

_ _ _ _

RONALD A JONES Vice President Oconee Nuclear Site

Duke Power ON01VP / 7800 Rochester Hwy. Seneca, SC 29672

864 885 3158 864 885 3564 fax

August 18, 2005

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

Subject: Oconee Nuclear Station, Unit 3 Docket Nos. 50-287 Licensee Event Report 287/2001-001, Revision 1 Problem Investigation Process No.: 0-01-00587

Gentlemen:

Pursuant to 10 CFR 50.73 Sections (a)(1) and (d), attached is Licensee Event Report 287/2001-001, Revision 1, concerning the discovery of Reactor Pressure Vessel Head Leakage Due to Stress Corrosion Cracks Found in Several Control Rod Drive Nozzle Penetrations. Revision 1 incorporates a clarification to the original report wording in regards to the level of corrosion observed on the Reactor Pressure Vessel Head and updates status of corrective actions taken including the replacement of the head.

This report is being submitted in accordance with 10 CFR 50.73 (a)(2)(i)(B) and (a)(2)(ii)(A). For this event, the overall safety significance of this event was minimal and there was no actual impact on the health and safety of the public.

Very tryly yours, Jones

JE22

Attachment

Document Control Desk Date: August 18, 2005 Page 2 cc: Mr. William D. Travers Administrator, Region II U.S. Nuclear Regulatory Commission 61 Forsyth Street, S. W., Suite 23T85 Atlanta, GA 30303 Mr. L. N. Olshan Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Mr. S. E. Peters Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Mr. M. C. Shannon

NRC Senior Resident Inspector Oconee Nuclear Station

INPO (via E-mail)

										,							· · · · · · · · · · · · · · · · · · ·
	NRC F((6-2004)	DRM 366	5 U.S.N NSEE E	VENT	REPOR	DRY CO T (LE	MMIS: R)	SION	APP Estir Repo com U.S.	ROVED BY (mated burden p orted lessons k ments regardin Nuclear Regu	OM per ear ng l ilat	1B: NO. 3 response ned are in burden es ory Com	3150-0104 to comply accorporated atimate to the mission, Wa	with this man into the licer e Records an ishington, D	ndatory colle nsing process of FOIA/Priv C 20555-000	EXPIRES: ction request: and fed back acy Service B 1, or by interr	06/30/2007 50 hours. to industry. Send Branch (T-5 F52), het e-mail to
			(See rever digits/ch	se for reg aracters fo	uired numbe or each block	• of)			nino NEC mean num the i	DB-10202, (31) ns used to imp ber, the NRC information c	50 50 ma olle	-0104), O e an infor y not con ection.	ffice of Mai mation colk iduct or Spo	nagement an ection does n ensor, and a	d Budget, W tot display a person is r	ashington, DC currently valid tot required t	C 20503. If a OMB control o respond to,
	1. FACI	LITY NAN	IE						2. C	OCKET NU	МЕ	BER			3. PAGE		
1	Ocon	ee Nu	clear S	tation,	Unit 3				0	5000-		(0287			1 OF	12
	4. TITLE React Penet	E or Pres rations	sure Ves	sel Hea	d Leakage	e Due t	o Str	ess C	Corre	osion Cra	aci	ks Foi	und in N	line Con	ntrol Roc	Drive N	ozzle
	5.	EVENT D	ATE	6.	LER NUMBE	3		7. REF	PORT	DATE	L		8.	OTHER F	ACILITIES	INVOLVED	
					SEQUENTIAL	REV		Í.		l	Í.		YNAME			DOCKET N	IUMBER
	MO	_DAY	YEAR	YEAR	NUMBER		MO		AY	YEAR	F	ACILITY	YNAME			DOCKET N	UMBER
1	02		2001	2001	- 001	01	08	1	8	2005	1	None				05000	
	5 10. POV 0%	VER LEV	/EL	11. 1 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	THIS REPOF .2201(b) .2201(d) .2203(a)(1) .2203(a)(2)(i) .2203(a)(2)(ii .2203(a)(2)(ii .2203(a)(2)(ii	nt IS SU)) /))		TED P 20.22 20.22 50.36 50.36 50.36 50.46 50.73	URSUANT TO THE REQUIREMENT: 03(a)(3)(i) 50.73(a)(2) 03(a)(3)(ii) 50.73(a)(2) 03(a)(3)(ii) 50.73(a)(2) 03(a)(4) 50.73(a)(2) 05(c)(1)(i)(A) 50.73(a)(2) 05(c)(1)(ii)(A) 50.73(a)(2) 05(c)(2) 50.73(a)(2) 05(c)(3)(ii) 50.73(a)(2) 05(c)(2) 50.73(a)(2) 05(a)(ii) 50.73(a)(2)			REQUIREMENTS OF 10 CFR §: 50.73(a)(2)(i)(C) × 50.73(a)(2)(ii)(A) 50.73(a)(2)(ii)(B) 50.73(a)(2)(iii)(B) 50.73(a)(2)(iii) 50.73(a)(2)(iii) 50.73(a)(2)(iii) 50.73(a)(2)(v)(A) 50.73(a)(2)(v)(B) 50.73(a)(2)(v)(C)			DF 10 CFR §: (Check all that 50.73(a)(2)(x) C) 50.73(a)(2)(x) (A) 50.73(a)(2)(x) (B) 50.73(a)(2)(x) (A) 50.73(a)(2)(x) (A) 50.73(a)(2)(x) (A) 50.73(a)(2)(x) (A) 50.73(a)(2)(x) (A) 73.71(a)(4) (B) 73.71(a)(5)		
				20.	.2203(a)(2)(v	, i)	X	50.73	(a)(2	!)(i)(B)			50.73(a)	(2)(v)(D)		Specify in A	bstract below
						12.	LICEN	ISEE (CON	TACT FOR	T	HIS LE	R			0	
	FACILITY	NAME									Т	TELEPI	HONE NUN	MBER (Inclu	ude Area Co	xde)	
1	В	.G. D	avenpor	rt, Reg	gulatory	Comp	lia	nce	Man	ager				(864)	885-	-3044	
			1			INE FO	HEAC	нсо	MPC	DNENT FAI	LU	JRE DE	SCRIBE	D IN THIS	REPORT		
	CAUS	E	SYSTEM	СОМРО	NENT FACT	NU- URÉR	REPOR TO 1		1 41 2 4 7 4 1 4 1 4 1 4	CAUSE		s	YSTEM	COMPON	ENT F	MANU- A CTURER	REPORTABLE TO EPIX
1	B6	<u>a</u>	RCS	NZ	L <u>B</u> 8	w	<u> </u>	(_				
			14. S	UPPLEM	ENTAL REP	ORT EX	PECT	ED		<u> </u>			5. EXPE SUBMISS	CTED SION	MONTH	DAY	YEAR
	YI	ES (If ye	es, complet	e EXPEC	TED SUBMI	SSION (DATE)		Χ_	NO			DATE				
	16. AB At Ur ba su	STRACT 2100 h nit 3) Re ise of se rveillan	Limit to 1 Liours on F eactor Pre everal con ce during	February Sebruary Sessure V Introl rod I a plann	es, i.e., appr 18, 2001, 'essel (RP) drive mecl ed mainter	oximatel a visua /) heac nanism nance c	y 15 si Il insp I foun s (CF outage	ingle-s pectio d evic DMs e.	pace n of deno). T	the top s ce of sma his RPV I	en ur II i he	face o accum ad ins	f the Oc nulations pection	onee Nu of boric was peri	iclear Sta acid dej formed a	ation Unit posited at s part of	3 (ONS the a normal
	Ci cu co 8-ໄ Sເ ch	RDM no bic incl nfirming hour no ibseque aracter	acid dep ozzles. The nes but ul g that the tification ent non-de ize the lea	he amou timately Reactor was mad estructiv ak mech	int of boric signified th Coolant S de to the S e testing w anism, and	acid ar acid ar ystem taff in a as per I detern	ound tor co (RCS ccore forme nine	each polant) pres dance d on s exten	of t t sys ssur with a tot t of	he CRDM stem pres te bounda h 10CFR tal of eigh the condit	s, 1 r su iry 50 tio	nozzle: ure bou had b 0.72(b) een CF on.	s was e undary l een cor (3)(ii)(B) DMs in	, and bo stimated eakage h npromise) reportin order to	to be no nad occu ed, a Fel ng require effective	more that rred. Afte pruary 18 ements. ely evalua	an a few er , 2001, ite,
	Vi nc co co	sual ins zzle 34 rrosion mpone	pection o . No othe conclude nt.	f the rea er signifi ed that sl	ictor vesse cant areas ight degrad	head of corr lation t	surfac osion o the	ce rev were RPV	veale obs hea	ed a smal served. S Id did not	ll a Sul ac	area of bseque dverse	f head s ent struc ly affect	urface co ctural and the stru	orrosion alysis of ctural inf	adjacent the area egrity of t	to of the
	Th nir the	e appa ne leaki e health	rent root (ng CRDM and safe	cause of Is have I ety of the	the nine C been repai public.	RDM I red. Ti	Nozzi nis ev	e leal rent is	ks is 6 cor	primary v nsidered t	wa	ater str have r	ress con minimal	rosion cr safety si	acking (l gnificand	PWSCC). e with re	The spect to

NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSION	<u>_</u>									
LICENSEE EVENT REPORT (LER) TEXT CONTINUATION										
EACH ITY NAME (1)				(6)	P	AGE (3)			
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER	F					
Oconee Nuclear Station, Unit 3	05000-287	2001	001	01	2	OF	12			
TEXT (If more space is required, use additional copies of NRC	; Form 366A) (17	()								
EVALUATION:										
BACKGROUND										
There are 69 Control Rod Drive Mechanism (CRE the reactor pressure vessel (RPV) [EIIS:RCT] hea approximately 5-feet long and are welded to the F centerline of the RPV head. The nozzles are con 600 material. The lower end of the nozzle extend head (see Figure 2).	DM) [EIIS:AA] ne ad (see Figure 1 PV head at val structed from 4 Is about 6-inche	ozzles [1). The rious rad -inch ou es below	EIIS:NZL] th CRDM nozz dial locations itside diame v the inside of	nat penetr zles are s from the ter (OD) a of the RP	ate alloy V					
The alloy 600 used in the fabrication of CRDM no requirements of Specification SB-167, Section II t Summer 1967 of the ASME B&PV Code. The pro for the ONS Unit 3 CRDM nozzles was the Babco	zzles was procu o the 1965 Edit oduct form is tul ock and Wilcox (ured in a ion inclu ping and (B&W) ⁻	accordance Jding Adden J the materia Fubular Proc	with the Ida throug al manufa ducts Divis	ih cture sion.	er				
Each nozzle was machined to final dimensions to the OD of each nozzle. The nozzles were shrink inserted into the closure head penetration and the degrees F. minimum). The CRDM nozzles were to closure head using 182-weld metal (see Figure 2) was used for both the tack weld and the J-groove and dye penetrant test (PT) inspected at each 9/3 ground and PT inspected.	Each nozzle was machined to final dimensions to assure a match between the RPV head bore and the OD of each nozzle. The nozzles were shrink fit by cooling to at least minus 140 degrees F., inserted into the closure head penetration and then allowed to warm to room temperature (70 degrees F. minimum). The CRDM nozzles were tack welded and then permanently welded to the closure head using 182-weld metal (see Figure 2). The shielded manual metal arc welding process was used for both the tack weld and the J-groove weld. During weld buildup, the weld was ground, and dye penetrant test (PT) inspected at each 9/32 inch of the weld. The final weld surface was ground and PT inspected.									
The weld prep for installation of each nozzle in the buttering the J-groove with 182-weld metal. The	e RPV head wa RPV head was	s accor subseq	nplished by uently stress	machining s relieved	g and	t				
EVENT DESCRIPTION										
At 2100 hours on February 18, 2001, a visual insp Station Unit 3 (ONS Unit 3) Reactor Pressure Ves accumulations of boric acid deposited at the base (CRDMs). This RPV head inspection was perform planned maintenance outage.	Dection of the to Sel (RPV) head of several Con ned as part of a	p surfac d found trol Roc norma	ce of the Oc evidence of I Drive Mech I surveillance	onee Nuc small nanisms e during a	lear					
Boric acid deposits were identified around six of the 34, 50, and 56). After washing down the RPV her confirmed the presence of boric acid deposits on deposits on CRDM nozzles Nos. 3, 7 and 63 (see of the CRDM nozzles was estimated to be no more the Reactor Coolant System (RCS) [EIIS:AB] preserved.	ne sixty-nine tot ad, a February these six nozzle Figure 1). The re than a few cu ssure boundary	al CRD 25, 200 es and r amour ubic inch had be	M nozzles (I)1, follow-up evealed "su it of boric ac nes. After co en compron	Nos. 11, 2 inspectic spicious" id arounc onfirming nised, a	23, 2 on boro l eac that	8, n h				

	NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSION							
	LICENSEE EVENT REPORT (LER) TEXT CONTINUATION							
	FACILITY NAME (1)	DOCKET (2)		LER NUMBER	(6)	F	AGE ((3)
			YEAR	SEQUENTIAL NUMBER	REVISION NUMBER			
1	Oconee Nuclear Station, Unit 3	05000-287	2001	001	01	3	OF	12
	 Oconee Nuclear Station, Unit 3 TEXT (II more space is required, use additional copies of NRC February 18, 2001, 8-hour notification was made 10CFR50.72(b)(3)(ii)(B) reporting requirements. Subsequent surface dye-penetrant test (PT) inspediate (OD) identified several deep axial cracks had propagated radially into the nozzle material at these cracks had reached the bottom end of the cracks were the most likely leakage pathway that crystals found on the Unit 3 RPV head. Eddy Curn nozzles revealed cracks on several of the nozzles Ultrasonic Test (UT) examinations were used to s wall extent of other indications that EC could not r of deep (some through wall) cracks in all nine leak were combined to determine the extent of the exist plans for each of the leaking CRDM nozzles. Rese Attachment 1. In addition to the original nine leaking CRDMs, nir 47, 64 and 65) from the same heat¹ of material as inspected for "extent of condition" purposes (see I in Attachment 1. Visual inspection of the reactor vessel head surfactor corrosion adjacent to nozzle 34 (See Figure 3). Nobserved. Subsequent structural analysis of the atto the RPV head cid not adversely affect the struct Although the leakage of primary coolant through the detectable only by the observed accumulation of Apressure boundary leakage" while in MODES 1 th CRDM nozzle penetrations resulted in a degradat Accordingly, this event is being reported pursuant 10CFR50.73(a)(2)(ii)(A). 	05000-287 Form 366A) (17 to the Staff in a ections of the ni s that had initia s well as axially CRDM nozzle he lead to the visit rent (EC) exam ize the EC indic esolve. The U king CRDM noz sting cracking a sults from these he additional no the initial nine Figure 1). Resu ce revealed a s lo other signific area of corrosio stural integrity o he CRDM nozz boric acid crysta 13(a) limits RC rough 4. Addit ion of one of th to 10CFR50.73	2001 7) accorda ted nea v along to ousing. ble accu- nination cations T result zzles. T nd deve e NDE in ozzles (I CRDM: ults of th cant area on concl of the co cles was als on the S opera- ionally, e plant' 3(a)(2)(nce with ales' weld ar r the toe of the These pote umulations of of the nine I and determi s confirmed the PT, EC a elop nozzle s the PT, EC a elop nozzle s spections a Nos. 4, 8, 10 s were EC a his inspectio ea of head s as of corrosi uded that slip opponent. as so minimal he RPV head athe RCS leas s principal s i)(B), and	ea and O he fillet wa ace. Som entially de f boric ac eaking C ne the thr the existe and UT re specific re re given i 0, 14, 19, 1 nd UT n are also urface on were ght degra that it wa d, Technio ge to "No kage fror afety barr	utsic reld ep id RDM ougl ence sults spair n 22, o giv adati iers.	le le on	12
	No operator intervention was required as a result Unit 3 was in cold shutdown (Mode 5) at 0 percen operating at approximately 100 percent power.	of this event. F It power and Ur	Prior to 1 hits 1 ar	the discover nd 2 were in	y of this e Mode 1	event	,	
1	¹ ONS Unit 3 has two CRDM heats of material distributed betw	een the 69 CRD	M Nozzi	es				

NRC FORM 36	6A U.S. NUCLEAR REGULATORY COMMISSION									
(P-1998)	CENSEE EVENT REPORT (LER)							į		
	TEXT CONTINUATION									
}	FACILITY NAME (1)	DOCKET (2)	· · · ·		(6)	<u>Р</u>	AGE (<u>3)</u>		
			YEAR	SEQUENTIAL NUMBER	REVISION NUMBER					
Oconee Nu	uclear Station, Unit 3	05000 097			-		_			
TEXT //f mo	re space is required, use additional copies of NBC	00000-201 Form 3664) (17	2001	רטט	U	4	٥ŀ	12		
	Te space is required, use additional copies of third)							
CAL	JSAL FACTORS									
The Corr	apparent root cause of the nine alloy 600 CRI rosion Cracking (PWSCC).	DM nozzle leak	s is Pri	mary Water	Stress					
<u>Gen</u>	General cause of event discussion:									
Alloy [EIIS Corr sma docu the f	Alloy 600 is used extensively in nozzle applications in the reactor vessel and Pressurizer [EIIS:PZR]. It is also used for hot and cold leg piping as well as steam generator tubing in Combustion Engineering and Babcock and Wilcox fabricated plants. It is recognized these small-bore nozzles have suffered numerous cracking incidents, and the industry has evaluated and documented the results of many failure analyses. The conclusion resulting from this work is that the failure mechanism is a form of stress corrosion cracking referred to as PWSCC.									
PWS pene from rean from prov	SCC is generally thought to initiate at the nozz etration J-groove welds. This area has been s the weld process and, in some cases, from s ning operations. In thin wall product forms, this welding (weld heat affected zone). It is well o rided that three conditions are present:	le inside surfac shown to have h urface distress is area could al established tha	e adjac nigh res due to so have t PWSC	ent to the pa idual stress machining, g an altered CC can occu	artial es resultir grinding o microstruc r in mater	ng r cture ials	•			
1) 2) 3)	susceptible material, high tensile stress, and an aggressive environment.									
Virtu pene 600 Gen wate	ally any small-bore alloy 600 nozzle (including etration weld possesses these characteristics. nozzles and Pressurizer heater sleeves have erally, these components are exposed to 600 er, as are the ONS Unit 3 CRDM nozzles.	g CRDM Nozzle In PWR applic experienced le degree F. or hi	es) attac cations, aks attr gher ter	ched with a numerous s ibuted to PV mperatures	partial small-bore VSCC. and prima	e allo Iry	у			
<u>Spec</u>	cific discussion regarding cause of event repo	rted in this LEF	<u> </u>							
For t	this event, the apparent root cause of PWSCC	is substantiate	ed base	d on,						
1. N	Metallographic examination of CRDM nozzle s	amples found I		cracks,						
2. (t	Correlation of crack location and orientation wi ensile stress, and	th Finite Eleme	ent Anal	yses (FEA)	indicating	high	1			

.

.

3. The recent history of cracking found in alloy 600 weld metal attributed to PWSCC at the ONS, i.e., this is the second reportable instance of PWSCC at ONS resulting in leakage. ONS Unit 1 was the first occurrence (Ref.: LER 269/2000-006-01).

NRC FORM 366A	U.S. NUCLEAR REGULATORY CO	MMISSION		-				
LICENS	EE EVENT REPORT (LER) EXT CONTINUATION							
	FACILITY NAME (1)	DOCKET (2)		LER NUMBER	(6)	PAGE (3) 5 OF 12		
_		COMMISSION Image: Section of the section of th						
Oconee Nuclear	Station, Unit 3	05000-287	2001	001	01	5	OF	12
TEXT (If more spa Additional Unit 3 CR	ce is required, use additional copie ly, a Duke Engineering and Se DM Housing cracks concluded	es of NRC Form 366A) (17 rvices (DE&S) metallurg that,	7) jical eva	aluation repo	ort on ONS	3		
1. The c	acking resulted from a stress d	lriven intergranular corro	osion m	echanism,				
2. There	was no indication of aggressive	e chemical species on th	he cracl	k face,				
3. The p	rimary driving force in the regio	n of cracking appears to	be due	e to residual	surface s	tress	3	

- from cold deformation after the parts were annealed, and
- 4. The apparent corrodent was the primary coolant in the reactor coolant system.

The leaking cracks' path, as characterized by the UT and PT examinations, fell within the nozzle wall region where FEA (including the effects of welding residual stresses and operating conditions) predict high hoop stresses. The crack geometry was consistent with the analysis that shows the hoop stress (that drives cracks in the axial orientation) was higher than the axial stress (that drives cracks circumferentially) at high stress locations. Crack growth into the nozzle wall was also consistent with analysis predictions that high hoop stresses extended through the weld material and into the nozzle wall. The deep and mostly axial oriented crack was consistent with FEA results, and with a root cause determination of PWSCC.

CORRECTIVE ACTIONS

Immediate:

A Failure Investigation Process (FIP) Team was assembled to assess the event including its cause(s), necessary corrective actions, and past/future unit operational impacts.

Subsequent:

- 1. A combination of eddy current, ultrasonic, and dye penetrant inspections were performed on each of the nine leaking CRDMs (Nos. 3, 7, 11, 23, 28, 34, 50, 56 and 63).
- 2. Nine additional CRDM nozzles (Nos. 4, 8, 10, 14, 19, 22, 47, 64 and 65), of the same heat of material as the initial nine CRDM nozzles, were also EC and UT inspected. These nine additional CRDM nozzles were inspected to support "extent of condition" evaluations.
- 3. CRDM Nozzle material from the lower portions of seven CRDMs (Nos. 3, 7, 11, 23, 28, 50 and 56) and a small sample that included a circumferential crack above the J-groove weld region from CRDM Nozzle 56, were removed and sent to the DE&S Metallurgical Lab in Huntersville, NC for analysis and evaluation.
- 4. The nine leaking CRDMs were repaired (as described below).

The general repair process was to remove all crack indications and weld repair the individual excavation(s) for each CRDM nozzle. The cracks were first ground out of the nozzle material (initially by manual grinding, later by air arc gouging followed by shallow

NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSION							
LICENSEE EVENT REPORT (LER) TEXT CONTINUATION							
FACILITY NAME (1)	DOCKET (2)			(6)	P	AGE	3)
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER			
Oconee Nuclear Station, Unit 3	05000-287	2001	001	01	6	OF	12
TEXT (If more space is required, use additional copies of NHC	; Form 366A) (17	7)					
surface grinding), sometimes exposing a sma nozzles. The final surface was PT examined process.	ll area of low all prior to preheat	loy stee ing for t	I base meta he weld rep	l for some air	•		
During the crack indication removal process a some cracks were "chased" from their surface and/or nozzle material. These original indicat through the pressure boundary had been elim other pre-existing linear indications in the well and removed.	nd subsequent location (identi ions were follov inated. While r d and nozzle ma	nondes ified by ved to c emovin aterial v	structive exa PT) into the confirm the le g these indic vere also ide	mination, weld eak path cations, entified			
Following weld repair of the individual excava 52/152 material (alloy 690 type) was deposite material (82/182 alloy 600) remained after the (Nos. 3, 7, 11, 50, and 56) had this protective require a weld overlay since the entire weld w nonstructural weld material acts as a protective resistance to PWSCC attack.	tions, a protecti d over the CRD repair process overlay. Nozzi as replaced wit re layer to the e	ve weld M repa . Five c es 23, 2 h 52/15 xisting i	overlay of a irs where ori of the repaire 28, 34, and 6 2 material. material, imp	alloy iginal weld ed nozzles 33 did not This proving its	1 5		
Planned:							
Revision 1 Update: Replacement of the RPV heat association with NRC Bulletins 2001-01, 2002-01 and long-term corrective actions described below	nds and subseq , and 2002-02 h :	uent co nave ad	mmitments r dressed botl	made in h the shor	t		
 Although repairs have been completed for the for future leakage events of alloy 600 CRDM is material) on the existing RPV head, due to PV Oconee Units. An aggressive management p nozzle inspections and repairs was determine PWSCC in the short-term. 	nine leaking C nozzle compone VSCC, remains lan that focuses d to be the bes	RDM no ents (inc a conc s on cor t approa	ozzles, the p cluding the 1 ern for all the ntinued RPV ach to addre	otential 82 weld ree head ss			
In the long-term, the RPV heads will be replace recurrence of this event.	ed at all three (Oconee	Units to pre	event			
These short and long-term actions as well as othe addressed via the Oconee Corrective Action Programmed in this LER.	er planned corre gram. There are	ective a e no NR	ctions are be C Commitm	eing Ient items			
SAFETY ANALYSIS							
It was determined that the orientation of the crack was primarily axial and the branching observed w direction of the crack was along the axis of the no	s, as they trave as typical of a F zzle with crack	ersed the PWSCC penetra	rough the no . The predo ation into the	ozzle mate ominant wall of th	erial, ie		

NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSION	1					
LICENSEE EVENT REPORT (LER) TEXT CONTINUATION						
FACILITY NAME (1)	DOCKET (2)		LER NUMBER	(6)	PA	GE (3)
		YEAR SEQUENTIAL		SEQUENTIAL REVISION NUMBER NUMBER		
Oconee Nuclear Station, Unit 3	05000-287	2001	001	01	7	OF 12
TEXT (If more space is required, use additional copies of NRC	C Form 366A) (17	7)				
nozzle. The localized circumferential cracks four generally associated with axial cracks.	nd in CRDM noz	zles 11	, 23, 34, 50,	and 56 w	/ere	
As concluded in a Framatome Technologies Inco circumferential flaw above the weld on the outsid significant safety concern. Specifically, it was de more than ten (10) years to grow through-wall, w have joined) could grow from the outside surface (3.5) years. In neither case would the structural is that the nozzle would fail by ejection.	rporated (FTI) s e surface of the termined that a hile a long circu to the inside su ntegrity of the n	afety as nozzle short, is mferent rface in ozzle bo	ssessment re should not b solated flaw ial (where m about three e compromis	eport, any be conside would tak ultiple fla and one sed to the	/ ered a te ws -half point	l
Circumferential cracking was also observed on the at the toe of the fillet weld that forms part of the secrecks are located at or below the weld, and not not considered to be a significant safety concern release of radioactive water. Due to the proximity weld, there was a concern that a through-wall circumbrough-wall axial cracks and form a loose part the and prevent a [single] control rod assembly from anomaly has been evaluated and is bounded by which assume that the highest worth control rod control rod assembly insertion failures, due to loc not to be credible scenario.	ne outside surface tructural attachr in the reactor co from the standp y of associated to cumferential cra hat could potenti being fully inser the ONS LOCA assembly does no ose part intrusion	ce of CF nent to olant project of g through ck could ally ented ted. Ho and noi not inse n, were	RDM nozzles the RPV hea ressure bour gross structu -wall crackin d link up with er a control wever, this n-LOCA acc rt into the co evaluated ar	s at ONS ad. Since indary, the iral failure ig below f it two or n rod guide type of ident ana ore. Multi nd detern	Unit 3 these or the nore tube lyses ple nined	;
Additionally, based on experience at ONS Unit 3, is accompanied by through-wall cracking at and a crystal deposits on the RPV head. It was subsec observations, that detectable leakage would prec	circumferential above the weld, uently conclude ede the develop	and axi as evid d from to ment o	al cracking l enced by the these results f a loose pa	below the e boric ac s and rt.	weld id	
In summary, the degraded condition of CRDM No safety of the plant or jeopardize the health and sa located in the nozzle base metal and were axially the fact that PWSCC does not occur in carbon st reactor vessel head's low alloy steel but rather gr detected during a normal shutdown surveillance the CRDM nozzles was so minimal that it was de boric acid crystals on the RPV head. The total le Technical Specification limits for unidentified RCS radiation alarms sounded.	ozzles did not re afety of the public orientated. As eel material, the ew until it result walkdown. The tectable only by akage from the S inventory loss.	present c. The predicto cracks ed in ar leakage the obs CRDM No Re	a challenge majority of t ed by stress did not exte observable of primary served accur nozzles did eactor Buildir	to the nu he cracks analysis, nd into the leak that coolant the mulation not excee ng or area	Jclear Were and Ie Was Trough of ed a	1
Visual inspection of the reactor vessel head surfa corrosion adjacent to nozzle 34. No other signific corrosion in question was attributed to the effects area were taken and used to provide input for a s	ice revealed a s ant areas of cor of primary syste tructural analysi	mall are rrosion v em leak is of the	ea of head so were observ age. Dimer effect of the	urface ed. The isions of f e corrosic	the In on	

	NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSI	OŃ									
	LICENSEE EVENT REPORT (LER) TEXT CONTINUATION										
	FACILITY NAME (1)	DOCKET (2)		LER NUMBER	(6)	P	AGE (3)			
			YEAR	SEQUENTIAL NUMBER	REVISION NUMBER						
I	Oconee Nuclear Station, Unit 3	05000-287	2001	001	01	8	OF	12			
ł	IEXI (If more space is required, use additional copies of N	RC Form 366A) (1	()								
NPC FORM SEA U.S. NUCLEAR REQUATORY COMMISSION LICENSEE EVENT REPORT (LER) TEXT CONTINUATION DOCKET (2) LER NUMBER (0) PAGE (3) FADI (TY NAME (1)) DOCKET (2) LER NUMBER (0) PAGE (3) Conce Nuclear Station, Unit 3 D (5000-287) 2001 001 01 8 or 1 TEXT (<i>If more space is required, use additional copies of NRC Form 366A</i>) (17) He integrity of the head. Results of the analysis ² revealed that the RPV head was not adversely affected from the corrosion and would continue to satisfy the stress and fatigue requirements (as described in ASME Code, Section III, 1989 edition without addendum), for an additional 14 years (-9 cycles) of operation. ADDITIONAL INFORMATION This event did not include a Safety System Functional Failure nor involve a personnel error. There were no releases of radioactive materials, radiation exposures in excess of limits or personnel injuries associated with this event. This event tis considered reportable under the Equipment Performance and Information Exchange (EPIX) program. SIMILAR EVENTS Other than the recent ONS Unit 1 LER (269/200-006-01) that reported RCS pressure boundary leakage due to PWSCC failure of several of the RPV head thermocouple and CRDM #21 penetrations, there were no other LEPs over the last two years that reported past PWSC											
	ADDITIONAL INFORMATION										
	This event did not include a Safety System Functional Failure nor involve a personnel error. There were no releases of radioactive materials, radiation exposures in excess of limits or personnel injuries associated with this event.										
This event is considered reportable under the Equipment Performance and Information Exchange (EPIX) program.											
	SIMILAR EVENTS										
	Other than the recent ONS Unit 1 LER (269/20 leakage due to PWSCC failure of several of the penetrations, there were no other LERs over th 600 components or leaks involving RPV head	0-006-01) that rep e RPV head therm he last two years th penetrations.	oorted R locouple nat repo	CS pressure and CRDM rted past PV	e boundar I #21 VSCC of	ry alloy					
	This type of cracking phenomena is not new either to the domestic or worldwide nuclear industry. From the recent discovery at ONS Unit 3, as well as the previous discovery of PWSCC at ONS Unit 1, the Oconee Units will remain susceptible to future PWSC cracking of alloy 600 components. Until a planned corrective action to replace all of the Oconee RPV heads is implemented, this type of event is expected to recur.										
İ	Energy Industry Identification System (EIIS) co	des are identified	in the te	ext as [EIIS:)	<x].< th=""><th></th><th></th><th></th></x].<>						

² OC-3 RV Head Erosion/Corrosion at CRDM Nozzle #34, Framatome ANP, Inc., #32-5011933-00, dated April 17, 2001

	FACILITY NAME (1)	DOCKET (2)		LER NUMBER	(6)	PAGE (3)			
			YEAR	SEQUENTIAL NUMBER	REVISION NUMBER				
conee Nu	clear Station, Unit 3	05000-287	2001	001	01	9	OF		
EXT (If more	space is required, use additional copies	of NRC Form 366A) (17	7)						
		Attachment 1							
	CRDM	Nozzle NDE Results							
Ti ai	he first seven items are for initial nine re based on the result of the inspection	leaking CRDM locatic n of the nine "extent o	ons and f condit	the remainir ion" CRDM r	ng two iter nozzles.	ns			
1.	Of the total of 47 original indications $(19/47 = 40\%)$ that were not through	in nine leaking nozzl wall.	es, 19 v	vere OD initi	ated axial	flaw	/S		
2.	There were 16 OD initiated indication	ons (34%) that were a	xial thro	ugh wall flav	vs.				
 There were nine circumferential flaws (19%), one ID initiated, eight OD initiated. Only two of the OD circumferential flaws (nozzles 50 and 56) were above the J-goove weld. 									
4.	Every circumferential OD flaw (eight wall flaw. Two of the OD circumfere (nozzles 50 and 56) flaws.	t flaws in four nozzles ential indications were) had at throug	least one a: n wall or nea	kial throug r-through	jh wall			
5.	Three nozzles (3, 28 and 63) had fiv	ve or more axial flaws	with no	circumferer	itial flaws.				
6.	There were also three ID initiated a	kial flaws (6%) that we	ere not t	hrough wall.					
7.	All OD initiated circumferential indica OD circumferential flaws average 70 flaw was 13% through wall.	ations are significantly 0% through wall for ei	y deepe ght indic	r than the ID cations and t) initiated t the single	flaws ID	5.		
8.	All of the nine CRDMs inspected for and/or below the J-groove weld. Th observed on numerous ONS Unit 1 depth found was 1.75 mm for Nozzle	extent of condition by ese flaws are similar and ONS Unit 2 CRD e 10.	y EC ha in size e M ID su	d only Clust extent and d rfaces. The	er Flaws a epth to the maximun	abov ose n	e		
9.	None of the nine CRDMs inspected had recordable OD Flaws. One (CF deep) above the weld at the downhi	for extent of conditior RDM 4) had four shall II (6:00) position.	n using l ow axial	UT inspectio flaws (max.	n techniqı . 1.37 mm	ues			
