D.L. Order Type Interferences (underline ICP-OES 335 373 nm 0.004 / 0.00002 µg/mL 1 ion	ed indicates severe at < concs.)
ICP-OES 337.215 nm 0.004 / 0.00002 μg/mL 1 ion Ti, U, Ni, Rh	
ICP-OES 424 683 nm 0.003 / 0.00002 µg/mL 1 ion Ce	
ICP-MS 45 amu 2.3 ppt n/a M' 180212CH, 28518O, 18Zr'2	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belglum (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS).

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is ilmited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 01, 2004

Expiration Date:

01; 2006 -

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Malda, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

D/scholas Maida Knowlin in Paux Maine

Certificate of Reference Material

Catalog Number: PLB9-2X/2Y/2T

Lot No. 10-119B

Description:

1000 mg/L Boron

Matrix:

H20

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3107

The CRM is prepared gravimetrically using high purity (NH4)2B4O7-4H2O Lot# 08001E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1001 mg/L

Method: Titration with Sodium Hydroxide using Phenolphthalein as indicator. Sodium Hydroxide standardized against Potassium Biphthalate NIST SRM #84k

Instrumental Analysis by ICP spectrometer: 1001 mg/L Uncertified Properties:

Density: 1.001 @ 22.3 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.06	Cu	<0.001	Pb	<0.001
As	< 0.001	Fe	0.001	Re	<0.001
Ag	0.002	Ga	<0.001	Rb	<0.001
Ba	< 0.001	In	<0.001	Sr	< 0.001
Be	<0.001	K	<0.06	Sb	<0.001
Bi	0.03	Li	<0.001	Si	0.01
Cd	<0.001	Mn	< 0.001	Ti	<0.001
Co	<0.001	Mo	<0.001	TI	<0.001
Ca	0.001	Mg	< 0.001	V	0.003
Cr	<0.001	Na	0.01	Z r	<0.001
		Ni	0.001	Zn	0.004

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

M. Jin

Certifying Officer: N. Kocherlakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megolum, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=5m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLLI2-2X/2Y

Lot No. 11-24LI

Description:

1000 mg/L Lithium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1000.5 mg/L

Uncertainty Associated with Measurement: +/-3 mg/L Certified Value is Traceable to: NIST SRM #3129a

The CRM is prepared gravimetrically using high purity Lithium Carbonate Lot# 03021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1001 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as Li2SO4.

Instrumental Analysis by ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1.015 @ 22.8 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
As	<0.002	Cu	<0.001	Pb	<0.001
A)	0.007	Fe	0.013	Re	< 0.001
Ag	< 0.001	Ga	< 0.001	Rb	< 0.001
Be	< 0.001	ln	< 0.001	Sr	< 0.001
Ba	< 0.001	K	0.027	Sb	< 0.001
Bi	< 0.001	Mg	0.002	Si	0.014
B	< 0.001	Mn	< 0.001	Ti	< 0.001
Co	< 0.001	Mo	< 0.001	TI	< 0.001
Ca	0.008	Ni	0.001	V	< 0.001
Cr	< 0.004	Na	0.01	Zn	3.0
Cd	< 0.001			Zr	0.002

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

OC1 ,0

Date of Certification: Certifying Officer: N. Kockestakel

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, sim is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e = \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLMO9-2X/2Y/2T

Lot No. 11-51MO

Description:

1000 mg/L Molybdenum

Matrix:

H₂O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1000 mg/L

Uncertainty Associated with Measurement:

+/-3.0 mg/L

Certified Value is Traceable to: NIST SRM #3134

The CRM is prepared gravimetrically using high purity (NH4)6(Mo)7(O)24-4H2OLot# certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: Precipitation using 8-Hydroxy Quinoline. Filter, dry, and weigh as MoO2(C9H6NO)2.

Instrumental Analysis by ICP spectrometer: 1001 mg/L

Uncertified Properties:

Density: 09989 @23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
As	0.03	Cu	0.003	Pb	<0.001
Ag	< 0.002	Fe	0.110	Rb	< 0.001
Aì	< 0.002	Ga	< 0.001	Re	0.030
Ba	< 0.001	In	< 0.001	Sr	< 0.001
Be	< 0.002	K	0.060	Sb	< 0.001
В	< 0.007	Li	< 0.003	Si	< 0.200
Bi	< 0.001	Mn	0.002	Ti	0.003
Cd	< 0.100	Mg	< 0.001	TĪ	< 0.001
Ca	0.010	Ni	< 0.001	v	0.004
Cr	< 0.003	Na	< 0.002	Zr	< 0.001
Со	< 0.001		•	Zn	0.006

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:	OCT "	. 04	Certifying Officer:	N. Kocherle	kota
			Certifying Officer.	74.700	

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

1SO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e^+}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate

Certificate of Reference Material

Catalog Number: PLP9-2X/2Y/2T

10-125P Lot No.

Description:

1000 mg/L Phosphorus

Matrix:

H2O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3139a

The CRM is prepared gravimetrically using high purity (NH4)2(H)PO4 Lot# 07901A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1001 mg/L

Method: Precipitation using Magnesia Mixture. Filter, ignite and weigh as Mg2P2O7.

Instrumental Analysis by ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1.000 @ 22.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.001	Cu	<0.001	Pb	<0.001
As	<0.001	Fe	0.002	Rb	< 0.001
Ag	<0.001	Ga	<0.001	Re	<0.001
В	<0.01	In	<0.001	Si	0.085
Ba	0.001	K	0.027	Sr	<0.001
Be	<0.001	Li	<0.001	Sb	0.01
Bi	<0.001	Mg	<0.001	Tì	0.002
Ca	0.002	Mn	<0.001	Tì	<0.001
Cr	<0.001	Mo	<0.001	v	<0.001
Cd	<0.001	Na Na	0.008	Zr	<0.001
Co	<0.001	Ni	<0.001	Zn	0.02

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochertakol

© 2000 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k₃ = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate

Certificate of Reference Material

Catalog Number: PLSI9-2X/2Y/2T

Lot No. 11-33SI

Description:

1000 mg/L Silicon

Matrix:

H2O / 0.4% F-

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3150

The CRM is prepared gravimetrically using high purity (NH4)2SiF6 certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1004 mg/L

Method: Precipitation using Ammonium Molybdate and 8-Hydroxy Quinoline. Filter, dry, and weigh as

(C9H7ON)4[Si(Mo12O40)]

Instrumental Analysis by ICP spectrometer: 999 mg/L

Uncertified Properties:

Density: 1.001 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
A1	0.003	Cu	< 0.001	Pb	< 0.001
Ag	< 0.001	Fe	0.02	Rb	<0.001
As	<0.06	Ga	<0.001	Re	< 0.001
Ba	< 0.001	រៃវ	<0.001	Sr	<0.001
Be	<0.001	K	0.14	Sb -	<0.001
В	<0.004	Li	0.008	Ti	< 0.001
Bi	< 0.001	Mo	< 0.001	TI	< 0.001
Cd	< 0.001	Mg	<0.001	V	< 0.001
Ca	0.016	Mn	< 0.001	Zn	0.002
Cr	<0.001	Na	0.003	Zr	0.002
Co	< 0.001	Ni	< 0.004		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochestakol

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U= ku_c where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{c-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

DATE EXPIRED:

SPEXertificate "

Certificate of Reference Material

Catalog Number: PLTI9-2X/2Y/2T

Lot No. 10-172TI

Description:

1000 mg/L Titanium

Matrix:

H2O/ 0.24% F-

This ASSURANCE certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3162a

The CRM is prepared gravimetrically using high purity (NH4)TiF6 Lot# 02021E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 999 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite and weigh as TiO2.

Instrumental Analysis by ICP spectrometer: 997 mg/L Uncertified Properties:

Density: 1.000 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
AJ	0.004	Cu	0.04	Pb	<0.001
As	<0.001	Fe	0.002	Rb	<0.001
Ag	<0.001	Ga	<0.001	Re	<0.001
В	< 0.004	In	<0,001	Si -	3.0
Ba	< 0.001	K	<0.10	Sr	<0.001
Be	<0.001	Li	<0,001	Sb	<0.001
Bi	<0.001	Mg	<0.003	Tì	< 0.001
Ca	0.012	Mn	<0.001	V	<0.001
Cr	<0.07	Mo	<0.001	Zr	0.004
Cd	< 0.001	Na	0.02	Zn	0.004
Co	0.002	Ni	<0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kochertakota

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohin, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

TM

SPEXertificate

Certificate of Reference Material

Catalog Number: PLSR2-2X/2Y/2T

Lot No. 10-111SR

Description:

1000 mg/L Strontium in 2% HNO3

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L Certified Value is Traceable to: NIST SRM #3153a

The CRM is prepared gravimetrically using high purity Strontium Carbonate Lot# 09031B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928

Instrumental Analysis by ICP spectrometer: 999 mg/L

Uncertified Properties:

Density: 1,009 @ 24.1 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.001	Cu	<0.001	Pb	0.001
As	<0.001	Fe	0.001	Rb	<0.001
Ag	<0.001	Ga	<0.001	Re	<0.001
В	<0.004	In	<0.001	Si	0.002
Ba	0.02	K	0.015	Sb	<0.001
Be	<0.001	Li	<0.001	Ti	<0.001
Bi	<0.001	Mg	<0.001	TI	<0.001
Ca	0.008	Mn	< 0.001	v	<0.001
Cr	<0.004	Mo	< 0.001	Zr	0.004
Cd	<0.001	Na	0.005	Zn	0.04
Co	<0.001	Ni	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

AUG '04

Certifying Officer: N. Kocherlakota

SANIC LABS/RADCHEM LABS

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Ouantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s2m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate "

Certificate of Reference Material

Catalog Number: PLSN5-2X/2Y/2T

Lot No. 11-45SN

Description:

1000 mg/L Tin

Matrix:

20% HCL

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 997.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3161

The CRM is prepared gravimetrically using high purity Tin Metal Lot# 10951C. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 999 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite, and weigh as SnO2.

Instrumental Analysis by ICP spectrometer: 996 mg/L

Uncertified Properties:

Density: 1.041 @ 22.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
As	<0.10	Cu	<0.0Ó1	Pb	0.001
Ag	0.004	Fe	0.10	Re	< 0.001
Al	0.007	Ga	<0.001	Rb	< 0.001
В	< 0.001	In	<0.01	Sb	0.002
Ba	< 0.001	K	<0.20	Si —	0.09
Ве	< 0.001	Li	< 0.001	Sr	< 0.001
Bi	< 0.001	Mo	< 0.001	Ti	< 0.001
Co	0.007	Mn	< 0.001	Tì	< 0.001
Cd	< 0.01	Mg	< 0.001	V	<0.20
Ca	0.07	Na	0.045	Zn	0.70
Cr	0.007	Ni	0.045	Zr	<0.001

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kochertakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₄=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate '

Certificate of Reference Alaterial

Catalog Number: PLBI4-2X/2Y

Lot No. 10-173BI

Description:

1000 mg/L Bismuth

Matrix:

10% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3106

The CRM is prepared gravimetrically using high purity Bismuth Metal Lot# 04941B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L

Method: EDTA titration using xylenol orange as indicator. EDTA standardized against Pb(NO3)2 NIST

SRM #928

Instrumental Analysis by ICP spectrometer: 1002 mg/L

Uncertified Properties:

Density: 1.052 @ 24.0 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.02	Cu	< 0.001	Pb	0.006
As	<0.001	Fe	0.001	Re	<0.001
Ag	0.002	Ga	<0.001	Rb	<0.001
В	< 0.002	ln	<0.001	Sr	< 0.001
Ba	0.002	K	0.010	Sb	< 0.001
Be	< 0.002	Li	< 0.001	Si	0.005
Cd	< 0.001	Mn	<0.001	Ti	< 0.002
Co	< 0.001	Mo	< 0.001	TI	< 0.001
Ca	0.125	Mg	<0.001	V	< 0.001
Cr	< 0.001	Na	0.006	Zr	< 0.001
		Ni	0.002	Zn	0.08

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s2m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate *

Certificate of Reference Material

Catalog Number: PLLA2-2X/2Y

Lot No. 11-12LA

Description:

1000 mg/L Lanthanum

Matrix:

2% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1000 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L Certified Value is Traceable to: NIST SRM #3127a

The CRM is prepared gravimetrically using high purity La(NO3)3-6H2O Lot# 03951B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2 NIST SRM #928.

Instrumental Analysis by ICP spectrometer: 999

mg/L

Uncertified Properties:

Density: 1.010 @ 22.3 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	0.02	Lu	< 0.001	Th	< 0.001
Ca	0.029	Mn	<0.001	Tm	< 0.001
Dy	< 0.001	Mo	< 0.001	Ti	<0.001
Er	< 0.001	Nd	< 0.001	Tb	< 0.001
Eu	< 0.001	Ni	< 0.001	Ta	< 0.001
Fe	0.005	Na	0.01	Tl	< 0.001
Gd	< 0.001	Pr	<0.001	V	<0.001
Ga	< 0.001	Rb	< 0.001	w	< 0.001
Hf	<0.001	Sc	0.002	Y	< 0.001
Но	< 0.001	Sm	< 0.001	Yb	<0.001
ln	<0.001			Z r	< 0.001

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: 00 04 Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=5²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k. = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLY2-2X/2Y/2T

Lot No. 10-121Y

Description:

1,000 mg/L Yttrium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1000 mg/L

Uncertainty Associated with Measurement: +/-3.0 mg/L Certified Value is Traceable to: NIST SRM 3167a

The CRM is prepared gravimetrically using high purity Yttrium Oxide Lot# 01031B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1000 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928.

Instrumental Analysis by ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1.011 @ 21.8 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce .	< 0.001	La	< 0.001	Тъ	< 0.001
Ca	0.007	Lu	< 0.001	Tm	< 0.001
Dy	< 0.001	Mn	< 0.001	Tl	< 0.001
Er	< 0.001	Мо	< 0.001	Th	<0.001
Eu	< 0.001	Nd	< 0.001	Ta	< 0.001
Fe	0.015	Ni	< 0.001	Ti	< 0.001
Gd	< 0.001	Na	0.006	V	< 0.001
Ga	<0.001	Pr	< 0.001	w	< 0.001
Hf	< 0.001	Rb	< 0.001	Yb	< 0.001
Ho	< 0.001	Sc	< 0.001	Zr .	< 0.001
ln	< 0.001	Sm	<0.001	•	

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherakol

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_a = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{c=}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate

Certificate of Reference Material

Catalog Number: PLPD3-2X/2Y

9-99PD Lot No.

Description:

1000 mg/L Palladium

Matrix:

10% HCl

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 999 mg/L

Uncertainty Associated with Measurement: +/-3.0 mg/L

Certified Value is Traceable to: NIST SRM #3138

The CRM is prepared gravimetrically using high purity Palladium Metal 06021C. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

999 mg/L

Method: Precipitation using Dimethyl Glyoxime. Filter, dry, and weigh as Pd(C4H7O2N2)2.

Instrumental Analysis by ICP spectrometer:

1000 mg/L

Uncertified Properties:

Density: 1.017 @ 24.2 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Fe	0.033	Re	<0.001
Au	0.002	Ga	< 0.001	Rh	< 0.001
Ag	<0.001	Ir	< 0.001	Rb	< 0.001
В	<0.001	In	<0.001	Ru	< 0.001
Be	< 0.001	Mg	0.001	Sn	< 0.001
Bi	< 0.001	Mn	<0.001	Te	< 0.001
Ca	0.006	Na	0.005	Ti	< 0.001
Cd	< 0.001	Ni	0.001	W	< 0.001
Co	<0.001	Pb	0.002	Zr	< 0.001
Cr	<0.002	Pt	0.008	Zn	0.06
Cu	0.002			-	

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherlako

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s2m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_L and $u_{ee} \sqrt{\Sigma u_L^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLS9-2X/2Y/2T

10-122S Lot No.

Description:

1000 mg/L Sulfur

Matrix:

H20

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L Certified Value is Traceable to: NIST SRM #3154

The CRM is prepared gravimetrically using high purity Ammonium Sulfate Lot# 05891M. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

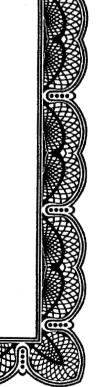
Classical Wet Assay: 1002 mg/L

Method: Precipitation using Barium Chloride. Filter, ignite and weigh as BaSO4.

Instrumental Analysis by ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1.001 @ 22.7 Degrees Celsius


Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	<0.001	Cu	<0.001	Pb	< 0.001
As	0.003	Fe	0.014	Rb	< 0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
B	< 0.001	ln	< 0.001	Si	0.003
Ba	<0.001	K	< 0.10	Sr	< 0.001
Be	< 0.001	Li	< 0.001	Sъ	< 0.001
Bi	< 0.001	Mg	0.005	Ti	< 0.001
Ca	0.012	Mn	<0.002	TI	< 0.001
Cr	< 0.001	Mo	< 0.001	V	< 0.001
Cd	< 0.001	Na	0.01	Zr	< 0.001
Со	< 0.001	Ni	<0.001	Zn	<0.002

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kockertal

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_a = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate '

Certificate of Reference Material

Catalog Number: PLTH2-2X/2Y

Lot No. 11-15TH

Description:

1000 mg/L Thorium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 999 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3159

The CRM is prepared gravimetrically using high purity Th(NO3)4-4H2O Lot# 01851R. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Xylenol Orange as indicator. EDTA syandardized against Pb(NO3)2 NIST

SRM #928.

Instrumental Analysis by ICP spectrometer: 998 mg/L

Uncertified Properties:

Density: 1.010 @ 22.0 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	0.01	La	0.003	Tb	< 0.001
Ca	0.27	Lu	< 0.001	Tm	< 0.001
Dy	< 0.001	Mn	< 0.001	Ti	< 0.002
Er	<0.001	Mo	< 0.001	Ta	< 0.001
Eu	< 0.001	Nd	0.003	T 1	< 0.001
Fe	< 0.01	Ni	< 0.001	V	< 0.001
Gd	< 0.001	Na	0.04	W	<0.001
Ga	< 0.001	Pr	< 0.001	Y	0.002
Hf	< 0.001	Rb	< 0.001	Yb	< 0.001
Но	< 0.001	Sc	< 0.03	Zr	< 0.001
ln	< 0.001	Sm	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: N. Kocherakota Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable; 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, s'm is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate "

Certificate of Reference Material

Catalog Number: PLU2-2X/2Y

Lot No. 10-127U

Description:

1000 mg/L Uranium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1004 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3164

The CRM is prepared gravimetrically using high purity Uranium(V,VI) Oxide Lot# 04001D. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1004 mg/L

Method: Evaporate to dryness. Ignite and weigh as U3O8.

Instrumental Analysis by ICP spectrometer: 1005 mg/L

Uncertified Properties:

Density: 1.010 @ 21.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.005	Cu	0.01	Pb	0.008
As	0.04	Fe	0.41	Rb	< 0.001
Ag	<0.001	Ga	<0.001	Re	<0.001
В	< 0.003	In	< 0.001	Si	0.03
Ba	< 0.001	K	0.022	Sr	0.003
Be	<0.001	Li	< 0.001	Sb	0.003
Bi	<0.001	Mg	0.002	Ti	< 0.001
Ca	0.09	Mn	0.003	n	<0.001
Cr	<0.002	Mo	0.004	v	0.004
Cd	<0.001	Na	0.08	Zr	0.002
Co	< 0.001	Ni	< 0.001	Zn	0.06

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: JUN - 2001 Certifying Officer: N. Kocherlakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following suides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

ue is obtained by combining the individual element standard uncertainty components ui and ue √∑ui²

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

INORGANIC LABS/	RADUHEM LABS
DATE RECEIVED:	40/66/10
	07/30/2005 /05
	#Q\66\10
INORG: 466	FO: F53417

SPEXertificate

0102

Certificate of Reference Material

Catalog Number: PLW9-2X/2Y

Lot No. 10-139W

Description:

1000 mg/L Tungsten

Matrix:

H₂O

This ASSURANCE @ certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1003 mg/L

Uncertainty Associated with Measurement: +/-3.0 mg/L

Certified Value is Traceable to: NIST SRM #3163

The CRM is prepared gravimetrically using high purity Ammonium Tungstate certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1004 mg/L

Method: Fume with Sulfuric acid to dryness. Ignite and weigh as WO3.

Instrumental Analysis by ICP spectrometer: 1002 mg/L

Uncertified Properties:

Density: 0.9998 @ 21.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.003	Cu	<0.001	Pb	<0.001
As	0.004	Fe	<0.01	Rb	<0.001
Ag	<0.001	Ga	<0.001	Re	0.003
В	< 0.002	In	<0.001	Si	0.60
Ba	< 0.001	K	0.13	Sr	<0.001
Be	<0.01	Li	<0.001	Sb	0.001
Bi	< 0.001	Mg	<0.001	Ti	<0.001
Ca	0.006	Mn	<0.001	TI	<0.001
Cr	< 0.003	Mo	0.004	V	<0.003
Cd	< 0.001	Na	0.03	Zr	<0.001
Co	< 0.001	Ni	<0.001	Zn	0.01

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

_ Certifying Officer: N. Kocherlakola

010229

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k=5^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Catalog Number: PLZR2-2X/2Y/2T

Lot No. 11-69ZR

Description:

1000 mg/L Zirconium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1004 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3169

The CRM is prepared gravimetrically using high purity Zirconyl Nitrate Lot# 02041A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1004 mg/L

Method: Fume with Sulfuric Acid to dryness. Ignite and weigh as ZrO2.

Instrumental Analysis by ICP spectrometer: 1004 mg/L

Uncertified Properties:

Density: 1.011 @ 22.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
As	<0.001	Cu	<0.001	Pb	<0.001
Ag	0.03	Fe	0.02	Re	< 0.001
Al	0.004	Ga	< 0.001	Rb	< 0.001
Ba	< 0.002	In	< 0.001	Sb	< 0.001
Be	< 0.001	K	< 0.20	Sr ~	< 0.001
Bi	0.15	Li	< 0.001	Si	< 0.10
В	<0.004	Mn	< 0.001	TI	< 0.001
Cr	100.0>	Mg	< 0.001	Ti	< 0.003
Cd	< 0.001	Mo	< 0.001	V	< 0.001
Co	< 0.002	Ni	< 0.001	Zn.	0.001
Ca	< 0.001	Na	0.004		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: _____ Certifying Officer: N. K

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Ouantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = T rue value (Labeled Value), U = E xpanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_c and $u_c + \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate ™

Certificate of Reference Material

Catalog Number: PLNA2-3X/3Y

Lot No. V9-56NA

Description:

10,000 mg/L Sodium

Matrix:

5% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 9984 mg/L

Uncertainty Associated with Measurement: +/- 30.0 mg/L

Certified Value is Traceable to: NIST SRM # 3152a

The CRM is prepared gravimetrically using high purity Sodium Carbonate Lot# 05031C. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 9983 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as Na2SO4.

Instrumental Analysis by ICP spectrometer: 9985 mg/L

Uncertified Properties:

Density: 1.048 @ 23.1 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	<0.001	Cu	0.01	Pb	0.009
As	<0.01	Fc	0.02	Re	<0.001
Ag	<0.02	Ga	< 0.001	Rb	<0.001
В	<0.05	ln .	<0.001	Sr	<0.002
Ba	0.01	K	2.50	Sb	< 0.001
Ве	<0.009	Li	<0.002	Si	0.14
Bi	0.001	Mg	0.20	Ti	<0.02
Ca	0.75	Mn	0.001	TI	<0.001
Cr	<0.02	Mo	< 0.001	v	0.002
Cd	<0.001	Ni	<0.006	Zr	< 0.01
Co	<0.001			Zn	0.02

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

IAN = - 2005

Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=3m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPCXertificate™

Certificate of Reference Material

Catalog Number: ICV-2A

Lot No.: 6-114MS

Description:

Initial Calibration Verification Standard II

Matrix:

5% Nitric Acid

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	2,000	1,995.81	3109a	Ni	500	499.54	3136
K	2,000	1,995.56	3141a	V	500	499.79	3165
Mg	2,000	1,995.61	3131a	Cr	200	199.97	3112a
Na	2,000	1,995.63	3152a	Cu	200	199.98	3114
` Al	1,000	989.06	3101a	Ag	100	99.44	3151
Ba	1,000	999.68	3104a	Be	100	99.16	3105a
Fe	1,000	995.89	3126a	Mn'	100	100.03	3132
Co	500	500.41	3113	Zn	100	100.06	3168a

Spex Reference Multi: Lot # 1-58GM, 15-37AS, 11-171AS REF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Certifying Officer: N. Kocherlakola Date of Certification:

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Ouantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate '

Certificate of Reference Material

Catalog Number: PLSB7-2X/2Y/2T

Lot No. 10-43SB

Description:

1000 mg/L Antimony

Matrix:

H2O/0.6Tart.Acid/tr.HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1004 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L

Certified Value is Traceable to: NIST SRM 3102a

The CRM is prepared gravimetrically using high purity Antimony Metal Lot# 04021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1005 mg/L

Method: Evaporate to dryness. Fume with Nitric Acid. Ignite and weigh as Sb2O4.

Instrumental Analysis by ICP spectrometer:

1002 mg/L

Uncertified Properties:

Density: 1.046 @ 25.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.03	Cu	0.002	Pb	0.009
As	< 0.001	Fe	0.03	Rb	<0.001
Ag	<0.001	Ga	<0.001	Re	<0.001
В	<0.004	In	<0.001	Sr	<0.001
Ba	<0.001	K	0.01	Si	<0.01
Be	<0.001	Li	<0.001	Ti	<0.003
Bi	0.002	Mg	0.005	Tì	<0.001
Ca	0.14	Mn	<0.001	V	<0.001
Cr	<0.002	Mo	<0.001	Zr	<0.001
Cd	<0.001	Na	0.005	Zn	0.02
Co	<0.001	Ni	<0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: NOV '04 Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition ASTM Guide D6362-98

010237

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,-s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

u_c is obtained by combining the individual element standard uncertainty components u_i and u_i √∑u_i²

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

010238

SPCXertificate™

Certificate of Reference Alaterial

Catalog Number:

ICV-2C

Lot No.: 6-146MS

Description:

Initial Calibration Verification Standard II

Matrix:

5% Nitric Acid

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
As	500	499.69	3103a
Pb	500	499.61	3128
Se	500	499.91	3149
TL	500	499.92	3158
Cd	100	99.90	3108

Spex Reference Multi: Lot #9-34AS, 11-173AS, 1-57GM, 15-39AS REF.

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/- 2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: NO

Certifying Officer: N. Kochertakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

010239

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s = s^2 m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

inorganic ventures labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Aluminum in 5% (abs) HNO3 2.0

Catalog Number:

CGAL10-1 and CGAL10-5

Lot Number:

X-AL04016 Al metal

Starting Material:

99,996430

Starting Material Purity (%): Starting Material Lot No

607116

Matrix:

5% (abs) HNO3

INORGANIC LABS/RADCHEM LABS \$1 \$2 DATE RECEIVED: ___09/01/04_

DATE EXPIRED: 10/01/2005 VOS DATE OFENED: ____O9/o1/o4_ INORG: 4762 PO: F53434

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

10,020 ± 40 µg/mL

1.070 g/mL (measured at 22° C) **Certified Density:**

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha + \beta)]^{1/2}$

BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

🗈 "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

10,020 ± 40 µg/mL

ICP Assay NIST SRM 3101a Lot Number: 010808

Assay Method #2

10.043 ± 87 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

	,		t .	1
<u>s</u> Al	<u>M</u> Dy < 0.02419	Q Li 0.00166	M Pr < 0.00121	<u>M</u> Te < 0.12095
M Sb < 0.00202	<u>M</u> Er < 0.02016	<u>M</u> Lu < 0.00161	M Re < 0.00403	M Tb < 0.00121
M As < 0.04032	M Eu < 0.01210	<u>Q</u> Mg 0.00685	M Rh < 0.00403	<u>M</u> TI < 0.00403
M Ba < 0.04032	M Gd < 0.00403	M Mn < 0.01613	M Rb < 0.00403	<u>M</u> Th < 0.00403
<u>Q</u> Be < 0.00017	M Ga < 0.00403	Q Hg < 0.00700	M Ru < 0.00806	<u>M</u> Tm < 0.00161
<u>M</u> Bi < 0.00161	<u>M</u> Ge < 0.02419	<u>M</u> Mo < 0.00806	M Sm < 0.00403	M Sn < 0.02016
<u>O</u> B 0.00975	<u>M</u> Au < 0.01210	M Nd < 0.00806	M Sc < 0.04032	<u>Ω</u> Ti 0.00705
<u>M</u> Cd < 0.01210	<u>M</u> Hf < 0.00806	Q Ni < 0.00600	M Se < 0.03225	<u>M</u> W < 0.04032
<u>O</u> Ca 0.10166	M Ho < 0.00202	M Nb < 0.00202	<u>Q</u> Si 0.07884	M U < 0.00806
<u>M</u> Ce < 0.02016	<u>O</u> In < 0.03000	n Os	M Ag < 0.00806	<u>M</u> V < 0.00806
<u>M</u> Cs < 0.00121	<u>M</u> ir < 0.02016	M Pd < 0.02016	<u>O</u> Na 0.06639	M Yb < 0.00403
O Cr 0.00581	<u>O</u> Fe 0.00954	<u>O</u> P < 0.03000	M Sr < 0.00202	<u>M</u> Y < 0.16126
M Co < 0.01210	M La < 0.00202	M Pt < 0.00806	Q S < 0.10000	Q Zn 0.07676
M Cu < 0.02419	M Pb < 0.01210	Q K 0.01992	<u>M</u> Ta < 0.02822	M Zr < 0.02016
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 26,98154; +3, 6;AI(H,O).18

Charrical Compatibility - Soluble in HCl, HNO., HF and H.SO. Avoid neutral media. Soluble in strongly basic NaOH forming the Al(OH).(HLO): species. Stable with most metals and inorganic anions. The phosphate is insoluble in water and only slightly soluble in acid.

Stability - 2-100 ppb levels stable for months in 1% HNO. / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO. / LDPE container.

Al Containing Samples (Preparation and Solution) - Metal (Best dissolved in HCI / HNO₁); α- Al₂O₂ (Na₂CO₂ fusion in Pt¹); γ- Al₂O₁ (Soluble in acids such as HCI); Ores (Carbonate fusion in Pt¹ followed by HCI dissolution); Organic Matrices (sulfuric/peroxide digestion or nitric / sulfuric/perchloric acid decomposition, or dry ash and dissolution in dilute HCI.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Interferences (underlined indicates severe at actioncs.) Technique/Line Estimated D.L. <u>Order</u> Type ICP-OES 394.401 nm ICP-OES 396.152 nm 0.05 / 0.006 µg/mL U, Ce Mo, Zr, Ce 0.03 / 0.006 µg/mL atom ion ICP-OES 167.078 nm 0.1 / 0.009 µg/mL. Fe 'PC'9N, "PC"N, 'H'PC"N, 'B'PO, PCP", PFe?' ICP-MS 27 amu nÆ M' 30 ppt

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MiL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/	/RADCHEM LABS %3∘f3
DATE RECEIVED:	401/01/90
DATE EXPIRED:	10/01/2005 405
DATE OPENED:	401/01/90
INORG: 4762	PO: F53434

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: January 23, 2004

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Strollen Known den Paux Laine

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis o f

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

Custom-Grade 10000 µg/mL Calcium in 1.4% (abs) HNO3 **DESCRIPTION OF CRM** 2.0

Catalog Number:

CGCA10-1, CGCA10-2, and CGCA10-5

Lot Number:

X-CA03030

Starting Material:

CaO

Starting Material Purity (%):

99.999155

INDRGANIC LABS/RADCHEM LABS DATE RECEIVED: _

Starting Material Lot No

C27L01

DATE OPENED:

Matrix:

1.4% (abs) HNO3

INORG: __

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

10,035 ± 24 ug/mL

Certified Density:

1.037 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certifled Value (s) = $\sum x$

(x) = mean

x_i = individual results

Uncertainty (±) = $2[(2.5)^{2}]^{1/2}$

n = number of measurements

 $\Sigma S =$ The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ *Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

10,035 ± 24 µg/mL

EDTA NIST SRM 928 Lot Number: 392110

Assay Method #2

10,046 ± 65 µg/mL

ICP Assay NIST SRM 3109a Lot Number: 000622

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q AI 0.00069	M Dy < 0.04098	' <u>O</u> U < 0.00002 <u>M</u> Pr < 0.00205	M Te < 0.20492
M Sb < 0.00342	M Er < 0.03415	M tu < 0.00273 M Re < 0.00683	M Tb < 0.00205
M As < 0.06831	M Eu < 0.02049	Q Mg 0.05295 <u>M</u> Rh < 0.00683	M TI < 0.00683
<u>O</u> Ba 0.00065	M Gd < 0.00683	<u>Q</u> Mn 0.00038 <u>M</u> Rb < 0.00683	M Th < 0.00683
Q Be < 0.00009	<u>M</u> Ga < 0.00683	Q Hg < 0.01100 M Ru < 0.01366	<u>M</u> Tm < 0.00273
M Bi < 0.00273	M Ge < 0.04098	M Mo < 0.01366 M Sm < 0.00683	M Sn < 0.03415
<u>O</u> B < 0.00054	M Au < 0.02049	M Nd < 0.01366 Q Sc < 0.00002	M Ti < 0.34153
Q Cd < 0.00450	M Hf < 0.01366	<u>Q</u> NI < 0.00230	<u>M</u> W < 0.06831
<u>s</u> Ca	M Ho < 0.00342	M Nb < 0.00342 Q SI 0.00132	M U < 0.01366
M Ce < 0.03415	Q in < 0.00200	<u>n</u> Os <u>M</u> Ag < 0.01366	<u>Q</u> V < 0.00090
M Cs < 0.00205	M ir < 0.03415	M Pd < 0.03415 Q Na 0.01000	M Yb < 0.00683
O Cr 0.00103	<u>O</u> Fe < 0.00110	<u>Ω</u> P < 0.00480 Ω Sr 0.03530	M Y < 0.27323
<u>Q</u> Co < 0.00120	M La < 0.00342	M Pt < 0.01366 Q S 0.00412	Q Zn 0.02353
<u>Q</u> Cu < 0.00400	M Pb < 0.02049	Q K < 0.00170 M Ta < 0.04782	<u>M</u> Zr < 0.03415
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7 9/4

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 40.078, +2; 6, Ca(H,O),**

Charmical Competibility - Soluble in HCl and HNO. Avoid H,SO., HF, H,PO, and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxidate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels steble for months in 1% HNO₄ /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO, / LDPE conteiner.

Ca Containing Samples (Preparation and Solution) - Metal (bed dissolved in diluted HNO,) Ores (Carbonate fusion in Pt' followed by HCl dissolution); Organic Matrices (dry ash and dissolution in dilute HCl. Do not heat when dissolving to avoid precipitation of SiO₂). The oxide, hydroxide, carbonate, phosphate, and fluoride of calcium are soluble in % levels of HCl or HNO₂. The sulfates (gypsum, arrhydrite, etc.), certain silicates and complex compounds require fusion with Na,CO₂ followed by HCl / water dissolution. Contamination is a very real problem when analyzing for trace levels.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

MICHIC Specificación information (K.P.4.E.S B.L.& are given as <u>radial/abasi</u> view):								
Techniq	ue/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at oncs.)			
ICP-OES	393.366 nm	0.0002 / 0.00004 µg/mL	1	ion	U, Ce			
ICP-OES	395,847 nm	0.0005 / 0.00006 ug/ml.	1	ion	Th			
ICP-OES	422,673 nm	0.01 / 0.001 µg/mL	1	atom	Ge			
ICP-MS	44 amu	1200 ppt	n/a	M'	"O, "C, "SI"O, "SI"			

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (QQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: September 20, 2004

Expiration Date:

112006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Malda, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

D'scholas Maide Knowen in Paux Aain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Custom-Grade 10000 unimit from in 4.8% (ahs) HNOs

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0		0000000	
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	CGFE10-1, CGFE10-2 X-FE03041 Fe metal 99.998667 23387 4.8% (abs) HNO3	INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 3/1/2004 DATE OPENED: 3/1/2004 INORG: 5048 PD: F55/48

3.0 CERTIFIED VALUES AND UNCERTAINTIES

 $10,041 \pm 21 \mu g/mL$ **Certified Concentration:**

Certified Density: 1.061 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s_i) = $\sum x_i$

DESCRIPTION OF CRM

(s) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(2.s)]^{2/4}$

5S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST STM-sertificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6,10)
- · This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

 $10,041 \pm 21 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

 $10,017 \pm 40 \mu g/mL$

ICP Assay NIST SRM 3126a Lot Number: 000606

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 892476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

																•			
<u>o</u>	Ai	<	0.00270	M	Dy	<	0.02528	<u>o</u>	Li	<	0.00003	М	Pr	<	0.00126	М	Te	<	0.12640
M	Sb	<	0.00211	М	Er	<	0.02107	<u>M</u>	Lu	<	0.00169	М	Re	<	0.00421	М	Tb	<	0.00126
<u>M</u>	As	<	0.04213	М	Eu	<	0.01264	Q	Mg	<	0.00006	M	Rh	<	0.00421	М	TI	<	0.00421
M	Ba	<	0.04213	М	Gd	<	0.00421	Q	Mn	<	0.05000	М	Rb	<	0.00421	М	Th	<	0.00421
<u>o</u>	Ве	<	0.00005	М	Ga	<	0.00421	Q	Hg	<	0.01100	M	Ru	<	0.00843	М	Tm	<	0.00169
M	Bi	<	0.00169	ì	Ge			M	Мо	<	0.00843	М	Sm	<	0.00421	M	Sn	<	0.02107
Ω	В	<	0.00090	М	Au	<	0.01264	M	Nd	<	0.00843	W	Sc	<	0.04213	М	Ti	<	0.21066
<u>M</u>	Cd	<	0.01264	М	Hf	<	0.00843	Q	Ni	<	0.00230	M	Se	<	0.03371	M	W	<	0.04213
Q	Са		0.03107	М	Но	<	0.00211	М	Nb	<	0.00211	Q	Si		0.01673	М	U	<	0.00843
M	Се	<	0.02107	М	In	<	0.04213	n	Os	•		М	Ag	<	0.00843	M	٧	<	0.00843
M	Cs	<	0.00126	М	ir	<	0.02107	M	Pd	<	0.02107	Q	Na		0.00956	М	Yb	<	0.00421
М	Cr	<	0.02107	<u>s</u>	Fe			į	P			M	Sr	<	0.00211	M	Y	<	0.16853
Q	Со		0.01195	М	La	<	0.00211	M	Pt	<	0.00843	Q	s	<	0.07200	M	Zn		0.08761
M	Cu	<	0.02528	M	Pb	<	0.01264	Q	ĸ		0.00239	М	Та	<	0.02949	M	Zr	<	0.02107
M - Ch	neck	ed	by ICP-MS	0-	Chec	kec	by ICP-OES	1-8	pect	al I	nterference	n - i	Not C	he	ked For	5 -	Soluti	on i	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of 'working reference samples'

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

5048 ZH 4

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipel from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 55.847; +3; & Fe(H,O),**

Charmical Competibility - Stable in HCl, HNO₃, H₂SO₄, HF and H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO_s /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO_s /LDPE container.

Fe Containing Samples (Preparation and Solution) - Metal (Soluble in HCI) Oxides (If the oxide has been at a high temperature then Ne₂CO₂ fusion in Pt^a followed by HCI dissolution otherwise dissolve in dilute HCI). Ores (See Oxides above using only the fusion approach).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as redict/axial view):

trails observes the successful for any own and success and successful success								
Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at = concs.)			
ICP-OES	238,204 nm	0.005 / 0.001 µg/mL	1	ion	Ru, Co			
ICP-OES	239.562 nm	0.005 / 0.001 µg/mL	1	ion	Co, W, Cr			
ICP-OES	259.940 nm	0.006 / 0.001 µg/mL	1	ion	Hf, Nb			
ICP-MS	56 amu	970 ppt	n/a	- M'	""Ar""N"H, ""Ar""O, ""Ar""O"H, ""Ar""O, ""CI""O"H, ""Ca""O			

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polynol (AFACE), Spatiana (AFACE),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 22, 2004

Expiration Date:

1 2006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Malda, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

B/scholas Maide Known in Park Lains

ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 1	0000 μg/mL Potassium in 1.4% (abs) HNOs
	Catalog Number:	CGK10-1, CGK1	0-2, and CGK10-5
	Lot Number:	X-K02116	
	Starting Material:	KNO3	
	Starting Material Purity (%):	99.996753	
	Starting Material Lot No	K18J19	INDRGANIC LABS/RADCHEM LABS 163
	Matrix:	1.4% (abs) HI	NO3 DATE RECEIVED: 19/09/04
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	DATE EXPIRED: 13/01/3005 V03 DATE OPENED: 13/03/04 INORG: 4907 PO: F55/03
	Certified Concentration:	9957 ± 28 µg/mL	At 1 The 1 The 1 The second se
	Certified Density:	1.023 g/mL (mea	sured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\mathbf{x}) = $\sum \mathbf{x}$

(s) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2(\sum_{s,j} 2)^{1/2}$ ΣS = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM. 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 10,011 ± 16 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

Assay Method #2

9957 ± 28 µg/mL

ICP Assay NIST SRM 3141a Lot Number: 891312

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P 14452, 176240. The in-house procedure No. is 2-QC-001.Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

							· ·				1				1				
<u>0</u>	ΑI	<	0.00090	M	Dу	<	0.02426	<u>O</u>	Li	<	0.00003	M	Pr	<	0.00121	M	Те	<	0.12131
M	Sb	<	0.00202	М	Er	<	0.02022	M	Lu	<	0.00162	M	Re	<	0.00404	M	Tb	<	0.00121
M	As	<	0.04044	<u>M</u>	Eu	<	0.01213	Q	Mg		0.00109	M	Rh	<	0.00404	M	TI	<	0.00404
M	Ва	<	0.04044	<u>M</u>	Gd	<	0.00404	Q	Mn	<	0.00003	<u>M</u>	Rb		0.63001	M	Th	<	0.00404
<u>o</u>	Ве	<	0.00020	M	Ga	<	0.00404	Q	Hg	<	0.01500	М	Ru	<	0.00809	M	Tm	<	0.00162
M	Bi	<	0.00162	<u>o</u>	Ge	<	0.00150	М	Мо	<	0.00809	M	Sm	<	0.00404	M	Sn	<	0.02022
Ō	В	<	0.00060	Q	Au	<	0.00300	M	Nd	<	0.00809	0	Sc	<	0.00002	<u>0</u>	Ti	<	0.00070
M	Cd	<	0.01213	М	Hf	<	0.00809	O	Ni	<	0.00230	Ω	Se	<	0.05000	M	W	<	0.04044
Q	Ca		0.01360	M	Но	<	0.00202	M	Nb	<	0.00202	0	Si	<	0.00340	M	U	<	0.00809
M	Се	<	0.02022	M	In	<	0.04044	n	Os			M	Αg	<	0.00809	Q	٧	<	0.00090
M	Cs		0.00050	М	ſŧ	<	0.02022	M	Pd	<	0.02022	0	Na		0.19537	M	Yb	<	0.00404
M	Cr	<	0.02022	Q	Fe		0.00297	Q	P	<	0.00250	M	Sr	<	0.00202	M	Y	<	0.16175
М	Со	<	0.01213	M	La	<	0.00202	М	Pt	<	0.00809	Q	s	<	0.07200	Q	Zn	<	0.00020
M	Cu	<	0.02426	<u>M</u>	Pb	<	0.01213	<u>s</u>	ĸ			M	Ta	<	0.02831	M	Zr	<	0.02022
M - C	heci	ked	by ICP-MS	0-	Chec	kec	by ICP-OES	i - 8	Spect	ral	Interference	n -	Not (Che	cked For	s -	Soluti	ion	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 29,0983; +1; (5); K'(eq)

(Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCl, HNO_a, H₂SO_a and HF aqueous matrices. Avoid use of HClO_a due to insolubility of the perchlorate. Stable with all metals and inorganic anions except ClO_a.

Stability - 2-100 ppb levels stable for months in 1% HNO₂ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₂ / LDPE container.

K Containing Samples (Preparation and Solution) - Metal (Dissolves very repidly in water). Ones (Sodium carbonate fusion in Pt* followed by HCI dissolution-blank levels of K in sodium carbonate critical), Organic Matrices (Sulfuric/percede digestion.)

Atomic Spectroscopic information (ICP-OES D.L.s are given as radial/ayta) view):

	share i maaa haa a				
Techniq	ue/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at = concs.)
ICP-OES	766.490 nm	0.4 / 0.001 µg/mL	1	atom	2™ order radiation from R.E.s on some optical designs
ICP-OES	771,531 nm	1.0 / 0.03 µg/ml.	1	atom	2™ order radiation from R.E.s on some optical designs
ICP-OES	404,721 nm	1.1 / 0.05 µg/mL	1	atom	<u>U</u> , <u>Ce</u> ,
ICP-MS	39 amu	10 pat	n./a	M'	**ArH, **Na'*O, '*Se'*

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 30, 2004

Expiration Date:

INDRGANIC LABS/RADCHEM LABS Pg. 3043

DATE RECEIVED: 13/03/04

DATE EXPIRED: 13/03/04

INDRG: 4907 PD: \$55103

12005-

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten known an Paux Lain

ventures labs inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Magnesium in 1.4% (abs) HNO3 2.0

Catalog Number:

CGMG10-1, CGMG10-2, and CGMG10-5

Lot Number:

X-MG03018

Starting Material:

Mg metal 99.994984

Starting Material Lot No

Starting Material Purity (%):

Certified Concentration:

91191

INORGANIC LABS/RADCHEM LABS Po 1 42

DATE RECEIVED: ___ 07/29/04

Matrix:

1.4% (abs) HNO3

DATE EXPIRED: _____08/01/2005 VOS DATE OPENED: 40/68/20 INORG: 4656 PD: F53417

CERTIFIED VALUES AND UNCERTAINTIES 3.0

 $10,039 \pm 31 \mu g/mL$

Certified Density:

1.051 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) = $\sum x$

(s) = mean

x = individual results

Uncertainty (±) = $2[(\sum_{s})^{2}]^{1/2}$

n = number of measurements

ΣS = The summation of all significant estimated errors. (Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM. 2nd ed., 1993, definition 6,10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1 4.1

 $10.039 \pm 31 \,\mu g/mL$

ICP Assay NIST SRM 3131a Lot Number: 991107

Assay Method #2

10.079 ± 21 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>o</u>	Al		0.04714	M	Đу	<	0.03601	<u>0</u>	Li		0.00623	M	Þ٢	<	0.00180	M	Te	<	0.18002
M	Sb	<	0.00300	М	Er	<	0.03000	<u>M</u>	Lu	<	0.00240	М	Re	<	0.00600	M	Tb	<	0.00180
M	As	<	0.06001	M	Eu	<	0.01800	ş	Mg			M	Rh	<	0.00600	M	TI	<	0.00600
M	Ba	<	0.06001	M	Gd	<	0.00600	0	Mn		0.07408	М	Rb	<	0.00600	M	Th	<	0.00600
ō	Ве	<	0.00017	М	Ga	<	0.00600	<u>o</u>	Hg	<	0.00900	M	Ru	<	0.01200	M	Tm	<	0.00240
<u>M</u>	Bi	<	0.00240	М	Ge	<	0.03601	М	Мо	<	0.01200	M	Sm	<	0.00600	M	Sn	<	0.03000
ō	В		0.00303	M	Au	<	0.01800	M	Nd	<	0.01200	M	Sc	<	0.06001	Ω	Ti		0.09765
<u>M</u>	Cd	<	0.01800	М	Hf	<	0.01200	0	Ni		0.01229	M	Se	<	0.04801	M	W	<	0.06001
Q	Ca		0.14984	M	Но	<	0.00300	M	Nb	<	0.00300	Q	Si		0.02357	M	U	<	0.01200
M	Ce	<	0.03000	M	In	<	0.06001	<u>n</u>	Os			M	Ag	<	0.01200	M	٧	<	0.01200
M	Cs	<	0.00180	M	Ir	<	0.03000	M	Pd	<	0.03000	ō	Na		0.02189	M	Yb	<	0.00600
Ō	Cr		0.02189	O	Fe		0.03704	Ω	P	<	0.01600	M	Sr	<	0.00300	M	Y		0.02021
M	Со	<	0.01800	W	La	<	0.00300	M	Pt	<	0.01200	Ū	s			Q	Zn		0.00572
<u>o</u>	Cu		0.00674	<u>0</u>	Pb		0.02694	Q	ĸ	<	0.05000	М	Та	<	0.04201	M	Zr	<	0.03000
M - C	heck	ed	by ICP-MS	0-	Chec	ke	d by ICP-OES	i - \$	Spect	ral	Interference	n - 1	Not C	he	cked For	s -	Soluti	on	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 24.305, +2, 6, Mg(H₂O), '2

Chemical Compatibility - Soluble in HCl, HNO₃, and H₂SO₄ avoid HF, H₂PO₄ and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicates, carbonates, hydroxides, oxides, and tungstates in neutral and slightly acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO, / LDPE container.

Mg Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO₃); Oxide (Readily solutions above compatible equeous acidic solutions). Ores (Carbonate fusion in Pt^o followed by HCI dissolution); Organic Matrices (Sulfuric / perchitoric acid decomposition, or dry ash and dissolution in dilute HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Estimated D.L. Type Interferences (underlined indicates severe at = corcs.) Technique/Line <u>Order</u> 0.0002 / 0.00003 µg/mL 0.0003 / 0.00005 µg/mL ICP-OES 279.553 nm ion ion U, Y atom U, Ht, Cr, Zr 280.270 nm ICP-OES 285.213 nm 0.002 / 0.00003 µg/mL ICP-MS M' "Li"O, "Ti", "Ca"2 24 amu n/a

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Portugal (APCER), Singapore (PSR), Slovenia (SIO), Spain (AENOR), Switzerland (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC L	.ABS/RADCHEM	LABSPS. 3 of a
DATE RECEIVE	D:07/20/	34
DATE EXPIRED	: 08/01/a	COS VOT
DATE OPENED:	07/29/0	24
INDRG: _4659	PO: F	5.3417

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 15, 2004

Expiration Date:

192005-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Stutten Known in de Pour Lain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM 2.0

Custom-Grade 10000 µg/mL Sodium in 1.4% (abs) HNO3

Catalog Number:

CGNA10-1, CGNA10-2, and CGNA10-5

Lot Number:

W-NA03010

Starting Material:

Na2CO3

Starting Material Purity (%):

99.999819

INDRGANIC LABS/RADCHEM LABS/8.1442

Starting Material Lot No

42063

DATE RECEIVED: 07/29/04

Matrix:

1.4% (abs) HNO3

DATE EXPIRED: 08/01/2005 WOT

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $10,006 \pm 6 \mu g/mL$

Certified Density:

1.032 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x, = individual results

Uncertainty $(\pm) = 2[(\alpha_1 + \epsilon_1)^2]^{1/2}$

n = number of measurements

#8 = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement.

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

10,006 ± 6 µg/mL

Gravimetric NIST SRM Lot Number. See Sec. 4.2

Assay Method #2

10,019 ± 33 µg/mL

ICP Assay NIST SRM 3152a Lot Number: 990907

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98, All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O Al < 0.00090	M Dy < 0.00600	O Li < 0.00003 M Pr < 0.00030	M Te < 0.02998
M Sb < 0.00050	M Er < 0.00500	M Lu < 0.00040 M Re < 0.00100	M Tb < 0.00030
M As < 0.00999	<u>M</u> Eu < 0.00300	O Mg 0.00010 M Rh < 0.00100	<u>M</u> TI < 0.00100
<u>M</u> Ba < 0.00999	M Gd < 0.00100	<u>Q</u> Mn < 0.00003 <u>M</u> Rb < 0.00100	M Th < 0.00100
<u>O</u> Be < 0.00020	M Ga < 0.00100	<u>O</u> Hg < 0.01500 <u>M</u> Ru < 0.00200	M Tm < 0.00040
M Bi < 0.00040	Q Ge < 0.00150	M Mo < 0.00200 M Sm < 0.00100	<u>M</u> Sn < 0.00500
O B < 0.00060	Q Au < 0.00300	M Nd < 0.00200 Q Sc < 0.00002	Q Ti < 0.00070
M Cd < 0.00300	M Hf < 0.00200	<u>O</u> Ni < 0.00230	<u>M</u> W < 0.00999
Q Ca 0.00050	M Ho < 0.00050	M Nb < 0.00050 Q Si < 0.00340	M U < 0.00200
M Ce < 0.00500	M in < 0.00999	n Os M Ag < 0.00200	Q V < 0.00090
M Cs < 0.00030	M lr < 0.00500	M Pd < 0.00500 S Na	<u>M</u> Yb < 0.00100
M Cr < 0.00500	<u>O</u> Fe < 0.00110	Q P < 0.04000 M Sr < 0.00050	<u>M</u> Y < 0.03997
M Co < 0.00300	M La < 0.00050	M Pt < 0.00200 Q S < 0.07200	Q Zn 0.00250
O Cu < 0.00140	M Pb < 0.00300	O K 0.04000 M Ta < 0.00700	<u>M</u> Zr < 0.00500
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4.5. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 22.98977; +1; (6); Na'(aq) largely ionic in nature (Coordination Number in parentheses is assumed, not certain.)

Chemical Competibility - Soluble in HCl, HNO₃, H₂SO₄ and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

He Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water). Ores (Lithium carbonate fusion in graphite crucible followed by HCI dissolution - blank levels of Na in lithium carbonate critical), Organic Matrices (Sulturic / peroxide digestion or nitric/sulturic/perchloric acid decomposition).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order		interferences (underlined indicates severe at 400ncs.)
ICP-OES	589.595 nm	July 600000 1 July 10 10 10 10 10 10 10 10 10 10 10 10 10	1		2 nd order radiation from R.E.s on some optical designs
ICP-OES	588.995 nm	0.03 / 0.006 µg/mL	1	etom	2 [™] order recliation from R.E.s on some optical designs
ICP-OES	330,237 nm	2.0 / 0.09 ug/mL	1	atom	Pd. Zn
ICP-MS	23 amu	310 ppt	n/a	M'	eall is eaCais

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Italy (CISQ), Particular (CISQ), Particular (CISQ), Particular (CISQ), Statistical (CISQ),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
- Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: October 27, 2003

Expiration Date:

INORGANIC LABS:	/RADCHEM LABS p.a.6a
DATE RECEIVED:_	<u> </u>
DATE EXPIRED:	08/01/2005 VOT
	40166120
INORG: 4657	FO:E53411

102005-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folk Aain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Barlum in 0.1% (abs) HNO3 2.0

Catalog Number:

CGBA1-1, CGBA1-2, and CGBA1-5

Lot Number:

X-BA02027

Starting Material:

Ba(NO3)2

INDRGANIC LABS/RADCHEM LABS

Starting Material Purity (%):

99.999730

DATE RECEIVED: DATE EXPIRED:

Starting Material Lot No

21879

DATE OPENED: 503

Matrix:

0.1% (abs) HNO3 INORG:_

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

 $1002 \pm 3 \mu g/mL$

Certified Density:

0.999 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) = $\sum x_1$

(s) = mean

x, = individual results

Uncertainty (±) = $2((2.5))^{-1/2}$

n = number of measurements

 $\Sigma S =$ The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

 "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM. 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1002 ± 3 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

Assay Method #2

996 ± 4 µg/mL

ICP Assay NIST SRM 3104a Lot Number: 992907

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

								1					1				1				
Q	Αi		0.00011	M	D	y	<	0.01269	0	Li	<	0.00400	M	Pr	<	0.00063		M	Te	<	0.06343
M	Sb	<	0.00106	M	E	r	<	0.01057	W	Lu	<	0.00085	M	Re	<	0.00211		Q	Tb	<	0.00390
M	As	<	0.02114	Q	E	u	<	0.00040	Q	Mg		0.00009	M	Rh	<	0.00211		M	TI	<	0.00211
<u>s</u>	Ba			Q	G	ď	<	0.00052	M	Mn	<	0.00846	M	Rb	<	0.00211		M	Th	<	0.00211
M	Ве	<	0.00106	М	G	a	<	0.00211	<u>o</u>	Hg	<	0.01200	M	Ru	<	0.00423		M	Tm	<	0.00085
M	Bi	<	0.00085	M	G	e	<	0.01269	M	Мо	<	0.00423	ō	Sm	<	0.00071		M	Sn	<	0.01057
₩	В	<	0.14800	М	A	u	<	0.00634	Q	Nd	<	0.00330	M	Sc	<	0.02114		<u>M</u>	Ti	<	0.10571
W	Cd	<	0.00634	M	Н	f	<	0.00423	M	Ni	<	0.01691	М	Se	<	0.01691		M	W	<	0.02114
Q	Ca		0.00072	М	Н	0	<	0.00106	М	Nb	<	0.00106	2	Si	<	0.00340		M	u	<	0.00423
M	Сe	<	0.01057	M	tr)	<	0.02114	Ū	Ōs			M	Ag	<	0.00423		M	٧	<	0.00423
M	Cs	<	0.00063	M	lr		<	0.01057	M	Pd	<	0.01057	M	Na	<	0.21142		М	Yb	<	0.00211
M	Cr	<	0.01057	Q	F	е		0.00062	Q	P	<	0.00260	0	Sr		0.00379		Q	Y		0.00040
M	Co	<	0.00634	М	L	а	<	0.00106	M	Pt	<	0.00423	오	s	<	0.02500		<u>0</u>	Zn	<	0.00039
M	Cu	<	0.01269	M	P	b		0.00020	<u>o</u>	K	<	0.00180	Q	Ta	<	0.00690		M	Zr	<	0.01057
M - C	heck	ked	by ICP-MS	0.	- Ch	eck	ed	by ICP-OES	i - S	pect	ral	Interference	n - 1	Not C	hed	ked For		s - S	oluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

portions removed for pipetting to container. Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return

Chemical Compatibility - Soluble in HCl, and HNOs. Avoid "H₅Oo., HF and neutral to basic media. Stable with most metals and inorganic insoluble silicate, carbonate, hydroxide, oxide, fluoride, suifate, oxidate, chromate, arsenate, hydroxide, suifate, oxidate, chromate, arsenate, lodate, Attentic Weight; Valence; Coordination Number; Chamical Form in Solution - 137.33 +2; & Ba(H,O), 12

molybotate, sulfite and fungatate in neutral aqueous media. Stability-2-100 ppn solutions chemically stable for years in \$3.5% HNOs \LDPE container. 1-10,000 ppm solutions chemically stable for years in 1.3.5% HNOs \LDPE container.

Be Containing Samples (Preparation and Solution) - Metal(is best dissolved in diluted HNO...) A Ores(Carbonate fusion in Pt. tolliate is present dissolve the fuseate using HCl. (tartente acid to prevent BesCo. predplate.)

Organic Matrices (dry ash and dissolve in dilute HCL.)

La baserias 3 Jm/gq 1000.0 \ 500.0 Jm/gq 5000.0 \ 400.0 Technique/Line UOI Adunic Spectroscopic Information (ICP-0ES D.L.s are given as redial/axial visw):

Technique/Line

Estimated D.L. and (Information Indicates severe at a corcs.)

Technique/Line

Estimated D.L. and (Information Indicates severe at a corcs.)

138 amu ndd L SM-dOI On Pleza On USeza Jm/gut 30000.0 \ #00.0 Mo, Ir, Co uoj ICE-OES 530'454 LM ICP-OES 233.527 nm uoi

HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM. 0.8

HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous. 0.6

MOITATHAMDOD DAMANTS YTIJAUD 0.01

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of 1Q Net International Certification Network:

Hungary (MSZT), Ireland (MSAI), Istael (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Argentina (IRAM), Australia (QAS), Austria (QQS), Belgium (Avinter) , Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17026 - 1999 "General Requirements for the Competence of Testing and Calibration"

Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) (SINAL), Japan (JALA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), (NAO), Denmark (DANAK), Finiand (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) Australia (MATA), Austria (BrinwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Repúblic A2LA Mutual Recognition Agreement Partners:

- Domestic Licensing of Production and Utilization Facilities 10.4 10CFR50 Appendix B - Nuclear Regulatory Commission

10.5 10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance

10.6 MIL-STD-45662A (Obsolete/Observed)

(SE OBO!) (9AJVN) setst2 betinU bns

+ 605 E

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 05, 2004

Expiration Date:

12006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten knower an Park Hain

4 06 4

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Custom-Grade 1000 ug/mL Beryllium in 2% (abs) HNO3

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0		, , , , , , , , , , , , , , , , , , ,
	Catalog Number:	CGBE1-1, CGBE1-2, and CGBE1-5
	Lot Number	N P504404

Starting Material: W-BE01104

Starting Material Purity (%): 99 999897

DESCRIPTION OF CRM

Matrix:

3.0

Starting Material Purity (%): 99,999897
Starting Material Lot No 01-10-01

2% (abs) HNO₃

INDRGANIC LABS/RADCHEM LABS/9-1-62
DATE RECEIVED: 06/01/04
DATE EXPIRED: 06/01/2005 V05
DATE OPENED: 06/01/04
INDRG: 4592 PO: F53393

CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: 1007 ± 4 µg/mL

Certified Density: 1.023 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\Box) = $\underline{\alpha} \times \underline{x}$. (\Box) = mean

n x_i = individual results

n = number of measurements

Uncertainty (±) = $\frac{2[(\alpha r_S)]^{3/2}}{(n)^{1/2}}$ BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

.1 Assay Method #1 1007 ± 4 μg/mL

ICP Assay NIST SRM 3105a Lot Number: 892707

Assay Method #2 1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

ō	ΑI	<	0.00800	M	Dу	<	0.01305	Q	Li	<	0.00002	M	Pr	<	0.00065	M	Te	<	0.06525
M	Sb	<	0.00109	M	Er	<	0.01087	M	Lu	<	0.00087	M	Re	<	0.00218	M	Tb	<	0.00065
M	As	<	0.02175	M	Εu	<	0.00652	Q	Mg	<	0.00003	М	Rh	<	0.00218	M	Ti	<	0.00218
М	Ва	<	0.02175	M	Gd	<	0.00218	<u>0</u>	Mn	<	0.00002	M	Rb	<	0.00218	W	Th	<	0.00218
<u>s</u>	Ве			<u>M</u>	Ga	<	0.00218	Q	Hg	<	0.01500	M	Ru	<	0.00435	М	Tm	<	0.00087
M	Bi	<	0.00087	М	Ge	<	0.01305	M	Мо	<	0.00435	М	Sm	<	0.00218	М	Sn	<	0.01087
<u>0</u>	В	<	0.01200	M	Αu	<	0.00652	M	Nd	<	0.00435	0	Sc	<	0.00009	М	Tì	<	0.10874
M	Cd	<	0.00652	М	Hf	<	0.00435	M	Ni	<	0.65245	M	\$e	<	0.01740	M	W	<	.0.02175
Q	Ca		0.00164	M	Но	<	0.00109	M	Nb	<	0.00109	0	Si		0.00649	M	U	<	0.00435
<u>M</u>	Се	<	0.01087	M	In	<	0.02175	Ū	Os			W	Ag	<	0.00435	W	٧	<	0.00435
M	Cs	<	0.00065	М	1r	<	0.01087	M	Pd	<	0.01087	0	Na		0.00368	M	Yb	<	0.00218
ō	Cr	<	0.00900	ᄋ	Fe		0.00268	Ū	P			М	Sr	<	0.00109	M	Y	<	0.08699
М	Со	<	0.00652	W	La	<	0.00109	M	Pt	<	0.00435	i	S			M	Zn	<	0.04350
М	Cu	<	0.01305	M	Pb	<	0.00652	Q	K	<	0.10000	W	Ta	<	0.01522	M	Zr	<	0.01087
M - C	heck	ed	by ICP-MS	0 -	Chec	kec	by ICP-OES	i • S	pecti	al i	nterference	n - I	Not C	hed	ked For	s - :	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at $20 \pm 4\%$. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 9.01218; +2; 4; Be'(H₂O).12

Chemical Compatibility - Soluble in HCl, HNO₃, H₂SO₄ and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1 % HNO₃ /LDPE container. 1-10,000 ppm solutions chemically stable for years in 5-10 % HNO₃ /LDPE container.

Be Containing Samples (Preparation and Solution) - Meta l(is best dissolved in diluted H₂SO₄). BeO (boiling nitric, hydrochloric, or sulfuric acids or KHSO₄ fusion). Ores (H₂SO₄MF digestion or carbonate fusion in Pt*). Organic Matrices (sulfuric/peroxide digestion or nitric/sulfuric/perdiloric acid decomposition, or dry ashand dissolution according to the BeO procedure above).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radio/assal view):										
Technique/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at valloncs.)						
ICP-OES 313.042 nm	0.0003 / 0.00009 µg/mL	1	ion	V, Ce, U						
ICP-OES 234.861 nm	0.0003 / 0.00016 µg/mL	1	etom	Fe, Ta, Mo						
ICP-OES 313.107 nm	0.0007 / 0.0005 µg/mL	1	ion	Ce, Th, Tm						
ICP-MS 9 amu	4 ppt	n/a	Μ'							

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

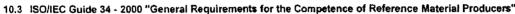
10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the Integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: January 08, 2004

Expiration Date:

INORGANIC LABS/RADCHEM LABS/3.342

DATE RECEIVED: 06/01/04

DATE EXPIRED: 06/01/04

DATE OPENED: 06/01/04

INORG: 4592 PD: F53392

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, Production Manager

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Drd.

iv labs ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

analysis certificate o f

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 1000 µg/	mL Chromium (+3) in 1.4% (abs) HNO3							
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	CGCR(3)1-1, CGCR(3) X-CR02137 Cr pieces 99.997404 F02N38 1.4% (abs) HNO3	INDRGANIC LABS/RADCHEM LABS Pg. 1042 DATE RECEIVED:							
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	DATE EXPIRED: 13/03/04							
	Certified Concentration:	1002 ± 2 μg/mL	INORG: 4906 PO: F55100							
	Certified Density:	1.011 g/mL (measured at 22° C)								

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) = $\sum x$

(s) = mean

x₁ = individual results

n = number of measurements

Uncertainty (±) = $2[(\sum_{s_i})^2]^{1/2}$

∑S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

 $1002 \pm 2 \mu g/mL$ (Avg 2 runs)

ICP Assay NIST SRM 3112a Lot Number; 990607

Assay Method #2

1004 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to $0.3 \ \mu m$.

<u>O</u> Al 0.00120	M Dy < 0.02432	Q LJ < 0.00002	M Pr < 0.00122	<u>M</u> Te < 0.12159
M Sb < 0.00203	<u>M</u> Er < 0.02027	<u>M</u> Lu < 0.00162	<u>M</u> Re < 0.00405	M Tb < 0.00122
M As < 0.04053	M Eu < 0.01216	Q Mg < 0.00030	M Rh < 0.00405	M TI < 0.00405
<u>M</u> Ba < 0.04053	<u>M</u> Gd < 0.00405	M Mn < 0.01621	M Rb < 0.00405	M Th < 0.00405
M Be < 0.00203	M Ga < 0.00405	<u>O</u> Hg < 0.01500	M Ru < 0.00811	M Tm < 0.00162
M Bi < 0.00162	M Ge < 0.02432	<u>M</u> Mo < 0.00811	M Sm < 0.00405	M Sn < 0.02027
Q B < 0.01000	M Au < 0.01216	M Nd < 0.00811	M Sc < 0.04053	Q Ti < 0.00100
M Cd < 0.01216	<u>M</u> Hf < 0.00811	<u>O</u> Ni < 0.02000	M Se < 0.03242	<u>M</u> W < 0.04053
<u>Q</u> Ca 0.01818	M Ho < 0.00203	M Nb < 0.00203	Q Si < 0.20000	M U < 0.00811
M Ce < 0.02027	M in < 0.04053	n Os	M Ag < 0.00811	Q V < 0.02000
M Cs < 0.00122	M Ir < 0.02027	M Pd < 0.02027	<u>O</u> Na 0.00647	M Yb < 0.00405
<u>s</u> Cr	<u>Q</u> Fe < 0.01000	<u>O</u> P < 0.04000	M Sr < 0.00203	M Y < 0.16212
M Co < 0.01216	<u>M</u> La < 0.00203	M Pt < 0.00811	i s	Q Zn < 0.00400
M Cu < 0.02432	M Pb 0.00089	Q K < 0.00180	<u>M</u> Ta < 0.02837	M Zr < 0.02027
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional Intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 51.9961; +3; 6; Cr(H,O).*

Chemical Compatibility - Stable in HCI, HNO., H.SO., HF, H.PO.. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container, 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, / LDPE container.

Cr Containing Samples (Preparation and Solution) - Metal (soluble in HCl.); Oxides/Ores (Chrome crefoxides are very difficult to dissolve. The following procedures (A-D) are commonly used:

A. Fusion with KHSO, and extraction with hot KCI. The residue fused with Na, CO, and KCIO, 3:1.

B. Fusion with NaKSO, and NaF, 2:1.

C. Fusion with magnesia or lime and sodium or potassium carbonates, 41.

ID. Fusion with Na,O, or NaOH and KNO, or NaOH and Na,O,.
Nickel, iron, copper, or silver crudbles should be used for ID. Platinum may be used for A, B and C;

Organic Matrices (Ash at 450°C followed by one of the fusion methods above or sulfuric/hydrogen peroxide acid digestions may be applicable to non oxide containing samples).

Atomic Spectroscopic Information (ICP-OES B.L.s are given as radial/exial view):

Jechnig ue	Aline	Estimated U.L.	Under	IVDE	<u>indenterences (</u> unice ninea indicates severe at F concs.)
ICP-OES	205.552 nm	0.006 / 0.0008 µg/mL	1	ion	Qs
ICP-OES	284.325 nm	0.006 / 0.0007 µg/mL	1	ion	
ICP-OES	276.654 nm	0.01 / 0.001 µg/ml.	1	ion	Cu, Ta,⊻
ICP-MS	52 amu	40 ppt	n/a	M'	"S"O, "Ar"O - The "Cr, "Cr, "Cr lines suffer from many
					more potential interferences from sulfur, chlorine and argon
					compounds of oxygen, nitrogen and carbon.

- HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM. 8.0
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazii (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BriwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (StNAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	RADCHEM LARS 18- 2 of 8
DATE RECEIVED:_	19/09/04
	75/01/9002 VOJ
DATE OPENED:INDRG: 4906	19/09/04
INDRG: 4906	_PD:E55102

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 16, 2004

Expiration Date:

122005-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Maida, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Frebolas Maida Knowlin in Paul Adains

norganic ventures iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis o f

Inorganic Ventures / IV Labs Is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	1000 μg/mL Copper In 2% (abs) HNO3
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	X-CU02067 Cu shot	INDRGANIC LABS/RADCHEM LABS DATE RECEIVED: 3/38/05 DATE EXPIRED: 3/38/05 DATE OPENED: 3/38/05 INDRG: 5047 PD: F55/48

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

DESCRIPTION OF COM

 $1003 \pm 3 \, \mu g/mL$

Certified Density:

1.015 g/mL (measured at 22° C)

The Certified Value is the wet assay value. The following equations are used in the calculations of the certified value and the uncertainty:

Certified Value (s) = $\sum x$

(s) = mean

x, = individual results

n = number of measurements

Uncertainty (±) = $2[(\sum_{s})^{2}]^{1/2}$

∑S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the

NIST SRM Certificate of analysis.)

The Independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1003 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 392110

Assay Method #2

1001 ± 2 µg/mL

ICP Assay NIST SRM 3114 Lot Number: 891811

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-iMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Giassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

				1
Q Al < 0.00090	<u>M</u> Dy < 0.03027	Q Li < 0.00002	M Pr < 0.00151	<u>M</u> Te < 0.15134
M Sb < 0.00252	<u>M</u> Er < 0.02522	<u>M</u> Lu < 0.00202	M Re < 0.00504	M Tb < 0.00151
M As < 0.05045	M Eu < 0.01513	Q Mg 0.00001	M Rh < 0.00504	M TI < 0.00504
<u>M</u> Ba < 0.05045	M Gd < 0.00504	<u>M</u> Mn < 0.02018	M Rb < 0.00504	M Th < 0.00504
M Be < 0.00252	M Ga < 0.00504	Q Hg < 0.01500	M Ru < 0.01009	M Tm < 0.00202
M BI < 0.00202	M Ge < 0.03027	M Mo < 0.01009	M Sm < 0.00504	<u>O</u> Sn 0.00439
M B < 0.35312	M Au < 0.01513	M Nd < 0.01009	M Sc < 0.05045	<u>M</u> Ti < 0.25223
M Cd < 0.01513	M Hf < 0.01009	M Ni < 0.04036	M Se < 0.04036	<u>M</u> W < 0.05045
Q Ca 0.00011	M Ho < 0.00252	M Nb < 0.00252	O Si < 0.00340	<u>M</u> U < 0.01009
M Ce < 0.02522	M in < 0.05045	n Os	M AQ < 0.01009	<u>Q</u> V < 0.00300
M Cs < 0.00151	M ir < 0.02522	M Pd < 0.02522	<u>O</u> Na 0.00044	M Yb < 0.00504
M Cr < 0.02522	Q Fe 0.00054	<u>O</u> P < 0.00260	M Sr < 0.00252	<u>M</u> Y < 0.20178
M Co < 0.01513	M La < 0.00252	M Pt < 0.01009	n s	<u>M</u> Zn < 0.10089
<u>s</u> Cu	M Pb 0.00050	Q K < 0.00180	M Ta < 0.03531	<u>M</u> Zr < 0.02522
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4"C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Velence; Coordination Number; Chemical Form in Solution - 63.548, +2; 6; Cu(H₂O).**

Chemical Compatibility - Stable in HCl, HNOs, HSOs, HF, HSOs. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO_a / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1.5% HNO_a / LDPE container.

Cu Containing Samples (Preparation and Solution) - Metal (soluble in HNO₁₁); Oxides (Soluble in HCI); Ores (Dissolve in HCI / HNO.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at = concs.)
ICP-OES	324.754 nm	0.067.001 µg/mL	. 1	atom	Nb, U, Th, Mo, Hf
ICP-OES	224.700 nm	0.017.001 µg/mL	1	ion	Pb. Ir. Ni, W
ICP-OES	219.958 nm	0.01/.002 ug/mL	1 .	atom	Th, Ta, Nb, U, Hf
ICP-MS	63 amu	10 ppt	nia	M'	"Ar TNa "TI"O, "N'"C TCI, "O"C TCI, "Ca TO, TNa"Ca

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for Information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazii (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf-life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 16, 2004

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Maida, QA Administrator

Certificate Approved By:

Katalin Le. QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Discholas Maide Known in Park Aains

inorganic iv labs ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@lvstandards.com • website: www.lvstandards.com

certificate analysis o f

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Nickel in 1,4% (abs) HNO3 2.0

Catalog Number:

CGNI1-1, CGNI1-2, and CGNI1-5

Lot Number:

X-NI02032

Starting Material:

Ni pieces

INORGANIC LABS/RADCHEM LABS

Starting Material Purity (%):

99.999371

DATE RECEIVED:

Starting Material Lot No

DATE EXPIRED: DATE OPENED:

L06L02

INORG: _ 5043

Matrix:

1.4% (abs) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $1002 \pm 3 \mu g/mL$

Certified Density:

1.011 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) = $\sum x_i$

(s) = mean

x_i = individual results

n = number of measurements

 $\Sigma S =$ The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

The Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6,10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1

999 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

1002 ± 3 µg/mL

ICP Assay NIST SRM 3136 Lot Number: 000612

- BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 - Class 1 and 692476A - Class 2.

 The NIST test number is 822/260017-09 All englished belonger. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometers No. 2022-2680 which was cartified in accordance with the thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14462, 176240/P14640/P14640/P14640/P14640/P14640/P14640/P14640/P14640/P14640/P14640/P1460/P1460/P1460/P1460/P1460/P1460/P in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN Pg/mL 5.0

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

O AI < 0.00938	M Dy < 0.06577	O Li < 0.00006	M Pr < 0.00329	M Te < 0.32886
		<u>M</u> Lu < 0.00439	1	M Tb < 0.00329
M Sb < 0.00548	<u>M</u> Er < 0.05481	<u>m</u> == 0.00100	M Re < 0.01096	0.01096
O As < 0.01689	M Eu < 0.03289	O Mg 0.00002	M Rh < 0.01096	Mr ''
M Ba < 0.10962	M Gd < 0.01096	<u>M</u> Mn < 0.04385	M Rb < 0.01096	M Th < 0.01096
O Be < 0.00626	M Ga < 0,01096	Q Hg < 0.03441	M Ru < 0.02192	M Tm < 0.00439
2 50 0.00020	-	M No < 0.00400	· ·	< 0.05481
· <u>M</u> Bi < 0.00439	<u>M</u> Ge < 0.06577	M Mo < 0.02192	M Sm < 0.01096	M 2"
O B < 0.03097	M Au < 0.03289	M Nd < 0.02192	M Sc < 0.10962	M TI < 0.54811
<u>o</u> o o o o o o o o o o o o o o o o o o		O NO		< 0.10962
M Cd < 0.03289	M Hf < 0.02192	<u>ş</u> Ni	Q Se < 0.01877	M **
O Ca < 0.01157	M Ho < 0.00548	M Nb < 0.00548	Q SI 0.00188	M U < 0.02192
O CB (0.01187	11. 11.	_	및 SI 0.00188	< 0.02192
M Ce < 0.05481	<u>M</u> In < 0.10962	n Os	M Ag < 0.02192	M V
11 0	M Ir < 0.05481	M Pd < 0.05481	Q Na 0.00102	M Yb < 0.01096
M Cs < 0.00329	<u>M</u> Ir < 0.05481		Q Na 0.00102	122
M Cr < 0.05481	Q Fe 0.00156	Q P < 0.31280	M Sr < 0.00548	M Y < 0.43849
-	14 15 4 5 5 5 5 5 5	M Pt < 0.02192		M Zn 0.00189
O Co 0.00182	<u>M</u> La < 0.00548	<u>M</u> 10 0.02132	<u>Q</u> S < 0.07820	1122
M Cu < 0.06577	M Pb < 0.03289 ·	O K 0.00043	M Ta < 0.07674	M Zr < 0.05481
-	O - Checked by ICP-OES	i - Spectral Interference		s - Solution Standard Element
M - Checked by ICP-MS	O - Checken by ici -oco		n - Not Checked For	2.00

INTENDED USE 6.0

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C, Do not pipet from container. Do not return portions removed for pipetiting to container. portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 58.69; +2; 8; NKH₂O).²¹

Chemical Competibility - Stable in HCl, HNO_a, H₂SO_a, HF, H₂PO_a. Avoid basic media. Stable with most metals and inorganic anions in scidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container, 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, /LDPE container. Ni Containing Samples (Preparation and Solution) - Metal (Solution in HNO₂), Oxides (Solution HCI), Ores (Dissolve in HCI) HNO₂).

Atomic Spectroscopic Information (ICP-OES D.L.s ere given se regist/axial minute.

Atamic Spare	/Line	Estimated D.L.	Öuder	Type Interferences (underlined indicates :	severe at a concs.)
ICP-OES ICP-OES ICP-OES ICP-MS	221,647 nm 232,003 nm	0.01 / 0.0009 µg/ml. 0.02 / 0.006 µg/ml. 1 0.02 / 0.002 µg/ml. 1 100 ppt	atom ion n/a	on Si Cr. Re, Os, Nb, Ag, Pt, Fe Sb, Ta, Co M' **Ca**O'H, **Ca**O, **Na**Cl	504

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010106 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC) **Dutch Council for Accreditation (RVA)**

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrnwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 27, 2004

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten knowen an Paux Aaim

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

analysis certificate of

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 1	000 μg/mL Cadmium in 2% (abs) HNO3
	Catalog Number: Lot Number: Starting Material:	Y-QCD01109 Cd shot	D1-2, and CGCD1-5
	Starting Material Purity (%): Starting Material Lot No	99.998904 C14M30	INORGANIC LABS/RADCHEM LABS
3.0	Matrix:	2% (abs) HN	

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $1000 \pm 3 \,\mu g/mL$

Certified Density:

1.013 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (x) = $\Sigma_{X_{L}}$

(=) = mean

x = individual results

n = number of measurements

Uncertainty (±) = $2[(\Sigma_s)]^n$

Es: = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the NIST

SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM,

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or International standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

 $1002 \pm 3 \, \mu g/mL$

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

1000 ± 3 µg/mL

ICP Assay NIST SRM 3108 Lot Number: 890312

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al	<	0.00090	M	Dу	<	0.01191	O	Li	<	0.00002	M	Pr	<	0.00060	Q	Te	<	0.00700
M	Sb		0.00039	<u>M</u>	Er	<	0.00993	M	Lu	<	0.00079	M	Re	<	0.00199	М	Tb	<	0.00060
М	As	<	0.01985	<u>M</u>	Eu	<	0.00596	Q	Mg		0.00002	М	Rħ	<	0.00199	М	TI	<	0.00199
M	Ва	<	0.01985	М	Gd	<	0.00199	M	Mn	<	0.00794	M	Rb	<	0.00199	М	Th	<	0.00199
M	Be	<	0.00099	М	Ga	<	0.00199	Q	Hg	<	0.01200	<u>M</u>	Ru	<	0.00397	М	Tm	<	0.00079
М	Bi	<	0.00079	М	Ge	<	0.01191	М	Мо	<	0.00397	M	Sm	<	0.00199	W	Sn	<	0.00993
Q	В	<	0.00900	M	Au	<	0.00596	M	Nd	<	0.00397	M	Sc	<	0.01985	M	Ti	<	0.09925
<u>\$</u>	Cd			М	Hf	<	0.00397	Q	Ni	<	0.00300	M	Se	<	0.01588	M	W	<	0.01985
Q	Ca		0.00378	W	Но	<	0.00099	M	Nb	<	0.00099	Q	Si	<	0.00340	М	U	<	0.00397
M	Се	<	0.00993	Ω	In	<	0.00200	ū	Os			M	Ag	<	0.00397	M	٧	<	0.00397
W	Cs	<	0.00060	<u>M</u>	lr	<	0.00993	М	Pđ		0.00691	M	Na	<	0.19849	М	Yb	<	0.00199
M	Cr	<	0.00993	Ω	Fe	<	0.00110	<u>0</u>	P	<	0.00300	M	Sr	<	0.00099	M	Y	<	0.07940
M	Со	<	0.00596	M	La	<	0.00099	М	Pt	<	0.00397	<u>o</u>	S	<	0.03000	Ω	Zn		0.00040
М	Cu	<	0.01191	M	Pb	<	0.00596	Q	K		0.00015	M	Ta	<	0.01389	<u>M</u>	Zr	<	0.00993
M - C	heck	ed	by ICP-MS	0-	Ched	cked	by ICP-OES	i-S	pect	al l	nterference	n - I	Not C	hed	cked For	s - S	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

5041 2014

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do I

removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Formin Solution - 112.41; +2; 4; Cda(OH) (ac) and Cd(C Chemical Compatibility - Stable in HCI, HNO3, H2SO4, and HF. Avoid basic media forming insoluble cerbonate and hydrost metals and inorganic anions in addic media. The sulfide, carbonate, oxalate, phosphate, and cyanide are insoluble in HCI, HNO3 and NHOH. The chloride, brontide and indide are soluble in water. Cdiz us one of the few inclides soluble in compounds of Cdiere soluble in excess Nai, due to the formation of the complexion, Cdi.

Stability - 2-100 ppb levels stable for months in 1% HNO3/LDPE container. 1-10,000 ppm solutions chemically stable to

HNO LDPE container.

Cd Containing Samples (Preparation and Solution) - Metal (soluble in HNO3); Oxides (Soluble in HCI or HNO3); Ores HNO3 then take to turnes with H250. The silica and lead sulfate are filtered off after addition of water.) Organic based (cand dissolve ash in HCI) (sulfuric/peroxide acid digestion).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as missianial view):

Technique	ziline	Estimated D.L.	Order	Dog	Interferences (underlined indicates severe)
ICP-OES	214,438 nm	0.003 / 0.0003 ug#nL	1	ion	Pt, Ir
ICP-OES	228.802 nm	0.003 / 0.0003 µg/mL	1	atom	Co, Ir, As, Pt
ICP-OES	226.502 nm	0.003 / 0.0003 µg/mL	1	ioņ	L
ICP-MS	111 amu	11 ppt	n/a	M*	Mo ¹⁶ O

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

AND Hong Kong (HKOAA)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mi. low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: January 19, 2005

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Maida, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

D/scholas Maide Knowler an Paux Adain

ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0.	DESCRIPTION OF CRM	Custom-Grade	t000 μg/mL Cobalt in 2% (abs) HNOs
	Catalog Number:	CGCO1-1, CGC	CO1-2, and CGCO1-5
	Lot Number:	X-CO01123	· · · · · · · · · · · · · · · · · · ·
	Starting Material:	Co powder	. INORGANIC LABS/RADCHEM LABS
	Starting Material Purity (%):	99,999403	DATE RECEIVED: 2005
	Starting Material Lot No	23171	DATE EXPIRED: 311106
	Matrix:	20111	DATE OPENED: 2128/05 FGS148

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

 $1003 \pm 2 \mu g/mL$

Certified Density:

1.016 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

2% (abs) HNO3 INORG: ____5044

Certified Value (\mathbf{x}) = $\sum \mathbf{x}$

(s) = mean

 $x_i = individual results$

Uncertainty (±) = $2[(2.s)]^{4/2}$

n = number of measurements

 $\Sigma S = The summation of all significant estimated errors.$ (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1007 ± 5 µg/mL

ICP Assay NIST SRM 3181 Lot Number: 000630

Assav Method #2

 $1003 \pm 2 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

			1	i
O Al 0.00030	M Dy < 0.02394	Q LI 0.00001	<u>M</u> Pr < 0.00120	<u>M</u> Te < 0.11970
M Sb < 0.00200	M Er < 0.01995	<u>M</u> Lu < 0.00160	<u>M</u> Re < 0.00399	M Tb < 0.00120
Q As < 0.10000	M Eu < 0.01197	<u>Q</u> Mg 0.00128	M Rh < 0.00399	<u>M</u> TI < 0.00399
<u>M</u> Ba < 0.03990	M Gd < 0.00399	<u>O</u> Mn < 0.00400	<u>M</u> Rb < 0.00399	<u>M</u> Th < 0.00399
M Be < 0.00200	M Ga < 0.00399	Q Hg < 0.05000	M Ru < 0.00798	<u>M</u> Tm < 0.00160
M Bi 0.00020	M Ge < 0.02394	<u>M</u> Mo < 0.00798	<u>M</u> Sm < 0.00399	M Sn < 0.01995
O B 0.00103	M Au < 0.01197	M Nd < 0.00798	M Sc < 0.03990	M Ti < 0.19949
M Cd < 0.01197	M Hf < 0.00798	<u>O</u> Ni < 0.02000	M Se < 0.03192	M W < 0.03990
Q Ca 0.00168	M Ho < 0.00200	M Nb < 0.00200	Q Si < 0.00400	<u>M</u> U < 0.00798
M Ce < 0.01995	M in < 0.03990	<u>п</u> Оs	M Ag < 0.00798	<u>M</u> V < 0.00798
M Cs < 0.00120	M Ir < 0.01995	M Pd < 0.01995	<u>Q</u> Na 0.00095	M Yb < 0.00399
M Cr 0.00080	Q Fe < 0.00400	<u>n</u> P	M Sr < 0.00200	M Y < 0.15960
<u>s</u> Co	<u>M</u> La < 0.00200	M Pt < 0.00798	n s	O Zn 0.00020
M Cu 0.00023	M Pb 0.00150	<u>O</u> K 0.00048	<u>M</u> Ta < 0.02793	M Zr < 0.01995
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly scaled when not in use. Store and use at $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 58.9332; +2; 8; Co(H,O).**

Chemical Competibility - Stable in HCl, HNO., H,SO. HF, H,PO.. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, / LDPE container.

Co Containing Samples (Preparation and Solution) - Metal (soluble in HNO,), Oxides (Soluble in HCl); Ores (Dissolve in HCl / HNO_s).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axia) view):

	ING.EG OF	sources but a use			g		
Technique/Line		/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at = conc	s .)
	ICP-OES	238.892 nm	0.01/.002 µg/mL	1	ion	Fe, W, Ta	
	ICP-OES	228.616 nm	0.01/.001µg/mL	1	ion		
	ICP-OES	237.862 nm	0.01/.002 µg/mL	1	ion	W, Re, Al, Ta	
	ICP-MS	59 amu	2 ppt	nla	M,	**Ca**O*H , **Ar**O*H , **Ar**Na, **Ca**O, **Mg**Cl	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polynol (APCE), Singapore (PSR), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 30, 2004

Expiration Date:

EXPIRES 142006

5044 30f4

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

ا ا

Paux Aaim

30વવ 4 જવ

analysis

inorganic ventures iv labs

195 lehigh avenue, sulte 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

O f

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

20	DESCRIPTION OF CRM	Custom-Grade	1000 μg/mL Manganese in 2% (abs) ΗΝ	10

Catalog Number:

CGMN1-1,-CGMN1-2, and CGMN1-5

Lot Number:

X-MN02037

Starting Material:

Mn pieces

99.995300

INORGANIC LABS/RADCHEM LABS

Starting Material Purity (%):

DATE RECEIVED: DATE EXPIRED:

Starting Material Lot No

21563

certificate

DATE OPENED:

Matrix:

2% (abs) HNO3

INORG:

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1006 ± 2 µg/mL

Certified Density:

1.014 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (3) = Σ_{Σ_L}

(*) = mean

 $x_i = individual results$

n = number of measurements

Uncertainty (±) = $2(\sum_{s,y})^{s}$

 Σ_{s} = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST

SRM certificate of analysis.)

The Independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 1006 ± 2 µg/mL

ICP Assay NIST SRM 3132 Lot Number: 890903

Assay Method #2

1008 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q Al 0.00221	M Dy < 0.02471	Q U 0.00020	M Pr < 0.00124	<u>M</u> Te < 0.12355
32 1- 0.00221	111 -7 0.02411	0.00020	0.00127	0.12000
M Sb < 0.00206	<u>M</u> Er < 0.02059	<u>M</u> Lu < 0.00165	<u>M</u> Re < 0.00412	M Tb < 0.00124
M As < 0.04118	<u>M</u> Eu < 0.01236	Q Mg 0.03350	M Rh < 0.00412	M TI < 0.00412
M Ba < 0.04118	M Gd < 0.00412	<u>s</u> Mn	M Rb < 0.00412	M Th < 0.00412
M Be < 0.00206	Q Ga < 0.05000	j Hg	M Ru < 0.00824	<u>M</u> Tm < 0.00165
<u>M</u> Bi < 0.00165	O Ge < 0.00300	<u>M</u> Mo < 0.00824	M Sm < 0.00412	M Sn < 0.02059
<u>O</u> B 0.00295	M Au < 0.01236	M Nd < 0.00824	M Sc < 0.04118	<u>M</u> Ti < 0.20592
M Cd < 0.01236	M Hf < 0.00824	<u>M</u> NI < 0.03295	M Se < 0.03295	<u>M</u> W < 0.04118
<u>Q</u> Ca 0.00340	M Ho < 0.00206	M Nb < 0.00206	<u>Q</u> Si 0.00275	M U < 0.00824
<u>M</u> Ce < 0.02059	M in < 0.04118	n Os	M Ag < 0.00824	<u>M</u> V < 0.00824
<u>M</u> Cs < 0.00124	<u>M</u> Ir < 0.02059	<u>M</u> Pd < 0.02059	Q Na 0.00225	M Yb < 0.00412
M Cr < 0.02059	Q Fe < 0.01000	j P	<u>M</u> Sr < 0.00206	M Y < 0.16474
M Co < 0.01236	M La < 0.00206	M Pt < 0.00824		<u>Q</u> Zn 0.00250
M Cu < 0.02471	M Pb < 0.01236	<u>O</u> K 0.00105	<u>M</u> Ta < 0.02883	<u>M</u> Zr < 0.02059
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do not return portions removed for pipetting to container.

not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Formin Solution - 54,9380; +2, 6; Mn(HzO).

Chemical Compatibility - Stable in HCI, HNO2, H2SO4, HF, H2PO4. Avoid basic media. Stable with most metals and increasing an in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO2/LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO2/LDPE container.

Min Containing Samples (Preparation and Solution) - Metal (Soluble in cliute acids), Oxides (Soluble in cliute acids), Ores (Dissolve with HCI. If silica is present add HF and then tune off silica by adding HSO+ and heat to SOI turnes - dense white turnes).

Atomic Spectroscopic Information &CP-OES D.L.s are given as radial/axial view);

Technique		Estimated D.L.	Order	Type	Interferences (underlined indicates severe)					
ICP-OES	257.610nm	0.0014 / 0.00002 µg/mL	1	ion	Ce, W, Re					
ICP-OES	259.373 nm	0.0016 / 0.00002 µg/mL	1	ion	U, Ta, Mo, Fe, Nb					
ICP-OES	260,569 nm	0.0021 / 0.00002 µg/mL	1	ion	Ço.					
ICP-MS	55 amu	10 ppt	n/a	M°	CO "Ay" NH, "K"O "CI"O, "AY"N, "Ay"O, AY OH, "AY"OH, "CI"OH, "Na"S					

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production • Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 13, 2004

Expiration Date:

EXPIRES 112008

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Jan Shullen Known an Paul Aain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

of analysis certificate

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Vanadium In 1.4% (abs) HNO3 2.0

Catalog Number:

CGV1-1, CGV1-2, and CGV1-5

Lot Number:

X-QV01102

Starting Material:

V205

Starting Material Purity (%):

99.986532

INORGANIC LABS/RADCHEM LABSPy 1 of a DATE RECEIVED: 12/9/280 9

Starting Material Lot No

Stractor 46

DATE EXPIRED:

Matrix:

1.4% (abs) HNO₃

DATE OPENED: 12/9

INORG: 4916

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

999 ± 3 µg/mL

Certified Density:

1.014 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\mathbf{x}) = $\sum \mathbf{x}$

(x) = mean

x_i = individual results

Uncertainty (±) = $2[(\sum s_i)^2]^{1/2}$

n = number of measurements

S = The summation of all significant estimated errors (Most common are the errors from instrumental measurement weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1

999 ± 3 µg/mL

ICP Assay NIST SRM 3165 Lot Number: 992706

Assay Method #2

1007 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98, All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>o</u>	A1	<	0.00600	M	Dу	<	0.00597	Q	u	<	0.00002	М	Pr	<	0.00030	M	Į T	Гe	<	0.02984
M	Sb		0.04543	M	Er	<	0.00497	М	Lu	<	0.00040	M	Re	<	0.00100	M	ĮŢ	Γb	<	0.00030
M	As	<	0.00995	M	Eu	<	0.00298	ō	Mg	<	0.10000	M	Rh	<	0.00100	M	ĮŢ	П	<	0.00100
<u>M</u>	₿a	<	0.00995	M	Gd	<	0.00100	M	Mn		0.00069	M	Rb	<	0.00100	M	Į T	Γh	<	0.00100
M	Be	<	0.00050	M	Ga	<	0.00100	Q	Hg	<	0.01200	М	Ru	<	0.00199	M	Į T	Γm	<	0.00040
M	Bi	<	0.00040	М	Ge	<	0.00597	M	Мо		0.01481	W	Sm	<	0.00100	M	į s	3n	<	0.00497
Q	В	<	0.04000	M	Αu	<	0.00298	M	Nd	<	0.00199	М	Sc	<	0.00995	M	<u>I</u> I	Γi	<	0.04973
М	Cd	<	0.00298	M	Hf	<	0.00199	M	Ni	<	0.07957	M	Se	<	0.00796	M	<u>.</u> V	N	<	0.00995
Q	Ca		0.00596	M	Но	<	0.00050	M	Nb	<	0.00050	Q	Si		0.04964	M	4 (J	<	0.00199
<u>M</u>	Се	<	0.00497	М	In	<	0.00995	ņ	Os			<u>M</u>	Ag	<	0.00199	<u>s</u>	. \	/		
M	Cs	<	0.00030	М	tr	<	0.00497	M	Pd	<	0.00497	Q	Na	<	0.01000	M	4	۲b	<	0.00100
<u>0</u>	Cr	<	0.10000	Q	Fe		0.08936	O	P	<	0.10000	М	Sr	<	0.00050	V	4	Y	<	0.03979
<u>0</u>	Со	<	0.00200	М	La	<	0.00050	M	Pt	<	0.00199	<u>n</u>	S			7	<u> </u>	Zn	<	0.01989
М	Cu	<	0.00597	М	Pb	<	0.00298	Q	ĸ		0.03276	M	Ta	<	0.00696	¥	<u> </u>	Zr	<	0.00497
M - C	Check	ced	by ICP-MS	0 -	Che	kec	by ICP-OES	1-5	pecti	ral l	nterference	n - l	Not C	he	cked For	s·	· So	olutic	n:	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional Intended uses, contact IV Technical Staff

Storage & Handling - Keep tightly sealed when not in use. Store and use at $20 \pm 4^{\circ}\text{C}$. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 50.9415; +5; 6; H,V,O,1**

Chemical Compatibility - Soluble in HCl, HNO₁, H₂SO₂, HF, H₂PO₂ and strong basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, / LDPE container.

V Containing Samples (Preparation and Solution) - Metal (Fusion with NaOH or KOH in Ni* or Na,CO, / KNO,), Oxides (V,O, - use HCl, V,O, - use HCl or HNO, V,O, - use concentrated acids); Ores (Na,CO, / KNO, in Pt* caution - mitrates attack Pt* followed by water extraction of fuseate), Organic Matrices (Ash at 450 °C followed by dissolving according to V,O, above).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Type	<u>Interferences (</u> underlined indicates severe at = concs.)
ICP-OES 309.311 nm	0.005 / 0.001 µg/mL	1	ion	Mg, U, Th
ICP-OES 292.402 nm	0.006 / 0.001 µgAnL	1	ion	Th
ICP-OES 290.882 nm	0.008 / 0.0008 µg/mL	1	atom	Hf, Nb
ICP-MS 51 amu	4 ppt	n/a	M'	"S"OH, "CI"O, "Ar"C, "Ar"N, "Ar"NH, "CI"N, "S"N,
	• •			いらもの、いらいの、中部ura、中部pdra

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Poland (APCER), Signapore (PSR), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INDE	RGANIC	LAE	S/RADCH	HEM !	LAB579	, a % a
			ב/שנ			
DATE	EXPIR	ED:_	01/01/9	<u>06</u>	<u> ₩26</u>	<u>c_K</u> E
			12/			
			PO:			

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 26, 2004

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

Nick Malda, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Dubolas Maida Knowin an

inorganic ventures / iv SQEI

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 195 lehigh avenue, suite 4, lakewood, nj 08701 usa

0.5

sizylene to stabilitass

and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles." and label(s), 1SO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 0.1

0.2 Custom-Grade 1000 pg/mL Zinc in 1.4% (abs) HNOs DESCRIPTION OF CRM

EONH (ads) %4.1

Lot Number: CCZN1-1' CCZN1-5' suq CCZN1-2 Catalog Number:

jous uz Starting Material: X-ZN02020

688666.66 Starting Material Purity (%):

:xintsM **117L26** Starting Material Lot No

CERTIFIED VALUES AND UNCERTAINTIES

1002 ± 2 hg/mL Certified Concentration:

1.010 g/mL (measured at 22° C) Certified Density:

calculation of the certified value and the uncertainty: The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the

Certified Value (C) = orx meam ≃ (□)

xi = individual results

 $\Xi \Xi$. The summation of all significant estimated errors. u = unuper of measurements

INDRE: 77512

DATE RECEIVED:

DATE OPENED: DATE EXPIRED:

_ :Dd

INOKERNIC LABS/RADCHEM LABS 3-1-0-3

ŦØ7*E*07*E*1

*ा*रवार अठवर

Lolegiot

EZZIOP

NET STAM certificate of analysis.) weighing, dilution to volume, and the fixed error reported on the $\text{Oncertainty } (\pm) = \frac{2[(Q + S) X]^{1/2}}{2[(Q + S) X]^{1/2}}$ (Most common are the error strom instrumental measurement,

confirmation of the accuracy of this CRM. confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a and pendent samples t-test was used to determine if there is agreement between the above assay methods at the 95%

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

1002 ± 2 hg/mL

(UT.8 nominities, Seef ,, be national or international atandards, through an unbroken chain of comparisons all having stated uncertainfles." (ISO VIM, 2nd Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually

reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. ☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are

1002 # 4 hg/mr

ICP Assay NIST SRM 3168a Lot Number: 001402

Assay Method #2

EDTA NIST SRM 928 Lot Number, 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

O Al < 0.00200	M Dy < 0.02440	<u>Q</u> Li 0.00001	M Pr < 0.00122	<u>M</u> Te < 0.12198
M Sb < 0.00203	<u>M</u> Er < 0.02033	<u>M</u> Lu < 0.00163	<u>M</u> Re < 0.00407	M Tb < 0.00122
M As < 0.04066	<u>M</u> Eu < 0.01220	<u>O</u> Mg 0.00011	M Rh < 0.00407	M TI < 0.00407
<u>M</u> Ba < 0.04066	<u>M</u> Gd < 0.00407	<u>M</u> Mn < 0.01626	M Rb < 0.00407	M Th < 0.00407
<u>M</u> Be < 0.00203	M Ga < 0.00407	O Hg < 0.01000	M Ru < 0.00813	<u>M</u> Tm < 0.00163
M Bi < 0.00163	M Ge < 0.02440	<u>M</u> Mo < 0.00813	M Sm < 0.00407	M Sn < 0.02033
Q B 0.00015	M Au < 0.01220	M Nd < 0.00813	<u>M</u> Sc < 0.04066	M Ti < 0.20331
M Cd < 0.01220	M Hf < 0.00813	<u>Q</u> Ni 0.00009	<u>M</u> Se < 0.03253	M W < 0.04066
Q Ca 0.00022	<u>M</u> Ho < 0.00203	M Nb < 0.00203	<u>Q</u> Si < 0.00400	M U < 0.00813
M Ce < 0.02033	<u>M</u> In < 0.04066	n Os	<u>M</u> Ag < 0.00813	M V < 0.00813
M Cs < 0.00122	M Ir < 0.02033	<u>M</u> Pd < 0.02033	<u>O</u> Na 0.00055	<u>M</u> Yb < 0.00407
Q Cr < 0.00100	<u>Q</u> Fe 0.00005	O P < 0.00300	M Sr < 0.00203	<u>M</u> Y < 0.16264
M Co < 0.01220	M La < 0.00203	M Pt < 0.00813	<u>O</u> S < 0.02000	s Zn
<u>Q</u> Cu < 0.00050	M Pb < 0.01220	Q K 0.00018	M Ta < 0.02846	M Zr < 0.02033
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 ™. Do not pipet from container. Do not return portions removed for pipetting to container.

Marric Weight; Valence; Coordination Number; Chemical Form in Solution - 65.39; +2; 4; Zr(OH)(eq)*

Chemical Competibility - Stable in HCl, HNO., H, SO. HF, H, PO. Avoid basic media that promotes the formation of insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, /LDPE container.

Zn Containing Samples (Preparation and Solution) - Metal (Solutie in HNO₂); Oxides (Solutie in HCl.) Ores (Dissolve in HCl.) HNO₂); Organic based (Dry ash at 450 € and dissolve ash in HCl.) (Sulfuric/peroxide acid digestion)

Atorric Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

 Technique/Line
 Estimated D.L.
 Onder 1 ton 1000 / 0.0004 µg/mi. 1 stom 1000 / 0.0004 µg/mi. 1 stom 1000 / 0.0004 µg/mi. 1 stom 1000 / 0.0006 µg/mi. 1 ion
- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Poland (APCRC), Singapore (PSR), Slovenia (SIQ), Spain (AFAQR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MiL-STD-45662A (Obsolete/Observed)

INDRGANIC LABS	/RADCHEM LABS POSE and a
DATE RECEIVED:	12/12/24
DATE EXPIRED:	01/07/a00x voo
DATE OPENED:	19/07/04
INDRG: 4915	PO: F55106

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 19, 2004

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fold Stutten knowen de Paux Aain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 μ g/mL Silver in 3.5% HNO₃ (abs)

Catalog Number: CGAG1-1, CGAG1-2 and CGAG1-5

Lot Number: W-AG02018

Starting Material: Starting Material Purity: Starting Material Lot No:

Silver Metal 99.999% G14K25

INDRGANIC LABS/RADCHEM LABS DATE RECEIVED: 09/01/04 DATE EXPIRED: 10/01/3005 103
DATE OPENED: 09/01/04 INORG: 4764 PO: F53434

CERTIFIED CONCENTRATION: 996 \pm 3 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \sum_{x} x_i$

Uncertainty (±) = $2[(\sum_{s})^2]^{1/2}$

(x̄) = mean

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 999 ± 3 µg/mL

Method: Volhard Titration vs NIST SRM 999a Potassium Chloride

Instrument Analysis: 996 ± 3 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3151.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval, Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

Q	Al	< 0.00010	M	Dy	< 0.00060	ō	Li	< 0.000030	M	Pr	< 0.000030	<u>o</u>	Te	< 0.030
M	Sb	< 0.000050	M	Er	< 0.00050	M	Lu	< 0.000040	M	Re	< 0.00010	M	Tb	< 0.000030
Q	As	< 0.0050	M	Eu	< 0.00030	<u>0</u>	Mg	< 0.000040	M	Rh	< 0,00010	M	TI	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010	<u>o</u>	Mn	< 0.00030	M	Rь	< 0.00010	M	Th	< 0.00010
<u>o</u>	Be	< 0.00050	M	Ga	< 0.00010	<u>o</u>	Hg	0.00090	<u>M</u>	Ru	< 0.00020	M	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Мо	< 0.00020	M	Sm	< 0.00010	M	Sn	< 0.00050
0	В	< 0.0020	Q	Au	< 0.012	M	Nd	< 0.00020	M	Sc	< 0.0010	Q	Tì	< 0.00070
<u>o</u>	Cd	< 0.0020	M	Hf	< 0.00020	0	Ní	< 0.0070	<u>o</u>	Se	< 0.036	M	W	< 0.0010
Q	Ca	< 0.000050	M	Ho	< 0.000050	M	Nb	< 0.000050	<u>o</u>	Si	< 0.0030	M	U	< 0.00020
M	Ce	< 0.00060	0	In	< 0.020	D	Оs		<u>s</u>	Ag		M	V	< 0.00020
M	Cs	< 0.000030	M	ŧr	< 0.00050	M	Pd	< 0.00050	<u>o</u>	Na	< 0.090	M	Yb	< 0.00010
0	Cr	< 0.0020	ō	Fe	< 0.00070	Q	Ρ	< 0.030	<u>M</u>	Sr	< 0.000050	M	Y	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050	M	Pt	< 0.00020	Q	S	< 0.020	0	Zn	< 0.0010
M	Cu	< 0.00060	M	Pb	< 0.00030	Q	x	< 0.0060	M	Ta	< 0.00070	W	Zr	<0.00050

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.024 g/mL

QA:KL 840,072103178

Quality Assurance Manager

Paul R. Haines

Expires:

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

> Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (OQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference 2. Materials Production - Accredited A2LA Certificate 883.02
- 3. ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing -Accredited A2LA Certificate 883.01
- MIL-STD-45662A 4
- 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities 5.
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance 6. Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

procedure

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer:

Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are
determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates
and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials,"
and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

	and IS	O Guide 35-1989 "Cei	rtification of Reference Ma	terials - General and Statisical Principles."
2.0	DESC	RIPTION OF CRM	Custom-Grade 1000 µg/	mL Arsenic in 1.4% (abs) HNO3
	Lot Nu Startir Startir	og Number: umber: ng Material: ng Material Purity (%): ng Material Lot No c:	CGAS1-1, CGAS1-2, an X-AS02026 As Polycrystaline lump 99.998994 23115 1.4% (abs) HNO3	INDRGANIC LABS/RADCHEM LABS DATE RECEIVED: 1127105 DATE EXPIRED: 211106 14 DATE OPENED: 1128105 INORG: 4987 PO: F55132
3.0	CERT	IFIED VALUES AND	UNCERTAINTIES	
	Certif	ied Concentration:	997 ± 3 μg/mL	
	Certif	ied Density:	1.010 g/mL (measured a	t 22° C)
		ertified Value is based upon tion of the certified value ar		o analyze this CRM. The following equations are used in the
		ed Value (s) = $\frac{\sum x_1}{n}$ tainty (±) = $\frac{2[(\sum s_1)^2]^{1/2}}{(n)^{8/2}}$	(Most common : weighing, dilutio	
4.0	TRAC	EABILITY TO NIST	AND VALUES OBTAINED	BY INDEPENDENT METHODS
·	nationa ed., 19	il or international standards 93, definition 6.10) s IV product is Traceable to	, through an unbroken chain of c NIST via direct comparison to N	and whereby it can be related to stated references, usually omparisons all having stated uncertainties." (ISO VIM, 2nd IST SRMs. The uncertainties for each certified value are easurement, weighing and volume dilution errors.
	4.1	Assay Method #1	997 ± 3 µg/mL (Avg 2 I	·
		Assay Method #2	1002 µg/mL Gravimetric NIST SRM Lot	

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

				-																	
<u>o</u>	Al		0.00038	M	ļ	Dу	<	0.01596	Q	Li			0.00009	M	Pr	<	0.00080	M	Te	<	0.07978
Q	\$b	<	0.01000	M	! !	Er	<	0.01330	M	L	u	<	0.00106	Q	Re	<	0.01000	M	Tb	<	0.00080
<u>s</u>	As			M		Eu	<	0.00798	Q	М	g		0.00009	M	Rh	<	0.00266	M	TI	<	0.00266
M	Ва	<	0.02660	M	į (Gd	<	0.00266	<u>0</u>	M	n	<	0.00003	М	Rb	<	0.00266	М	Th	<	0.00266
M	Ве	<	0.00133	M	1	Ga	<	0.00266	Q	Н	g	<	0.01200	М	Ru	<	0.00532	М	Tm	<	0.00106
M	Bi	<	0.00106	M	(Ge	<	0.01596	M	M	o	<	0.00532	M	Sm	<	0.00266	Q	Sn		0.00049
Q	В	<	0.01200	M	. /	Au	<	0.00798	M	N	đ	<	0.00532	M	Sc	<	0.02660	M	Ti	<	0.13297
M	Cd	<	0.00798	M		Hf	<	0.00532	M	Ni	į	<	0.02128	W	Se	<	0.02128	M	W	<	0.02660
Q	Ca		0.00189	M	Į I	Но	<	0.00133	Q	N	b .	<	0.00200	Q	Si		0.00415	M	U	<	0.00532
M	Çe	<	0.01330	M	<u>!</u> !	n	<	0.02660	Ū	0	\$			M	Αg	<	0.00532	M	٧	<	0.00532
M	Cs	<	0.00080	M		ir	<	0.01330	M	P	d	<	0.01330	Q	Na		0.00159	M	Yb	<	0.00266
M	Cr	<	0.01330	Q	<u> </u>	Fe	<	0.00110	Q	P		<	0.00260	M	Sr	<	0.00133	<u>M</u>	Y	<	0.10638
M	Co	<	0.00798	M	į	La	<	0.00133	M	P	t	<	0.00532	Q	s	<	0.02500	Q	Zn		0.00057
M	Cu	<	0.01596	M		Pb	<	0.00798	Q	K			0.00132	M	Та	<	0.01862	M	Zr	<	0.01330
M - C	heck	ed	by ICP-MS	0	- C	heck	ed	by ICP-OES	i - :	Spe	ctra	21 11	nterference	n - 1	Vot C	hec	ked For	g - S	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional Intended uses, contact IV Technical Staff

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from combiner. Do not return

portions remoyed for pipetiting to container; Chemical Form in Solution - 74,9216; mix of +3 and +5; 6; H_eAsO, and Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 74,9216; mix of +3 and +5; 6; H_eAsO, and

Charries Compatibility Arsenic has no cationic chemistry. It is soluble in HCI, HMO, H.P.O., H.S.O., end HF equecus metrices water and MH.OH. It is stable with most inorganic enforce (forms ersenate when boiled with chromate) but meny cationic metals form the insoluble ersenates under pH neutral conditions. When fluorinated and for under acidic conditions arsenate formation is

melt extracted with hot water); Organic Matrices (0.2 to 0.5 grems of the sample are fused with 1.5 grams of a 1:1 Ne₂CO₂ (Ne₂O₂ mix in a Ni' crucible. The fuseate is extracted with water and addition with HNO₂) in mine incommerce a service or near promoting the contract of the contract contract contract of the contract

Marrie Spectroscopic Information (ICP-0E3 D.L.s are given as redial/axial view):

topol OS ICP-OES 228.812 mm סיו / סטן המשר MORE վու**ն**ըկ 100 \ 1.0 CHOID ICb-OE2 183'9898'PM 100 \ 0.000 \ TechniqueAine mole Interferences (underlined indicates severe at = concs.) 200

HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM. 0.8

HOMOGEMEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous. 0.6

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

gecoduized by:

Standards Council of Canada (SCC) Registrat Accreditation Board (ANSI-RAB)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Hungary (MSZT), Ireland (MSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Graece (ELOT), Argentina (IRAM), Australia (QAS), Austria (OQS), Belgium (Avinter) , Brazil (FCVA), Canada (QMI), Hong Kong (HKOAA), Members of IQ Not International Certification Network:

- Chemical Testing - Accredited A2LA Certificate Number 883.01 Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

. ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited AZLA Certificate Number 883.02

and United States (NVLAP) (ICBO ES) Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RVA), New Zealand (IANZ), Norway (NA), (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) Australia (NATA), Austria (BrawA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic -snent Partners: Asteement Partners:

- Domestic Licensing of Production and Utilization Facilities 10.4 10CFR50 Appendix B - Nuclear Regulatory Commission

10.5 10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance

(bevreadOleteloadO) AS8884-GT2-JIM 8.01

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mt. low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 17, 2004

Expiration Date:

12006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Malda, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Publes Maide Known in Pour Lain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis o f

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

Custom-Grade 1000 µg/mL Lead in 0.35% (abs) HNO3 **DESCRIPTION OF CRM** 2.0

Catalog Number:

CGPB1-1, CGPB1-2, and CGPB1-5

Lot Number:

W-PB02115

Starting Material:

Pb(NO3)2

Starting Material Purity (%): Starting Material Lot No

Certified Concentration:

99,999974

22150

Matrix:

3.0

0.35% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS%) 1667

INORG: 4774 PD: F54731

DATE RECEIVED: ___O9/17/OH

DATE EXPIRED: 10/01/2005 vos

DATE OPENED: ___O9/\J/O4___

CERTIFIED VALUES AND UNCERTAINTIES

n....

 $1002 \pm 3 \mu g/mL$

Certified Density:

1.002 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Centified Value (C)1 = <u>ex</u>X∪

(C)l≃ mean

x; = individual results...

Uncertainty (±) = 2((ers))21*2

n = number of measurements BS = The summetion of all significant estimated errors (Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST 97M certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- * "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1002 \pm 3 \, \mu g/mL$

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

998 ± 3 µg/mL

ICP Assay NIST SRM 3128 Lot Number: 991504

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceablifty numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

O AI < 0.00270	M Dy < 0.01193	O Li < 0.00002	M Pr < 0.00060	<u>M</u> Te < 0.05965
M Sb < 0.00099	M Er < 0.00994	M Lu < 0.00080	M Re < 0.00199	M Tb < 0.00060
M As < 0.01989	M Eu < 0.00597	<u>O</u> Mg 0.00008	<u>O</u> Rh < 0.00900	Q TI 0.00130
M Ba < 0.01989	M Gd < 0.00199	<u>M</u> Mn < 0.00795	M Rb < 0.00199	M Th < 0.00199
M Be < 0.00099	M Ga < 0.00199	O Hg < 0.01500	M Ru < 0.00398	<u>M</u> Tm < 0.00080
O Bi < 0.02000	M Ge < 0.01193	M Mo < 0.00398	M Sm < 0.00199	M Sn < 0.00994
O B < 0.04000	M Au < 0.00597	M Nd < 0.00398	M Sc < 0.01989	M Ti < 0.09942
M Cd < 0.00597	M Hf < 0.00398	M Ni < 0.01591	M Se < 0.01591	<u>M</u> W < 0.01989
O Ca 0.00009	<u>M</u> Ho < 0.00099	<u>M</u> Nb < 0.00099	<u>Q</u> Si < 0.00340	M U < 0.00398
M Ce < 0.00994	<u>M</u> in < 0.01989	n Os	M Ag < 0.00398	M V < 0.00398
M Cs < 0.00060	M Ir < 0.00994	M Pd < 0.00994	O Na < 0.00600	M Yb < 0.00199
M Cr < 0.00994	<u>O</u> Fe 0.00011	<u>O</u> P < 0.00500	M Sr < 0.00099	M Y < 0.07954
M Co < 0.00597	M La < 0.00099	M Pt < 0.00398	<u>O</u> S < 0.10000	<u>M</u> Zn < 0.03977
M Cu < 0.01193	<u>s</u> Pb	<u>Q</u> K < 0.00180	M Ta < 0.01392	<u>M</u> Zr < 0.00994
M - Checked by ICP-MS	O - Checked by ICP-OES	I - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

Storage & Handling - Keep tightly seeled when not in use. Store and use at 20 ± 47€. Do not pipet from container. Do not

return portions removed for pipetting to container.

Atomic Weight; Valence, Coordination Number; Chamical Form in Solution $-207.2 + 2; 6; Pb(H_{\theta})_{h}^{-2}$

Charrical Compatibility - Soluble in HCl, HF and HNOs. Avoid H₂SOs. Stable with most metals and inorganic enions forming insoluble carbonate, borate, <u>sulfate</u>, sulfite, prosphete, oxalate, <u>orromate</u>, tannate, lodate, and cyanide in neutral equations.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LOPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, / LOPE container.

Pb Containing Samples (Preparation and Solution) - Metal (Best dissolved in 1:1 H-0 / HNO.) Oxides (The many different Pb oxides are soluble in HNO, with the exception of PbO; which is soluble in HCl or HF), Ores and Alloys (Best attacked using 1:1. H₂O /HNO₃) Organic Matrices (Dry ash and dissolve in dilute HCI.).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as <u>redial/axial</u> view);

Technique/Line	Estimated D	L Order	Type Inte	rferences (underli	ned indicates se	vere at salbones.)
ICP-OES 168.215 mm	0.03/0.003		ion Co			
ICP-0ES 220.353 mm			ion Bill	b		
ICP-OES 217.000 nm			etom Wh	Hf Sh Th		
ICP-MS 208 amu	i a con a con a il chi i a i con a con con i i i i i i i i i i i i i i i i i i i	• • • • • • • • • • • • • • • • • • • •	M. Per			
INF THIS 200 aniu		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ING. PA	u, wa u		

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

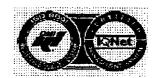
Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgiurn (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17026 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"


- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR60 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

				LABS 79.24	
DATE	RECEIV	ED:	-09/17/0	t	
DATE	EXPIRE	D:	10/01/200	25 VOS	
INDRO	: 4774	t	FO: F5	173)	

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: September 17, 2003

Expiration Date:

01 2005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Paux Lain

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs Is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer:

Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are
determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates
and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials,"
and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 μg/mL Antimony in 0.7% (abs) HNO₃ / 3% Tartaric Acid

Catalog Number:

CGSB1-1, CGSB1-2 and CGSB1-5

INORGANIC LABS/RADCHEM LABE

Lot Number:

X-SB02083

DATE EXPIRED:_

Starting Material:

Sb shot

Starting Material Purity (%): 99.993665

DATE OPENED:

Starting Material Lot No

D29N32

Matrix:

0.7% (abs) HNO3 / 3% Tartaric Acid

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $999 \pm 3 \mu g/mL$

Certified Density:

1.020 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (3) = Σ_{X_L}

(*) = mean

x = individual results

n = number of measurements

Uncertainty (±) = $2[(\sum_{s_1})^{s_1}]^{s_2}$

22511

 Σ_s , = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST

weighing, dilution to volume, and the fixed end SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

999 ± 3 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3102a Lot Number: 990707

Assay Method #2

1001 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axlal ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to $0.3~\mu m$.

O 44 00	0400	n	0.00500	_	1.2	_	0.00000	14	D-	_	0.00030	14	Te	_	0.02988	
<u>O</u> Al 0.0	2186 <u>M</u>	Dy <	0.00598	0	Li	5	0.00002	M	Pr	•	0.00030	M	16	`	0.02300	
<u>s</u> Sb	<u>M</u>	Er <	0.00498	M	Lu	<	0.00040	M	Re	<	0.00100	М	Tb	<	0.00030	
<u>M</u> As < 0.0	0996 <u>M</u>	Eu <	0.00299	Q	Mg		0.00074	M	Rh	<	0.00100	M	TI		0.00015	
<u>O</u> Ba 0.0	0011 <u>M</u>	Gd <	0.00100	Q	Mn		0.00139	M	Rb	<	0.00100	<u>M</u>	Th	<	0.00100	
<u>O</u> Be < 0.0	0001 <u>M</u>	Ga <	0.00100	ō	Hg	<	0.01500	M	Ru	<	0.00199	M	Tm	<	0.00040	
<u>M</u> Bi 0.0	0386 <u>м</u>	Ge <	0.00598	M	Мо	<	0.00199	M	Sm	<	0.00100	<u>M</u>	Sn	<	0.00498	
Q B 0.0	0045 <u>M</u>	Au <	0.00299	M	Nd	<	0.00199	ō	Sc	<	0.00016	ō	Ti		0.00056	
M Cd < 0.0	0299 <u>M</u>	Hf <	0.00199	<u>o</u>	Ni		0.00219	M	Se	<	0.00797	M	W	<	0.00996	
<u>O</u> Ca 0.0	0521 <u>M</u>	Ho <	0.00050	M	Nb	<	0.00050	Q	Si		0.00388	M	U	<	0.00199	
<u>Q</u> Ce < 0.0	0300 <u>M</u>	in <	0.00996	n	Os			M	Ag	<	0.00199	M	٧	<	0.00199	
M Cs < 0.0	0030 <u>м</u>	lr <	0.00498	М	Pd	<	0.00498	<u>o</u>	Na		0.00298	M	Yb	<	0.00100	
<u>O</u> Cr 0.0	0696 <u>Q</u>	Fe	0.00715	<u>o</u>	P	<	0.04000	M	Sr	<	0.00050	M	Y	<	0.03984	
<u>M</u> Co 0.0	0052 <u>O</u>	La <	0.00120	M	Pt	<	0.00199	ū	s			M	Zn	<	0.01992	
O Cu 0.0	0239 <u>M</u>	Pb	0.00040	<u>o</u>	κ		0.00497	M	Ta	<	0.00697	M	Zr	<	0.00498	
M - Checked by I	CP-MS O-	Checked	by ICP-OES	i - S	peçtr	al Ir	nterference	n - t	Not C	hec	ked For	s - S	Solutio	on S	Standard Elem	ent

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

504) 2014

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do

not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Humber; Chemical Formin Solution - 121.75; +3; 5; Sb(O)C 4H Os 1 Chemical Compatibility - Stable in concentrated HCI, dilute or concentrated HF. Stable in dilute HNOs as the fluoride or tartrate complex. Avoid basic media. Stable with most metals and inorganic anions in acidic media as the tartrate provided the acidity is not too high or the acid is oxidizing causing loss of the stabilizing tertrate ion. The fluoride complex of entimony is stable in strong acid but you should only mix with other metals that are fluorineted.

Stability - 2-100 ppb levels stable for months in 1% HNOs/LDPE container. 1-10,000 ppm solutions chemically stable

for years in 1-2% HNO3/LDPE container.

Sb Containing Samples (Preparation and Solution) - Metal and alloys (Soluble in HzO / HF / HNO3 mixture). Oxides (Soluble in HCl and tartaric add or HzO / HF / HNO3 mixtures.) Ores (Fusion with NazCO3 in Pt. followed by dissolving the fuseate in a HzO / HF / HNO3 mixture); Organic based (Sulturic acid / hydrogen peroxide digestion)

Atomic Spectroscopic Information GCP-QES D.L.s are given as radial/axial viewk

re)

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous. 9.0

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belglum (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 22, 2004

Expiration Date:

1#2006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

J. a. Stuller Known in Park Lain

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRIM	Custom-Grade 1000 µg/n	nt Selenium in 1.4% (abs) HNO3
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	CGSE1-1, CGSE1-2, an X-QSE01091 Se shot 99.997834 I20L45 1.4% (abs) HNO3	INORGANIC LABS/RADCHEM LABS 8.163 DATE RECEIVED: OT/O)/O+ DATE EXPIRED: O8/O/205 V03 DATE OPENED: OT/OV/O+
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	INORG: 4630 PD: 753406
	Certified Concentration:	1005 ± 2 μg/mL	
	Certified Density:	1.009 g/mL (measured at	22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = 821X

(C)≡mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(2r^2)^2]^{1/2}$

(n)1/2

S = The summation of all significant estimated errors.
(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

 $1005 \pm 2 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3149 Lot Number: 992106

Assav Method #2

1004 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

		•	1
Q Al 0.00030	<u>M</u> Dy < 0.01196	<u>O</u> Li < 0.00003 <u>M</u> Pr < 0.00060	<u>M</u> Te < 0.05982
M Sb < 0.00100	<u>M</u> Er < 0.00997	<u>M</u> Lu < 0.00080	M Tb < 0.00060
O As < 0.00500	M Eu < 0.00598	Q Mg 0.00021 M Rh < 0.00199	M TI < 0.00199
<u>M</u> Ba < 0.01994	M Gd < 0.00199	<u>M</u> Mn < 0.00798 <u>M</u> Rb < 0.00199	M Th < 0.00199
<u>Q</u> Be < 0,00009	M Ga < 0.00199	Q Hg 0.01054 Q Ru < 0.00700	<u>M</u> Tm < 0.00080
<u>M</u> Bi < 0.00080	M Ge < 0.01196	<u>Q</u> Mo < 0.00400 <u>M</u> Sm < 0.00199	M Sn < 0.00997
O B < 0.00006	M Au < 0.00598	M Nd < 0.00399 M Sc < 0.01994	M Ti < 0.09969
M Cd 0.00060	M Hf < 0.00399	<u>O</u> Ni 0.00028 <u>S</u> Se	M W < 0.01994
O Ca 0.00100	<u>M</u> Ho < 0.00100	<u>Q</u> Nb < 0.00400 <u>Q</u> Si < 0.00300	<u>M</u> U < 0.00399
<u>M</u> Ce < 0.00997	<u>M</u> In < 0.01994	<u>n</u> Os <u>M</u> Ag < 0.00399	<u>M</u> V < 0.00399
M Cs < 0.00060	<u>M</u> Ir < 0.00997	M Pd < 0.00997 Q Na 0.00402	M Yb < 0.00199
M Cr 0.00080	O Fe 0.00271	Q P < 0.00300 M Sr < 0.00100	M Y < 0.07976
M Co < 0.00598	<u>M</u> La < 0.00100	M Pt < 0.00399 Q S < 0.04000	<u>M</u> Zn 0.00400
M Cu 0.00130	M Pb < 0.00598	<u>Q</u> K 0.00060 <u>M</u> Ta < 0.01396	<u>Q</u> Zr 0.00005
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Tachnical Staff

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 = €. Do not pipet from container. Do not return portions removed for pipetting to container.

Marric Weight: Valence: Coordination Number: Chemical Form in Solution - 78.96; +4; 6; H.SeO.

Chemical Compatibility - Soluble in HCI, HNO₈, H₂PO₄, H₃SO₄ and HF aqueous matrices and water. It is stable with most inorganic anions but many cationic metals form the insoluble selenites under pH neutral conditions. When fluorinated and/or under acidic conditions precipitation is typically not a problem at moderate to low concentrations.

Stability - 2-100 ppb levels - stable for months alone or mixed with other elements at equivalent levels - in 1 % HNO₃ / LDPE container, 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

Se Containing Samples (Preparation and Solution) - Metal (Solution HNO₂); Oxides (Readily soluble in water); Minerals and alloys (Acid digestion with HNO₂ or HNO₂ / HF), Organic Matrices (Acid digestion with hot concentrated H₂SO₄ accompanied by the careful dropwise addition of H₂O₂ until clear)

Atomic Spectroscopic information (ICP-OES D.L.s are given as radial/axial view):

Estimated D.L. Order Type Interferences (underlined indicates severe at silborcs.) Technique/Line ICP-OES 196.026 nm ICP-OES 203.985 nm 0.08 / 0.006 µg/mL atom Sb. ir. Cr. Te 0.2 / 0.05 µg/mL atom 0.3 / 0.16 µg/mL ICP-OES 206,279 nm atom ICP-MS 82 amu 200 ppt n/a M

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure iV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	VRADCHEM LABS 9348
DATE RECEIVED:_	
DATE EXPIRED:	08/01/2005 405
	<u>07/01/04</u>
	FD: F53406

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 23, 2004

Expiration Date:

EXPIRES

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fold Stutters Knowen de Park Alain

ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail; ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis o f

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Thailium in 0.5% (abs) HNO3 2.0

Catalog Number:

CGTL1-1, CGTL1-2, and CGTL1-5

Lot Number:

X-TL01091

Starting Material:

TINO3

Starting Material Purity (%):

99.999824

INORGANIC LABS/RADCHEM LABS DATE RECEIVED:

Starting Material Lot No

G09P28

DATE EXPIRED:

DATE OPENED INORG:

Matrix:

3.0

0.5% (abs) HNO₃

CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

999 ± 3 µg/mL

Certified Density:

1.001 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) = $\sum x_1$

(x) = mean

 $x_i = individual results$

Uncertainty (±) = $2[(2s)^2]^{1/2}$

n = number of measurements

\$\square \text{The summation of all significant estimated errors.} (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

999 ± 3 µg/mL (Avg of 2 runs)

ICP Assay NIST SRM 3158 Lot Number: 993012

Assay Method #2

1000 µa/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated ve standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001, Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92584, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

			•	
M AI < 0.02018	M Dy < 0.01211	O U < 0.00002	M Pr < 0.00061	M Te < 0.06055
M Sb < 0.00101	M Er < 0.01009	M Lu < 0.00081	<u>M</u> Re < 0.00202	M Tb < 0.00061
M As < 0.02018	M Eu < 0.00606	Q Mg 0.00030	M Rh < 0.00202	<u>s</u> Tl
<u>M</u> Ba < 0.02018	M Gd < 0.00202	<u>M</u> Mn < 0.00807	M Rb < 0.00202	M Th < 0.00202
<u>M</u> Be < 0.00101	M Ga < 0.00202	Q Hg < 0.01200	M Ru < 0.00404	<u>M</u> Tm < 0.00081
M Bi < 0.00081	M Ge < 0.01211	M Mo < 0.00404	<u>M</u> Sm < 0.00202	<u>M</u> Sn < 0.01009
<u>O</u> B < 0.00140	<u>M</u> Au < 0.00606	M Nd < 0.00404	M Sc < 0.02018	<u>M</u> Ti < 0.10091
O Cd < 0.00540	M Hf < 0.00404	<u>O</u> Ni < 0.00090	<u>M</u> Se < 0.01615	<u>M</u> W < 0.02018
Q Ca 0.00015	M Ho < 0.00101	M Nb < 0.00101	<u>O</u> Si < 0.00340	<u>M</u> U < 0.00404
M Ce < 0.01009	<u>M</u> In < 0.02018	<u>n</u> Os	M Ag < 0.00404	<u>M</u> V < 0.00404
M Cs < 0.00061	M ir < 0.01009	M Pd < 0.01009	Q Na 0.00124	M Yb < 0.00202
M Cr < 0.01009	<u>O</u> Fe < 0.00100	Q P < 0.00260	Mi Sr < 0.00101	<u>M</u> Y < 0.08073
M Co < 0.00606	M La < 0.00101	M Pt < 0.00404	<u>Q</u> S < 0.03000	<u>Q</u> Zn 0.00154
M Cu < 0.01211	M Pb < 0.00606	<u>O</u> K < 0.00180	<u>M</u> Ta < 0.01413	M Zr < 0.01009
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chamical Form in Solution - 204.389; +1; 6;TI(H₂O),"

Chamical Compatibility - Soluble in HCl, HNO,, and H,SO. Stable withmost metals and inorganic anions. The sulfite, thiocyanate and oxalate are moderately soluble; the phosphate and assente are slightly soluble and the sulfide is insoluble. Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, / LDPE container.

Ti Containing Samples (Preparation and Solution) - Metal (Best dissolved in HNO, which forms chiefly the Ti¹¹ ion.) Oxide (The thallous oxide is readily soluble in water. The thallic oxide requires high levels of acid), Ores (Carbonate fusion in Pt* followed by HCI dissolution), Organic Matrices (Sulfuric/peroxide digestion or dry ash and dissolution in HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	<u>Type</u>	interferences (underlined indicates severe at a concs.)
ICP-OES	190,864 nm	0.04 / 0.004 µg/mL	1	ion	Y, Ti
ICP-OES	276.787 nm	0.1 / 0.01 µg/mL	1	atom	Ta, V, Fe, Or
ICP-OES	351 .924 nm	0.2 / 0.02 µg/mL	1	atom	Th, Ce, Zr
ICP-MS	205 amu	2 ppt	n/a	M'	***ÔS**Ô

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (OQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SiNAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 05, 2004

Expiration Date:

EXPIRES 1. 2006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Maida, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Dhebolas Maida Knowler de Paux Lains

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	1000 μg/mL Boron in H ₂ 0
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	X-B02047 H3BO3	INDRGANIC LABS/RADCHEM LABS DATE RECEIVED: 8/28/05 DATE EXPIRED: 3/1/2006 DATE OPENED: 2/28/05 INDRG: 5047 PO: F55/48
3.0	CERTIFIED VALUES AND	UNCERTAINTIE	s
	Certified Concentration:	1005 ± 2 μg/ml	_
	Certified Density:	0.999 g/mL (me	easured at 22° C)
	The Certified Value is based upon calculation of the certified value ar	•	thod used to analyze this CRM. The following equations are used in the
	Certified Value (s) = $\frac{\sum x}{n}$ Uncertainty (±) = $\frac{2[(\sum s)]^{1/2}}{(n)^{1/2}}$	x _i = n = ΣS : (Moc weig	mean individual results number of measurements The summation of all significant estimated errors to common are the errors from instrumental measurement, thing, dilution to volume, and the fixed error reported on the SRM certificate of analysis.)
4.0	TRACEABILITY TO NIST	AND VALUES OF	BTAINED BY INDEPENDENT METHODS

- ☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- ☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.
- Assay Method #1

1005 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3107 Lot Number: 991907

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

		_		,
Q AI < 0.00090	M Dy < 0.00600	O Lì < 0.00002	<u>M</u> Pr < 0.00030	<u>M</u> Te < 0.03000
M Sb < 0.00050	<u>M</u> Er < 0.00500 '	<u>M</u> Lu < 0.00040	M Re < 0.00100	<u>M</u> Tb < 0.00030
M As < 0.01000	<u>M</u> Eu < 0.00300	O Mg < 0.00006	M Rh < 0.00100	<u>M</u> TI < 0.00100
Q Ba < 0.00010	<u>M</u> Gd < 0.00100	O Mn < 0.00002	M Rb < 0.00100	M Th < 0.00100
<u>O</u> Be < 0.00017	Q Ga < 0.00160	Q Hg < 0.01500	M Ru < 0.00200	<u>M</u> Tm < 0.00040
<u>M</u> Bi < 0.00040	<u>M</u> Ge < 0.00600	<u>M</u> Mo < 0.00200	M Sm < 0.00100	<u>M</u> Sn < 0.00500
<u>s</u> B	<u>M</u> Au < 0.00300	M Nd < 0.00200	<u>Q</u> Sc < 0.00002	<u>M</u> Ti < 0.05000
M Cd < 0.00300	M Hf < 0.00200	O Ni < 0.00230	Q Se < 0.00620	<u>M</u> W < 0.01000
<u>O</u> Ca < 0.00007	<u>M</u> Ho < 0.00050	M Nb < 0.00050	<u>Q</u> Sì 0.00067	<u>M</u> U < 0.00200
<u>O</u> Ce < 0.00300	<u>M</u> In < 0.01000	n Os	<u>M</u> Ag < 0.00200	Q V < 0.00083
M Cs < 0.00030	<u>M</u> tr < 0.00500	<u>M</u> Pd < 0.00500	O Na < 0.00010	<u>M</u> Yb < 0.00100
M Cr < 0.00500	Q Fe < 0.00110	Q P < 0.00250	M Sr < 0.00050	<u>M</u> Y < 0.04000
Q Co < 0.00110	<u>M</u> La < 0.00050	M Pt < 0.00200	Q S < 0.10000	Q Zn < 0.00019
M Cu < 0.00600	M Pb < 0.00300 ·	<u>O</u> K < 0.00300	<u>M</u> Ta < 0.00700	<u>M</u> Zr < 0.00500
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

5047 20F4

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 10.811; +3; 4; B(OH), and B(OH).

Chamical Competibility - Moderately soluble in HCl, HNO₁, H₂SO₄ and HF aqueous matrices and very soluble in NH₄OH. Stable with all metals and inorganic anions at low to moderate ppm levels.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ /LDPE container. 1-1,000 ppm solutions chemically stable for years in 1% HNO₃ /LDPE container. 1000 -10,000 ppm stable for years in dilute NH₂OH /LDPE container.

B Containing Samples (Preparation and Solution) - Metal (Crystalline form is scarcely attacked by acids or alkaline solutions; amorphous form is soluble in conc. HNO₃ or H₂SO₄; B(OH)₆ (water solutie), Ores(exoid acid digestions and use coustic fusions in Pt*); Organic Matrices (dry ash mixed with Na₂CO₂ in Pt* at 450°C then increase heat to 1000°C to fuse; or perform a Na₂O₃ fusion in a Ni* crucible /Pair bomb).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axia) view):

	obeen conclus and	entiremental and	~ ~ ~ ~			
Technic	ue/Line	Estimated D.L.	Order	<u>Type</u>	Interferences Junderlined indicates	severe at = concs.)
ICP-OE	S 249,773 nm	1.1mlgu 100.0 \ 0.003	1	atom	W, Ce, Co, Th, Ta, Mn, Mo, Fe	
ICP-OE	S 249.678 nm	0.004 / 0.003 µg/mL	1	atom	Os, W, Co, Cr, Hf	
ICP-OE	S 208.959 nm	0.007 / 0.0005 µg/ml.	1	atom	Мо	
ICP-MS	11amu	700 ppt	n/a	Μ'		

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (\$FS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Poland (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RVA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

3047 3044

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 13, 2004

Expiration Date:

EXPIRES 1#2006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten known in in Park Lain

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

and ISO Guide 35-1989 "Cer	tification of Referer	ice Materials - General and Statisical Principles."
DESCRIPTION OF CRM	Custom-Grade 10	000 μg/mL Molybdenum in H20 tr. NH4OH
Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	X-MO02004 (NH4)6Mo7O24x 99.995645 23221	INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 3/18/05 DATE EXPIRED: 3/18/05
CERTIFIED VALUES AND	UNCERTAINTIES	INORG: 5050 PO: F55148
Certified Concentration:	1002 ± 3 µg/mL	
Certified Density:	0.998 g/ml. (meas	ured at 22° C)
	id the uncertainty: (s) = m x _i = indi n = nur Σς = Τ	to used to analyze this CRM. The following equations are used in the ean vidual results are used in the vidual results are used in the role of measurements the summation of all significant estimated errors.
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix: CERTIFIED VALUES AND Certified Concentration: Certified Density: The Certified Value is based upon calculation of the certified value and Certified Value (\$\frac{1}{2}\$) = \$\sum_{x}\$	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix: CERTIFIED VALUES AND UNCERTAINTIES Certified Concentration: 1002 ± 3 µg/mL Certified Density: 0.998 g/mL (meas The Certified Value is based upon the most precise method calculation of the certified value and the uncertainty: Certified Value (\mathbf{x}) = $\sum_{\mathbf{X}}$ \mathbf{X} (\mathbf{x}) = multiplication of the certified value and the uncertainty: Certified Value (\mathbf{x}) = $\sum_{\mathbf{X}}$ \mathbf{X} in \mathbf

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

NIST SRM certificate of analysis.)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1 1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

Assay Method #2 1002 ± 3 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3134 Lot Number: 891307

- 4.2 BALANCE CALIBRATION All balances are checked daily using In-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O AI < 0.05000	M Dy < 0.01202	Q Li < 0.01000	O Pr < 0.10000	i j Te
M Sb < 0.00100	<u>M</u> Er < 0.01002	<u>M</u> Lu < 0.00080	M Re 0.00541	M Tb < 0.00060
M As 0.00801	<u>M</u> Eu < 0.00601	Q Mg < 0.05000	M Rh < 0.00200	M TI < 0.00200
<u>M</u> Ba < 0.02004	M Gd < 0.00200	M Mn < 0.00801	M Rb < 0.00200	M Th < 0.00200
M Be < 0.00100	M Ga < 0.00200	j Hg	M Ru < 0.00401	<u>M</u> Tm < 0.00080
M Bi < 0.00080	M Ge < 0.01202	<u>s</u> Mo	M Sm < 0.00200	M Sn < 0.01002
<u>Q</u> B < 0.50000	M Au < 0.00601	Q Nd < 0.05000	Q Sc < 0.05000	<u>Q</u> Ti < 0.00500
<u>O</u> Cd < 0.50000	M Hf < 0.00401	M NI < 0.01603	M Se < 0.01603	M W 0.03907
<u>O</u> Ca 0.00150	M Ho < 0.00100	M Nb < 0,00100	<u>O</u> Si < 0.10000	M U < 0.00401
O Ce < 0.05000	M in < 0.02004	n Os	M Ag < 0.00401	<u>M</u> V < 0.00401
M Cs < 0.00060	<u>M</u> Ir < 0.01002	M Pd < 0.01002	Q Na < 0.10000	<u>M</u> Yb < 0.00200
M Cr < 0.01002	Q Fe < 0.50000	l b	M Sr < 0.00100	M Y < 0.08014
M Co < 0.00601	M La < 0.00100	M Pt < 0.00401	j S	M Zn < 0.04007
M Cu < 0.01202	M Pb < 0.00601 ·	Q K 0.03500	M Ta < 0.01403	M Zr < 0.01002
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Attric Weight; Valence; Coordination Humber; Chemical Form in Solution - 95.94; +6; 6,7,8,9; [MoO.] (chemical form as

received)

Chamical Compatibility - Mo is received in a NH.OH matrix giving the operator the option of using HCI or HF to stabilize acidic solutions. The [MoO.]* is soluble in concentrated HCI [MoOCl_e]*, dilute HF / HNO, [MoOF_e]* and basic media [MoO.]*. Stable at ppm levels with some metals provided it is fluorinated. Do not mixwith Alkaline or Rare Earths when HF is present. Stable with most inorganic anions provided it is in the [MoO.]* chemical form.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the [MoOF,] for months in 1% HNO, /LDPE container, 1-10,000 ppm single element solutions as the [MoO.] chemically stable for years in 1% NH.OH in

a LDPE container.

Mile Confidencing Samples (Preparation and Solution) - Metal (Soluble in HF / HNO, or hot dilute HCI), Oxide (soluble in HF or NH.OH); Organic Metrices (Dry ash at 450°C in Pt* and dissolve oxide with HF or HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/asial view):

Technique/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at = concs.)
ICP-OES 202.030 nm	. 0.008 / 0.0002 µg/mL	1	ion	Os, Hr
ICP-OES 203,844 nm	0.012 / 0.002 µg/mL	1	ion	
ICP-OES 204.598 nm	0.012 / 0.001 µg/mL	1	ion	ir, Ta
ICP-M/S 95 amu	3 ppt	nda	M'	aytaKaOʻ aBtaOʻ aqOsp.′ asbfs.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMi Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polycol (RCR), Spring (AFAQR), Spring (AFA

Poland(PCBC), Portugal (APCER), Singapore (PSB), Siovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 26, 2004

Expiration Date:

1#2006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fol Stutten knower an Paux Aain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, ni 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Phosphorus in H₂0

Catalog Number: CGP1-1, CGP1-2 and CGP1-5

Lot Number: W-P01123

Starting Material: Starting Material Purity:

Starting Material Lot No:

Phosphoric Acid

99.999% .118804

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 06/01/04

DATE EXPIRED: 06/01/3905 DATE OPENED: 00/01/04

INORG: 4593 PO: E53393

CERTIFIED CONCENTRATION: 1006 ± 4 µg/mL

The Certified Value is the wet assay value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \sum_{x} x_1$

Uncertainty (±) = $2[(\sum_s)^2]^{1/2}$

(x) = mean

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1006 ± 4 µg/mL

Method: Acidimetric Titration vs NIST SRM 84k KHP.

Instrument Analysis: 1002 ± 4 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3139a.

The independent samples tilest was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

Q	Al	< 0.040	M	Dy	< 0.00060	M	Li	< 0.0010	M	Pr	<0.000030	M	Te	< 0.0030
M	Sb	0.012	M	Er	< 0.00050	M	Lu	< 0.000040	M	Re	< 0.00010	M	Тъ	< 0.000030
<u>M</u>	As	< 0.0010	M	Eu	< 0.00030	M	Mg	< 0.0030	M	Rh	<0.00010	M	TI	< 0.00010
M	Be	< 0.0010	M	Gd	< 0.00010	M	Mn	< 0.00040	M	Rb	< 0.00010	<u>M</u>	Th	< 0.00010
M	Be	< 0.000050	M	Ga	0.00070	Q	Hg	< 0.020	M	Ru	< 0.00020	М	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Мо	< 0.00020	M	Sm	< 0.00010	M	Sn	< 0.00050
М	В	< 0.0070	M	Au	< 0.00030	<u>M</u>	Nd	<0.00020	Ū	Sc		<u>n</u>	Ti	
M	Cd	< 0.00030	M	Hf	< 0.00020	Q	Ni	< 0.050	Q	Se	< 0.40	M	Ŵ	< 0.0010
<u>0</u>	Ca	< 0.010	M	Ho	< 0.000050	M	Nb	< 0.000050	<u>o</u>	Si	< 0.020	M	U	< 0.00020
M	Ce	< 0.00050	M	łn	< 0.030	<u>n</u>	Os		M	Ag	< 0.00020	M	٧	< 0.00020
M	Cs	< 0.000030	M	tr	< 0.00050	M	Pd	< 0.00050	Ō	Na	< 0.090	M	Yb	< 0.00010
M	Cr	< 0.00050	Q	Fe	< 0.050	<u>s</u>	P		M	Sr	< 0.000050	M	Υ	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050	M	Pt	< 0.00020	n	S		M	Zn	0.0035
M	Cu	0.080	M	Pb	< 0.00030	ū	K		M	Ta	< 0.00070	M	Zr	< 0.00050

M - checked by ICP-MS

O - checked by ICP-OES

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.001 g/mL

(over)

QA:KL A4V.0108040N

Paul R. Haines

Expires:

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (DQS), Greece (ELOT), Hungary (DQS), Greece (ELOT), Hu

(NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2

m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceabl to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	1000 μg/mL Silicon in H20 tr. HNO₃ tr. HF
•	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	x-sl02087 SiO2 99.996367 C05310C H20 tr. HNO	#NORG:4999PO:£32137
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	·

Certified Concentration: 996 ± 2 µg/mL

1.002 g/mL (measured at 22° C) **Certified Density:**

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = grx1

(C) = mean

x = individual results

Uncertainty (±) = $2[(\alpha + 5)]^{1/2}$

n = number of measurements **BS** = The summation of all significant estimated errors

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

 "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, welghing and volume dilution errors.

4.1 Assay Method #1

996 ± 2 µg/mL

ICP Assay NIST SRM 3150 Lot Number: 991108

Assay Method #2

999 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Αł		0.02730	M		Эу	<	0.01358	Ω	Li	<	0.00009	М	Pr	<	0.00068	M	Te	<	0.06791
М	Sb	<	0.00113	N	E	Ēr	<	0.01132	M.	Lu	<	0.00091	М	Re	<	0.00226	М	Tb	<	0.00068
M			0.02264	M		_		0.00679	0	Mg		0.04991	M	Rh		0.00226	M	TI	<	0.00226
141	73	•	0.02204	14	•		•	0.00079	¥	· · · · · ·	•	0.04551		• • • •		0.00220	133	••		0.00220
M	Ba	<	0.02264	<u>M</u>		Эd	<	0.00226	M	Mn	<	0.00906	M	Rb	<	0.00226	M	Th	<	0.00226
Q	Ве	<	0.00091	M		Зa	<	0.00226	<u>0</u>	Hg	<	0.04991	M	Ru	<	0.00453	M	Tm	<	0.00091
M	Bi	<	0.00091	M		Эe	<	0.01358	M	Мо	<	0.00453	M	Sm	<	0.00226	<u>M</u>	Sn	<	0.01132
<u>0</u>	В		0.02409	M	. /	٩u	<	0.00679	М	Nd	<	0.00453	Q	Sc	<	0.00091	Q	Ti		0.01325
M	Cd	<	0.00679	M		Hf	<	0.00453	Q	Ni	<	0.01044	М	Se	<	0.01811	M	W	<-	0.02264
Q	Ca		0.00135	M	<u>I</u>	Ю	<	0.00113	<u>M</u>	Nb	<	0.00113	<u>s</u>	SI			M	υ	<	0.00453
М	Се	<	0.01132	<u>N</u>	1	in	<	0.02264	п	Os			M	Ag	<	0.00453	<u>0</u>	٧	<	0.00408
M	Cs	<	0.00068	M	ļ	r	<	0.01132	M	Pd	<	0.01132	0	Na		0.02008	M	Yb	<	0.00226
Q	Çr	<	0.00681	<u>C</u>		Fe	<	0.00499	Q	P	<	0.02269	ō	Sr	<	0.00032	M	Y	<	0.09055
M	Со	<	0.00679	M		a	<	0.00113	M	Pt	<	0.00453	0	s	<	0.11342	<u>M</u>	Zn	<	0.04528
Q	Cu	<	0.00454	M	1	Pb	<	0.00679	Q	K	<	0.00771	<u>M</u>	Та		0.00200	M	Zr	<	0.01132
M - C	heck	ed	by ICP-MS	0	- C	hecl	ced	by ICP-OES	i - S	pec	tral	Interference	n - 1	Not C	hec	ked For	s - S	Soluti	ดก เ	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

4999 4999

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 . Do not pipet from container. Do not return

portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 28.0855; +4; 8; Si(OH),(F),2 Chamical Compatibility - Soluble in HCl, HF, H,PO. H,SO. and HNO. as the Si(OH) (F),². Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F away (i.e. Do not mix with Alkaline or Rare Earths, or high levels of transition elements unless they are fluorinated). Stable with most inorganic enions with a tendency to hydrolyze forming silicic acid (silicic

acid is soluble up to ~100 ppm in water) in all dilute acids except HF. Stability - 2-100 ppb levels - stability unknown - (alone or mixed with all other metals) as the Si(OH),(F),2. 1-10,000 ppm single element solutions as the Si(OH),(F),2 chemically stable for years in 2-5 % HNO. It race HF in a LDPE container.

Si Containing Samples (Preparation and Solution) - Metal (Solutie in 1.1:1 H₂O / HF /HNO₃) Oxide - SiO₃, amorphic (Dissolve by heating in 1:1:1 H₂O / HF /HNO₃) Oxide - quartz (Fuse in Pt^awithNa₂CO₃). Geological Samples (Fuse in Pt^awith Na₂CO₃ followed by HCI solution of the threate) Organic Matrices containing silices and non volatile silicon compounds (Dry ash at 450°C in Pt^a and dissolve by gently warning with 1:1:1 H₂O / HF /H₂SO₄ or fuse / ash with Na₂CO₃ and dissolve tuseate with HCI / HAO I Silicone Oils - dimethyl silicones decolymerize to form volatile monomer units when heated (Measure directly in alcoholic KOH /xylene mixture where sample is treated first with the KOH at 60-100 % to "unzip" the SI-O-SI polymeric structure or digest with concentrated H2SO_H2O2 followed by cooling and dissolution of the dehydrated silica with HF.) Note that the direct analysis of silicone oils in an organic solvent will result in false high results due to high vapor pressure of volatile monomer units like hexamethylcyclotrisioxane. The KOH forms the K2 SI(CH,) O salt which is not volatile at room temperature.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	1.ine	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at aftoncs.)
ICP-OES	251.611 nm	0.012 / 0.003 µg/mL	1	ion	Ta, U, Zn, Th
ICP-OES	212.412 nm	0.02 / 0.01 µg/mL	1	ion	Hf, Os, <u>Mo</u> , Ta
ICP-OES	288.158 nm	0.03 / 0.004 µg/mL 1	ion	Ta, Ce,	Cr, Cd, Th
ICP-MS	28 amu	4000 - 8000 ppt	n/a	M'	'1 ^N 3, ⁴ C'1 ^O
	Technique ICP-OES ICP-OES ICP-OES	Technique Line ICP-OES 251.611 nm ICP-OES 212.412 nm ICP-OES 288.158 nm	Technique/Line Estimated D.L. ICP-OES 251.611 nm 0.012 / 0.003 μg/mL ICP-OES 212.412 nm 0.02 / 0.01 μg/mL ICP-OES 288.158 nm 0.03 / 0.004 μg/mL 1	Technique/Line Estimated D.L. Order ICP-OES 251.611 nm 0.012 / 0.003 µg/mL 1 ICP-OES 212.412 nm 0.02 / 0.01 µg/mL 1 ICP-OES 288.158 nm 0.03 / 0.004 µg/mL 1	ICP-OES 251.611 nm 0.012/0.003 µg/mL 1 fon ICP-OES 212.412 nm 0.02/0.01 µg/mL 1 lon ICP-OES 288.158 nm 0.03/0.004 µg/mL 1 ion Ta, Ce,

HF Note: This standard should not be prepared or stored in glass

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (OQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

ACC

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 24, 2004

Expiration Date:

0112006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten known kn

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Titanium in 1.4% (abs) HNO3 tr. HF

Catalog Number:

CGTI1-1, CGTI1-2, and CGTI1-5

Lot Number:

X-QTI01116

Starting Material:

Starting Material Lot No

Ti granules 99.960814

Starting Material Purity (%):

99.960614 K27M07

Matrix:

1.4% (abs) HNO3 tr. HF

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

998 ± 4 µg/mL

Certified Density:

1.010 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (a) = $\sum x_1$

(x) = mean

x = individual results

__ n≤ number of measurements

Uncertainty (1) = $2((\sum s)^{n/2}$ $\sum s =$ The summation of all significant estimated errors.

(Most common are the errors from histrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dillution errors.

4.1

Assay Method #1

998 ± 4 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3162a Lot Number: 992801

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number; See Sec. 4.2

			LABS 73.2 of 3
DATE REC	EIVED:	<u> </u>) ' t
DATE OPE	ENED:	7316316 1310173	4
INORG:	4908	PO:_ <u>F5</u>	5109

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al	<	0.01201	M	Dy	<	0.01190	Q	Li	<	0.00080	М	Pr	<	0.00060	M	Te	<	0.05951
М.	Sb	<	0.00099	M	Et	<	0.00992	M	"Lu	≺.	0.00079	M	Re"	≺	0.00198	М	Tb	<	0.00060
<u>M</u>	Аs	<	0.01984	М	Eu	<	0.00595	Q	Mg	<	0.00040	M	Rh	<	0.00198	М	TI	<	0.00198
М	Ba	<	0.01984	M	Gđ	<	0.00198	Q	Mn		0.00161	М	Rb	<	0.00198	М	Th	<	0.00198
M	Be	<	0.00099	M	Ga	<	0.00198	Q	Hg	<	0.06004	M	Ru	<	0.00397	M	Tm	<	0.00079
<u>M</u>	Bi	<	0.00079	M	Ge	<	0.01190	М	Мо	<	0.00397	М	Sm	<	0.00198	М	Sn	<	0.00992
Q	В	<	0.00801	М	Au	<	0.00595	М	Nd	<	0.00397	<u>o</u>	Sc	<	80000.0	2	Ti		
M	Cd	<	0.00595	М	Hf	<	0.00397	М	Ni	<	0.01587	M	Se	<	0.01587	M	W	<	0.01984
Q	Ca	<	0.00024	М	Ho	<	0.00099	M	Nb	<	0.00099	Q	SI	<	0.01601	M	U	<	0.00397
M	Ce	<	0.00992	M	In	<	0.01984	ם	Os			M	Ag	<	0.00397	Q	٧	<	0.00801
M	Cs	<	0.00060	М	lr	<	0.00992	М	Pd	<	0.00992	<u>o</u>	Na		0.14051	M	Yb	<	0.00198
M	Cr	<	0.00992	Q	Fe	<	0.00400	<u>0</u>	P	<	0.02001	W	Sr	<	0.00099	М	Y	<	0.07935
M	Co	<	0.00595	М	La	<	0.00099	М	Pt	<	0.00397	ı	s			0	Zn	<	0.00080
Ō	Cu	<	0.01201	М	Pb	<	0.00595	Q	ĸ		0.26095	М	Ta	<	0.01389	M	Zr	<	0.00992
M - C	heck	ed	by ICP-MS	0-	Chec	kec	by ICP-OES	i-S	pect	ai li	nterference	n - I	Vot C	hec	ked For	8 -	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional Intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly scaled when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight: Valence; Coordination Number; Chamical Form in Solution - 47.867, +4, 6, T(F).*

Chemical Competibility - Soluble in concentrated HCI, HF, H.P.O. H.S.O. and HNO.. Avoid neutral to basic media. Unstable at porn levels with metals that would pull F: away (i.e. Do not mix with Akaline or Rare Earths or high levels of transition relements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming the hydrated oxide in all dilute acids except HF.

Stability - 2-100 poblevels stable (Alone or mixed with all other metals) as the Ti(F). for months in 1% HNC, /LDPE container; 1-10,000 ppm single element solutions as the Ti(F). chemically stable for years in 2-5% HNO, /trace HF in an LDPE container. Ti Containing Samples (Preparation and Solution) - Metal (Solutie in H,O / HF caution -powder reactive followity); Oxide - low temperature history analyse or ruble (Dissolved by heating in 1:1:1 H,O / HF / H,SO.) Oxide - high temperature history (-800°C) brookte (tisse in P!*with K,S,O-), Ores (tisse in P!*with K,S,O-) on KF if silice not present); Organic Matrices (Dry sah at 450°C in P!* and dissolve by heating with 1:1:1 H,O / HF / H,SO, or tisse as hwith pyrosulfate if oxide is as plastic pigment and likely in brookte crystalline form).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Type Interfe	rences (underline	d indicates severe	ext = concs.)
Technique/Line ICP-OES 334,941 nm	0.0038 / 0.000028	Jakink. 1	ion Nb.Ta	Cr U		
ICP-OES 336,121 rvm	0.0053 / 0.000034	Joint 1	ion W. Mo	Co		
ICP-OES 323,452 rm			ion Ce Ar	N		
ICP-MS 48 amu	4.4 ****	ole	M* 335#O	WELL IN WOULD	PANTAL SEAFING "	Cei, ("%" (where
IST-MS TO GILLO	1.4 140			Mo Ruli		Day I M Chalca
				Property of the state of the st	. . 	

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saffey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010106 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Belging (SIQ), Spring (AFAQR), Suited and (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrrwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/	RADCHEM LABS Para ofa
DATE RECEIVED:	19/09/01
DATE EXPIRED:	12/01/2005 407
DATE OPENED:	<u>19/69/64</u>
INORG: 4908	PO: F55100

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: September 28, 2004

Expiration Date:

1:2005-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Malda, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

The Marie

Par Alin

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 1000 µg/	mL Strontlum in 0.1% (abs) HNO3
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	CGSR1-1, CGSR1-2, a W-SR01124 SrCO3 99.996751 22593, 22878 0.1% (abs) HNO3	INORGANIC LABS/RADCHEM LABS /42 DATE RECEIVED: 1/205 OR DATE EXPIRED: 1/205
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	INDRG: 4635 PO: F53408
	Certified Concentration:	1004 ± 2 μg/mL	

Certified Density: 1.001 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = grx

(□) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha s_i)^2]^{1/2}$

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 $1005 \pm 2 \mu g/mL$

ICP Assay NIST SRM 3153a Lot Number: 990906

Assay Method #2

1004 ± 2 μg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

		A. Control of the Con	1	•
Q Al < 0.00090	M Dy < 0.00055	<u>Q</u> Li < 0.00003	M Pr < 0.00003	<u>O</u> Te < 0.10000
M Sb < 0.00005	<u>M</u> Er < 0.00046	<u>M</u> Lu < 0.00004	<u>M</u> Re < 0.00009	M Tb < 0.00003
Q As < 0.00500	M Eu < 0.00028	<u>O</u> Mg 0.00030	<u>O</u> Rh < 0.00600	<u>M</u> TI < 0.00009
O Ba 0.02200	M Gd < 0.00009	Q Mn < 0.00003	į Rb	<u>M</u> Th < 0.00009
Q Be < 0.00009	M Ga < 0.00009	<u>O</u> Hg < 0.01500	<u>Q</u> Ru < 0.00300	M Tm < 0.00004
M Bi < 0.00004	M Ge < 0.00055	M Mo < 0.00018	M Sm < 0.00009	M Sn < 0.00046
<u>O</u> B < 0.00060	M Au < 0.00028	M Nd < 0.00018	M Sc < 0.00092	M Ti < 0,00459
M Cd < 0.00028	M Hf < 0.00018	Q Ni < 0.00300	Q Se < 0.05000	<u>M</u> W < 0.00092
<u>O</u> Ca 0.02500	M Ho < 0.00005	M Nb < 0.00005	Q Si < 0.00340	M U < 0.00018
M Ce < 0.00046	Q In < 0.00200	<u>n</u> Os	M Ag < 0.00018	<u>M</u> V < 0.00018
<u>M</u> Cs < 0.00003	M Ir < 0.00046	O Pd < 0.00400	O Na 0.00410	<u>M</u> Yb < 0.00009
<u>O</u> Cr < 0.00080	Q Fe < 0.00110	Q P < 0.00480	§ Sr	<u>O</u> Y < 0.00004
M Co < 0.00028	M La < 0.00005	M Pt < 0.00018	n s	Q Zn 0.00720
<u>O</u> Cu < 0.00140	M Pb < 0.00028	Q K < 0.00170	<u>M</u> Ta < 0.00064	M Zr < 0.00046
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 87.62; +2; 6; Sr(H,O),*2

Chemical Compatibility - Soluble in HCl, and HNO.. Avoid H,SO., HF and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1 - 3.5% HNO, / LDPE container.

Sr Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO₄); Ores (Carbonate fusion in Pt* tollowed by HCI dissolution); Organic Matrices (Dry ash and dissolution in dilute HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s ere given as radial/axial view):					
Techniqu	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at authorics.)
ICP-OES	407.771 nm	0.0004 / 0.00006 µg/m L	1	ion	U, Ce
ICP-OES	421.552 nm	0.0008 / 0.00004 µg/mL	1	ion	Rb
	460.733 nm		1	atom	Ce
ICD NC	00	4 200 mm	n/a	14.	「ACAMO 176/No.1 17月 ilis 174/代2

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (OQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INORGANIC LABS/RADCHEM LABS	}
DATE RECEIVED: 1/8/04	
DATE EXPIRED: 8///2/05	
DATE OFENED: 3/8/4 INORG: 4635 FO: DR/F5346	-25
INORG: 4635 FO: DR/F5396	8
· · · · · · · · · · · · · · · · · · ·	

Certification Date: October 22, 2003

Expiration Date:

0192005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Stutten knower an Paux Aain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM 2.0

Custom-Grade 1000 µg/mL Tin in H20 tr HNO3 tr HF

Catalog Number:

CGSN1-1, CGSN1-2, and CGSN1-5

Lot Number:

Y-QSN01140

Starting Material:

Sn Shot

Starting Material Purity (%):

99.999438

Starting Material Lot No.

G12M23

Matrix:

H₂0 tr HNO₃ tr HF

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

994 ± 4 µg/mL

Certified Density:

0.998 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (3) = \(\sum_{\text{X}_2}\)

(x) = mean

x. = individual results

n = number of measurements

Uncertainty (±) = $2[(\sum_{x})]^{1/r}$

 Σ_{s_1} = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the NIST

SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

994 ± 4 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3161a Lot Number: 993107

Assay Method #2

998 ug/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: ___3(3)(05 DATE EXPIRED: 311100 100
DATE OPENED: 331000 100
INORG: 5174 FO: 521000

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q Al 0.00050	M Dy < 0.01205	O Li < 0.00002	M Pr < 0.00060	<u>M</u> Te < 0.06026
Q Sb < 0.01000	M Er < 0.01004	<u>M</u> Lu < 0.00080	<u>M</u> Re < 0.00201	<u>M</u> Tb < 0.00060
M As < 0.02009	M Eu < 0.00603	Q Mg < 0.00003	M Rh < 0.00201	<u>M</u> Ti < 0.00201
<u>O</u> Ba < 0.00070	<u>M</u> Gd < 0.00201	<u>M</u> Mn < 0.00804	M Rb < 0.00201	<u>M</u> Th < 0.00201
M Be < 0.00100	<u>M</u> Ga < 0.00201	O Hg < 0.01500	M Ru < 0.00402	<u>M</u> Tm < 0.00080
M Bi < 0.00080	M Ge < 0.01205	<u>M</u> Mo < 0.00402	<u>M</u> Sm < 0.00201	<u>s</u> Sn
Q B < 0.01200	M Au < 0.00603	M Nd < 0.00402	M Sc < 0.02009	M Ti e o toot t
<u>O</u> Cd 0.00009	M Hf < 0.00402	<u>O</u> Ni < 0.01000	<u>M</u> Se < 0.01607	M W + nugrers
O Ca < 0.00150	<u>M</u> Ho < 0.00100	M Nb < 0.00100	<u>Q</u> Si < 0.00340	M U · ·
M Ce < 0.01004	<u>M</u> In < 0.02009	n Os	M Ag < 0.0040;	M V · modu.
M Cs < 0.00060	<u>M</u> Ir < 0.01004	M Pd < 0.01004	<u>Q</u> Na < 0.00010	M Yb + 0.00,001
M Cr < 0.01004	<u>O</u> Fe < 0.00110	O P < 0.00500	<u>M</u> Sr ≤ 0.00180	M Y + 0,080°C
Q Co < 0.00200	M La < 0.00100	M Pt < 0.00402	n S	<u>M</u> Zn ≤ 0.04017
M Cu < 0.01205	M Pb 0.00593	<u>O</u> K < 0.00200	<u>M</u> Ta ≤ 0.01406	<u>M</u> Zr < 0.01004
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Llement

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly seeled when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do

not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Formin Solution - 118.710; +4; 4,5, 6,7,8, Sn(OH)xf²

Chemical Compatibility - Soluble in HCI and cliute HF / HNOx. Avoid neutral to basic media. Unstable at poin levels with metals that would pull F away. (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements

unless they are fluorinated.) Stable with most inorganic anions provided it is in the chemical form shown above. Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the Sn(OH)_xFy² for 1 year in 1% HNO₂/LDPE container. 1-10,000 ppm single element solutions as the Sn(OH)_xFy² chemically stable for years in 2-5% HNO₂/trace HF in a LDPE container.

Sn Containing Samples (Preparation and Solution) - Metal (Soluble in HF / HNO3 or HCI); Oxides - SnO (soluble in HCI), SnOz -very resistant to all acids including HF(Fusion with equal parts of Na2Co3 and S. It is then soluble in water or dilute acids as the thiostannate.); Alloys (Treat first 0.1 g with 10 mL conc. H2SO4 to boiling until the alloy disintegrates and nearly all of the sulturic acid is expelled. Then add 100 mL O2 free water and 50 mL of conc HCI or transfer to a plastic container and add 1 mL HF in either case warming gently to bring about solution.); Organic Matrices (Votatility and precipitation of the insoluble stennic oxide are problems. Consultation of the literature should be made for individual matrices / Sn compounds.)

Atomic Spectroscopic Information (CP-OES D.L.s are given as radial/axial view);

Technique/Line	Estimated D.L.	Order	Type	Interferences (underlined Indicates severe)
ICP-OES 189,989 nm	0.03 / 0.003 µg/mL	1	ion	
ICP-OES 242.949 nm	0.1 / 0.01 µg/mL	1	atom	W. MorRh Ia, Co Te, "Ru"O, "Pd"O
ICP-MS 120 amu	5 ppt	n/a	M	"Te, "Ru"O, "Pd"O

HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM

9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (OQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Portugal (APCER), Singapore (PSR), Slovenia (SIO), Spain (AFNOR), Switzerland (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the Integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 01, 2005

Expiration Date:

0122006 -

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Maida, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Pacholas Maide Known in Park Aaim

ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate o f analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Bismuth in 3.5% (abs) HNOs 2.0

Catalog Number:

CGBI1-1, CGBI1-2, and CGBI1-5

Lot Number:

Matrix:

X-BI01091

Starting Material:

Bi needles

Starting Material Purity (%):

99.999090

INORGANIC LABS/RADCHEM LABS 3.142

Starting Material Lot No.

G25L16

EXPIRED: 08/01/2005 VOS

3.5% (abs) HNO3

DATE OPENED: _______________ INORG: 4658 PD: E5347

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

999 ± 2 µg/mL

Certified Density:

1.026 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C)I = mean

x_i = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(e_1 + s_1)^2]^{1/2}$

BS = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

999 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3106 Lot Number: 991212

Assay Method #2

1003 µg/mL

Gravimetric NIST SRM Lot Number; See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q Al 0.00012	<u>M</u> Dy < 0.01202	<u>O</u> Li < 0.00002 <u>M</u> Pr < 0.00060	<u>M</u> Te < 0.06008
<u>M</u> Sb < 0.00100	M Er < 0.01001	<u>M</u> Lu < 0.00080 <u>M</u> Re < 0.00200	M Tb < 0.00060
M As < 0.02003	M Eu < 0.00601	<u>O</u> Mg 0.00070 <u>M</u> Rh < 0.00200	M TI < 0.00200
<u>M</u> Ba < 0.02003	M Gd < 0.00200	Q Mn < 0.00020 <u>M</u> Rb < 0.00200	<u>M</u> Th < 0.00200
M Be < 0.00100	<u>M</u> Ga < 0.00200	<u>O</u> Hg < 0.01500 <u>M</u> Ru < 0.00401	<u>M</u> Tm < 0.00080
<u>s</u> Bi	M Ge < 0.01202	M Mo < 0.00401 M Sm < 0.00200	M Sn < 0.01001
<u>M</u> B < 0.14018	M Au < 0.00601	M Nd < 0.00401 M Sc < 0.02003	M Ti < 0.10013
Q Cd 0.00017	M Hf < 0.00401	M Ni < 0.01602 M Se < 0.01602	<u>M</u> W < 0.02003
<u>O</u> Ca 0.00245	M Ho < 0.00100	M Nb < 0.00100 Q Si 0.00105	<u>M</u> U < 0.00401
<u>M</u> Ce < 0.01001	<u>O</u> In 0.00105	<u>n</u> Os <u>M</u> Ag < 0.00401	<u>M</u> V < 0.00401
M Cs < 0.00060	M ir < 0.01001	<u>O</u> Pd < 0.00400 · <u>O</u> Na 0.00240	M Yb < 0.00200
O Cr 0.00020	<u>Q</u> Fe 0.00014	<u>O</u> P < 0.01000 <u>M</u> Sr < 0.00100	<u>M</u> Y < 0.08011
M Co < 0.00601	M La < 0.00100	M Pt < 0.00401 Q S < 0.03000	Q Zn 0.00008
O Cu 0.00014	O Pb 0.00135	Q K 0.00039 M Ta < 0.01402	<u>M</u> Zr < 0.01001
M - Checked by ICP-MS	O - Checked by ICP-OES	I - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4.70. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 208.9804; +3, 6; Bi(O)(H₂O),"

Chemical Compatibility - Stable in HCl, HNO₂, H,SO, and HF. Awaid basic media forming insoluble hydroxide. Stable with most metals and inorganic anions in acidic media. Many salts that are insoluble in water are soluble in HCl, HNO₂ and HF. The major problem with 50° is its tendency to hydrolyze at higher concentrations or in dilute acid. Nitric acid solutions should be 5% to hold the Bi in solution in the 100 to 10000 µg/mL concentration range

Stability - 2-100 ppb levels stable for months in 1 % HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 5 - 7% HNO, /LDPE container.

Bi Containing Samples (Preparation and Solution) - Metal (soluble in HNO,); Oxides (Soluble in HNO,); Alloys (Dissolve in conc. 4:1 HCl /HNO, Heating may be required.) Organic based (dry ash at 450 € and dissolve ash in HNO, or acid digestion with conc. hat sulturic acid adding hydrogen peroxide dropvise and carefully until clear.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at aboncs.)
ICP-OES	223.061 nm	0.04 / 0.005 µg/ml.	1	atom	Th, Ir, Ti Cu
ICP-OES	306.772 nm	0.08 / 0.01 µg/mL	1	atom	<u>Th</u> , U, Zr, Hf, Fe
ICP-OES	222.825 nm	0.1 / 0.02 µg/mL	1	atom	Cr, Hf, Ce, Os
ICP-MS	209 amu	2 ppt	n/a	Μ.	130 P. P. C.

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	S/RADCHEM LABS %,‰a
DATE RECEIVED:	
DATE EXPIRED:_	08/01/2005 VOS
DATE OPENED:	
	F0:_ <u>F53*h7</u>

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 19, 2004

Expiration Date:

122005-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten knower an Paux Aain

3.0

ventures labs inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: lysales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Custom-Grade 1000 µg/mL Lanthanum in 1.4% (abs) HNO3

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

2.0			, ,
	Catalog Number:	CGLA1-1 and CGLA1-5	
	Lot Number:	W-LA01094	
	Starting Material:	1 2003	

Starting Material Purity (%): 99.991832 Starting Material Lot No RP-LA-0-5-017

DESCRIPTION OF CRM

INORGANIC LABS/RADCHEM LABSR 146 Matrix: 1.4% (abs) HNO₃ DATE RECEIVED: 09/01/04

DATE EXPIRED: 10/01/2005 405 DATE OPENED: ________ **CERTIFIED VALUES AND UNCERTAINTIES** INDRG: 4763 FO: 753434

Certified Concentration: $1003 \pm 3 \, \mu g/mL$

1.010 g/mL (measured at 22° C) **Certified Density:**

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certifled Value (C) = grx1 (C)∃= mean

x_i = individual results

n = number of measurements

ES = The summation of all significant estimated errors. Uncertainty (±) = $2[(e_2 \cdot s_1)^2]^{1/2}$ (Most common are the errors from instrumental measurement.)

weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 $1003 \pm 3 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2 $1003 \pm 4 \mu g/mL$

ICP Assay NIST SRM 3127a Lot Number: 890402

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>M</u> Al < 0.00992	M Dy < 0.00595	<u>O</u> Li < 0.00002	M Pr < 0.00030	M Te < 0.02975
<u>M</u> Sb < 0.00050	<u>M</u> Er < 0.00496	<u>M</u> Lu < 0.00040	M Re < 0.00099	<u>M</u> Tb < 0.00030
M As < 0.00992	<u>M</u> Eu < 0.00298	O Mg 0.00281	M Rh < 0.00099	M TI < 0.00099
M Ba < 0.00992	Q Gd < 0.00080	<u>O</u> Mn < 0.00002	M Rb < 0.00099	<u>M</u> Th < 0.00099
<u>M</u> Be < 0.00050	<u>M</u> Ga < 0.00099	į Hg	M Ru < 0.00198	M Tm < 0.00040
<u>M</u> Bi < 0.00040	M Ge < 0.00595	<u>M</u> Mo < 0.00198	<u>M</u> Sm < 0.00099	<u>M</u> Sn < 0.00496
<u>O</u> B < 0.03600	<u>M</u> Au < 0.00298	M Nd 0.00020	Q Sc < 0.00003	<u>M</u> Ti < 0.04958
M Cd < 0.00298	<u>M</u> Hf < 0.00198	<u>M</u> Ni < 0.00793	M Se < 0.00793	<u>M</u> W < 0.00992
<u>O</u> Ca 0.00903	<u>M</u> Ho < 0.00050	M Nb < 0.00050	<u>O</u> Si < 0.01000	<u>M</u> U < 0.00198
O Ce < 0.00300	<u>M</u> in < 0.00992	<u>n</u> Os	<u>M</u> Ag < 0.00198	<u>O</u> V < 0.00080
M Cs < 0.00030	<u>M</u> Ir < 0.00496	<u>M</u> Pd < 0.00496	Q Na < 0.05000	<u>M</u> Yb < 0.00099
M Cr < 0.00496	Q Fe < 0.00150	<u>n</u> P	Q Sr < 0.00004	<u>M</u> Y < 0.03966
M Co < 0.00298	<u>s</u> La	M Pt < 0.00198	Q S < 0.04300	<u>Q</u> Zn 0.10539
<u>M</u> Cu < 0.00595	M Pb < 0.00298	<u>O</u> K < 0.10000	<u>M</u> Ta < 0.00694	<u>O</u> Zr < 0.00070
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 138.9055; +3, 6 to 8, 9,10 for some compounds; Le(OH),(H₂O),¹⁹⁴

Chemical Competibility - Soluble in HCl, and HNO₂. Avoid HF, H₂PO₄ H₃SO₄ and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride and sparingly soluble sulfates (La -Eu exhibit low sulfate solubility). Avoid mixing with elements / solutions containing moderate amounts of fluoride.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5 % HNO, / LDPE container.

La Containing Samples (Preparation and Solution) - Metal (Soluble in acids), Oxide (Dissolved by heating in H₂O / HNO₃), Ores (Carbonate fusion in Pt[®] followed by HCl dissolution), Organic Matrices (Dry ash and dissolve in 1:1 H₂O / HCl or HNO₃).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

<u>Technique/Line</u>	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at valloncs.)
ICP-OES 333.749 nm	0.01 / 0.001 µg/mL	1	ion	
ICP-0ES 408.672 nm	0.01 / 0.001 µg/mL	1	ion	Th
ICP-OES 412.323 nm	0.01 / 0.001 µg/mL	1	ion	Ce, Th
ICP-MS 139 amu	1 ppt	n,ta	M'	'æŚb"O, '≊Te'®O

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Portugal (APCER), Singapore (PSR), Slovenia (SIO), Spain (AFNOR), Switzerland (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 09/01/04
DATE EXPIRED:10/01/2005_V03
DATE OPENED:O9/OVOT
TNORG: 4763 FO: E53434

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: October 23, 2003

Expiration Date:

1,2005-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Strutten known an Park Lains

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 10000 μg/mL Sodium in 1.4% (abs) HNO3

Catalog Number:

CGNA10-1, CGNA10-2, and CGNA10-5

Lot Number:

W-NA03010

Starting Material:

Na2CO3

Starting Material Purity (%):

99.999819

INORGANIC LABS/RADCHEM LABS/8-14-2

Starting Material Lot No

42063

DATE RECEIVED: ____OT/29/04

Matrix:

1.4% (abs) HNO₃

DATE EXPIRED: 08/01/3005 WOT DATE OPENED: 07/39/04

INORG: 4657 PD: F53417

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $10,006 \pm 6 \mu g/mL$

Certified Density:

1.032 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (二) = exx

(□) = mean

x₁ = Individual results

n = number of measurements

Uncertainty (±) = 2[(2/5)]42

1/2 BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

10,006 ± 6 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

Assay Method #2

10,019 ± 33 µg/mL

ICP Assay NIST SRM 3152a Lot Number: 990907

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98, All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

,	•	١.	1	1
<u>O</u> Al < 0.00090	<u>M</u> Dy < 0.00600	<u>O</u> Li < 0.00003	M Pr < 0.00030	<u>M</u> Te < 0.02998
M Sb < 0.00050	M Er < 0.00500	M Lu < 0.00040	M Re < 0.00100	M Tb < 0.00030
M As < 0.00999	<u>M</u> Eu < 0.00300	O Mg 0.00010	M Rh < 0.00100	M TI < 0.00100
<u>M</u> Ba < 0.00999	M Gd < 0.00100	O Mn < 0.00003	M Rb < 0.00100	M Th < 0.00100
<u>O</u> Be < 0.00020	M Ga < 0.00100	O Hg < 0.01500	<u>M</u> Ru < 0.00200	M Tm < 0.00040
M Bi < 0.00040	Q Ge < 0.00150	M Mo < 0.00200	M Sm < 0.00100	M Sn < 0.00500
<u>O</u> B < 0.00060	Q Au < 0.00300	M Nd < 0.00200	<u>O</u> Sc < 0,00002	<u>Q</u> Ti < 0.00070
M Cd < 0.00300	M Hf < 0.00200	O Ni < 0.00230	<u>O</u> Se < 0.05000	<u>M</u> W < 0.00999
Q Ca 0.00050	M Ho < 0.00050	M Nb < 0,00050	<u>Q</u> Si < 0.00340	M U < 0.00200
M Ce < 0.00500	<u>M</u> in < 0.00999	n Os	<u>M</u> Ag < 0.00200	Q V < 0.00090
M Cs < 0.00030	<u>M</u> lr < 0.00500	M Pd < 0.00500	S Na	M Yb < 0.00100
M Cr < 0.00500	<u>Q</u> Fe < 0.00110	<u>Q</u> P < 0.04000	M Sr < 0.00050	M Y < 0.03997
M Co < 0.00300	M La < 0.00050	M Pt < 0.00200	Q S < 0.07200	Q Zn 0.00250
<u>O</u> Cu < 0.00140	M Pb < 0.00300	O K 0.04000	<u>M</u> Ta < 0.00700	M Zr < 0.00500
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional Intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 22,98977; +1; (6); Na'(aq) largely ionic in nature (Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCl, HNO_s, H₂SO₄ and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-40,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

He Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water). Ores (Lithlum carbonate fusion in graphite crucible followed by HCI dissolution - blank levels of Na in lithlum carbonate critical), Organic Matrices (Sulfuric /peroxide digestion or nitric/sulfuric/perchloric acid decomposition).

Atomic Spectroscopic Information (ICP-OES D.L.s ere given as radial/axial view);

I WALLED OD	tageter about an entremental and and are an entremental transfer and the second									
Technique/Line		Estimated D.L.	Order		Interferences funderlined indicates severe at affoncs.)					
ICP-OES	589.595 nm	0.07 / 0.00009 µg/ml.	-1	atom	2 [™] order rediation from R.E.s on some optical designs					
ICP-OES	588.995 nm	0.03 / 0.006 µg/mL	1	etom	2 [™] order rediation from R.E.s.on some optical designs					
ICP-OES	330.237 nm	2.0/0.09 µg/mL	1	atom	Pd. Zn					
ICP-MS	23 amu	310 ppt	n/a	M'	APT 12 ACB 12					

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION 10.0

010362

10.1 ISO 9001;2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- MIL-STD-45662A (Obsolete/Observed)

DATE OF CERTIFICATION AND PERIOD OF VALIDITY 11.0

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability, Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: October 27, 2003

Expiration Date:

INDRGANIC LABS/RADCHEM LABS 10,000 DATE RECEIVED: 07/29/04 DATE EXPIRED: 08/01/2005 VOX_ DATE OPENED: 07/29/04
INORG: 4657 FO: E53417

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

010363

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten known an Pout Lain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	1000 μg/mL Palladium in 3.3% (abs) HCl
	Catalog Number:	CGPD1-1, CG	PD1-2, and CGPD1-5
	Lot Number:	X-PD02027	•
	Starting Material:	Pd(NO3)2	
	Starting Material Purity (%):	99.999248	INORGANIC LABS/RADCHEM LABS
	Starting Material Lot No	11974A-00	DATE RECEIVED: _2/28/15A
	Matrix:	3.3% (abs)	DATE EXPIRED: XIIIA QQQ
		0.0 /0 (abs)	DATE OPENED: 208/05 PO: F55/48

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

> **Certified Concentration:** 1004 ± 1 µg/mL

Certified Density: 1.022 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\mathbf{x}) = $\sum \mathbf{x}$

DESCRIPTION OF CRM

(s) = mean

x_i = individual results

Uncertainty (±) = $2(\sum_{s})^{2/2}$

n = number of measurements

ΣS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRW certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 1004 ± 1 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3138 Lot Number: 990207

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

																h .			
Ō	ΑI		0.00400	М	Dy	<	0.00060	0	Li	<	0.04000	M	Pr	<	0.00003	ō	Te	<	0.01300
<u>0</u>	Sb	<	0.00500	М	Er	<	0.00050	<u>M</u>	Lu	<	0.00004	M	Re	<	0.00010	M	Tb	<	0.00003
Ō	As	<	0.01400	М	Eu	<	0.00030	Q	Mg	<	0.01100	Q	Rh	<	0.00600	M	π	<	0.00010
M	Ва	<	0.00100	M	Gd	<	0.00010	Q	Mn	<	0.00650	M	Rb	<	0.00010	W	Th	<	0.00010
ō	Ве	<	0.00009	М	Ga	<	0.00010	Q	Hg	<	0.01100	Q	Ru	<	0.00200	M	Tm	<	0.00004
M	Bi	<	0.00004	M	Ge	<	0.00060	W	Мо	<	0.00020	M	\$m	<	0.00010	Q	\$ n	<	0.00700
Q	В	<	0.00090	0	Au	<	0.00300	<u>M</u>	Nd	<	0.00020	ō	Sc	<	0.00009	0	Ti	<	0.00100
Q	Cd	<	0.00600	М	Hf	<	0.00020	Q	Ni		0.01800	М	Se	<	0.00080	М	W	<	0.00100
ō	Ca		0.00700	М	Но	<	0.00005	<u>M</u>	Nb	<	0.00005	ō	Si		0.00600	M	U	<	0.00020
M	Се	<	0.00050	Ω	ln	<	0.03300	<u>n</u>	Os			Ω	Ag	<	0.00670	M	٧	<	0.00020
M	Cs	<	0.00003	W	ir	<	0.00050	\$	Pd			Q	Na		0.01500	M	Yb	<	0.00010
Q	Cr		0.00450	ō	Fe		0.04600	<u>o</u>	P		0.00600	M	Sr	<	0.00005	M	Υ	<	0.00400
M	Со	<	0.00030	М	La	<	0.00005	Q	Pt	<	0.00600	Q	\$	<	0.02500	0	Zn	<	0.00060
Q	Cu		0.00360	М	Pb	<	0.00030 .	Q	κ	<	0.02000	M	Та	<	0.00070	M	Zr	<	0.00050
M - C	heck	ed	by ICP-MS	٥-	Che	cke	by ICP-OES	i - S	pectr	al l	nterference	n - 1	Not C	hec	ked For	8 -	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly seeled when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 106.42, +2; & Pd(H₂O),*

Chemical Compatibility - Stable in HCl, HNO₃, H₂SO₄, HF, H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media. Avoid contact with water soluble organics such as aldehydes since Pd²¹ is easily reduced.

Stability - 2-100 ppb levels. 2ppb Pd is stable for 1 day in 1% HNO₃ /LDPE container. 10 ppb is stable for 3 days in 1% HNO₃ /LDPE container. 100 ppb is stable for 3 fmonths in 1% HNO₃ /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ /LDPE container.

Pd Containing Samples (Preparation and Solution) - Metal (Soluble in HNO₃ or Aqua Regia), Oxides (Soluble in HCI), Ores (Dissolve in HCI/HNO₃).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/	<u>Line</u>	Estimated D.L.		Order	Type	Interferences (underlined in	dicates severe at = concs.)
ICP-OES	340.458 nm	0.04 / 0.003 µg/ml.	1	atom	Ce, 1	ľh, Zr	
ICP-OES	363.470 nm	0.05 / 0.007 µg/mL	1	atom			-20
ICP-OES	229.651 nm	0.07 / 0.004 jugjámil.	1	ion	Çо		504
ICD MC	105 amu	7 mmt		o io	M.	-αV*#3√1 820Λια∪	

ZOF

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

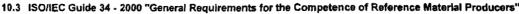
10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (QQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA). Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 13, 2004

Expiration Date: EXPIRES

010366

5045 30f4

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

Nick Maida, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

010367

Pacholas Maida Knowler an Park Lains

010368 inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Sulfur in H20

Catalog Number:

CGS1-1, CGS1-2, and CGS1-5

Lot Number:

X-S01069

Starting Material:

H2SO4

Starting Material Purity (%):

99.999965

INDRGANIC LABS/RADCHEM LABS 3.1 2 2 DATE RECEIVED: 12/4/04

Starting Material Lot No

N38818

19/09 F55100 WS 19/19

Matrix:

H₂0

INDRG: 49/7

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1007 \pm 7 \mu g/mL$

Certified Density:

1.000 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\mathbf{x}) = $\sum \mathbf{x}$

(s) = mean

 $x_i = individual results$

Uncertainty (±) = $2(\sum_{s})^{2/12}$

n = number of measurements

S = The summation of all significant estimated errors.
(Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

 $1012 \pm 2 \mu g/mL$

Acidimetric NIST SRM 84k Lot Number: 84k

Assay Method #2

 $1007 \pm 7 \mu g/mL$

ICP Assay NIST SRM 3154 Lot Number: 892205

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

			1	
Q Al 0.00025	<u>M</u> Dy < 0.01197	<u>O</u> Li < 0.00016	M Pr < 0.00060	<u>M</u> Te < 0.05984
<u>M</u> Sb < 0.00100	<u>M</u> Er < 0.00997	<u>M</u> Lu < 0.00080	<u>M</u> Re < 0.00200	<u>M</u> Tb < 0.00060
M As < 0.01995	<u>M</u> Eu < 0.00598	O Mg < 0.00004	M Rh < 0.00200	M TI < 0.00200
M Ba < 0.01995	M Gd < 0.00200	M Mn < 0.00798	M Rb < 0.00200	M Th < 0.00200
O Be < 0.00200	<u>M</u> Ga < 0.00200	Q Hg < 0.01100	<u>M</u> Ru < 0.00399	M Tm < 0.00080
<u>M</u> Bi < 0.00080	<u>M</u> Ge < 0.01197	<u>M</u> Mo < 0.00399	M Sm < 0.00200	<u>M</u> Sn < 0.00997
<u>O</u> B < 0.00990	M Au < 0.00598	M Nd < 0.00399	<u>M</u> Sc < 0.01995	M Ti < 0.09974
M Cd < 0.00598	<u>M</u> Hf < 0.00399	O Ni < 0.00230	<u>Q</u> Se < 0.00620	M W < 0.01995
<u>O</u> Ca 0.00020	<u>M</u> Ho < 0.00100	M Nb < 0.00100	<u>O</u> Si < 0.00410	<u>M</u> U < 0.00399
M Ce < 0.00997	<u>M</u> in < 0.01995	<u>n</u> Os	<u>M</u> Ag < 0.00399	<u>M</u> V < 0.00399
M Cs < 0.00060	<u>M</u> Ir < 0.00997	M Pd < 0.00997	Q Na < 0.00010	M Yb < 0.00200
M Cr < 0.00997	<u>O</u> Fe 0.00015	Q P < 0.00480	M Sr < 0.00100	M Y < 0.07979
<u>M</u> Co < 0.00598	M La < 0.00100	M Pt < 0.00399	<u>s</u> S	<u>Q</u> Zn 0.00125
M Cu < 0.01197	<u>M</u> Pb < 0.00598	<u>O</u> K < 0.00170	M Ta < 0.01396	M Zr < 0.00997
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 32.066; +6; & (O=), S(OH),

Chemical Competibility - Soluble in HCl, HNO,, H,PO, and HF aqueous matrices water and NH,OH. Stable with all metals and inorganic anions at low to moderate ppm levels under acidic conditions except Ba and Pb and to a lesser extent Sr, and Ca. Stability - 2-100 ppb levels - stability unknown- in 1 % HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in LDPE container.

S Containing Samples (Preparation and Solution) - We most often get questions about the determination of S in Rocks, Silicates and insoluble sulfates (the finely powered sample is fused in a Pt* crucible with a 6 times its weight of Na,CO, + 0.5 grams KNO. The fuseate is extracted with water. Any BaSO, present in the sample is transposed by the carbonate fusion to the BaCO, which is left behind in the water-insoluble residue. If PbSO, is present the fuseate should be boiled with a sodium carbonate saturated with CO, solution for 1 hour or more where the PbSO, will be transposed to the water insoluble carbonate which can be filtered off. Boiling the fuseate with a saturated carbonate solution is good insurance for samples containing Ba, Sr, and Ca. The Ba, Pb, Sr, Ca, tree filtrate can be additified and measured by ICP.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at = concs.)
ICP-OES	166.669nm	0.2 / 0.19 µg/ml.	1	atom	SI,B
ICP-OES	182.034 nm	0.3 / 0.024 µg/mL	1	atom	
ICP-OES	143.328 nm	0.4 / 0.035 µg/mL	1	atom	
ICP-MS	32 amu	30,000 ppt	n/a	М'	¹⁰₃, '™°⁰, '™'°⊘, "N°™O'H, '™°O'H

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC	LABS	/RADCH	EM	LABS	<i>Pg.</i> 2012
DATE	RECEI	VED: _	7.9	19/2	MODH.	
DATE	EXPIR	ED:	01/01/9	∞	1015 (or KE
			761			
INOR	i: 491	て ̄	PO:	Ŧ5	5169	

DATE OF CERTIFICATION AND PERIOD OF VALIDITY 11.0

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 30, 2004

Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folk Stutten knower an

3.0

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Thorium in 3% (abs) HNO3

Catalog Number:

CGTH1-1, CGTH1-2, and CGTH1-5

Lot Number:

X-TH01064

Starting Material:

Th(NO3)4x4H2O

Starting Material Purity (%):

99.998809

INDRGANIC LABS/RADCHEM LABS 73.10f a

Starting Material Lot No

X-25828-7

DATE RECEIVED: 1/03/04

Matrix:

3% (abs) HNO₃

DATE EXPIRED: 12/01/2005 VOS DATE OPENED: 12/02/03

CERTIFIED VALUES AND UNCERTAINTIES

INORG: 4844 PO: F54766

Certified Concentration: 99

 $998 \pm 3 \, \mu g/mL$

Certified Density:

1.022 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) = \sum_{x}

(s) = mean

 $x_i = individual results$

Uncertainty (±) = $2!(\sum_{s})^{s}$ 12

n = number of measurements

S = The summation of all significant estimated errors (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence Interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

998 ± 3 µg/mL

ICP Assay NIST SRM 3159 Lot Number: 992912

Assay Method #2

999 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

M	Al	<	0.00998	M	Dy	<	0.00599	Q	Li	<	0.05000	M	Pr	<	0.00030	<u>M</u>	Те	<	0.02995
<u>M</u> .	Sb	<	0.00050	М	Er	<	0.00499	М	Lu	<	0.00040	M	Re	<	0.00100	М	Tb	<	0.00030
M	As	<	0.00998	M	Eu	<	0.00300	Q	Mg	<	0.02000	M	Rh	<	0.00100	M	TI	<	0.00100
M	Ва	<	0.00998	М	Gd	<	0.00100	M	Mn		0.00049	М	Rb	<	0.00100	<u>\$</u>	Th		
M	Ве	<	0.00050	M	Ga	<	0.00100	i	Hg			М	Ru	<	0.00200	M	Tm	<	0.00040
М	Ві	<	0.00040	W	Ge	<	0.00599	М	Мо	<	0.00200	М	Sm	<	0.00100	М	Sn	<	0.00499
M	В	<	0.06987	М	Au	<	0.00300	M	Nd		0.00044	М	Sc	<	0.00998	М	TI	<	0.04991
M	Cd	<	0.00300	М	Hf	<	0.00200	M	Ni	<	0.00799	M	Se	<	0.00799	М	W	<	0.00998
Q	Ca	<	0.10000	М	Но	<	0.00050	М	Nb	<	0.00050	i	Si			M	U		0.00406
M	Се		0.00267	W	In	<	0.00998	n	Os			М	Ag	<	0.00200	M	٧	<	0.00200
M	Cs	<	0.00030	М	ir	<	0.00499	M	Pd	<	0.00499	Q	Na	<	0.05000	M	Yb	<	0.00100
M	Cr	<	0.00499	Q	Fe	<	0.05000	i	P			М	Sr	<	0.00050	М	Y	<	0.03993
M	Со	<	0.00300	М	La		0.00076	M	Pt	<	0.00200	i	S			М	Zn		0.00425
M	Çu	<	0.00599	M	Pb	<	0.00300	Q	K	<	0.03000	M	Ta	<	0.00699	<u>M</u>	Zr		0.01978
M - C	heck	ed	by ICP-MS	0-	Che	cke	by ICP-OES	i - S	pect	ral l	nterference	n - 1	Not (Che	cked For	s - :	Soluti	on	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For Interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 232.0381; +4; 8; Th(OH) " and Th(OH)." Chemical Compatibility - Soluble in HCI, and HNO₁. Avoid H,PO₋, H,SO₋ and HF although solubilities may not be a problem depending upon pH and matrix (For example: ThF₋ is soluble in acids). Avoid neutral to basic media. Th" is stable with most metals and inorganic anions forming an insoluble carbonate, oxide, fluoride, oxalate, sulfate and phosphate in neutral to slightly acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container, 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, / LDPE container.

Th Containing Samples (Preparation and Solution) - Metal (Soluble in Aqua Regia). Oxide (The heated oxide is not soluble in acids except hot cond. H.SO.); Ores (Ne,O, fusion at 480 ± 20°C for 7 minutes, cool and treat sintered mass with 50 mL cold water and stand until disintegrated. The mass is transferred to a beater and addited with HCI with 25 mL excess HCI added. Any residue is collected on a Whatman No. 42 filter, dried and ignited to 1000 °C in Pt* crucible and the ash treated with H.SO. / HF and funed. If residue remains, then treat it by permitted to 1000 °C.

and furned. If residue remains, then treat it by perceide fusion as above.)
Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

	Interferences (underlined indicates severe at # concs.)
CP-OES 283.730 nm 0.07 / 0.007 µg/mL 1 ion U, Zr	
ICP-OES 283.231 nm 0.07 / 0.007 µg/mil 1 ion U, Mo, Ti,	Fe, Cr
ICP-OES 274.716 nm 0.08 / 0.008 µg/mL 1 ion Ti, Ta, Fe	. V
ICP-MS 232 amu 1 ppt n/a M	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	RADCHEM LABS 13 a .
DATE RECEIVED:	
DATE EXPIRED:	13/01/3005 VOJ
DATE OPENED:	11/09/01
INORG: 4844	PD: F54766

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the Integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: June 24, 2004

Expiration Date:

112005-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Stullen knowen de Paux Dains

inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are ıls,"

	and label(s), ISO Guid	ance with ISO Guide 31-2000 (Reference Materials - Contents of certificates de 34-2000 "Quality System Guidelines for the Production of Reference Material "Certification of Reference Materials - General and Statisical Principles."
2.0	DESCRIPTION OF C	RM Custom-Grade 1000 µg/mL Uranlum in 1% (abs) HNOs
	Catalog Number: Lot Number: Starting Material: Starting Material Purit Starting Material Lot N Matrix:	Titulation of the state of the
3.0	CERTIFIED VALUES	AND UNCERTAINTIES
	Certified Concentrat	ion: 997 ± 2 μg/mL ·
	Certified Density:	1.007 g/mL (measured at 22° C)
	The Certified Value is base calculation of the certified v Certified Value (s) = $\sum_{n} v$ Uncertainty (\pm) = $2i\langle\sum_{n} v\rangle$	(x) = mean x _i = individual results n = number of measurements
4.0	TRACEABILITY TO	NIST AND VALUES OBTAINED BY INDEPENDENT METHODS
	national or international stated., 1993, definition 6.10) This IV product is Trace	a measurement or the value of a standard whereby it can be related to stated references, usually indured, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd eable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are not the SRM uncertainty error and the measurement, weighing and volume dilution errors.
	4.1 Assay Method	
	Assay Method	

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

																	1			
<u>M</u>	Al		0.05166		<u>M</u>	Dy	<	0.01494	М	Li	<	0.02490	M	Pr	<	0.00075	M	Te	<	0.07470
M	Sb	<	0.00125		<u>M</u>	Er	<	0.01245	M	Lu	<	0.00100	M	Re	<	0.00249	M	ďT		0.00003
M	As	<	0.02490	امع	M	Εu	<	0.00747	M	Mg	<	0.07470	M	Rh	<	0.00249	<u>M</u>	TI	<	0.00249
M	Ва	<	0.02490		M	Gd		0.00310	M	Mn	:	0.00083	M	Rb	<	0.00249	. <u>M</u>	Th	<	0.00249
M	Ве	<	0.00125		<u>M</u>	Ga	<	0.00249	į	Hg			M	Ru	<	0.00498	W	Tm	<	0.00100
M	Bi	<	0.00100		M	Ge	<	0.01494	M	Мо		0.00093	М	Sm		0.00010	Q	Sn	<	0.10000
M	8	<	0.17429		M	Au	<	0.00747	M	Nd	<	0.00498	M	Sc	<	0.02490	M	Ti		0.00258
M	Cd		0.00103		M	Hf	<	0.00498	M	Ni	<	0.01992	M	Se	<	0.01992	M	W	<	0.02490
<u>0</u>	Ca		0.05395		.М	Но		0.00052	M	Nb	<	0.00125	i	Sí			<u>s</u>	U		
<u>M</u>	Се		0.00010		M	in	<	0.02490	<u>n</u>	Os			M	Ag	<	0.00498	M	·V	<	0.00498
M	Cs	<	0.00075		<u>M</u>	ìr	<	0.01245	M	Pd	<	0.01245	0	Na		0.00664	<u>M</u>	Υb	<	0.00249
M	Cr	<	0.01245		M	Fe	<	0.49798	į	P			М	12	<	0.00125	M	. Y		0.00062
M	Со	<	0.00747		<u>M</u>	La		0.00145	M	Pt	<	0.00498	į	s			M	Zn		0.00114
M	Cu		0.00072		M	Pb		0.00217	į	K			M	Та	<	0.01743	М	Zr	<	0.01245
M - C	Check	ed	by ICP-MS	6	0-	Chec	kec	by ICP-OES	i - S	pect	ral I	nterference	n - t	Not C	hed	cked For	s - :	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly seeled when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Humber; Chemical Form in Solution - 238,0289; +6; 8; UO; (uranyl)

Chemical Competibility - Soluble in HCl and HNO₁. Avoid H,PO₂. H_sSO₂ and HF matrices should not be a problem depending upon [U]. Although the UO₂ in is distinctly basic, any U" will precipitate in basic media. UO₂ salts are generally soluble in water and UO₂ is stable with most metals and inorganic anions. The uranyl phosphate is insoluble in water. UF, and UF₂ are water soluble.

Stability - 2:100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 2:5% HNO, /LDPE container.

U Containing Samples (Preparation and Solution) - Metal (Dissolves repidly in HCI and HNO₂). Oxide (Soluble in HNO₂); Ores (Digest for 1-2 hours with 1 gram of creto 30 mL 1:1 HNO₂. Silica insolubles are removed by filtration after bringing the sample to turnes with conc. H₂SO₄.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu	e/Line	Estimated D.L.	<u>Order</u>	Type	<u>Interferences (</u> underlined indicates severe at ≠ concs.)
ICP-OES	385.956 nm	0.3 / 0.01 µg/mL	1	ion	Th, Fe
ICP-OES	367.007 nm	0.3 / 0.02 µg/mL	1	ion	Th, Ce
ICP-OES	263,553 nm	0.3 / 0.01 µa/mL	1	ion	Ce, Ir, Th, Rh, W, Zr, Ta, Ti, V, Hf, Fe, Re, Ru
ICP-MS	238 amu	2 ppt	n/a	Μ'	**Pb¹Ox

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for Information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001;2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 15, 2004

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Stutten knowen an Park Asim

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Tungsten in 1% (abs) HNO3/1% (abs) HF

Catalog Number:

CGW1-1 and CGW1-5

Lot Number:

W-W01082

Starting Material:

W Powder

Starting Material Purity (%):

99.990703

Starting Material Lot No

21418,C31H46,D02J21,E03K06,D11F29

Matrix:

1% (abs) HNO3/1% (abs) HF

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1001 \pm 3 \mu g/mL$

Certified Density:

1.007 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C)≡ mean

x_i = individual results

n = number of measurements

Uncertainty (±) = 2[(275,)*]1/2

1/2 ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

© "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This fV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1001 ± 3 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3163 Lot Number: 990209

Assay Method #2

1001 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

INORGANIC LABS/RADCHEM LABS \$3 \(\alpha \)

DATE RECEIVED: \(\text{OT/QY/QY} \)

DATE EXPIRED: \(\text{OS/QY/QY} \)

DATE OPENED: \(\text{OT/QY/QY} \)

INORG: \(\text{460} \)

PO: \(\text{F53HI} \)

- 4.2 BALANCE CALIBRATION All balances are checked dally using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

			1	1			1					1				l			
Q	Αŀ		0.01792	M	Dy	<	0.00595	Q	Li	<	0.00008	M	Pr	<	0.00030	W	Te	<	0.02974
M	Sb	<	0.00050	М	Er	<	0.00496	<u>M</u>	Lu	<	0.00040	i	Re			M	Tb	<	0.00030
M	As	<	0.00991	M	Εŧ	۰ <	0.00297	Q	Mg		0.00120	M	Rh	<	0.00099	M	TI	<	0.00099
M	Ва	<	0.00991	M	G	'	0.00099	M	Mn	<	0.00397	M	Rb	<	0.00099	М	Th	<	0.00099
M	Ве	<	0.00050	М	G	a <	0.00099	Q	Hg	<	0.04778	M	Ru	<	0.00198	M	Tm	<	0.00040
M	Bi	<	0.00040	M	G	e <	0.00595	M	Мо		0.00050	М	Sm	<	0.00099	M	Sn	<	0.00496
Q	В	<	1.19460	M	Αı	; <	0.00297	M	Nd	<	0.00198	0	Sc	<	0.00036	М	Ti		0.00198
<u>M</u>	Cd	<	0.00297	M	H	: <	0.00198	M	Ni	<	0.00793	M	Se	<	0.00793	<u>s</u>	W		
Q	Са		0.00080	M	н	o <	0.00050	<u>O</u>	Nb	<	0.06371	ō	Si	<	0.01354	M	บ	<	0.00198
M	Се	<	0.00496	M	in	<	0.00991	D	Οs			M	Ag	<	0.00198	M	٧	<	0.00198
M	Cs	<	0.00030	M	۱r	<	0.00496	M	Pd	<	0.00496	ō	Na		0.04778	M	Yb	<	0.00099
M	Cr	<	0.00496	0	F	9 9	0.03982	ם	Р			М	Sr	<	0.00050	W	Y	<	0.03965
M	Со	<	0.00297	W	L	9 <	0.00050	M	Pt	<	0.00198	<u>n</u>	s			M	Zn	<	0.01983
M	Cu	<	0.00595	M	P	b	0.00060	Q	K		0.03146	Q	Ta	<	0,39820	M	Zr		0.00079
M - C	heck	ed	by ICP-MS	0-	Ch	ecke	ed by ICP-OES	i - S	Spect	rai	Interference	n -	Not (he	cked For	s -	Solut	ion	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 183.85; +6; 6,7,8,9 WOF, Chemical form as

Charrical Compartibility - W is very readily hydrolyzed requiring 0.1 to 1% HF solutions for stable acidic solutions. The WOF, is soluble in % levels of HCl and HNO, provided it is in the WOF, form. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths. Is best to be mixed only with other fluorinated metals (Ti, Zr, Ht, Nb, Ta, Mo, Si, Sh, Ge). Look for yellow WO, precipitate if mixed with other transition elements at higher levels indicating instability. The yellow WO, will form over a period of weeks even in trace HF, therefore, HF levels of W multi- element blends should be ~ 1 %. Stability - 2-100 ppb levels stable (Alone or mixed with all other metals that are at comparable levels) as the WOF, for months in 1% HNO, /LDPE container. 1-10,000 ppm single element solutions as the WOF, or chemically stable for years in 1% HF in an LDPE container.

W Containing Samples (Preparation and Solution) - Metal (Soluble in HF / HNO₃); Oxide (Soluble in HF or NH.OH); Organic Matrices (Dry ash at 450 ℃ in Pt* and dissolve oxide with HF).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line ICP-OES 207.911 nm ICP-OES 224.875 nm Estimated 0.L. 0.03 / 0.001 µg/mL Interferences (underlined indicates severe et «Doncs.) Ru, In Type Order 0.05 / 0.005 µg/mL ion Co, Rh, Ag ICP-OES 209.475 nm 0.05 / 0.005 µg/mL ion Мо 14FY160 ICP-MS 182 amu 5 ppt n/a

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (QQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Reduced (APOSE), Signature (APOSE), S

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

Reference Materials Production - Accredited A2LA Certificate Number 883.02
 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGA	ANIC LABS	/RADCHEM	LABS Ps. a of a
DATE RE	ECEIVED:_	07/29/5	<u> </u>
DATE E	XPIRED:	08/01/80	005 VES
		07/29/0	
INORG:	4660	PO:E	53417

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: December 18, 2003

Expiration Date:

192005-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten Knowlen der Pour Lain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade	1000 μg/mL Yttrium in 1.4% (abs) HNO3
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	Y-QY01107 Y2O3	INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 1/31/05 DATE EXPIRED: 3/1/2006 DK
			THIPPE SOAD PD. ECC/30

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration: 998 ± 2 µg/mL

Certified Density: 1.011 g/mL (measured at 22° C)

The Certified Value is the wet assay value. The following equations are used in the calculations of the certified value and the uncertainty:

Certified Value (3) = Σ_{X_1}

DESCRIPTION OF COM

(X) = mean

x. = individual results

n = number of measurements

Uncertainty (±) = $2\{(\sum_{s,j'})^{n_j}\}^{n_j}$

 Σ_{s_1} = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST

SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assav Method #1 996 ± 2 µg/mL

ICP Assay NIST SRM 3167a Lot Number: 790412

Assay Method #2

998 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al < 0.00090	M Dy 0.00030	Q Li < 0.00002	M Pr < 0.00030	<u>M</u> Te < 0.02985
<u>M</u> Sb < 0.00050	M Er < 0.00498	M tu < 0.00040	M Re < 0.00100	M Tb 0.00099
<u>M</u> As < 0.00995	<u>M</u> Eu 0.00027	Q Mg 0.00001	M Rh < 0.00100	M TI < 0.00100
<u>M</u> Ba < 0.00995	<u>M</u> Gd < 0.00100	Q Mn < 0.00002	M Rb < 0.00100	M Th < 0.00100
<u>M</u> Be < 0.00050	<u>M</u> Ga < 0.00100	Q Hg < 0.02000	M Ru < 0.00199	<u>M</u> Tm 0.00007
<u>M</u> BI < 0.00040	M Ge < 0.00597	<u>M</u> Mo < 0.00199	M Sm 0.00014	<u>M</u> Sn < 0.00498
<u>O</u> B < 0.00100	M Au < 0.00299	M Nd 0.00008	Q Sc < 0.00003	<u>M</u> Ti < 0.04976
<u>M</u> Cd < 0.00299	<u>M</u> Hf < 0.00199	M Ni < 0.00796	M Se < 0.00796	<u>M</u> W < 0.00995
Q Ca 0.00026	M Ho 0.00006	M Nb < 0.00050	<u>Q</u> Si 0.00016	<u>M</u> U < 0.00199
<u>M</u> Ce 0.00010	M in < 0.00995	n Os	Q Ag < 0.02000	<u>O</u> V < 0.00080
<u>₩</u> Cs < 0.00030	<u>M</u> Ir < 0.00498	<u>O</u> Pd < 0.10000	Q Na < 0.05000	M Yb 0.00028
M Cr < 0.00498	<u>O</u> Fe 0.00079	<u>O</u> P < 0.07000	Q Sr < 0.00004	<u>\$</u> Y
<u>M</u> Co < 0.00299	M La 0.00025	M Pt < 0.00199	O S < 0.04300	<u>O</u> Zn < 0.00040
<u>M</u> Cu < 0.00597	M Pb < 0.00299	Q K < 0.10000	<u>M</u> Ta < 0.00697	Q Zr < 0.00070
M - Checked by ICP-M	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly seded when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do

not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Formin Solution - 88.9059; +3, 8, Y(OH)(HzO)x²² Cherrical Compatibility - Soluble in HCl, HzSO and HNOs. Avoid HF, HzPO and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

Stability - 2.100 ppb levels stable for months in 1% HNO3/LDPE container. 1-10,000 ppm solutions chemically stable

for years in 2-5% HNO3/LDPE container.

Y Containing Samples (Preparation and Solution) - Metal (Soluble in acids), Oxide (Dissolve by heating in HzO/ HNOa); Ores (Carbonate fusion in Pt⁰ followed by HCI dissolution); Organic Matrices (Dry ash and dissolve in 1:1 HzO / HCI or HNO3).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	Type	interferences (underlined indicates severe)
ICP-OES	360.073 nm	0.005 / 0.000036 µg/ml.	1	ion	Ce, Th
ICP-OES	371.030 nm	0.004 / 0.00007 µg/mL	1	ion	Ce
ICP-OES	377.433 nm	0.005 / 0.0009 µg/mL	1	ioņ	Ta, Th Ge O. "Hi"
ICP-MS	89 amu	1qq 8.0	rva	M	'ਫਿੰ• ਰੈ, ''ਜਿ1''

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous. 9.0

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (OQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), . Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA). Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: January 19, 2005

Expiration Date:

. 01 2006 -

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, Production Manager

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Klebbie Newson Knowen an Park Lain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 10	00 μg/mL Zirconium in H₂0 tr. HNO₃ tr. HF
	Catalog Number: Lot Number: Starting Material:	CGZR1-1 and CG W-ZR01056 ZrO2	ZR1-5
	Starting Material Purity (%):		
	Starting Material Lot No Matrix:	22855 H20 tr. HNO3 t	: HF DATE RECEIVED: 01/03/04
3.0	CEPTIFIED VALUES AND	IINCEDTAINTIES	DATE EXPIRED: 08/01/3005 VOS

DESCRIPTION OF CRM

Certified Concentration:

01/23/04 INORG: 4442 PD: F57306

Certified Density: 0.999 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (= exx (C) = mean

x₁ = individual results

n = number of measurements

Uncertainty (±) = $2|(e_1 \cdot s_1)^2|^{1/2}$ BS = The summation of all significant estimated errors.

1004 ± 2 µg/mL

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of compansons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 1004 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3169 Lot Number: 990109

Assay Method #2 1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q AI 0.01416	<u>M</u> Dy < 0.01188	<u>O</u> Li < 0.00012	<u>M</u> Pr < 0.00059	<u>M</u> Te < 0.05942
M Sb < 0.00099	M Er < 0.00990	<u>M</u> Lu < 0.00079	<u>M</u> Re < 0.00198	M Tb < 0.00059
M As < 0.01981	M Eu < 0.00594	Q Mg < 0.00012	M Rh < 0.00198	M Ti < 0.00198
M Ba < 0.01981	M Gd < 0,00198	Q Mn < 0.00401	M Rb < 0.00198	M Th < 0.00198
Q Be < 0.40048	<u>M</u> Ga < 0.00198	Q Hg < 0.04405	M Ru < 0.00396	M Tm < 0.00079
M Bi < 0.00079	M Ge < 0.01188	<u>O</u> Mo < 0.40048	<u>M</u> Sm < 0.00198	<u>M</u> Sn < 0.00990
M B < 0.13864	M Au < 0.00594	M Nd < 0.00396	<u>O</u> Sc < 0.00064	Q Ti < 0.16019
Q Cd < 0.02123	M Hf 0.04403	<u>O</u> Ni 0.01214	M Se < 0.01585	M W < 0.01981
Q Ca 0.00809	<u>M</u> Ho < 0.00099	Q Nb < 0.08010	<u>Q</u> Si < 0.80096	M U < 0.00396
M Ce < 0.00990	M In < 0.01981	n Os	Q Ag < 0.40048	M V < 0.00396
M Cs < 0.00059	<u>M</u> Ir < 0.00990	M Pd < 0.00990	Q Na < 0.02803	<u>M</u> Yb < 0.00198
O Cr < 0.00881	Q Fe 0.00344	<u>O</u> P < 0.01922	M Sr < 0.00099	Q Y < 0.00401
M Co < 0.00594	<u>M</u> La < 0.00099	M Pt < 0.00396	Q S < 0.28033	<u>Q</u> Zn < 0.04005
M Cu < 0.01188	M Pb < 0.00594	Q K < 0.00681	M Ta < 0.01386	<u>s</u> Zr
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling. Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 91.224; +4; 6,7,8 Zr(F).

Chemical Compatibility - Soluble in concentrated HCI, HF, H, SO. (very hot.) and HNO. Avoid H, PO. and neutral to basic media. Unstable at ppm levels with metals that would pull F away (i.e. Do not mix with Alkeline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions but precipitation with phosphate, oxalate, and lartrate with a tendency to hydrolyze forming the hydrated oxide in all dilute acids except HF

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the Zr(F), + Zr(OH), F, for months in 1 % HNO, / LDPE container. 1-10,000 ppm single element solutions as the Zr(F), chemically stable for years in 2-5% HNO, /trace HF in an LDPE container.

Zr Containing Samples (Preparation and Solution) - Metal (Solutie in H,O / HF / HNO₂); Oxide - unlike TiO, the ZrO₂ is best fused in one of the following ways (Na₂O₂ in Ni*, Na₂CO₂ in Pt* or Borax in Pt*), Organic Matrices (Dry ash at 450 °C in Pt* and dissolve by fusing with Na,CO, and dissolving in HF /HNO, /H,O).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line ICP-OES 343.823 nm Estimated D.L. 0.007 / 0.0004 µg/mL 0.008 / 0.0007 µg/mL Interferences (underlined indicates severe at autonos.) Hf, No <u>Order</u> Type ion ICP-OES 339.198 nm Th. Mo ion Cr. V, Th, W
"Ge"O, "Se"O,['"X'' (where X = H1, Ta, W)] ICP-OES 272.261 nm 0.018 / 0.001 µg/mL 1 ion ICP-MS ηa Μ. 90 amu 2 ppt

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA) Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of iQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10,3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS/	RADCHEM LABSP3-343
DATE RECEIVED:	£9).26\(\(\text{i}\)
DATE EXPIRED:	01/33/04 08/1/3005 VOS
	01/23/04
	PO: F53300

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 19, 2003

Expiration Date:

EXPIRES 0102035

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fold Stutten Knowlin de Park Aain SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 050426-3

SRR: 27509 SDG: 262217 CASE: CNWRA

VTSR: April 25, 2005 PROJECT#: 06002.01.242

Pipette Calibrations

Book/Page <u>04 01</u>5

SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log 010393 #:______ Thermometer #: ______ diH20 Temperature (°C):______ 23

Balance #: /2

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)
Lab30	1000	1.0085	1.0081	1.0088
TMA1	1000	1.0049	1.0038	1.0004
TMA2	1000	1.0078	1,0054	1.0028
TMA3	1000	Not	Found	
TMA6	1000	1.0076	1.0059	1.0040
TMB1	900	0.9084	0.9025	0.9001
TMC1	800	0.8049	0.7961	0.08030 4-15-0
TMDD1	750	0.7514	0.7494 0.495	0.7470
TMD1	700 8.69	0.7024 445	5-0-76130.7043	0.7024 0.6967
TMD2	700	0.7024	0.7043	0.7024
TME1	600	0.5956	0.5967	0.5941
TMF2	500	0.4979	0.4982	0.4984
TMF5	500	0.5034	0.5003 KZ	50.40.5016
ICF1	500 445-05	0.50.4985	0.4974	0.4938
L30-500	500	0.5011	0.5016	0.5016
TMG3	400	0.3933	0.3935	0.3921
TMH1	300	out	of	Service
TMH2	300	0.2916	0.2965	0.2965
TMJ1	250	0.2476	0.2477	0.2478
TMJ2	250	0.2486	0.2483	0.2477
TMJ3	250	0.2489	0.2499	0.2497
TMK2	200	0.2000	0.2000	0.1998
TML1	150	0.1482	0.1480	0.1483
TMM1	120	0.120 1	0.1194	0.1191
TMN3	100	out	of	Service
ICN1	100	0.0996	6.0999	0.0996
TMQ1	80	0.0795	0.0799	0.0800
TMR1	70	out	of	Service
TMS1	60	out	of	Service
LAB-30A	50	Not	found	
TMU1	40	0.0402	0.0398	0.0400
TMU2	40	0.0406	0.0400	0.0397
TMV1	30	6.0297	0.0294	0.0297
L30-20	20	0.0203	0.0201	0.0260
TMW1	25	0.0248	0.0247	0.0246
TMY1	15	out	of	Service

Analyst: Duly E	Date: _	4-15-05	_
Reviewed by: Selv Wills	Date: _	4-15-75	_

SwRI – Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log

(Space provide for Inorganic Laboratories' Fixed Volume Pipette Verification Spreadsheet)

4/15/05 SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Spreadsheet

Eppendorf #	True Value (uL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
Lab30	1000	1.0085		1.0088	1.008	100.85
TMA1	1000	1.0049	1.0038	1.0004	1.003	100.30
TMA2	1000	1.0078	1.0054	1.0028	1.005	100.53
TMA3	1000	Out of Service				•
TMA6	1000	1.0076	1.0059	1.0040	1.006	100.58
TMB1	900	0.9084	0.9025	0.9001	0.904	100.41
TMC1	800	0.8049	0.7961	0.8030	0.801	100.17
TMDD1	750	0.7516	0.7494	0.7470	0.749	99.91
TMD1	700	0.6952	0.6955	0.6967	0.696	99.40
TMD2	700	0.7024	0.7043	0.7024	0.703	100.43
TME1	600	0.5956	0.5967	0.5941	0.595	99.24
TMF2	500	0.4979	0.4982	0.4984	0.498	99.63
TMF5	500	0.5034	0.5003	0.5016	0.502	100.35
ICF1	500	0.4985	0.4974	0.4938	0.497	99.31
L30-500	500	0.5011	0.5016	0.5016	0.501	100.29
TMG3	400	0.3933	0.3935	0.3921	0.393	98.24
TMH1	300	Out of Service				
TMH2	300	0.2976	0.2965	0.2965	0.297	98.96
TMJ1	250	0.2476	0.2477	0.2478	0.248	99.08
TMJ2	250	0.2486	0.2483	0.2477	0.248	99.28
TMJ3	250	0.2489	0.2499	0.2497	0.250	99.80
TMK2	200	0.2000	0.2000	0.1998	0.200	99.97
TML1	150	0.1482	0.1480	0.1483	0.148	98.78
TMM1	120	0.1201	0.1196	0.1191	0.120	99.67
TMN3	100	out	of	service	0.000	0.00
ICN1	100	0.0996	0.0999	0.0996	0.100	99.70
TMQ1	80	0.0795	0.0799	0.0800	0.080	99.75
TMR1	70	Out of Service				
TMS1	60	Out of Service				
LAB-30A	50	not	found		0.000	0.00
TMU1	40	0.0402	0.0398	0.0400	0.040	100.00
TMU2	- 40	0.0406	0.0400	0.0397	0.040	100.25
TMV1	30	0.0297	0.0294	0.0297	0.030	98.67
L30-20	20	0.0203	0.0201	0.0200	0.020	100.67
TMW1	25	0.0248	0.0247	0.0246	0.025	98.80
TMY1	15	Out	of	service		

FRM-246 (Rev 1/Mar 03)

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

Watter a Naugel 05/26/05 SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20		3 (3)			
ADJ200-A	100					
	200					
	20					
ADJ200-C	100					
	200					
	20					
ADJ200-D	100					
	200				-	
	20	0.0200	0.0198	0.0198	0.020	99.33
ADJ200-G	100	0.0998	0.0991	0.0983	0.099	99.07
	200	0.2012	0.2002	0.1977	0.200	99.85
	20	0.0204	0.0204	0.0202	0.020	101.67
ADJ200-H	100	0.0993	0.0993	0.0997	0.099	99.43
	200	0.1995	0.2000	0.1998	0.200	99.88
	20	0.0196	0.0200	0.0198	0.020	99.00
ADJ200-J	100	0.0994	0.0992	0.0996	0.099	99.40
	200	0.2011	0.2004	0.2003	0.201	100.30
	20					
ADJ200	100					
	200					
	20					
ADJ200	100					
	200					
	20					
ADJ200-K	100					
	200					

FRM-247a (Rev 3/Oct 03)

Book/page: U8 U10

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 010396

Balance #: 16 Thermometer #: 60 M diH20 Temperature (° C) 72.0

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
	ADJ200-A	100			
		200		\ \	59
		20		100	
	ADJ200-C	100		ost	
		200	and		
		20	1799		
	ADJ200-D	100	M.		
17		200	Z V		
0		20	0.0200	0.0198	0.0198
200	ADJ200-G	100	0.0988	0.0991	0.0983
2		200	0.2012	0.2002	0.1977
		20	0.0204	0.0204	0.0202
	ADJ200-H	100	0.0993	0.0993	0.0997
1		200	0.1995	0.2000	0.1998
0	· · · · · · · · · · · · · · · · · · ·	20	0.0196	0.0700	0.0198
20	ADJ200-J	100	0.0994	0.0992	0.0996
		200	0.2011	0.2004	0.7003
	Water and the first territories and the second and	20			
	ADJ200-K	100	·	1210	
	<u> </u>	200		16/DE 10	2
		20	1 Ag	100	
	ADJ200	100	Why		
		200	<u> </u>		

Analyst: Waster a. Margel-	Date:	05/02/05
Reviewed by: Vall Open	Date: _	05/96/05

Book/page:	08	<u> </u>
------------	----	----------

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010397

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20	0.0199	0.0200	0.0198	0.020	99.50
ADJ200-A	100	0.0998	0.1001	0.1002	0.100	100.03
	200	0.1996	0.1997	0.1997	0.200	99.83
	20					
ADJ200-C	100	OUT	OF	SERVICE		
	200					
	20					
ADJ200-D	100	OUT	OF	SERVICE	<u> </u>	
	200					
	20	0.0200	0.0202	0.0202	0.020 ધ્	100.67
ADJ200-G	100	0.0988	0.0992	0.0990	0.099 ∉	99.00
	200	0.1986	0.1990	0.1995	0.199	99.52
	20					
ADJ200-H	100					
	200					
	20				<u> </u>	
ADJ200-J	100					
	200					
	20					
ADJ200-K	100	GLOVEBOX-	NOT IN	USE		
	200					
	20					
ADJ200	100					
	200					
	20					
ADJ200	100					
	200					

FRM-247a (Rev 4/Apr 04)

Book/page: U8 U12

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 010398

Balance #: 34 diH20 Temperature (° C) 31

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20	. 0199	,0200	, 0198
	ADJ200-A	100	. 0998	.1001	, 1002
		200	- 1996	.1997	.1997
		20			V
	ADJ200-C	100	Cat	0 F	SEXUICE
		200			
		20	.0500	0202	,0202
	ADJ200-D	100	. 0988	.0992	. 0990
3		200	,1986	, 1990	,1995
		20			·
200μ	ADJ200-G	100			
7		200			
		20		(05	
	ADJ200-H	100		15-18-05	
I		200	(\/	V 3	
0		20	A		
20	ADJ200-J	100			
		200			
		20			
	ADJ200-K	100	GLOVE box-	- Not in	use
	Ę	200			
		20		QU5-18-05	
	ADJ200	100			
		200			

Date: 5-18-05

Date: 05/36/05

Book/page:	08	069	
------------	----	-----	--

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010399

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100				0.000	0.00
ADJ1000-C	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-D	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-E	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000-F	500				0.000 💒	0.00
	1000				0.000	0.00
	100	0.1017	0.1018	0.1017	0.102	101.73
ADJ1000-G	500	0.4934	0.4945	0.4960	0.495	98.93
	1000	0.9919	0.9960	0.9992	0.996	99.57
	100	0.1010	0.1013	0.1017	0.101	101.33
ADJ1000-H	500	0.4954	0.4990	0.4978	0.497	99.48
	1000	0.9969	0.9992	1.0071	1.001	100.11
	100	0.0995	0.0993	0.0996	0.099	99.47
ADJ1000-J	500	0.4961	0.4966	0.4967	0.496	99.29
	1000	1.0018	0.9998	0.9978	1.000	99.98
	100				0.000	0.00
ADJ1000	500				0.000	0.00
	1000				0.000	0.00
	100				0.000	0.00
ADJ1000	500				0.000	0.00
	1000				0.000	0.00

FRM-247b (Rev 2/Oct 03)

Book/page: U8 U70

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log $0\,1\,0\,4\,0\,0$

Balance #: 16 Thermometer #: 6011 diH20 Temperature (° C) 27.0

	Eppendorf#	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			7
l	ADJ1000-C	500			
		1000			
		100			1/
	ADJ1000-D	500		102) -
		1000		1	
		100			
	ADJ1000-E	500	L A	<i>Y</i>	
		1000	I I		
H		100	10.		
1000	ADJ1000-F	500	,		
9		1000			
10		100	0.1017	0.1018	0.1017
	ADJ1000-G	500	0.4934	0.4945	0.4960
'.		1000	0.9919	0.9960	0.9992
		100	0.1010	0.1013	0.1017
7	ADJ1000-H	500	0.4954	0.4990	0.49 /8
100		1000	0,9969	0.4492	1.00/1
1		100	0.0999	0.0993	0.0996
	ADJ1000-J	500	0.4961	0.4966	0.496)
	į	1000	1.0018	0.9998	0.9978
		100			
	ADJ1000-K	500			105
		1000		1 15/00	1
		100	1.14	A	
'	ADJ1000	500	1 10'		
		1000			

Analyst: Wollan a. Mag	Date:	05/02/05
Reviewed by: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Date: _	05/26/05

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100	0.1011	0.1016	0.1014	0.101	101.37
ADJ1000-C	500	0.4931	0.4919	0.4954	0.493	98.69
	1000	0.9945	0.9924	0.9916	0.993	99.28
	100	0.1018	0.1015	0.1019	0.102	101.73
ADJ1000-D	500	0.4960	0.5085	0.5028	0.502	100.49
	1000	1.0009	0.9998	0.9940	0.998	99.82
	100	0.1006	0.1001	0.1002	0.100	100.30
ADJ1000-E	500	0.5002	0.5001	0.4999	0.500	100.01
	1000	1.0012	0.9999	0.9999	1.000	100.03
	100	0.1014	0.1015	0.1012	0.101	101.37
ADJ1000-F	500	0.4959	0.4956	0.4962	0.496	99.18
	1000	0.9950	1.0040	0.9941	0.998	99.77
	100					
ADJ1000-G	500					
	1000				,	
	100				(C-X	
ADJ1000-H	500				G.	
	1000					
	100					
ADJ1000-J	500					
	1000					
	100					
ADJ1000-K	500	GLOVEBOX-	NOT IN	USE		
	1000					
	100					
ADJ1000	500					
	1000					

FRM-247b (Rev 3/Apr 04)

rnivi-24/0 (nev 3/Apr 04)

${}_{\text{Book/page:}} \underline{\text{U8 U72}}$ SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 010402

Balance #: _______ diH20 Temperature (° C) _______ 1

	Eppendorf #	True Value (μL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100	.1011	.10/6	.1014
	ADJ1000-C	500	, 4931	.4919	,4954
		1000	.9945	,9924	,9916
		100	.1018	,1015	.1019
	ADJ1000-D	500	4940	,5085	.5028
		1000	1.0009	. 9998	,9940
		100	.1006	1001	,1002
	ADJ1000-E	500	.5002	,5001	, 4999
		1000	1.0012	,9999	,9999
3		100	, 1014	.1015	,1812
1000	ADJ1000-F	500	, 4959	14956	4962
2		1000	,9950	1.0040	.9941
1		100			
	ADJ1000-G	500			
"		1000			
7		100			
(ADJ1000-H	500		0 25/80	<i>s</i>)
100		1000		0,0510	
1		100		4	
	ADJ1000-J	500		8	
		1000			
		100			
	ADJ1000-K	500	GLOVE BOX -	-not in use	
		1000			
		100	-	1605	
	ADJ1000	500	Qu)	31805	
		1000			

Analyst: Sun Wills	Date: 5-18-05
Reviewed by: 1000 algorithms	Date: 05/27/05

Book/page:	08	129

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010403

Warren A. Naegal: 05/26/05

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500				0.000	0.00
ADJ5000-C	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-G	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-H	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-I	2500				0.000	0.00
	5000				0.000	0.00
	500	0.5070	0.5055	0.5046	0.506	101.14
ADJ5000~J	2500	2.5064	2.5057	2.5038	2.505 🖑	100.21
	5000	5.0696	5.0245	5.0218	5.039	100.77
	500	0.5084	0.5098	0.5071	0.508	101.69
ADJ5000-K	2500	2.4846	2.4861	2.4895	2.487	99.47
	5000	5.0117	4.9884	4.9769	4.992	99.85
	500	0.5028	0.5053	0.5021	0.503	100.68
ADJ5000-L	2500	2.4953	2.4958	2.4917 4.9900	2.494 4.998	99.77 99.95
	5000	5.0105	4.9925	4.9900		
	500				0.000	0.00
ADJ5000	2500 5000				0.000	0.00
					0.000	0.00
	500					
ADJ5000	2500 5000				0.000	0.00
	500	·			0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00

FRM-247c (Rev 2/Mar 03)

Book/page: <u>U8 130</u>

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log $\,010404\,$

[Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			
[ADJ5000-C	2500			
[5000		,	
		500			
	ADJ5000-G	2500		1(6	
		5000		, all	
		500		APO	
	ADJ5000-H	2500			
[5000	M		
1 [500	WY.		
	ADJ5000-I	2500			
1	· · · · · · · · · · · · · · · · · · ·	5000			
1		500	0.5070	0.5055	0.5046
5000	ADJ5000-J	2500	2.5064	2.5057	2.5038
2		5000	5.0696	5.0245	5.0218
2		500	0.5084	0.5098	0.5071
	ADJ5000-K	2500	2.4846	2.486	2,4895
! ".		5000	5.017	4.9884	4.9 169
3		500	0.5028	0.5053	0.5021
	ADJ5000-L	2500	2.4953	7.4958	7.4917
2	<u></u>	5000	5.0105	4.9925	4.9900
500	```	500			7
	ADJ5000-M	2500			
		5000			
		500			1
	ADJ5000-N	2500		1	X
		5000		1961	
	AD 17000	500		roto	
	ADJ5000	2500	SA	1	
[5000	1	Χ	
-	AB 15000	500			
	ADJ5000	2500			
		5000			

Analyst: Wath a. Macgel:	Date: 05/07/05
Analyst: Walle a. Margel: Reviewed by: Dolor Ogen	Date: 05/26/05

Book/page: <u>U8 131</u>

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500	0.5068	0.5069	0.5089	0.508	101.51
ADJ5000-C	2500	2.4975	2.4968	2.4947	2.496	99.85
	5000	5.0011	5.0012	5.0063	5.003	100.06
	500					
ADJ5000-G	2500	OUT	OF	SERVICE	L	
	5000					
	500					
ADJ5000-H	2500	OUT	OF	SERVICE		
	5000					
	500	0.5022	0.5022	0.5030	0.502	100.49
ADJ5000-I	2500	2.4937	2.5089	2.4986	2.500	100.02
	5000	5.0089	5.0347	5.0038	5.016	100.32
	500					
ADJ5000-J	2500				L	
	5000					
	500					
ADJ5000-K	2500					
	5000				<u> </u>	
	500					Č.
ADJ5000-L	2500					
	5000					
	500					
ADJ5000-M	2500	GLOVEBOX-	NOT IN	USE		
	5000					
	500	0.5007	0.5041	0.5064	0.504	100.75
ADJ5000-N	2500	2.4780	2.4797	2.5042	2.487	99.49
	5000	5.0356	4.9964	4.9968	A .99 7	99.94
	500				5.0096	100-19
ADJ5000	2500				vo3	o5/a7/o5
	5000					
	500					
ADJ5000	2500					
	5000					

FRM-247c (Rev 3/Apr 04)

FRM-247c (Rev 3/Apr 04)

Book/page: <u>U8 132</u>

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log010406

Balance #: 34 Thermometer #: C-011 diH20 Temperature (° C) 31

ſ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500	.5068	,5069	,5089
	ADJ5000-C	2500	2.4975	.5069 2.4968	2.4947
		5000	5.0011	5.0012	5.0063
Ì		500			
	ADJ5000-G	2500	Out	o t	Struice
		5000			
		500			
	ADJ5000-H	2500	out	OF	SETUICE
l f		5000			
		500	,5022	15022	.5030
	ADJ5000-I	2500		2.5089	2.4986
		5000	5.4937 5.0089	5,0347	5.0038
7		500		·	
5000	ADJ5000-J	2500			
9		5000			
20		500		0 15-18	05)
	ADJ5000-K	2500		0) 5	
		5000			
		500			
17	ADJ5000-L	2500		U	
500	á s	5000			
12		500			
4,	ADJ5000-M	2500	Gloveher-	not in	u54
ł		5000			
1 [500	5007	.5041	5.5042 5.5042
1	ADJ5000-N	2500	2.4780	J.Y797	3.5012
		5000	5.0356	4.9964	4.9968
		500			
	ADJ5000	2500			—
		5000		0 35-18-6	þs'
		500		0 3500	
	ADJ5000	2500		1	
		5000			

Analyst: John Will	Date:	5-18-05
Reviewed by: 1000 R	Date:	05/27/05

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 050426-3

SRR: 27509 SDG: 262217 **CASE: CNWRA** VTSR: April 25, 2005

PROJECT#: 06002.01.242

Balance Calibrations

Southwest Research Institute Division 01 BALANCE VERIFICATION LOG

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
12	Bldg. 70 Lab 27	1122510787	±0.0005	COMMENTS.
Date	Std Wt (g)	Recorded Wt (g)	Operator	
5.9-05	2 .00cm	2.6000	KE	3N199-J50526-15
5-10-05	2.0000	7.0000	KE	~
5-11-05	2.0000	2.0000	KE	•
5-12-05	2.0000	2.0000	KE	7/
5-13-05	2,0000	Z ,6600	KÉ	
5-16-05	2.0000	2.0000	KE	1
5-17-05	710000	2,0000	KÉ	~
5-18-05	5,0000	2-000	9	-/
5-19-05	2.0600	2-6600	KE	~
If halance is out of lim	2,0000	5,000	KE	N

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 26 of 30

FRM-112 (Rev 2/Aug 03)

Southwest Research Institute® Division 01 BALANCE VERIFICATION LOG

DALANCE #	I OCATION.	CEDIAL #.	TOLERANCE:	COMMENTS:
BALANCE #:	LOCATION:	SERIAL #:	IULERANCE:	COMMENTS:
19	Bldg. 70 Lab 27	0068597	±0.05	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
5-17-05	10.00	10.00	ΚE	SU:99-J50624-5
5-18-05	jû ·00	10.00	Sel	
5-19-05	10.00	10.00	pe	pr .
5-20-05	10.00	10.00	KE	M
5-23-05	10.00	10.00	KE	11
5-24-05	10.00	10.00	KE	v
5-25-05	10.00	10.00	KĒ	
٠.				

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 21 of 30

FRM-112 (Rev 2/Aug 03)

Southwest Research Institute Division 01 **BALANCE VERIFICATION LOG**

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
34	Bldg. 70 Lab 27	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
5-10-05	2.0000	2.0000	KE	5N199-J50526-15
5-11-05	2.0000	2.0000	KE	~
5-12-05	2.0000	7.0000	145	٠.
5-13-05	2,000	1.9999	¥E	1/
5-16-05	2.0000	2,0000	KE	<u> </u>
52-17-05	2,0000	2,0000	KE	<i>M</i>
5-18-05	2.0000	2.0000	Ser	
5-19-05	2.000	2.0000	V KE	~
5-20-05	2.000	2 16600	KE	7/
5-23-05	7.0000	2,0000	KE	//

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 28 of 30

FRM-112 (Rev 2/Aug 03)

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 050426-3

SRR: 27509 SDG: 262217 CASE: CNWRA

VTSR: April 25, 2005 PROJECT#: 06002.01.242

DI Water Verification

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

010411

		RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
430/04 SISJIM	OR	18-114	V	4	~	1540.1	ALL OK
5/3/04 4:45 pm	DR	18,05	V	V	V	1552.6	Au olc
14/04 5: 20m	DR	18.05	V	<u></u>	レ	1570.8	
5/5/04 5:40em	DR	18.05)	V	V	1585,3	
5/6/64 6:35pm	PK	18-05	~)	<u>_</u>	1598,9	
5/7/04 5.18pm	OR	18,06	V)	~	1626.8	
TIDOY GIDGOM	DR	18.03	<i>i</i> —	V	V	1650.3	
111/04 6:37pm	DR	18.04	V	J	~	1666,5	
12/14 8.042m	DR	18.03	1	~	/	1680.1	
islay lideom	OR	18,04	V	V	2	1706.6	
7/14/04 6:00m	DR	18,04	V	X	/	1432.1	ruel P.O. CANIUSTiller
Koley 6:03 pm	DR	18.05	V	X	V	1754,0	met P.O.
118/04 GIASAM	DR	16,04	V	X)	1782.0	CAMPHAULLOU, S. Filto
19/14 Giozym	PR	18.03	レ	X	_	1815,4	washingon us Filher
Deloid Polem	OR	18,04	V	V	~	1829,3	TANV X chang. Bulling
104 6:33 pm	PR	18,03	<u></u>	<u></u>	L	1867,0	

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

		QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	QC 1	QC 2	(GALS)	COMMENTS
4/36/64 5:50 pm	pR	V	~	894.9	AU OK.
5/3/64 4346PM	DR	L	<i>ن</i>	895.3	
5/4/64 5:23,0m	pR	V	U	895,8	
5/5/04 5:40 pm	DR	V	V	897.3	
5/6/04 6.36.PM	PR	\vee		897.4	
5)7/64 5:190N	OR	V	7	898.0	
5/10/04 6:26pm	OR	V		898-1	
5/11/64 6:37 pm	DR	V	V	898.2	
5/12/04 ED9pm	DR	V	1	898.3	
5/13/04 11:20 pm	DR	~		898.5	
5/14/14 6:210m	DR	V	1	\$98.8	
5/17/04 6:2401	DR	V	V	899.8	
5/18/04 6:260M	pR	V (16,0)		902.1	
Flighty Gloom	DR	X /16.6)	V	904.5	Waiting on U.S. F. Har.
5120/64 12:630m	OR	V (15.0)	<u> </u>	908.1	TANK Xchange, Backenline.
561/04 623pm	OR	V/14.51		909.6	•

Legend: Check = Green (OK); X = Red (call for service)

FRM-019 (Rev 0/Jan 04)

SOUTHWEST RESEARCH INSTITUTE

010412

NUCLEAR PROJECT

CLIENT: Division 20

TASK ORDER: 050426-3

SRR: 27509 SDG: 262217

CASE: CNWRA

VTSR: April 25, 2005

PROJECT#: 06002.01.242

SURVEILLANCE REPORTS From Division 30

Institute Quality Assurance Surveillance Report

Project Number: 20.06002.01.031	Report Number: 2005-SR-0213	Page 1 of 1					
Surveillance Scope: Monitor the Tests for Trace Metal Analysis by ICP and ICPMS testing. The client is SwRI® Division 20 and this is a QA Nuclear surveillance.							
Reference Documents: Task Order 050	0325-1, 050428-3 and 050502-4.						
Starting Date: 6/01/2005	Ending Date: 6/0	1/2005					
Institute QA Representative: Mark R. E	Ehnstrom MEE						
Person(s) Conducting Test/Exam/Pro	cedure: Various Division 01 personnel						
task orders for Division 20. Test notes of to this testing. The sample Receipt and I included information such as Laboratory Logs, ICP Calibration Blank Solution Info	Satisfactory Findings: Test records were reviewed for ICP and ICPMS testing for major and minor elements for three task orders for Division 20. Test notes clearly indicated that 10 CFR 50, Appendix B and 10 CFR Part 21 were applicable to this testing. The sample Receipt and Laboratory Sample Identification numbers were noted. Documentation packages included information such as Laboratory Fixed and Adjustable Pipette Verification Log information; Balance Verification Logs; ICP Calibration Blank Solution Information; and Certificates of Analysis and of Reference Materials from the suppliers that provided materials during the test.						
Unsatisfactory Findings: N/A							
	•						
Nonconformance Report Number: N/A	CAR/SCAR Num	ber: N/A					
Attachments: None							
Recommendations/Actions: Direct reference to specific test methods or SwRI procedures could not be identified in two of the data packages. These two packages stated that the test method was, "Buy SwRI Method." It is recommended that the specific test methods be referenced in the instruction area of the Laboratory Task Order Form.							
Equipment Calibration: Standards use	d for calibration were traceable to NIST.						
Approved: Institute Quality Assura	7 ance	Distribution: Original – IQS Records Cc: CC-J. Boyd (01) R. Presas (01) C. Hobson (30)					
Date:06/06/2006	?						