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1. Introduction
§ Waste packages for the potential repository at Yucca Mountain, Nevada will 

have an important contribution to waste isolation
§ Waste packages for the disposal of high-level waste will be constructed of 

• An Alloy 22 (Ni-22Cr-13Mo-3W-4Fe) outer container
• A Type 316 nuclear grade stainless steel (Fe-18Cr-8Ni-2Mo-high 

N-low C) inner container 
§ After loading, waste packages will be emplaced in mined drifts on pallets
§ Titanium alloy drip shields, designed to protect waste packages from 

seepage water and rockfall, may be installed prior to permanent repository 
closure

2. Waste Package Corrosion Processes
§ Performance assessment models used to evaluate overall system 

performance consider several possible waste package corrosion processes 
§ Uniform corrosion rates are low under environmental and material

conditions where the passive oxide film is stable
§ Crevice corrosion is possible in concentrated chloride solutions with low 

concentrations of inhibiting anions
§ Stress corrosion cracking has been observed in solutions containing 

chloride and carbonate or bicarbonate at high anodic potentials

Figure 2. Crevice 
corrosion repassivation 
potentials for mill-
annealed Alloy 22

4. Materials
Table 1. Composition of Alloy 22 test specimens

3. Objectives of this Study
§ Improve models to evaluate crevice corrosion susceptibility of the Alloy 

22 waste package outer container considering the effects of environmental 
variables and the concentrations of aggressive and inhibitor species

§ Measure crevice corrosion propagation rates and assess possible damage to 
waste packages
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5. Test Results

Figure 1. Alloy 22 corrosion 
potentials as a function of 
temperature. Potentials were 
measured in 4M NaCl
solution maintained at 
constant pH values

• Corrosion potential 
depends on temperature 
and pH

• Previous investigations 
suggest corrosion 
potential is not strongly 
dependent on chloride 
concentration

• Repassivation potential 
depends on chloride 
concentration and 
temperature

• Previous investigations 
indicate nitrate, sulfate, 
carbonate, and bicarbonate 
inhibit localized corrosion 
even in concentrated 
chloride solutions. 

• Fabrication processes 
increase susceptibility to 
crevice corrosion
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Figure 3. Potential and current transients for Alloy 22 crevice 
corrosion test in 5 M NaCl with CuCl2 at 95 oC [203 oF]

• Rapid penetration rates when localized corrosion is active
• Stifling and arrest of localized corrosion are observed even in 

oxidizing solutions with high chloride concentrations
• Decrease in corrosion potential of 340 mV ±140 mV is observed 

when localized corrosion is active

Figure 4. Measured crevice 
corrosion penetration depths for 
Alloy 22

• Crevice corrosion 
penetration rate is diffusion 
controlled

• Electrochemical processes 
contributing to stifling and 
arrest also affect penetration 
rate and depth

• Maximum observed 
penetration depth was less 
than 300 µm in 80 days

• Based on measured values 
maximum crevice corrosion 
penetration of approximately 
4 mm is expected in 10,000 
years

6. Uniform Corrosion Model

• Under conditions where Alloy 22 is protected 
by a stable passive film, the corrosion rate is 
dependent only on temperature (Ea = 33.5 to 
49.6 kJ/mol [8.0 to 11.9 kcal/mol])

• Long waste package lifetimes under 
environmental and material conditions where 
passivity is maintained

7. Localized Corrosion Model
Corrosion potential, Ecorr

Ecorr = f(T, pH)

Crevice Corrosion Repassivation Potential, Ercrev

Penetration Rate for Crevice Corrosion
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8. Localized Corrosion Susceptibility

9. Conclusions

Figure 5. Complementary cumulative 
distribution function for the difference 
Ecorr-Ercrev at 110 oC [230 oF]

Table 2. Regression Parameters for Mill-Annealed and Thermally 
Altered Alloy 22

(P in mm, t in days)

• A revised model for the initiation, propagation, and repassivation of crevice corrosion 
of Alloy 22 was developed based on the results of laboratory tests 

• The crevice corrosion repassivation potential is dependent on temperature, chloride 
concentration, the concentration of oxyanions that act as inhibitors, and the 
metallurgical condition of the alloy 

• Initiation of localized corrosion on Alloy 22 requires aggressive environmental 
conditions that are not expected to prevail over a long period in the emplacement drifts 

• If crevice corrosion is initiated, the damage to the Alloy 22 waste package outer 
container is likely to be limited to a small fraction of the container thickness due to the 
strong tendency for crevice corrosion to repassivate
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• A small percentage of waste 
packages that contact seepage water 
will be susceptible to crevice 
corrosion at 110 °C [230 °F] 

• In order for the seepage water to 
contact the waste packages, the drip 
shields must be damaged by 
corrosion or mechanical loading

• Anionic inhibitors in the ground 
water can reduce the occurrence of 
crevice corrosion

Necessary Condition for Crevice Corrosion

Ecorr – Ercrev > 0
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