

United States Nuclear Regulatory Commission

NRC Perspectives on Spent Fuel Storage

Ву

Farouk Eltawila, Director

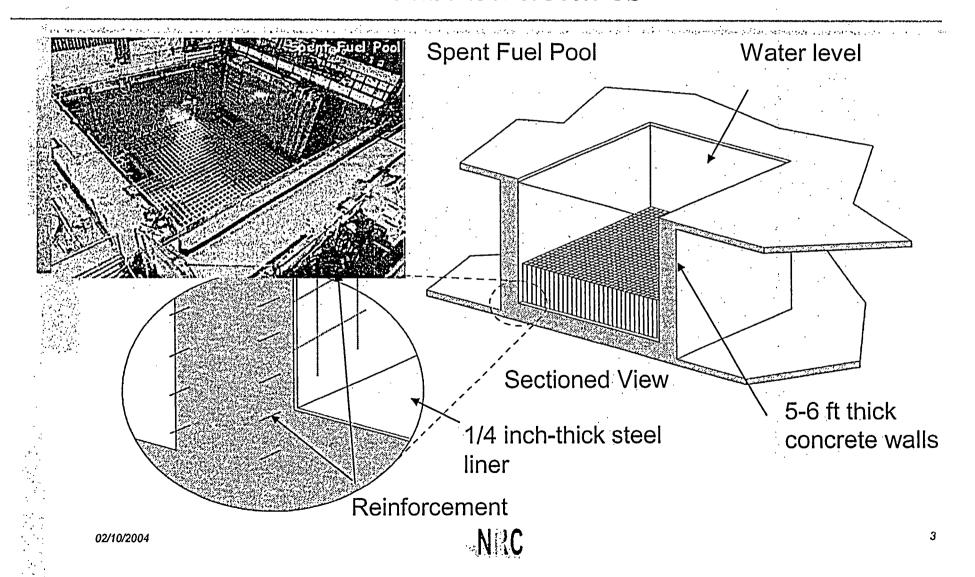
Division of Systems Analysis

and Regulatory Effectiveness

Office of Nuclear Regulatory Research

February 12, 2004

fxe@nrc.gov



Spent Fuel Is Safe Under Either Wet or Dry Storage

- Robust Structures Constructed of Very Thick Concrete Walls With Stainless Steel Liner (Spent Fuel Pool)
 - Many of The Spent Fuel Pools Located Below Grade or Shielded By Other Structures
 - Would Obstruct An Aircraft's or Other Vehicle's Impact
- ☐ Spent Fuel Pools Have Low Heat Content
- Additional Security Measures Implemented Since 9/11/2001
- Notwithstanding The Above, Insight From New Analyses Show That Radioactive Release Would Be Much Smaller And Would Begin Later Than Previously Estimated Resulting in Reduced Health Effects and Land Contamination
- Strategies For Loading Spent Fuel In Pools Can Substantially Reduce Cooling Time of Freshly Discharged Fuel

Spent Fuel Pools Are Robust Structures

Physical Location Of Fuel In Pools Make Them Highly Resistant to Terrorist Attack

- Design of Pools With Fuel Located Below Grade or Shielded By Other Structures
 - Make Them Highly Resistant to Damage
- New NRC Enhanced Physical Security Measures to Defend Against and Mitigate Other Threats

Spent Fuel Pools Have Low Heat Content And Are Easily Cooled

- The Fuel in the Spent Fuel Pool Generates Small Fraction of the Heat in the Reactor
 - Fuel in Spent Fuel Pool Which Is Relatively Full (e.g., Containing 4 Reactor Cores) Generates Heat at a Rate Which Is 10 to 40 Times Lower Than That of Fuel in Reactor When Reactor Is Shutdown
 - Lower Heat Generating Capacity of Spent Fuel Means Heat Removal Is Simple, Even Under Adverse Conditions
- Most of the Heat Generated by Fuel in the Spent Fuel Pool
 - ❖ Comes From the Fuel Most Recently Offloaded From the Reactor
 - Not From the Old Fuel Which May Be Loaded in Casks

How About NUREG-1738, SNL And BNL Studies?

Contractive of the Contractive o

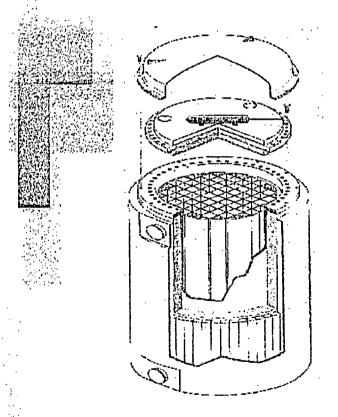
- Previous NRC Studies Were Based on More Conservative Assumptions And Analytical Models Than Current Analysis,
 - Limited to "Early Phase" Heat-Up Calculations
 - → Bounding Pool Configurations
 - No Integrated Severe Accident Analysis
 - ❖ Potential For Zirc Fire Using "Ignition Temperature" Criteria
 - Up to 100% of The Cesium Was Released to The Atmosphere
 - No Credit For The Likely Intervention By Operators To Prevent Uncovering The Fuel; Although a Very Long Time Is Available for a Loss of Cooling Event
- These Assumptions Are Neither Realistic Nor Appropriate For Assessment of Security Issues Where Realism Is Needed

New Analysis

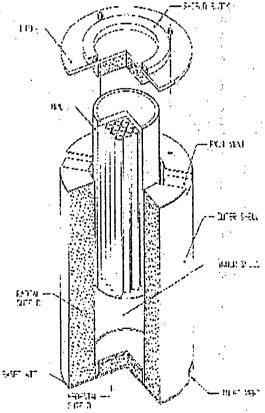
- Current Analyses Are Using More Sophisticated Models And Techniques (MELCOR Severe Accident Code + Detailed Computational Fluid Dynamics--Thermal Hydraulic Calculation)
- MELCOR Has Mechanistic Melt Progression Models
- Damage Propagation
 - Oxidant Depletion
 - Fission Product Release And Transport
 - Heat Transfer
 - Flow Mixing
- Building Upon Results of More Than Twenty Years of Research And Experience
 - Thermal Hydraulics
 - Severe Accidents
 - Probabilistic Risk Assessments

Insights From New Analysis Reduced Health Effects and Land Contamination

- Vulnerability Assessment to Date Indicates That Pools are Robust and Well Protected
 - Nevertheless, We Performed Spent Fuel Pool Transient Analyses
 - Based on Actual Pool Conditions, Fuel Inventory and Loading Pattern
- Analyses Indicate That:
 - Fuel in the Spent Fuel Pool Is More Easily Cooled Than Predicted in Earlier Conservative Studies
 - Even If Cooling Is Lost More Time Is Available to Restore Cooling and Prevent Fuel Damage
 - Even If Fuel Is Damaged Consequences Will Be Less Severe Than Calculated in Past Studies
 - → Previous Estimate of Fission Products Released Are Likely Conservative By At Least An Order of Magnitude


Dry Cask Storage Experience

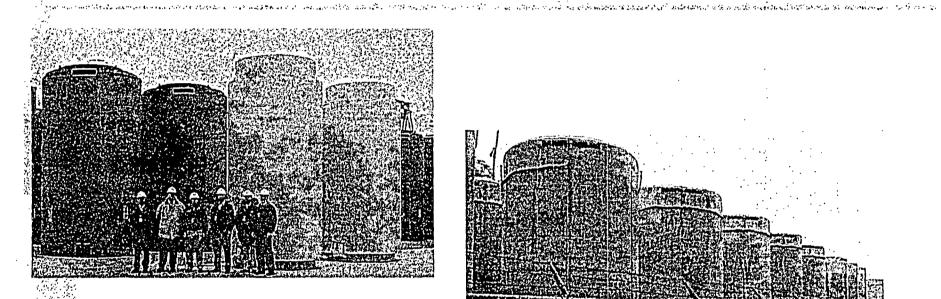
- First Cask Placed in Service July 1986
- 30 Operating Spent Fuel Storage Facilities
- No Spent Fuel Storage Cask Release or Safety Problems


Example Storage Cask Diagrams

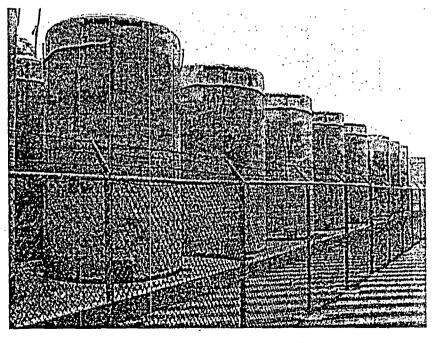
BOLTED-CLOSURE DESIGN

TRANSNUCLEAR TN-68

WELDED CLOSURE DESIGN



HOLTEC INTERNATIONAL HI-STORM IOO


N C

Storage Casks

LOADED CONCRETE-STEEL CASKS (LEFT) STEEL CASKS (RIGHT)

CONCRETE STORAGE CASKS

Spent Fuel Casks Are Robust Structures

- Structural Integrity to Confine Spent Nuclear Fuel Inside Cask
- Protection to Prevent Accidental Criticality
- Shielding to Minimize Radiation Dose
- Heat Dissipation to Minimize Fuel Temperatures
- NRC Has Implemented Enhanced Physical Security Measures to Defend Against and Mitigate New Threat Environment

Concluding Remarks

- Staff Concludes That Public Health and Safety Is Protected With Spent Fuel Stored in Pools or Dry Casks
 - Spent Fuel Pools Are Robust Structures
- Further Protection Is Provided By
 - Surrounding Structures
 - * Below Grade Fuel Location
- Dry Casks Are Robust Structures
 - The Significant Amount of Physical Mass Used for Shielding and Confinement Inherently Provides Protection Against Significant Threats
- The Use of Previous NRC Studies Provides Overly Conservative And Misleading Results When Assessing Mitigative Strategies For Potential Spent Fuel Pool Vulnerabilities
- The Recommendation for An Accelerated Program of Complex and Costly Measures to Place All Spent Fuel (More Than Five Years Old) in Dry Casks Does Not Have a Sound Technical Basis

Concluding Remarks

- When Past Studies Are Taken Out of Original Context, Where Applied to Very Low Probability Events, the Predicted Behavior Including Consequences Are Not Appropriate
 - One Must Consider Both The Probability and Consequences
- There Are Other Measures, Other Than Removal of The Fuel And Lower Density Racking
 - ❖ Both The Federal Government And Utilities Are Addressing The Likelihood of Threats And Mitigation Strategies
 - → The Federal Government Has Taken Numerous Actions to Prevent Terrorist Use of Large Air Craft, Thereby Reducing the Likelihood of An Attack on All Critical Infrastructure from Such Threats
 - Measures Have Been Taken Since September 11, 2001, to Protect Nuclear Facilities, Including Spent Fuel Pools
 - → Enhanced Protection of Spent Fuel Pools to Address Land Attack