

Food and Drug Administration Rockville MD 20857

August 23, 2005

NMSBZ

Ms. Betsy Ullrich Senior Health Physicist Nuclear Materials Safety Branch 2 Division of Nuclear Material Safety U.S. Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia, PA 19406-1415

RE: Final Status Survey Report for 12709 Twinbrook Parkway, Rockville, MD Food and Drug Administration License No. 19-07538-01 Docket No. 030-04544

Dear Ms. Ullrich:

Enclosed is the Final Status Survey Report for the Food and Drug Administration's Center for Devices and Radiological Health (FDA/CDRH) laboratory facility located at 12709 Twinbrook Parkway in Rockville, Maryland and other supporting documents related to the final status survey process.

Upon satisfactory review of the information provided, FDA/CDRH requests an amendment to its license under the provisions specified in Title 10, Code of Federal Regulations, Part 20.1402 to release 12709 Twinbrook Parkway for unrestricted use.

The FDA has occupied this building for almost 40 years. In the last 10 years the FDA has been attempting to secure funding to build a new laboratory facility for the occupants of this building. In addition, the owner/lessor has had plans to redevelop the property on which this building is located. In 2000 since funding for a new laboratory had not yet been secured, it was necessary for the government to secure a 5-year lease, which expires on December 31, 2005. The lessor was extremely unhappy with this situation and the final negotiations found the FDA forced to pay double rent with decreased services. Should the release of the building occur after the lease expiration date, it is highly likely that the lessor will file a claim against the government for inverse condemnation because the government is precluding them from developing the site for a much more lucrative purpose. This claim could be any amount, and could possibly range in the millions. It would be in the government's best interest to be out of this space prior to the lease expiration date to prevent any possible negative financial impacts. Accordingly, the FDA respectfully requests an expedited review from the NRC in an effort to release the building prior to December 31, 2005.

NECTO IN LAT AUG 2 5 2005

/3 7555 NMCO/RONI MATERIALS-002 Page 2 – Ms. Betsy Ullrich

We look forward to hearing from you regarding the Final Status Survey Report. If you have any questions, please contact me at either (301) 827-1231 or pxs@cdrh.fda.gov.

Sincerely,

Shandruk 10-U

Petro Shandruk Radiation Safety Officer RPB/DMQRP/OCER (HFZ-240) Center for Devices and Radiological Health 1350 Piccard Drive Rockville, MD 20850

FINAL RADIOLOGICAL STATUS SURVEY REPORT

FOOD AND DRUG ADMINISTRATION CENTER FOR DEVICES AND RADIOLOGICAL HEALTH 12709 Twinbrook Parkway Rockville, MD

August 22, 2005

FINAL REPORT

Table of Contents

1.	Backgroundpage 7
2.	Radiological Surveyspage 7
3.	Final Status Survey Planpage 11
3.	1 Determining the Number of Data Points for Statistical Testspage 13 3.1.1 Contaminants Not Present in Backgroundpage 14 3.1.1 Calculate Relative Shiftpage 14 3.1.1.2 Determination of Sign Ppage 14 3.1.1.3 Determination of Decision Error Percentilespage 14 3.1.1.4 Determination of Decision Error Percentilespage 14 3.1.2 Determination of Decision Error Percentilespage 14 3.1.2 Contaminants Present in Backgroundpage 15 3.1.2.1 Calculate the Relative Shiftpage 15 3.1.2.1.2 Contamination of Prpage 15 3.1.2.1.3 Determination of Prpage 15 3.1.2.1.4 Determination of Decision Error Percentilespage 15 3.1.2.1.4 Determination of Decision Error Percentilespage 16 3.1.2.1.4 Determination of Prpage 16 3.1.2.2.1.4 Determination of Prpage 17 3.1.2.2.1.3 Determination of Prpage 17 3.1.2.2.1.4 Determination of Prpage 17 3.1.2.2.1.5 Determination of Decision Error Percentilespage 18 3.1.2.2.1.4 3.1.2.2.1.4 Determination of Decision Error Percentilespage 1
4.	Final Status Surveypage 18
4.1	Field Measurements Methods and Instrumentationpage 19
4.2	2 Laboratory Analysis of Smear Samplespage 20
4.3	3 Survey Unit Evaluationpage 20
4.4	Activity Detected At or Above Investigative Levelspage 21
4.5	5 Summary of Statistical Testspage 22

	4.5.1 Contaminants Not Present in Backgroundpage 224.5.2 Contaminants Present in Backgroundpage 22
	4.5.2.1 Scenario Apage 22
	4.5.2.2 Scenario Bpage 22
	4.5.2.2.1 WRS Testpage 23
	4.5.2.2.2 Quantile Testpage 24
5.	Quality Assurancepage 245.1Daily operational Checks for Portable Survey Instrumentspage 245.2Internal Quality Assurance Checkspage 255.3Independent Quality Assurance Reviewpage 26
6.	Disposition of Materials and Wastepage 26
7.	Findingspage 26
8.	Conclusionpage 26

ATTACHMENTS

Attachment 1	DandD Occupancy Scenario Reports
Attachment 2	Survey Unit Listing, Physical Location, Classification, Estimated Standard Deviation and Statistical Tests
Attachment 3	Contaminants Not Present in Background – Relative Shift and Number of Data Points
Attachment 4	Contaminants Present in Background – Relative Shift and Number of Data Points
Attachment 5	Reference Area Listing
Attachment 6	Reference Matrices and Associated Measurements
Attachment 7	Reference Maps of Survey Units and Data Measurements
Attachment 8	Wilcoxon Rank Sum Test
Attachment 9	Quantile Test
Attachment 10	Determination of α_Q
Attachment 11	Daily Operational Checks of Portable Survey Instruments
Attachment 12	Verification Measurements of Surface Activity
Attachment 13	Quality Assurance Review of Decommissioning Activities At CDRH
Attachment 14	NRC Form 314, Transfer and Disposal Manifests

Abbreviations

CDRH	Center for Devices and Radiological Health
СРМ	Counts per minute
DCGL	Derived Concentration Guideline Level
DPM	Disintegrations per minute
FDA	Food and Drug Administration
FSS	Final Status Survey
GCPM	Gross counts per minute
GSA	General Services Administration
LBGR	Lower bound of the gray region
MARSSIM	Multi-Agency Radiation Survey and Site Investigation Manual
MDC	Minimum detectable concentration
MDCR	Minimum Detectable Count Rate
NCPM	Net counts per minute
NRC	Nuclear Regulatory Commission
QA	Quality Assurance

References

- NUREG-1507, "Minimum Detectable Concentrations With Typical Radiation Survey Instruments for Various Contaminants and Field Conditions", NRC-Washington, DC, June 1998
- 2. NUREG-1575, "Multi-Agency Radiological Survey and Site Investigation Manual, Revision 1", August 2000
- NUREG-1757, Vol. 1, "Consolidated NMSS Decommissioning Guidance, Decommissioning Process for Materials Licenses", Final Report, NRC-Washington, DC, September 2002
- NUREG-1757, Vol. 2, "Consolidated NMSS Decommissioning Guidance, Decommissioning Process for Materials Licenses", Final Report, NRC-Washington, DC, September 2003
- NUREG-CR-5512, Vol. 2, SAND2001-0822P, "Residual Radioactive Contamination From Decommissioning, Users Manual DandD, Version 2.1", NRC-Washington, DC, April 2001
- 6. NUREG-1505, "A Nonparametric Statistical Methodology for the Design and Analysis of Final Status Decommissioning Surveys", FR Vol. 62, No. 139, July 21, 1997
- 7. Regulatory Guide 1.86, "Termination of Operating Licenses for Nuclear Reactors", June 1974
- 8. DandD, Version 2.1 software
- 9. Title 10, Code of Federal Regulations

1. Background

The Food and Drug Administration is part of the Executive Branch of the United States Government within the Department of Health and Human Services. The Food and Drug Administration (FDA) is a Nuclear Regulatory Commission (NRC) radioactive materials licensee. The FDA operated a research laboratory facility 12709 Twinbrook Parkway in Rockville, MD. The FDA occupant has been the Center for Devices and Radiological Health (CDRH). CDRH is one of six product-oriented centers that carry out the mission of the Food and Drug Administration. CDRH has and continues to conduct research employing various radiolabeled compounds and radioactive sealed sources. The possession, use and storage of these radioactive materials at this facility are authorized by the NRC via a broadscope Radioactive Materials license, number 19-07538-01 (with 31 attachments). This license provides a limited scope of use directly associated with research activities.

There were research protocols that involved the use of radioactive materials in various forms e.g. unsealed, sealed material. The use of unsealed forms was also incorporated into protocols involving investigative animal research. Unsealed form usage involved the bench top manipulation of radioactive materials in research. These materials were procured and used at 12709 Twinbrook Parkway under the FDA/CDRH broad scope radioactive materials license.

The FDA has relocated research operations to another facility in the Washington, DC metropolitan area. The building located at 12709 Twinbrook Parkway is presently owned and managed by JBG Commercial Property Management of 5615 Fishers Lane, Suite 150, Rockville, MD 20852. The building owner has designated the building for major renovation, which will require the demolition of the building.

The FDA/CDRH, as an NRC licensee, is required to demonstrate that the facility located at 12709 Twinbrook Parkway located in Rockville, MD is acceptable for release in accordance with the requirements and conditions specified by the NRC. The FDA/CDRH has retained the services of Clym Environmental Services, LLC (Clym) to assist in the decommissioning process. All decommissioning related activities (scoping surveys, characterization surveys, remediation and waste disposal) were conducted under the authority of the current FDA/CDRH NRC license.

2. Radiological Surveys

The Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) assigns a greater level of effort on surveys conducted in areas that have, or had, the highest potential for contamination. The process by which an area is classified is described according to radiological characteristics. Areas that have no

reasonable potential or extremely low probability of residual contamination are classified as non-impacted. Areas with some potential for residual contamination are classified as impacted.

Given the long history of material usage, beginning in 1965, it was necessary to assess the current radiological condition of all areas. Furthermore the FDA/CDRH had to conduct surveys of equipment, laboratories and areas within the facility in support of relocation activities. A Sampling Plan was developed and approved by the FDA/CDRH Decommissioning Committee for these activities. These surveys would provide data on the current radiological condition of all areas at the facility, regardless of the area's current designation (i.e., administrative, facility operation or laboratory). The Sampling Plan designated all items and remaining equipment be evaluated for total and removable residual contamination.

All areas of the facility and equipment were designated for evaluation. Any area found to have residual surface contamination was designated as impacted. Areas of residual contamination were remediated in accordance with license limits.

These surveys identified fixed alpha and beta contamination in hallways adjacent to laboratories where material had been used or stored. Non-fixed equipment remaining at the site, such as casework, biological safety cabinets, etc. was released from radiological controls under the FDA/CDRH radioactive material license using limits specified in Regulatory Guide 1.86.

All laboratory effluent systems (e.g., sanitary sewer drain lines, chemical fume hood exhaust ducts) were designated for evaluation. Any system found to have detectable residual activity above MDC was designated for additional evaluation. The evaluation process began at the point of generation i.e. sink trap, exhaust baffle. If removable or total surface contamination was identified at the point of generation, the line, exhaust duct and/or drain line, would be removed as to afford access to the first bend or turn. Five- (5) separate laboratory drain lines were found to be contaminated. These drain lines were associated with sinks located in laboratories numbered 4D, 17, 25, 27 and 29. Areas of each trench were marked as to identify the location of each pipe joint prior to removing or otherwise disturbing the line. Drain lines were removed section by section. Samples of pipe scale and/or debris from the interior surfaces of each section was collected for analysis. Analysis of these samples revealed the presence of the following five contaminants: 3H, 14C, 63Ni, U-nat and Th-nat. Contaminated sections of drain line were removed and disposed of as radioactive waste.

The soil beneath each pipe joint in every run of contaminated laboratory drain line was designated for evaluation to determine if the integrity had been compromised over the operating life of the facility.

A composite sampling plan for soil was developed in an effort to 1) minimize analytical costs and 2) ensure the MDA for each analyte was adequate. The MDA

was established for each composite scenario to ensure the detectable activity contribution from any single point having a volume activity of one half the appropriate screening value (DCGL) would be achievable.

Example: The DCGL for 238U+C (U-nat) in soil is 0.5pCi/g. The contribution from one 25gram sample point having a volume activity of 0.25pCi/g to a composite sample of four sample points would yield an anticipated volume activity of .083pCi/g. The MDA for U-nat was designated at 0.05pCi/g.

In an effort to establish background levels for the five contaminants in soil, a sample was collected from 16 separate locations. The results of this analysis for detectable activity above the minimum detectable have been provided in Table 1.

Table 1		
Radionuclide	Reference Background and Measurement of Uncertainty ¹ (pCi/g)	MDA (pCi/g)
238U	$0.50 \pm .05$.05
232Th	0.95 ± .29	.04

 1 – at the 95% confidence level

There were a total of three areas that were potential candidates as reference areas. An attempt was made to establish "background" for soil at the site. These areas are in the following locations; Reference area R1; Room 35A is 12' north of the north end of Survey Unit 17C2 and Reference area R2; Room 20 is 50' northeast of the north end of Survey Unit 17C2 and Reference area R3; Hallway 15H is 11'6" south of the north end of Survey Unit 17C2. The collection of reference measurements was made using a scaler rate meter equipped with a 13cm x 1.6cm NaI crystal. The mean and standard deviation of each reference area was estimated; R1= 13,594 ± 4636, R2 = 11,774 ± 2011and R3= 5,194 ± 431. The radiation levels in each reference area were measured using a low energy gamma scintillator. The results of this survey are provided in Table 2.

Table 2		
Reference Area	Range from surface to 5ft depth (µR/h)	Average at 3ft depth (µR/h)
R1	10 to 18	14
R2	10 to 15	14
R3	8 to 10	10

Table 2	
---------	--

Samples from the three- (3) reference areas were collected and analyzed. The results of this analysis are provided in Table 3.

Table 3

Reference	Activity and Measurement of Uncertainty ¹ (pCi/g)						
Area	233/234U	235/236U	238U	228Th	230Th	232Th	
Rl	.632±.230	ND ²	.563±.216	1.01±.323	.417±.190	.702±.257	
R2	.500±.197	ND^2	.515±.200	$1.01 \pm .338$.405±.197	$1.11 \pm .356$	
R3	.441±.184	ND ²	.252±.131	.490±.194	.361±.161	.532±.202	

 1 – at the 95% confidence level

 2 - Activity was less than the minimum detectable

The soil beneath drain line identified as 17C2 was sampled and found to have elevated levels of U-nat ranging from 1 to 3 pCi/g. The contaminated area begins 13 feet and four joints from the commencement of the drain line in laboratory 17. Contaminated soil was found to run the length of this section of drain line, from joint number 5 to joint number 7, a total of 18 feet.

Direct measurements made during the remediation process showed no discernable change from direct measurements initially made in the survey unit and those collected in the reference areas. The radiation levels in the survey unit ranged from 10 to 18 μ R/h, with the average being 15 μ R/h. A composite sample was collected from 17C2 at depth (5') in grid coordinates A2, B2 and C2. The results of the analysis are provided in Table 4.

Table	4
-------	---

Location	Activity and Measurement of Uncertainty ¹ (pCi/g)						
	233/234U	235/236U	238U	228Th	230Th	232Th	
17C2	.719±.239	.039±.045	.501±.216	$1.40 \pm .405$.510±.213	$1.40 \pm .395$	

 1 – at the 95% confidence level

The percent contribution from each nuclide relative to the summed total for each reference area was determined. These calculations have been provided in Table 5.

		• ·	Percent C	Contribution		
Reference Area	233/234U	235/236U	238U	228Th	230Th	232Th
RI	19.0%	0.8%	16.1%	30.4%	12.5%	21.1%
R2	14.1%	0.2%	14.5%	28.5%	11.4%	31.3%
R3	21.2%	0.3%	12.1%	23.5%	17.3%	25.6%

Table 5

The percent contribution from each nuclide relative to the summed total for the survey unit was next determined. This calculation has been provided in Table 6.

The percent contribution for each analyte from the survey unit compared favorably with the potential reference areas. It was concluded, based on all available data, that the residual activity in the survey unit was not distinguishable from reference background. The contaminated soil remediated from the survey unit was disposed of a radioactive waste.

lable 6	1		Percent C	Contribution		
Survey Unit	233/234U	235/236U	238U	228Th	230Th	232Th
17C2	17.6%	0.5%	14.6%	28.0%	13.2%	26.2%

The variability in background at the three areas and findings in the survey unit were discussed at length with Mr. J. Stewart Bland, CHP of Chesapeake Nuclear Services, Inc. during the course of conducting an independent quality assurance audit. It was speculated that the difference between the mean measurement made in reference area 3, those made in the survey unit and reference areas 1 and 2 was due to a missed contaminant i.e. improper characterization. In an effort to test this assumption, an independent gamma spectral analysis of the survey unit was conducted. Analysis of the collected data identified only naturally occurring radionuclides present in the survey unit soil. No unidentified peaks, which could indicate an unevaluated or unexpected contaminant, were detected. The scope and findings of this audit are discussed in section 5.0.

The radionuclides identified as a result of scoping, characterization and remedial support surveys were 3H, 14C, 63Ni, U-nat and Th-nat.

3. Final Status Survey Plan

The FDA/CDRH selected the Derived Concentration Guideline Levels and Final Status Survey method to demonstrate compliance with the provisions specified in Title 10; Code of Federal Regulations, Part 20, Subpart E, for releasing the facility for unrestricted use.

FDA/CDRH obtained screening values for surface contamination using the values provided in NUREG-1757, Volume 1, Table B.1 in Appendix B. DandD Version 2.1 was used to obtain screening values for radionuclides not provided in Table B.1. Copies of the DandD Building Occupancy Scenario reports are provided as Attachment 1. A listing of the adopted screening values for building/surface contamination has been provided in Table 7.

A listing of the adopted screening value for surface soil has been provided in Table 8.

All areas of residual contamination identified during previous surveys had been remediated from building/structure surfaces. The Final Status survey designated each survey unit for 100% surface scans for alpha and beta emitting radionuclides. The types of samples collected from survey points on building/structure surfaces included the following; 1) a smear to evaluate the levels of removable tritium and gross alpha/beta contamination are within

prescribed limits (10% of the DCGL), and 2) an integrated or static measurement. The investigation levels for Class 3 survey units were designated as follows;

- Direct Measurement –any measurement found to be greater than MDC of the background measurement for the matrices being evaluated
- Surface Scans –any area found to be greater than 1) the MDCR for beta emitting radionuclides or 2) greater than 2 cpm above the established background for the matrices being evaluated
- Surface Soil Scans –any area found to be greater than the mean of the two reference areas plus 2 standard deviations (20,836gcpm)

Smear – any measurement found to be greater than MDC

|--|

Radionuclide	Symbol	Acceptable Screening Levels (dpm/100cm ²)
Hydrogen-3	³ H	1.2E+08
Carbon-14	14C	3.7E+06
Nickel-63	⁶³ Ni	1.8E+06
Uranium- Natural	U-nat	93
Thorium-Natural	Th-nat	58.4

Table 8

·		Acceptable Screening
Radionuclide	Symbol	Level
		(pCi/g)
Uranium- Natural	U-nat	0.5

The size of each individual survey unit will be limited to 100 m^2 of floor surface area. A listing of individual survey units, physical location, classification, estimated standard deviation and statistical test has been provided as Attachment 2.

Survey instruments were selected based on the detection sensitivities to the radiations of concern. The detection sensitivity of large area gas proportional detectors was evaluated to ensure detection levels are within acceptable parameters (10-50% of the DCGL). These detectors were equipped with 0.4mm thick windows. This meant the detector could be operated in an alpha or alpha/beta mode. The DCGL's for U-nat and Th-nat are low compared to the other contaminants. In order to meet the acceptable detection parameter of 10 to 50% of the DCGL_w, alpha must be evaluated independently from beta. This meant the levels of residual gross beta contamination could be over estimated. The ratio

of contaminants detectable in the alpha/beta mode were determined using data collected during previous surveys and are provided in Table 9.

The gross beta activity DCGL was determined using the ratio of contaminants identified in Table 9 and applying it using formula 4-4 as found in NUREG-1575 (December 1997).

T.	a	b	le	9

Radionuclide	Ratio
Hydrogen-3	99.3%
Carbon-14	0.6%
Nickel-63	0.1%

The gross beta DCGL was determined to be $95,673,847 \text{ dpm}/100 \text{ cm}^2$. The gross beta DCGL was determined to be $153,126 \text{ cpm}/100 \text{ cm}^2$ by converting from a unit of radioactivity to counts per minute using a value of 0.0003 for $E_{\text{weighted, total}}$. The total efficiency (E) was weighted according to the relative ratios. The surface efficiency (E_s) of 0.25 is applied for 0.15 to 0.4 MeV beta emitting radionuclides.

 $E_{\text{weighted, total}} = (0 \times 99.3\%) + (0.15 \times 0.25 \times 0.6\%) + (0.2 \times .25 \times 0.1\%)$

The ratio of contaminants detectable in the alpha mode was also determined using data collected during previous surveys and is provided in Table 10.

Table II	J
----------	---

Radionuclide	Ratio
Uranium- Natural	99.3%
Thorium-Natural	0.7%

The gross alpha activity DCGL was determined using the ratio of contaminants identified in Table 10 and applying it using formula 4-4 as found in NUREG-1575 (December 1997). The gross alpha DCGL was determined to be 93 dpm/100cm². The gross alpha DCGL was converted to 27 cpm/100cm² using a value of 0.05 for $E_{weighted, total}$. The total efficiency (E) was weighted according to the relative ratios. The surface efficiency (E_s) of 0.25 is applied for alpha emitting radionuclides.

 $E_{\text{weighted, total}} = (0.2 \text{ x } .25 \text{ x } 99.3\%) + (0.2 \text{ x } .25 \text{ x } 0.7\%)$

3.1 Determining the Number of Data Points for Statistical Tests

This section details the determination process in the selection and implementation of statistical tests.

3.1.1 Contaminants Not Present in Background

The Sign Test was selected to compare beta emitting nuclides or those contaminants not present in background, 3H, 14C and 63Ni. The objective of the Final Status Surveys is to demonstrate that the residual radioactivity levels meet the release criterion. Scenario A has been selected to demonstrate this objective for residual contamination on building/structure surfaces. In demonstrating that this objective has been met, the null hypothesis tested, H_0 ; is the median concentration of residual radioactivity in the survey unit is greater than the DCGL_w; the alternative hypothesis H_a ; is the median concentration of residual radioactivity in the survey unit is DCGL_w.

 H_o : The median concentration of residual radioactivity in the survey unit is greater than the DCGL_w.

The Type I error (α) was specified as 0.05 and a Type II decision error (β) was set at 0.1.

3.1.1.1 Calculate the Relative Shift

The Gross Beta $DCGL_w$, lower bound of the gray region and the standard deviation of the contaminants in the survey unit were used to calculate the relative shift. If the relative shift was determined to be >3, the lower bound of the gray region was adjusted. The relative shift for each survey unit has been provided in Attachment 3.

3.1.1.2 Determination of Sign p

The value of the relative shift calculated in section 3.1.1.1 was used to obtain the corresponding value of Sign p using Table 5.4 as found in NUREG-1575 (December 1997).

3.1.1.3 Determination of Decision Error Percentiles

The determination of percentiles, $Z_{1-\alpha}$ and $Z_{1-\beta}$ was conducted by selecting the designated values using Table 5.2 as found in NUREG-1575 (December 1997).

3.1.1.4 Determine the Number of Data points for the Sign Test

The number of data points for each survey unit was determined by one of two methods; 1) selecting the designated values using Table 5.5 as found in NUREG-1575 (December 1997) or 2) using the formula 5.2 as provided in NUREG-1575 (December 1997). The number of data points for each survey unit has been provided in Attachment 3.

3.1.2 Contaminants Present in Background

3.1.2.1 Scenario A

The Wilcoxon Rank Sum (WRS) Test was selected to compare alpha emitting nuclides or those contaminants present in background, U-nat and Th-nat. In demonstrating the objective of the Final Status Survey has been met, the null hypothesis, H_{o} , tested is the median concentration of residual radioactivity in the survey unit exceeds that in the reference area by more than the DCGL_w; the alternative hypothesis, H_a is the median concentration of residual radioactivity in the survey unit exceeds that in the reference area by less than the DCGL_w.

 H_o : The median concentration of residual radioactivity in the survey unit exceeds that in the reference area by more than the DCGL_w.

The Type I error (α) was specified as 0.05 and a Type II decision error (β) was set at 0.1.

3.1.2.1.1 Calculate the Relative Shift

The Gross Alpha DCGL_w, lower bound of the gray region and the standard deviation of the contaminants in the survey unit and reference area were used to calculate the relative shift. MARSSIM recommends using the larger value of standard deviation when the standard deviation in the survey unit and reference area is different. If the relative shift was determined to be >3, the lower bound of the gray region was adjusted. The relative shift for each survey unit has been provided in Attachment 4.

3.1.2.1.2 Determination of P_r

The value of the relative shift calculated in section 3.1.2.1.1 was used to obtain the corresponding value of P_r using Table 5.1 as found in NUREG-1575 (December 1997).

3.1.2.1.3 Determination of Decision Error Percentiles

The determination of percentiles, $Z_{1-\alpha}$ and $Z_{1-\beta}$ was conducted by selecting the designated values using Table 5.2 as found in NUREG-1575 (December 1997).

3.1.2.1.4 Determine the Number of Data points for the WRS Test

The number of data points for each survey unit was determined by one of two methods; 1) selecting the

designated values using Table 5.3 as found in NUREG-1575 (December 1997) or 2) using the formula 5-1 as provided in NUREG-1575 (December 1997). The number of data points for each survey unit has been provided in Attachment 4.

3.1.2.2 Scenario B

Any difference between the reference area and the survey unit is assumed to be from residual radioactivity. Variations in mean background among potential reference areas can not be ignored as they become comparable in magnitude to the width of the gray region.

Areas R1 and R2 were selected as reference areas in an attempt to reduce variability. Twenty six measurements were made in each area. The average and standard deviation for each area was found to be; R1: 11,774 \pm 2,011 and R2: 10,421 \pm 768. The variation in the mean background from the two areas was then tested. The Kruskal-Wallis test was performed using equation 13-2, identified in NUREG-1505, Section 13. The value of "K" was found to be 25.99. This value of "K" is greater than the highest value in Table 13.1, "9.2", with k-1=2 and α =0.01. Thus the null hypothesis is rejected thereby concluding that these reference areas have significantly different concentrations of naturally occurring radionuclides.

Scenario B was selected to demonstrate that concentrations of residual radioactivity in the survey unit are indistinguishable from background in surface soil. The comparison of measurements in the reference area and survey unit was made using the WRS and Quantile tests.

3.1.2.2.1 WRS Test

In demonstrating that the objective of the Final Status Survey is met, the hypothesis tested by the WRS test is; null hypothesis, H_o the median concentration of residual radioactivity in the survey unit and in the reference area is less than the LBGR.; the alternative hypothesis, H_a is the median concentration of residual radioactivity in the survey unit and reference area is greater than the DCGL_w.

 H_o : The median concentration of residual radioactivity in the survey unit and in the reference area is less than the LBGR.

A concentration level was established that would be indistinguishable from background. The following values were determined using the equations 13 -10 through -16 (NUREG-1505 Section 13);

 $S_b^2 = 113,661,166$ $S_w^2 = 9,666,781$ $\hat{w}^2 = 3,999,784$

To apply the WRS and Quantile tests a decision was made concerning multiples of \hat{w} as the LBGR, as well as the width of the gray region equal to the DCGL_w. The difference between the means of reference areas R1 and R3 is; 11,774 - 10,421 = 1,353; it was determined that the value of $\hat{w} = 2,000$ would be distinguishable from background.

Using previously collected data the averaged levels of residual activity in the survey unit and reference area were estimated; survey unit = $10,600 \pm 1,589$ ncpm; reference area = $11,098 \pm 1,655$ ncpm. The Type I error ($\alpha/2$) was designated as 0.025 and a Type II decision error (β) was set at 0.25.

3.1.2.2.1.1 Calculate the Relative Shift

The lower bound of the gray region (\hat{w}) , the DCGL + \hat{w} , the standard deviation of the contaminants in the survey unit and reference areas were used to calculate the relative shift. The relative shift for survey unit 17C2 has been provided in Attachment 4.

3.1.2.2.1.2 Determination of P_r

The value of the relative shift calculated in section 3.1.2.2.1.1 was used to obtain the corresponding value of P_r (0.664290) using Table 5.1 as found in NUREG-1575 (December 1997).

3.1.2.2.1.3 Determination of Decision Error Percentiles

The determination of percentiles, $Z_{1-\alpha}$ (1.960) and $Z_{1-\beta}$ (0.674) was conducted by selecting the designated values using Table 5.2 as found in NUREG-1575 (December 1997).

3.1.2.2.1.4 Determine the Number of Data Points for the WRS Test

The number of data points for the survey unit and reference areas was determined by using the formula 5.3 as provided in NUREG-1575 (December 1997). The number of data points for the survey unit has been provided in Attachment 4.

3.1.2.2.1.5 Determine the Random-Start Systematic Pattern

The number of calculated survey measurements, n = 52, as determined in the previous section, was used to determine the spacing L of a systematic pattern using formula 5-7 as provided in NUREG-1575 (December 1997). The area of the survey unit $(10m^2)$ was used to generate a random start point; at grid A3 with grid spacing 0.5m north/south and 0.4m east/west.

3.1.2.2.2 Quantile Test

The specific hypothesis tested by the Quantile test; null hypothesis, H_0 : $\varepsilon = 0$ or $\delta' \le LBGR$; versus the alternative hypothesis, H_a : $\varepsilon > 0$ or $\delta' > LBGR$.

 H_0 : There is no residual radioactivity above the LBGR in any part of the survey unit.

The appropriate columns in Table A.7b from NUREG-1505 were selected according to the value of $\alpha_Q = \alpha/2$ or 52; the nearest value of *n*, the number of measurements from the survey unit; and *m*, the number of measurements from the reference area. There are three numbers associated with each tabulated pair of *n* and *m* values, namely *r*, *k* and α_Q or 5, 5 and 0.028. The *m* measurements from the reference area and the *n* measurements from the survey unit are pooled and ranked in order of increasing size from 1 to *N*, where N = m + n. If *k* or more of the *r* largest measurements in the combined ranked data set are from the survey unit the null hypothesis is rejected.

4. Final Status Survey

A total of 30 survey units were designated for evaluation using Final Status Survey techniques. A one meter square grid system was constructed in each survey unit, to include the floor, walls (upper and lower) and ceiling area. The ceiling area was defined as all surfaces located on the same horizontal plane as the suspended ceiling. In survey units where ceiling tiles were missing, the ceiling area was defined as all surfaces located directly above the area occupied by the missing ceiling tile.

The reference areas for establishing background for the different matrices were identified. Radiological evaluations for total and removable surface contamination had been conducted in each location designated as a reference area. Sample measurements were then made at various locations within each of the reference areas on each type of matrices (e.g. benchtop, floor, casework, etc.). Variations in "background" were encountered for each type of matrices throughout 12709 Twinbrook Parkway. A listing of reference areas used has been provided as Attachment 5.

Smear samples were collected at each sample location designated for gross alpha/beta measurements. These samples were collected to evaluate the level of removable residual tritium on building surfaces. Smear samples were also collected from sample locations designated for gross alpha measurements. The sample location and frequency was random and left to the discretion of the surveyor. These samples were collected to evaluate the level of removable surface activity from alpha and beta emitting radionuclides on building surfaces.

4.1 Field Measurements Methods and Instrumentation

Surface scans and measurements for beta emitting radionuclides were made using scaler/rate meters equipped with large area gas proportional detectors (Ludlum model 43-37). The Scan MDC for the 43-37 detectors was determined to be 537,253 dpm/100cm². The Scan MDC is well below the Gross Beta DCGL of 93,673,847 dpm/100cm². The following variables were used in determination of the Scan MDC; 1) a background count rate of 1,720cpm, 2) $E_{weighted, total}$ of 0.0003 and 3) the active area of the probe is 582cm². A minimum detectable count rate (MDCR) of 663 cpm was determined for the ideal surveyor during the first scanning stage using an index of sensitivity (*d'*) of 2.92 and a 2 second observation interval (NUREG 1575, 6.7.2.1 (6-8, 6-9)).

Surface scans and integrated measurements for alpha emitting radionuclides were conducted using the 43-37 large area gas proportional detectors. The high voltage will be adjusted for each instrument, as specified by the calibration certification, to discriminate all beta pulses. The averaged ambient background for these detectors in the alpha mode was found to be 4 cpm. One half of a gross alpha DCGL (93 dpm/100cm²) is 46 dpm/100cm² or 14 cpm/100cm² using a total weighted efficiency of 0.05. The probability of detecting two or more counts when passing over 46 dpm/100cm² was determined to be 17% (NUREG-1575, 6.7.2.2 (6-14)) using a probe dimension of 15cm and a scan rate of 4cm/s. The time interval a surveyor should hold over a suspect area was determined to be 4 seconds (NUREG 1575, 6.7.2.2 (6-13)).

A listing of the reference matrices, associated measurement and MDCR_{Surveyor} for each portable survey instrument used has been provided as Attachment 6.

The detector was employed on the scanned surface at no greater than the prescribed speed as indicated below;

43-37, alpha/beta mode ¹/₂ a probe width per second (3inches/sec)

43-37, alpha mode ¹/₄ a probe width per second (1.5inches/sec)

13cm x 1.6cm NaI crystal, ¹/₂ a probe width per second

The minimum observational interval or hold time over a suspect area is as specified for the first stage scan; Beta - 2 seconds, Alpha - 4 seconds. Surface soil was scanned while maintaining a distance of six inches from the scanned surface.

Surface scans were systematically conducted on accessible surfaces in each survey area as to ensure the 100% coverage in all areas. Special attention was made to joints, cracks, seams, etc. in any accessible survey area.

All accessible surfaces of each survey unit were designated for surface scans. The building air handling system, laboratory drain line clean-outs and traps were not designated for evaluation; however accessible surfaces directly beneath drain lines were designated for surface scans.

4.2 Laboratory Analysis of Smear Samples

The evaluation of removable surface activity was conducted using a dry paper wipe, wetted with alcohol and covering an area of 100 cm² while applying moderate pressure. Smear samples were analyzed by Clym Environmental Services, LLC (License number MD-21-035-01) for tritium and gross alpha/beta. Samples were analyzed using liquid scintillation counting techniques.

4.3 Survey Unit Evaluation

The scanning coverage designated for FSS was 100% in all survey units. This level of scanning effort was in keeping with the survey objectives and ALARA principles.

Random sample points were identified for each survey unit. The sample point corresponds to an actual grid coordinate in the survey unit. Random sample points were selected by first assigning each point in the survey unit a sequential numerical value. A random number generator was utilized to select the sample points for each survey unit.

A map of the survey unit and designated sample points was given to the surveyor. The surveyor used the following methodology to acquire the appropriate sample location in the grid system. Floor Area- Locate the lower right hand corner in the grid coordinate with your back to the

entrance way. Wall Area - Facing the wall surface, locate the lower right hand corner in the grid coordinate, Ceiling Area – The ceiling and floor grid coordinates area are the same. Locate the designated sample grid coordinate in the floor area with your back to the entrance way. Acquire the lower right hand corner in the floor grid coordinate. The sample area in the designated ceiling grid coordinate will be directly above the "sample area" acquired in the floor area.

The sample area will be the laboratory bench-top for a grid coordinate having, 1) a numerical designation of "6" and 2) a laboratory bench-top residing in the grid coordinate.

The critical level - L_C and detection limit - L_D (NUREG 1575, 6.7.1 (6-6)), including the minimum detectable concentration (MDC) expression (Brodsky & Gallaghar 1991) for an integrated count, have been determined and are provided in Table 11. (MDC for gross alpha measurements was calculated for a two-minute static count.)

The levels of naturally occurring radioactivity observed on certain reference matrices reduced the effectiveness of gross alpha measurements to meet the required minimum detectable concentration. Integrated count times were increased from 2 to 5 minutes for surface matrices having a background greater than 8 cpm to ensure adherence to the MDC requirements.

Detector	Probe Area (cm²)	Bkg (cpm)	Inst. Eff. (cpm/dpm)	Surface Eff.	L _C	L _D	MDC (dpm/100cm²)
43-37	582	4	0.2	.25	5	12	25

Table 11

A map of each survey unit, including static measurement and smear sample results, as appropriate, has been provided as Attachment 7.

4.4 Activity Detected At or Above Investigative Levels

There were areas in two survey units where surface activity was detected during surface scans. In survey unit 17I, a section of wall surface that resided behind a laboratory benchtop was found to have gross alpha activity. An area of the wall was designated for static measurements to encompass an adjacent area of $1m^2$ around the elevated area. The elevated area was found to reside in an area of $0.25m^2$ in size. The detected activity ranged from 13 to 11 cpm above background or 43 ± 23 dpm/100cm² to 38 ± 22 dpm/100cm². The MDC for the measurements was determined to be 28 dpm/100cm². No removable surface contamination was detected on smear samples collected from the elevated area.

The second area resided in survey unit 18I. An area of the floor was designated for static measurements to encompass an adjacent area of $1m^2$ around the elevated area. The elevated area of floor surface, $-2m^2$, was located to the right of a chemical fume hood. The detected activity ranged from 10 to 6 cpm above background or 33 ± 22 dpm/100cm² to 31 ± 22 dpm/100cm², gross alpha. The MDC for the measurements was determined to be 30 dpm/100cm². No removable surface contamination was detected on smear samples collected from the elevated area.

It should be noted that although these areas of residual activity were less than the gross alpha $DCGL_w$ (46 dpm/100cm²), each was remediated in keeping with the ALARA goal.

4.5 Summary of Statistical Tests

The measurements made at discrete locations as a result of FSS were evaluated.

4.5.1 Contaminants Not Present in Background

The Sign Test was selected to compare beta emitting nuclides or those contaminants not present in background, 3H, 14C and 63Ni. The objective of the Final Status Surveys is to demonstrate that the residual radioactivity levels meet the release criterion.

 H_0 : The median concentration of residual radioactivity in the survey unit is greater than the DCGL_w.

All measurements were found to be less than the $DCGL_w$. The average of the measurements made in each survey unit was determined. The measurement average in each survey unit was found to be less than the $DCGL_w$. The Sign test did not need to be performed as each survey unit met the release criterion.

4.5.2 Contaminants Present in Background

4.5.2.1 Scenario A

The Wilcoxon Rank Sum (WRS) Test was selected to compare alpha emitting nuclides or those contaminants present in background, U-nat and Th-nat. In demonstrating the objective of the Final Status Survey has been met, the null hypothesis, H_{o} , tested is the median concentration of residual radioactivity in the survey unit exceeds that in the reference area by more than the DCGL_w; the alternative hypothesis, H_a is the median concentration of residual radioactivity in the survey unit exceeds that in the reference area by less than the DCGL_w. H_o : The median concentration of residual radioactivity in the survey unit exceeds that in the reference area by more than the DCGL_w.

The difference between the largest survey unit measurement and the smallest reference area measurement was determined. The difference was found to be less than the DCGL_w for every survey unit. The difference between the measurement average for each survey unit and associated reference area was next determined. This difference was found to be less than the DCGL_w in every survey unit. The WRS test did not need to be performed as each survey unit met the release criterion.

4.5.2.2 Scenario B

Scenario B was then selected to demonstrate that concentrations of residual radioactivity in the survey unit are indistinguishable from background in surface soil. The comparison of measurements in the reference area and survey unit will be made using the WRS and Quantile tests.

4.5.2.2.1 WRS Test

In demonstrating the objective of the Final Status Survey the hypothesis tested by the WRS test was;

 H_0 : The median concentration of residual radioactivity in the survey unit and in the reference area is less than the LBGR.

The critical value was calculated using formula I.1 found in Appendix I, NUREG-1575. The critical value (W_r) was determined to be 2,983. The sum of the adjusted survey unit ranks (Ws) was found to be 1,545. The sum of the adjusted survey unit ranks is less than the critical value; therefore the null hypothesis is accepted.

The actual data generated as a function of conducting the test is provided as Attachment 8.

The measurement data collected from the survey unit and reference area was evaluated. A comparison of summary statistical data is provided in Table 12. The difference in the means was determined to be 1,139. The difference in the medians was found to be 807.

Survey Unit	17C2	Reference Area			
Mean	9,959	Mean	11,098		
Median	9,933	Median	10,740		
Standard Dev.	1,687	Standard Dev.	1,655		
Maximum	13,544	Maximum	16,440		
Minimum	6,748	Minimum	9,855		
Range	6,796	Range	6,585		
Count	52	Count	52		

Table 12

4.5.2.2.2 Quantile Test

The specific hypothesis tested by the Quantile test is the null hypothesis, H_0 : $\varepsilon = 0$ or $\delta' \leq LBGR$.

 H_0 : There is no residual radioactivity above the LBGR in any part of the survey unit.

The appropriate columns in Table A.7b from NUREG-1505 were selected according to the value of $\alpha_Q = \alpha/2$ or 52. There are three numbers associated with each tabulated pair of *n* and *m* values, namely *r*, *k* and α_Q or 5, 5 and 0.028. None of the 5 largest measurements were from the survey unit. The actual data generated from conducting the test is provided as Attachment 9. The closest entry to α_Q =.025 and n=m=52 is n=55, m=50. The values found were r=9, k=8, α_Q =.022. Observing that 1 of the 9 largest measurements were from the survey unit, the survey unit passes. The determination of α_Q has been provided as Attachment 10.

5. Quality Assurance

The performance of decommissioning activities has been managed within a framework of policies and procedures, which assure the validity and quality of data. Procedures were established for activities requiring the application of standard and approved methods to ensure regulatory requirements were met. These procedures document the technical competence of the survey approach thus ensuring the use of effective processes. Procedures utilized by Clym are documented using program-specific applications.

5.1 Daily Operational Checks for Portable Survey Instruments

The purpose of these procedures was to ensure portable scaler/rate meters equipped with gas proportional detectors were in proper working condition prior to placement into service. When an instrument failed an operational check, both the instrument and detector were removed from service until the discrepancy could be resolved.

Both source and background measurements must fall within the acceptable range established for the site and were performed as follows:

Prior to beginning the performance of data measurements and/or scanning for the day,

After the lunch or noon break,

Any time the detector is suspected of being contaminated and

Any time instrument operation is in question.

Daily checks included 1) a determination of operational readiness, 2) ambient background determination and verification that each reading is within $\pm 20\%$ of the average in beta mode and 50% of the average in alpha mode and 3) check source reproducibility determination.

The check source reproducibility determination involved obtaining the data necessary to calculate the average source count and verify that each section of the detector face was reading within $\pm 10\%$ of the average. Additionally, the 2σ and 3σ values for the background and check source counts were calculated. The acceptable value for 3σ was established at $\pm 10\%$ of the mean.

A copy of these daily checks has been provided as Attachment 11.

5.2 Internal Quality Assurance Checks

Quality assurance evaluations were conducted in each survey unit. These evaluations involved verification measurements to confirm Final Status Survey measurements for total surface contamination. Measurements were made at two- (2) randomly selected Final Status Survey sample points. The procedures and techniques utilized to make these measurements were identical to those used in the FSS. Additionally, surface scans were conducted on what were deemed "high risk" surfaces in each survey unit. "High risk" surfaces included laboratory benchtops, chemical fume hoods, and fixtures, including door knobs and light switches.

The results of these evaluations are provided as Attachment 12. An evaluation was conducted assessing the measured values for each survey point, both verification and FSS, to determine if overlap occurred at the 95% confidence level.

5.3 Independent Quality Assurance Review

An external quality assurance review was conducted by an independent firm, Chesapeake Nuclear Services, Inc. The purpose of this audit was to, 1) verify the appropriate application of site characterization to the specified surveys, 2) confirm the appropriate use of instruments, detectors, laboratory analysis and calibrations, correlations to characterized radionuclides, detection capabilities and use in the field, 3) observe survey methods and documentation, 4) review records for completeness, and 5) conduct an independent gamma spectral measurement of survey unit 17C2. Only naturally occurring radionuclides were identified from the in-field gamma spectral analysis of survey unit 17C2 soil.

A copy of the audit findings has been provided as Attachment 13.

6. Disposition of Materials and Waste

All radioactive materials were transferred to the current licensed facility. All radioactive waste, including wastes generated as a result of decommissioning activities, was disposed of in accordance with FDA/CDRH radioactive materials license. A completed copy of NRC Form 314, "Certificate of Disposition of Materials" including copies of disposal and transfer manifests have been provided as Attachment 14. (Does anyone need to review and/or sign the NRC Form 314 before the report is finalized?)

7. Findings

The objective of the Final Status Survey to demonstrate that the survey met the release criteria was achieved. No area of elevated activity was found to be present in any sample location.

8. Conclusion

The Final Status Surveys conducted by the FDA/CDRH demonstrate compliance with the provisions specified in the Code of Federal Regulations, Title 10, Part 20, Subpart E for releasing the building located at 12709 Twinbrook Parkway in Rockville, MD for unrestricted use.

ATTACHMENT 1

DandD Building Occupancy Scenario

DandD Building Occupancy Scenario

DandD Version: 2.1.0 Run Date/Time: 7/14/2005 9:38:01 AM Site Name: 12709 Twinbrook Parkway Description: DCGL determination FileName:C:\Documents and Settings\Finley Watts\My Documents\CDRH\Center for Devices and Radiological Health.mcd

Options:

Implicit progeny doses NOT included with explicit parent doses Nuclide concentrations are distributed among all progeny Number of simulations: 12800 Seed for Random Generation: 8718721 Averages used for behavioral type parameters

External Pathway is ON Inhalation Pathway is ON Secondary Ingestion Pathway is ON

Initial Activities:

Nuclide	Area of Contamination (m ²)		Distribution	
U_Nat	UNLIMITED	CONSTANT(dpm/100 cm**2)		
Justification for concentrati	ion: DCGL determination	Value	9.30E+01	

Chain Data:

Number of chains: 1

Chain No. 1: U_Nat Nuclides in chain: 30

Nuclide	Chain Position	Half Life	First Parent	Fractional Yield	Second Parent	Fractional Yield	Ingestion CEDE Factor (Sv/Bq)	Inhalation CEDE Factor (Sv/Bq)	Surface Dose Rate Factor ((Sv/d)/(Bq/m ²))	15 cm Dose Rate Factor ((Sv/d)/(Bq/m ³))
238U	1	1.63E+12					6.88E-08	3.20E-05	4.76E-14	4.76E-17
234Th	2	2.41E+01	1	1	0	0	3.69E-09	9.47E-09	7.18E-13	1.12E-14
234mPa	Implicit		2	0.998			0.00E+00	0.00E+00	1.32E-12	3.62E-14
234Pa	Implicit		2	0.002	0	0.0013	5.84E-10	2.20E-10	1.59E-10	4.65E-12
234U	3	8.93E+07	2	1	0	0	7.66E-08	3.58E-05	6.46E-14	1.85E-16
230Th	4	2.81E+07	3	1	0	0	1.48E-07	8.80E-05	6.48E-14	5.52E-16
226Ra	5	5.84E+05	4	1	0	0	3.58E-07	2.32E-06	5.56E-13	1.42E-14
222Rn	6	3.82E+00	5	1	0	0	0.00E+00	0.00E+00	3.41E-14	9.81E-16
218Po	Implicit		6	1			0.00E+00	0.00E+00	7.67E-16	2.27E-17
214Pb	Implicit		6	0.9998			1.69E-10	2.11E-09	2.10E-11	5.78E-13

_

218At	Implicit		6	0.0002			0.00E+00	0.00E+00	0.00E+00	0.00E+00
214Bi	Implicit		6	1			7.64E-11	1.78E-09	1.22E-10	3.77E-12
214Po	Implicit		6	0.9998			0.00E+00	0.00E+00	7.02E-15	2.07E-16
210РЬ	7	8.15E+03	6	1	0	0	1.45E-06	3.67E-06	2.14E-13	1.13E-15
210Bi	8	5.01E+00	7	1	0	0	1.73E-09	5.29E-08	9.06E-14	1.61E-15
210Po	9	1.38E+02	8	² 1	0	0	5.14E-07	2.54E-06	7.16E-16	2.11E-17
235 U	1	2.57E+11					7.19E-08	3.32E-05	1.28E-11	3.24E-13
231Th	2	1.06E+00	1	- 1	0	0	3.65E-10	2.37E-10	1.60E-12	1.68E-14
231Pa	3	1.20E+07	2	1	0	0	2.86E-06	3.47E-04	3.52E-12	8.30E-14
227Ac	4	7.95E+03	3	1	0	0	3.80E-06	1. 81E-0 3	1.36E-14	2.26E-16
223Fr	Implicit		4	0.0138			2.33E-09	1.68E-09	4.88E-12	8.74E-14
227Th	5	1.87E+01	4	0.9862	0	0	1.03E-08	4.37E-06	8.94E-12	2.29E-13
223Ra	6	1.14E+01	5	1	4	0.0138	1.78E-07	2.12E-06	1.11E-11	2.67E-13
219Rn	Implicit		6	1			0.00E+00	0.00E+00	4.74E-12	1.33E-13
215Po	Implicit		6	1			0.00E+00	0.00E+00	1.51E-14	4.30E-16
211Pb	Implicit		6	1			1.42E-10	2.35E-09	4.38E-12	1.26E-13
211Bi	Implicit		6	1			0.00E+00	0.00E+00	3.96E-12	1.10E-13
211Po	Implicit		6	0.0028			0.00E+00	0.00E+00	6.57E-13	1.94E-14
207TI	Implicit		6	0.9972			0.00E+00	0.00E+00	3.25E-13	8.19E-15
U_Nat	1	0.00E+00					0.00E+00	0.00E+00	3.25E-13	8.19E-15

Initial Concentrations:

Note: All reported values are the upper bound of the symmetric 95% confidence interval for the 0.9 quantile value

Nuclide		Surface Concentration (dpm/100 cm**2)
234U	4.55E+01	
230Th	0.00E+00	
226Ra	0.00E+00	
222Rn	0.00E+00	
218Po	0.00E+00	
214Pb	0.00E+00	
218At	0.00E+00	
214Bi	0.00E+00	
214Po	0.00E+00	
210Pb	0.00E+00	
210Bi	0.00E+00	
210Po	0.00E+00	
235U	2.09E+00	
231Th	0.00E+00	
231Pa	0.00E+00	
227Ac	0.00E+00	
223Fr	0.00E+00	
227Th	0.00E+00	
223Ra	0.00E+00	
219Rn	0.00E+00	

file:///C:/Documents%20and%20Settings/Finley%20Watts/My%20Doc...

215Po	0.00E+00	
211Pb	0.00E+00	
211Bi	0.00E+00	
211Po	0.00E+00	
207Tl	0.00E+00	
238U	4.55E+01	
234Th	0.00E+00	
234mPa	0.00E+00	
234Pa	0.00E+00	

Model Parameters:

General Parameters:

Parameter Name	Description	cription Distribution lding during the CONSTANT(hr/week)	
To:Time In Building	The time in the building during the occupancy period		
Default value used		Value	4.50E+01
Tto:Occupancy Period	The duration of the occupancy exposure period	CONSTANT(days)	
Default value used		Value	3.65E+02
Vo:Breathing Rate	The average volumetric breathing rate during building occupancy for an 8-hour work day	CONSTANT(m**3/hr)	
Default value used		Value	1.40E+00
RFo*:Resuspension Factor	Effective resuspension factor during the occupancy period = RFo * Fl	DERIVED(1/m)	
Default value used			
GO*:Ingestion Rate	Effective secondary ingestion transfer rate of removable surface activity from building surfaces to the mouth during building occupancy = GO * Fl	DERIVED(m**2/hr)	
Default value used			
Tstart:Start Time	The start time of the scenario in days	CONSTANT(days)	
Default value used		Value	0.00E+00
Tend:End Time	The ending time of the scenario in days	CONSTANT(days)	
Default value used		Value	3.65E+02
dt:Time Step Size	The time step size	CONSTANT(days)	
Default value used		Value	3.65E+02
Pstep:Print Step Size	The time steps for the history file. Doses will be written to the history file every n time steps	CONSTANT(none)	
Default value used		Value	1.00E+00
AOExt:External Exposure Area	Minimum surface area to which occupant is exposed via external radiation during occupancy period	CONSTANT(m**2)	
Default value used		Value	1.00E+01
AOInh:Inhalation Exposure Area	Minimum surface area to which occupant is exposed via inhalation during occupancy period	CONSTANT(m**2)	

DandD Building Occupancy Scenario

Default value used		Value	1.00E+01
AOIng:Secondary Ingestion Exposure Area	Minimum surface area to which occupant is exposed via secondary ingestion during occupancy period	CONSTANT(m**2)	
Default value used		Value	1.00E+01
AO:Exposure Area	Minimum surface area to which occupant is exposed during the occupancy period	DERIVED(m**2)	
Default value used			
Fl:Loose Fraction	Fraction of surface contamination available for resuspension and ingestion	CONSTANT(none)	
Default value used		Value	1.00E-01
Rfo:Loose Resuspension Factor	Resuspension factor for loose contamination	CONTINUOUS LOGARITHMIC(1/m)	
Default value used		Value	Probability
		9.12E-06	0.00E+00
		1.10E-04	7.67E-01
		1.46E-04	9.09E-01
		1.62E-04	9.50E-01
		1.85E-04	9.90E-01
		1.90E-04	1.00E+00
GO:Loose Ingestion Rate	The secondary ingestion transfer rate of loose removable surface activity from building surfaces to the mouth during building occupancy	CONSTANT(m**2/h)
Default value used		Value	1.10E-04

Correlation Coefficients:

None

Summary Results:

90.00% of the 12800 calculated TEDE values are < 2.47E+01 mrem/year. The 95 % Confidence Interval for the 0.9 quantile value of TEDE is 2.45E+01 to 2.50E+01 mrem/year

Detailed Results:

Note: All reported values are the upper bound of the symmetric 95% confidence interval for the 0.9 quantile value

Concentration at Time of Peak Dose:

Nuclide		Surface Concentration (dpm/100 cm**2)
234U	4.55E+01	
230Th	2.05E-04	
226Ra	2.96E-08	
222Rn	2.83E-08	
218Po	2.83E-08	
214Pb	2.83E-08	
218At	5.66E-12	
214Bi	2.83Er08	
214Po	2.83E-08	
210Pb	2.15E-10	

210Bi	1.99E-10	
210Po	5.41E-11	
235U	2.09E+00	
231Th	2.08E+00	
231Pa	2.19E-05	· · · · ·
227Ac	2.30E-07	
223Fr	3.17E-09	
227Th	1.83E-07	
223Ra	1.62E-07	
219Rn	1.62E-07	
215Po	1.62E-07	
211РЬ	1.62E-07	
211Bi	1.62E-07	
211Po	4.53E-10	
207Tl	1.61E-07	
238U	4.55E+01	
234Th	4.11E+01	
234mPa	4.11E+01	
234Pa	8.23E-02	

Pathway Dose from All Nuclides (mrem)

All Pathways Dose	External	Inhalation	Secondary Ingestion
2.50E+01	2.15E-03	2.49E+01	2.97E-02

Radionuclide Dose through All Active Pathways (mrem)

N	luclide	All Pathways Dose	
234U		1.29E+01	
230Th		1.43E-04	
226Ra		5.89E-10	
222Rn		1.57E-14	
218Po		3.53E-16	
214Pb		1.01E-11	
218At		0.00E+00	
214Bi		5.65E-11	
214Po		3.23E-15	
210Pb		7.59E-12	
210Bi		8.51E-14	
210Po		1.21E-12	
235U		5.51E-01	
231Th		6.13E-05	
231Pa		6.04E-05	
227Ac		3.29E-06	
223Fr		3.25E-13	

.

DandD Building Occupancy Scenario

file:///C:/Documents%20and%20Settings/Finley%20Watts/My%20Doc...

227Th	6.36E-09
223Ra	2.87E-09
219Rn	1.25E-11
215Po	3.97E-14
211РЬ	1.46E-11
211Bi	1.04E-11
211Po	4.84E-15
207Tl	8.52E-13
238U	1.15E+01
234Th	4.21E-03
234mPa	8.81E-04
234Pa	2.13E-04
All Nuclides	2.50E+01

.,

Dose from Each Nuclide through Each Active Pathway (mrem)

Nuclide	External	Inhalation	Secondary Ingestion
234U	4.77E-05	1.29E+01	1.49E-02
230Th	2.16E-10	1.43E-04	1.30E-07
226Ra	2.67E-13	5.43E-10	4.55E-11
222Rn	1.57E-14	0.00E+00	0.00E+00
218Po	3.53E-16	0.00E+00	0.00E+00
214Pb	9.66E-12	4.72E-13	2.05E-14
218At	0.00E+00	0.00E+00	0.00E+00
214Bi	5.61E-11	3.99E-13	9.28E-15
214Po	3.23E-15	0.00E+00	0.00E+00
210РЬ	7.49E-16	6.25E-12	1.34E-12
210Bi	2.93E-16	8.33E-14	1.48E-15
210Po	6.30E-19	1.09E-12	1.19E-13
235U	4.35E-04	5.50E-01	6.46E-04
231Th	5.42E-05	3.91E-06	3.26E-06
231Pa	1.25E-09	6.01E-05	2.69E-07
227Ac	3.07E-14	3.29E-06	3.74E-09
223Fr	2.51E-13	4.21E-14	3.17E-14
227Th	2.66E-11	6.33E-09	8.09E-12
223Ra	2.92E-11	2.71E-09	1.24E-10
219Rn	1.25E-11	0.00E+00	0.00E+00
215Po	3.97E-14	0.00E+00	0.00E+00
211Pb	1.15E-11	3.01E-12	9.86E-14
211Bi	1.04E-11	0.00E+00	0.00E+00
211Po	4.84E-15	0.00E+00	0.00E+00
207Tl	8.52E-13	0.00E+00	0.00E+00
238U	3.52E-05	1.15E+01	1.34E-02
234Th	4.80E-04	3.08E-03	6.51E-04
234mPa	8.81E-04	0.00E+00	0.00E+00

234Pa 2.13E-04 1.43E-07 2.06E-07

DandD Building Occupancy Scenario

DandD Version: 2.1.0 Run Date/Time: 7/14/2005 9:53:50 AM Site Name: 12709 Twinbrook Parkway Description: DCGL determination FileName:C:\Documents and Settings\Finley Watts\My Documents\CDRH\Center for Devices and Radiological Health 2.mcd

Options:

Implicit progeny doses NOT included with explicit parent doses Nuclide concentrations are distributed among all progeny Number of simulations: 6400 Seed for Random Generation: 8718721 Averages used for behavioral type parameters

External Pathway is ON Inhalation Pathway is ON Secondary Ingestion Pathway is ON

Initial Activities:

Nuclide	Area of Contamination (m ²)		Distribution
Th_Nat	UNLIMITED	CONSTANT(dr	om/100 cm**2)
Justification for concentra	tion: DCGL determination	Value	5.84E+01

Chain Data:

Number of chains: 1

Chain No. 1: **Th_Nat** Nuclides in chain: **12**

Nuclide	Chain Position	Half Life	First Parent	Fractional Yield	Second Parent	Fractional Yield	Ingestion CEDE Factor (Sv/Bq)	Inhalation CEDE Factor (Sv/Bq)	Surface Dose Rate Factor ((Sv/d)/(Bq/m ²))	15 cm Dose Rate Factor ((Sv/d)/(Bq/m ³))
232Th	1	5.13E+12					7.38E-07	4.43E-04	4.76E-14	2.40E-16
228Ra	2	2.10E+03	1	1	0	0	3.88E-07	1.29E-06	0.00E+00	0.00E+00
228Ac	Implicit		2	1			5.85E-10	8.33E-08	8.01E-11	2.38E-12
228Th	3	6.99E+02	2	1	0	0	1.07E-07	9.23E-05	2.03E-13	3.60E-15
224Ra	4	3.66E+00	3	1	0	0	9.89E-08	8.53E-07	8.26E-13	2.26E-14
220Rn	Implicit		4	1			0.00E+00	0.00E+00	3.29E-14	9.52E-16
216Po	Implicit		4	1			0.00E+00	0.00E+00	1.43E-15	4.21E-17
212Pb	5	4.43E-01	4	1	0	0	1.23E-08	4.56E-08	1.23E-11	3.13E-13
212Bi	Implicit		5	1			2.87E-10	5.83E-09	1.54E-11	4.63E-13

file:///C:/Documents%20and%20Settings/Finley%20Watts/My%20Doc...

212Po	Implicit	5	0.6407	0.00E+00 0.00E+00 0.00E+00 0.00E+00
208Tl	Implicit	5	0.3593	0.00E+00 0.00E+00 2.58E-10 8.36E-12
Th_Nat	1	0.00E+00		0.00E+00 0.00E+00 2.58E-10 8.36E-12

Initial Concentrations:

Note: All reported values are the upper bound of the symmetric 95% confidence interval for the 0.9 quantile value

Nuclide		Surface Concentration (dpm/100 cm**2)
232Th	5.84E+00	
228Ra	5.84E+00	
228Ac	5.84E+00	
228Th	5.84E+00	
224Ra	5.84E+00	
220Rn	5.84E+00	
216Po	5.84E+00	
212Рb	5.84E+00	
212Bi	5.84E+00	
212Po	3.74E+00	
20 8 Tl	2.10E+00	

Model Parameters:

General Parameters:

Parameter Name	Description	Distribution		
To:Time In Building	The time in the building during the occupancy period	CONSTANT(hr/week)		
Default value used		Value	4.50E+01	
Tto:Occupancy Period	The duration of the occupancy exposure period	CONSTANT(days)		
Default value used		Value	3.65E+02	
Vo:Breathing Rate	The average volumetric breathing rate during building occupancy for an 8-hour work day	CONSTANT(m**3/hr)		
Default value used		Value	1.40E+00	
RFo*:Resuspension Factor	Effective resuspension factor during the occupancy period = RFo * Fl	DERIVED(1/m)		
Default value used				
GO*:Ingestion Rate	Effective secondary ingestion transfer rate of removable surface activity from building surfaces to the mouth during building occupancy = $GO \bullet Fl$	DERIVED(m**2/hr)		
Default value used	· · · · · · · · · · · · · · · · · · ·	-		
Tstart:Start Time	The start time of the scenario in days	CONSTANT(days)		
Default value used		Value	0.00E+00	
Tend:End Time	The ending time of the scenario in days	CONSTANT(days)		
Default value used		<u>Value</u>	3.65E+02	

dt:Time Step Size	The time step size	CONSTANT(days)	
Default value used	·	Value	3.65E+02
Pstep:Print Step Size	The time steps for the history file. Doses will be written to the history file every n time steps	CONSTANT(none)	
Default value used		Value	1.00E+00
AOExt:External Exposure Area	Minimum surface area to which occupant is exposed via external radiation during occupancy period	CONSTANT(m**2)	
Default value used		Value	1.00E+01
AOInh:Inhalation Exposure Area	Minimum surface area to which occupant is exposed via inhalation during occupancy period	CONSTANT(m**2)	
Default value used		Value	1.00E+01
AOIng:Secondary Ingestion Exposure Area	Minimum surface area to which occupant is exposed via secondary ingestion during occupancy period	CONSTANT(m**2)	
Default value used		Value	1.00E+01
AO:Exposure Area	Minimum surface area to which occupant is exposed during the occupancy period	DERIVED(m**2)	
Default value used			
Fl:Loose Fraction	Fraction of surface contamination available for resuspension and ingestion	CONSTANT(none)	
Default value used		Value	1.00E-01
Rfo:Loose Resuspension Factor	Resuspension factor for loose contamination	CONTINUOUS LOGA	RITHMIC(1/m)
Default value used		Value	Probability
		9.12E-06	0.00E+00
		1.10E-04	7.67E-01
		1.46E-04	9.09E-01
		<u>1.62E-04</u>	9.50E-01
		1.85E-04	9.90E-01
		1.90E-04	1.00E+00
GO:Loose Ingestion Rate	The secondary ingestion transfer rate of loose removable surface activity from building surfaces to the mouth during building occupancy	CONSTANT(m**2/hr))
Default value used		Value	1.10E-04

Correlation Coefficients:

None

Summary Results:

90.00% of the 6400 calculated TEDE values are < 2.46E+01 mrem/year. The 95 % Confidence Interval for the 0.9 quantile value of TEDE is 2.43E+01 to 2.50E+01 mrem/year

Detailed Results:

Note: All reported values are the upper bound of the symmetric 95% confidence interval for the 0.9 quantile value

Concentration at Time of Peak Dose:

Nuclide

Surface Concentration

		(dpm/100 cm**2)
232Th	5.84E+00	
228Ra	5.84E+00	
228Ac	5.84E+00	
228Th	5.84E+00	
224Ra	5.84E+00	
220Rn	5.84E+00	
216Po	5.84E+00	
212Pb	5.84E+00	,
212Bi	5.84E+00	
212Po	3.74E+00	
208Tl	2.10E+00	

Pathway Dose from All Nuclides (mrem)

All Pathways Dose	External	Inhalation	Secondary Ingestion
2.50E+01	1.91E-02	2.49E+01	3.37E-02

Radionuclide Dose through All Active Pathways (mrem)

Nuclide	All Pathways Dose		
232Th	2.06E+01		
228Ra	6.96E-02		
228Ac	1.15E-02		
228Th	4.29E+00		
224Ra	4.21E-02		
220Rn	3.12E-06		
216Po	1.36E-07		
212Pb	3.59E-03		
212Bi	1. 74E-03		
212Po	0.00 E+00		
208Tl	8.80E-03		
All Nuclides	2.50E+01		

Dose from Each Nuclide through Each Active Pathway (mrem)

Nuclide	External	Inhalation	Secondary Ingestion	
232Th	4.52E-06	2.06E+01	1.85E-02	
228Ra	0.00E+00	5.99E-02	9.72E-03	
228Ac	7.60E-03	3.86E-03	1.47E-05	
228Th	1.93E-05	4.28E+00	2.68E-03	
224Ra	7.84E-05	3.96E-02	2.48E-03	
220Rn	3.12E-06	0.00E+00	0.00E+00	

DandD Building Occupancy Scenario

file:///C:/Documents%20and%20Settings/Finley%20Watts/My%20Doc...

216Po	1.36E-07	0.00E+00	0.00E+00
212РЬ	1.17E-03	2.12E-03	3.08E-04
212Bi	1.46E-03	2.70E-04	7.19E-06
212Po	0.00E+00	0.00E+00	0.00E+00
208Tl	8.80E-03	0.00E+00	0.00E+00

,

Survey Unit Listing

	Town (Est. Standard Deviation		
SULTAN	I ype /	Class	(cpm/	Deference	Test
Unit	Location	Class	Unit	Area	I CSU
4D	Structure / 4D	Class 3	8	N/A	Sign
			0.1	0.1	WRS
4EI	Structure / 4E	Class 3	5	N/A	Sign
			0.1	0.2	WRS
161	Structure / 16	Class 3	5	N/A	Sign
			0.1	0.1	WRS
171	Structure / 17	Class 3	7	N/A	Sign
			0.1	0.1	WRS
181	Structure / 18	Class 3	6	N/A	Sign
			0.1	0.2	WRS
211	Structure / 21	Class 3	6	N/A	Sign
			0.1	0.1	WRS
22	Structure / 22	Class 3	6	N/A	Sign
1	· ·		0.1	0.1	WRS
23	Structure / 23	Class 3	2.8	N/A	Sign
			0.1	0.1	WRS
251	Structure / 25A	Class 3	3.7	N/A	Sign
			0.1	0.1	WRS
25B	Structure / 25B	Class 3	5.7	N/A	Sign
			0.1	0.2	WRS
27I	Structure / 27	Class 3	13.5	N/A	Sign
			0.1	0.1	WRS
29I	Structure / 29	Class 3	7.7	N/A	Sign
	•		0.1	0.2	WRS
311	Structure / 31	Class 3	7	N/A	Sign
			0.1	0.1	WRS
SW1	Structure / Southeast,	Class 3	5.0	N/A	Sign
	hallway		0.1	0.1	WRS
SW2	Structure / Southeast,	Class 3	4.3	N/A	Sign
	hallway		0.1	0.1	WRS
SW3	Structure / Southwest,	Class 3	3.8	N/A	Sign
	foyer		0.1	0.1	WRS
SW4	Structure / Southwest,	Class 3	4.8	N/A	Sign
	hallway		0.1	0.2	WRS
SW5	Structure / Northwest,	Class 3	4	N/A	Sign
	hallway		0.2	0.1	WRS
SW6	Structure / Northwest,	Class 3	3.7	N/A	Sign
	hallway		0.1	0.2	WRS

Survey Unit Listing

	Type /		Est. Standa (cpm/1	rd Deviation 00cm2)	
Survey Unit	Location	Class	Survey Unit	Reference Area	Test
SW7	Structure / Northwest,	Class 3	6	N/A	Sign
	hallway		0.1	0.1	WRS
N1	Structure / North,	Class 3	4	N/A	Sign
	hallway		0.1	0.2	WRS
N2	Structure / North,	Class 3	3.3	N/A	Sign
	hallway		0.1	0.1	WRS
NE1	Structure / N, northeast	Class 3	11	N/A	Sign
	hallway		0.1	0.1	WRS
NE2	Structure / Northeast	Class 3	5.5	N/A	Sign
	hallway		0.1	0.2	WRS
NE3	Structure / Northeast	Class 3	8	N/A	Sign
	hallway		0.2	0.2	WRS
NE4	Structure / Northeast	Class 3	8	N/A	Sign
	hallway		0.1	0.1	WRS
NE5	Structure / Northeast	Class 3	4.9	N/A	Sign
	hallway		0.1	0.1	WRS
NE6	Structure / Northeast	Class 3	4	N/A	Sign
	hallway		0.1	0.1	WRS
NE7	Structure / Northeast	Class 3	4.7	N/A	Sign
	hallway		0.1	0.1	WRS
	Surface soil /				WRS/
17C2	15B/15C	Class 1	1,589cpm	1,655cpm	Quantile

......

Survey Unit	Relative Shift (Δ/σ)	Nr. Data Points	Survey Unit	Relative Shift (Δ/σ)	Nr. Data Points
4D	2.6	11	SW3	2.9	11
4EI	3.0	11	SW4	2.3	12
161	2.1	12	SW5	2.7	11
171	3.0	11	SW6	2.9	11
18I	3.0	11	SW7	2.7	11
211	2.7	11	N1	2.7	11
22	2.7	11	N2	2.2	12
23	2.8	11	NE1	1.9	12
251	2.9	11	NE2	2.9	11
25B	2.8	11	NE3	2.6	12
271	1.5	15	NE4	2.6	12
291	2.7	11	NE5	2.2	12
311	2.2	12	NE6	2.7	11
SW1	2.2	12	NE7	2.3	12
SW2	2.6	11			

Contaminants Not Present in Background

	Relative Shift	Nr. Data		Relative Shift	Nr. Data
Survey Unit	(Δ/σ)	Points	Survey Unit	(Δ/σ)	Points
4D	2.5	9	SW3	2.5	9
4EI	1.6	13	SW4	1.6	13
161	2.5	9	SW5	1.6	13
171	2.5	9	SW6	1.6	13
181	1.6	13	SW7	2.5	9
211	2.5	9	NI	1.6	13
22	2.5	9	N2	2.5	9
23	2.5	9	NEI	2.5	9
251	2.5	9	NE2	1.6	13
25B	1.6	13	NE3	1.2	19
271	2.5	9	NE4	2.5	9
291	1.6	13	NE5	2.5	9
311	2.5	9	NE6	2.5	9
SW1	2.5	9	NE7	2.5	9
SW2	2.5	9	17C2	0.6	52

•

Contaminants Present in Background

•

······

Listing of Reference Areas

4A 8 9A 10 11 19-A 20 25 33 36 Center hallway South hallway Northwest hallway Men's Restroom Entrance foyer

......

÷

MDCR

1639

2658

1858

Scaler/rate	meter: SN:	L2221 168577	Detector: SN:	43-37B 190909								
	Mastic	Concrete	Concrete	Concrete	Plastic	Particle	Plywood	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile
	black on	floor	floor	floor	covering	board	board	#1	#2	#3	#4	#5
	concrete		R-20	painted	concrete fir							
Counts/minute	1163 ± 35	1087 ± 33	1189 ± 110	1050 ± 23	1206 ± 34	878 ± 17	1025 ± 33	935 ± 21	888 ± 26	925 ± 32	908 ± 22	1132 ± 15
MDCR	1934	1832	1969	1783	1992	1548	1749	1627	1562	1613	1590	1893
			· · · · · · · · · · · · · · · · · · ·					•				
	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile
	#6	#7	#8	# 9	#10	#11	#12	#13	#14	#15	#16	#17
Counts/minute	906 ± 20	945 ± 27	1129 ± 38	965 ± 15	960 ± 22	972 ± 22	900 ± 18	906 ± 28	973 ± 30	943 ± 20	949 ± 25	929 ± 15
MDCR	1587	1640	1889	1668	1661	1677	1579	1587	1679	1638	1546	1618
								•				
	Vinyl tile	Vinyl tile	Vinyl tile	Soapstone	Soapstone	Casework	Casework	Stainless				
	#18	#19	#20	benchtop	shiny	horizontal	vertical	steel				
					benchtop			horizontal				
Counts/minute	904 ± 31	925 ± 17	944 ± 23	1050 ± 11	951 ± 21	864 ± 25	617 ± 21	902 ± 25				
MDCR	1584	1613	1639	1783	1649	1529	1179	1581				
									-			
	Window	Shelf, wood	Shelf, metal	Shelf, metal	Door, steel	Drywall	Concrete	Concrete	Concrete			
	glass	painted	vertical	horizontal		painted	over	block wall,	wall,			
							cinderblock	painted	painted			
Counts/minute	759 ± 19	972 ± 33	674 ± 17	862 ± 27	622 ± 20	834 ± 22	901 ± 28	1126 ± 25	671 ± 22			
MDCR	1382	1677	1261	1526	1186	1487	1580	1885	1257			
	Plastic	Ceiling	Ceiling									
	light cover	tile	tile									
			drywali									
Counts/minute	944 ± 26	1720 ± 38	1106 ± 12									

Scaler/rate	meter: ऽN·	L2221	Detector:	43-37B								
	511.	190109	314.	190072								
	Mastic	Concrete	Concrete	Plastic	Particle	Plywood	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile
	black on	floor	floor	covering	board	board	#1	#2	#3	#4	#5	#6
	concrete		painted	concrete flr								•
Counts/minute	1186 ± 19	1113 ± 20	1022 ± 22	1217 ± 16	895 ± 17	960 ± 24	919 ± 20	859 ± 18	892 ± 37	888 ± 19	1057 ± 22	884 ± 29
MDCR	1965	1868	1745	2006	1572	1661	1605	1522	1568	1562	1792	1557
	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile
	#7	#8	#9	#10	#11	#12	#13	#14	#15	#16	#17	#18
Counts/minute	925 ± 28	1123 ± 28	944 ± 19	999 ± 26	973 ± 30	840 ± 28	879 ± 27	951 ± 33	940 ± 24	910 ± 34	901 ± 21	878 ± 24
MDCR	1613	1881	1639	1714	1679	1496	1550	1649	1634	1592	1580	1548
							-	_				
	Vinyl tile	Vinyl tile	Soapstone	Soapstone	Casework	Casework	Stainless					
	#19	#20	benchtop	black, shiny	horizontal	vertical	steel					
	<u> </u>			benchtop			horizontal					
Counts/minute	897 ± 20	927 ± 26	963 ± 28	895 ± 21	861 ± 27	578 ± 22	806 ± 20					
MDCR	1575	1616	1665	1572	1525	1122	1448					
	Window	Shelf, wood	Shelf, metal	Shelf, metal	Door, steel	Drywall	Concrete	Concrete	Concrete			
	giass	painted	vertical	horizontal		painted	over	wall, painted	block wall			
							cinderblock		painted			
Counts/minute	735 ± 22	974 ± 21	659 ± 18	875 ± 18	602 ± 17	798 ± 70	884 ± 18	692 ± 27	1065 ± 20			
MDCR	1348	1680	1240	1544	1157	1437	1501	1287	1803			
	Plastic	Ceiling	Ceiling	Ceiling								
	light cover	tile	tile	concrete								
			drawall									

			drywali	
Counts/minute	968 ± 22	1605 ± 18	1098 ± 25	1112 ± 28
MDCR	<u>1</u> 672	2511	1848	1866

Scaler/rate	meter:	L2221	Detector:	43-37B								
	5N:	169217	SN:	190946								
1	Mastic	Concrete	Concrete	Plastic	Particle	Plywood	Vinyl tile	Vinyl tile	Vinyl tile	Viny! tile	Vinyl tile	Vinyl tile
	black on	floor	floor	covering	board	board	#1	#2	#3	#4	#5	#6
	concrete		painted	concrete flr								
Counts/minute	1070 ± 12	1102±30	1008 ± 15	1172 ± 19	877 ± 15	1017 ± 30	923 ± 25	854 ± 16	889 ± 22	901 ± 26	1079 ± 18	852 ± 25
MDCR	1810	1853	1726	1946	1547	1738	1610	1515	1563	1580	1822	1512
								-				
	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile
	#7	#8	# 9	#10	#11	#12	#13	#14	#15	#16	#17	#18
Counts/minute	988 ± 13	1064 ± 24	948 ± 22	904 ± 19	919 ± 19	845 ± 20	933 ± 20	940 ± 23	942 ± 18	941 ± 23	850 ± 24	857 ± 23
MDCR	1699	1802	1645	1584	1605	1503	1624	1634	1636	1635	1510	1519
								-				
	Vinyl tile	Vinyl tile	Soapstone	Soapstone	Casework	Casework	Stainless					
	#19	#20	benchtop	benchtop	horizontal	vertical	steel					
ļ				shiny			horizontal					
Counts/minute	855 ± 32	965 ± 16	928 ± 18	945 ± 18	859 ± 26	580 ± 13	844 ± 18					
MDCR	1516	1668	1617	1640	1522	1125	1501]				
	Window	Shelf, wood	Shelf, metal	Shelf, metal	Door, steel	Drywall	Concrete	Concrete	Concrete			
	glass	painted	vertical	horizontal		painted	over	block wall	wall			
							cinderblock	painted	painted			
Counts/minute	766 ± 20	958 ± 27	645 ± 19	838 ± 22	609 ± 19	905 ± 26	837 ± 24	1068 ± 17	667 ± 17			
MDCR	1392	1658	1220	1493	1167	1586	1491	1807	1251			
,												
	Plastic	Ceiling	Ceiling									
	light cover	tile	tile									
			drywali									

950 ± 18 1716 ± 24 1079 ± 33

2653

1822

1647

Counts/minute

MDCR

Scaler/rate i	meter:	L2221	Detector:	43-37B								
	SN:	197770	SN:	92765								
1	Mastic	Concrete	Concrete	Plastic	Particle	Plywood	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile
	black on	floor	floor	covering	board	board	#1	#2	#3	#4	#5	#6
	concrete		painted	concrete fir								
Counts/minute	1196 ± 26	1141 ± 31	1059 ± 22	1264 ± 26	879 ± 23	1017 ± 19	951 ± 34	864 ± 17	943 ± 24	942 ± 25	1141 ± 21	929 ± 28
MDCR	1978	1905	1795	2068	1550	1738	1649	1529	1638	1636	1905	1618
	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile
	#7	#8	#9	#10	#11	#12	#13	#14	#15	#16	#17	#18
Counts/minute	920 ± 34	1150 ± 29	962 ± 24	890 ± 24	949 ± 32	872 ± 22	884 ± 15	966 ± 35	962 ± 30	920 ± 21	906 ± 21	920 ± 24
MDCR	1606	1917	1664	1565	1646	1540	1557	1669	1664	1606	1587	1606
	Vinyl tile	Vinyl tile	Ceramic	Soapstone	Soapstone	Casework	Casework	Stainless	Stainless			
	#19	#20	tile	benchtop	benchtop	horizontal	vertical	steel	steel			
					shiny			horizontal	vertical			
Counts/minute	912 ± 23	938 ± 18	2783 ± 32	1005 ± 28	883 ± 21	853 ± 22	590 ± 16	877 ± 25	664 ± 13			
MDCR	1595	1631	3976	1722	1555	1514	1139	1547	1247			
	Window	Wood	Sheif, metal	Shelf, metal	Door, steel	Drywall	Concrete over	Concrete	Concrete			
	glass	painted	vertical	horizontal	-	painted	cinderblock	wali	block wall,			
								painted	painted			
Counts/minute	754 ± 25	962 ± 31	681 ± 25	896 ± 20	600 ± 20	797 ± 43	862 ± 30	740 ± 16	1097 ± 26			
MDCR	1375	1664	1271	1573	1154	1436	1526	1355	1846			
	Plastic	Ceiling	Ceiling									
	light cover	tile	tile									
			drywall									
Counts/minute	952 ± 23	1650 ± 32	1065 ± 23									
MDCR	1650	2569	1803									

Scaler/rate me	ter: SN:	L2221 168577	Detector: SN:	43-37A 190909								
Г	Mastic	Concrete	Concrete	Plastic	Particle	Plywood	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl
	black on	floor	floor	covering	board	board	tile	tile	tile	tile	tile	tile
	concrete		painted	concrete flr			#1	#2	#3	#4	#5	#6
Counts/minute	12 ± 1	18 ± 1	10 ± 1	6±1	4 ± 1	6±1	5±1	4 ± 1	5±1	5±1	5±1	4 ± 1
Г	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl
	tile	tile	tile	tile	tile	tile	tile	tile	tile	tile	tile	tile
	#7	#8	#9	#10	#11	#12	#13	#14	#15	#16	#17	#18
Counts/minute	5±1	6±1	4±1	4±1	4±1	5±1	5±1	5±1	6±1	5±1	5±1	6±1
[Vinyl tile #19	Vinyl tile #20	Soapstone benchtop	Soapstone black, shiny benchtop	Drawer metal, horizontal	Casework vertical	Stainless steel horizontal	Stainless steel vertical				
Counts/minute	5±1	6±1	8±1	9±1	5±1	6±1	4 ± 1	4 ± 1				
	Window glass	Shelf, wood painted	Shelf, metal vertical	Shelf, metal horizontal	Door, steel	Drywall painted	Concrete over cinderblock	Concrete wall, painted	Concrete block wall, painted			
Counts/minute	6±1	6±1	6±1	6±1	4±1	6±1	7±2	6±1	7±1			
Г				1								
	Maetic											

Counts/minute

drywall 5±1 9±1 5±1

~

Scaler/rate r	neter:	L2221	Detector:	43-37A								
	SN	190169	SN:	190672								
	Mastic	Concrete	Concrete	Plastic	Particle	Plywood	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl
	black on	floor	floor	covering	board	board	tile	tile	tile	tile	tile	tile
	concrete		painted	concrete fir			#1	#2	#3	#4	#5	#6
Counts/minute	11 ± 1	18±1	9±1	7±1	4 ± 1	5±1	5±1	4 ± 1	5±1	5±1	5±1	5±1
	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl	Vinyl
	tile	tile	tile	tile	tile	tile	tile	tile	tile	tile	tile	tile
	#7	#8	#9	#10	#11	#12	#13	#14	#15	#16	#17	#18
Counts/minute	5±1	7±1	5±1	6±1	5±1	6±1	6±1	6±1	6±1	5±1	5±1	6±1
								_				
	Vinyl	Vinyl	Soapstone	Soapstone	Drawer	Casework	Stainless					
	tile	tile	benchtop	black, shiny	metal,	vertical	steel					
	#19	#20		benchtop	horizontal		horizontal					
Counts/minute	5±1	6±1	8±1	9±1	6±1	6±1	4 ± 1	1				
								_				
	Window	Shelf, wood	Shelf, metal	Shelf, metal	Door, steel	Drywali	Concrete	Concrete	Concrete			
	glass	painted	vertical	horizontal		painted	over	wall, painted	block wail			
							cinderblock		painted			
Counts/minute	6 ± 1	5±1	6±1	6±1	6±1	6±1	5±1	5±1	7±1			
												
	Plastic	Ceiling	Ceiling									
	light cover	tile	tile									

Counts/minute

.

 drywall

 5±1
 9±1
 5±1

Scaler/rate n	neter:	L2221	Detector:	43-37A								
	SN:	169217	SN:	190946								
	Mastic	Concrete	Concrete	Plastic	Particle	Plywood	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile	Vinyl tile
	black on	floor	floor	covering	board	board	#1	#2	#3	#4	#5	#6
	concrete		painted	concrete fir								~
Counts/minute	10 ± 1	15±1	13 ± 2	12 ± 1	4±1	6±1	5±1	5±1	5±1	5±1	4±1	5±1
	Vinvl tile	Vinvl tile	Vinvl tile	Vinvi tile	Vinvl tile	Vinvl tile	Vinvl tile	Vinvl tile	Vinvl tile	Vinvl tile	Vinvl tile	Vinvl tile
	#7	#8	#9	#10	#11	#12	#13	#14	#15	#16	#17	#18
Counts/minute	4 ± 1	5±1	4 ± 1	4 ± 1	5±1	5±1	5±1	5±1	4 ± 1	4 ± 1	4±1	4±1
	Vinyl tile	Vinyl tile	Soapstone	Soapstone	Drawer	Casework	Casework	Stainless	}			
	#19	#20	benchtop	benchtop	metal,	horizontal	vertical	steel				
				shiny	horizontal			horizontal				
Counts/minute	5±1	4±1	10 ± 1	8±1	5±1	5±1	6±1	5±1				
			-									
	Window	Shelf, wood	Shelf, metal	Shelf, metal	Door, steel	Drywall	Concrete	Concrete	Concrete			
	glass	painted	vertical	horizontal		painted	over	wall	block wall			
							cinderblock	painted	painted			
Counts/minute	5±1	5±1	6±1	8±1	6±1	5±1	6±1	8±1	10 ± 1			
			r	·····	I							
	Plastic	Ceiling	Ceiling	Ceiling								
	light cover	tile	tile	concrete								
			drywall									

Counts/minute 4 ± 1 8 ± 1

9±1

11 ± 2

Scaler/rate n	neter: SN:	L2221 197770	Detector: SN:	43-37A 92765								
	Mastic black on	Concrete floor	Concrete floor	Plastic covering	Particle board	Plywood board	Vinyl tile #1	Vinyl tile #2	Vinyl tile #3	Vinyl tile #4	Vinyl tile #5	Vinyl tile #6
Counts/minute	concrete 9 ± 1	14 ± 2	painted 10 ± 1	8 ± 1	4 ± 1	6±1	5±1	5±1	5±1	6±1	4±1	5±1
	Vinyl tile #7	Vinyl tile #8	Vinyl tile #9	Vinyl tile #10	Vinyl tile #11	Vinyl tile #12	Vinyl tile #13	Vinyl tile #14	Vinyl tile #15	Vinyl tile #16	Vinyl tile #17	Vinyl tile #18
Counts/minute	5±1	6±1	5±1	5±1	5±1	5±1	5±1	5±1	6±1	4±1	6±1	5±1
	Vinyl tile #19	Vinyl tile #20	Ceramic tile	Soapstone benchtop	Soapstone benchtop shiny	Drawer metal, horizontal	Casework horizontal	Casework vertical	Stainless steel horizontal			
Counts/minute	6±1	6±1	14 ± 1	11 ± 1	7±1	4±1	6±1	5±1	6±1			
	Window glass	Wood painted	Shelf, metal vertical	Shelf, metal horizontal	Door, steel	Drywall painted	Concrete over cinderblock	Concrete wall painted	Cinderblock painted			
Counts/minute	5±1	6±1	4±1	6±1	5±1	6±1	5±1	5±1	7±1			
	Plastic light cover	Ceiling tile	Ceiling tile drywall									
Counts/minute	4 ± 1	8±1	6±1									

_

Facility Map

_ __

Survey Unit Maps

э

.

RADIATION SAFETY SURVEY REPORT					SURVEYOR NAME:					DATE:	
					LAB: 2	23	Тіме:				
		1	2	3	4	5	6	7	8 9	10	
A						-			Wall B		А
в											В
С											с
D								Сғн			D
E											Е
F											F
G											G
н											н
I											I
J		Wall A				Entran From	ce		Wall C	J	
к						······································	3 4				К
L							<u> </u>		Wall D		L
		· 1	2	3	4	5	: 6		8 9	10	
Comments:											
		,									
				<u> </u>			<u></u>			CFS For	n #1. Rev 03/05

Depression	Adiation Safety Survey Report					AME:	Date:				
KADIATIO	N SAFETY	SURVEY .	KEPOR		LAB: SW					Тіме:	
	1	2	2	3	4	5	6	7	8		
А					F	Office					A
В						2					В
С									·		С
D	SF	Corridor									D
Е]						E
F											F
G											G
н								Office			н
I		Lab 4E			_						1
J											J
к						•					К
L		Lab 4D			_						L
м											М
N											N
0	<u></u>	·····	<u> </u>			. <u>.</u>			÷		0
					5 W 2 Coi	r IQO r					
 		1	2	3	4	5	6	7	8		
Comments	:										

D	ADIATION SAFETY SURVEY REPORT				SURVEY	Surveyor Name:						DATE:		
KAD	IATION	SAFETY S	URVEY K	LPURT	LAB:	SW	3					TIME:		
	1	2	3	4	5		6	7		8	9	10	11	
														A
A														R
В							Building Entrance							D
с														С
D														D
E							¢							Е
F							¢							F
-							ç							
G		Office 1												G
н							.							Н
														2
	1	2	3	4		5	6	,	7	8	9	10	11	
Cor	mments:													

Direct Measurements

Sample Point	Bkg	Gross	Count time	Total Surface A	Activity ¹ in DPM/1	00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06085-4D - B7	6	13	2	2	15	24	ND ³
BB06085-4D - D3	6	14	2	3	15	24	ND ³
BB06085-4D - E6	14	68	5	-1	12	35	ND ³
BB06085-4D - F6	14	71	5	1	12	35	ND ³
BB06085-4D - G10	6	13	2	2	15	24	ND ³
BB06085-4D - K8	6	12	2	0	14	24	ND ³
BB06085-4D - CD7	8	14	2	-3	16	27	ND ³
BB06085-4D - CD8	8	13	2	-5	15	27	ND ³
BB06085-4D - CG4	8	14	2	-3	16	27	ND ³

Final Status Survey Results for Unit - 4D

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

- 1.0 Largest S measurement
- -3.0 Smallest R measurement
- 4.0 Difference
- 27 Gross Beta DCGLw
- -0.1 Average S measurements
- -0.2 Average R measurements
- 0.1 Difference
- 27 Gross Beta DCGLw

Final Status Survey Results for Unit - 4D

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface A	00cm2	Removable	
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06085-4A	6	13	2	2	15	24	ND ³
BB06085-4A	6	11	2	-2	14	24	ND ³
BB06085- S hall	14	74	5	3	13	35	ND ³
BB06085-S hall	14	71	5	1	12	35	ND ³
BB06085-4A	6	14	2	3	15	24	ND ³
BB06085-4A	6	11	2	-2	14	24	ND ³
BB06085-4A	8	18	2	3	17	27	ND ³
BB06085-4A	8	17	2	2	17	27	ND ³
BB06085-4A	8	14	2	-3	16	27	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
² - at the 95% confidence level
³ - None detected

.

	Bkg	Gross	Count time	Total Surfac	e Activity ¹ in DPM	/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BB06085-4D - B7	797	792	1	-2864	44748	75189	ND ³
BB06085-4D - D3	797	781	1	-9164	44593	75189	ND ³
BB06085-4D - E6	1141	1119	1	-12600	53366	89963	ND ³
BB06085-4D - F6	1141	1124	1	-9737	53425	89963	ND ³
BB06085-4D - G10	797	801	1	2291	44875	75189	ND ³
BB06085-4D - K8	797	814	1	9737	45057	75189	ND ³
BB06085-4D - CD7	1065	1078	1	7446	51966	86915	ND ³
BB06085-4D - CD8	1065	1029	1	-20619	51369	86915	ND ³
BB06085-4D - CG4	1065	1064	1	-573	51796	86915	ND ³
BB06085-4D - C5	797	781	1	-9164	44593	75189	ND ³
BB06085-4D - D2	797	774	1	-13173	44494	75189	ND ³

Final Status Survey Results for Unit - 4D

 1 - $E_{weighted,\ totali} 0.0003$, probe active area 582 cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

-1.6 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bka	Gross	Count time	Total Surface	/100cm2	Removable	
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06085-4EI - C5	6	11	2	-2	14	30	ND ³
JE06085-4EI - C6	6	12	2	0	14	30	ND ³
JE06085-4EI - C9	6	10	2	-3	13	30	ND ³
JE06085-4EI - D6	8	42	5	1	10	23	ND ³
JE06085-4EI - D7	9	48	5	2	10	24	ND ³
JE06085-4EI - H2	6	9	2	-5	13	30	ND ³
JE06085-4EI - H10	6	11	2	-2	14	30	ND ³
JE06085-4EI - J8	6	10	2	-3	13	30	ND ³
JE06085-4EI - CH5	5	11	2	2	13	28	ND ³
JE06085-4EI - B5	6	13	2	2	15	30	ND ³
JE06085-4EI - D10	6	14	2	3	15	30	ND ³
JE06085-4EI - H9	9	40	5	-3	9	24	ND ³
JE06085-4EI - H3	6	13	2	2	15	30	ND ³

Final Status Survey Results for Unit - 4EI

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

2

- 1.0 Largest S measurement
- -1.6 Smallest R measurement
- 2.6 Difference
- 27 Gross Beta DCGLw
- 0.0 Average S measurements
- 0.0 Average R measurements
- 0.0 Difference
- 27 Gross Beta DCGL_w

Final Status Survey Results for Unit - 4EI

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM	/100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06085-4A	6	10	2	-3	13	30	ND ³
JE06085-4A	6	11	2	-2	14	30	ND ³
JE06085-10	6	9	2	-5	13	30	ND ³
JE06085-10	8	55	5	10	11	23	ND ³
JE06085-10	9	58	5	9	11	24	ND ³
JE06085-4A	6	12	2	0	14	30	ND ³
JE06085-4A	6	11	2	-2	14	30	ND ³
JE06085-4A	6	9	2	-5	13	30	ND ³
JE06085-4A	5	10	2	0	13	28	ND ³
JE06085-4A	6	12	2	0	14	30	ND ³
JE06085-4A	6	12	2	0	14	30	ND ³
JE06085-4A	9	37	5	-5	9	24	ND ³
JE06085-4A	6	13	2	2	15	30	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

	Bkg	Gross	Count time	Total Surfac	e Activity ¹ in DPM	/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
JE06085-4EI - C5	798	793	1	-2864	44776	75236	ND ³
JE06085-4EI - C6	659	676	1	9737	41016	68370	ND ³
JE06085-4EI - C9	578	608	1	17182	38659	64031	ND ³
JE06085-4EI - D6	963	971	1	4582	49367	82649	ND ³
JE06085-4EI - D7	963	956	1	-4009	49176	82649	ND ³
JE06085-4EI - H2	798	858	1	34364	45682	75236	ND ³
JE06085-4EI - H10	798	805	1	4009	44945	75236	ND ³
JE06085-4EI - J8	798	785	1	-7446	44663	75236	ND ³
JE06085-4EI - CH5	968	972	1	2291	49444	82863	ND ³
JE06085-4EI - F3	798	744	1	-30928	44081	75236	ND ³
JE06085-4EI - H9	578	600	1	12600	38529	64031	ND ³

Final Status Survey Results for Unit - 4Él

¹ - E_{weighted, total};0.0003 , probe active area 582cm2 ² - at the 95% confidence level

³ - None detected

CPM/100cm2

1.1 Average of the measurements 153,126 Gross Beta DCGL

Final Status Survey Results for Unit - 16I

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/	100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06085-16I - D10	5	11	2	2	13	21	ND ³
TW06085-16I - F8	15	72	5	-2	13	15	ND ³
TW06085-16I - F10	15	74	5	-1	13	15	ND ³
TW06085-16I - 17	15	70	5	-3	12	15	ND ³
TW06085-16I - L5	5	12	2	3	14	21	ND ³
TW06085-16I - CG6	8	36	5	-3	9	12	ND ³
TW06085-16I - CH8	8	44	5	3	10	12	ND ³
TW06085-16I - CH9	8	44	5	3	10	12	ND ³
TW06085-16I - CI6	8	45	5	3	10	12	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

- 1.0 Largest S measurement
- -1.0 Smallest R measurement
- 2.0 Difference
- 27 Gross Beta DCGLw
- 0.0 Average S measurements
- 0.0 Average R measurements
- 0.0 Difference
- 27 Gross Beta DCGLw

Final Status Survey Results for Unit - 16l

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/	100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06085-S hall	5	11	2	2	13	21	ND ³
TW06085-S hall	15	72	5	-2	13	15	ND ³
TW06085-S hall	15	75	5	0	13	15	ND ³
TW06085-S hall	15	70	5	-3	12	15	ND ³
TW06085-S hall	5	11	2	2	13	21	ND ³
TW06085-S hall	8	42	5	1	10	12	ND ³
TW06085-S hall	8	38	5	-1	9	12	ND ³
TW06085-S hall	8	37	5	-2	9	12	ND ³
TW06085-S hall	8	39	5	-1	9	12	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
² - at the 95% confidence level
³ - None detected

	Bkg	Gross	Count time	Total Surfac	• Activity ¹ in DPM	/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
TW06085-16I - D10	609	691	1	46964	40475	65726	ND ³
TW06085-16I - F8	1102	1149	1	26919	53260	88412	ND ³
TW06085-16I - F10	1102	1172	1	40092	53531	88412	ND ³
TW06085-16I - I7	1102	1086	1	-9164	52509	88412	ND ³
TW06085-16I - L5	905	967	1	35510	48570	80121	ND ³
TW06085-16I - CG6	1716	1779	1	36082	66364	110326	ND ³
TW06085-16I - CH8	1716	1709	1	-4009	65696	110326	ND ³
TW06085-16I - CH9	1716	1801	1	48683	66573	110326	ND ³
TW06085-16I - CI6	1716	1784	1	38946	66412	110326	ND ³
TW06085-16I - E5	1102	1155	1	30355	53331	88412	ND ³
TW06085-16I - E10	905	925	1	11455	48022	80121	ND ³
TW06085-16I - F3	905	949	1	25200	48336	80121	ND ³

Final Status Survey Results for Unit - 16I

¹ - E_{weighted, total};0.0003, probe active area 582cm2
² - at the 95% confidence level
³ - None detected

CPM/100cm2

8.2 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/	100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06085-17I - B9	4	7	2	-2	11	20	ND ³
BE06085-17I - E1	6	11	2	-2	14	24	ND ³
BE06085-17I - E3	7	40	5	3	9	26	ND ³
BE06085-17I - F6	18	89	5	-1	14	39	ND ³
BE06085-17I - F8	5	8	2	-3	12	22	ND ³
BE06085-17I - G2	7	38	5	2	9	26	ND ³
BE06085-17I - 18	12	62	5	1	12	33	ND ³
BE06085-17I - I12	6	11	2	-2	14	24	ND ³
BE06085-17I - CD9	9	44	5	-1	10	29	ND ³

Final Status Survey Results for Unit - 17

¹ -E_{weighted, total}; .05 and probe active area 582cm2
² - at the 95% confidence level

³ - None detected

- 0.6 Largest S measurement
- -2.0 Smallest R measurement
- 2.6 Difference
- 27 Gross Beta DCGL_w
- 0.0 Average S measurements
- -0.1 Average R measurements
- 0.1 Difference
- 27 Gross Beta DCGL_w

Final Status Survey Results for Unit - 171

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
9	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06085-10	4	7	2	-2	11	20	ND ³
BE06085-10	6	11	2	-2	14	24	ND ³
BE06085- Center hall	7	38	5	2	9	26	ND ³
BE06085-South hall	18	88	5	-1	14	39	ND ³
BE06085-10	5	8	2	-3	12	22	ND ³
BE06085- Center hall	7	40	5	3	9	26	ND ³
BE06085-10	12	58	5	-1	11	33	ND ³
BE06085-10	6	8	2	-7	13	24	ND ³
BE06085-10	9	43	5	-1	10	29	ND ³

Reference Area Measurements

¹ -E_{weighted, total}; .05 and probe active area 582cm2
² - at the 95% confidence level
³ - None detected

	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BE06085-17I - B9	622	684	1	35510	40568	66423	ND ³
BE06085-17I - E1	674	751	1	44101	42376	69144	ND ³
BE06085-17I - E3	901	977	1	43528	48647	79944	ND ³
BE06085-17I - F6	1189	1248	1	33792	55417	91836	ND ³
BE06085-17I - F8	908	937	1	16609	48218	80254	ND ³
BE06085-17I - G2	901	1012	1	63574	49099	79944	ND ³
BE06085-17I - 18	1163	1304	1	80756	55757	90826	ND ³
BE06085-17I - 112	674	748	1	42383	42331	69144	ND ³
BE06085-17I - CD9	1720	1704	1	-9164	65687	110455	ND ³
BE06085-171 - G8	908	928	1	11455	48100	80254	ND ³
BE06085-17I - H1	674	680	1	3436	41307	69144	ND ³

Final Status Survey Results for Unit - 17I

 1 - $E_{weighted, \ total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level ³ - None detected

CPM/100cm2

10.0 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06095-18I - B5	5	11	2	2	13	28	ND ³
TW06095-18I - E8	5	9	2	-2	13	28	ND ³
TW06095-18I - F12	5	10	2	0	13	28	ND ³
TW06095-181 - H8	5	10	2	0	13	28	ND ³
TW06095-18I - H10	5	11	2	2	13	28	ND ³
TW06095-18I - I6	5	10	2	0	13	28	ND ³
TW06095-18I - L6	6	9	2	-5	13	30	ND ³
TW06095-18I - CE10	8	40	5	0	9	23	ND ³
TW06095-18I - CG7	8	41	5	1	9	23	ND ³
TW06095-18I - E2	5	11	2	2	13	28	ND ³
TW06095-18I - F2	5	9	2	-2	13	28	ND ³
TW06095-18I - J5	5	11	2	2	13	28	ND ³
TW06095-18I - K10	5	12	2	3	14	28	ND ³

Final Status Survey Results for Unit - 18I

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

1.0 Largest S measurement

-1.0 Smallest R measurement

2.0 Difference

27 Gross Beta DCGLw

0.0 Average S measurements

0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Final Status Survey Results for Unit - 18I

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06095-10	5	12	2	3	14	28	ND ³
TW06095-10	5	12	2	3	14	28	ND ³
TW06095-10	5	9	2	-2	13	28	ND ³
TW06095-10	5	11	2	2	13	28	ND ³
TW06095-10	5	11	2	2	13	28	ND ³
TW06095-10	5	9	2	-2	13	28	ND ³
TW06095-10	6	10	2	-3	13	30	ND ³
TW06095-10	8	42	5	1	10	23	ND ³
TW06095-10	8	39	5	-1	9	23	ND ³
TW06095-10	5	9	2	-2	13	28	ND ³
TW06095-10	5	10	2	0	13	28	ND ³
TW06095-10	5	10	2	0	13	28	ND ³
TW06095-10	5	9	2	-2	13	28	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
² - at the 95% confidence level
³ - None detected
	Bkg	Gross	Count time	Total Surfac	e Activity ¹ in DP	M/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
TW06095-18I - B5	766	752	1	-8018	43737	73712	ND ³
TW06095-18I - E8	901	935	1	19473	48100	79944	ND ³
TW06095-18I - F12	905	921	1	9164	47969	80121	ND ³
TW06095-18I - H8	901	922	1	12027	47930	79944	ND ³
TW06095-18I - H10	901	897	1	-2291	47600	79944	
TW06095-18I - 16	1064	1142	1	44674	52725	86875	ND ³
TW06095-18I - L6	645	659	1	8018	40537	67640	ND ³
TW06095-18I - CE10	1716	1796	1	45819	66526	110326	ND ³
TW06095-18I - D1	645	688	1	24628	40985	67640	ND ³
TW06095-18I - D12	905	1000	1	54410	48996	80121	ND ³
TW06095-18I - L8	905	1021	1	66438	49265	80121	ND ³

¹ - E_{weighted, total};0.0003 , probe active area 582cm2 ² - at the 95% confidence level

³ - None detected

CPM/100cm2

7.5 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	e Total Surface Activity ¹ in DPM/100cm		1/100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06095-21I - B6	6	10	2	-3	13	30	ND ³
BB06095-21I - B9	6	12	2	0	14	30	ND ³
BB06095-21I - D11	14	64	5	-4	12	29	ND ³
BB06095-21I - E11	14	60	5	-7	12	29	ND ³
BB06095-21I - E13	6	10	2	-3	13	30	ND ³
BB06095-21I - H10	6	12	2	0	14	30	ND ³
BB06095-211 - J5	6	10	2	-3	13	30	ND ³
BB06095-21I - J11	6	11	2	-2	14	30	ND ³
BB06095-21I - CH5	8	44	5	3	10	23	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.8 Largest S measurement

- -1.0 Smallest R measurement
- 1.8 Difference
- 27 Gross Beta DCGLw

-0.1 Average S measurements

- 0.0 Average R measurements
- -0.1 Difference
- 27 Gross Beta DCGLw

Sample Point	Bkg	Gross	Count time	me Total Surface Activity ¹ in DPM/100cm2		l/100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06095-20	6	11	2	-2	14	30	ND ³
BB06095-20	6	13	2	2	15	30	ND ³
BB06095-20	14	65	5	-3	12	29	ND ³
BB06095-20	14	65	5	-3	12	29	ND ³
BB06095-20	6	10	2	-3	13	30	ND ³
BB06095-20	6	13	2	2	15	30	ND ³
BB06095-20	6	11	2	-2	14	30	ND ³
BB06095-20	6	14	2	3	15	30	ND ³
BB06095-20	8	41	5	1	9	23	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	Total Surfac	//100cm2	Removable	
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BB06095-21I - B6	797	829	1	18328	45266	75189	ND ³
BB06095-21I - B9	797	763	1	-19473	44338	75189	ND ³
BB06095-21I - D11	1141	1104	1	-21191	53189	89963	ND ³
BB06095-21I - E11	1141	1118	1	-13173	53354	89963	ND ³
BB06095-21I - E13	797	859	1	35510	45682	75189	ND ³
BB06095-21I - H10	942	898	1	-25200	48153	81743	ND ³
BB06095-21I - J5	797	783	1	-8018	44621	75189	ND ³
BB06095-21I - J11	797	772	1	-14318	44466	75189	ND ³
BB06095-21I - CH5	1650	1630	1	-11455	64291	108184	ND ³
BB06095-21I - D12	797	742	1	-31501	44038	75189	ND ³
BB06095-21I - F9	1141	1170	1	16609	53965	89963	ND ³

Final Status Results for Unit - 211

¹ - E_{weighted, total},0.0003 , probe active area 582cm2 ² - at the 95% confidence level

³ - None detected

CPM/100cm2

-2.0 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2		Removable	
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06095 - 22 - A5	6	12	2	0	14	30	ND ³
JE06095 - 22 - E7	11	49	5	-4	10	26	ND ³
JE06095 - 22 - J5	5	11	2	2	13	28	ND ³
JE06095 - 22 - J8	6	11	2	-2	14	30	ND ³
JE06095 - 22 - J9	6	12	2	0	14	30	ND ³
JE06095 - 22 - K4	5	12	2	3	14	28	ND ³
JE06095 - 22 - CD4	9	49	5	3	10	24	ND ³
JE06095 - 22 - CI5	9	46	5	1	10	24	ND ³
JE06095 - 22 - CJ6	9	47	5	1	10	24	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

1.0 Largest S measurement

-1.4 Smallest R measurement

- 2.4 Difference
- 27 Gross Beta DCGLw

0.0 Average S measurements

0.1 Average R measurements

-0.1 Difference

27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2		/100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06095 - 20	6	13	2	2	15	30	ND ³
JE06095 - 20	11	48	5	-5	10	26	ND ³
JE06095 - 20	5	12	2	3	14	28	ND ³
JE06095 - 20	6	11	2	-2	14	30	ND ³
JE06095 - 20	6	12	2	0	14	30	ND ³
JE06095 - 20	5	11	2	2	13	28	ND ³
JE06095 - 20	9	51	5	4	10	24	ND ³
JE06095 - 20	9	49	5	3	10	24	ND ³
JE06095 - 20	9	50	5	3	10	24	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

~

[Bkg	Gross	Count time	Total Surfac	e Activity ¹ in DP	M/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
JE06095-22 - A5	735	721	1	-8018	42834	72205	ND ³
JE06095-22 - E7	1186	1200	1	8018	54834	91720	ND ³
JE06095-22 - J5	888	907	1	10882	47560	79365	ND ³
JE06095-22 - J8	798	743	1	-31501	44067	75236	ND ³
JE06095-22 - J9	798	754	1	-25200	44224	75236	ND ³
JE06095-22 - K4	888	894	1	3436	47388	79365	ND ³
JE06095-22 - CD4	1605	1670	1	37228	64242	106698	ND ³
JE06095-22 - CI5	1605	1608	1	1718	63631	106698	ND ³
JE06095-22 - CJ6	1605	1577	1	-16037	63323	106698	ND ³
JE06095-22 - A7	735	711	1	-13746	42687	72205	ND ³
JE06095-22 - F3	578	617	1	22337	38806	64031	ND ³

 1 - $E_{weighted,\ total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

-0.3 Average of the measurements 153,126 Gross Beta DCGL ì

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2		Removable	
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06095-23 - C6	6	12	2	0	14	30	ND ³
BE06095-23 - E9	6	11	2	-2	14	30	ND ³
BE06095-23 - G2	6	13	2	2	15	30	ND ³
BE06095-23 - H4	5	11	2	2	13	28	ND ³
BE06095-23 - I1	6	12	2	0	14	30	ND ³
BE06095-23 - L5	6	11	2	-2	14	30	ND ³
BE06095-23 - CD6	9	45	5	0	10	24	ND ³
BE06095-23 - CG5	9	51	5	4	10	24	ND ³
BE06095-23 - CI4	9	48	5	2	10	24	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

1.2 Largest S measurement

-1.0 Smallest R measurement

2.2 Difference

27 Gross Beta DCGLw

0.0 Average S measurements

0.0 Average R measurements

0.0 Difference

.

27 Gross Beta DCGLw

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2		00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06095-20	6	13	2	2	15	30	ND ³
BE06095-20	6	12	2	0	14	30	ND ³
BE06095-8	6	10	2	-3	13	30	ND ³
BE06095-8	5	9	2	-2	13	28	ND ³
BE06095-10	6	10	2	-3	13	30	ND ³
BE06095-10	6	1 1	2	-2	14	30	ND ³
BE06095-20	9	46	5	1	10	24	ND ³
BE06095-8	9	50	5	3	10	24	ND ³
BE06095-10	9	50	5	3	10	24	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	Total Surface	● Activity ¹ in DPN	l/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BE06095-23 - C6	834	825	1	-5155	45723	76914	ND ³
BE06095-23 - E9	834	843	1	5155	45970	76914	ND ³
BE06095-23 - G2	834	846	1	6873	46012	76914	ND ³
BE06095-23 - H4	908	915	1	4009	47930	80254	ND ³
BE06095-23 - I1	834	839	1	2864	45916	76914	ND ³
BE06095-23 - L5	834	841	1	4009	45943	76914	ND ³
BE06095-23 - CD6	1720	1699	1	-12027	65639	110455	ND ³
BE06095-23 - CG5	1720	1690	1	-17182	65552	110455	ND ³
BE06095-23 - CI4	1720	1687	1	-18900	65524	110455	ND ³
BE06095-23 - F8	834	847	1	7446	46025	76914	ND ³
BE06095-23 - H7	908	901	1	-4009	47745	80254	ND ³

 1 - $E_{weighted, total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level

³ - None detected

.

CPM/100cm2

-0.7 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06135-25I - A5	6	12	2	0	14	30	ND ³
BE06135-25I - B5	6	10	2	-3	13	30	ND ³
BE06135-25I - E8	10	54	5	3	11	25	ND ³
BE06135-25I - G11	6	12 ·	2	0	14	30	ND ³
BE06135-25I - H2	6	13	2	2	15	30	ND ³
BE06135-25I - H6	10	47	5	-2	10	25	ND ³
BE06135-25I - H12	6	11	2	-2	14	30	ND ³
BE06135-25I - K7	6	12	2	0	14	30	ND ³
BE06135-25I - L7	6	13	2	2	15	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.8 Largest S measurement

-1.0 Smallest R measurement

1.8 Difference

27 Gross Beta DCGL_w

0.0 Average S measurements

0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Sample Point	Bkg	Gross	Count time	Total Surface	00cm2	Removable	
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06135-25	6	13	2	2	15	30	ND ³
BE06135-25	6	14	2	3	15	30	ND ³
BE06135-11	10	50	5	0	10	25	ND ³
BE06135-25	6	14	2	3	15	30	ND ³
BE06135-25	6	12	2	0	14	30	ND ³
BE06135-11	10	52	5	1	11	25	ND ³
BE06135-25	6	13	2	2	15	30	ND ³
BE06135-25	6	10	2	-3	13	30	ND ³
BE06135-25	6	12	2	0	14	30	ND ³

Reference Area Measurements

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	Total Surfac	e Activity ¹ in DPM	/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BE06135-25I - A5	671	684	1	7446	41322	68990	ND ³
BE06135-25I - B5	671	687	1	9164	41368	68990	ND ³
BE06135-25I - E8	1050	1031	1	-10882	51209	86301	ND ³
BE06135-25I - G11	671	670	1	-573	41108	68990	ND ³
BE06135-25I - H2	671	667	1	-2291	41062	68990	ND ³
BE06135-25I - H6	1050	1039	1	-6300	51308	86301	ND ³
BE06135-25I - H12	671	681	1	5727	41276	68990	ND ³
BE06135-25I - K7	671	686	1	8591	41352	68990	ND ³
BE06135-25I - L7	671	677	1	3436	41215	68990	ND ³
BE06135-25I - G2	671	678	1	4009	41230	68990	ND ³
BE06135-25I - H5	1050	1041	1	-5155	51332	86301	ND ³

 1 - $E_{weighted, total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.4 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface A	Activity ¹ in DPM/10	00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06105-25B - A4	6	12	2	0	14	30	ND ³
BB06105-25B - B4	4	9	2	2	12	25	ND ³
BB06105-25B - D8	6	11	2	-2	14	30	ND ³
BB06105-25B - F5	6	13	2	2	15	30	ND ³
BB06105-25B - G4	6	11	2	-2	14	30	ND ³
BB06105-25B - H6	5	10	2	0	13	28	ND ³
BB06105-25B - CD4	8	42	5	1	10	23	ND ³
BB06105-25B - CD5	8	39	5	-1	9	23	ND ³
BB06105-25B - CE4	8	40	5	0	9	23	ND ³
BB06105-25B - A6	6	9	2	-5	13	30	ND ³
BB06105-25B - D2	5	9	2	-2	13	28	ND ³
BB06105-25B - F2	6	11	2	-2	14	30	ND ³
BB06105-25B - F8	6	10	2	-3	13	30	ND ³

-

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.5 Largest S measurement

-1.0 Smallest R measurement

1.5 Difference

- 27 Gross Beta DCGLw
- 0.0 Average S measurements
- 0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface A	Activity ¹ in DPM/1	00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06105-25	6	11	2	-2	14	30	ND ³
BB06105-10	4	8	2	0	12	25	ND ³
BB06105-25	6	10	2	-3	13	30	ND ³
BB06105-25	6	13	2	2	15	30	ND ³
BB06105-25	6	12	2	0	14	30	ND ³
BB06105-25	5	10	2	0	13	28	ND ³
BB06105-25	8	45	5	3	10	23	ND ³
BB06105-25	8	44	5	3	10	23	ND ³
BB06105-25	8	38	5	-1	9	23	ND ³
BB06105-25	6	12	2	0	14	30	ND ³
BB06105-25	5	12	2	3	14	28	ND ³
BB06105-25	6	12	2	0	14	30	ND ³
BB06105-25	6	12	2	0	14	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/1	00cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BB06105-25B - A4	797	832	1	20046	45308	75189	ND ³
BB06105-25B - B4	664	683	1	10882	41200	68629	ND ³
BB06105-25B - D8	797	758	1	-22337	44267	75189	ND ³
BB06105-25B - F5	942	919	1	-13173	48427	81743	ND ³
BB06105-25B - G4	797	804	1	4009	44917	75189	ND ³
BB06105-25B - H6	600	582	1	-10309	38594	65238	ND ³
BB06105-25B - CD4	1650	1680	1	17182	64779	108184	ND ³
BB06105-25B - CD5	1650	1659	1	5155	64574	108184	ND ³
BB06105-25B - CE4	1650	1637	1	-7446	64359	108184	ND ³
BB06105-25B - A6	797	844	1	26919	45474	75189	ND ³
BB06105-25B - D1	664	669	1	2864	40985	68629	ND ³

 1 - $E_{weighted, \ total}; 0.0003$, probe active area 582 cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

1 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Total Surface Activity ¹ in DPM/100cm2				
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide		
JE06105-27I - E5	18	90	5	0	14	33	ND ³		
JE06105-27I - E9	6	13	2	2	15	30	ND ³		
JE06105-27I - G6	18	87	5	-2	14	33	ND ³		
JE06105-271 - 16	18	93	5	2	14	33	ND ³		
JE06105-27I - J1	6	11	2	-2	14	30	ND ³		
JE06105-27I - J9	6	12	2	0	14	30	ND ³		
JE06105-27I - K3	6	12	2	0	14	30	ND ³		
JE06105-27I - M 5	6	11	2	-2	14	30	ND ³		
JE06105-27I - N6	6	13	2	2	15	30	ND ³		

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

- 0.6 Largest S measurement
 - -1.0 Smallest R measurement
 - 1.6 Difference
 - 27 Gross Beta DCGLw
 - 0.0 Average S measurements
 - -0.1 Average R measurements
 - 0.1 Difference
 - 27 Gross Beta DCGLw

Reference Ar	ea Measurements
--------------	-----------------

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06105-20	18	89	5	-1	14	33	ND ³
JE06105-20	6	13	2	2	15	30	ND ³
JE06105-20	18	86	5	-3	14	33	ND ³
JE06105-20	18	85	5	-3	14	33	ND ³
JE06105-20	6	10	2	-3	13	30	ND ³
JE06105-20	6	10	2	-3	13	30	ND ³
JE06105-20	6	10	2	-3	13	30	ND ³
JE06105-25	6	12	2	0	14	30	ND ³
JE06105-20	6	10	2	-3	13	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
² - at the 95% confidence level
³ - None detected

	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM	/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
JE06105-27I - E5	1113	1194	1	46392	53918	88852	ND ³
JE06105-27I - E9	659	596	1	-36082	39768	68370	ND ³
JE06105-27I - G6	1113	1236	1	70447	54407	88852	ND ³
JE06105-27I - I6	1113	1202	1	50974	54012	88852	ND ³
JE06105-27I - J1	659	665	1	3436	40847	68370	ND ³
JE06105-27I - J9	798	736	1	-35510	43967	75236	ND ³
JE06105-27I - K3	798	738	1	-34364	43995	75236	ND ³
JE06105-271 - M5	602	630	1	16037	39402	65347	ND ³
JE06105-27I - N6	798	710	1	-50401	43593	75236	ND ³
JE06105-27I - A5	798	724	1	-42383	43794	75236	ND ³
JE06105-27I - E3	798	738	1	-34364	43995	75236	ND ³
JE06105-271 - F1	798	717	1	-46392	43694	75236	ND ³
JE06105-27I - G10	798	776	1	-12600	44536	75236	ND ³
JE06105-27I - H5	1113	1223	1	63001	54256	88852	ND ³
JE06105-27I - J4	1113	1174	1	34937	53684	88852	ND ³

¹ - E_{weighted, total};0.0003 , probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

-0.1 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/1	00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06135-29I - D7	5	10	2	0	13	28	ND ³
TW06135-29I - D9	5	11	2	2	13	28	ND ³
TW06135-29I - F5	15	72	5	-2	13	30	ND ³
TW06135-29I - K6	5	9	2	-2	13	28	ND ³
TW06135-29I - L4	5	11	2	2	13	28	ND ³
TW06135-29I - L9	5	9	2	-2	13	28	ND ³
TW06135-29I - CD7	8	42	5	1	10	23	ND ³
TW06135-29I - CE9	8	39	5	-1	9	23	ND ³
TW06135-29I - CG9	8	44	5	3	10	23	
TW06135-29I - C4	5	10	2	0	13	28	ND ³
TW06135-29I - B8	5	11	2	2	13	28	ND ³
TW06135-29I - G2	5	10	2	0	13	28	ND ³
TW06135-29I - J5	6	9	2	-5	13	30	

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.8 Largest S measurement

-0.5 Smallest R measurement

1.3 Difference

27 Gross Beta DCGL_w

0.0 Average S measurements

0.1 Average R measurements

-0.1 Difference

27 Gross Beta DCGLw

_

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/1	00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06135-10	5	1 1	2	2	13	28	ND ³
TW06135-10	5	9	2	-2	13	28	ND ³
TW06135- South hall	15	77	5	1	13	30	ND ³
TW06135- South hall	5	10	2	0	13	28	ND ³
TW06135- South hall	5	11	2	2	13	28	ND ³
TW06135- South hall	5	11	2	2	13	28	ND ³
TW06135- South hall	8	40	5	0	9	23	ND ³
TW06135- South hall	8	41	5	1	9	23	ND ³
TW06135- South hall	8	42	5	1	10	23	ND ³
TW06135- South hall	5	12	2	3	14	28	ND ³
TW06135- South hall	5	12	2	3	14	28	ND ³
TW06135- South hall	5	12	2	3	14	28	ND ³
TW06135- South hall	6	12	2	0	14	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level

³ - None detected

	Gross	Gross Count time		Activity ¹ in DPM	/100cm2	Removable	
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
TW06135-29I - D7	901	925	1	13746	47969	79944	ND ³
TW06135-29I - D9	901	948	1	26919	48270	79944	ND ³
TW06135-29I - F5	1102	1118	1	9164	52892	88412	ND ³
TW06135-29I - K6	905	938	1	18900	48192	80121	ND ³
TW06135-29I - L4	905	979	1	42383	48725	80121	ND ³
TW06135-29I - L9	905	906	1	573	47772	80121	ND ³
TW06135-29I - CD7	1716	1817	1	57847	66724	110326	ND ³
TW06135-29I - CE9	1716	1759	1	24628	66174	110326	ND ³
TW06135-29I - CG9	1716	1862	1	83620	67148	110326	ND ³
TW06135-29I - F11	838	940	1	58419	47334	77099	ND ³
TW06135-29I - I6	901	917	1	9164	47864	79944	ND ³

¹ - E_{weighted, total};0.0003 , probe active area 582cm2 ² - at the 95% confidence level

³ - None detected

CPM/100cm2

9 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06155-311 - B6	5	12	2	3	14	28	ND ³
JE06155-311 - D7	5	12	2	3	14	28	ND ³
JE06155-31I - E4	10	53	5	2	11	25	ND ³
JE06155-31I - F12	5	12	2	3	14	28	ND ³
JE06155-31I - G5	5	11	2	2	13	28	ND ³
JE06155-31I - H2	5	12	2	3	14	28	ND ³
JE06155-31I - H11	5	10	2	0	13	28	ND ³
JE06155-31I - CE5	8	42	5	1	10	23	ND ³
JE06155-311 - CF8	8	46	5	4	10	23	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level

³ - None detected

CPM/100cm2

1.2 Largest S measurement

0.5 Smallest R measurement

- 0.7 Difference
- 27 Gross Beta DCGLw

0.1 Average S measurements

0.2 Average R measurements

-0.1 Difference

27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06155-36	5	12	2	3	14	28	ND ³
JE06155-36	5	11	2	2	13	28	ND ³
JE06155-36	10	55	5	3	11	25	ND ³
JE06155-36	5	12	2	3	14	28	ND ³
JE06155-36	5	12	2	3	14	28	ND ³
JE06155-36	5	11	2	2	13	28	ND ³
JE06155-36	5	11	2	2	13	28	ND ³
JE06155-36	8	46	5	4	10	23	ND ³
JE06155-36	8	48	5	5	10	23	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
² - at the 95% confidence level
³ - None detected

	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM	/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
JE06155-31I - B6	798	869	1	40664	45833	75236	ND ³
JE06155-31I - D7	888	877	1	-6300	47161	79365	ND ³
JE06155-31I - E4	963	964	1	573	49278	82649	ND ³
JE06155-31I - F12	798	870	1	41237	45847	75236	ND ³
JE06155-31I - G5	888	869	1	-10882	47054	79365	ND ³
JE06155-31I - H2	798	886	1	50401	46066	75236	ND ³
JE06155-31I - H11	578	589	1	6300	38348	64031	ND ³
JE06155-31I - CE5	1605	1608	1	1718	63631	106698	ND ³
JE06155-31I - CF8	1605	1622	1	9737	63769	106698	ND ³
JE06155-31I - C6	798	871	1	41810	45861	75236	ND ³
JE06155-31I - C11	578	591	1	7446	38381	64031	ND ³
JE06155-31I - E3	798	861	1	36082	45723	75236	ND ³

 1 - $E_{weighted, \ total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level ³ - None detected

CPM/100cm2

5.5 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Total Surface Activity ¹ in DPM/100cm2		
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06145-SW1 - E8	5	11	2	2	13	28	ND ³
TW06145-SW1 - L8	5	8	2	-3	12	28	ND ³
TW06145-SW1 - N6	5	11	2	2	13	28	ND ³
TW06145-SW1 - CJ4	8	42	5	1	10	23	ND ³
TW06145-SW1 - CL5	4	7	2	-2	11	25	ND ³
TW06145-SW1 - D4	4	7	2	-2	11	25	ND ³
TW06145-SW1 - E2	5	11	2	2	13	28	ND ³
TW06145-SW1 - G3	5	11	2	2	13	28	ND ³
TW06145-SW1 - N4	4	9	2	2	12	25	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.5 Largest S measurement

- -0.5 Smallest R measurement
- 1.0 Difference
- 27 Gross Beta DCGL_w

0.0 Average S measurements

0.1 Average R measurements

-0.1 Difference

27 Gross Beta DCGL_w

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06145-South hall	5	11	2	2	13	28	ND ³
TW06145-South hall	5	9	2	-2	13	28	ND ³
TW06145-South hall	5	12	2	3	14	28	ND ³
TW06145-South hall	8	39	5	-1	9	23	ND ³
TW06145-South hall	4	8	2	0	12	25	ND ³
TW06145-South hall	4	9	2	2	12	25	ND ³
TW06145-South hall	5	12	2	3	14	28	ND ³
TW06145-South hall	5	11	2	2	13	28	ND ³
TW06145-South hall	4	10	2	3	13	25	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2 ² - at the 95% confidence level

.

....

³ - None detected

	Bkg	Gross	Count time	Total Surface	e Activity ¹ in DPM/	100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
TW06145-SW1 - D6	905	938	1	18900	48192	80121	ND ³
TW06145-SW1 - E8	905	936	1	17755	48166	80121	ND ³
TW06145-SW1 - I4	988	971	1	-9737	49685	83715	ND ³
TW06145-SW1 - J3	609	643	1	19473	39720	65726	ND ³
TW06145-SW1 - K4	988	980	1	-4582	49799	83715	ND ³
TW06145-SW1 - K8	905	918	1	7446	47930	80121	ND ³
TW06145-SW1 - L4	988	975	1	-7446	49736	83715	ND ³
TW06145-SW1 - L8	905	949	1	25200	48336	80121	ND ³
TW06145-SW1 - M7	905	923	1	10309	47995	80121	ND ³
TW06145-SW1 - N5	1102	1110	1	4582	52796	88412	ND ³
TW06145-SW1 - N6	905	967	1	35510	48570	80121	ND ³
TW06145-SW1 - O2	905	909	1	2291	47811	80121	ND ³

 1 - $E_{weighted, \ total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level

³ - None detected

<u>CPM/100cm2</u>

3.0 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/10		100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06145-SW2 - C2	6	13	2	2	15	30	ND ³
BE06145-SW2 - D5	18	92	5	1	14	33	ND ³
BE06145-SW2 - F3	6	11	2	-2	14	30	ND ³
BE06145-SW2 - F7	6	10	2	-3	13	30	ND ³
BE06145-SW2 - CB4	9	48	5	2	10	24	ND ³
BE06145-SW2 - CF5	9	44	5	-1	10	24	ND ³
BE06145-SW2 - CC4	9	47	5	1	10	24	ND ³
BE06145-SW2 - A3	6	12	2	0	14	30	ND ³
BE06145-SW2 - E3	6	11	2	-2	14	30	ND ³

 1 -E $_{weighted, total}$.05 and probe active area 582cm2 2 - at the 95% confidence level

³ - None detected

CPM/100cm2

- 0.6 Largest S measurement -0.5 Smallest R measurement
- 1.1 Difference
- 27 Gross Beta DCGLw
- 0.0 Average S measurements
- 0.0 Average R measurements
- 0.0 Difference
- 27 Gross Beta DCGL_w

Reference	Area	Measurements
-----------	------	--------------

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06145-Center hall	6	12	2	0	14	30	ND ³
BE06145-Center hall	18	88	5	-1	14	33	ND ³
BE06145-10	6	12	2	0	14	30	ND ³
BE06145-8	6	10	2	-3	13	30	ND ³
BE06145-10	9	46	5	1	10	24	ND ³
BE06145-Center hall	9	47	5	1	10	24	ND ³
BE06145-Center hall	9	46	5	1	10	24	ND ³
BE06145-Center hall	6	12	2	0	14	30	ND ³
BE06145-Center hall	6	11	2	-2	14	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	Total Surfac	e Activity ¹ in DP	M/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BE06145-SW2 - C2	834	841	1	4009	45943	76914	ND ³
BE06145-SW2 - C5	1720	1712	1	-4582	65764	110455	ND ³
BE06145-SW2 - D5	1087	1069	1	-10309	52124	87809	ND ³
BE06145-SW2 - E1	834	846	1	6873	46012	76914	ND ³
BE06145-SW2 - E3	834	830	1	-2291	45792	76914	ND ³
BE06145-SW2 - F2	834	837	1	1718	45888	76914	ND ³
BE06145-SW2 - F3	834	840	1	3436	45929	76914	ND ³
BE06145-SW2 - F6	834	829	1	-2864	45778	76914	ND ³
BE06145-SW2 - F7	834	851	1	9737	46080	76914	ND ³
BE06145-SW2 - G8	834	826	1	-4582	45737	76914	ND ³
BE06145-SW2 - CA4	1720	1718	1	-1145	65821	110455	ND ³

 1 - $E_{weighted, \ total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.0 Average of the measurements 153,126 Gross Beta DCGL

.

Sample Point	Bkg	Gross	Count time	Total Surface	Total Surface Activity ¹ in DPM/100cm2		
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06145-SW3 - A5	5	1 1	2	2	13	28	ND ³
BB06145-SW3 - B5	5	12	2	3	14	28	ND ³
BB06145-SW3 - D6	6	13	2	2	15	30	ND ³
BB06145-SW3 - F11	6	10	2	-3	13	30	ND ³
BB06145-SW3 - CE4	8	42	5	1	10	23	ND ³
BB06145-SW3 - G4	4	10	2	3	13	25	ND ³
BB06145-SW3 - D2	6	12	2	0	14	30	ND ³
BB06145-SW3 - F10	6	11	2	-2	14	30	ND ³
BB06145-SW3 - H2	6	11	2	-2	14	30	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

1.0 Largest S measurement

-1.0 Smallest R measurement

2.0 Difference

27 Gross Beta DCGL_w

0.0 Average S measurements

0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06145-10	5	12	2	3	14	28	ND ³
BB06145-10	5	10	2	0	13	28	ND ³
BB06145-36	6	12	2	0	14	30	ND ³
BB06145-South hall	6	11	2	-2	14	30	ND ³
BB06145-South hall	8	41	5	1	9	23	ND ³
BB06145- Ent. Foyer	4	10	2	3	13	25	ND ³
BB06145-South hall	6	10	2	-3	13	30	ND ³
BB06145-South hall	6	12	2	0	14	30	ND ³
BB06145-South hall	6	10	2	-3	13	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
² - at the 95% confidence level
³ - None detected

· •

	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BB06145-SW3 - A5	754	727	1	-15464	43201	73133	ND ³
BB06145-SW3 - B5	754	750	1	-2291	43535	73133	ND ³
BB06145-SW3 - G4	920	930	1	5727	48283	80782	ND ³
BB06145-SW3 - D6	962	981	¹	10882	49482	82606	ND ³
BB06145-SW3 - E7	962	989	1	15464	49584	82606	ND ³
BB06145-SW3 - F2	797	801	1	2291	44875	75189	ND ³
BB06145-SW3 - F8	962	990	1	16037	49597	82606	ND ³
BB06145-SW3 - F11	797	796	1	-573	44804	75189	ND ³
BB06145-SW3 - G3	600	596	1	-2291	38822	65238	ND ³
BB06145-SW3 - H1	797	790	1	-4009	44720	75189	ND ³
BB06145-SW3 - H9	797	837	1	22910	45377	75189	ND ³

 1 - $E_{weighted, \ total}; 0.0003$, probe active area 582 cm2

 2 - at the 95% confidence level

³ - None detected

CPM/100cm2

1.3 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06155-SW4 - B5	15	73	5	-1	13	30	ND ³
TW06155-SW4 - F8	5	11	2	2	13	28	ND ³
TW06155-SW4 - J3	6	13	2	2	15	30	ND ³
TW06155-SW4 - K2	6	14	2	3	15	30	ND ³
TW06155-SW4 - CB4	8	43	5	2	10	23	ND ³
TW06155-SW4 - CC4	8	39	5	-1	9	23	ND ³
TW06155-SW4 - CK4	8	41	5	1	9	23	ND ³
TW06155-SW4 - B4	14	72	5	1	12	29	ND ³
TW06155-SW4 - D3	5	10	2	0	13	28	ND ³
TW06155-SW4 - E4	6	13	2	2	15	30	ND ³
TW06155-SW4 - E6	6	10	2	-3	13	30	ND ³
TW06155-SW4 - G2	5	12	2	3	14	28	ND ³
TW06155-SW4 - CG4	8	39	5	-1	9	23	

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

e

CPM/100cm2

1.0 Largest S measurement

-3.4 Smallest R measurement

4.4 Difference

- 27 Gross Beta DCGL_w
- 0.0 Average S measurements
- -0.1 Average R measurements

0.1 Difference

27 Gross Beta DCGL_w

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06155-Center hall	15	70	5	-3	12	30	ND ³
TW06155-Center hall	5	12	2	3	14	28	ND ³
TW06155-Center hall	6	14	2	3	15	30	ND ³
TW06155-Center hall	6	14	2	3	15	30	ND ³
TW06155-Center hall	8	40	5	0	9	23	ND ³
TW06155-Center hall	8	42	5	1	10	23	ND ³
TW06155-Center hall	8	38	5	-1	9	23	ND ³
TW06155-20	14	53	5	-12	11	29	ND ³
TW06155-Center hall	5	9	2	-2	13	28	ND ³
TW06155-South hall	6	10	2	-3	13	30	ND ³
TW06155-Center hall	6	7	2	-9	12	30	ND ³
TW06155-Center hall	5	7	2	-5	12	28	ND ³
TW06155-Center hall	8	34	5	-4	9	23	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

.,
	Bkg	Gross	Count time	Total Surfac	e Activity ¹ in DP	M/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
TW06155-SW4 - A1	837	872	1	20046	46407	77052	ND ³
TW06155-SW4 - A5	1102	1151	1	28064	53283	88412	ND ³
TW06155-SW4 - B5	1102	1137	1	20046	53118	88412	ND ³
TW06155-SW4 - C4	941	955	1	8018	48880	81699	ND ³
TW06155-SW4 - F8	905	927	1	12600	48048	80121	ND ³
TW06155-SW4 - H5	988	1031	1	24628	50441	83715	ND ³
TW06155-SW4 - H6	905	992	1	49828	48893	80121	ND ³
TW06155-SW4 - I6	905	954	1	28064	48401	80121	ND ³
TW06155-SW4 - J3	837	908	1	40664	46893	77052	ND ³
TW06155-SW4 - K2	837	868	1	17755	46353	77052	ND ³
TW06155-SW4 - CB4	1716	1773	1	32646	66307	110326	ND ³
TW06155-SW4 - CC4	1716	1751	1	20046	66098	110326	ND ³

 1 - $E_{weighted, total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level

³ - None detected

<u>CPM/100cm2</u> 7.6 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM	/100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06155-SW5 - A8	6	12	2	0	14	30	ND ³
BB06155-SW5 - G3	5	11	2	2	13	28	ND ³
BB06155-SW5 - H3	5	12	2	3	14	28	ND ³
BB06155-SW5 - K1	6	13	2	2	15	30	ND ³
BB06155-SW5 - CA5	8	37	5	-2	9	23	ND ³
BB06155-SW5 - CL5	8	41	5	1	9	23	ND ³
BB06155-SW5 - D5	9	5 5	5	7	11	24	ND ³
BB06155-SW5 - E5	9	51	5	4	10	24	ND ³
BB06155-SW5 - F3	5	13	2	5	14	28	ND ³
BB06155-SW5 - K6	6	8	2	-7	13	30	ND ³
BB06155-SW5 - B2	5	11	2	2	13	28	ND ³
BB06155-SW5 - CI5	8	44	5	3	10	23	ND ³
BB06155-SW5 - CJ4	4	10	2	3	13	25	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

2.0 Largest S measurement

-0.6 Smallest R measurement

2.6 Difference

27 Gross Beta DCGLw

0.1 Average S measurements

0.1 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM	/100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06155-NW hall	6	13	2	2	15	30	ND ³
BB06155-South hall	5	10	2	0	13	28	ND ³
BB06155-South hall	5	11	2	2	13	28	ND ³
BB06155-NW hall	6	12	2	0	14	30	ND ³
BB06155-NW hall	8	39	5	-1	9	23	ND ³
BB06155-NW hall	8	43	5	2	10	23	ND ³
BB06155-8	9	42	5	-2	10	24	ND ³
BB06155-8	9	40	5	-3	9	24	ND ³
BB06155-Center hall	5	8	2	-3	12	28	ND ³
BB06155-Center hall	6	11	2	-2	14	30	ND ³
BB06155-Center hall	5	10	2	0	13	28	ND ³
BB06155-8	8	46	5	4	10	23	ND ³
BB06155-8	4	11	2	5	13	25	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

_

	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM	/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BB06155-SW5 - A8	797	794	1	-1718	44776	75189	ND ³
BB06155-SW5 - C1	862	890	1	16037	46987	78195	ND ³
BB06155-SW5 - C6	600	620	1	11455	39210	65238	ND ³
BB06155-SW5 - D1	862	891	1	16609	47001	78195	ND ³
BB06155-SW5 - D5	920	951	1	17755	48557	80782	ND ³
BB06155-SW5 - E5	920	949	1	16609	48531	80782	ND ³
BB06155-SW5 - G3	862	887	1	14318	46947	78195	ND ³
BB06155-SW5 - H3	862	879	1	9737	46839	78195	ND ³
BB06155-SW5 - B8	797	796	1	-573	44804	75189	ND ³
BB06155-SW5 - L1	797	769	1	-16037	44423	75189	ND ³
BB06155-SW5 - K1	797	829	1	18328	45266	75189	ND ³

¹ - E_{weighted, total};0.0003 , probe active area 582cm2 ² - at the 95% confidence level

³ - None detected

CPM/100cm2

3 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/	100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06155-SW6 - D7	6	13	2	2	15	30	ND ³
BE06155-SW6 - E6	6	14	2	3	15	30	ND ³
BE06155-SW6 - G1	6	13	2	2	15	30	ND ³
BE06155-SW6 - H7	6	14	2	3	15	30	ND ³
BE06155-SW6 - J5	12	64	5	3	12	27	ND ³
BE06155-SW6 - K8	6	14	2	3	15	30	ND ³
BE06155-SW6 - F6	4	11	2	5	13	25	ND ³
BE06155-SW6 - G2	7	12	2	-3	15	33	ND ³
BE06155-SW6 - G7	6	11	2	-2	14	30	ND ³
BE06155-SW6 - E1	6	10	2	-3	13	30	ND ³
BE06155-SW6 - E3	6	12	2	0	14	30	ND ³
BE06155-SW6 - J1	6	11	2	-2	14	30	ND ³
BE06155-SW6 - J3	6	11	2	-2	14	30	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

<u>CPM/100cm2</u>

- 1.5 Largest S measurement
- -2.5 Smallest R measurement
- 4.0 Difference
- 27 Gross Beta DCGLw
- 0.0 Average S measurements
- -0.1 Average R measurements
- 0.1 Difference
- 27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/	100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06155-10	6	12	2	0	14	30	ND ³
BE06155-10	6	11	2	-2	14	30	ND ³
BE06155-8	6	12	2	0	14	30	ND ³
BE06155-8	6	12	2	0	14	30	ND ³
BE06155-8	12	61	5	1	12	27	ND ³
BE06155-NW hall	6	13	2	2	15	30	ND ³
BE06155-8	4	12	2	7	13	25	ND ³
BE06155-Center hall	7	9	2	-9	13	33	ND ³
BE06155-Center hall	6	8	2	-7	13	30	ND ³
BE06155-10	6	11	2	-2	14	30	ND ³
BE06155-10	6	11	2	-2	14	30	ND ³
BE06155-10	6	10	2	-3	13	30	ND ³
BE06155-10	6	10	2	-3	13	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/	100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BE06155-SW6 - A3	622	637	1	8591	39831	66423	ND ³
BE06155-SW6 - B3	834	841	1	4009	45943	76914	ND ³
BE06155-SW6 - D2	834	827	1	-4009	45751	76914	ND ³
BE06155-SW6 - D7	834	835	1	573	45861	76914	ND ³
BE06155-SW6 - D8	834	840	1	3436	45929	76914	ND ³
BE06155-SW6 - E6	834	851	1	9737	46080	76914	ND ³
BE06155-SW6 - K7	834	848	1	8018	46039	76914	ND ³
BE06155-SW6 - G1	834	847	1	7446	46025	76914	ND ³
BE06155-SW6 - H7	834	839	1	2864	45916	76914	ND ³
BE06155-SW6 - J5	1163	1181	1	10309	54349	90826	ND ³
BE06155-SW6 - K8	834	849	1	8591	46053	76914	ND ³

¹ - E_{weighted, total};0.0003 , probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

1.6 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Total Surface Activity ¹ in DPM/100cm2			
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide	
JE06165-SW7 - A8	6	13	2	2	15	30	ND ³	
JE06165-SW7 - E5	5	12	2	3	14	28	ND ³	
JE06165-SW7 - I3	6	12	2	0	14	30	ND ³	
JE06165-SW7 - J8	6	13	2	2	15	30	ND ³	
JE06165-SW7 - K7	6	12	2	0	14	30	ND ³	
JE06165-SW7 - A3	6	11	2	-2	14	30	ND ³	
JE06165-SW7 - C2	6	11	2	-2	14	30	ND ³	
JE06165-SW7 - C8	6	11	2	-2	14	30	ND ³	
JE06165-SW7 - CE4	9	44	5	-1	10	24	ND ³	

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

- 1.0 Largest S measurement
- -1.0 Smallest R measurement
- 2.0 Difference
- 27 Gross Beta DCGL_w
- 0.0 Average S measurements 0 Average R measurements
- 0.0 Difference
- 27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	00cm2	Removable	
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06165-36	6	12	2	0	14	30	ND ³
JE06165-33	5	12	2	3	14	28	ND ³
JE06165-36	6	13	2	2	15	30	ND ³
JE06165-33	6	12	2	0	14	30	ND ³
JE06165-36	6	12	2	0	14	30	ND ³
JE06165-36	6	10	2	-3	13	30	ND ³
JE06165-36	6	10	2	-3	13	30	ND ³
JE06165-36	6	11	2	-2	14	30	ND ³
JE06165-10	9	41	5	-3	10	24	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level

³ - None detected

	Bkg	Gross	Count time	Total Surfac	e Activity ¹ in DPM	M/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
JE06165-SW7 - A8	798	742	1	-32073	44053	75236	ND ³
JE06165-SW7 - E5	925	950	1	14318	48609	81002	ND ³
JE06165-SW7 - H1	798	739	1	-33792	44010	75236	ND ³
JE06165-SW7 - I3	798	740	1	-33219	44024	75236	ND ³
JE06165-SW7 - J7	602	621	1	10882	39258	65347	ND ³
JE06165-SW7 - J8	602	615	1	7446	39161	65347	ND ³
JE06165-SW7 - K5	925	956	1	17755	48686	81002	ND ³
JE06165-SW7 - K7	798	753	1	-25773	44210	75236	ND ³
JE06165-SW7 - L6	798	758	1	-22910	44281	75236	ND ³
JE06165-SW7 - L7	798	749	1	-28064	44153	75236	ND ³
JE06165-SW7 - CD4	1605	1612	1	4009	63670	106698	ND ³

¹ - E_{weighted, total};0.0003 , probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

-3 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/1	00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06165-N1 - A2	5	11	2	2	13	28	ND ³
TW06165-N1 - E5	4	8	2	0	12	25	ND ³
TW06165-N1 - H2	5	9	2	-2	13	28	ND ³
TW06165-N1 - H7	6	13	2	2	15	30	ND ³
TW06165-N1 - J4	15	78	5	2	13	30	ND ³
TW06165-N1 - K7	5	9	2	-2	13	28	ND ³
TW06165-N1 - A3	5	8	2	-3	12	28	ND ³
TW06165-N1 - B3	5	10	2	0	13	28	ND ³
TW06165-N1 - B7	5	10	2	0	13	28	ND ³
TW06165-N1 - E7	6	13	2	2	15	30	ND ³
TW06165-N1 - F3	5	11	2	2	13	28	ND ³
TW06165-N1 - I7	5	9	2	-2	13	28	ND ³
TW06165-N1 - K2	5	10	2	0	13	28	ND ³

_

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.5 Largest S measurement

-0.6 Smallest R measurement

0.6 Difference

27 Gross Beta DCGLw

0.0 Average S measurements

0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/1	00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06165- Center hall	5	10	2	0	13	28	ND ³
TW06165- Center hall	4	9	2	2	12	25	ND ³
TW06165- Center hall	5	10	2	0	13	28	ND ³
TW06165- Center hall	6	11	2	-2	14	30	ND ³
TW06165- Center hall	15	72	5	-2	13	30	ND ³
TW06165- Center hall	5	9	2	-2	13	28	ND ³
TW06165- Center hall	5	9	2	-2	13	28	ND ³
TW06165- Center hall	5	11	2	2	13	28	ND ³
TW06165- Center hall	5	10	2	0	13	28	ND ³
TW06165- Center hall	6	12	2	0	14	30	ND ³
TW06165- Center hall	5	11	2	2	13	28	ND ³
TW06165- Center hall	5	10	2	0	13	28	ND ³
TW06165- Center hall	5	10	2	0	13	28	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	me Total Surface Activity ¹ in DPM/100cm2			Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
TW06165-N1 - A2	905	915	1	5727	47890	80121	ND ³
TW06165-N1 - B4	988	1007	1	10882	50140	83715	ND ³
TW06165-N1 - C2	905	942	1	21191	48244	80121	ND ³
TW06165-N1 - D6	905	936	1	17755	48166	80121	ND ³
TW06165-N1 - E5	988	996	1	4582	50001	83715	ND ³
TW06165-N1 - H2	905	909	1	2291	47811	80121	ND ³
TW06165-N1 - H3	905	920	1	8591	47956	80121	ND ³
TW06165-N1 - H7	609	668	1	33792	40115	65726	ND ³
TW06165-N1 - J1	905	944	1	22337	48270	80121	ND ³
TW06165-N1 - J4	1102	1167	1	37228	53472	88412	ND ³
TW06165-N1 - K7	905	955	1	28637	48414	80121	ND ³

1

 1 - $E_{weighted, \ total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

5 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface A)0cm2	Removable	
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06165-N2 - D2	6	14	2	3	15	30	ND ³
BE06165-N2 - F2	6	12	2	0	14	30	ND ³
BE06165-N2 - F4	5	11	2	2	13	28	ND ³
BE06165-N2 - F6	6	12	2	0	14	30	ND ³
BE06165-N2 - H2	6	10	2	-3	13	30	ND ³
BE06165-N2 - H3	6	11	2	-2	14	30	ND ³
BE06165-N2 - E4	5	7	2	-5	12	28	ND ³
BE06165-N2 - E6	6	11	2	-2	14	30	ND ³
BE06165-N2 - G2	6	12	2	0	14	30	ND ³

 1 -E $_{weighted,\ total}$.05 and probe active area 582cm2 2 - at the 95% confidence level

³ - None detected

CPM/100cm2

- 1.0 Largest S measurement
- -1.5 Smallest R measurement
- 1.0 Difference
- 27 Gross Beta DCGLw
- -0.1 Average S measurements -0.1 Average R measurements
- 0.0 Difference
- 27 Gross Beta DCGL_w

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06165-8	6	13	2	2	15	30	ND ³
BE06165-8	6	12	2	0	14	30	ND ³
BE06165-North hall	5	10	2	0	13	28	ND ³
BE06165-10	6	11	2	-2	14	30	ND ³
BE06165-10	6	11	2	-2	14	30	ND ³
BE06165-10	6	12	2	0	14	30	ND ³
BE06165-Center hall	5	9	2	-2	13	28	ND ³
BE06165-19A	6	9	2	-5	13	30	ND ³
BE06165-19A	6	11	2	-2	14	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	Total Surfac	e Activity ¹ in DPN	l/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BE06165-N2 - A4	759	747	1	-6873	43564	73375	ND ³
BE06165-N2 - D2	834	839	1	2864	45916	76914	ND ³
BE06165-N2 - D4	945	939	1	-3436	48725	81873	ND ³
BE06165-N2 - D5	945	947	1	1145	48828	81873	ND ³
BE06165-N2 - D7	834	824	1	-5727	45709	76914	ND ³
BE06165-N2 - E5	945	942	1	-1718	48764	81873	ND ³
BE06165-N2 - F2	834	833	1	-573	45833	76914	ND ³
BE06165-N2 - F4	945	936	1	-5155	48686	81873	ND ³
BE06165-N2 - F6	834	841	1	4009	45943	76914	ND ³
BE06165-N2 - G1	834	827	1	-4009	45751	76914	ND ³
BE06165-N2 - G3	834	831	1	-1718	45806	76914	ND ³
BE06165-N2 - H6	834	841	1	4009	45943	76914	ND ³

 1 - E_{weighted, total};0.0003 , probe active area 582cm2 2 - at the 95% confidence level

³ - None detected

CPM/100cm2

0 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	/100cm2	Removable	
	(CPM)	(counts)	(in m <mark>in)</mark>	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06165-NE1 - B7	5	1 1	2	2	13	28	ND ³
BB06165-NE1 - C4	6	14	2	3	15	30	ND ³
BB06165-NE1 - D3	6	13	2	2	15	30	ND ³
BB06165-NE1 - E6	14	63	5	-5	12	29	ND ³
BB06165-NE1 - E7	14	67	5	-2	12	29	ND ³
BB06165-NE1 - E12	6	12	2	0	14	30	ND ³
BB06165-NE1 - G12	6	10	2	-3	13	30	ND ³
BB06165-NE1 - J10	6	11	2	-2	14	30	ND ³
BB06165-NE1 - F12	6	12	2	0	14	30	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

1.0 Largest S measurement

-0.5 Smallest R measurement

1.5 Difference

27 Gross Beta DCGL_w

0.0 Average S measurements

0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	/100cm2	Removable	
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06165-25	5	10	2	0	13	28	ND ³
BB06165-25	6	12	2	0	14	30	ND ³
BB06165-25	6	12	2	0	14	30	ND ³
BB06165-MBR	14	69	5	-1	12	29	ND ³
BB06165-MBR	14	71	5	1	12	29	ND ³
BB06165-25	6	13	2	2	15	30	ND ³
BB06165-25	6	12	2	0	14	30	ND ³
BB06165-25	6	11	2	-2	14	30	ND ³
BB06165-25	6	11	2	-2	14	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
² - at the 95% confidence level
³ - None detected

1.00

	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BB06165-NE1 - B7	600	601	1	573	38903	65238	ND ³
BB06165-NE1 - C4	797	788	1	-5155	44692	75189	ND ³
BB06165-NE1 - D3	797	779	1	-10309	44565	75189	ND ³
BB06165-NE1 - D8	2783	2758	1	-14318	83561	140499	ND ³
BB06165-NE1 - E6	2783	2816	1	18900	83998	140499	ND ³
BB06165-NE1 - E7	2783	2784	1	573	83757	140499	ND ³
BB06165-NE1 - E9	920	918	1	-1145	48127	80782	ND ³
BB06165-NE1 - E11	920	891	1	-16609	47772	80782	ND ³
BB06165-NE1 - E12	797	826	1	16609	45224	75189	ND ³
BB06165-NE1 - F12	797	814	1	9737	45057	75189	ND ³
BB06165-NE1 - G5	1141	1160	1	10882	53848	89963	ND ³
BB06165-NE1 - G12	797	776	1	-12027	44522	75189	ND ³

¹ - E_{weighted, total};0.0003 , probe active area 582cm2 ² - at the 95% confidence level

³ - None detected

CPM/100cm2

0 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/1	100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06175-NE2 - D1	6	12	2	0	14	30	ND ³
JE06175-NE2 - E2	6	11	2	-2	14	30	ND ³
JE06175-NE2 - F8	6	9	2	-5	13	30	ND ³
JE06175-NE2 - G2	6	12	2	0	14	30	ND ³
JE06175-NE2 - G7	6	10	2	-3	13	30	ND ³
JE06175-NE2 - I7	6	9	2	-5	13	30	ND ³
JE06175-NE2 - 18	6	11	2	-2	14	30	ND ³
JE06175-NE2 - J3	6	12	2	0	14	30	ND ³
JE06175-NE2 - CE5	9	43	5	-1	10	24	ND ³
JE06175-NE2 - B4	5	9	2	-2	13	28	ND ³
JE06175-NE2 - G5	5	8	2	-3	12	28	ND ³
JE06175-NE2 - K4	5	10	2	0	13	28	ND ³
JE06175-NE2 - L3	5	11	2	2	13	28	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.5 Largest S measurement

-1.5 Smallest R measurement

2.0 Difference

27 Gross Beta DCGLw

-0.1 Average S measurements

-0.1 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/1	00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06175-19A	6	11	2	-2	14	30	ND ³
JE06175-19A	6	10	2	-3	13	30	ND ³
JE06175-19A	6	9	2	-5	13	30	ND ³
JE06175-19A	6	9	2	-5	13	30	ND ³
JE06175-19A	6	10	2	-3	13	30	ND ³
JE06175-19A	6	12	2	0	14	30	ND ³
JE06175-19A	6	11	2	-2	14	30	ND ³
JE06175-19A	6	10	2	-3	13	30	ND ³
JE06175-19A	9	42	5	-2	10	24	ND ³
JE06175-19A	5	10	2	0	13	28	ND ³
JE06175-19A	5	11	2	2	13	28	ND ³
JE06175-19A	5	10	2	0	13	28	ND ³
JE06175-19A	5	11	2	2	13	28	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2 ² - at the 95% confidence level

³ - None detected

	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
JE06175-NE2 - F1	798	794	1	-2291	44790	75236	ND ³
JE06175-NE2 - D1	798	802	1	2291	44903	75236	ND ³
JE06175-NE2 - G4	925	932	1	4009	48375	81002	ND ³
JE06175-NE2 - E2	798	792	1	-3436	44762	75236	ND ³
JE06175-NE2 - F8	798	796	1	-1145	44818	75236	ND ³
JE06175-NE2 - G2	798	790	1	-4582	44734	75236	ND ³
JE06175-NE2 - G7	798	758	1	-22910	44281	75236	ND ³
JE06175-NE2 - H5	925	919	1	-3436	48205	81002	ND ³
JE06175-NE2 - I5	925	927	1	1145	48309	81002	ND ³
JE06175-NE2 - 17	798	799	1	573	44861	75236	ND ³
JE06175-NE2 - 18	798	815	1	9737	45085	75236	ND ³

 1 - $E_{weighted,\ total}; 0.0003$, probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

-1 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/	100cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06175-NE3 - A2	6	11	2	-2	14	30	ND ³
BB06175-NE3 - A3	6	10	2	-3	13	30	ND ³
BB06175-NE3 - A5	18	92	5	1	14	33	ND ³
BB06175-NE3 - A8	6	12	2	0	14	30	ND ³
BB06175-NE3 - B2	6	11	2	-2	14	30	ND ³
BB06175-NE3 - B5	18	91	5	1	14	33	ND ³
BB06175-NE3 - A6	6	13	2	2	15	30	ND ³
BB06175-NE3 - F3	6	12	2	0	14	30	ND ³
BB06175-NE3 - F8	6	12	2	0	14	30	ND ³
BB06175-NE3 - CB5	9	46	5	1	10	24	ND ³
BB06175-NE3 - CF5	9	48	5	2	10	24	ND ³
BB06175-NE3 - A6	6	8	2	-7	13	30	ND ³
BB06175-NE3 - A7	6	14	2	3	15	30	ND ³
BB06175-NE3 - B8	6	10	2	-3	13	30	ND ³
BB06175-NE3 - C2	4	6	2	-3	11	25	ND ³
BB06175-NE3 - C7	6	12	2	0	14	30	ND ³
BB06175-NE3 - C8	6	10	2	-3	13	30	ND ³
BB06175-NE3 - F1	6	11	2	-2	14	30	ND ³
BB06175-NE3 - F6	6	11	2	-2	14	30	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

1 Largest S measurement

- -1 Smallest R measurement
- 2 Difference
- 27 Gross Beta DCGL_w

0.0 Average S measurements 0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/	100cm2	Removable
	(CP M)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06175-19A	6	12	2	0	14	30	ND ³
BB06175-19A	6	11	2	-2	14	30	ND ³
BB06175-20	18	94	5	3	14	33	ND ³
BB06175-19A	6	11	2	-2	14	30	ND ³
BB06175-19A	6	10	2	-3	13	30	ND ³
BB06175-20	18	89	5	-1	14	33	ND ³
BB06175-19A	6	12	2	0	14	30	ND ³
BB06175-19A	6	11	2	-2	14	30	ND ³
BB06175-19A	6	12	2	0	14	30	ND ³
BB06175-20	9	49	5	3	10	24	ND ³
BB06175-20	9	47	5	1	10	24	ND ³
BB06175-19A	6	12	2	0	14	30	ND ³
BB06175-19A	6	11	2	-2	14	30	ND ³
BB06175-20	6	10	2	-3	13	30	ND ³
BB06175-20	4	7	2	-2	11	25	ND ³
BB06175-20	6	11	2	-2	14	30	ND ³
BB06175-20	6	10	2	-3	13	30	ND ³
BB06175-20	6	11	2	-2	14	30	ND ³
BB06175-20	6	11	2	-2	14	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm		W/100cm2	Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BE06175-NE3 - A2	834	848	1	8018	46039	76914	ND ³
BE06175-NE3 - A3	834	841	1	4009	45943	76914	ND ³
BE06175-NE3 - A5	1087	1099	1	6873	52485	87809	ND ³
BE06175-NE3 - A8	834	839	1	2864	45916	76914	ND ³
BE06175-NE3 - B2	834	830	1	-2291	45792	76914	ND ³
BE06175-NE3 - B5	1087	1086	1	-573	52329	87809	ND ³
BE06175-NE3 - A6	834	837	1	1718	45888	76914	ND ³
BE06175-NE3 - E5	1087	1112	1	14318	52641	87809	ND ³
BE06175-NE3 - F3	834	842	1	4582	45957	76914	ND ³
BE06175-NE3 - F8	834	827	1	-4009	45751	76914	ND ³
BE06175-NE3 - CA5	1720	1734	1	8018	65974	110455	ND ³
BE06175-NE3 - CB4	1720	1742	1	12600	66050	110455	ND ³

 1 - E_{weighted, total};0.0003 , probe active area 582cm2 2 - at the 95% confidence level

³ - None detected

CPM/100cm2

1 Average of the measurements 153,126 Gross Beta DCGL

Final	Status Survey Results for
	Unit - NE4

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06175-NE4 - C3	5	11	2	2	13	28	ND ³
TW06175-NE4 - C4	5	10	2	0	13	28	ND ³
TW06175-NE4 - E6	4	9	2	2	12	25	ND ³
TW06175-NE4 - E8	4	10	2	3	13	25	ND ³
TW06175-NE4 - G1	6	12	2	0	14	30	ND ³
TW06175-NE4 - I4	6	11	2	-2	14	30	ND ³
TW06175-NE4 - K10	6	14	2	3	15	30	ND ³
TW06175-NE4 - L8	6	11	2	-2	14	30	ND ³
TW06175-NE4 - CD2	8	4 1	5	1	9	23	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2 ² - at the 95% confidence level

³ - None detected

CPM/100cm2

1 Largest S measurement

- -1 Smallest R measurement
- 2 Difference
- 27 Gross Beta DCGL_w

0.0 Average S measurements

0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
TW06175-19	5	10	2	0	13	28	ND ³
TW06175-19	5	9	2	-2	13	28	ND ³
TW06175-Center hall	4	9	2	2	12	25	ND ³
TW06175-Center hall	4	9	2	2	12	25	ND ³
TW06175-Center hall	6	11	2	-2	14	30	ND ³
TW06175-Center hall	6	11	2	-2	14	30	ND ³
TW06175-Center hall	6	12	2	0	14	30	ND ³
TW06175-Center hall	6	10	2	-3	13	30	ND ³
TW06175-Center hall	8	40	5	0	9	23	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

5

	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
TW06175-NE4 - A5	905	916	1	6300	47903	80121	ND ³
TW06175-NE4 - C3	958	972	1	8018	49316	82434	ND ³
TW06175-NE4 - C4	958	957	1	-573	49124	82434	ND ³
TW06175-NE4 - D6	988	998	1	5727	50027	83715	ND ³
TW06175-NE4 - E6	988	1019	1	17755	50290	83715	ND ³
TW06175-NE4 - E8	988	1029	1	23482	50416	83715	ND ³
TW06175-NE4 - F4	988	1010	1	12600	50178	83715	ND ³
TW06175-NE4 - G1	837	942	1	60137	47348	77052	ND ³
TW06175-NE4 - 14	837	965	1	73310	47653	77052	ND ³
TW06175-NE4 - K10	837	886	1	28064	46597	77052	ND ³
TW06175-NE4 - L6	609	701	1	52692	40630	65726	ND ³
TW06175-NE4 - L8	609	694	1	48683	40521	65726	ND ³

 1 - $E_{weighted,\ total}; 0.0003$, probe active area 582cm2

 2 - at the 95% confidence level

³ - None detected

CPM/100cm2

8 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM/1	00cm2	Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06175-NE5 - B2	6	13	2	2	15	30	ND ³
BB06175-NE5 - B3	6	12	2	0	14	30	ND ³
BB06175-NE5 - B8	5	11	2	2	13	28	ND ³
BB06175-NE5 - C5	5	11	2	2	13	28	ND ³
BB06175-NE5 - F7	5	10	2	0	13	28	ND ³
BB06175-NE5 - H5	14	68	5	-1	12	29	ND ³
BB06175-NE5 - 18	5	12	2	3	14	28	ND ³
BB06175-NE5 - J7	5	11	2	2	13	28	ND ³
BB06175-NE5 - L3	. 6	13	2	2	15	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

- 1 Largest S measurement
- -1 Smallest R measurement
- 2 Difference
- 27 Gross Beta DCGL_w
- 0.1 Average S measurements
- 0.0 Average R measurements

0.1 Difference

27 Gross Beta DCGL_w

Reference Area Measurements

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BB06175-NW hall	6	12	2	0	14	30	ND ³
BB06175-NW hall	6	11	2	-2	14	30	ND ³
BB06175-South hall	5	9	2	-2	13	28	ND ³
BB06175-NW hall	5	11	2	2	13	28	ND ³
BB06175-South hall	5	11	2	2	13	28	ND ³
BB06175-20	14	65	5	-3	12	29	ND ³
BB06175-South hall	5	10 ·	2	0	. 13	28	ND ³
BB06175-South hall	5	12	2	3	14	28	ND ³
BB06175-NW hall	6	12	2	0	14	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BB06175-NE5 - A3	797	748	1	-28064	44124	75189	ND ³
BB06175-NE5 - B2	797	778	1	-10882	44550	75189	ND ³
BB06175-NE5 - B3	797	764	1	-18900	44352	75189	ND ³
BB06175-NE5 - B8	862	836	1	-14891	46257	78195	ND ³
BB06175-NE5 - C5	920	919	1	-573	48140	80782	ND ³
BB06175-NE5 - E8	862	870	1	4582	46718	78195	ND ³
BB06175-NE5 - F7	862	852	1	-5727	46475	78195	ND ³
BB06175-NE5 - H5	1141	1131	1	-5727	53508	89963	ND ³
BB06175-NE5 - 18	862	868	1	3436	46691	78195	ND ³
BB06175-NE5 - J7	862	881	1	10882	46866	78195	ND ³
BB06175-NE5 - J8	862	875	1	7446	46786	78195	ND ³
BB06175-NE5 - L3	797	798	1	573	44832	75189	ND ³

¹ - E_{weighted, total};0.0003 , probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

-1.4 Average of the measurements 153,126 Gross Beta DCGL .

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06205-NE6 - C3	6	13	2	2	15	30	ND ³
BE06205-NE6 - C5	5	10	2	0	13	28	ND ³
BE06205-NE6 - E5	12	63	5	2	12	27	ND ³
BE06205-NE6 - F4	5	11	2	2	13	28	ND ³
BE06205-NE6 - G7	6	12	2	0	14	30	ND ³
BE06205-NE6 - CB4	9	43	5	-1	10	24	ND ³
BE06205-NE6 - CF4	9	47	5	1	10	24	ND ³
BE06205-NE6 - CG4	9	45	5	0	10	24	ND ³
BE06205-NE6 - CI4	5	12	2	3	14	28	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

1.0 Largest S measurement

-0.5 Smallest R measurement

- 1.5 Difference
- 27 Gross Beta DCGLw

0.0 Average S measurements

0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGLw

Sample Point	Bkg	Gross	Count time	Total Surface	Removable		
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
BE06205-8	6	1 1	2	-2	14	30	ND ³
BE06205-Center hall	5	11	2	2	13	28	ND ³
BE06205-8	12	61	5	1	12	27	ND ³
BE06205-Center hall	5	12	2	3	14	28	ND ³
BE06205-8	6	10	2	-3	13	30	ND ³
BE06205-8	9	46	5	1	10	24	ND ³
BE06205-8	9	45	5	0	10	24	ND ³
BE06205-8	9	44	5	-1	10	24	ND ³
BE06205-8	5	11	2	2	13	28	ND ³

Reference Area Measurements

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected

,

	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
BE06205-NE6 - C3	834	827	1	-4009	45751	76914	ND ³
BE06205-NE6 - C5	945	938	1	-4009	48712	81873	ND ³
BE06205-NE6 - D2	834	831	1	-1718	45806	76914	ND ³
BE06205-NE6 - E1	834	829	1	-2864	45778	76914	ND ³
BE06205-NE6 - E5	1163	1190	1	15464	54453	90826	ND ³
BE06205-NE6 - F4	945	952	1	4009	48893	81873	ND ³
BE06205-NE6 - G1	834	837	1	1718	45888	76914	ND ³
BE06205-NE6 - G4	945	950	1	2864	48867	81873	ND ³
BE06205-NE6 - G7	834	829	1	-2864	45778	76914	ND ³
BE06205-NE6 - J5	945	953	1	4582	48906	81873	
BE06205-NE6 - CB4	1720	1679	1	-23482	65447	110455	ND ³

¹ - E_{weighted, total};0.0003 , probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0 Average of the measurements 153,126 Gross Beta DCGL

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06205-NE7 - C4	6	12	2	0	14	30	ND ³
JE06205-NE7 - D2	6	12	2	0	14	30	ND ³
JE06205-NE7 - J1	6	12	2	0	14	30	ND ³
JE06205-NE7 - CG5	9	46	5	1	10	24	ND ³
JE06205-NE7 - CK4	9	47	5	1	10	24	ND ³
JE06205-NE7 - A4	6	12	2	0	14	30	ND ³
JE06205-NE7 - F4	5	8	2	-3	12	28	ND ³
JE06205-NE7 - 12	6	13	2	2	15	30	ND ³
JE06205-NE7 - J7	6	11	2	-2	14	30	ND ³

 1 -E_weighted, total; .05 and probe active area 582cm2

² - at the 95% confidence level

³ - None detected

CPM/100cm2

0.4 Largest S measurement

0.5 Smallest R measurement

-0.1 Difference

27 Gross Beta DCGL_w

0.0 Average S measurements

0.0 Average R measurements

0.0 Difference

27 Gross Beta DCGL_w

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM/100cm2			Removable
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	Radionuclide
JE06205-8	6	12	2	0	14	30	ND ³
JE06205-8	6	12	2	0	14	30	ND ³
JE06205-8	6	12	2	0	14	30	ND ³
JE06205-8	9	46	5	1	10	24	ND ³
JE06205-8	9	47	5	1	10	24	ND ³
JE06205-8	6	11	2	-2	14	30	ND ³
JE06205-8	5	12	2	3	14	28	ND ³
JE06205-8	6	12	2	0	14	30	ND ³
JE06205-8	6	11	2	-2	14	30	ND ³

¹ -E_{weighted, total}; .05 and probe active area 582cm2
 ² - at the 95% confidence level
 ³ - None detected
	Bkg	Gross	Count time	Total Surfa	Total Surface Activity ¹ in DPM/100cm2		
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty ²	MDA	Radionuclide
JE06205-NE7 - A5	798	823	1	14318	45196	75236	ND ³
JE06205-NE7 - C4	798	763	1	-20046	44352	75236	ND ³
JE06205-NE7 - D2	798	771	1	-15464	44466	75236	ND ³
JE06205-NE7 - E1	602	614	1	6873	39145	65347	ND ³
JE06205-NE7 - F1	798	771	1	-15464	44466	75236	ND ³
JE06205-NE7 - J1	798	768	1	-17182	44423	75236	ND ³
JE06205-NE7 - J2	798	764	1	-19473	44366	75236	ND ³
JE06205-NE7 - J3	798	763	1	-20046	44352	75236	ND ³
JE06205-NE7 - K2	602	615	1	7446	39161	65347	ND ³
JE06205-NE7 - L7	798	805	1	4009	44945	75236	ND ³
JE06205-NE7 - M8	798	814	1	9164	45071	75236	ND ³
JE06205-NE7 - CD4	1605	1600	1	-2864	63552	106698	ND ³

Final Status Survey Results for Unit - NÉ7

¹ - E_{weighted, total};0.0003, probe active area 582cm2
² - at the 95% confidence level

³ - None detected

CPM/100cm2

-1.7 Average of the measurements 153,126 Gross Beta DCGL

Swipe Sample Analysis

· ____

Swipe Sample	Swipe Sample Location	Removable Surface Activity in DPM/100cm2				
ID Number		Gross Alpha/Beta	Uncertainty (95%CL)	MDA	Radionuclide	
BB06085 -2	4D - D3	-1	1	6	ND	
BB06085 -3	4D - E6	-1	1	5	ND	
BB06085 -4	4D - F6	1	1	5	ND	
BB06085 -5	4D - G10	0	1	5	ND	
BB06085 -7	4D - CD7	0	1	5	ND	
BB06085 -8	4 D - CD8	0	1	5	ND	
BB06085 -9	4D - CG4	0	1	5	ND	
JE06085 - 1	4EI - C5	0	1	5	ND	
JE06085 -4	4EI - D6	0	1	5	ND	
JE06085 -6	4EI - H2	-1	1	5	ND	
JE06085 -8	4EI - J8	2	1	5	ND	
JE06085 -9	4EI - CH5	-1	1	5	ND	
TW06085 - 1	16I - D10	3	1	6	ND	
TW06085 -2	16I - F8	0	1	6	ND	
TW06085 -3	16I - F10	2	1	6	ND	
TW06085 -4	161 - 17	2	1	6	ND	
TW06085 -5	16I - L5	-2	1	6	ND	
TW06085 -6	16I - CG6	2	1	5	ND	
TW06085 -7	16I - CH8	0	1	5	ND	
TW06085 -8	16I - CH9	0	1	5	ND	
TW06085 -9	16I - CI6	3	1	5	ND	
TW06105-1	16I - E5	2	1	6	ND	
TW06105-2	16I - E10	0	1	6	ND	
TW06105-4	161 - 112	-1	1	5	ND	
TW06105-5	16I - L10	-1	1	6	ND	
TW06105-6	16I - N10	1	1	5	ND	
BE06085 -4	171 F6	1	1	6	ND	
BE06085 -5	17I - F8	-2	1	6	ND	
BE06085 -6	17I - G2	2	1	5	ND	
BE06085 -7	171 - 18	2	1	5	ND	
BE06085 -8	171 - 112	1	1	5	ND	
BE06085 -9	17I - CD9	0	1	5	ND	
TW06095 - 1	18I - B5	-1	1	6	ND	
TW06095 -2	18I - E8	0	1	6	ND	
TW06095 -3	18I - F12	0	1	5	ND	

Swipe Sample	Swipe Sample Location	Removable Surface Activity in DPM/100cm2				
ID Number		Gross Alpha/Beta	Uncertainty (95%CL)	MDA	Radionuclide	
TW06095 -4	18I - H8	2	1	6	ND	
TW06095 -5	18I - H10	5	1	6	ND	
TW06095 -6	181 - 16	1	1	6	ND	
BB06095 - 1	21I - B6	2	1	5	ND	
BB06095 -2	21I - B9	-1	1	6	ND	
BB06095 -3	211 - D11	1	1	5	ND	
BB06095 -6	21I - H10	-1	1	5	ND	
BB06095 -7	21I - J5	1	1	5	ND	
BB06095 -8	21I - J11	1	1	5	ND	
JE06095 -10	22 - A5	1	1	5	ND	
JE06095 -11	22 - E7	3	1	6	ND	
JE06095 -12	22 - J5	3	1	6	ND	
JE06095 -13	22 - J8	0	1	5	ND	
JE06095 -14	22 - J9	1	1	5	ND	
JE06095 -15	22 - K4	-2	1	5	ND	
BE06095 - 1	23 - C6	0	1	5	ND	
BE06095 -2	23 - E9	0	1	5	ND	
BE06095 -3	23 - G2	-1	1	5	ND	
BE06095 -4	23 - H4	-1	1	5	ND	
BE06095 -5	23 - 11	1	1	5	ND	
BE06095 -6	23 - L5	1	1	5	ND	
BE06135B - 1	25I - A5	4	1	5	ND	
BE06135B -2	25I - B5	2	1	5	ND	
BE06135B -3	25I - E8	2	1	5	ND	
BE06135B -4	25I - G11	1	1	5	ND	
BE06135B -5	25I - H2	3	1	5	ND	
BB06135 - 1	25B - A4	2	1	5	ND	
BB06135 -2	25B - B4	1	1	5	ND	
BB06135 -3	25B - D8	1	1	5	ND	
BB06135 -4	25B - F5	2	1	5	ND	
BB06135 -5	25B - G4	0	1	5	ND	
BB06135 -6	25B - H6	0	1	5	ND	
JE06105 - 1	27I - E5	1	1	5	ND	
JE06105 -2	27I - E9	3	1	5	ND	
JE06105 -3	27l - G6	1	1	5	ND	

-

	Swipe Sample	Swipe Sample Location	Removabl	n Removable Surface Activity in DPM/100c		0cm2
	ID Number		Gross Alpha/Beta	Uncertainty (95%CL)	MDA	Radionuclide
	JE06105 -4	271 - 16	0	1	5	ND
	JE06105 -5	27I - J1	0	1	5	ND
	JE06105 -6	27I - J9	0	1	5	ND
х.	TW06135 - 1	29I - D7	2	1	6	ND
	TW06135 -2	29I - D9	1	1	6	ND
	TW06135 -3	29I -F5	2	1	6	ND
	TW06135 -4	29I -K6	0	1	5	ND
	TW06135 -5	291 - L4	0	1	5	ND
	TW06135 -6	29I - L9	1	1	6	ND
	TW06135 -7	291 - CD7	3	1	5	ND
	TW06135 -8	29I - CE9	-1	1	5	ND
	TW06135 -9	29I - CG9	3	1	5	ND
	JE06155 -3	31I - E4	-1	1	5	ND
	JE06155 -4	31I - F12	0	1	5	ND
	JE06155 -5	31I - G5	1	1	6	ND
	JE06155 -8	31I - CE5	2	1	5	ND
	JE06155 -9	31I - CF8	0	1	5	ND
	TW06145 -2	SW1 - E8	1	1	5	ND
	TW06145 -8	SW1 - L8	-1	1	5	ND
	TW06145 -11	SW1 - N6	5	1	5	ND
	TW06145 -13	SW1 - CJ4	0	1	5	ND
	TW06145 -14	SW1 - CL5	2	1	5	ND
	BE06145 - 1	SW2 - C2	2	1	5	ND
	BE06145 -3	SW2 - D5	2	1	5	ND
	BE06145 -7	SW2 - F3	1	1.	5	ND
	BE06145 -9	SW2 - F7	1	1	5	ND
	BE06145 -12	SW2 - CB4	1	1	5	ND
	BE06145 -13	SW2 - CC4	2	1	5	ND
	BE06145 -15	SW2 - CF5	2	1	5	ND
	BB06145 - 1	SW3 - A5	-2	1	5	ND
	BB06145 -2	SW3 - B5	0	1	5	ND
	BB06145 -3	SW3 - G4	0	1	5	ND
	BB06145 -4	SW3 - D6	1	1	5	ND
	BB06145 -8	SW3 - F11	1	1	5	ND
	BB06145 -13	SW3 - CE4	1	1	5	ND

Swipe Sample	Swipe Sample Location	Removable Surface Activity in DPM/100cm2				
ID Number		Gross Alpha/Beta	Uncertainty (95%CL)	MDA	Radionuclide	
TW06155 -3	SW4 - B5	1	1	6	ND	
TW06155 -6	SW4 - F8	3	1	5	ND	
TW06155 -10	SW4 - J3	1	1	6	ND	
TW06155 -11	SW4 - K2	0	1	5	ND	
TW06155 -12	SW4 - CB4	1	1	5	ND	
TW06155 -13	SW4 - CC4	0	1	5	ND	
TW06155 -14	SW4 - CK4	0	1	5	ND	
BB06155 - 1	SW5 - A8	0	1	5	ND	
BB06155 -7	SW5 - G3	1	1	5	ND	
BB06155 -8	SW5 - H3	-1	1	8	ND	
BB06155 -11	SW5 - K1	0	1	5	ND	
BB06155 -12	SW5 - CA5	0	1	5	ND	
BB06155 -15	SW5 - CL5	3	1	5	ND	
BE06155 -4	SW6 - D7	-1	1	5	ND	
BE06155 -6	SW6 - E6	-1	1	5	ND	
BE06155 -8	SW6 - G1	0	1	5	ND	
BE06155 -9	SW6 - H7	0	1	5	ND	
BE06155 -10	SW6 - J5	1	1	6	ND	
BE06155 -11	SW6 - K8	-2	1	5	ND	
JE06165 - 1	SW7 - A8	1	1	5	ND	
JE06165 -2	SW7 - E5	0	1	5	ND	
JE06165 -4	SW7 - 13	1	1	5	ND	
JE06165 -6	SW7 - J8	-1	1	5	ND	
JE06165 -8	SW7 - K7	. 1	1	5	ND	
TW06165 - 1	N1 - A2	-1	1	5	ND	
TW06165 -5	N1 - E5	1	1	6	ND	
TW06165 -6	N1 - H2	0	1	5	ND	
TW06165 -8	N1 - H7	0	1	5	ND	
TW06165 -10	N1 - J4	2	1	6	ND	
TW06165 -12	N1 - K7	-2	1	5	ND	
JE06165 -2	N2 - D2	0	1	5	ND	
JE06165 -7	N2 - F2	3	1	5	ND	
JE06165 -8	N2 - F4	-1	1	5	ND	
JE06165 -9	N2 - F6	-1	1	5	ND	
JE06165 -14	N2 - H2	1	1	5	ND	

Swipe Sample	Swipe Sample Location	Removable Surface Activity in DPM/100cm2				
ID Number		Gross Alpha/Beta	Uncertainty (95%CL)	MDA	Radionuclide	
JE06165 -15	N2 - H3	0	1	5	ND	
BB06165 - 1	NE1 - B7	1	1	6	ND	
BB06165 -2	NE1 - C4	0	1	5	ND	
BB06165 -3	NE1 - D3	-1	1	5	ND	
BB06165 -5	NE1 - E6	3	1	5	ND	
BB06165 -6	NE1 - E7	4	1	5	ND	
BB06165 -9	NE1 - E12	2	1	5	ND	
BB06165 -10	NE1 - F12	2	1	5	ND	
BB06165 -12	NE1 - G12	0	1	5	ND	
BB06165 -15	NE1 - J10	0	1	5	ND	
JE06175 -2	NE2 - D1	0	1	5	ND	
JE06175 -4	NE2 - E2	-1	1	5	ND	
JE06175 -5	NE2 - F8	2	1	5	ND	
JE06175 -6	NE2 - G2	0	1	5	ND	
JE06175 -7	NE2 - G7	0	1	5	ND	
JE06175 -10	NE2 - 17	4	1	5	ND	
JE06175 -11	NE2 - 18	0	1	5	ND	
JE06175 -12	NE2 - J3	-1	1	5	ND	
JE06175 -16	NE2 - CE5	0	1	5	ND	
BE06175 - 1	NE3 - A2	0	1	5	ND	
BE06175 -2	NE3 - A3	1	1	5	ND	
BE06175 -3	NE3 - A5	1	1	5	ND	
BE06175 -4	NE3 - A8	2	1	5	ND	
BE06175 -5	NE3 - B2	1	1	5	ND	
BE06175 -6	NE3 - B5	0	1	5	ND	
BE06175 -7	NE3 - A6	1	1	5	ND	
BE06175 -9	NE3 - F3	1	1	5	ND	
BE06175 -10	NE3 - F8	0	1	5	ND	
BE06175 -13	NE3 - CB5	2	1	5	ND	
BE06175 -15	NE3 - CF5	0	1	5	ND	
TW06175 -2	NE4 - C3	2	1	6	ND	
TW06175 -3	NE4 - C4	0	1	6	ND	
TW06175 -5	NE4 - E6	2	1	6	ND	
TW06175 -6	NE4 - E8	3	1	6	ND	
TW06175 -8	NE4 - G1	0	1	6	ND	

Swipe Sample	Swipe Sample Location	Removable Surface Activity in DPM/100cm2					
ID Number		Gross Alpha/Beta	Uncertainty (95%CL)	MDA	Radionuclide		
TW06175 -9	NE4 - 14	1	1	5	ND		
TW06175 -10	NE4 - K10	0	1	5	ND		
TW06175 -12	NE4 - L8	1	1	5	ND		
TW06175 -14	NE4 - CD2	2	1	6	ND		
BB06175 -2	NE5 - B2	0	1	5	ND		
BB06175 -3	NE5 - B3	-1	1	5	ND		
BB06175 -4	NE5 - B8	0	1	5	ND		
BB06175 -5	NE5 - C5	-1	1	5	ND		
BB06175 -7	NE5 - F7	0	1	5	ND		
BB06175 -8	NE5 - H5	1	1	6	ND		
BB06175 -9	NE5 - 18	0	1	5	ND		
BB06175 -10	NE5 - J7	0	1	5	ND		
BB06175 -12	NE5 - L3	-1	1	5	ND		
BE06205 - 1	NE6 - C3	-1	1	5	ND		
BE06205 -2	NE6 - C5	1	1	5	ND		
BE06205 -5	NE6 - E5	2	1	6	ND		
BE06205 -6	NE6 - F4	-1	1	5	ND		
BE06205 -9	NE6 - G7	-1	1	5	ND		
BE06205 -11	NE6 - CB4	-1	1	5	ND		
BE06205 -12	NE6 - CF4	-1	1	5	ND		
BE06205 -14	NE6 - CG4	2	1	5	ND		
BE06205 -15	NE6 - CI4	0	1	5	ND		
BE06205 -2	NE7 - C4	0	1	5	ND		
BE06205 -3	NE7 - D2	-1	1	5	ND		
BE06205 -6	NE7 - J1	1	1	5	ND		
BE06205 -13	NE7 - CG5	1	1	5	ND		
BE06205 -15	NE7 - CK4	2	1	5	ND		

Swipe Sample		Removable Surface Activity in DPM/100cm2				
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide	
BB06085 - 1	4D - B7	-4	1	8	ND	
BB06085 -2	4D - D3	-1	1	8	ND	
BB06085 -3	4D - E6	-3	1	8	ND	
BB06085 -4	4D - F6	-3	1	8	ND	
BB06085 -5	4D - G10	-2	1	8	ND	
BB06085 -6	4D - K8	0	1	8	ND	
BB06085 -7	4D - CD7	-3	1	8	ND	
BB06085 -8	4D - CD8	0	1	8	ND	
BB06085 -9	4D - CG4	-1	1	8	ND	
BB06105 - 1	4D - C5	-2	1	8	ND	
BB06105 - 2	4D - D2	2	1	8	ND	
JE06085 - 1	4EI - C5	-1	1	8	ND	
JE06085 -2	4EI - C6	0	1	8	ND	
JE06085 -3	4EI - C9	0	1	8	ND	
JE06085 -4	4EI - D6	-1	1	8	ND	
JE06085 -5	4EI - D7	-1	1	8	ND	
JE06085 -6	4EI - H2	-2	1	8	ND	
JE06085 -7	4EI - H10	0	1	8	ND	
JE06085 -8	4EI - J8	0	1	8	ND	
JE06085 -9	4EI - CH5	1	1	8	ND	
JE06145 -10	4EI - F3	1	1	8	ND	
JE06145 -11	4EI - H9	-2	1	8	ND	
TW06085 - 1	16I - D10	-10	1	10	ND	
TW06085 -2	16I - F8	-7	1	9	ND	
TW06085 -3	16I - F10	-3	1	8	ND	
TW06085 -4	161 - 17	-8	1	9	ND	
TW06085 -5	16I - L5	-5	1	9	ND	
TW06085 -6	16I - CG6	1	1	8	ND	
TW06085 -7	16I - CH8	-2	1	8	ND	
TW06085 -8	16I - CH9	-3	1	8	ND	
TW06085 -9	16I - CI6	-2	1	8	ND	
TW06105 - 1	16I - E5	-7	1	9	ND	
TW06105 - 2	16I - E10	-4	1	8	ND	
TW06105 - 3	16I - F3	-2	1	8	ND	
BE06085 - 1	17I - B9	1	1	8	ND	

2

Removable Surface Activity Measurements - Tritium

;

Swipe Sample		Removable Surface Activity in DPM/100cm2				
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide	
BE06085 -2	17I - E1	-5	1	8	ND	
BE06085 -3	17I - E3	-3	1	9	ND	
BE06085 -4	17I F6	-5	1	9	ND	
BE06085 -5	17I - F8	-3	1	9	ND	
BE06085 -6	17I - G2	-1	1	8	ND	
BE06085 -7	171 - 18	-6	1	8	ND	
BE06085 -8	171 - 112	-2	1	8	ND	
BE06085 -9	17I - CD9	-1	1	8	ND	
JE06165B -1	17I - G8	-1	1	8	ND	
JE06165B -2	17I - H1	-3	1	8	ND	
TW06095 - 1	18I - B5	-3	1	9	ND	
TW06095 -2	18I - E8	-6	1	9	ND	
TW06095 -3	18I - F12	2	1	8	ND	
TW06095 -4	18I - H8	-3	1	9	ND	
TW06095 -5	18I - H10	-5	1	9	ND	
TW06095 -6	181 - 16	-9	1	10	ND	
TW06095 -7	18I - L6	-4	1	8	ND	
TW06095 -8	18I - CE10	-1	1	8	ND	
TW06135 -10	18I - D1	-2	1	8	ND	
TW06135 -11	18I - D12	-1	1	8	ND	
TW06135 -15	18I - L8	-3	1	8	ND	
BB06095 - 1	21I - B6	0	1	8	ND	
BB06095 -2	21i - B9	-2	1	8	ND	
BB06095 -3	21I - D11	-3	1	8	ND	
BB06095 -4	21I - E11	-4	1	8	ND	
BB06095 -5	21I - E13	-2	1	8	ND	
BB06095 -6	21I - H10	-4	1	8	ND	
BB06095 -7	21I - J5	-2	1	8	ND	
BB06095 -8	21I - J11	-1	1	8	ND	
BB06095 -9	21I - CH5	2	1	8	ND	
BB06105 - 9	211 - D12	-3	1	8	ND	
BB06105 - 10	21I - F9	-5	1	8	ND	
JE06135 - 1	22 - A7	0	1	8	ND	
JE06135 -2	22 - B4	-2	1	8	ND	
JE06135 -4	22 - F3	1	1	8	ND	

÷

Swipe Sample		Removable Surface Activity in DPM/100cm2				
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide	
JE06095 -10	22 - A5	2	1	8	ND	
JE06095 -11	22 - E7	0	1	9	ND	
JE06095 -12	22 - J5	-3	1	9	ND	
JE06095 ~13	22 - J8	-1	1	8	ND	
JE06095 ~14	22 - J9	1	1	8	ND	
JE06095 -15	22 - K4	-2	1	8	ND	
JE06095 -16	22 - CD4	2	1	8	ND	
JE06095 -17	22 - CI5	-4	1	8	ND	
JE06095 -18	22 - CJ6	-2	1	8	ND	
BE06095 - 1	23 - C6	-1	1	8	ND	
BE06095 -2	23 - E9	-2	1	8	ND	
BE06095 -3	23 - G2	-3	1	8	ND	
BE06095 -4	23 - H4	-3	1	8	ND	
BE06095 -5	23 - 11	1	1	8	ND	
BE06095 -6	23 - L5	-1	1	8	ND	
BE06095 -7	23 - CD6	-6	1	8	ND	
BE06095 -8	23 - CG5	0	1	8	ND	
BE06095 -9	23 - Cl4	-2	· 1	8	ND	
BE06135 -10	23 - F8	-3	1	8	ND	
BE06135 -11	23 - H7	-3	1	8	ND	
BE06135B - 1	25I - A5	-5	1	8	ND	
BE06135B -2	25I - B5	2	1	8	ND	
BE06135B -3	25I - E8	-3	1	8	ND	
BE06135B -4	25I - G11	2	1	8	ND	
BE06135B -5	25I - H2	0	1	8	ND	
BE06135B -6	25I - H6	-1	1	8	ND	
BE06135B -7	25I - H12	-4	1	8	ND	
BE06135B -8	25I - K7	-1	1	8	ND	
BE06135B -9	25I - L7	-3	1	8	ND	
BE06135B -10	251 - G2	-2	1	8	ND	
BE06135B -11	25I - H5	-3	1	8	ND	
BB06135 - 1	25B - A4	-1	1	8	ND	
BB06135 -2	25B - B4	-1	1	8	ND	
BB06135 -3	25B - D8	0	1	8	ND	
BB06135 -4	25B - F5	-1	1	8	ND	

Swipe Sample		Removable Surface Activity in DPM/100cm2				
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide	
BB06135 -5	25B - G4	-1	1	8	ND	
BB06135 -6	25B - H6	-1	1	8	ND	
BB06135 -7	25B - CD4	1	1	8	ND	
BB06135 -8	25B - CD5	1	1	8	ND	
BB06135 -9	25B - CE4	1	1	8	ND	
BB06135 -10	25B - A6	-2	1	8	ND	
BB06135 -11	25B - D1	-2	1	8	ND	
JE06105 - 1	27I - E5	5	1	8	ND	
JE06105 -2	27I - E9	2	1	8	ND	
JE06105 -3	27I - G6	-2	1	8	ND	
JE06105 -4	271 - 16	2	1	8	ND	
JE06105 -5	27I - J1	-2	1	8	ND	
JE06105 -6	27I - J9	1	1	8	ND	
JE06105 -7	27I - K3	-1	1	8	ND	
JE06105 -8	27I - M5	-6	1	8	ND	
JE06105 -9	27I - N6	-1	1	8	ND	
JE06135 - 10	27I - A5	-1	1	8	ND	
JE06135 -11	27I - E3	-1	1	8	ND	
JE06135 -12	27I - F1	-2	1	8	ND	
JE06135 -13	27I - G10	-1	1	8	ND	
JE06135 -14	27I - H5	-4	. 1	9	ND	
JE06135 -15	27I - J4	1	1	8	ND	
TW06135 - 1	29I - D7	-7	1	10	ND	
TW06135 -2	29I - D9	-4	1	9	ND	
TW06135 -3	29I -F5	-4	1 .	9	ND	
TW06135 -4	29I -K6	-3	1	8	ND	
TW06135 -5	29I - L4	0	1	8	ND	
TW06135 -6	29I - L9	0	1	9	ND	
TW06135 -7	29I - CD7	0	1	8	ND	
TW06135 -8	29I - CE9	-3	1	8	ND	
TW06135 -9	291 - CG9	-2	1	8	ND	
TW06135 -10	29I - F11	-6	1	9	ND	
TW06135 -11	291 - 16	-8	1	9	ND	
JE06155 - 1	31I - B6	1	1	8	ND	
JE06155 -2	31I - D7	-2	1	8	ND	

Swipe Sample		Removable Surface Activity in DPM/100cm2				
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide	
JE06155 -3	31I - E4	-4	1	8	ND	
JE06155 -4	31I - F12	-2	1	8	ND	
JE06155 -5	311 - G5	-3	1	9	ND	
JE06155 -6	31I - H2	3	1	8	ND	
JE06155 -7	31I - H11	-4	1	8	ND	
JE06155 -8	31I - CE5	-2	1	8	ND	
JE06155 -9	31I - CF8	-1	1	8	ND	
JE06145 -10	31I - C6	-3	1	8	ND	
JE06145 -11	31I - C11	-3	1	8	ND	
JE06145 -12	31I - E3	-1	1	8	ND	
TW06145 - 1	SW1 - D6	-4	1	8	ND	
TW06145 -2	SW1 - E8	-3	1	8	ND	
TW06145 -3	SW1 - I4	-10	1	9	ND	
TW06145 -4	SW1 - J3	-1	1	8	ND	
TW06145 -5	SW1 - K4	-9	1	9	ND	
TW06145 -6	SW1 - K8	-6	1	8	ND	
TW06145 -7	SW1 - L4	-8	1	10	ND	
TW06145 -8	SW1 - L8	-2	1	8	ND	
TW06145 -9	SW1 - M7	-2	1	8	ND	
TW06145 -10	SW1 - N5	-6	1	10	ND	
TW06145 -11	SW1 - N6	1	1	8	ND	
TW06145 -12	SW1 - O2	-3	1	9	ND	
BE06145 - 1	SW2 - C2	0	1	8	ND	
BE06145 -2	SW2 - C5	1	1	8	ND	
BE06145 -3	SW2 - D5	-3	1	8	ND	
BE06145 -4	SW2 - E1	0	1	8	ND	
BE06145 -5	SW2 - E3	-3	1	8	ND	
BE06145 -6	SW2 - F2	-1	1	8	ND	
BE06145 -7	SW2 - F3	-3	1	8	ND	
BE06145 -8	SW2 - F6	-3	1	8	ND	
BE06145 -9	SW2 - F7	-2	1	8	ND	
BE06145 -10	SW2 - G8	-2	1	8	ND	
BE06145 -11	SW2 - CA4	-1	1	8	ND	
BB06145 - 1	SW3 - A5	2	1	8	ND	
BB06145 -2	SW3 - B5	3	1	8	ND	

:

Swipe Sample		Removable Surface Activity in DPM/100cm2			
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide
BB06145 -3	SW3 - G4	-1	1	8	ND
BB06145 -4	SW3 - D6	-1	1	8	ND
BB06145 -5	SW3 - E7	-5	1	8	ND
BB06145 -6	SW3 - F2	0	1	8	ND
BB06145 -7	SW3 - F8	-1	1	8	ND
BB06145 -8	SW3 - F11	-2	1	8	ND
BB06145 -9	SW3 - G3	-6	1	8	ND
BB06145 -10	SW3 - H1	-2	1	8	ND
BB06145 -12	SW3 - H9	-3	1	8	ND
TW06155 - 1	SW4 - A1	0	1	8	ND
TW06155 -2	SW4 - A5	-7	1	9	ND
TW06155 -3	SW4 - B5	-8	1	9	ND
TW06155 -4	SW4 - C4	-6	1	9	ND
TW06155 -6	SW4 - F8	1	1	8	ND
TW06155 -7	SW4 - H5	-3	1	9	ND
TW06155 -8	SW4 - H6	-5	1	9	ND
TW06155 -9	SW4 - 16	-2	1	8	ND
TW06155 -10	SW4 - J3	-9	1	9	ND
TW06155 -11	SW4 - K2	-1	1	8	ND
TW06155 -12	SW4 - CB4	1	1	8	ND
TW06155 -13	SW4 - CC4	-4	1	8	ND
BB06155 - 1	SW5 - A8	1	1	8	ND
BB06155 -2	SW5 - C1	0	1	8	ND
BB06155 -3	SW5 - C6	-2	1	8	ND
BB06155 -4	SW5 - D1	-6	1	9	ND
BB06155 -5	SW5 - D5	-4	1	8	ND
BB06155 -6	SW5 - E5	-1	1	8	ND
BB06155 -7	SW5 - G3	2	1	8	ND
BB06155 -8	SW5 - H3	1	1	8	ND
BB06155 -9	SW5 - B8	-1	1	8	ND
BB06155 -10	SW5 - L1	-4	1	8	ND
BB06155 -11	SW5 - K1	2	1	8	ND
BE06155 - 1	SW6 - A3	0	1	8	ND
BE06155 -2	SW6 - B3	2	1	8	ND
BE06155 -3	SW6 - D2	-3	1	8	ND

4

Removable Surface Activity Measurements - Tritium

J

.

Swipe Sample		Removable Surface Activity in DPM/100cm2			
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide
BE06155 -4	SW6 - D7	3	1	8	ND
BE06155 -5	SW6 - D8	-1	1	8	ND
BE06155 -6	SW6 - E6	1	1	8	ND
BE06155 -7	SW6 - K7	-4	1	8	ND
BE06155 -8	SW6 - G1	-3	1	8	ND
BE06155 -9	SW6 - H7	-1	1	8	ND
BE06155 -10	SW6 - J5	-2	1	9	ND
BE06155 -11	SW6 - K8	-2	1	8	ND
JE06165 - 1	SW7 - A8	-3	1	8	ND
JE06165 -2	SW7 - E5	-3	1	8	ND
JE06165 -3	SW7 - H1	1	1	8	ND
JE06165 -4	SW7 - 13	2	1	8	ND
JE06165 -5	SW7 - J7	-1	1	8	ND
JE06165 -6	SW7 - J8	-2	1	8	ND
JE06165 -7	SW7 - K5	-3	1	9	ND
JE06165 -8	SW7 - K7	0	1	8	ND
JE06165 -9	SW7 - L6	-6	1	9	ND
JE06165 -10	SW7 - L7	-2	1	8	ND
TW06165 - 1	N1 - A2	-4	1	8	ND
TW06165 -2	N1 - B4	-9	1	9	ND
TW06165 -3	N1 - C2	-3	1	8	ND
TW06165 -4	N1 - D6	-5	1	9	ND
TW06165 -5	N1 - E5	-4	1	9	ND
TW06165 -6	N1 - H2	-1	1	8	ND
TW06165 -7	N1 - H3	-3	1	9	ND
TW06165 -8	N1 - H7	-2	1	8	ND
TW06165 -9	N1 - J1	-1	1	8	ND
TW06165 -10	N1 - J4	-6	1	9	ND
TW06165 -12	N1 - K7	-1	1	8	ND
JE06165 - 1	N2 - A4	-2	1	8	ND
JE06165 -2	N2 - D2	0	1	8	ND
JE06165 -3	N2 - D4	2	1	8	ND
JE06165 -4	N2 - D5	-5	1	9	ND
JE06165 -5	N2 -D7	-2	1	8	ND
JE06165 -6	N2 - E5	-3	1	8	ND

Swipe Sample		Ren	novable Surface Activi	ty in DPM/	100cm2
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide
JE06165 -7	N2 - F2	-3	1	8	ND
JE06165 -8	N2 - F4	-1	1	8	ND
JE06165 -9	N2 - F6	-1	1	8	ND
JE06165 -10	N2 - G1	-2	1	8	ND
JE06165 -11	N2 - G3	-1	1	8	ND
JE06165 -16	N2 - H6	-2	1	8	ND
BB06165 - 1	NE1 - B7	-3	1	9	ND
BB06165 -2	NE1 - C4	-2	1	8	ND
BB06165 -3	NE1 - D3	2	1	8	ND
BB06165 -4	NE1 - D8	-3	1	8	ND
BB06165 -5	NE1 - E6	-5	1	8	ND
BB06165 -6	NE1 - E7	-1	1	8	ND
BB06165 -7	NE1 - E9	-2	1	8	ND
BB06165 -8	NE1 - E11	-1	1	8	ND
BB06165 -9	NE1 - E12	-1	1	8	ND
BB06165 -10	NE1 - F12	0	1	8	ND
BB06165 -11	NE1 - G5	-7	1	9	ND
BB06165 -12	NE1 - G12	0	1	8	ND
JE06175 - 1	NE2 - F1	0	1	8	ND
JE06175 -2	NE2 - D1	-2	1	8	ND
JE06175 -3	NE2 - G4	-1	1	9	ND
JE06175 -4	NE2 - E2	-3	1	8	ND
JE06175 -5	NE2 - F8	-5	1	8	ND
JE06175 -6	NE2 - G2	-2	1	8	ND
JE06175 -7	NE2 - G7	-1	1	8	ND
JE06175 -8	NE2 - H5	-4	1	8	ND
JE06175 -9	NE2 - 15	-1	1	8	ND
JE06175 -10	NE2 - 17	-5	1	8	ND
JE06175 -11	NE2 - 18	-2	1	8	ND
BE06175 - 1	NE3 - A2	-3	1	8	ND
BE06175 -2	NE3 - A3	-3	1	8	ND
BE06175 -3	NE3 - A5	-4	1	8	ND
BE06175 -4	NE3 - A8	-4	1	8	ND
BE06175 -5	NE3 - B2	-2	1	8	ND
BE06175 -6	NE3 - B5	3	1	8	ND

Swipe Sample		Removable Surface Activity in DPM/100cm2				
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide	
BE06175 -7	NE3 - A6	-1	1	8	ND	
BE06175 -8	NE3 - E5	-4	1	9	ND	
BE06175 -9	NE3 - F3	-2	1	8	ND	
BE06175 -10	NE3 - F8	0	1	8	ND	
BE06175 -11	NE3 - CA5	-2	1	8	ND	
BE06175 -12	NE3 - CB4	3	1	8	ND	
TW06175 - 1	NE4 - A5	-2	1	8	ND	
TW06175 -2	NE4 - C3	-4	1	9	ND	
TW06175 -3	NE4 - C4	-6	1	9	ND	
TW06175 -4	NE4 - D6	-12	1	9	ND	
TW06175 -5	NE4 - E6	-9	1	9	ND	
TW06175 -6	NE4 - E8	-12	1	11	ND	
TW06175 -7	NE4 - F4	-6	1	9	ND	
TW06175 -8	NE4 - G1	-3	1	9	ND	
TW06175 -9	NE4 - 14	-3	1	8	ND	
TW06175 -10	NE4 - K10	-4	1	8	ND	
TW06175 -11	NE4 - L6	-1	1	8	ND	
TW06175 -12	NE4 - L8	-3	1	8	ND	
BB06175 - 1	NE5 - A3	0	1	8	ND	
BB06175 -2	NE5 - B2	-1	1	8	ND	
BB06175 -3	NE5 - B3	0	1	8	ND	
BB06175 -4	NE5 - B8	1	1	8	ND	
BB06175 -5	NE5 - C5	0	1	8	ND	
BB06175 -6	NE5 - E8	-1	1	8	ND	
BB06175 -7	NE5 - F7	1	1	8	ND	
BB06175 -8	NE5 - H5	-2	1	9	ND	
BB06175 -9	NE5 - 18	-2	1	8	ND	
BB06175 -10	NE5 - J7	-5	1	8	ND	
BB06175 -11	NE5 - J8	0	1	8	ND	
BB06175 -12	NE5 - L3	-2	1	8	ND	
BE06205 - 1	NE6 - C3	-1	1	8	ND	
BE06205 -2	NE6 - C5	0	1	8	ND	
BE06205 -3	NE6 - D2	-2	1	8	ND	
BE06205 -4	NE6 - E1	1	1	8	ND	
BE06205 -5	NE6 - E5	-4	1	9	ND	

Swipe Sample		Removable Surface Activity in DPM/100cm2				
ID Number	Swipe Sample Location	3H	Uncertainty (95%CL)	MDA	Radionuclide	
BE06205 -6	NE6 - F4	-1	1	8	ND	
BE06205 -7	NE6 - G1	0	1	8	ND	
BE06205 -8	NE6 - G4	0	1	8	ND	
BE06205 -9	NE6 - G7	0	1	8	ND	
BE06205 -10	NE6 - J5	-5	1	8	ND	
BE06205 -11	NE6 - CB4	2	1	8	ND	
BE06205 - 1	NE7 - A5	1	1	8	ND	
BE06205 -2	NE7 - C4	-5	1	8	ND	
BE06205 -3	NE7 - D2	-2	1	8	ND	
BE06205 -4	NE7 - E1	-2	1	8	ND	
BE06205 -5	NE7 - F1	2	1	8	ND	
BE06205 -6	NE7 - J1	-1	1	8	ND	
BE06205 -7	NE7 - J2	-1	1	8	ND	
BE06205 -8	NE7 - J3	1	1	8	ND	
BE06205 -9	NE7 - K2	-2	1	8	ND	
BE06205 -10	NE7 - L7	1	1	8	ND	
BE06205 -11	NE7 - M8	-2	1	8	ND	
BE06205 -12	NE7 - CD4	-2	1	8	ND	

J

Removable Surface Activity Measurements - Tritium

ų.

ATTACHMENT 8

.

Wilcoxon Rank Sum Test Survey Unit 17C2

.

	LBGR		Wr 2983				
	2000		Ws 15	545			
DATA	AREA	ADJUSTED	RANKS	SURVEY UNIT			
		DATA		RANKS			
10446	२ _	10446	68		Ő		
10862	२	10862	81		0		
10310	२	10310	65		0		
10889	२	10889	83		0		
10403 1	२	10403	67		0		
10994 F	२	10994	86		0		
10543 F	२	10543	71		0		
16440 F	२	16440	104		0		
12291 F	3	12291	98		0		
10854 F	२	10854	79		0		
10523 F	२	10523	70		0		
16324 F	२	16324	102		0		
12528 F	२	12528	100		0		
16318 F	3	16318	101		0		
10281 F	۲	10281	63		0		
16425 F	२	16425	103		0		
12348 F	२	12348	99		0		
10779 F	२	10779	76		0		
10362 F	२	10362	66		0		
10679 F	२	10679	74		0		
10305 F	२	10305	64		0		
10837 F	२	10837	78		0		
10226 F	२	10226	62		0		
10670 F	२	10670	72		0		
10153 F	र	10153	61		0		
10780 F	२	10780	77		0		
9924 F	२	9924	50		0		
11258 F	२	11258	95		0		
9921 F	२	9921	49		0		
11078 F	र	11078	89		0		
9959 F	र	9959	55		0		
11023 F	र	11023	87		0		
9916 F	र	9916	48		0		
11194 F	र	11194	93		0		
9942 F	र	9942	53		0		
10867 F	र	10867	82		0		
9935 F	र	9935	51		0		
11205 F	र	11205	94		0		
9968 F	र	9968	57		0		
11266 F	2	11266	96		0		
9936 F	2	9936	52		0		
11098 F	2	11098	90		0		
9945 F	2	9945	54		0		
11150 F	2	11150	91		0		
9966 F	2	9966	56		0		
11058 F	2	11058	88		0		
10106 F	8	10106	60		0		
10701 F	2	10701	75		0		

Wilcoxon Rank Sum Test Survey Unit 17C2

10858 R	10858	80	0
10488 R	10488	69	0
9855 R	9855	47	0
10892 R	10892	84	0
10602 S	8602	31	31
12674 S	10674	73	73
11181 S	9181	40	40
8644 S	6644	15	15
11753 S	9753	46	46
9430 S	7430	21	21
13189 S	11189	92	92
9087 S	7087	19	19
12040 S	10040	59	59
11525 S	9525	43	43
10832 S	8832	33	33
11102 S	9102	39	39
8572 S	6572	14	14
12936 S	10936	85	85
13544 S	11544	97	97
10983 S	8983	36	36
11540 S	9540	44	44
11077 S	9077	38	38
10779 S	8779	32	32
11187 S	9187	41	41
10874 S	8874	34	34
10985 S	8985	37	37
8300 S	6300	11	11
11719 S	9719	45	45
7956 S	5956	9	9
8433 S	6433	12	12
9806 S	7806	24	24
8729 S	6729	16	16
7922 S	5922	8	8
10544 S	8544	30	30
7450 S	5450	4	4
8750 S	6750	17	17
9904 S	7904	26	26
9240 S	7240	20	20
8839 S	6839	18	18
7661 S	5661	6	6
11230 S	9230	42	42
7221 S	5221	2	2
9743 S	7743	23	23
8251 S	6251	10	10
10302 S	8302	29	29
11985 S	9985	58	58
9962 S	7962	27	27
7268 S	5268	3	3
7465 S	5465	5	5
6748 S	4748	1	1
9623 S	7623	22	22
8558 S	6558	13	13

Wilcoxon Rank Sum Test Survey Unit 17C2

~ ____

	Sum =		5460	1545
9855 S		7855	25	25
7858 S		5858	7	7
10106 S		8106	28	28
10914 S		8914	35	35

ATTACHMENT 9

.....

Quantile Test Survey Unit 17C2

LBGR

2000					
DATA AREA	ADJUSTED	RANKS	SURVEY UNIT	SORTED	ASSOCIATED
	DATA		RANKS	RANKS	AREA
10446 R	10446	68	0	1'	S
10862 R	10862	81	0	2'	S
10310 R	10310	65	0	3'	S
10889 R	10889	83	0	4'	S
10403 R	10403	67	0	5'	S
10994 R	10994	86	0	6	S
10543 R	10543	71	0	7'	S
16440 R	16440	104	0	8/	S
12291 R	12291	98	0	9/	s
10854 R	10854	79	0	10/	s
10523 R	10523	70	0	11/	s
16324 R	16324	102	0	12	S
12528 R	12528	100	0	13	s
16318 R	16318	101	0	14	S
10281 R	10281	63	0	15	S
16425 R	16425	103	0	16	s
12348 R	12348	99	0	17!	s
10779 R	10779	76	0	18	S
10362 R	10362	66	0	19	s
10679 R	10679	74	0	20	s
10305 R	10305	64	0	21	s
10837 R	10837	78	0	22	s
10226 R	10226	62	0	23	s
10670 R	10670	72	0	24	s
10153 R	10153	61	0	25	s
10780 R	10780	77	0	26	s
9924 R	9924	50	0	27	s
11258 R	11258	95	0	28	s
9921 R	9921	49	0	29	s
11078 R	11078	89	0	30	s
9959 R	9959	55	0	31	s
11023 R	11023	87	0	32	s
9916 R	9916	48	0	33	S
11194 R	11194	93	0	34	S
9942 R	9942	53	0	35	S
10867 R	10867	82	0	36	S
9935 R	9935	51	0	37	S
11205 R	11205	94	0	38	IS
9968 R	9968	57	0	39	S
11266 R	11266	96	0	40	S
9936 R	9936	52	0	41	S
11098 R	11098	90	0	42	S
9945 R	9945	54	0	43	S
11150 R	11150	91	0	44	IS
9966 R	9966	56	0	45	IS
11058 R	11058	88	0	46	IS
10106 R	10106	60	0	47	,R

Quantile Test Survey Unit 17C2

- ----

10701 R	10701	75	0	48 R
10858 R	10858	80	0	49 R
10488 R	10488	69	0	50 R
9855 R	9855	47	0	51 R
10892 R	10892	84	0	52 R
10602 S	8602	31	31	53 R
12674 S	10674	73	73	54 R
11181 S	9181	40	40	55 R
8644 S	6644	15	15	56 R
11753 S	9753	46	46	57 R
9430 S	7430	21	21	58 S
13189 S	11189	92	92	59 S
9087 S	7087	19	19	60 R
12040 S	10040	59	59	61 R
11525 S	9525	43	43	62 R
10832 S	8832	33	33	63 R
11102 S	9102	39	39	64 R
8572 S	6572	14	14	65 R
12936 S	10936	85	85	66 R
13544 S	11544	97	97	67 R
10983 S	8983	36	36	68 R
11540 S	9540	44	44	69 R
11077 S	9077	38	38	70 R
10779 S	8779	32	32	71 R
11187 S	9187	41	41	72 R
10874 S	8874	34	34	73 S
10985 S	8985	37	37	74 R
8300 S	6300	11	11	75 R
11719 S	9719	45	45	76 R
7956 S	5956	9	9	77 R
8433 S	6433	12	12	78 R
9806 S	7806	24	24	79 R
8729 S	6729	16	16	80 R
7922 S	5922	8	8	81 R
10544 S	8544	30	30	82 R
7450 S	5450	4	4	83 R
8750 S	6750	17	17	84 R
9904 S	7904	26	26	85 S
9240 S	7240	20	20	86 R
8839 S	6839	18	18	87 R
7661 S	5661	6	6	88 R
11230 S	9230	42	42	89 R
7221 S	5221	2	2	90 R
9743 S	7743	23	23	91 R
8251 S	6251	10	10	92 S
10302 S	8302	29	29	93 R
11985 S	9985	58	58	94 R
9962 S	7962	27	27	95 R
7268 S	5268	3	3	96 R
7465 S	5465	5	5	97 S
6748 S	4748	1	1	98 R

Quantile Test Survey Unit 17C2

	Sum =	5460	1545		
9855 S	7855	25	25	104 R	
7858 S	5858	7	7	103 R	
10106 S	8106	28	28	102 R	
10914 S	8914	35	35	101 R	
8558 S	6558	13	13	100 R	
9623 S	7623	22	22	99 R	

ATTACHMENT 10

,

L_	Droh	~	L	Droh	~
K=.	PIOD	a	к-	PIOD	a
0	0.028142	1	0	0.000834	1
1	0.152947	0.971858	1	0.009826	0.999166
2	0.318911	0.818911	2	0.04936	0.98934
3	0.318911	0.5	3	0.138731	0.93998
4	0.152947	0.181089	4	0.240467	0.80125
5	0.028142	0.028142	5	0.266604	0.560783
			6	0.189081	0.294179
			7	0.082723	0.105098
			8	0.020259	0.022375
	mean k=	2.50	•	mean k=	4.71
	std dev=	11.12		std dev=	15.28

ATTACHMENT 11

Instrument: Scaler/rate meter]	Model:	Ludium 22	21	Serial Nr:	197770		Calibratio	03/22/05	
Detector:		Gas propor	tional]	Model:	Ludlum 43	-37A	Serial Nr:	O92765		Calibratio	n Date:	03/22/06
			Backg	round	Acce	Acceptable			Source Reading		Acceptable		
		<u>Technician</u>	in C	PM	Range	e (CPM)			in C	PM	Range	(CPM)	
Date	Time	Reviewer		_	<u>+50%</u>	<u>+3</u> σ	Source	Isotope		_	<u>+10%</u>	<u>+3</u> σ	Results
	,		X	X	-50%	-3σ	ID Nr.		X	X	-10%	-3σ	
		BB			<u>6</u>	<u>5</u>					<u>28937</u>	<u>27845</u>	PASS
6/8/05	0900	FW	4	4	2	3	O4053	210Po	26307 ²	26307	23676	24768	
		BB			<u>6</u>	<u>5</u>					<u>25866</u>	<u>24051</u>	PASS
6/9/05	1300	FW	5	4	2	3	O4053	210Po	23514	23514	21163	22978	
		BB			<u>6</u>	<u>5</u>					<u>25853</u>	<u>24056</u>	PASS
6/10/05	0600	FW	4	4	2	3	O4053	210Po	23161	23503	21153	22950	
		<u>BB</u>			<u>6</u>	<u>5</u>					<u>25852</u>	<u>24046</u>	PASS
6/13/05	1300	FW	4	4	2	3	O4053	210Po	23472	23502	21152	22958	
		<u>BB</u>			<u>6</u>	<u>5</u>					<u>25848</u>	<u>24036</u>	PASS
6/14/05	0700	FW	4	4	2	3	O4053	210Po	23384	23498	21149	22961	
		BB	•		<u>6</u>	<u>6</u>					<u>25847</u>	<u>24027</u>	PASS
6/15/05	1300	FW	5	4	2	3	O4053	210Po	23449	23497	21147	22967	
		BB			<u>6</u>	<u>5</u>					<u>25844</u>	<u>24018</u>	PASS
6/17/05	1100	FW	4	4	2	3	O4053	210Po	23419	23495	21145	22971	
		BB			<u>6</u>	5					<u>25844</u>	<u>24010</u>	PASS
6/20/05	0630	FW	4	4	2	3	<u>O4053</u>	210Po	23477	23494	21145	22978	
		BB	_		<u>6</u>	<u>5</u>	- · · · · ·				<u>25844</u>	<u>24003</u>	PASS
6/21/05	0615	<u> </u>	5	4	2	3	04053	210Po	23515	23495	21145	23106	
0.000.005		BB			<u>6</u>	5					<u>25842</u>	<u>23996</u>	PASS
6/22/05	1300	FW	4	4	2	3	O4053	210Po	23433	23493	21144	22991	
0.000.005	4500	BB	-		<u>6</u>	5					<u>25842</u>	<u>23989</u>	PASS
6/23/05	1530	<u>+w</u>	5	4	2	3	O4053	210Po	23491	23493	21144	22997	
		BB	_		<u>6</u>	<u>5</u>	÷				<u>25834</u>	<u>23989</u>	PASS
6/29/05	0700	FW	5	4	2	3	O4053	210Po	23203	23486	21137	22982	

² - Used different jig

Instrument		Scaler/rate	meter]	Model:	Ludlum 22	21	Serial Nr:	197770		Calibratio	n Date:	03/22/05
Detector:		Gas propo	rtional]	Model:	Ludlum 43	-37B	Serial Nr:	O92765		Calibratio	n Date:	03/22/06
				-									
			Back	ground	Acce	Acceptable			Source	Source Reading		Acceptable	
		<u>Technician</u>	in (CPM	Rang	e (CPM)			in C	PM	Range	(CPM)	
Date	Time	Reviewer		-	<u>+20%</u>	<u>+3</u> <u></u>	Source	isotope		_	<u>+10%</u>	<u>+3σ</u>	
			X	X	-20%	-3σ	ID Nr.		x	X	-10%	-3σ	Results
		BB			<u>1299</u>	<u>1159</u>					<u>141455</u>	<u>131258</u>	PASS
6/8/05	1300	FW	1082	1082	866	1006	1838	137Cs	128596	128596	115736	125933	
		BB			<u>1299</u>	<u>1155</u>					<u>149334</u>	<u>139931</u>	PASS
6/9/05	0800	FW	1079	1082	866	1010	1838	137Cs	135758 ²	135758	122182	131585	
		BB			<u>1294</u>	<u>1156</u>					<u>141456</u>	<u>131214</u>	PASS
6/10/05	1000	FW	1035	1078	863	1001	1838	137Cs	128617	128596	115737	125978	
		<u>BB</u>			<u>1290</u>	<u>1156</u>					<u>141494</u>	<u>131254</u>	PASS
6/13/05	0700	FW	1034	1075	860	994	1838	137Cs	129694	128631	115767	126007	
		BB			<u>1196</u>	<u>1024</u>					<u>141523</u>	131271	PASŠ
6/14/05	1300	FW	996 ¹	996	797	969	1838	137Cs	129522	128658	115792	126044	
		BB			<u>1196</u>	<u>1023</u>					<u>141564</u>	<u>131328</u>	PASS
6/15/05	0630	FW	1000 ¹	997	797	970	1838	137Cs	129923	128695	115825	126061	
		BB			<u>1286</u>	1155					141596	131355	PASS
6/17/05	0855	FW	1031	1072	857	989	1838	137Cs	129702	128724	115851	126092	
		BB			<u>1285</u>	<u>1152</u>					<u>141628</u>	<u>131387</u>	PASS
6/21/05	1400	FW	1062	1071	857	991	1838	137Cs	129784	128753	115878	126119	
		BB			<u>1281</u>	<u>1154</u>					<u>141658</u>	<u>131411</u>	PASS
6/22/05	0615	FW	1015	1068	854	982	1838	137Cs	129749	128780	115902	126149	
		BB			<u>1277</u>	1155					141680	131415	PASS
6/23/05	1300	FW	1010	1064	851	974	1838	137Cs	129549	128800	115920	126815	
		BB			<u>1276</u>	<u>1152</u>					141703	131424	PASS
6/24/05	0630	FW	1045	1063	851	975	1838	137Cs	129626	128821	115939	126219	

¹ - Made In a different location

² - Used different jig

Instrume	nt:	Scaler/rate	meter		Model:	Ludlum	2221	Serial Nr:	168577	[Calibratio	n Date:	10/19/04
Detector:		Gas propor	tional		Model:	Ludlum -	43-37A	Serial Nr:	190909		Calibratio	n Date:	10/19/05
			Bac	kground	Accep	Acceptable			Source Reading		Acce	ptable	
		<u>Technician</u>	in	CPM	Range	(CPM)			in CPM		Range (CPM)		
Date	Time	Reviewer		_	<u>+50%</u>	<u>+3</u>	Source	Isotope		_	<u>+10%</u>	<u>+3</u> <u></u>	Results
			X	X	-50%	-3σ	ID Nr.		X	Х	-10%	-3σ	
		BE			<u>6</u>	<u>5</u>					<u>29270</u>	<u>27463</u>	PASS
6/8/05	1515	FW	4	4	2	3	O4051	210Po	26609	26609	23949	25756	
		BE			<u>6</u>	5					<u>28326</u>	<u>28120</u>	PASS
6/9/05	1330	FW	4	4	2	3	O4051	210Po	25770	25751	23176	23383	
		<u>BE</u>			<u>6</u>	5					28877	<u>27710</u>	PASS
6/10/05	0630	FW	5	4	2	3	O4051	210Po	25911	26252	23627	24795	
		BE			<u>6</u>	<u>5</u>					<u>28873</u>	<u>27696</u>	PASS
6/14/05	1330	FW	4	4	2	3	O4051	210Po	25985	26248	23623	24800	
		<u>BE</u>			<u>7</u>	<u>6</u>					<u>28868</u>	<u>27683</u>	PASS
6/15/05	0630	FW	5	4	2	3	O4051	210Po	25984	26244	23619	24805	
		<u>BE</u>			<u>7</u>	<u>6</u>					<u>28862</u>	<u>27670</u>	PASS
6/16/05	1400	FW	4	4	2	3	O4051	210Po	25921	26239	23615	24807	
		<u>BE</u>			<u>7</u>	<u>6</u>					<u>28856</u>	<u>27658</u>	PASS
6/17/05	0630	FW	5	5	2	3	O4051	210Po	25840	26232	23609	24807	
		<u>BE</u>			<u>7</u>	<u>6</u>					<u>28847</u>	<u>27649</u>	PASS
6/20/05	1120	FW	5	5	2	3	O4051	210Po	25704	26224	23602	24800	
		BE			<u>7</u>	<u>6</u>					<u>28837</u>	<u>27642</u>	PASS
6/21/05	0630	FW	5	5	2	3	O4051	210Po	25633	26216	23594	24789	
		<u>BE</u>			<u>7</u>	<u>6</u>					<u>28828</u>	<u>27633</u>	PASS
6/21/05	1250	FW	5	5	2	3	O4051	210Po	25667	26207	23587	24782	
		<u>BE</u>			<u>7</u>	<u>6</u>					<u>28823</u>	<u>27622</u>	PASS
6/23/05	1300	FW	5	5	2	3	O4051	210Po	25874	26203	23582	24784	
		BE			7	<u>6</u>					<u>28818</u>	<u>27610</u>	PASS
6/24/05	0945	FW	5	5	2	3	O4051	210Po	25858	26198	23578	24785	

Instrumer	nt:	Scaler/rate	neter		Model:	Ludlum :	2221	Serial Nr:	168577		Calibratio	n Date:	10/19/04
Detector:		Gas proport	ional		Model:	Ludlum	43-37B	Serial Nr:	190909		Calibratio	n Date:	10/19/05
				•									
			Backg	round	Acce	ptable			Source Reading		Acce	ptable	
		<u>Technician</u>	in C	PM	Range	(CPM)		1 1	in C	PM	Range	(CPM)	
Date	Time	Reviewer		_	<u>+20%</u>	<u>+3</u>	Source	Isotope		_	<u>+10%</u>	<u>+3σ</u>	
			X	Х	-20%	-3σ	ID Nr.		X	<u>x</u>	-10%	-3σ	Results
		BE			<u>1431</u>	1259					<u>116886</u>	<u>109937</u>	PASS
6/8/05	1515	FW	1192	1192	954	1125	2100	137Cs	106260	106260	95634	102582	
		BE			1323	1158					<u>117006</u>	<u>110309</u>	PASS
6/9/05	0800	FW	1103	1103	882	1048	2100	137Cs	109643	106369	95732	102428	
		BE			<u>1314</u>	<u>1179</u>					<u>117106</u>	<u>110558</u>	PASS
6/13/05	0600	FW	1019	1095	876	1012	2100	137Cs	109283	106460	95814	102362	
		BE			<u>1313</u>	<u>1174</u>					<u>117099</u>	<u>110488</u>	PASS
6/13/05	1300	FW	1077	1094	875	1013	2100	137Cs	106243	106453	95808	102418	
		BE			<u>1312</u>	<u>1169</u>					<u>117192</u>	<u>110712</u>	PASS
6/14/05	0700	FW	1080	1093	875	1018	2100	137Cs	109343	106538	95884	102364	
		<u>BE</u>			<u>1307</u>	<u>1174</u>					<u>117281</u>	<u>110911</u>	PASS
6/15/05	1320	FW	1027	1089	871	1004	2100	137Cs	109360	106619	95957	102327	
		<u>BE</u>			<u>1304</u>	<u>1172</u>					<u>117362</u>	<u>111077</u>	PASS
6/17/05	1145	FW	1049	1087	869	1001	2100	<u>137Cs</u>	109289	106693	96024	102309	
		<u>BE</u>			<u>1302</u>	<u>1170</u>					<u>117431</u>	<u>111189</u>	PASS
6/20/05	0630	FW	1060	1085	868	1000	2100	137Cs	109019	106756	96080	102322	
		BE			<u>1301</u>	<u>1167</u>					<u>117499</u>	<u>111299</u>	PASS
6/22/05	0630	FW	1064	1084	867	1000	2100	137Cs	109101	106818	96136	102336	
		BE			<u>1299</u>	<u>1165</u>					<u>117562</u>	<u>111391</u>	PASS
6/23/05	0830	FW	1059	1083	866	1000	2100	137Cs	109036	106874	96187	102358	
		<u>BE</u>			<u>1299</u>	<u>1163</u>					<u>117621</u>	<u>111473</u>	PASS
6/24/05	0630	FW	1089	1083	866	1003	2100	137Cs	109035	106928	96236	102384	
		BE			<u>1300</u>	<u>1162</u>					<u>117981</u>	<u>111558</u>	PASS
6/29/05	0630	FW	1099	1084	867	1005	2100	137Cs	109146	106983	96284	102407	

Instrument		Scaler/rate	meter	1	Model:	Ludlum 22	221	Serial Nr:	169217	ĺ	Calibratio	n Date:	03/22/05
Detector:		Gas propor	tional]	Model:	Ludlum 43	3-37A	Serial Nr:	190946		Calibratio	n Date:	03/22/06
		<u>Technician</u>	Backş in (ground CP M	Acc Rang	Acceptable Range (CPM)			Source in C	Reading CP M	Acce Range	ptable (CPM)	
Date	Time	Reviewer		_	<u>+50%</u>	<u>+3</u> σ	Source	Isotope		_	<u>+10%</u>	<u>+3σ</u>	Results
			X	X	-50%	-3σ	ID Nr.		Χ	X	-10%	-3σ	
		TW			<u>7</u>	<u>5</u>					<u>30107</u>	<u>28238</u>	PASS
<u>6/</u> 8/05	0900	FW	4	4	2	4	O4054	210Po	27370	27370	24633	26502	
		TW			<u>7</u>	<u>5</u>					<u>29136</u>	<u>28927</u>	PASS
6/9/05	1230	FW	4	4	2	4	O4054	210Po	26893	26487	23839	24047	
		TW			<u>7</u>	<u>5</u>					<u>30097</u>	<u>28233</u>	PASS
<u>6/10/05</u>	1000	FW	4	4	2	4	O4054	210Po	27547	27361	24625	26489	
		TW			<u>7</u>	<u>5</u>					<u>30093</u>	<u>28217</u>	PASS
6/13/05	0700	FW	4	4	2	4	O4054	<u>210Po</u>	27299	27357	24621	26497	
		TW			<u>6</u>	<u>5</u>					<u>30086</u>	<u>28202</u>	PASS
6/14/05	0715	FW	4	4	2	3	O4054	210Po	27180	27352	24617	26501	
		TW			<u>6</u>	<u>5</u>					<u>30078</u>	<u>28190</u>	PASS
6/15/05	0700	FW	4	4	2	2	O4054	210Po	27074	27344	24609	26497	
		<u>TW</u>			<u>7</u>	<u>5</u>					<u>30064</u>	<u>28188</u>	PASS
6/17/05	0630	FW	4	4	2	4	O4054	210Po	26886	27331	24598	26474	
		<u>TW</u>			<u>7</u>	<u>5</u>					<u>30055</u>	<u>28178</u>	PASS
6/21/05	1330	FW	4	4	2	4	O4054	210Po	27032	27323	24591	26468	
		TW			<u>7</u>	<u>5</u>					<u>30036</u>	<u>28193</u>	PASS
6/22/05	0630	FW	4	4	2	4	O4054	210Po	26660	27306	24575	26418	
		TW			<u>7</u>	<u>5</u>					<u>30021</u>	<u>28196</u>	PASS
6/23/05	1300	FW	4	4	2	4	O4054	210Po	26756	27291	24562	26387	
		TW			<u>7</u>	5					30012	<u>28185</u>	PASS
6/29/05	0700	FW	4	4	2	4	O4054	210Po	26992	27284	24556	26383	

Instrument: Scaler/rate mete			meter		Model:	Ludlum 22	21	Serial Nr:	168217]	Calibratio	n Date:	03/22/05
Detector:		Gas propor	tional		Model:	Ludlum 43	-37B	Serial Nr:	190946	1	Calibration Date:		03/22/06
				-									
			Back	ground	Acc	Acceptable			Source Reading		Acceptable		
		<u>Technician</u>	in C	CPM	Rang	Range (CPM)			in CPM		Range (CPM)		
Date	Time	Reviewer		_	<u>+20%</u>	<u>+3</u>	Source	Isotope		_	<u>+10%</u>	<u>+3</u> σ	
			X	X	-20%	-3σ	ID Nr.		X	X	-10%	-3σ	Results
		TW			<u>1329</u>	<u>1160</u>					<u>146084</u>	<u>138448</u>	PASS
6/8/05	1500	FW	1107	1107	886	1055	1838	137Cs	132804 ²	132804	119523	127160	
		<u>TW</u>			<u>1325</u>	<u>1161</u>					<u>151979</u>	<u>150671</u>	PASS
6/9/05	0900	FW	1073	1104	884	1048	1838	137Cs	138163	138163	124347	125655	
		<u>TW</u>			<u>1320</u>	<u>1166</u>					<u>151904</u>	<u>150431</u>	PASS
6/10/05	1000	FW	1053	1100	880	1034	1838	137Cs	136046	138095	124285	125758	
		<u>TW</u>			<u>1317</u>	1166					<u>151950</u>	<u>150288</u>	PASS
6/13/05	0700	FW	1063	1097	878	1028	1838	137Cs	139438	138137	124323	125985	
		<u>TW</u>			<u>1316</u>	<u>1163</u>					<u>151986</u>	<u>150139</u>	PASS
6/14/05	1115	FW	1089	1097	877	1030	1838	137Cs	139220	138169	124352	126200	
		TW			<u>1318</u>	<u>1163</u>					<u>152035</u>	<u>150019</u>	PASS
6/15/05	1300	FW	1115	1098	878	1033	1838	137Cs	139671	138214	124392	126408	
		TW			<u>1316</u>	<u>1161</u>					<u>152037</u>	<u>149846</u>	PASS
6/17/05	1100	FW	1082	1097	878	1033	1838	137Cs	138280	138215	124394	126585	
		TW			<u>1312</u>	<u>1166</u>					<u>152092</u>	<u>149754</u>	PASS
6/20/05	0630	FW	1034	1093	875	1020	1838	137Cs	140003	138265	124439	126776	
		TW			<u>1208</u>	<u>1170</u>					<u>152091</u>	<u>149593</u>	PASS
6/21/05	0630	FW	1031	1090	872	1009	1838	137Cs	138255	138265	124438	126936	
0.000					<u>1306</u>	<u>1168</u>					<u>152070</u>	<u>149424</u>	PASS
6/23/05	1530	FW	1063	1088	871	1009	1838	137Cs	137510	138245	124421	127006	
0,000,00-					<u>1346</u>	<u>1299</u>					<u>152077</u>	<u>149284</u>	PASS
6/29/05	1130	<u>FW</u>	1113	1121	897	944	1838	137Cs	138527	138252	124427	127221	
		TW			<u>1341</u>	<u>1287</u>					<u>152081</u>	<u>149145</u>	PASS
6/30/05	0800	FW	1046	1118	894	948	1838	137Cs	138527	138255	124430	127366	

² - Used different jig

Instrument: Scaler/rate meter]	Model:	Ludlum 22	21	Serial Nr:	190169		Calibratio	n Date:	10/19/04	
Detector:		Gas propor	tional]	Model:	Ludlum 43	-37A	Serial Nr:	190672		Calibratio	n Date:	10/19/05
		1 1	Back	ground	Acc	Acceptable			Source Reading		Acceptable		_
		<u>Technician</u>	in	CPM	Rang	e (CPM)			in C	PM	Range	(CPM)	
Date	Time	Reviewer		· -	<u>+50%</u>	<u>+30</u>	Source	Isotope		-	<u>+10%</u>	<u>+3σ</u>	Results
			X	X	-50%	-3σ	ID Nr.		X	X	-10%	-3σ	
		<u>JE</u>			<u>6</u>	<u>5</u>					<u>32603</u>	<u>30035</u>	PASS
6/8/05	1300	FW	4	4	2	3	O4052	210Po	26939	26939	26675	29243	
		<u>JE</u>			<u>6</u>	<u>5</u>					<u>31551</u>	<u>31194</u>	PASS
6/9/05	1300	<u>FW</u>	5	4	2	3	O4052	210Po	28128	28683	25185	26172	
		JE			<u>6</u>	<u>5</u>					<u>32497</u>	<u>30594</u>	PASS
6/10/05	0600	FW	5	4	2	3	04052	<u>210Po</u>	28066	29543	26588	28492	
		<u>JE</u>			<u>6</u>	<u>5</u>			2		<u>30904</u>	<u>30465</u>	PASS
6/13/05	0600	FW	5	4	2	33	O4052	<u>210Po</u>	28095 ²	28095	25285	25724	
ļ		<u>JE</u>			<u>6</u>	<u>5</u>					<u>30908</u>	<u>30430</u>	PASS
6/14/05	0600	FW	5	4	2	3	O4052	210Po	28212 ²	28095	25289	25767	
		JE			<u>7</u>	<u>7</u>					<u>30909</u>	<u>30393</u>	PASS
6/15/05	1345	FW	5	5	2	3	O4052	210Po	28130 ²	28099	25289	25806	
		<u>JE</u>			<u>7</u>	<u>6</u>					30918	30368	PASS
6/17/05	0600	FW	5	5	2	3	O4052	210Po	28374 ²	28108	25297	25847	
		JE			7	6					30921	30337	PASS
6/20/05	0600	FW	5	5	2	3	O4052	210Po	28199 ²	28110	25299	25884	
	-	JE		·····	7	6					30920	30303	PASS
6/22/05	0600	FW	5	5	2	3	O4052	210Po	28077 ²	28109	25298	25916	
		JE			7	6					30917	30269	PASS
6/23/05	1300	FW	5	5	2	3	O4052	210Po	27995 ²	28106	25296	25944	
		JE			7	6					30920	30242	PASS
6/24/05	0630	FW	5	5	2	<u>-</u> 3	O4052	210Po	28207 ²	28109	25298	25976	
- 5/2 1/00		<u>JE</u>				<u>6</u>	0,002			20100	30918	30211	PASS
6/29/05	0630	<u>s </u>	5	5	÷ 2	≚ ג	04052	210Po	28032 ²	28107	25296	26003	

² - Used different jig
Daily Portable Survey Instrument Quality Asurance Checks

.

Instrument: Scaler/rate meter			Model: Ludlum 2221		Serial Nr:	rial Nr: 190169			Calibration Date:				
Detector:		Gas propor	tional		Model:	Ludlum 43	-37B	Serial Nr:	190672)	Calibratio	n Date:	10/19/05
		<u> </u>				<u></u>						·····	
			Backg	round	Acc	eptable			Source	Reading	Ac	ceptable	
		<u>Technician</u>	in C	PM	Rang	e (CPM)	4		in C	CPM	Range (CPM)		4
Date	Time	Reviewer		-	<u>+20%</u>	<u>+3</u> <u></u>	Source	Isotope		-	<u>+10%</u>	<u>+3</u> <u></u>	÷.
			X	<u> </u>	-20%	-3σ	ID Nr.	<u> </u>	X	<u> </u>	-10%	-3σ	Results
		<u>JE</u>			<u>1594</u>	<u>1432</u>					<u>118330</u>	<u>109269</u>	PASS
6/8/05	1300	FW	1328 1	1328	1063	1224	2100	137Cs	107573	107573	96816	105876	
		JE			1266	<u>1123</u>					<u>118398</u>	109526	PASS
6/9/05	0700	FW	1055	1055	844	986	2100	137Cs	109494	107635	96871	105744]
		JE			1266	<u>1120</u>					118350	109557	PASS
6/13/05	1300	FW	1055	1055	844	990	2100	137Cs	106243	107591	96832	105262	
		JE			1263	<u>1118</u>					<u>118305</u>	109578	PASS
6/14/05	0830	FW	1028	1052	842	987	2100	137Cs	106237	107550	96795	105523	
		JE			1263	<u>1115</u>					<u>118259</u>	109602	PASS
6/14/05	1300	FW	1057	1053	842	<u>99</u> 0	2100	137Cs	106124	107508	96757	105414	
		<u>JE</u>			1270	<u>1139</u>					<u>118227</u>	109589	PASS
6/16/05	1300	FW	1130	1158	847	<u>97</u> 8	2100	137Cs	106492	107479	<u>9</u> 6731	105369	
		JE			1273	<u>1141</u>					<u>118190</u>	109590	PASS
6/17/05	1100	FW	1093	1061	848	980	2100	137Cs	106261	107445	96701	105301	
		<u>JE</u>			<u>1270</u>	<u>1139</u>	- 1989 T 1				<u>118173</u>	109559	PASS
6/20/05	1120	FW	1028	1059	847	978	2100	137Cs	106869	107430	96687	105301	
		JE			1269	<u>1136</u>					<u>118137</u>	109561	PASS
6/21/05	0630	FW	1045	1058	846	979	2100	<u>137Cs</u>	106176	107397	96657	105232	
		JE			1267	<u>1134</u>					<u>118092</u>	<u>109589</u>	PASS
6/21/05	1330	FW	1029	1056	845	978	2100	<u>137Cs</u>	105821	107356	96621	105124	
		<u>JE</u>			<u>1269</u>	<u>1135</u>					<u>118065</u>	<u>109573</u>	PASS
6/22/05	1240	FW	1082	1058	846	980	2100	<u>137Cs</u>	106359	107332	96598	105090	
		<u>JE</u>			<u>1265</u>	<u>1141</u>					<u>118039</u>	<u>109554</u>	PASS
6/23/05	1100	FW	982	1054	843	967	2100	137Cs	106388	107309	96578	105063	
1		<u>JE</u>			<u>1260</u>	<u>1145</u>					<u>118010</u>	<u>109545</u>	PASS
6/24/05	1030	FW	978	1050	840	955	2100	137Cs	106181	107282	96554	105019	
		<u>JE</u>			<u>1260</u>	<u>1146</u>					<u>117982</u>	<u>109534</u>	PASS
6/30/05	0630	FW	1087	1050	840	953	2100	137Cs	106179	107256	96530	104979	

1 - Made In a different location

Instrume	nt:	Scaler/rate	meter]	Model:	Ludlum 23	50	Serial Nr:	79037]	Calibratio	n Date:	06/14/05
Detector:		Fidler B2 N	lal]	Model:	Ludlum G5	5	Serial Nr:	JP245]	Calibratio	n Date:	06/14/05
		Technician	Back	ground CP M	Acceptable Range (CPM)				Source in C	Source Reading		ptable (CPM)	
Date	Time	Reviewer		_	+20%	<u>+3</u> <u></u>	Source	Isotope		_	<u>+10%</u>	<u>+3</u>	Results
			X	X	-20%	-3σ	ID Nr.		X	X	-10%	-3σ	
		<u>BB</u>			<u>4160</u>	3603					<u>273252</u>	<u>249539</u>	PASS
6/17/05	0610	FW	3467	3467	2774	3331	1838	137Cs	248441	248441	223570	247282	
		BB			4200	3813					273862	253827	PASS
6/20/05	0900	FW	3833	3500	2800	3188	1838	137Cs	254507	248965	224069	244103	
		BB			4218	3840					273984	253818	PASS
6/27/05	0645	FW	3675	3515	2812	3190	1838	137Cs	250305	249077	224169	244335	
		BB			4228	3845		· · · · · · · · · · · · · · · · · · ·			274066	253744	PASS
6/28/05	0900	FW	3626	3523	2819	3202	1838	137Cs	250046	249151	224236	244559	
		BB			4247	3881					274355	254501	PASS
7/7/05	0900	FW	3739	3539	2831	3196	1838	137Cs	252825	249414	224472	244326	
		BB			<u>4263</u>	<u>3910</u>					276052	267137	PASS
7/8/05	0630	FW	3746	3553	2842	3195	1838	137Cs	272561	250957	225861	234776	

ļ

ATTACHMENT 12

_

Verification Measurements - Gross Alpha

Sample Point	Bkg	Gross	Count time	Total Surface Activity ¹ in DPM		/100cm2	
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA	
JE06215-4D - D3	6	13	2	2	15	24	
JE06215-4D - E6	18	85	5	-3	14	39	
BB06215-4EI - C5	6	13	2	2	15	30	
BB06215-4EI - H2	6	14	2	3	15	30	
BE06215-16I - F10	18	87	5	-2	14	16	
BE06215-16I - L5	6	11	2	-2	14	22	
TW06215-17I - G2	6	13	2	2	15	24	
TW06215-17I - I8	10	53	5	2	11	30	
BE06215-18I - F12	6	12	2	0	14	30	
BE06215-18I - I6	5	10	2	0	13	28	
BB06095-21I - D11	18	95	5	3	14	33	
BB06095-21I - J5	6	13	2	2	15	30	
BB06215 - 22- E7	9	45	5	0	10	24	
BB06215 - 22- J9	6	10	2	-3	13	30	
TW06215-23 - C6	5	12	2	3	14	28	
TW06215-23 - H4	5	11	2	2	13	28	
TW06215-25I - B5	8	43	5	2	10	23	
TW06215-25I - E8	15	64	5	-8	12	30	
JE06215-25B - F5	5	14	2	7	15	28	
JE06215-25B - H6	6	12	2	0	14	30	
BB06215-271 - E9	4	8	2	0	12	25	
BB06215-27I - J1	4	9	2	2	12	25	
BE06215-29I - L4	6	13	2	2	15	30	
BE06215-29I - CG9	9	47	5	1	10	24	
BB06215-311 - E4	11	50	5	-3	11	26	
BB06215-311 - G5	5	14	2	7	15	28	
BE06215-SW1 - E8	5	12	2	3	14	28	
BE06215-SW1 - CJ4	8	44	5	3	10	23	
TW06215-SW2 - F3	5	10	2	0	13	28	
TW06215-SW2 - CC4	8	41	5	1	9	23	
JE06215-SW3 - D6	6	13	2	2	15	30	
JE06215-SW3 - E11	6	11	2	-2	14	30	
BE06215-SW4 - B5	18	92	5	1	14	33	
BE06215-SW4 - J3	7	30	5	-3	8	22	
JE06215-SW5 - G3	5	12	2	3	14	28	
JE06215-SW5 - K1	6	14	2	3	15	30	
TW06215-SW6 - E6	5	10	2	0	13	28	
TW06215-SW6 - K8	5	9	2	-2	13	28	
BB06215-SW7 - A8	6	13	2	2	15	30	
BB06215-SW718	6	11	2	-2	14	30	
BE06215-N1 - 14	18	92	5	1	14	33	
BE06215-N1 - K7	6	13	2	2	15	30	
$T_{0}=15-101 - 107$	4	9	2	2	12	25	
T\N/06215_N2 - 42	5	10	2	0	13	28	
100210-112 - 112	6	12	2	n n	14	30	
JE00213-INE1 - D7	8	12	2	ñ	14	30	
BB06215-NE2 - 07	8	12	2	2	15	30	
BB06215-NE2 - 07	6	10	2	ے _2	14	30	
BB06175 NE2 - JJ	15	11 77	2 5	-2	12	30	
DD00170-NE0 - MO	10 E	11	5	י ס	13	28	
DDU01/3-NE3 - F3	5	11	2	۷	10	20	

ð

Verification Measurements - Gross Alpha

э

.....

Sample Point	Bkg	Gross	Count time	Total Surface	Activity ¹ in DPM	/100cm2
	(CPM)	(counts)	(in min)	Gross Alpha	Uncertainty ²	MDA
BE06215-NE4 - C3	6	12	2	0	14	30
BE06215-NE4 - L8	4	9	2	2	12	25
JE06215-NE5 - B8	6	12	2	0	14	30
JE06215-NE5 - 18	5	11	2	2	13	28
BB06225-NE6 - C3	6	12	2	0	14	30
BB06225-NE6 - C5	5	10	2	0	13	28
BB06225-NE7 - C4	6	13	2	2	15	30
BB06225-NE7 - J1	6	12	2	0	14	30

Verification Measurements - Gross Beta

	Bkg	Gross	Count time	Total Surface Activity in DPM/100cm2				
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty	MDA		
JE06215-4D - D3	798	788	1	-5727	44706	75236		
JE06215-4D - E6	1113	1101	1	-6873	52820	88852		
BB06215-4EI - C5	780	780	1	0	44338	74383		
BB06215-4EI - H9	590	586	1	-2291	38496	64692		
BE06215-16I - F10	1087	1091	1	2291	52389	87809		
BE06215-16I - L5	834	839	1	2864	45916	76914		
TW06215-17I - G2	837	960	1	70447	47587	77052		
TW06215-17I - 18	1070	1084	1	8018	52100	87119		
BE06215-18I - D12	834	836	1	1145	45874	76914		
BE06215-18I - L8	834	821	1	-7446	45668	76914		
JE06215-21I - D11	1113	1131	1	10309	53177	88852		
JE06215-21I - J5	798	806	1	4582	44959	75236		
BB06215-22 - E7	1196	1200	1	2291	54948	92106		
BB06215-22 - F3	590	592	1	1145	38594	64692		
TW06215-23 - 11	905	923	1	10309	47995	80121		
TW06215-23 - F8	905	897	1	-4582	47653	80121		
TW06215-25I - E8	1008	989	1	-10882	50165	84558		
TW06215-25I - K7	667	673	1	3436	41093	68784		
JE06215-25B - F5	888	880	1	-4582	47201	79365		
JE06215-25B - A6	798	827	1	16609	45252	75236		
BB06215-27I - E9	681	693	1	6873	41611	69502		
BB06215-27I - K3	797	788	1	-5155	44692	75189		
BE06215-291 - 1 4	834	821	1	-7446	45668	76914		
BE06215-29L-CD7	1650	1623	1	-15464	64222	108184		
BB06215-31L- F12	797	799	1	1145	44846	75189		
BB06215-311 - H2	797	760	1	-21191	44295	75189		
BE06215-SW1 - J3	622	610	1	-6873	39402	66423		
BE06215-SW1 - N6	834	831	1	-1718	45806	76914		
TW06215-SW2 - F2	905	952	1	26919	48375	80121		
TW06215-SW2 - F7	905	926	1	12027	48035	80121		
JE06215-SW3 - G4	910	924	1	8018	48074	80342		
JE06215-SW3 - H9	798	867	1	39519	45806	75236		
BE06215-SW4 - H6	834	837	1	1718	45888	76914		
BE06215-SW4 - J3	901	876	1	-14318	47321	79944		
JE06215-SW5 - C6	602	614	1	6873	39145	65347		
JE06215-SW5 - E5	925	951	1	14891	48621	81002		
TW06215-SW6 - B3	905	906	1	573	47772	80121		
TW06215-SW6 - D8	905	892	1	-7446	47587	80121		
BB06215-SW7 - 17	600	594	1	-3436	38789	65238		
BB06215-SW7 - CD4	1650	1672	1	12600	64701	108184		
BE06215-N114	1087	1091	1	2291	52389	87809		
BE06215-N1 - K7	834	826	1	-4582	45737	76914		
TW06215-N2 - F4	988	997	1	5155	50014	83715		
TW06215-N2 - H6	905	957	1	29782	48440	80121		
IE06215-NE1 - C4	798	852	1	30928	45599	75236		
JE06215-NE1 - G5	1112	1126	1	13173	53236	88852		
BB06215-NE2 - G7	797	818	1	12027	45112	75180		
BB06215-NE2 - 18	707	787	1	-5727	44678	75189		
TW06215-NE3 - 45	1102	1171	1	39510	53510	88412		
	1102	4440		0040	50010	00412		

Verification Measurements - Gross Beta

 $\bar{\nu}$

7

	Bkg	Gross	Count time	Total Surf	M/100cm2	
Sample Point	(counts)	(counts)	(in min)	Gross Beta	Uncertainty	MDA
BE06215-NE4 - G1	901	878	1	-13173	47348	79944
BE06215-NE4 - L6	622	640	1	10309	39879	66423
JE06215-NE5 - E8	884	889	1	2864	47268	79186
JE06215-NE5 - 18	884	894	1	5727	47334	79186
BB06225-NE6 - E5	1196	1214	1	10309	55109	92106
BB06225-NE6 - F4	920	907	1	-7446	47982	80782
BB06225-NE7 - L7	797	801	1	2291	44875	75189
BB06225-NE7 - CD4	1650	1643	1	-4009	64418	108184

ATTACHMENT 13

Quality Assurance Review of Decommissioning Activities at FDA Laboratory

12709 Twinbrook Parkway, Rockville, Maryland

Prepared by:

July 21, 2005

J. Stewart Bland, CHP

Date

788 Sonne Drive, Annapolis, MD 21401 410-266-9174 (voice) 410-266-5811 (fax)

INTRODUCTION

The Food and Drug Administration (FDA) is a Nuclear Regulatory Commission (NRC) radioactive materials licensee. The FDA operated research and testing laboratories at a facility located at 12709 Twinbrook Parkway, Rockville MD. The FDA has now relocated research operations and administrative personnel to facilities elsewhere in the Washington, DC area. This facility is undergoing decommissioning, including decontamination and final status surveys for demonstrating that the facility may be released for unrestricted release.

The FDA is required to demonstrate that the site and property is acceptable for release in accordance with the requirements and conditions specified by the NRC. The FDA has retained the services of Clym Environmental Services, LLC (Clym) to assist in the decommissioning. All decommissioning-related activities (scoping, characterization and final status surveys; remediation; and waste disposal) have been conducted under the authority of FDA's NRC radioactive materials license.

This Quality Assurance review was conducted to provide independent verification that the procedures and methods used by Clym were appropriate for release of Twinbrook Parkway laboratory in accordance with generally acceptable decommissioning practices and final status surveys meeting MARSSIM guidelines. The review was performed at the request of Clym on June 21st and 22nd, 2005 by J. Stewart Bland. Mr. Bland holds current certification in the comprehensive practice of health physics by the American Board of Health Physics.

SCOPE

The scope of this review focuses on activities conducted late in the FSS process. There were four key criteria evaluated:

- 1. Appropriate application of the site characterization to the specified surveys.
- 2. Appropriate use of instruments/detectors/lab analysis, including calibrations, correlations to characterization radionuclides, detection capability, and use in the field.
- 3. Independent observation of survey method and documentation.
- 4. Review of records for completeness (limited).
- 5. Independent gamma spectral measurement of an excavated trench with identified elevated levels of radiation.

METHOD

The review included assessment of project documents, a tour of facility, observation of routine instrument operability checks and surveys, interviews with project personnel, and a limited review of survey records. No independent surveys were performed.

REFERENCES

- 1. Survey records for Survey Unit NE 6 and NE 7.
- 2. Operational Checks log (calibration certificates, semi-daily instrument operability checks).
- 3. Daily Portable Survey Instrument Quality Assurance Checks (6/8 thru 6/15, 2005).

OBSERVATIONS

- The scope and extent of surveys being performed should provide sufficient, quality data as needed for meeting FSS requirements. A conservative approach has been taken to establishing survey requirements. Each survey unit is subjected to a 100% alpha and beta scan and a pre-determined number of alpha and beta static one-minute measurements, with the required number being determined based on appropriate statistical testing. Smear samples are also collected at the measurement locations for loose surface contamination evaluation. Smears are analyzed for gross beta, gross alpha, and tritium.
- 2. Sample results are evaluated based on appropriate statistical testing considering the contaminant -- Wilcoxon Rank Sum test for those contaminants that also exist naturally in background; Sign test for contaminants not present in background; and Quantile test for determining indistinguishable from background. The approaches selected are consistent with MARSSIM guidance. For simplicity, since essentially all FSS surface measurements are showing no detectable levels above background, and the minimum detectable concentration (MDC) is a small fraction of the default DCGL; no additional statistical evaluations, such as WRS are required for demonstrating compliance. MARSSIM Table 8.2 provides the following criterion: A survey unit meets release criterion if the difference between the largest survey unit measurement and the smallest reference area measurement is less than the DCGL.
- 3. From discussions with the Project Manager, during the FSS process there were areas in two survey units where surface activity was detected. In survey unit 17I, section of wall surface that resided behind a laboratory benchtop was found to have gross alpha activity. The area was 0.25 m² in size. The detected activity ranged from 13 to 11 cpm above background (43 to 38 dpm/100 cm²). The second area resided in survey unit 18I. This area of floor surface (~2m²) was located to the right of a chemical fume hood. The detected activity ranged from 10 to 6 cpm above background (33 to 31 dpm/100 cm²), gross alpha. Although these areas of residual activity were less than the gross alpha DCGL_w (46 dpm/100 cm²), each was remediated in keeping with the ALARA goal. At the time of the audit, one area remained with detectable residual contamination, again below the gross alpha DCGL_w; however, remediation was anticipated, which should reduce the levels to no-detectable. All other areas appear to have been decontaminated to below detectable levels during past remediation activities.
- 4. A major hindrance in performing the FSS is the lack of an approved decommissioning plan. This obstacle has been overcome by the conservative application of generally acceptable survey methods and use of default DCGL values. One item that remains to be resolved is acceptable DCGL values for uranium in soil. At the time of this audit, discussions were still on-going between Clym and NRC Region 1 related to this subject. This issue requires resolution before final resolution of the potentially contaminated soil issue can be resolved.
- 5. QA verifications of measurements for FSS were being performed in all areas. This approach is a conservative application for ensuring quality data. From discussions with the technicians, no anomalies were being identified; all measurements were confirming no detectable levels of residual contamination.
- 6. Survey instruments were found to be in current calibration and were checked for operability in accordance with Reference 4. Survey technicians handled and operated survey instruments and completed survey documentation using established logs.
- 7. Appropriate consideration has been given to the selection of survey instruments considering the characteristics of for the contaminants. Gas flow proportional detectors are being used

for performing both beta and alpha scan and static measurement surveys. Additionally, smear samples are being evaluated for tritium contamination to provide added assurance. From conversations with the Project Manager, it was defined that detector efficiencies have been selected based on application of vendor data to the identified contaminants coupled with calibration data provided by the vendor. Appropriate consideration has been given to the beta and alpha energies for the contaminants, the application of surface efficiencies, and nuclide abundances. The determination of total efficiency is the product of the instrument efficiency and the surface efficiency. The instrument efficiency was used, which results in a lower assumed instrument efficiency than that based on the 2π emission rate. An instrument specific efficiency for Ni-63 had not been determined; however, the reliance on vendor data appears conservative and reasonable, especially considering its overall relative abundance of 0.1%.

8. The Project Manager and survey technicians were knowledgeable in decommissioning practices and project-specific procedures and conducted operations in a professional manner.

RECOMMENDATIONS

1. A resolution on the DCGL for uranium in soil is required.

ATTACHMENTS

1. Independent In-Field Gamma Spectral Analysis of Trench Soil

Independent In-Field Gamma Spectral Analysis of Trench Soil

An in-field gamma spectral analysis was performed of the trench soil located in room _____. The measurement was collected using the Chesapeake Nuclear Services' MARSS Responder system. This system incorporates a co-planar grid cadmium-zinc-telluride (CZT) detector coupled with a gamma spectroscopy system for performing in-field radionuclide identification, coupled with post-processing for more detailed evaluation. The CZT crystal was 15x15x7.5 mm with a nominal 3.2% to 4.2% energy resolution at full-width-half-maximum for 662 keV gammas. This resolution is a marked improvement over the typical Nal detector, allowing for better identification of individual gamma peaks and resulting radionuclide identification. However, there are limits, as discussed below, when radionuclides have competing gamma energies with similar energies, typically within a nominal 10%. A copy of the system specifications is attached.

The detector was position at a depth of approximately fifty (50) centimeters below grade, suspended in the middle of the deep end of the trench. The total acquisition time was 195 minutes. The measurements were performed in a qualitative manner for determining relative abundances for principal gamma emitting radionuclides. No attempt was made for correlating the measurements to source geometry for a quantitative determination. A copy of the resulting gamma spectral analysis and spectrum are attached.

An energy calibration for the detector was performed using a Eu-152 source (serial number 021600). Based on this measurement/energy calibration, the following relative energy efficiency was derived:

$$Efficiency = 0.0157 * e^{-0.0034x}$$

where: Efficiency= relative energy efficiency based on gamma energyx= gamma energy (keV).

Table 1 summarizes the results of the gamma spectral analysis with the identified radionuclides and net count rate. Using the above energy calibration and the decay characteristics in Table 2, the relative activity levels for the identified radionuclides are presented in Table 3. Relative abundances are presented in Table 4.

Examining the data, the following conclusions can be drawn:

- 1. Only naturally occurring radionuclides were identified.
- 2. No unidentified peaks, which could indicate an unevaluated or unexpected contaminant, were detected.
- 3. Considering relative abundances, it appears that the Th-232 decay series is present at a higher relative abundance compared with the uranium series. ¹

¹ Because of higher gamma energies and abundances, the Ac-228 identification provides the better estimate of the Th-232 decay series abundances and Bi-214 is the better indicator for the U-238 decay series. It should also be recognized that due to Rn-222 emanation in the uranium series (with its longer 3.8 day half-life compared with 55.6 second half-life for Rn-220 from the Th-232 series) it is likely that the measured Bi-214 and Pb-241 may not be representative of the absolute U-238 abundance.

4. Potassium 40 (K-40) represent the most abundant radionuclide, representing 90% of the total identified activity. This relative abundance is typical for normal soils, where K-40 is typically ten (10) to twenty (20) times that for U-238 and Th-232. (NCRP Report 94, Exposure of the Population in the United States and Canada from Natural Background Radiation, December 30, 1987)

Table 1											
Location	N	let Count	Rate for N	uclide Ga	mma Peal	(
Location	Bi-214	Pb-214	Ac-228	Pb-212	TI-208	K-40					
FDA Trench Soil	0.71	0.584	0.42	2.28	0.29	0.59					

	Table 2											
Nuclide Decay Data												
	Bi-214	Pb-214	Ac-228	Pb-212	TI-208	K-40						
Gamma Energy (keV)	609	295	968	239	511	1460						
Gamma Abun	0.461	0.192	0.23	0.431	0.225	0.107						

Table 3											
Location	Relative Activity Level										
Location	Bi-214	Pb-214	Ac-228	Pb-212	TI-208	K-40	Total				
FDA Trench Soil 7.78E+02 5.28E+02 3.13E+03 7.59E+02 4.67E+02 5.03E+04 5.59											

Table 4											
Location	Relative Abundances										
Location	Bi-214	Pb-214	Ac-228	Pb-212	TI-208	K-40	Total				
FDA Trench Soil 1.4% 0.9% 5.6% 1.4% 0.8% 90% 10											

MARSS Responder Specifications

Detector Unit

Physical

Size: 3.6 in x 4.9 in x 8 in (width x height x length) Weight: 4.5 lbs

Power (Selectable)

Battery: 10 high-capacity "AA" NiMH, option to operate with "AA" standard Alkaline batteries Optional External Power: 12V DC

Communication (Selectable)

Wired: 9-pin RS-232 serial port Wireless: via Bluetooth[™] - internally powered, FCC compliant, with external antenna

Visual (LED) and Audible Indicators

- Power On
- Charging
- External power supply
- Neutron warning/alarm
- Gamma warning/alarm
- Warning alarms indicated by blinking, alarm levels by solid on

Audible, switched speaker and earphone

Detectors

Gamma: Co-Planar Grid (CPG) Cadmium Zinc Telluride (CZT) Detector

Size: 15mm x 15mm x 7.5mm Resolution: 3.2-4.2% @ 662 keV

Neutron: Cylindrical ³He Neutron Detector

Gas Pressure: 15,200 (Torr) Cathode Material: Stainless Steel Maximum length: 4.41/111.9 (inch/mm)

Effective Length: 2.50/63.5 (inch/mm) Maximum Diameter: 0.50/12.7 (inch/mm) Effective Diameter: 0.45/11.4 (inch/mm) Operating Temperature: -40 to +100 (F) Effective Volume: 6.51 (cm³) Thermal Neutron Sensitivity: 15.5 (cps/nV)

Optional External Detector:

A MHV connector allows for a pulse-based detector (such as NaI) to be used in lieu of the internal detector.

Rugged PDA

Physical

Size: 16.5 cm x 9.5 cm x 4.5 cm (6.5 in x 3.75 in x 1.75 in) Weight: 0.49/17 (kg/oz)

Processor: 400 MHz Intel PXA255 Xscale CPU Memory: 64 MB high-speed SD-RAM Battery: Internal 3800 mAh NiMH Operating Temperature: -30°C to +60°C

URSA-II MCA: Peak-Based ID and Activity Report

Spectrum File: C:\Documents and Settings\J Stewart Bland\My Documents\Clym\Clym.usf Spectrum File saved 6/22/2005 3:06:28 PM Background File: (no background was subtracted) Sample Description: None Sample Quantity: None

URSA-II s/n 299990 Detector s/n xxxx, Generic Generic, 36 in. cable Operating Voltage = 1000V Coarse Gain = 125 Fine Gain = 0.887 Overall Gain = 110.840 Threshold = 60 mV Acquisition Time = 11697.2 seconds = 195 minutes

Peak Search Parameters FWHM = sqrt(centroid keV) • 2.35 Full peak width = FWHM • 1 Peak identified if library energy within ±4 %

There were 8 peaks found

Peak Data

Peak #1 Centroid energy = 90.59 keV Associated nuclide(s): UNIDENTIFIED Peak ranges from 79.57 keV to 103.8 keV, FWHM = 22.7077% Gross counts = 22594 counts = 115.894 cpm Compton counts = 21910.5 counts = 112.388 cpm Background counts = 0 cpm Net counts = 683.5 counts = 3.50597 cpm

Peak #2 Centroid energy = 237.2 keV Associated nuclide(s): Pb-212 Peak ranges from 219.1 keV to 255.3 keV, FWHM = % Gross counts = 9296 counts = 47.6832 cpm Compton counts = 8850.7 counts = 45.3991 cpm Background counts = 0 counts = 0 cpm Net counts = 445.3 counts = 2.28414 cpm

Peak #3 Centroid energy = 291.2 keV Associated nuclide(s): Pb-214² Peak ranges from 271.1 keV to 311.3 keV, FWHM = 13.7712% Gross counts = 4983 counts = 25.56 cpm Compton counts = 4869.2 counts = 24.9762cpm Background counts = 0 counts = 0 cpm Net counts = 113.8 counts = 0.583729 cpm Centroid energy = 344.6 keV Peak #4 Associated nuclide(s): Ac-228, Pb-214 Peak ranges from 323.1 keV to 366.1 keV, FWHM = 12.8663% Gross counts = 3294 counts = 16.8964 cpm Compton counts = 2946.7 counts = 15.1149 cpm Background counts = 0 counts = 0 cpm Net counts = 347.3 counts = 1.78145 cpm Centroid energy = 512.1 keV Peak #5 Associated nuclide(s): TI-208² Peak ranges from 485.5 keV to 538.7 keV, FWHM = 10.3846% Gross counts = 1463 counts = 7.50436 cpm Compton counts = 1406.5 counts = 7.21455cpm Background counts = 0 counts = 0 cpm Net counts = 56.5 counts = 0.289813 cpm Centroid energy = 599.7 keV Peak #6 Associated nuclide(s): Bi-214, TI-208 Peak ranges from 570.9 keV to 628.5 keV, FWHM = 9.59623% Gross counts = 1242 counts = 6.37076 cpm Compton counts = 934.5 counts = 4.79345 cpm Background counts = 0 counts = 0 cpm Net counts = 307.5 counts = 1.5773 cpm Peak #7 Centroid energy = 983.2 keV Associated nuclide(s): Ac-228² Peak ranges from 946.9 keV to 1020 keV,

FWHM = 22.5296%

Gross counts = 524 counts = 2.68782 cpm Compton counts = 442.2 counts = 2.26824 cpm Background counts = 0 counts = 0 cpm Net counts = 81.8 counts = 0.419588 cpm

Peak #8 Centroid energy = 1459 keV Associated nuclide(s): K-40 Peak ranges from 1414 keV to 1504 keV, FWHM = 11.7456% Gross counts = 296 counts = 1.51831 cpm Compton counts = 180.4 counts = 0.92535 cpm Background counts = 0 counts = 0 cpm Net counts = 115.6 counts = 0.592962 cpm

Identified Nuclides

The peak at 237.2 keV is probably Pb-212 The yield for Pb-212 at 237.2 keV is 43.1% Net peak counts = 445.3 counts = 2.28414 cpm

The peak at 344.6 keV is probably Ac-228 Confirmatory peak corresponding to 968 keV The yield for Ac-228 at 344.6 keV is 14.5702% Net peak counts = 347.3 counts = 1.78145 cpm

The peak at 344.6 keV is probably Pb-214 Confirmatory peak corresponding to 295.22 keV The yield for Pb-214 at 344.6 keV is 37.1% Net peak counts = 347.3 counts = 1.78145 cpm

The peak at 599.7 keV is probably Bi-214 The yield for Bi-214 at 599.7 keV is 46.09% Net peak counts = 307.5 counts = 1.5773 cpm

The peak at 599.7 keV is probably TI-208 Confirmatory peak corresponding to 510.72 keV The yield for TI-208 at 599.7 keV is 86% Net peak counts = 307.5 counts = 1.5773 cpm

The peak at 1459 keV is probably K-40 The yield for K-40 at 1459 keV is 10.7% Net peak counts = 115.6 counts = 0.592962 cpm

· · ·

ATTACHMENT 14

,

.

FORM 549	RM 540 Durmiek, Inc Commercial Processing 5. SHPP						SUPPORT	D. HUMBER			-				
UNIFORM LOW I		-	Clym EnWire 6104 Paguel	ranéstel Services Je Cl.		ł		4700	FORM 540 AND 540A	PAGE 1	OF 4 PAGE(8)	Liss this rember on a	el cocticuation		
	MANIFERT	-	Sulla J Emduciek A	1 2 3 3 4 4		ŀ			FORH 642 AND 5124		2 PAGE(8)	balles)			
					- <u>r</u>				ADDITIONAL IMPORT	ATION	None PAGE(3)	Ciym 05-01			
	ice ran gal		UBER FERN	ST NUMBER	SHPWENT	NUMBER		NATOR TYPE	Duratek, Inc Con	ne racky Marcial Proce	reina	CONTACT			
800-424-800				-Frei	1 cipit us di		(Renory) TELEPHON	E NUMBER	Bear Creek Operat	ions	a antaŭ	Shipping and Receiving			
			Bill Pera	ington			(Jackele Are	a Cade)	1560 Beer Creek R	oad		(Indude Ares Cade)			
Chemitric							301-694-60		CHR POLER, 16 STE	30		855-401-0222			
2 15 THIS AN"EXCLUSIONE USE" SHIP WENT?	& TOTAL NUMBER OF	T	Tri-State Mc	t – Nume and Address Nor Transit, Co.			EPALD. NU MODIASO	MBER M95		a coantră de Santairea	aožuli itario lecelji.	DAJE			
	ON THIS MASSFELT	34	PO Bas 113 Japin, MO	14632	Truck #:						TH. CHRYDROATICH				
1 NO				i fattr ik			06/06/2004		This is to entity that the here are in proper condition by the	No is to callly that this herein carries materials are preparly described, deater had, packaged, marked, and labeled and					
4. COBS EPA REGULATED YES	EPA MANFEST NURBER		DONTACT	CONTACT				lle Codel	This also certiles that the m tratsportation and cispessi	vicilais are classified to constitue in accord	packaged, marked, and	rel factorial and are in proper	Condian Br		
WINIPEST ACCOMPANY			Caus's Galdnit				100-248-18	18 (J. 1947)	state regulations.	\cap			TO O I' DI ACTUMENT		
if "Yes," playfe signifiet Number	- Automer carter sol	CONTROLOGING HASE	a nacellof	DAT	1./	AUTHORSED SIDENALS		TITLE		DATE, /					
			In Li Calo	nu?		66	<u>DS</u> .	n	p	HANSTE MAN	KEL/ALKO	6klas			
Including proper shipping mena, haza'd d	TRANSPORT	14. PHYBICAL AND	ъ		INDIVIS	SLIAI.	The second	TOTAL BUCKARE ACTANTY LAARCO							
and my additional information	TADIOASTIVE	INDEX	CHENICALFOR	M		RADION	ICUDES	KS	mCI	CLASE	(Use appropriate unite)	PACKAGE			
Radioactive restarial, excepted package-li	imited quantity of	MA	NA	Solid saits and pro	ateina M	3	5-35	- ·- · · · · · · · · · · · · · · · · ·	3.4136Fe02	9 2260F400	NA	89150.78	451 44		
material, 7, UN 2919 dry active	• •	1								VIELUULTUU		FT3			
Radioactive material excepted onchase-li	imited oughtity of	NA	NA	Solid sets and por	otelos C	-14	R3 	·	204885-04			444.400 0.0			
material, 7, UN 2910 dry active								•	3.0480E701	0.24002-01	NA '	114 LBS; 7.5 FT3	Bloque1#1		
Parlianching material arrected mackage-li	invited appartity of	NA	- 100	Solid ealts and no	ofaina IC	34	H1								
material, 7. UN 2918 dry active	active of the second second		1	Source serve mus but			~		7.7700E+00	2.10002-01	NA	89 LBS; 7.5	Bioqua (#2		
		NA	+	Rolla - Marcala									1		
material 7 [IN 2910 day active.	nunco dinaciti ei	NON.	NA		oloine in		-125		9.6940E+01	2.8200E+00	NA	133 LBS; 7.5	Ellequal #3		
												F13	i i		
Redisective material, excepted package-is	inited quantity of	NA	NA NA	Solid sales and pro	ot eins H	2	1	1	4.4400E+00	1.2000E-01	NA	131 LB8; 7.6	Blogual #4		
							1				•	FT\$	ł		
Radioactive meterial, excepted package-	inited quantity of	NA.	NA	Solid aaks and pri	oleine C	-{4			9.2500E+00	2.5000E-01	NA	49 LB\$; 3	Bicquai 9 5		
material, 7, UN 2910 dry schive bio											i i	FT3			
FOR GONORANEE USE DALLY			7	AX GENE		RCATION S	TATEMENT				4		<u></u>		
TENKEDIEE "LICENSE FOR DELIVERY" NO			•	 	fadouthe 1	aladais Co	alifentian in h	ilitadas mente da Pro-	milet firs that this alter -						
				1 ~	Wetle minage	mani prega	and which has	ptou shinowed på munda upper pro	win, ng. san atra files o 'Cu Nixiou: Regulatory Com	I JEW (UVE) FUCKARELYA Namion of Buy Agricust	anter and the second states of the second	ten properted in soundaries tenter and with the commuter	with radioscity:		
SOUTH CAROLINA TRANSPORT PERMIT NO				1	Material Vessi	phance Calis	da.		÷ • • • • •						
				6)	Hazardow Me	ulurialu. Ga	naaris, parepi	y cardina Unit dula	metanial door contacte a he	za dom wiste as de	Cood in 40CFR 28s.				
US ECOLOGY GENERATOR NO	·			o +	Dala Genera	nor hereby i	ipments so	d warranta Unitadio	iala est torik in Puls (UKRPORU	ALONY LEVEL RADIO	DAGTAR WASTE MAY	VIFEST) the law and chines	A in all respects and		
					In accordance	with all spo	arefor gover	Minerfai leve, seles	, segulations and Damfier, free	State of Tennuese	Antice Stee Meterial U				
					DILL	TENN	<u>/ N(9</u> 70		<i>A</i>	7		660	. ک		
FURN 515(16-36)												(Date			

.

FORM 648A								Duratek,	ina Commerc	lai Processing	8. MANFEST MINBER (Use this number as a Clyms 02-05	f continuation (refree)
	WASTI SHIPPING PAP	E MANIPES									PAGE 2 OF	4 P%GE(8)
1. LUS. DEFARYMENT OF TRANSFORTATION DESCRIPTION Undusing prepar strateging name, hagand dama, UNID number, undusing prepar strateging name (hagand loom state)	12. DOT LABEL "RADIOAGTIVE"	TRANSPORT	14. PHYBICAL AND CHEWICAL FORM		INDN RAD70N	a Noual Noudes		10 Yotal Packa Milg	GE ACTIVITY mCl	17. LSA%CO CLASS	18. TOTAL WEIGHT CON VOLLIME (Line appropriate units)	N. IDENTIFICATION SUMBER OF PACKAGE
Radioscelve material, excepted package limited quantity of	NA	NA	Selid salts & proteins	11278				8,09126-03	1.3780E-04	NA	\$67 LBS; 7.4 FT3	FDA/CDRH#1
matcial, 7, UN 2910 coll Radioactive material, excepted package-limited quantity of	NA	NA	Bolid azita 2 proteine	U-230		1		5.0912E-D3	1.37605-04	NA	664 LBS; 7.5 FT3	FDA/C DRH #2
material, 7, UN 2919 soli Radioantive material, excepted package-limited quantity of	NA	NA	Solid salts & proteins	U.270				6.0912E-03	1.37682-04	NA	846 LBS; 7.6 F13	FDAJCDRH #3
cuatesini, 7, UN 2910 soil Radioactive material, excepted package-limited questity of	NA	NA	Solid salts & proteins	U-238				\$.4912E-43	1.17695-04	NA	405 L98; 7.8 FT3	FDAJCORH SA
renterial, 7, UN 2910 solidicities Realizative material, excepted package-limited quantity of	NA	NA	Solid saits & proteins	U-230				5.0912E-03	1.3760E-64	NA	58 LBS; 7,5 FT3	FDA/CORH#
material, 7, UN 2918 dry active Radioactive material, excepted package-limited quantity of	NA	NA	Solid salts & proteins	U-235				5.0912E-03	1.3789E-04	NA.	322 L98; 4.1 FT3	FDA/CDRH #
material, 7, UN 2910 soil Radiosceive material, excepted package-limited quantity of	NA	NA	Solid saits & proteina	C-14	H-J	+		1.8482E+02	5.2600E+00	NA	10 LBS; 1.68 FT3	Howard Univ #\$
material, 7. UN 2910 day active Redisective natorial, excepted package-limited quantity of	NA	NA	Solid selts and proteins	C-14	Cr-51	Ha	8-35	1.4800E-D1	4.0000E-03	NA	88 LBS; 7.5 FT3	Medimmune GB -1
motorial, 7, UN 2910 dry active Redioactive material, excepted package limited quantity of	NA.	NA	Solid sails and proteins	G-14	Crofi	HJ	8-39	1.4600E-01	4.0000E-03	NA	74 LBS; 7.6 FT3	Medicarause GB- 2
material, 7, UN 2910 day active Radioactive material, excepted package-limited quantity of	NA	NA	Solid salts and proteins	C-14	G-51	HS	8-36	1.4000E-01	4.00000E-03	NA	89 LBS; 7.8 FY3	Nedimmuni GB- 3
nantecial, 7, UN 2910 day active Redisactive material, excepted package-limited quantity of	NA		Solid salts and proteine		Ci41	Ha	8-35	1.48602-01	4.0000E-03	NA	127 LBS; 7.8 FT3	Ma Alimmuni GB- 4
material, 7, UN 2910 dry active Rudioactive anaterial, excepted package-limited quantity of	NA	NA	Solid sells and proteins	C-14	Cr-51	- 14-3	N-3	1.48082-41	4.9000E-03	NA	88 LBS; 7.6 F13	Nediracuum GB- 5
unsterial, 7, UN 2910 day active Radioactive conterial, excepted package-limited quantity of	NA .	NA	Belid asks and proteins	C/H	Qr.61	Ra	1.15	1.4800E-Dt	4.0000E-03	NA	111 LB8; 7.5 FY3	Mediatanun GB-8

.

FORM SALA (10-44)

PORN 448A	UNIFORM LOW	LEVEL RA	DIOACTIVE					Duratek,	Inc Comunen	alal Processing	s. mazurest number og (Use this number og s Cigan 08-01	t ali castrusion pagen
	WAST SHIPPING PAI	E MANIFE	st Ilationj								PAGE 3 OF	4 PAGE(S)
17. U.E. DEPARTMENT OF TRANSPORTATION DESCRIPTION (Instanting proper oblighneters, based cless, UNIO nember, and any eddowni indecestion)	12. DOT LANEL "RADIOACTIVE"	tiranisport Sinder	M. Phyeical and Chenizal form		IND RADIO	SK NVIDUAL DNJCLIDE8	1	TOTAL PACK	I. IGE ACTIVITY INCI	IT. LEAGGO CLABB	10. YOUAL WEIGHT QR VOLUME (Use appropriate lattis)	HR. IDENTIFICATIO NUMER OF PACKAGE
Redicactive material, uncopied package-limited quantity of material, 7, UN 2916 dry active	NA	NA	Solid salts and proteins	C-14	Cr-51	H-3	8-35	1.4800E-01	4.0000E-83	NA	100 LB\$; 7.5 FTJ	Medinemune GB- 7
Radiozotive material, excepted package-binded quantity of material, 7, UM 2910 dry solive	NA	NA	Solid salis and proteins	C-14	Gr.81	H.J	8-36	1.4880E-01	4.0000E-03	NA	89 LBB; 7.6 FY2	Medimmuna GB-\$
Radioactive material, excepted package-finited quantity of material, 7, UN 2919 chy active	NA .	NA	Solid sells and projeins	C-16	Q7- 1 1	C-H	8-31	1,4808E-01	4.0000E-03	NA	68 LBS; 7.4 FT3	Medimmune GS- 9
Radioactive material, excepted package-binaited quantity of material, 7, UM 2910 day active	NA	NA	Solid salts and proteins	1-126	P-32			1.0602E+02	2.6656E+00	NA	51 L88; 4.1 FT3	Medimission red.#1
Rudiwactive material, excepted package-limited quantity of manual, 7, UN 2910 dry active	NA	NA	Solid sails and proteins	C-14	ha			1.7760E+00	4.8000E-62	NA	88 L85; 7.5 FTJ	Shire E1
Radioactive chatchini, excepted package-licalied quantity of material, 7, UN 2910 aqueous	NA	NA	Liquid salts and proteins	0-14	HJ			6.5130E+60	1,49002-01	NA	166 LES; 0.76 FT3	Shire #1 BAL
Radiesctive material, excepted suckage-Knoked quantity of material, 7, UN 2910 dry active	NA	NA	Solid sails and proteins	C-14	- 142			1.3790E+00	4.8000E-02	NA	75 LBS; 7,5 FTS	Shire #2
Radioactive castonial, excepted package-limited quantity of material, 7, UN 2910 dry solive	NA	NA	Solid sails and proteins	C-14	CH -			1.7768E+ 4 0	4.8900E-02	NA.	79 LBS; 7.5 FT3	Shire #3
Radioactive material, excepted parkage-limited quantity of unterial, 7, UN 2918 dry active	NA	NA	Solid salts and proteins	C-14	H-3			1.7760E+00	4.5000E-02	NA	12 LBS; 7 <u>,</u> 6 FT2	Şhire #4
Radioactive meterial, eccupted package-limited quantity of meterial, 7, UN 2910 key active	NA	AK.	Solid saits and proteine	C-14	H3			1.7760E+00	4.80105-02	NA	74 LB5; 7.6 PT\$	Stilra #6
Rudioactive staterial, succeptual paokage-lisaited quantity of material, 7, UN 2918 day active	NA	NA	Solid sails and protoins	C-44	H)			2.22905-41	6.00662-83	NA	73 (186; 7.4 FT3	Shire #4
Radioscieve cantaial, excepted package-thated quantity of material, 7, UN 2910 day sciles	NA	NA	Solid arits and proteins	C-14	H-3			2.2208E-81	8.0000E-03	NA	81 L88; 7,3 FT3	Shire #7
Redicaceive material, excepted package-limited quantity of material 7 TIN 2918 dry active	NA	NA	Solid salts and proteins	1-128				3.7000E-02	1.0000E-03	NA	84 LBS; 7.5 FT3	Shire #8

FORM SARATIN

•

FORM 646A	UNIFORM LOW-I WASTE SHIPPING PAP	EVEL RAI MANIFES	DIDACTIVE IT MATION)			Duratsk,	Inc Commen	cial Processing	8. MANIFERT NUMBER (Lite the number of a Chara 68-01 Page 4 of	9 maalinuu siim puguu j 4 PACE(B)
1. U.S. DEPARTMERT OF TRANSPORTATION DEFORTMEN (Including proper shipping name, hered class, LLY ID number, and any additional intern story)	12 POT LASEL "RADIOACTIVE"	TIL TRANSPORT INDEX	14. PHYBICALAND CHEMICAL FORM	L RAI	15. Noividual Xonucudes	TOTAL PACK MBQ	k VGE ACTIVITY mCl	USANSDO CLASS	TEL TOTAL WEIGHT OR VOLUME (Miss appropriate weis)	19. IDENTIFICATION NUMBER OF PACK43E
Radioactive material, excepted package-liabled quantity of material, 7, UN 2910 dry active	NA	NA	Solid natural thorium	Th-212		3.7000E-01	1.0000E-02	NA	117 L88; 7.6 FTJ	Tsledyne #1
Residencial instantial, encounted package-limited quantity of material, 7, UN 2010 dry active	NA	NA	Solid natural thorium	18-222		3.7010E-01	1.0 000E-02	NÁ	79 LB8; 7.6 FT3	Tsiedyne #2
			1							
· ·										
		1								
			<u>+</u>					-		
	- -	+	1							
FORU SKANIN M						l				

.

PAGE

05

CLYM ENV SVCS

3: 37 3016946797

ORIU 441		Duradek is	e . Common	cial Papenania					1. Má i	WEST TOTALS						-		
					NULLE	R OF RSM RFT	MALTE	NET WATT	T	SPEC	IAL NUCLE	AR MATERIA	L.(g:s::o]			2. MANIFEST NU	INBER m Of al	
		B 4 B 10 4	oth F		CHEPO	SAL VU	UNVE	WEKSHIT	U-234	Ű.	285	•	v		Tolul		m (18-181)	
UNIFO	DRM LOW-LEVEL	RADIOA	CIVE			c)	i.1451	0 2248.457	5						L IB	3. PAGE 1	OF B P	'AGE(8]
	WASTE MAN	IFEST			1 3	115	31.1300	b 4557,000	0		.	1 "	17		NP	4. SHIPPER NAM	4E	
1	CONTAINER AND WASTE	DESCRIPTIC	N N						ACTINITY						SOURCE	Giym Envizona	ientel Service	15
	D					ALL NUC	UDEG	TRITIUM	G-14	Je	-0 R	H H	28		that			
Additional Nuclear	Kelännen Commann fik				pent	6.0797	E+92	3.4050E+02	6.4501E+0)\$ N	P	N	IP	(KQ)	NA	SHIPMENT ID NU	JMBER	
	Disposal el Radi	DECIME VIENE			13m	2.1834	E+01	8.7460E+00	1.4730E+0	1 OC	IP III	N	iP	(ibs)	NA	T-MD005-L05		
	DISPOSA	CONTAKER DE	CRIPTION							WASTE DE	CRIPTICK	FOR EACH W	ASIE TYPE	N CON1	AINER			TEL MAS
Contange Kontification Runger Generator ID Kunger	CONTAINER DESCRIPTION Ses Nois 1) PROCESS RIDULISSTED Ider Nois 1A) SURVLUDISPOSITION	r. VOLUNE	VWISTE AND DONTAINER WEIGHT	ANDERFACE ANDERFACE LEVEL LEVEL (collectual jurvembal	SUR CONTA (M83) (()m8)	IFACE MHATION IOB on(2) HEDDIN(2)	11. D	WASTE WASTE ISSCRIPTOR	AL DESCRIPTION 12. APPROXIMATE WHATE VOLUMEN	13, Soliefication Staklization Media	OR CHENI I CHENA	Nemical Dei ICAL PORMI TING AGENT	INTERNIT INTERNIT CHELATING AGENT	15.	RADIOLOG INDIVIOUAL RADI CONTAINER TOT AND	ICAL DEPERIPTION CHACLEDES AND ACTIVIT FAL; GR CONTAINER TOT, RACONLOUDE PERCEN	Y MBHI AND IL ACTIVITY	AS-Clus Risti AU-Clus Uncist B-Clus
	(See Note 24)		H		ALPHA	BETA GANNA	1 '		(m3) (FT3)	(Eack coll)			IF > 11 156	RA	TONUCI DES	M3a		- C-Cini
	a	6,2124	37.1046	<1.00005-03	783408-08	JA740E-0	И		0.3124	160 169	səlis i pietai	LM LANA	M	H-3 8-31		1.4409E+02 1.9647E+02	3.9189E+08	4
		7,0000	8098.58	<0.0000E-01 <	7.200CE+80	<2.280ME+0			7,8000					Suite Total	<u>אא</u>	3 <u>4136E+83</u> 3,4136E+03	1.2210E+0	į
Noges) #1/Bioges	4	8.2124	53.6231	<5.0050E-03 <	3,6740€-06	<3.8740E-0	22		9.2124	100 100	salts i protei	end NoRTA	MA	C-14 H-1		1.1388E+01 1.1100E+01	8.2400E-01 3,0000E-01	AU
		7.3090	1 10 000	< 8.99935-0 1 <	2.20008+00	<2.3000E+0			7.9000	1			1	Subh Totel	stal	3.8488E+01 3.8488E+01	8.2400E-01	
Boquit Willioquei	•	6.2624	199C, QA	<1.80805-03	3.8743640	<3A7405-0	- 30		0.2664	160	ante: proisi	und InsiNA	RA	C-14 H-3		7.4000E+D	2.4000E-01	AU AU
		7,8304	82.0034	<6.08005-81 <	2.20005+00	<2.200CE+0	<u>ا</u>		7,3000					Totel		7.7700E+0	2.1000E-01	
Singent #34Kingani	1	6.2124	68.32 74	<6.0000E-83	-3,5740E-M	<3.87406-0	- 31		HEFE0	100		and Ins MA	NA	H-3 -128 Stable		8.1400E+00 8.8000E+01 9.68405401	2.2000E-01	1 AU 5 5
		7.5000	1 33 8009	<3.0000E411 <	2.29096+86	0+30005.Q	1		7.3080					Total		9.6940E+0	2.8201E+80	5
Biogral #48ioqual		4.2134	n.ax	4.K6(5-00	·). 1743E-4 1	<3.8740E-0	7 		6.2134	100 100	provin	and ine/IA	NM.	H-3 Suble	olal	4.4480E+0	1.21002-41 1.21002-41	AU I
		7.5600	131.0050	<6.0008E-01	2.2000E+00	<2.2000E+0	•		7.8058							4.4689240	1.20008-01	1
Clogent Fiddlagers	1	6.853	22.5399	<5,0005-03	3 6748E-8	<3.0740E-0			1.0130		prein	end InsiMA	- NA	C-14 SU\$1		9.2600E+0 8.2500E+0	2.5100E-01	i AU
		3,600	(4,000	-6.30005-01	22020810	<1.300EH	п		3,6002							T.ZOUCETR	2,80005-01	1
Nois 1: Continuer Dass wards negativing officere packs the normalized can be when the continue of the 3. Markin Tanc of Crain 3. Markin Tanc of Crain 3. Markin Tanc of Crain 3. Markin Tanc of Crain 3. Markin Tanc of Crain 5. Markin Tank or Line 7. Postediations Tank of Line 7. Postediations Tank of Line 8. Pitanglass Tank of Line	Apilan Codes. For continuent in a pyroved stational over- de militals Stawed by "Cot." 8. Destionation 70. Gao Cylvier 91. Be, Libectaged Houts 71. Be, Libectaged Houts 72. Uncodenad Components 72. Uncodenad Components 73. John Indents Intern 8. John Indents Intern 8. John Indents Intern 8. John Indents Intern 8.	tine 1A: Precision C On SR Sin Di Di Di Di Di Di G Gi A Li U Li O Di O Di	i Requested operation operation of incidentiation con- tens operation operation operation operation operation operation operation operation operation	NG7E 7: 1 78. Chax 21. jrchan 22. Gao 24. Ol 24. Aquio 25. Filur 1 27. Michi 28. GPA o Hatu	Yan la Dana Jali Jaha Ash Liquid Andia Luical Filse a State Mitus	Alptor Caden. (28. Demofron 29. Calles Ion- 21. Ariten Ion- 22. Rised Bed 33. Contentiza 24. Cogarite Lin 35. Organistic 35. Organistic 35. Australia 37. Faint or Fi	Choose up Rubbie exchange Ji Ibn-acchan Sed Equipm pild (2006) or Lahwari rectDevice ting	ills Unite Wildch pred 38. Evapo India Do India 39. Camp ge Media 40. Nance ant 41. Anima talj 42. Biolog 43. Acitya 49. Ofrac or a	naminala by valation refor Betterna Bioto cardialas ecilia i rant inge oblia i rant inge oblia i rant i cortana i co	NOTE24	Buržavili in Banwaći in Envicouse Rizhland, i Process or Other	pastion stip mote Asnages and Return	nork		Notes: Set be there with disposed at must be to must be to for the set solid Head SOL Certain 61. Centain 61. Centain 62. Statute 62. Vest C	Kification nead Stabilizatio the productor by volum to recolorized stability requi toward by "42" sold the mi to Manifiked in Nam 53. C 06 1 94. Vinpi Ester 5 90. Offact. Desc Unition 10. Mans Sequi Notitio 100. Mans Sequi	n Hodfa Gades, (is. For mode mode ismosto, vio num dia tendor and bi dia tendor and bi dia 300-3(DNE Bi) transf transf (ge ved	Choose up othig nected factor sack have BOMERED

ŀ

.

														ID CD	
FORM 641A			IJ	NFORM	LOW-I	EVEL I	RADIOACTIVE			Ducatsk, is	G. · Comm	nercial Processing		68.01	
			-		WASTE	MANIF	EST						GEPHI	PG-V1	
													3. PAGE 2 0	F 🕴 P/	AGE(8)
			CO	NIAMERA	ED WAS IE	DESCRIPT		1			CONTANTS				10.114.1
	DISPOSAL	CONSTACTION DES	CRIPTION	T			PHYEIC	AL DESCRIPTION	MUNCHER STOR FOR	14. CHENICAL DE	CRPTION	15. RADIOLO	OICAL DEBORIPTION		CLASSIFI
CONTAINER IDEMISFICATION NUMBER GENERATOR D	L COMPANIEL DESCRIPTION UE12 KND 14 PROCESS RECVESTED (Bus KnD 14) BURNLEUBFORITION	7. Volume	WASTE AND CONTAINER WBR247	BURFACE RADIATION LEVEL (CONNECT	BURF CONTAM (MBQ/U (ADQ/U	ACE LYATION 10 cr12j 10 cr2j	L1. WASTE DEBCRIPTOR	12 AFPROXIMATE WARTE VOLUME(6) UF DOWTAINER	15 SOLIDIFICATION OR BTABLIZATION MEDIA	CHEMICAL FORM CHELATING AGENT	WEIGHT % CHELATING AGENT	INDIVIDUAL RADIO CONTAINSE TOT/ AND S	DESCRIPTION OF CONTAINER TOTAL	(L'Baj AND ACTIVILY	AB-Class Biable AU-Class Unstable B-Class B
	(fine Mete 24)				ALPHA	BETA- GALINA	100110017	(मम) हायु	jižet Nois 7j		JF > 0.1%	RADICALICUSES	Hilling	riči	
NEWSERS AMONG	4	9412.0	210.0550	410025-00	<3.8340E-44	<1.07408-07	8-40L10,22	8.3134	189	esite & proizintilit		U-236 Subtotal	5.0912E-03 E.0912E-03	1.3760E-04 1.3760E-04	~
		7.5808	607.0934	46.8000E-81	<2.57605+60	<		7.600				Total	5.01122-03	1.3/591:-04	
FINEDIN SUCCER	4	4.2134	286,5494	<1.0030E-03	<].\$749E-88	<3,6743E-41	\$8-60U0,32	0.2124	110	and a presidentity	4 A	U-230 Sebtotal	5.0112E-03 5.0112E-03 5.0112E-03	1.3760E-04 1.3760E-04 1.3760E-04	
		2.0000	646,0000	4.000 5-01	<1.30/00:+00	<2.2008E+04		7.9800		antis & pastoles life		1010	6 0819E 61	1 STEDE M	
NEACCHINE (SICER)	4	8,3134	202.3979	4.000540	<1.67405-08	<1.5140E41	Sev.S.A	1212M	380		1	Subiolal Total	6.0112E-03 6.0112E-03	1.3760E-04	
		7.800	563,0000	<5.00005-01	<7.3000E+00	<2.2980E+81	A.40.5.22	1.4009		calls & proteinsité		11-238	5.0012E-03	1.3760E-04	AU
PLACER FACARD	4	4,2134	184.1665	_ <1.0001-05	<3.8768E.0L	<3.57408-47	-	0.7124	100			Subiolal Total	8.0912E-43 8.0912E-03	1.3760E-04 1.3700E-04	
		1.5000	406,8000	<5.0000E-01	<2.20308+00	<2.3000E+0		7.5000	100	anite & sceletors N	1 NA	11.238	5 AD125-83	1.3700E-04	AU.
FDAUCOIDI GUICDAN		0.2124	16.304	<\$.9009E-03	<3.87436-09	<3,A1406-0	-	6,2124	109			Subtotal Total	5.0912E-83	1.3700E-84	
		7.900	55,0808	<6.0005-01	<2.3000E+80	<2.298CE+8		7.6800		and a sustained				4 33405 44	-
PEACONH FECORI	4	8.1 781	146.0168	~6.00308-03	<2.87408-03	<7.65496-9	96-80LB,22	B.1 164	100	EST & HOUNDARY		U-238 Subiolei	\$.4912E-03 \$.4912E-03 \$.1912E-03	1.3760E-M	—
1		4.300	312,000	<5.0000E-01	<2.28092+80	<	1	6603.9							
Samuel Unie. Plainword	3		6 4.59H	LICICE-O	<1.174E.01	<3.81466-8	r "	8,4475	100	talls a biddening] _	H-3	1.85000+02	5.0000E+0	
		1.000	-	6.000E-0	Q.3000E41	<2.35REA	•	1.1000			ļ	Total	1.94625+03	5.2000E+0	
Madig mana M.	·	6313	-	-549395-53	<1.6740E-0	-1.07406-1	g 7	0.2634	1000 C	profuterent.		Criel	3.7000E-02	1.00012-01	1 ~
		7.500	408.66 F	-	<2.3808E+0	a <2.3000E#	н	7.6000				8-36	3.7000E-02	1.000E.01	[
							_					Totel	1.4946-91 1.4946-91	4.0000E-01	
			1		ł										

•

07

PERMITATION

igne (gilling) g sta

CLYM ENV SVCS

3016946797

88/22/2005 13:37

. . . .

ORIN 541A			Ū	NIFORM	LOW-	LEVEL F	RADIOACTIVE			Deretok, i	te Comu	nercial Processing	2. MANIFEST NU	MBER	
					WAST	E MANIF	EST								
			CC	NTAINER A	ND WABTE	DESCRIPT	ION (CONTINUATION	D					J. PAGE 3 (DF 6 P.	AGE(8
	EXEPOSAL	CONTAINER DE			14		BLYDI	WASTE	DESCRIPTION FOR	EACH WARTE TYPE I	N CONTAINE				LAS .
CONTARGER IDENTIFICATION RUNNER/ GENERATOR ID	E CONTAINER DESCRIPTION (Res Nots 1) PROCESS REQUESTED (See Nots 1A)	VOLUNE	WHATE AND CONTAINER NE-CHIT	BURFACE RADIATION LEVEL JERREA	CCNTAN CCNTAN (NBq/1)	FACE INATION ID (11/2) 000:12)	11 WAND TE DESCRIPTICA	12 APPRONMASE WARTE VOLUME(B) IN	13. Solenfication or Stainization Liedna	CHEMICAL FORM	VIEICIHT 55 CHELATING	INDA/DUAL RADIO DONTA NER TOTA	NUCLIDES AND ACTIVITY	LACTIVITY	AU-CI AU-CI AU-CI UNI
KUNNER	jibeo Hole 2Aj		(14) (34)	(anovaria)	ALPHA	OETA- BANMA	(Ben Kata Z)	CONTAINER (m)	(Ban Mate 3)		MGENI IF > 0.1%				- B-C4
ulinamen 86- Galihoiskutg		0.2131	33.00	<5.0000E-83	<147406-01	<1.1742E47	50	6.21.24	104 100	calls and protected	AB	C-14 Cr-61	3.700E-02 3.7005-02	1.0000E-03	
·		7.6880	74.8380	< 6.00006.0 1	<2.2100E+00	<1.3000E+1/		7.4000				H-3 8-34	3.7604E-02 3.7604E-02	1.0000E-03 1.0000E-03	,
									Į			<u>Sablotal</u> Total	1.46406-91 1.46406-91	4.0000E-03	
							- 24			a side and	MA	6.14		4 40407 01	
Deligense barg		6.2104	4.367	<3.00008-83	<3.63406-04	<3,87486-47		6.1124	100	perfolmalid.		Cr-11 K-3	3.7000E-02 3.7000E-02	1.0000E-01	
		7,5600	0034.05	<8.00002-81	<2.2000Er80	<2.2900E+01		7.5000				5-38 Subiotel	3.7080E-82	1.400400-03	
												Total	1.46895-01	4.0000E-03	;
odiamine BB-		8,2124	57.5663	<640008E-03	<3.1346E.40	<	30		140 102	selle and periotection	MA	C-14	3.2009E-D2	1.00012-03	╉
	4	7,000	127.000	<5.0002-01	<2.2390E+80	<1.5000E=01		7.5000	1			Cr-61 H-3	3.7000E-02 3.7000E-02	1.0001E-03	
			 	-			*******		•			Subtotal Total	1.4100E-01	1.HOIE-03	+-
									1		1				
inflament CD- Malikansbrug		0,2120	an at a star	<	<1.5740E-01	<lit at<="" td="" we=""><td>3</td><td>8.2134</td><td>190 190</td><td>salas and proteinsalait.</td><td>W</td><td>C-14 Cr-61</td><td>3.7640E-02 3.7990E-02</td><td>1.0000E-03 1.0000E-03</td><td></td></lit>	3	8.2134	190 190	salas and proteinsalait.	W	C-14 Cr-61	3.7640E-02 3.7990E-02	1.0000E-03 1.0000E-03	
		7.90		d.00064	<2.2900E+00	4.30200-01		7.4000				H-J 8-36	3.7000E-02 3.7000E-02	1.0000E-03 1.0000E-03	
			<u> </u>	ļ		ļ	-					Total	1.46805-81 1.46805-81	4.00002-81 4.00002-81	1
			I		ļ	_					_				
ladianarie 61- Kleikaritung		- 0.212	e 1134	4.0002-0	43.07486-00	G.N		0.2134	100	previolan,ICA	KA	C-14 Cr-61	3.70002-02	1.00002-03	1
				1			1		-			H-3	3.7000E-02	1.0000E-03	1
	L	7,000	ղ ուտա		-2.390.2480	<2.89.092 W	1	7,6009	1	1	1	15-16	3.7000E-02	1.00005-03	11

۰,

n ng sa sa sa sa

56 PAGE

OLYM ENV SVCS

S DATE AND			11	NEORN	LOW-	EVEL	RADIOACTIVE			Duratek, in	o Connen	arcial Processing	2. MANIFEST NU	M8ER 3.85-01	
			•		WASTE	MANI	EST						A DAGE (
			~		NO WASTE	DESCRIPT	ION ICONTINUATION	D					3. PAGE 4	UF I P	ADC(S)
								WASTE	DESCRIPTION FOR	EACH WASTE TYPE &	CONTINUES	l			CLAS
	DEPOLA	CONTRACK DE			10.		PHSYSIC	ALCENCINPTIOR		14. CHENICAL DEE	CRIPTION	15. RADIOLO	GICAL DESCRIPTION		CAT
OCHI ANER IPENTIFICATION INJIMBEN GENERATOR ID	CONTAINER DESCRIPTION See Nate 11 PROCESSI REQUESTED JOSE Nate 1A6 eLRML/DEPOSITION	VOLUME	WAATE AND COMBAINER WEIGHT	SURFACE REDIATION UPVEL BERNIL SUBJECT	SURF CONTAN (NBQ/1) (dpm/)	FACE INNETION IO cm21 IOcm21	11. WASTE DESCRIPTOR	12. APPROXIMATE WARTE VOLUMERIA DONTATIOR	TR. BOLIDIFICATION OF STABILIZATION HEENA	CHENICAL FORM CHELATING AGENT	NGENT	INDMOLIAL RADIO CONTAIXER FOU AND R	NUCLIDES AND ACTIVIT NL; OR CONTAINED TOTA AD CNUCLIDE PERCEM	Y (MEQ) AND N. ACTIMITY	4144 4164 901 901
	(Bee Hoto 24)		- -		ALPHA	HETA-		- 1975	(nos Nato al			RADIONUCLINES	J XISA	m.Cl	1
						-						<u>Subtotal</u> Total	1.4890E-01	4.8404E-03 4.84046-43	
olimacas de-	4			<54800E-A3	-1.67482-06	<3.5740E01	59	62124	540 189	solle and praisfiedbl.	NA	C-14 Cr-61	3.7000E-02	1.0000E-03	
(activities)		42 HT					-	L				H-3	3.7000E-42	1.00006-03	2
	l I	1.803	102,0000	<10002-01	<1.3000E+00	<2.32566.+0		1,6080		_	l	5-35 Subtotal	3.7000E-02	4.00005-01	;
							-				1	Total	1.48808-8	A.MOJE-0	5
							l		185	spile and	NA	Č-14	3.70085-0	1.000E-0	s - 1
Bellinnene Off-		0.2194	46.341	4100014	«3.6740E-CI	<	-	D3134	180	giolaficalité.		Cr-61 H-3	3.7808E-0	1.0000E-03	3
		1.4000	68.9990	<1.60095-57	1 42.2000E+01	<2.7800E+8	1	1,9200	 			B-36 Sublotat	3.7000E-0 1.4001E-0	2 1.0000E-8: 1 <u>4.0000E-8</u>	3
							-		_		1	Total	5.4600 8-0	1 4.0000E- R	۹
													1 70408.0		
Northerne OB-		#JT24	38.844	3 <1.5010L-8	3 447461-0	1 12.074124	17 19	0.2124		pietolas.NA	-	Cr-61 H-3	3.7000E-0 3.7000E-0	2 1.000E-0	3
		1.000	68.088	0 <1.000.05.0		0 42.20002+1	н	7.8039		-	 	8-35 Subtotal	3.7900E-6	2 1.0000E-0	3
						4	-		1			Total	1.4909.6-4	4.00002-4	0
	· · ·							_ 		Lalla izd		L.191	6.73808-5		x -
feifangen affrid.			17.2	1.000E	AS <1.82485-C			6.1164	100	protolcalliA		P-32 Subinia	1.0848E+	TE SANGE	
				4.000		41,1900E+	n 	6.1900				Total	1.00020	2 2.500524	12
Vin Siletro	-)	1. N.	1.000	01 (3.8745E)	n (),766	47 34	8.319	100	prolainsitä.		H-3 Bublictel	2.5404E4	1 8.040454	12
]		1.00	D SLM	DD 5,00000	42 <2,2480E+	10 <2.2:00E	M	7.500		1		Total	1.7700E+	4.0000E-	1

...

4

PAGE

10

د ریوندی ایسان ایسان

17

NAMES OF

UNASE ANNIFEST L PAGE A L PAGE A Control provide pro	Π	FORM 64 TA			U	NFORM	I LOW-I	EVEL	RAD	IOACTIVE			Duratek, Je	ia, - Coinc	usical Processing	2. MANIF	FEST NUN	BER	
COMPAGE A LID WAS TE DESCRIPTION (CONTINUATION) LA Prode T D * 5 Bit Product of Contract Description (Contract Description) Note E Societarian/Tool (Contract Des							WASTE	E MANIF	FEST	ſ							UNA		
Image: Process contracts description Image: Process contracts					CC	NTAINER A	ND WASTE	DESCRIPT	TION (C	ONTINUATION	•					3. PAGE		F 6 PJ	10E(8)
Contraction Interferent Marken Mark	┢		DEPORA	CONTINUES OF	CEPhon						WASTE	GESCREPTION FOR	EACH WANTE TYPE	CONTANE	2	••••••			THE VISISTER
Ballion	F	CONTANER DENT PICATION	6. COMPANIER DESCRIPTION (Dev Mate %) MOCCESS BEOMETIED	7. Volume	E. MACO	A. SURFACE MODIFICN	10. EDNTAId CARDAN	ACE BATION	n.	PHONE CONTRACT	AL DEBORIFTION 12 APPROXIMATE	15. BOLIDIFICATION OF	14. CHENICAL DE	NEIGHT NEIGHT	15. RADIOLO INDIVIDUAL RADIO	GROAL DEBLOR	EPRON O ACTIVITY (CATION AS-COMM A States AU-Comm
Unit Unit <th< td=""><td></td><td>NUMBER GENERATOR ID NUMBER</td><td>(Bee Ade W) SUBML/DEPOSITION (See Mile 24)</td><td></td><td>WEIGHT</td><td></td><td>Rindbi</td><td>BELA</td><td> '</td><td>(Bee Note 2)</td><td>VOLUMERS) IN CONTAINER (INS)</td><td>NEDIA (Bas Hole 3)</td><td></td><td>AGENT F > 0 1%</td><td>CONTAINER TOD AND R</td><td>ADIONUCL'DE</td><td>EPERCENT</td><td>ACUMIY</td><td>Unstable B-Class B D-Class D</td></th<>		NUMBER GENERATOR ID NUMBER	(Bee Ade W) SUBML/DEPOSITION (See Mile 24)		WEIGHT		Rindbi	BELA	'	(Bee Note 2)	VOLUMERS) IN CONTAINER (INS)	NEDIA (Bas Hole 3)		AGENT F > 0 1%	CONTAINER TOD AND R	ADIONUCL'DE	EPERCENT	ACUMIY	Unstable B-Class B D-Class D
Market SLUME Assoc Laborate Al CATE Bit Parket Al Control Contro Control Contrel Control Control Contrel Control Control Contrel	L						ALTHA	GANRIA	-		- इनम	189	1.100 263		RADIONUCLIDES		XIN A	MCI 2.2068E-02	AU
Bits Finition Control Laster and Laster an		filin 81 341/Phile	r I	64212	48,669	1.00005-01	<3.17496-N	<1070647			6.65/5	140	pro/size/iji		H-3 Bublotal	4.1	1385400	1.17808-01 1.48082-01	
No. 7582-50 A.078 Lands J.078 J.078 <thj.078< th=""> J.078 J.078</thj.078<>				6,749	101.0000	1.00008-40	<2.30002+80	<2.2000E+01	<u> </u>		6,360				Total	5.5	1386+08	1.41042-01	40
JAMO JAMOS LAXXEE JAXXEE JAXXEE <thjaxee< th=""> <thjaxee< th=""></thjaxee<></thjaxee<>	ſ	Vide / Willie		82134	34.935	10000-04	<3.47482-44	<3,03406-07	' '		42524	60 0	prokinskiA.		H-3 Subtotal	2 <u>.9</u> 1.7	600E-01	4.00015-03 4.00015-03	
BASE TORIGIN Lasse				2.689	76,000	\$4000548	80+36CBE.\$>	<2.308CE+ 04	4		1.000			1	Total	1.7	768E+06	4.54006-42	
Land Land Land Calibration Total	ľ	William Collins	1	62530	1 31,030	1.00002-04	C3,87486-08	<3.87406-61	2		HEFE B	186	paolo'hailith.		C-14 H-3 Subtatel	1.4 <u>2.9</u> 1.7	000E+00	4.0000E-62 6.0000E-62 4.8500E-62	
EXIT (400325 A 1995 35.566 1.60002-64 -2.84702_01 -2.84002_01 -2.	ļ			1.800	11.000	1.00000-02	<2.3000E+80	<2.H000E+01	וי		7.5800				Totai	- 7	788E+80	4,84002.47	
Loss Closs Closs 7.300 Bits Statut Liste Statut<		SUM ADDA:s	1		32.164	1.60002-0	46-30FT&C>	<3.8740E-01	7		0.2124	100	Able and performing	, MA	C-14 H-3	1.4	1005+00	4.0000E-02 6.0000E-03	AU
Tailor Flexibles Assist 32,800 1.0002.04 c.25402.64 c.164006.44 c.26002.51 100 website/film RA C-14 L.46006.40 C.00002.51 Tailor Mitchine 2,4000 T_4000 5,40006.44 c.230000.50 c.230000.50 <td></td> <td></td> <td></td> <td>1.600</td> <td>a (1997)</td> <td>1.00002-01</td> <td>2.2900E+00</td> <td><2.2000E+0</td> <td>4</td> <td></td> <td>7.8000</td> <td></td> <td>ł</td> <td></td> <td>Fotal</td> <td>1.7</td> <td>760E+80</td> <td>4.8000E-62</td> <td></td>				1.600	a (1997)	1.00002-01	2.2900E+00	<2.2000E+0	4		7.8000		ł		Fotal	1.7	760E+80	4.8000E-62	
X/000 Tudore 14000E-40 -2.3000E-10 TAXO TOTAL 1.7768E-16 4.8008E-2 Rday Bitmine 0.4104 32.112E 1.4000E-40 -2.3000E-10 -2.3000E-10 -3.3126 100 pathment Rd C-14 1.4000E-40 4.8008E-40 -4.3126 1.4000E-40 -4.3000E-40		Unite Stathles	4		1 39.86F	1.00005-0	<3.87408-80	<1.8740E-0	n 30		6.2534	1 10 1 10 1 10	e alle and professe hills	NA	C-14 H-3	1.4	1600E+00 1600E-01	4.00008-92 8.00008-92	Ya
Bits difficies 0.9194 33.132 LBOBR-66 CLEVELET 30 BITS BD still and problemate IA C-54 1.4800E-65 4.000EE-5				240	1 TL000	1.0005-5	2 <2.3000E+10	<2.200E1	п		1.6309			.	Total	1.7	760E+64	4.0046-01	
Table Table LARCEAR C22008-00 7,4000 Description Control C22008-01 Calibration Calibration <thcalibration< th=""> Calibration</thcalibration<>		Biles Mitthes	-		1 312	1.00000-0	<	<1.67426-4	17 33		0.3124	100	sidit and prolatedad.	KA	C-14 H-3	14	48002-01 4000E-01	4.0000E-03	A#
Sides P/Side Signal Side				1.00	e 73.600	LARCEA	2 <2.29008+00	<2.30005+0	и		7.5000				Total	2.3	22001-01		ł
		Chips Vfilbliles	6		N.N	140084	(<19468-09	4.674014	7 30		6.3534	100	Anter aller Alleration MA	- MA	C-14 H-3	1.4 7.4	40082-01	4.80002-01	
Billing Spillshow			Service and	100	-	-	e <2.30006/10	<2.20008+0	n		7.863			1	Total	1	2016-01	5,34051 25	
		Since Statistics						alfile.			6213.0		ante mad proteinellet.	N	1-125 Rubiciel	3.	71488-02 71485-02	1.00041-02 1.00001-02	A
			A Delay and the		-		R -2.2900E+00	<2.2H0E4	64		çepi, ş]			I OCEI	37	r #882-62	I DECEMPINE	1
2.000E-01 1.000E-01 1.000E-00 1.000E-000E-000E-000E-000E-000E-000E-000		Taladyan PETaladyan					A CARADEAN	· <3.474054	07 3 9		NHA	10	rational Conclumned	A 3	Th-232 Sybiptal	11 11	7000E-01	1.0000E-82 1.0000E-82	AL
					161.00	-	12 <2.2000E+14	-000000.8>	m		7.0056	7			TOTAL	182	.70802-81	1.309002-82	1
		LINGRAL DRIVE (M. SHI)		1.1								- de			++	·			-
						•													
					41 T														

08/22/2005

			00	NYAINER A	WASTI	E MANII E Descrip	EST	4					S. PAGE I	OF \$ P	AGE(8)
DOM AINER IDENTIFICATION MUNDER OBMERTICR ID	GIBOAN CONTROLER DESCRIPTION (Res Mar 1) PROCING REQUESTED (Res Mar 1)	VOLUME	A WARTE AND COMFANDER NEIGHT	ALAFACE ALAMATICN LEVEL LEVEL	18. CONTAL LASYA CONTAL	FACE AMATION NU oct20 Million(2)	II. WAIDE OEBCRIMTOR	VIRATE CAL, DESCRIPTION 12. APPROJUMATE VIRATE VOLUNESIO) IN COLUMER	BENCRIPTION FOR SOLID FICATION OF STABLIZATION MEDIA	EACH WAATE TYPE 14. CIRMICAL DE CHENICAL FORM CHENICAL FORM CHELATING ABENT	K CONTAINE ECRIPTION WEIGHT CHELATING AGENT	R 15. RADIOLO ISTOMOUAL RADIO CONSAISER TO JA AND R	GICAL GEBORIP NON RUCLIDES AND ACTN AL; OR CONTAMER TO ADIONUCUDE PERCE	ITY (MBai) AND FAL ACTIVITY NT	CLASSIFI- CATION AS-Class A Statics AU-Class A Updable S-Class B
NLLIBER	glas fish BA	<u>(mil)</u>			ALPHA	BETA- Gaunya	(Bas Nuto 2)	jata) IFTSI	(See Nois 3)		F+0.7%	RADIONUCLICEN		MCI	C-Case C
Tebdyna F 27 d'albr.a		a gun	XAR	£.00005-04	<1.1766E41	<3.57402.87	, n	0.3124	546		-	Subtotal	1.7000E-	1 1.0000E-02	
	99 A.	7.900	Th. HOLEY	1.00006-42	<2.300CE+10	<2.2000E+01	l	7.500	ļ	_			1.878724	02 2.16342+01	
Unipersual Volution		L.1161	\$340.4575				1		ļ						
		221.1300	487.464			 	· · · · · · · · · · · · · · · · · · ·								
							-								
							-								
					 						╅───				
			 				-		4						
			<u> </u>					+	+		-				-
			1			+	-								
<u> </u>	- 1000														T
				5				1							
										1.1				1	1 1
		22							1	<u>.</u>	_	<u> </u>			
					-	~	_								

11

.

3. Sec. .

12.1

4. 14. 1

FORM 642		Duratek, inc Commercia	Processing	1	WASTE COLL	ECTOR/PROCE	6SOR				2 1	ANLIEBING	MPCK
	UNIFORM LOW-LE	VEL RADIOACTIVE		NAME Clym Emili	onrasnial Barr3cos		8KPE	YER LIBE O.YI	LY .		Cipa	16-14	
				IDENTIFICAT									
		ONAL COMPACT TABULATION		Ciyan									
<u> </u>		DWASTE" apparators (if any)			NTC								1 8 9
	before "COLLIGTE	WABTE" generators.		86.1012.005							FAGE		
4. GENERATOR	6. OSNEGATOR NAME	6. GENERATOR	7. PREPROC VMS (DR MAT	EBSED RE EMAL)	A LANNEERT MANNER(A) (MOER WHICH WARTE (OR MARENA) SECOND MO DATE	1. WASTE CODE.	16, CAUGINATING COMPACT	11. A. 50 MAT	URCE ERCAL	B. SNM	C. AC		~ _ a
MINIST	PERMIT MUMBER IN APPLICABLE AND TELEPHONE MUMBER	FACILITY ADDRESS	volu (m3)	ME ! (C)	DF RECEIPT	P = PROCESSED C ~ COLLECT R	REGION OR STATE	itest	CM	(a)	(678q)	(inci)	(DH)
ABL	Advanced Blascimon Laborateden 301-016-6225	8540 Michaelson Lr. Kanalagian, HD 29005	9,2190	7.6131	Clym 85-81 (91/96/3096)	C	Marytand	6.0000E400	9.8099E+90	B.80008480	3.41 362+6 2	9.2200E-07	02'
Disquit	Weenini, Inc. 381-381-1289	9880 Heafcat Center Br. Rockrillin, XIII 37930	8.9290	32,8601	Ciyn 65-04 (C8/98/2805)	c	Maryland	8.8000E+00	6.09002+90	0.0000E+90	1.46192+82	4.89.85.40	0.93
CBRIS	Post and Brug Administration/CBRD	12740 Tatisbook Pakyay CDRI Rodylin, KJ 20220	1.690B	40.5050	Cien 85-81 (0681(2009)	¢	Maglend	8.8004E+80	0.00000	6,10068+10	3.850540	10.30002.0	L.1
Hoymed V	Howerd University T-409039-Line	E36 Cellingo 31. Washington, DC. 2006	6,6130	3.8017	Ciym 84-01 (88 094/2826)	C	Wash. CC	9.0030E =0	0.0000E+30	0.00002=90	1.04632+00	8. 310 0E+ 80	. Q.
Papýo dak	Med immune, Ita.	déb Rassarch Dr. Productica, MJ 21784	0.1100	3,5040	Ciym 65-21 (65/25/00)	G	Hargland	V.8000E+D	0.00002-0	0.00992-01	1.00022-01	2.01412-000	, .
Dalbershing	Walkansen, im.	f Neffermann May Sallbanfarg, Hill Softs	1.0000	80.7647	Olym 85-85 (MIDUIDA) (\$. C	Marytend	6.0000210	0.8.90905+0	0.0002-0	1,33246401	1,6046.00	р. с.
Site-	Bilto Laboratodes 391-026-5621	1300 Piecewi Di. Rediville, MD 20400	1,4815	62.6135	Cirm 66-61 (Inivasional)	c	. Marajana	9. MOODE+0	0 8.600CE+8	0.80008+8	D & AB745 + M	4.5202.01	· · ·
	1	<u></u>		4	TOTALS OF ALL PAGES (FO	RMS 542 AN	iD 542A)	A ACOCE+I	0 6.8030E 4	0 d.0000E+0	a.07875=81	t 2.5034E+01	1 8.4

•, •

...

.

PAGE(S)

(13) 7.4000

33,6060

41,800

1.660

4.1900

67.000

68.3%(O

291,1500

,

. .

v² z · ·

PAGE

13

FORM FAZA		UNIFORM	LOWLEVE	EL RADIO	DACTIV	E WASTE MAN	AFEST		Duralak, Inc.	• Corsini	ercial Proc	gnieze:	2 HAN) Ciym DGD	PERT NUMBE	R	•
		MANP	SET INDEX AND P	REGIONAL C	OMPACT	ABULATION (CONTIN	NATION}					ŀ	l PAGE 1	1 OF	2 PKG6#	8
4.	£			7. PREPAD	CESCED	K.	ierisi under	R	16.	n .		AS PRO	EBSUED.COL	Edenaution	A	
BEASRATOR IDENTIFICATION HUMBER	OPNERATOR MARE PERMIT MUNDER (F APPLICABLE)	GENERV FACL	JOR	IOR INAL VOL	pie Ternali MX:	WHICH WAATE K RECEIVED A	OR MATERIAL) IND DATE	WASTE CODE P = PROCESSED	CRIGINAINS CONTACT REMOV	A SC HAT	BRIAL	B. SNA) C.#C	TIMIY	D. VOL	LUNE
	AND TELEPHONE MURBER			(mill)	\$13)			C = COLLECTED	OR STATE	jig)	(10)	69	(erbQ)	(1761)	(m3)	123
Telecyse	Tuindare Energy Systems, Inc. 198-011-024	WERE WEAT N.L.	-	6.6293	14,1922	Clym #5-81 (pt/0613005)		¢	Keryland	6.0010E+C8	6.0000Z+D0	D.4000E+99	7.4000E-01	2.0008502	1.041	15.000
			×1													
											+					
								1		1						
L										ļ	 					
				1 ·												
1															•	
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	-												<u></u>
1										1						
					ļ					<u></u>						
														•		
						1							1			
) 👻			1	1				1	1	1	1	1		<u> </u>
					1							1				
							<u></u>		 	1				┨───	 	
			22													
										1						
			-7.45													
	1		3			· ·									1	
L	1	Carry and			1				I	.1			1	<u> </u>	L	

٣Ý

ι Γι 6 / **1** - - - - -

с. А

• ig

CLYM ENV SVCS

22/2005 13:37 3016946797

. 28

U.T.F.

24

C-24

Cr-61

7-12 3-36 75-232

7-234

3-3 1-125

......

.

.

•

.

UNIFORM LOW-LEVEL RADIOACTIVE WASTE MANIFEST ISOTOPES REPORT .

For Handleet # Clym 05-01 Duratell, Inc. - Commercial Proceesing

Total	Activity
()(0)(2)	<u>(mÇi)</u>
5.45012+01	2,47308+00
3.33000-01	P.00008-03
3.00000+02	9.74808+00
S. SANKINAL	2.41.898+00
1	2.20000+00
I. HANKING	3.31908+00
7.40000 04	2.00008-02
3.05478-02	9.2500 -04

.

 $x_{i} \in \mathcal{A}$

1.11.1 15 93 Const 4 Toronto . :

: : :

÷.,

1.11 , 'n

.....

.

1 .15 9 .

. ج

 \hat{F}_{i} -*

CLYM ENVIRONMENTAL SERVICES, LLC

Facsimile Transmission

5104 Pegasus Court Frederick, MD 21704 (301) 694-6000 Fax: (301) 694-6797

Date:	August 22, 2005		Pages:	14
	То: Fax #:	Pete Shandruk (301) 5 94-4 760	· · · · · · · · · · · · · · · · · · ·	
	From:	Charles Watts		

MESSAGE:

If you did not receive the total number of pages indicated, or if there is a problem with this facsimile transmission, please call 301 694-6000. NOTE: This communication may contain confidential or privileged information from Clym Environmental Services, LLC. Disclosure, copying, distribution or use of the contents of this information by any individual or entity not intended to receive the same is prohibited. If you are not the intended recipient, please contact the individual listed above.

This is to acknowledge the receipt of your letter/application dated

includes an administrative review has been performed.

There were no administrative omissions. Your application was assigned to a technical reviewer. Please note that the technical review may identify additional omissions or require additional information.

Please provide to this office within 30 days of your receipt of this card

A copy of your action has been forwarded to our License Fee & Accounts Receivable Branch, who will contact you separately if there is a fee issue involved.

137555 Your action has been assigned Mail Control Number When calling to inquire about this action, please refer to this control number. You may call us on (610) 337-5398, or 337-5260.

NRC FORM 532 (RI) (6-96)

Sincerely, Licensing Assistance Team Leader