Southern Nuclear / Westinghouse Proposed Test Plan to Demonstrate the Benefit of Zinc Addition to Mitigate PWSCC

Mike Stinson August 25, 2005

Energy to Serve Your World™

Purpose

To determine if test data from the proposed program can be used to make informed decisions with respect to regulatory requirements.

Agenda

- Farley 2 background
- Overview of test plan
- Test design & expectations
- Benefits
- Feedback & discussion

Description of Farley 2

- Three-loop,
 Westinghouse PWR
 910 megawatts
- Initial Ops: 1981
- Renewal license expiration: 2041

Aug 25, 2005 4

Farley 2 Pilot Plant for Zinc Addition

- Laboratory and test reactor experiments indicated reduced general corrosion and PWSCC mitigation benefits of zinc addition
- EPRI sponsored demonstration plant
- Zinc injection began June 12, 1994
- RCS zinc concentration
 - 30 ppb Cycles 10, 12 14
 - 15 ppb Cycles 15 17 (post SG replacement)

Farley 2 Zinc Addition Experience

Sig. Radiation benefit observed after S/G Replacement

Plant	EFPY	Channel head	
		dose rate (R/hr)	
Farley 2	1.3	0.34	
Watts Bar	1.15	2.3	
Cook 2	1.11	3.0	
Indian Point 3	1.07	3.1	
No. Anna 1	1.36	5.0	
Ringhals 2	1.34	4.0	

Ref: EPRI TR-107566

Farley 2 Oxide Films

Pulled SG tube film characterization

Cycle 9 Cycle 10

Ref: EPRI TR-106358-V1

Normalized Atomic Percent

Fe

Ni

Depth (nm)

■ Zn

□ Fe

Cr

■ Ni

Farley 2 Zinc Addition Experience

Difficult to assess PWSCC benefit.

Alloy 600 / 82 / 182 Inspections							
	2002	2004	2005				
	2R15	2R16	2R17				
CRDM	Volumetric (UT)	Volumetric (EC + UT)	Replace				
(EA-03-009)	+ BMV	+ BMV					
RPV nozzles			BMV				
(ISI Program)							
RPV BMI		BMV	BMV				
(BL 2003-02)							
PRZ nozzles	Volumetric + surface	BMV	BMV (top)				
(BL 2004-01)	(1 nozzle)		Volumetric + surface				
			(2 nozzles)				

Farley 2 CRDM Penetration Material

- B&W Tubular Products heat M3935
- Less than optimum annealing heat treat
- Heat M3935 used in penetrations of five RPV heads:
 - Farley 2
 - Davis-Besse
 - Oconee 3
 - Beaver Valley
 - ANO 1

Heat M3935 Industry Experience

Energy to Serve Your World™

Plant name	# of nozzles heat no. M3935	% in industry heat no. M3935	# inspected by UT	# required repair	% of M3935 in RV head with defect
Oconee 3	68	49%	68	14	20%
Davis-Besse	5	4%	5	3	60%
ANO 1	1	<1%	1	1	100%
Beaver Valley 1	4	3%	4	4	100%
Farley 2	61	44%	61	0	0%
Total	139		139	22	
%			100%	16%	

Heat M3935 - Industry Locations that req'd repair

Energy to Serve Your World™

Heat M3935 Farley Unit 2 Locations

Energy to Serve Your World™

What's different?

- Farley 2 is the only RPV head with heat M3935 that has not experienced cracking
- Farley 2 is the only plant that operated with heat M3935 and significant zinc chemistry
 - Beaver Valley 1 started to add zinc in 2002 and noted
 SCC in M3935 in Spring 2003 (~20 ppb-mo.)

How can we determine what makes Farley 2 RPV head different?

Mock-up of Sample Removal

Energy to Serve Your World™

Test Program Goal

- Demonstrate that zinc addition makes the surfaces of Alloy 600 more resistant to PWSCC.
- Quantify the improvement in life provided by zinc additions.

What is significant about the Farley 2 Alloy 600?

- Exposed to zinc in the primary coolant since 1994
 - Integrated zinc exposure 1600 ppbmonths at last inspection
 - Integrated zinc exposure 1900 ppbmonths at RV head replacement
 - High susceptibility heat allows comparison testing to show the beneficial effects of zinc

Farley U2R17 RV Head Replacement

- Plan to collect two penetration samples
 - penetrations # 14 and # 16
- M3935 base material

Proposed Program Objectives

- Harvest Alloy 600 Heat M3935 material from the Farley 2 reactor vessel head.
- Characterize surface chemistry
- Assess crack initiation by performing lab tests of segments containing the Zn conditioned material
- Compare samples with and without zinc in film
- Demonstrate benefits of Zn additions

Characterize the incorporation of -zinc

- Can compare depth of zinc infiltration in films
 - With Cycle 9 exam (pre-zinc)
 - With Cycle 10 exam, (310 ppb-months exposure)
- Key questions
 - What is the current surface zinc concentration
 - How deep has the zinc diffused into the oxide film
 - What are the film characteristics
- Can provide limited material to other organizations

Prove benefit regarding crack initiation

Basic idea

- Fabricate test specimens keeping as-is surface films intact
- Divide specimens into two groups
- Carefully remove zinc from the surface films of one group
- Perform comparison testing

Harvest two Heat M3935 penetrations

Energy to Serve Your World™

Anticipated Geometry

OD specimen

Strips would be removed from the ID and OD surface of the Farley 2 material

- Assume "red" surfaces have zinc removed
- Assume "green" surfaces tested with zinc

Basic Approach to machine specimens

With Zinc

- Carefully handle
- Preserve zinc in films
- Cold work (increase stress)
- Continue to test with typical concentrations of zinc in the water

Without Zinc

- Carefully handle
- Remove zinc using a process w/o affecting oxide film (e.g. LOMI)
- Cold work (increase stress)
- Continue to test
 without zinc in the
 simulated primary
 water

Typical method for testing crack initiation behavior

 Westinghouse has used this configuration to test service & lab Alloy 600/182

Aug 25, 2005 24

Sample size comparison

Energy to Serve Your World™

Size (L=3.7") of Bent beam previously used.

Estimate specimens from Farley 2 would be ~1.5" long.

Anticipated specimen configuration

Westinghouse will shrink the test fixtures to test subsized specimens.

Key Challenges

Constraints

- Material that can be practically extracted from head penetrations is limited – requires subsized specimens
- The material surfaces will have significant radioactivity, >3R/hr (cannot be decontaminated)
- Testing is costly and time consuming

Risks

- Special subsized specimens and test fixtures need to be designed and demonstrated
- Subsized specimens may be difficult to handle
- May be difficult to compare subsized sample data with large sample data

Heat M3935 Service Experience

Energy to Serve Your World™

Aug 25, 2005

28

Energy to Serve Your World"

Aug 25, 2005

29

Anticipated Performance at Elevated Temp & Stress

Energy to Serve Your World™

Proposed Program – Tasks & Schedule

Energy to Serve Your World™

Expected Results & Implications

- Zinc exposed surfaces of Heat M3935 will show reduced crack initiation compared to similar surfaces with the zinc removed
- Extended crack initiation duration relaxes the need for frequent inspections

Benefits

Inspection Requirements

- CRDM Order EA-03-009
 - Replacement RV heads Alloy 690
- RPV nozzles ASME XI ISI Program
- RPV BMI Bulletin 2003-02
- PRZ nozzles Bulletin 2004-01
- MRP Inspection Guidelines (e.g., MRP-139)

Feedback

