PROPOSE NRC DEVELOPED JPMs

Administrative Job Performance Measure

Conduct of Operations

Ability to Apply Technical Specifications and Determine Reportability Requirements for an Event

TITLE: Determine All of the Applicable Tech. Specs that apply to a given plant occurrence during all applicable reporting requirements.					
Evaluation Location: Simulator Control Room Plant Classroom X					
Projected Time: <u>30 Min.</u>					
Alternate Path					
Time Critical					

Date:	Trainee:
Evaluator:	
JPM Performance: Satisfactory	Unsatisfactory
Evaluator Comments:	

The following plant conditions exist:

- The plant was initially operating at steady state 100% power.
- Both S/G Feedwater pumps tripped and **No Operator Actions were taken.**
- S/G water level then decreased to the point that the Auxiliary Feedwater Pumps started
- The P-8A Auxiliary Feedwater pump started but subsequently tripped due to unknown reasons
- P-8C AFW Pump is in service providing 165 gpm flow to each S/G.

Initiating Cue:

Determine **all** of the Technical Specification entry condition(s) that apply due to the initial set of conditions and determine any applicable reportability requirement(s) to regulatory agencies.

EVALUATION CHECKLIST

Task Standard:

The applicant will identify the correct Technical Specifications (3.7.5 Cond. A) that must be entered for the given set of conditions and determine that the automatic start of the Auxiliary Feedwater System is reportable per 50.72(b)(3)(iv)(A) or 50.72(b)(3)(iv)(B)(6). The applicant must also realize that the Reactor tripped on Low S/G Level and that the Reactor Trip is reportable per 50.72(b)(2)(iv)(B) or 50.72(b)(2)(iv)(B)(4)

DECILITC.

50.72(b)(3)(iv)(B)(1).

TASKS:	STANDARDS:	RESULTS:	
Start Time:			
* 1) Determine that Tech Spec 3.7.5 applies, specifically Cond. A for the failure of P-8A, Aux. Feedwater Pump	Determine that Tech Spec 3.7.5 Cond A applies for the failure of P-8A, Aux. Feedwater Pump		S / U
*2) Determine that the automatic Aux. Feedwater pump start is from a valid signal and that this is reportable per 50.72(b)(3)(iv)(A) or 50.72(b)(3)(iv)(B)(6) and requires an 8 hour report.	Determine that the automatic Aux. Feedwater pump start is from a valid signal and that this is reportable per 50.72(b)(3)(iv)(A) or 50.72(b)(3)(iv)(B)(6) and requires an 8 hour report.		S / U

CTANDADDC.

*3) Determine that the Reactor tripped on low S/G level and that this is reportable per 50.72(b)(2)(iv)(B) and is an 4 hour report.	Determine that the Reactor tripped on low S/G level and that this is reportable per 50.72(b)(2)(iv)(B) and is an 4 hour report.	S / U
4) Determine that the Rx Trip and Aux. Feedwater Actuation is reportable in a LER within 60 days per 50.73(a)(2)(iv)(A) or 50.73(a)(2)(iv)(B)(1) & (6)	Determine that the Rx Trip and Aux. Feedwater Actuation is reportable in a LER within 60 days per $50.73(a)(2)(iv)(A)$ or 50.73(a)(2)(iv)(B)(1) & (6)	S / U

STOP TIME: _____

Terminate JPM when applicant indicates that he has completed the task

CRITICAL ELEMENTS:

Critical Elements are denoted with an asterisk (*) before the element number. All Elements of this JPM are Critical.

GENERAL REFERENCES:

- 6. Technical Specification 3.7.5 Auxiliary Feedwater System
- 7. Operations Reportability Binder

GENERAL TOOLS AND EQUIPMENT:

None

COMMENTS:

The following plant conditions exist:

- The plant was initially operating at steady state 100% power.
- Both S/G Feedwater pumps tripped and **No Operator Actions were taken**.
- S/G water level then decreased to the point that the Auxiliary Feedwater Pumps started
- The P-8A Auxiliary Feedwater pump started but subsequently tripped due to unknown reasons
- P-8C AFW Pump is in service providing 165 gpm flow to each S/G.

Initiating Cue:

Determine **all** of the Technical Specification entry condition(s) that apply due to the initial set of conditions and determine any applicable reportability requirement(s) to regulatory agencies.

Administrative Job Performance Measure

Conduct of Operations

Ability to Locate and Use Procedures and Directives Related to Shift Staffing and Activities

TITLE: Determine the Shift Staffing Requirements following an illness.				
Evaluation Location: Simulator	Control Room	Plant	Classroom <u>X</u>	
Projected Time: <u>15 Min.</u>				
Alternate Path				
Time Critical				

Date:		Trainee:	
Evaluator:			
JPM Performance:	Satisfactory	Unsatisfactory	
Evaluator Comments: _			_

The following plant conditions exist:

- The plant is operating at steady state 100% power.
- It is night shift on Christmas Day.
- The Operations Manager has authorized maximizing time off during Christmas Eve and Christmas Day.
- ONLY the SE / STA is qualified as STA.
- The shift complement at the beginning of the night shift (0000) was: Shift Manager Control Room Supervisor Shift Engineer/Shift Technical Advisor Reactor Operators - 2 Auxiliary Operators - 4 Radiation Safety Technician - 1 (EMT) Required number of Security personnel
- At 0300 the Shift Technical Advisor is taken to the hospital by the Radiation Safety Technician due to an allergic reaction to something he has eaten.

Initiating Cue:

You are the Shift Manager. You need to determine if staffing requirements are met? Explain your decision and required actions, if any.

EVALUATION CHECKLIST

Task Standard:

The applicant will determine that the applicable Plant Staffing Levels are not met due to the illness of the Shift Technical Advisor (STA) and the fact that the only Radiation Safety Technician is no longer onsite. These conditions require that another active STA qualified individual replace the ill Shift Technical Advisor within 2 hours and another Radiation Safety Technician must arrive onsite within 2 hours as well.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
* 1) Determine that Tech Spec and Admin staffing is NOT met	Determine that Tech Spec manning is NOT met	S / U
*2) Explain the minimum manning required	Required to have one STA qualified individual on shift per Tech Specs. Another STA qualified individual must be onsite within 2 hours. Since the only Radiation Safety Technician took the SE/STA to the hospital the minimum staffing requirement of 1 Radiation Safety Technician is not met and another Radiation Safety Technician must arrive onsite within 2 hours.	S/U

STOP TIME:

Terminate JPM when applicant indicates that he has completed the task

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number. All Elements of this JPM are Critical.

GENERAL REFERENCES:

- 2. Palisades Administrative Procedure 4.00, Operations Organization, Responsibilities and Conduct
- 3. 10 CFR Part 50.54

3. Technical Specifications GENERAL TOOLS AND EQUIPMENT:

None

COMMENTS:

The following plant conditions exist:

- The plant is operating at steady state 100% power.
- It is night shift on Christmas Day
- The Operations Manager has authorized maximizing time off during Christmas Eve and Christmas Day
- ONLY the SE/STA is qualified as STA
- The shift complement at the beginning of the night shift (0000) was: Shift Manager Control Room Supervisor Shift Engineer/Shift Technical Advisor Reactor Operators - 2 Auxiliary Operators - 4 Radiation Safety Technician - 1 (EMT) Required number of Security personnel
- At 0300 the Shift Engineer/Shift Technical Advisor is taken to the hospital by the Radiation Safety Technician due to an allergic reaction to something he has eaten.

Initiating Cue:

You are the Shift Manager. You need to determine if staffing requirements are met? Explain your decision and required actions, if any.

Administrative Job Performance Measure

Equipment Control

Knowledge of Tagging and Clearance Procedures

TITLE: Determine the Mechanical and Electrical isolations points that must be tagged when removing the HP Safety Injection Pump P-66A from service.				
Evaluation Location: Simulator Control Room Plant Classroom X				
Projected Time: <u>30 Min.</u>				
Alternate Path				
Time Critical				

Date:	Trainee:
Evaluator:	
JPM Performance: Satisfactory _	Unsatisfactory
Evaluator Comments:	

The High Pressure Safety Injection Pump P-66A is required to be taken Out of Service for replacement of its mechanical seal. Computer based tagging is down and a paper-based tagging order has been prepared.

Initiating Cue:

You are to review a paper-based tagging order for the High Pressure Safety Injection Pump, P-66A, to verify sequence, components, and positions are correct and make changes if required. After completion of your review, sign for Approved By and return it for Review.

EVALUATION CHECKLIST

Task Standard:

Identify the mistakes made on the Paper-Based Tagging for the High Pressure Safety Injection Pump P-66A. The applicant will determine that the pump's suction valve should not be closed before the pump's discharge valve. The applicant will determine that the pump casing vent valve needs to be open. Finally, the applicant will determine that the CC outlet isolation must also be added to perform work on the pump's mechanical seal.

TASKS:

STANDARDS:

RESULTS:

Start Time: _____

Cue: If asked, hand the applicant a blank copy of a tagging form from the procedure so that they can make corrections.

*1) Determine that the pump Suction Vlv should be closed after the Discharge Vlv	Determine that the pump Suction Vlv should be closed after the Discharge Vlv	S / U
*2) Determine that the pump casing vent MV-ES3287 needs to be opened instead of closed as listed.	Determine that the pump casing vent MV-ES3287 needs to be opened.	S / U

*3) Determine that the CC outlet isolation needs to be Closed to the pump's Mechanical Seal CC-157 or CC-199 Determine that the CC outlet isolation needs to be Closed to the pump's Mechanical Seal CC-157 or CC-199

STOP TIME: _____

Terminate JPM when applicant indicates that he has completed the task

CRITICAL ELEMENTS:

Critical Elements are denoted with an asterisk (*) before the element number. All Elements of this JPM are Critical.

GENERAL REFERENCES:

- 1. Palisades Administrative Procedure 4.10, Personnel Portective Tagging
- 2. Palisades P&ID drawings
- 3. Palisades Electrical drawings

GENERAL TOOLS AND EQUIPMENT:

None

COMMENTS:

The High Pressure Safety Injection Pump P-66A is required to be taken Out of Service for replacement of its mechanical seal. Computer based tagging is down and a paper-based tagging order has been prepared.

Initiating Cue:

You are to review a paper-based tagging order for the High Pressure Safety Injection Pump, P-66A, to verify sequence, components, and positions are correct and make changes if required. After completion of your review, sign for Approved By and return it for Review.

Administrative Job Performance Measure

Radiation Control

Knowledge of 10CFR 20 and Related Facility Radiation Control Requirements

TITLE: Determination of Radiological Dose Limits Will Be Exceeded				
Evaluation Location: Simulator Control Room Plant Classroom X				
Projected Time: <u>30 Min.</u>				
Alternate Path				
Time Critical				

Date:		Trainee:	
Evaluator:			
JPM Performance: Satis	sfactory	Unsatisfactory	
Evaluator Comments:			
			╞

The conditions under which this task is to be performed are as follows:

- A power reduction from 100% to 10% has been performed.
- The Shift Manager has directed you to determine if either Worker 1 or Worker 2 can perform a containment entry to inspect the D Primary Coolant Pump, P-50D, seal area for leakage.
- The transit route dose rate is < 2 mR/hr except as noted on the provided survey maps.
- Rad Protection has determined the lowest dose route is that which is marked on the survey maps.
- Rad Protection estimates that it will take 20 seconds each way to pass through the field of the Regenerative Heat Exchangers.
- Ops estimates that it will take 5 minutes at the PCP seal area for the inspection.
- Ops estimates that it will take 20 minutes inside Containment including the transit time and the inspection time.
- Worker 1 and Worker 2 have accumulated 1700 mR and 1680 mR respectively so far this year.
- A pre-job brief has already been performed

Initiating Cue:

Your task is to determine if either Worker 1 or Worker 2 can perform this containment entry to inspect the P-50D PCP seal area, and to report the total accumulated dose each worker would have if they performed the inspection.

EVALUATION CHECKLIST

Task Standard:

The applicant will determine that Worker 1 should receive 317.5 mR during this job which will result in him/she exceeding the allowable annual dose limit of 2000 mR. The applicant will also determine that Worker 2 will not exceed the annual dose limit imposed by the plant.

TASKS:

STANDARDS: RESULTS:

Start Time: _____

1) Calculate dose received passing through Regen Hx radiation field. (9000mR/hr)(1hr/3600s)(20s/trip)(2trips)=100 mR	Calculate dose received to be 50 mR for each time the Regen Hx is passed for a total of 100 mR per worker (once going to the PCP and once coming back from PCP after inspection).	S / U
2) Calculate dose received near P-50D PCP (2600 mR/hr)(5 m)(1hr/60m) = 217 mR	Calculate dose received to be 217 mR per worker at PCP for the inspection.	S / U
3) Calculate dose received for transit inside containment (<2 mR/hr)(15 m)(1 hr/60m) = < 0.5 mR	Calculate dose received to be < 0.5 mR per worker for transit time within cnmt.	S / U
 4) Calculate total dose received by each worker during inspection 100mR + 217mR + 0.5mR = 317.5 mR 	Calculate total dose received by each worker during inspection of 317.5mR	S / U
5) Calculate total dose each worker has accumulated. Worker 1 317.5mR + 1700mR = 2017.5mR Worker 2 317.5mR + 1680mR = 1997.5mR	Calculates accumulated dose received after inspection to be 2017.5mR and 1997.5mR	S / U

*6) Determine that the annual admin dose limit will be exceeded by Worker 1 but not be Worker 2 Determines Worker 1 will exceed annual dose limit if allowed to perform inspection 2017.5mR > 2000mR

Cue: Is there any way possible for worker 1 to complete this task?

7) Informs the Shift Manager that the admin dose limit would be exceeded by one of the workers but not by the other Informs the Shift Manager that the admin dose limit would be exceeded by one of the workers but not by the other. A dose extension will have to be obtained to allow Worker 1 to perform this task. No extension necessary for Worker 2. S / U

STOP TIME: _____

_

Terminate JPM when Shift Manager has been informed of dose assessment.

CRITICAL ELEMENTS: Critical Elements are denoted with an asterisk (*) before Element number.

GENERAL REFERENCES:

- 1. Palisades Health Physics Procedure 11.1, Processing RWP's and ALARA Reviews
- 2. 10 CFR 20
- 3. Survey Map of path taken to P-50D

GENERAL TOOLS AND EQUIPMENT:

None

COMMENTS:

The conditions under which this task is to be performed are as follows:

- A power reductions to 10% has been performed.
- The Shift Manager has directed you to determine if either Worker 1 or Worker 2 can perform a containment entry to inspect the D Primary Coolant Pump, P-50D, seal area for leakage.
- The transit route dose rate is < 2 mR/hr except as noted on the provided survey maps.
- Rad Protection has determined the lowest dose route is that which is marked on the survey maps.
- Rad Protection estimates that it will take 20 seconds each way to pass through the field of the Regenerative Heat Exchangers.
- Ops estimates that it will take 5 minutes at the PCP seal area for the inspection.
- Ops estimates that it will take 20 minutes inside Containment including the transit time and the inspection time.
- Worker 1 and Worker 2 have accumulated 1700 mR and 1680 mR respectively so far this year.
- A pre-job brief has already been performed

Initiating Cue:

Your task is to determine if either Worker 1 or Worker 2 can perform this containment entry to inspect the P-50D PCP seal area, and to report the total accumulated dose each worker would have if they performed the inspection. Administrative Job Performance Measure

Emergency Plan

Knowledge of Emergency Action Level Thresholds & Classifications

(THIS JPM WITHHELD FROM ADAMS PACKAGE FOR SECURITY REASONS)

Control Room Systems

Job Performance Measure

Reactivity Control

TITLE: Initiate Emergency Manual Boration due to multiple stuck Control Rods				
Evaluation Location:	Simulator <u>X</u>	_ Control Room	Plant	Classroom
Projected Time: <u>10 N</u>	Min.			
Alternate Path				
Time Critical				

Date:	Trainee:
Evaluator:	
JPM Performance: Satisfactory	Unsatisfactory
Evaluator Comments:	

The following plant conditions exist:

- Reactor Tripped from 100% power.
- Emergency Operating Procedure EOP-1.0, Standard Post Trip Recovery procedure is in progress
- Five Control Rods <u>did not</u> fully insert into the core following the Rx Trip
- Bus 1D is not available due to a bus fault

Initiating Cue:

The Control Room Supervisor has directed you to Emergency Borate per step 1.c.1 of EOP-1.0, Standard Post Trip Recovery procedure using SOP-2A, Chemical and Volume Control System procedure.

EVALUATION CHECKLIST

Task Standard:

The applicant will establish Gravity Feed to the suction of the operating charging pumps per SOP-2A Attachment 14 Emergency Manual Boration.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
*1) Obtain a copy of SOP-2A, Chemical and Volume Control System procedure Attatchment 14 Emergency Manual Boration.	When applicant indicates where to find current copy of procedure provide a copy of SOP-2A, Chemical and Volume Control System procedure Attatchment 14 Emergency Manual Boration.	S / U
2) Step 1.0 Ensure charging flow is > 33 gpm.	Ensure charging flow is > 33 gpm	S / U

3) Step 2.a Determine that Bus 1D is not available and that Boric Acid Pumps are unavailable	Determine that Bus 1D is not available and that Boric Acid Pumps are unavailable	S / U
4) Step 2.b Determine that Bus 1C is Energized and that Gravity Feed can be established	Determine that Bus 1C is Energized and that Gravity Feed can be established	S / U
*5) Step 2.b.1 Open the following Boric Acid Tank Gravity Feed Isol Valves MO-2169 MO-2170	Open the following Boric Acid Tank Gravity Feed Isol Valves MO-2169 MO-2170	S / U
*6) Step 2.b.2 Close the Boric Acid Blender Outlet Control Valve CV-2155	Close the Boric Acid Blender Outlet Control Valve CV-2155	S / U
*7) Step 2.b.3 Close the VCT Outlet Isol Valve MO-2087	Close the VCT Outlet Isol Valve MO-2087	S / U
8) Step 2.b.4 Verify Closed SIRW Tank to Charging Pump Isol Valve MO-2160	Verify Closed SIRW Tank to Charging Pump Isol Valve MO- 2160	S / U
9) Step 2.b.5 is not applicable because Y01 is energized	Step 2.b.5 is not applicable because Y01 is energized	S / U
10) Step 2.b.6 Verify Charging Flow is > 33 gpm as indicated by FIA-0212, Charging Line Flow Indicator Alarm	Verify Charging Flow is > 33 gpm as indicated by FIA-0212, Charging Line Flow Indicator Alarm	S / U

Cue: "45 minutes have elapsed and the CRS directs you to secure Emergency Boration per EOP Supplement 40, Charging Pump Suction Alignment"

Cue: When Applicant indicates that he needs to swap charging pumps state that "Another Operator will complete that task and indicate the JPM is complete		
15) Step 1.5 Operate each Charging Pump for at least five minutes start a non- running charging pump per SOP-2A, Chemical and Volume Control System procedure.	Operate each Charging Pump for at least five minutes start a non-running charging pump per SOP-2A, Chemical and Volume Control System procedure.	S / U
14) Step 1.4 Verify Closed Charging Pumps Suction from SIRWT MO-2160	Closed Charging Pumps Suction from SIRWT MO-2160	S / U
13) Step 1.3 Close the Boric Acid Pump Feed Valve MO-2140 and Gravity Feed Valves MO-2169 & MO-2170	Close the Boric Acid Pump Feed Valve MO-2140 and Gravity Feed Valves MO-2169 & MO-2170	S / U
12) Step 1.2 is not applicable since neither Boric Acid Pumps are running	Step 1.2 is not applicable since neither Boric Acid Pumps are running	S / U
11) Step 1.1 of EOP Supplement 40 Open Charging Pumps Suction VCT Outlet Valve MO-2187	Open Charging Pumps Suction VCT Outlet Valve MO-2187	S / U

STOP TIME: _____

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

- 14. SOP-2A, Chemical and Volume Control System procedure Attachment 14
- 15. SOP-2A, Chemical and Volume Control System procedure

GENERAL TOOLS AND EQUIPMENT:

COMMENTS:

The following plant conditions exist:

- Reactor Tripped from 100% power.
- Emergency Operating Procedure EOP-1.0, Standard Post Trip Recovery procedure is in progress
- Five Control Rods <u>did not</u> fully insert into the core following the Rx Trip
- Bus 1D is not available due to a bus fault

Initiating Cue:

The Control Room Supervisor has directed you to Emergency Borate per step 1.c.1 of EOP-1.0, Standard Post Trip Recovery procedure using SOP-2A, Chemical and Volume Control System procedure.

Control Room Systems

Job Performance Measure

Primary Coolant System Inventory Control

TITLE: Establish the Containment Sump as the ECCS suction source following a Large Break Loss of Coolant Accident			
Evaluation Location: Simulator X Control Room Plant Classroom			
Projected Time: <u>20 Min.</u>			
Alternate Path X			
Time Critical			

Date:	Trainee:
Evaluator:	
JPM Performance: Satisfactory	Unsatisfactory
Evaluator Comments:	

:The following plant conditions exist:

- A Large Break Loss of Coolant Accident has occurred
- SIRWT level is at 3% and decreasing
- PRE-RAS Actions have been performed

Initiating Cue:

The Control Room Supervisor has tasked you with performing the POST-RAS Actions associated with EOP Supplement 42 step 2.0.

EVALUATION CHECKLIST

Task Standard:

The applicant will demonstrate the ability to obtain and use EOP Supplement 42, POST-RAS Actions to re-align the ECCS flow paths to the Containment Sump.

TASKS:	STANDARDS:	RESULTS:	
Start Time:			
*1) Obtain a copy of EOP Supplement 42, POST-RAS Actions	When applicant indicates where to find current copy of procedure provide a copy EOP Supplement 42		S / U
*2) When SIRWT level lowers to < 2% perform step 2 of EOP Supplement 42, POST- RAS Actions	Start Step 2 of EOP Supplement 42, POST- RAS Actions when SIRWT is <2%		S / U

*3) Step 1a Ensure Both LPSI Pumps trip	LPSI P-67B must be manually tripped . P- 67A trips automatically	S / U
4) Step 1b Check Open Both Containment Sump Isolation Valves CV-3030 CV-3029	CV-3030 does not auto OPEN but CV-3029 is Open	S / U
*5) Step 1.b.1)a) Stop the following pumps: P-66B HPSI Pp P-54B CS Pp P-54C CS Pp	Stop the following pumps: P-66B HPSI Pp P-54B CS Pp P-54C CS Pp	S / U
6) Step 1.b.1)b) Check Closed Containment Spray Valve CV-3001	CV-3001 closed automatically	S / U
7) Step 1c Ensure Both SIRWT Isolation Valves Close: CV-3031 CV-3057	Both SIRWT Isolation Valves Close automatically CV-3031 CV-3057	S / U
8) Step 1d Ensure Both SI pump Minimum Flow Stop Valves are Closed CV-3027 CV-3056	Both SI pump Minimum Flow Stop Valves are Closed CV-3027 CV-3056	S / U
9) Step 1e Ensure Both CCW Hx SW outlet valves Open: CV-0826 CV-0823	CV-0826 is Open CV-0823 is Open	S / U

10) Step 1f Ensure Both CCW Hx TCV's Closed: CV-0822 CV-0821	Both CCW Hx TCV's Closed: CV-0822 CV-0821	S / U
11) Step 1g.1 Ensure at least 1 CS pump operating for each operating HPSI	Check that CS Pp P- 54A and HPSI Pp P- 66A are operating	S / U
12) Step 1g.2 Open HPSI Subcooling Valve for operating HPSI Pp	Verify Open CV-3071 HPSI Subcooling Valve for P-66A	S / U
13) Step 1.h If any HPSI pump is operating with HPSI subcooling valve closed, then stop pump	No action required	S / U
14) Step 1i.1 If only 1 CS Pp is operating Ensure only 1 HPSI Pp is operating	Check that CS Pp P- 54A and HPSI Pp P- 66A are operating	S / U
*15) Step 1i.2 Place HS-3001C to Bypass (key 397)	Place HS-3001C to Bypass (key 397)	S / U
16) Ensure CV-3001 Closed	Ensure CV-3001 Closed	S / U
17) Inform CRS that CV-3030 is closed and ask if he would like it Opened	Inform CRS that CV- 3030 is closed	S / U
Cue: Attempt to Open CV-3030		
*18) Step 1j.1a Perform the following to Open CV-3030. Place HS- 3001C in Bypass (key 397).	To Open CV-3030. Place HS-3001C in Bypass (key 397).	S / U

19) Step 1j.1b Ensure HS-3001A in Closed position	Ensure HS-3001A in Closed position.	S / U
*20) Step 1j.1c Place HS-3030A to Open position (key 147)	Place HS-3030A to Open position (key 147) Valve CV-3030 opens	S / U
21) Inform CRS that CV-3030 is Open and ask if he wants additional CS or HPSI pumps running?	Inform CRS that CV- 3030 is Open and ask if he wants additional CS or HPSI pumps running?	S / U

CUE: As CRS state that CV-3030 is Open but another NCO will start additional CS and HPSI pumps.

Terminate JPM when applicant indicates that he has informed the Control Room Supervisor of the fact that CV-3030 is open and asks if additional CS or HPSI pumps should be started.

STOP TIME: _____

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

8. Palisades Emergency Operating Procedure Supplement 42, Pre and Post RAS Actions

GENERAL TOOLS AND EQUIPMENT:

None

COMMENTS:

The following plant conditions exist:

- A Large Break Loss of Coolant Accident has occurred
- SIRWT level is at 3% and decreasing
- PRE-RAS Actions have been performed

Initiating Cue:

The Control Room Supervisor has tasked you with performing the POST-RAS Actions associated with EOP Supplement 42 step 2.0.

Control Room Systems

Job Performance Measure

Rx Pressure Control

TITLE: Swap Pressurizer Pressure Control channels
Evaluation Location: Simulator <u>X</u> Control Room Plant Classroom
Projected Time: <u>10 Min.</u>
Alternate Path X
Time Critical

Date:	Trainee:
Evaluator:	_
JPM Performance: Satisfactory	Unsatisfactory
Evaluator Comments:	

:The following plant conditions exist:

- Steady state 100% power
- Pressurizer Pressure Controller PIC-0101B is selected and is in AUTO
- Pressurizer Pressure Controller PIC-0101A is in MANUAL at 50% demand

Initiating Cue:

The Control Room Supervisor has asked you to switch Pressurizer Pressure Controllers per SOP-1A for normal rotation of controllers.

EVALUATION CHECKLIST

Task Standard:

The applicant will demonstrate the ability to locate and obtain the appropriate copy of SOP-1A, Primary Coolant System procedure for switching Pressurizer Pressure Control Channels. The applicant will then use SOP-1A, Primary Coolant System procedure to switch Pressurizer Pressure Controlling Channels. During the evolution the applicant shall recognize the failure of PIC-0101A failing high by observing it's output signal going off-scale high. The applicant will then switch PZR Pressure Channel back to PIC-0101B.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
*1) Obtain a copy of SOP-1A, Primary Coolant System procedure	When applicant indicates where to find current copy of procedure provide a copy of SOP-1A, Primary Coolant System	S / U
*2) Determine that Section 7.2.2.3 of SOP- 1A should be use to alternate Pzr Press Controllers	Review Section 7.2.2 Pzr Press Control and determine section 7.2.2.3 needs to be performed	S / U

3) Step 3a Verify PIC- 0101A is in MANUAL	Verify PIC-0101A is in MANUAL	S / U
4) Step 3b Adjust output signal on PIC- 0101A to match output signal on PIC-0101B	Adjust output signal on PIC-0101A to match output signal on PIC- 0101B for bumpless transfer	S / U
*5) Step 3c Place selector switch 1/PRC- 0101 to PIC-0101A	Place selector switch 1/PRC-0101 to PIC- 0101A	S / U
CUE: If asked, state that AUTO CONTROL IS DESIRED		
6) Step 3.d.1 Ensure Pzr Htr Control Channel Selector Switch in CHAN A & B	Ensure Pzr Htr Control Channel Selector Switch in CHAN A & B	S / U
*7) Step 3.d.2 Ensure PIC-0101A setpoint set at desired PCS pressure	Ensure PIC-0101A setpoint set at desired PCS pressure	S / U
*8) Step 3.d.3 Adjust PIC-0101A output to match indicated Pzr Press (red pointer) with setpoint press. (Blue pointer)	Adjust PIC-0101A output to match indicated Pzr Press (red pointer) with setpoint press. (Blue pointer)	S / U
*9) Step 3.d.4 Depress the 'A' pushbutton on PIC-0101A to place it in AUTO	Depress the 'A' pushbutton on PIC- 0101A to place it in AUTO	S / U

10) Step 3e Place PIC-0101B in MANUAL with 50% output signal Place PIC-0101B in MANUAL with 50% output signal

NOTE: When PIC-0101A is placed in AUTO control, after approx. 10 seconds, its output will slowly start to fail high (to 100% output). This will cause Pzr Press to decrease (sprays open, heaters turn off).

*11) Applicant should recognize the failure by observing the output of PIC- 0101A failing high. Pzr Press. Off Normal Hi-Lo alarm will also alert Applicant of the problem	Place PIC-0101A back to MANUAL and reduce controller output to restore Pzr Press to 2060 psig	S / U
12) Inform CRS of the problem with PIC-0101A and recommend switching back to PIC-0101B	Inform CRS of the problem with PIC-0101A and recommend switching back to PIC-0101B	S / U
Cue: Control Room Supervisor direc	ts the Reactor Operator to restore PIC-0101B to A	utomatic
13) Step 3a Verify PIC-0101B is in MANUAL	Verify PIC-0101B is in MANUAL	S / U
*14) Step 3b Adjust output signal on PIC-0101B to desired output	Adjust output signal on PIC-0101B to desired output	S / U
*15) Step 3c Place selector switch 1/PRC-0101 to PIC-0101B	Place selector switch 1/PRC-0101 to PIC-0101B	S / U
CUE: IF ASKED STATE THAT AUTO CONTROL IS DESIRED		

CUE: If asked Direct RO to place PZR Htr control channel selector switch in Channel B

16) Step 3.d.1 Ensure Pzr Htr Control Channel Selector Switch in CHAN B	Ensure Pzr Htr Control Channel Selector Switch in CHAN B	S / U
*17) Step 3.d.2 Ensure PIC- 0101B setpoint set at desired PCS pressure	Ensure PIC-0101B setpoint set at desired PCS pressure	S / U
*18) Step 3.d.3 Adjust PIC- 0101B output to match indicated Pzr Press (red pointer) with setpoint press. (Blue pointer)	Adjust PIC-0101B output to match indicated Pzr Press (red pointer) with setpoint press. (Blue pointer)	S / U
*19) Step 3.d.4 Depress the 'A' pushbutton on PIC- 0101B to place it in AUTO	Depress the 'A' pushbutton on PIC-0101B to place it in AUTO	S / U

Terminate JPM when applicant indicates that he has informed the Control Room Supervisor of the problem with PIC-0101A.

STOP TIME: _____

CRITICAL ELEMENTS:

Critical Elements are denoted with an asterisk (*) before the element number.

GENERAL REFERENCES:

- 7. Palisades System Operating Procedure SOP-1A, Primary Coolant System
- 2. Palisades Alarm Response Procedure ARP-4, Pressurizer Pressure Off Normal Hi-Lo

GENERAL TOOLS AND EQUIPMENT:

COMMENTS:

Critical elements of this JPM were determined to be the selection of the correct procedure to accomplish the task and placing the PIC-0101A control back to MANUAL following the failure.

The following plant conditions exist:

- Steady state 100% power
- Pressurizer Pressure Controller PIC-0101B is selected and is in AUTO
- Pressurizer Pressure Controller PIC-0101A is in MANUAL at 50% demand

Initiating Cue:

The Control Room Supervisor has asked you to switch Pressurizer Pressure Controllers per SOP-1A due to normal rotation of the controllers.

Control Room Systems

Job Performance Measure

Heat Removal From Rx Core

TITLE: Initiate Shutdown Cooling of the Primary Coolant System per SOP-3, Safety Injection and Shutdown Cooling System procedure.
Evaluation Location: Simulator X Control Room Plant Plant
Projected Time: 20 Min.
Alternate Path
Time Critical

Date:		Trainee:
Evaluator:		
JPM Performance:	Satisfactory	Unsatisfactory
Evaluator Comments: _		

The following plant conditions exist:

- PCS Pressure is 270 psia.
- PCS Temperature is 290°F.
- Step 7.3.2 of SOP-3, Safety Injection and Shutdown Cooling System procedure is in progress with steps completed through 7.3.2.gg. P-67A has just been shutdown after running for 15 minutes.
- PCP P-50B & C are running to provide mixing flow.

Initiating Cue:

The Control Room Supervisor has asked you to take over SOP-3, Safety Injection and Shutdown Cooling System procedure at step 7.3.2.hh and commence cooling the PCS at a rate of 50°F/Hr. The CRS is obtaining the heat-up / cooldown rates for surveillance PO-2, PCS Heatup/Cooldown Operation. PCS temperature has been constant for the last 1 hour.

EVALUATION CHECKLIST

Task Standard:

The applicant will demonstrate the ability to obtain and use SOP-3, Safety Injection and Shutdown Cooling System procedure to establish shutdown cooling system operation.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
*1) Obtain a copy of SOP-3, Safety Injection and Shutdown Cooling System procedure	When applicant indicates where to find current copy of procedure provide a copy of SOP-3, Safety Injection and Shutdown Cooling System procedure	S / U
*2) Start the P-67B LPSI pump per step 7.3.2.hh	Start the P-67B LPSI pump	S / U

CUE: When P-67B pump parameters have stabilized state that '15 minutes have elapsed'

 *3) 7.3.2.ii SLOWLY OPEN the remaining LPSI injection valves to establish the following: 1) Total LPSI flow of 3600- 4000gpm 2) Balanced flow between all four injection legs approx. 950 gpm 	 OPEN the remaining LPSI injection values to establish the following: 1) Total LPSI flow of 3600-4000gpm 2) Balanced flow between all four injection legs approx. 950 gpm 	S / U
*4) 7.3.2.jj PLACE HS- 3025A shutdown cooling flow control in MANUAL (key 97)	PLACE HS-3025A shutdown cooling flow control in MANUAL (key 97)	S / U
 *5) 7.3.2.kk SLOWLY OPEN CV-3025, SDC Hx outlet to pressurize the SDC Hx's while observing the following: PZR level SDC Hx inlet pressure LPSI pump discharge pressure 	OPEN CV-3025, SDC Hx outlet to pressurize the SDC Hx's	S / U
*6) 7.3.2.ll CLOSE CV- 3025 when PZR level stabilizes	CLOSE CV-3025 when PZR level stabilizes by setting HIC-3025A to Manual at 0%	S / U
*7) 7.3.2.mm OPEN CV- 3055, SDC Hx Inlet (key 102)	OPEN CV-3055, SDC Hx Inlet (key 102)	S / U

 *8) 7.3.2.nn OPERATE CV-3006, SDC Hx Bypass Valve as follows: 1. CHECK FIC-0306 in MANUAL with 0% output signal (full open) 2. PLACE CV-3006 keyswitch to AUTO (key 94) 3. ADJUST FIC-0306 to establish a flow rate of 3400-3600 gpm. 	 OPERATE CV-3006 as follows: 1. CHECK FIC-0306 in MANUAL with 0% output signal (full open) 2. PLACE CV-3006 keyswitch to AUTO (key 94) 3. ADJUST FIC-0306 to establish a flow rate of 3400-3600 gpm. 	S / U
9) 7.3.2.00 REQUEST Chemistry to sample the PCS for Boron	REQUEST Chemistry to sample the PCS for Boron	S / U
CUE: 'Chemistry will sample the PCS for boron concentration'.		
*10) 7.3.2.pp CLOSE CV- 3031 (key 149) and CV- 3057 (key 150) SI Pump Suction SIRWT Valves and PLACE Caution Tags on keyswitches	CLOSE CV-3031 (key 149) and CV-3057 (key 150) SI Pump Suction SIRWT Valves and PLACE Caution Tags on keyswitches	S / U
*11) 7.3.2.qq PLACE LPSI pump trip on Low Level in SIRWT handswitches to DEFEAT P-67A key 154 P-67B key 155	PLACE LPSI pump trip on Low Level in SIRWT handswitches to DEFEAT P-67A key 154 P-67B key 155	S / U

CUE: 'This completes this JPM'

STOP TIME: _____

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

8. Palisades System Operating Procedure SOP-3, Safety Injection and Shutdown Cooling System procedure

GENERAL TOOLS AND EQUIPMENT:

COMMENTS:

The following plant conditions exist:

- PCS Pressure is 270 psia
- PCS Temperature is 290°F
- Step 7.3.2 of SOP-3, Safety Injection and Shutdown Cooling System procedure is in progress with steps completed through 7.3.2.gg. P-67A has just been shutdown after running for 15 minutes.
- PCP P-50B & C are running to provide mixing flow

Initiating Cue:

The Control Room Supervisor has asked you to take over SOP-3, Safety Injection and Shutdown Cooling System procedure at step 7.3.2.hh and commence cooling the PCS at a rate of 50°F/Hr. The CRS is obtaining the heat-up / cooldown rates for surveillance PO-2, PCS Heatup/Cooldown Operation. PCS temperature has been constant for the last 1 hour.

Control Room Systems

Job Performance Measure

Containment Integrity

TITLE: Alignment of Containment Air Coolers following fan maintenance.			
Evaluation Location: Simulator <u>X</u> Classroom	Control Room Plant		
Projected Time: <u>15 Min.</u>			
Alternate Path <u>X</u> New RCA	X Modified		
Low Power Emergency	Bank		
Time Critical			

Date:	Trainee:
Evaluator:	
JPM Performance: Satisfactory	Unsatisfactory
Evaluator Comments:	

The following plant conditions exist:

- Steady State 100% power
- VHX-1 Cooling Fans V-1A and V-1B are Off with Service Water isolated.
- VHX-4 Cooling Fans V-4A and V-4B are Off with Service Water isolated.
- All Outlet Bypass Valves are properly aligned.

Initiating Cue:

The Control Room Supervisor has directed you to restore the Containment Air Cooling System to its normal alignment.

EVALUATION CHECKLIST

Task Standard:

The applicant will demonstrate the ability to obtain a copy of SOP-5, Contaiment Air Cooling and Hydrogen Recombiner System procedure and use it to restore the Contaiment Air Cooling System to operation. The applicant will note low Service Water pressure and start a third Service Water Pump.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
*1) Obtain a copy of SOP-5, Contaiment Air Cooling and Hydrogen Recombiner System procedure section 7.1.1.	When applicant indicates where to find current copy of procedure provide a copy of SOP-5, Contaiment Air Cooling and Hydrogen Recombiner System section 7.1.1	S / U

CUE: If asked to start a third Service Water Pump state that 'If possible operate with two Service Water Pumps'.

Note: Order of valve alignment is not critical nor is order of fan starts

2) For VHX-4 Verify Open High Capacity Inlet Valve CV-0869

Verify Open High Capacity Inlet Valve CV-0869 S / U

Service Water Pump discharge pressure has been setup low and will decrease when high capacity valves are opened.

*3) For VHX-4 Open High Capacity Outlet Valve CV- 0867	Open High Capacity Outlet Valve CV-0867	S / U
4) For VHX-1 Verify Open High Capacity Inlet Valve CV-0862	Verify Open High Capacity Outlet Valve CV-0862	S / U
*5) For VHX-1 Open High Capacity Outlet Valve CV- 0861	Open High Capacity Outlet Valve CV-0861	S / U
*6) Monitor Service Water Header Pressure and determine that Service Water system pressure is < 55 psig	Determine that the Standby Service Water Pump P-7C needs to be started because system pressure decreased to < 55 psig	S / U
7) Obtain SOP-15 Service Water Pump procedure	Obtain SOP-15 Service Water Pump procedure	S / U
8) Notify Chemistry to recalculate mixing basin discharge flow volume.	Notify Chemistry to recalculate mixing basin discharge flow volume.	S / U
CUE: CRS will notify Chemistry of P-7C start so they can recalculate mixing basin discharge flow volume.		
*9) Dispatch AO to OPEN P- 7C discharge valve MV- SW104 and Check P-7C motor oil levels.	Dispatch AO to OPEN P-7C discharge valve MV-SW104 and Check P-7C motor oil levels.	S / U
CUE: MV-SW104 is Open and P-7C motor oil levels		

are normal.

10) REMOVE P-7C from standby by placing Control Switch to TRIP	REMOVE P-7C from standby by placing Control Switch to TRIP	S / U
*11) START P-7C to increase Service Water Header Pressure.	START P-7C to increase Service Water Header Pressure	S / U
CUE: AO states that 'Local discharge pressure is 73 psig and packing leakoff is not excessive'.		
12) Verify Service Water Header Pressure increases to > 55psig	Verify Service Water Header Pressure increases to > 55psig	S / U
*13) For VHX-1 Start fan V- 1A	Start fan V-1A	S / U
*14) For VHX-1 Start fan V- 1B	Start fan V-1B	S / U
*15) For VHX-4 Start V-4A	Start fan V-4A	S / U
*16) For VHX-4 Start V-4B	Start fan V-4B	S / U

STOP TIME: _____

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

9. Palisades System Operating Procedure SOP-5, Containment Air Cooling and Hydrogen Recombiner procedure

GENERAL TOOLS AND EQUIPMENT:

COMMENTS:

The following plant conditions exist:

- Steady State 100% power
- VHX-1 Cooling Fans V-1A and V-1B are Off with Service Water isolated.
- VHX-4 Cooling Fans V-4A and V-4B are Off with Service Water isolated.
- All Outlet Bypass Valves are properly aligned.

Initiating Cue:

The Control Room Supervisor has directed you to restore the Containment Air Cooling System to its normal alignment.

Control Room Systems

Job Performance Measure

Electrical

TITLE: Transfer Electrical Power Source from Startup Power to Safeguards/Station Power.		
Evaluation Location: Simulator <u>X</u> Control Ro	om Plant	
Projected Time: <u>10 Min.</u>		
Alternate Path New X	Modified	RCA
Low Power Emergency Bank		
Time Critical		

\downarrow
╞
┢
+

The plant is operating at 100% reactor power with all systems aligned for normal operation.

Initiating Cue:

The Control Room Supervisor has directed you to transfer the power supply for buses 1C, 1D, & 1E from Startup Power to Safeguards/Station Power.

EVALUATION CHECKLIST

Task Standard:

The applicant will use SOP-30, Station Power procedure to transfer power supply for buses 1C, 1D, & 1E from Start-up Power to Safeguards/Station Power.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
*1) Obtain a copy of SOP-30, Station Power procedure	When applicant indicates where to find current copy of procedure provide a copy of SOP-30, Station Power	S / U
2) Check Safeguards/Station Power supply Bkr's 152- 401 & 152-402 aligned per Section 7.2.3 or 7.2.4	Review Sections 7.2.3 & 7.2.4 and check Bkr alignments	S / U
CUE: Breaker 152-401 is Closed & Breaker 152-402 is Open	k l	
3) Check bus 1C, 1D, & 1E control power lamps LIT	Check bus 1C, 1D, & 1E control power lamps LIT	S / U
4) Check Startup XFMR UV aux. relays 127X-5 and 127X-6 reset.	Check Startup XFMR UV aux. relays 127X-5 and 127X-6 reset.	S / U
5) Check Station Power XFMR 1-2 trouble lamp functional.	Check Station Power XFMR 1-2 trouble lamp functional	S / U

6) Check voltage on Safeguards Bus approximately 2400 V	Check voltage on Safeguards Bus approximately 2400 V	S / U
7) Direct AO to Check all relays cut in and targets reset on bus and feeder breakers for: Bus 1C Bus 1D Bus 1E	Direct AO to Check all relays cut in and targets reset on bus and feeder breakers for: Bus 1C Bus 1D Bus 1E	S / U
CUE: AO reports 'All relays cut in and targets reset on bus feeder Bkr's'		
*8) Scope and Close Safeguards/Station Power Incoming Brk for Bus 1C 152-105	Scope and Close Safeguards/Station Power Incoming Brk for Bus 1C 152-105	S / U
9) Verify Startup Power Incoming BKR Opens on Bus 1C 152-106	Verify Startup Power Incoming BKR Opens on Bus 1C 152-106	S / U
10) Verify White Springs Charged lamp lit for 152- 105	White Springs Charged lamp lit for 152-105	S / U
*11) Scope and Close Safeguards/Station Power Incoming Brk for Bus 1D 152-203	Scope and Close Safeguards/Station Power Incoming Brk for Bus 1D 152-203	S / U
12) Verify Startup Power Incoming BKR Opens on Bus 1D 152-202	Verify Startup Power Incoming BKR Opens on Bus 1D 152-202	S / U
13) Verify White Springs Charged lamp lit for 152-203	White Springs Charged lamp lit for 152-203	S / U
*14) Scope and Close Safeguards/Station Power Incoming Brk for Bus 1E 152-302	Scope and Close Safeguards/Station Power Incoming Brk for Bus 1E 152-302	S / U

15) Verify Startup Power Incoming BKR Opens on Bus 1E 152-303	Startup Power Incoming BKR Opens on Bus 1E 152-303.	S / U
16) Verify White SpringsCharged lamp lit for 152-302	White Springs Charged lamp lit for 152-302	S / U
17) When the buses have been transferred Place Startup Power Incoming BKR control switches momentarily to Trip to match targets 1C 152-106 1D 152-202 1E 152-302	When the buses have been transferred Place Startup Power Incoming BKR control switches momentarily to Trip to match targets 1C 152-106 1D 152-202 1E 152-302	S / U

STOP TIME: _____

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

5. Palisades System Operating Procedure SOP-30, Statio Power procedure

GENERAL TOOLS AND EQUIPMENT:

COMMENTS:

The plant is operating at 100% reactor power with all systems aligned for normal operation.

Initiating Cue:

The Control Room Supervisor has directed you to transfer the power supply for the 2400 V buses 1C, 1D, & 1E from Startup Power to Safeguards/Station Power.

Control Room Systems

Job Performance Measure

Plant Service Systems

TITLE: Initiate a Containment Purge per SOP-24, Ventilation and Air Conditioning System procedure.		
Evaluation Location: Simulator X Control Room Plant Plant		
Projected Time: 20 Min.		
Alternate Path X		
Time Critical		

Date:		Trainee:
Evaluator:		
JPM Performance:	Satisfactory	Unsatisfactory
Evaluator Comments: _		

The following plant conditions exist:

• The plant is in Mode 5 with the PCS vented to containment.

Initiating Cue:

The Control Room Supervisor has asked you to initiate a Containment Purge. The CRS has informed you that an AO has been briefed and is standing by awaiting your instructions. The CRS also informs you that the RGEM system is in operation per SOP-38, Gaseous Process Monitoring System.

EVALUATION CHECKLIST

Task Standard:

The applicant will initiate a Containment Purge using SOP-24, Ventilation and Air Conditioning System procedure. After the Containment Purge is started the running main exhaust fan V-6A will trip and V-6B will not start. As a result the release previously started should be isolated. The applicant will have to recognize this and take manual actions to isolate the Containment Purge manually.

TASKS:	STANDARDS:	RESUL	TS:
Start Time:			
*1) Obtain a copy of SOP- 24, Ventilation and Air Conditioning System procedure.	6.14 are met.	When ap indicates to find cu copy of procedu	where urrent
2) Notify the RETS/REMP		provide a	a copy
	inform Candidate that he doesn't need times of the release so that it can be reco		of SOP- 24, Venti
Supervisor or Duty HP to		and Air	lation
ensure requirements of HP		Conditio	ning
6.14, Containment Purge,		System	
are met.		procedui	re
		section 7	.2.5.
Cue: The Duty HP indicates that the requirements of HP		Notify th	ne

RETS/REMP Supervisor or Duty HP to ensure requirements of HP 6.14, Containment Purge, are met.

S / U

3) Ensure one Main Exhaust Fan operating	Ensure Main Exhaust Fan V-6A running	S / U
4) Ensure RGEM system is in operation per SOP-38, Gaseous Process Monitoring System.	RGEM system is in operation per SOP-38, Gaseous Process Monitoring System per initial conditions (from initiating cue)	S / U

Note: Applicant will call AO to verify the following valves are locked closed Cue: CRS indicates that these times have been logged.

5) Ensure the following Test Tap Valves are Locked Closed &Capped MV-VA506 MV-VA508 MV-VA505 CV-1807 (key 275) CV-1808 (key 277) CV-1813 (key 273) CV-1814 (key 276)

Ensure the following

Cue: AO Reports that MV-VA506, 508, & 505 are locked closed and capped

*6) INSERT key and OPEN the following Purge Supply and Exhaust Valves:

> CV-1805 (key 272) CV-1806 (key274)

7) Record the time the valves were opened in the Control Room Logbook Test Tap Valves are Locked Closed & Capped MV-VA506 MV-VA508 MV-VA505 INSERT key and OPEN the following Purge Supply and Exhaust Valves:

> CV-1805 (key 272) CV-1806 (key274) CV-1807 (key 275) CV-1808 (key 277) CV-1813 (key 273) CV-1814 (key 276)

Record the time the valves were opened in the Control Room Logbook

S / U

S / U

S / U

*8) Start Air Room Purge Supply Fan V-46

Note: After Purge Supply Fan is started, the V-6A main exhaust fan will trip and V-6B will not start which requires the cnmt purge to be manually terminated.		ip and V-6B
9) Exhaust Fan V-6A trips.	The Applicant refers to ARP-7, EK-1127, Main Exhaust Fan V-6A or B trip.	S / U
10) Per ARP-7, EK- 1127 directs starting standby main exhaust fan V-6B	V-6B will not auto or manually start.	S / U
*11) Per ARP-7, EK1127 secure any radioactive waste gas batch per SOP-18A & shutdown any plant ventilation air flow per SOP-24.	Secure any radioactive waste gas batch per SOP- 18A & shutdown any plant ventilation air flow per SOP-24.	S / U
12) Stop Air Room Supply Fan V-46	Stop Air Room Supply Fan V-46	S / U
*13) Manually CLOSE all OPEN Purge CIV's. The Applicant may use EOP Supplement 6, Cnmt Isolation as a guide CV-1805 (key 272) CV-1806 (key274) CV-1807 (key 275) CV-1808 (key 277) CV-1813 (key 273) CV-1814 (key 276)	Manually CLOSE all OPEN Purge CIV's CV-1805 (key 272) CV-1806 (key274) CV-1807 (key 275) CV-1808 (key 277) CV-1813 (key 273) CV-1814 (key 276)	S/U
Start Air Room Purge Supply Fan V-46	S / U	

Note: Candidate may start by securing other ventilation systems but stop JPM when Containment Purge is isolated.

STOP TIME:

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

- 2. Palisades System Operating Procedure SOP-24, Ventilation and Air Conditioning System.
- 2. Palisades Health Physics Procedure HP 6.14, Containment Purge.
- 3. Palisades System Operating Procedure SOP-38, Gaseous Process Monitoring System
- 4. Palisades Alarm and Response Procedure ARP-7, EK-1127 Main Exhaust Fan V-6A Trip

GENERAL TOOLS AND EQUIPMENT:

COMMENTS:

The following plant conditions exist:

• The plant is in Mode 5 with the PCS vented to containment.

Initiating Cue:

The Control Room Supervisor has asked you to initiate a Containment Purge. The CRS has informed you that an AO has been briefed and is standing by awaiting your instructions. The CRS also informs you that the RGEM system is in operation per SOP-38, Gaseous Process Monitoring System.

In-Plant

Job Performance Measure

Electrical

TITLE: Isolate and Locally Start 1-1 Emergency Diesel Generator			
Evaluation Location: Simulator Control Room Plant_X_ Classroom			
Projected Time: <u>30 Min.</u>			
Alternate Path			
Time Critical			

Date:	Trainee:
Evaluator:	_
JPM Performance: Satisfactory	Unsatisfactory
Evaluator Comments:	

The following plant conditions exist:

Start-up Transformer 1-2 is not available Safeguards Transformer 1-1 is Not available Fire in the Control Room damages Bus 1C load shed circuits Fire in the Control Room damaged 1-1 D/G control circuits 1-1 D/G is Not Operating

Initiating Cue:

Your task per the Control Room Supervisor and Step 5 of ONP-25.2, Alternate Safe Shutdown Procedure is to:

1. Locally Start the 1-1 D/G and energize 2400 VAC bus 1C per ONP-20 and, 2. Locally Close Breakers 152-103(Starting P-7B) and 152-108(Energizing LCC-13)

Contact the Control Room Supervisor **prior** to powering up any further equipment.

EVALUATION CHECKLIST

Task Standard:

The applicant will start and load the P-7B, Service Water Pump and LCC-13 onto the 1-1 D/G after the D/G has been isolated from the Control Room and Locally started per Section 4.3.2.a of ONP-20, Diesel Generator Manual Control.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
*1) Obtain a copy of ONP-	Obtain a copy of ONP-20,	S / U
20, Diesel Generator	Diesel Generator Manual	
Manual Control procedure.	Control procedure. (in room	
-	between diesel generator	
	rooms)	
*2) Step 4.3.2.a.1 Trip all	Applicant describes	S / U
breakers on Bus 1C	tripping Bkr's electrically	
electrically or mechanically.	by using handswitch or	
	mechanically using the	
Cue: (Opened electrically)	mechanical trip plunger	
The Green & if applicable,	located bottom center of the	
White status lights are lit	bkr inside the cubicle.	
& red light is not lit.		
(Opened mechanically)		
Bkr status flag reads		
OPEN.		

*3) Step 4.3.2.a.2 Remove Closing Circuit and Close and Trip Circuit Fuses for all Bkr's on Bus 1C EXCEPT 152-103(P-7B), 152-107(D/G 1-1), & 152- 108(Bus 13)	Applicant describes how to Remove Closing Circuit and Close and Trip Circuit Fuses for all Bkr's on Bus 1C EXCEPT 152-103(P- 7B), 152-107(D/G 1-1), & 152-108(Bus 13)	S / U
Cue: "The Bkr's fuse is removed"As each Bkr fuse is removed.		
*4) Step 4.3.2.a.3 Obtain the Remote-Local-Transfer Switch (RLTS) Handles from cubicle 152- 102(Dilution Water Pp)	Applicant describes where to Obtain the RLTS Handles. From cubicle 152- 102(Dilution Water Pp)	S / U
5) Step 4.3.2.a.4 Review Att 2 for effects of placing D/G 1-1 RLTS's in LOCAL position.	Review Att 2 for effects of placing D/G 1-1 RLTS switches in LOCAL position.	S / U
*6) Step 4.3.2.a.5 Isolate D/G 1-1 control circuits by Placing the RLTS's on D/G Exciter Control Panel (HS- C22-RLTS) and D/G 1-1 Engine Gauge Panel (HS- G20-RLTS) in LOCAL	Isolate D/G 1-1 control circuits by Placing HS-C22- RLTS and HS-G20-RLTS in LOCAL	S / U
Cue: HS-C22-RLTS and HS-G20-RLTS are in LOCAL		
*7) Step 4.3.2.a.6 Isolate Bkr Control Circuits by Placing the following RLTS's in LOCAL: HS-152-107RLTS (D/G 1-1) HS-152-103RLTS (P-7B) HS-152-108RLTS (Bus 13)	Isolate Bkr Control Circuits by Placing the following RLTS's in LOCAL: HS-152-107RLTS (D/G 1-1) HS-152-103RLTS (P-7B) HS-152-108RLTS (Bus 13) Cue: HS-152-107RLTS HS-152-103RLTS & HS-152-108RLTS are in Local	S / U

Remove the Close and Trip Circuit fuses for the following Bkr's: 152-107 D/G 1-1 152-103 P-7B 152-108 Bus 13	S / U
Verify Bkr status lights are lit for: 152-107 D/G 1-1 152-103 P-7B 152-108 Bus 13	S / U
Start D/G 1-1 by Placing Engine Control Switch on Local Gauge Board to START	S / U
Applicant will describe Closing D/G 1-1 Output Bkr 152-107 Locally.	S / U
	Circuit fuses for the following Bkr's: 152-107 D/G 1-1 152-103 P-7B 152-108 Bus 13 Verify Bkr status lights are lit for: 152-107 D/G 1-1 152-103 P-7B 152-108 Bus 13 Start D/G 1-1 by Placing Engine Control Switch on Local Gauge Board to START Applicant will describe Closing D/G 1-1 Output Bkr

*12) Step 4.3.2.a.11 Locally Close the Service Water Pump's Bkr 152-103 P-7B	Applicant will describe Closing the Service Water Pump Bkr 152-103	S / U
Cue: "Red and White Bkr status lights are lit and the Green Bkr status light is Out"		
*13) Step 4.3.2.a.11 Locally Close the Supply Bkr to Bus 13 152-108	Applicant will describeClosing the Supply Bkr toBus 13152-108.	S / U
Cue: "Red and White Bkr status lights are lit and the Green Bkr status light is Out"		
14) Step 4.3.2.a.12 Verify Service Water Header pressure is > 25 psig on PI- 1472 on D/G 1-1 Local Control Panel	Verify Service Water Header pressure is > 25 psig on PI- 1472 on D/G 1-1 Local Control Panel	S / U
Cue: "PI-1472 is reading 30 psig"		
15) Notify CRS the 1-1 D/G is running and Service Water Pump P-7B and Bus 13 are energized.	Notify CRS the 1-1 D/G is running and Service Water Pump P-7B and Bus 13 are energized.	S / U
STOP TIME:		

CRITICAL ELEMENTS: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

- 2. Palisades Off Normal Procedure ONP-20, Diesel Generator Manual Control
- 2. Palisades Off Normal Procedure ONP-25.2, Alternate Safe Shutdown Procedure

GENERAL TOOLS AND EQUIPMENT:

Electrical Safety should be utilized if manually closing Bkr's onto a live 2.4KV Bus

COMMENTS:

.

The following plant conditions exist:

- Start-up Transformer 1-2 is not available
- Safeguards Transformer 1-1 is Not available
- Fire in the Control Room damages Bus 1C load shed circuits
- Fire in the Control Room damaged 1-1 D/G control circuits
- 1-1 D/G is Not Operating

Initiating Cue:

Your task per the Control Room Supervisor and Step 5 of ONP-25.2, Alternate Safe Shutdown Procedure is to:

1. Locally Start the 1-1 D/G and energize 2400 VAC bus 1C per ONP-20 and,

2. Locally Close Breakers 152-103(Starting P-7B) and 152-108(Energizing

LCC-13)

Contact the Control Room Supervisor **prior** to powering up any further equipment.

In-Plant

Job Performance Measure

Plant Service Systems

TITLE: Line-up Fire Protection Water to Aux. Feedwater Pumps P-8A and P-8B.			
Evaluation Location: Classroom Projected Time:1		Control Room	Plant <u>X</u>
Alternate Path	New	Modified	RCA
Low Power	Emergency	Bank X	

Date:	Trainee:
Evaluator:	
JPM Performance: Satisfactory	Unsatisfactory
Evaluator Comments:	

The following plant conditions exist:

- Rx Trip has occurred
- Loss of All Feedwater has occurred
- Normal suction to Auxiliary Feedwater Pumps P-8A, P-8B, & P-8C is not available
- Condensate Storage Tank, T-2 is indicating 0% and the 'Condensate Storage Tank T-2 Hi-Lo Level' alarm is in on low level
- No Aux. Feedwater pumps are in operation

Initiating Cue:

Your task per the Control Room Supervisor and EOP-7, Loss of All Feedwater Recovery, is to align P-8A / P-8B suction to Fire Water per EOP Supplement 31, Section 2.0 starting at step 3 through step 10.

EVALUATION CHECKLIST

Task Standard:

The applicant will align Fire Protection Water to the P-8A and P-8B Auxiliary Feedwater Pumps using EOP Supplement 31, Supply AFW Pumps From Alternate Sources.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
*1) Obtain a copy of EOP	Obtain a copy of EOP	S / U
Supplement 31, Supply	Supplement 31, Supply	
AFW Pumps from Alternate	AFW Pumps from	
Sources	Alternate Sources	
*2) Step 2.3 Place K-8	Place K-8 Cooling Water 3-	S / U
Cooling Water 3-Way	Way Valve, MV-FW211 in	
Valve, MV-FW211 in	EMERGENCY position	
EMERGENCY position	(turn vlv handle fully	
(turn vlv handle fully	clockwise)	
clockwise)		

Cue: "Vlv handle is in the fully clockwise position"

3) Step 2.4 Verify TurbineBuilding Sump Pumps P-45A and P-45B areoperating to maintainexpected sump level	Verify Turbine Building Sump Pumps P-45A and P- 45B are operating to maintain expected sump level	S / U
Cue: If asked "1E Bus is energized & sump level is normal"		
4) Step 2.5 Unlock MV- FW775, AFW pumps Supply from Fire Protection System	Unlock MV-FW775, AFW pumps Supply from Fire Protection System	S / U
Cue: "MV-FW775 is unlocked"		
5) Step 2.6 Throttle Open MV-FW775 <u>until</u> water issues from AFW Pp Supply from FPS Leak Test Valve MV-FW504	Throttle Open MV-FW775 <u>until</u> water issues from AFW Pp Supply from FPS Leak Test Valve MV- FW504	S / U
Cue: "Water is coming out of MV-FW504"		
*6) Step 2.7 When water issues from MV-FW504 CLOSE MV-FW504	When water issues from MV-FW504 CLOSE MV- FW504	S / U
Cue: "MV-FW504 is closed"		
*7) Step 2.8 Open MV- FW775, AFW Pp Supply from FPS	Open MV-FW775, AFW Pp Supply from FPS	S / U
Cue: "MV-FW775 is Open"		
*8) Step 2.9 Unlock and Open MV-FW774 AFW Pp Supply from FPS	Unlock and Open MV- FW774 AFW Pp Supply from FPS	S / U
Cue: "MV-FW774 is Unlocked and Open"		

9) Step 2.10 Notify the CRS that P-8A / P-8B AFW Pps have Fire Protection System water aligned to them

Cue: Repeat back the notification and state that the JPM is complete Notify the CRS that P-8A / P-8B AFW Pps have Fire Protection System water aligned to them

STOP TIME: _____

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

- 11. Palisades Emergency Operating Procedure EOP-7, Loss of All Feedwater Recovery
- 2. Palisades Emergency Operating Procedure Supplement EOP-31, Supply AFW Pumps from Alternate Sources

GENERAL TOOLS AND EQUIPMENT:

1. Locked Valve Key

COMMENTS:

The following plant conditions exist:

- Rx Trip has occurred
- Loss of All Feedwater has occurred
- Normal suction to Auxiliary Feedwater Pumps P-8A, P-8B, & P-8C is not available
- Condensate Storage Tank, T-2 is indicating 0% and the 'Condensate Storage Tank T-2 Hi-Lo Level' alarm is in on low level
- No Aux. Feedwater pumps are in operation

Initiating Cue:

Your task per the Control Room Supervisor and EOP-7, Loss of All Feedwater Recovery, is to align P-8A / P-8B suction to Fire Water per EOP Supplement 31, Section 2.0 starting at step 3 through step 10.

In-Plant

Job Performance Measure

Containment Integrity

TITLE: M-69B Hydrogen Recombiner Start-up per SOP-5, Containment Air Cooling and Hydrogen Recombining System.			
Evaluation Location: Simulator Control Room Plant X_ Classroom			
Projected Time: <u>10 Min.</u>			
Alternate Path			
Time Critical			

Date:	Trainee:
Evaluator:	
JPM Performance: Satisfac	ctory Unsatisfactory
Evaluator Comments:	

The following plant conditions exist:

- A LOCA is in progress
- Containment Pressure is 24 psia
- All Containment Air Coolers and fans are in service in Emergency Mode
- Pre-Accident Containment temperature was 90°F

Initiating Cue:

The Control Room Supervisor is performing step 58 of EOP-4.0, Loss of Coolant Accident Recovery Procedure and he directs you to start the M-69B Hydrogen Recombiner per SOP-5, Containment Air Cooling and Hydrogen Recombining System. All initial conditions and Precautions and Limitations of SOP-5, Containment Air Cooling and Hydrogen Recombining System, are met.

EVALUATION CHECKLIST

Task Standard:

The applicant will start and running the M-69B Hydrogen Recombiner per SOP-5, Containment Air Cooling and Hydrogen Recombining System.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
Cue: If asked, another operator v	vill open MCC 9 Feeder Breaker 52-	-1304.
*1) Locate procedure SOP- 5, Containment Air Cooling and Hydrogen Recombining System.	Locate procedure SOP-5, Containment Air Cooling and Hydrogen Recombining System.	S / U
2) Step 7.2.1.a Ensure at least one safety related CAC fan is in service.	Ensure at least one safety related CAC fan is in service. All are in service per initial conditions.	S / U
Cue: If asked "All CAC's		
are in Emergency Mode" *3)Step 7.2.1.b CLOSE M- 69B Hydrogen Recombiner Bkr 52-176 Cue: "52-176 Indicates ON"	CLOSE M-69B Hydrogen Recombiner Bkr 52-176	S / U

4) Step 7.2.1.c.1 Verify Power Available lamp litCue: "Power Available light is lit"	Verify Power Available lamp lit on Hydrogen Recombiner control panel C-123	S / U
5) Step 7.2.1.c.2 Ensure Power Adjust knob is set at '000'	Ensure Power Adjust knob is set at '000'	S / U
Cue: "Power Adjust knob is set at '000'"		
*6) Step 7.2.1.c.3 Place Power Out Switch to ON position	Place Power Out Switch to ON position	S / U
Cue: "Power Out Switch is ON"		
7) Step 7.2.1.c.4 Verify Power Out Switch Red light lit.	Verify Power Out Switch Red light lit.	S / U
Cue: "Power Out Switch red light is lit"		
8) Step 7.2.1.c.5 Place Temp Channel Selector Switch to position 1, 2, or 3.	Place Temp Channel Selector Switch to position 1, 2, or 3.	S / U
Cue: "Temp ChannelSelectorSwitch isin position 1,2, or3"		
9) Step 7.2.1.d If Recombiner is being started for testing	Applicant determines that Recombiner is Not to be started for testing per initiating cue.	S / U
10) Step 7.2.1.e.1 Determine the following: Current Cnmt Pressure Previous Cnmt Temp.	From Initial Conditions: Cnmt Pressure is 24 psia Previous Cnmt temp 90°F	S / U

11) Step 7.2.1.e.2 Determine Recombiner Power setting using Att 1 of SOP-5 and parameters determined above for Cnmt Press & Cnmt Temp.	Applicant should determine power setting between 58 to 60 kw using 9 psig and 90°F	S / U
*12) 7.2.1.e.3.a Adjust Power Adjust knob in the clockwise direction until Recombiner power (as read on the kw power out meter) is between 58 to 60 kw	Adjust Power Adjust knob in the clockwise direction until Recombiner power (as read on the kw power out meter) is bewteen 58 to 60 kw	S / U
Cue: "Power Out meter is reading 59 kw"		
13) 7.2.1.e.3.b Commence monitoring Power Out meter on C-123	Commence monitoring Power Out meter on C-123	S / U
14) Step 7.2.1.e.3.c Adjust Power Adjust knob to maintain desired setting between 58 and 60 kw.	Adjust Power Adjust knob to maintain desired setting between 58 and 60 kw.	S / U
15) Step 7.2.1.e.4 Notify CRS that M-69B is in service and that the CR should commence sampling Cnmt hydrogen per SOP-38, Gaseous Process Monitoring System.	Notify CRS that M-69B is in service and that the CR should commence sampling Cnmt hydrogen per SOP-38, Gaseous Process Monitoring System.	S / U
Cue: Terminate JPM after the Applicant informs the CRS that the M-69B Hydrogen Recombiner is in service.		

STOP TIME: _____

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

- 10. Palisades Emergency Operating Procedure EOP-4, Loss of Coolant Accident Recovery
- 2. Palisades System Operating Procedure SOP-5, Containment Air Cooling and Hydrogen Recombining System

GENERAL TOOLS AND EQUIPMENT:

COMMENTS:

The following plant conditions exist:

- A LOCA is in progress
- Containment Pressure is 24 psia
- All Containment Air Coolers and fans are in service in Emergency Mode
- Pre-Accident Containment temperature was 90°F

Initiating Cue:

The Control Room Supervisor is performing step 58 of EOP-4.0, Loss of Coolant Accident Recovery Procedure and he directs you to start the M-69B Hydrogen Recombiner per SOP-5, Containment Air Cooling and Hydrogen Recombining System. All initial conditions and Precautions and Limitations of SOP-5, Containment Air Cooling and Hydrogen Recombining System, are met.

Control Room Systems

Job Performance Measure

Radioactivity Release

TITLE: Set up Radwaste Discharge Monitor RIA-1049 High Alarm Stepoint.				
Evaluation Location: Simulator X Control Room Plant Plant				
Projected Time: <u>30 Min.</u>				
Alternate Path				
Time Critical				

Date:	Trainee:
Evaluator:	
JPM Performance: Satisfactory	Unsatisfactory
Evaluator Comments:	

The **Initiating Cue:** Your task is to complete the release of Waste Gas Decay Tank T-101A.

EVALUATION CHECKLIST

Task Standard:

The applicant will complete the release of Waste Gas Decay Tank, T-101A, in accordance with SOP-18A, Radioactive Waste System - Gaseous.

TASKS:	STANDARDS:	RESULTS:
Start Time:		
*1) Obtain a copy of SOP- 18A, Radioactive Waste System - Gaseous procedure from the NCO.	Obtain a copy of SOP-18A, Radioactive Waste System - Gaseous procedure from the NCO.	S / U
2) Step 7.5.1 Ensure Closed CV-1113, Waste Gas Surge Tank Discharge (At C-40 panel using HS-1113 and position indicator lights).	Ensure Closed CV-1113, Waste Gas Surge Tank Discharge	S / U
Cue: CV-1113 is closed *3) Step 7.5.m Place in OPEN HS-1123, WGDT Discharge.	Place in OPEN HS-1123, WGDT Discharge	S / U

Cue: HS-1123 is in Open

1123 [°] high-r C-40.	p 7.5.n Reset CV- WGDT Discharge, adiation trip on Panel CV-1123 is Reset	Reset CV-1123 WGDT Discharge, high-radiation trip on Panel C-40. (Vlv indication will not change until it is opened in step 7.5.r)	S / U
1113 i by che	p 7.5.0 Ensure RE- is valved in correctly ecking the following in their Locked	Ensure RE-1113 is valved in correctly by checking the following valves in their Locked position:	S / U
Cue:	MV-WG117 Open MV-WG119 Open MV-WG118 Closed MV-WG114 Open MV-WG117 Open	MV-WG117 Open MV-WG119 Open MV-WG118 Closed MV-WG114 Open (Inside Vent Plenum on 590') (there should be a	
Close	MV-WG119 Open MV-WG118	locked valve program that can be used to verify positions)	
Close	MV-WG114 Open	positions)	
WG72	ep 7.5.p.1 Open MV- 26, Drain Trap DT- equalizing valve	Open MV-WG726, Drain Trap DT-1123 equalizing valve	S / U
*7) St	MV-WG726 is Open ep 7.5.p.2 Close MV- 21, DT-1123 Bypass	Close MV-WG721, DT- 1123 Bypass Valve (C-50 Comp Rm)	S / U
	MV-WG721 is		
· ·	d ep 7.5.p.3 Close MV- 35, N_2 Purge Isolation	Close MV-WG735, N ₂ Purge Isolation (C-50 Comp Rm)	S / U
Cue:	MV-WG735 is	,	
*9) St outlet be rele Open	ep 7.5.q Open WGDT valve for the tank to eased T-101A. MV-CA367, T-101A c CV1160 A/S	Open MV-CA367, T-101A Outlet CV1160 A/S	S / U

Cue: MV-CA367 is Open

*10) Step 7.5.r Open CV- 1123, SGDT Discharge, using HIC-1123, Waste Gas Discharge To Stack	Open CV-1123, SGDT Discharge, using HIC-1123, Waste Gas Discharge To Stack	S / U
Cue: CV-1123 is Open		
11) Step 7.5.s.1 Record the following on HP 6.6-3 Tank Pressure Wind Speed Wind Direction Stability Class Start Time Start Date	Record the following on HP 6.6-3 Tank Pressure Wind Speed Wind Direction Stability Class Start Time Start Date	S / U
12) Step 7.5.s.2 Determine initial DP on dPI-1817, F- 58 Decay Tank Discharge Filter DP indicator	Determine initial DP on dPI-1817, F-58 Decay Tank Discharge Filter DP indicator	S / U
Cue: dPI-1817 is reading 0.5" H ₂ O		
*13) Step 7.5.t Slowly Open Discharge Hdr Vlv's for the T-101A tank: MV-WG718 T-101A outlet vlv MV-WG718A T-101A outlet vlv	Slowly Open Discharge Hdr Vlv's for the T-101A tank MV-WG718 T-101A outlet vlv MV-WG718A T-101A outlet vlv	S / U
Cue: MV-WG718 and MV-WG718A are open		
14) Step 7.5.v Check dPI- 1817, F-58 Decay Tank Discharge Filter DP indicator, < 2.5" H ₂ O	Check dPI-1817, F-58 Decay Tank Discharge Filter DP indicator, $< 2.5"$ H ₂ O	S / U
Cue: dPI-1817 is reading 1.5" H ₂ O		

15) Step 7.5.w Record RIA-1113 reading on Form HP 6.6-3	Record RIA-1113 reading on Form HP 6.6-3	S / U
16) Step 7.5.x Tank pressure indicates less than 3 psig		S / U
Cue: 30 Mins have elapsed and tank pressure is 2 psig	Record final tank pressure on	S / U
17) Step 7.5.y Record final tank pressure on Form HP 6.6.3	Form HP 6.6.3	
*18) Step 7.5.z Close the following valve MV- WG718A for T-101A	Close the following valve MV-WG718A for T-101A	S / U
Cue: MV-WG718A is		

closed

Terminate JPM when MV-WG718A is Closed

STOP TIME: _____

<u>CRITICAL ELEMENTS</u>: Critical Elements are denoted with an asterisk (*) before element number.

GENERAL REFERENCES:

- 5. Palisades System Operating Procedure SOP-18A, Ventilation and Air Conditioning System.
- 2. Palisades Health Physics Procedure HP 6.14, Containment Purge.
- 3. Palisades Health Physics Form 6.6-3, Batch Releases

GENERAL TOOLS AND EQUIPMENT:

COMMENTS:

.

The T-101A, Waste Gas Decay Tank is to be released and the following plant conditions exist:

T-101A pressure is 85 psig Wind Speed is 12 mph Wind Direction is from 165° Stability Class B Radiation Monitor RE-1113 is operable Main Exhaust Fan V-6B is operating and no Containment Purge is in progress

The NCO has just completed setting the RE-1113 Hi Alarm Setpoint per step 7.5.k of SOP-18A.

Initiating Cue:

Your task is to complete the release of Waste Gas Decay Tank T-101A.

CONSUMERS ENERGY PALISADES NUCLEAR TRAINING DEPARTMENT JOB PERFORMANCE MEASURE

0 2 IDM	Job Performance Measure:	ASEE-	
02.JPM	Course No.:	06*26 601284 7.5 minutes	
Program Title:	NUCLEAR OPERATOR TRAINING		
Course:	Advanced Systems		
Module:	N/A		
JPM Title:	Respond to a 'Control Rods Out of Sequence' Alarm		
Revision:	2		

Prepared by		Date	
Validated by		Date	
Approved - Tra	aining Section Supervisor/Lead Individual	Date	
DEVELOPME	NT HISTORY	Date	
		2	
Originator:	RLTucker	2/22/98	
Approval:	RJFrigo	2/22/98	
Revision:	1		
Originator:	RLTucker	10/13/89	
Approval:	RJFrigo	11/09/89	
Revision:	0		
PREVIOUSLY	Y RO-097		

TASK NUMBER:	014 001 01 01	IMPORTANCE RATING:	
3.5			
	001 009 01 01		
4.0			
	001 104 04 01		
5.0			
APPROX COMPLETION TIME:	7.5 minutes		
OPERATOR:		~ RO ~ SRO	
EVALUATOR:			
EVALUATION METHOD:	~ Actual ~ Simulated		
EVALUATION LOCATION:	Simulator	DATE:	
SIMULATOR SETUP:	IC-6, insert rods in Manual Sequential until Group 3 is at		
	87", then insert Group 4 in manual group until "Control		
	Rods Out of Sequence" alarm (EK-09-16) comes in (should		
	be around 4.5"). Will also get Group 4 PPDIL alarm and		
	PPC audible alarm acknowledged. Put group selector switch		
	back to manual sequential. JPM is	now ready to give.	

1.0 **DIRECTIONS**

Please read 1.1, 1.2 and 1.3. Repeat back same. If correct, then I will tell you to continue.

1.1 <u>Task Standards</u>

Performance Time Limit = NONE

1.2 Task Conditions

- A. Reactor Startup was in progress using Control Rods in "Manual Sequential".
- B. EK-09 Alarm 16 'Control Rods out of Sequence' alarm is in.
- C. All rod motion is currently stopped.

1.3 INITIATING CUES

A. During performance of a Reactor Startup using Control Rods, the Control Room Supervisor directs you to identify the cause of, and to take actions to clear the 'Control Rods Out of Sequence' alarm.

2.0 <u>PERFORMANCE CHECKLIST</u> (Critical Elements designated by *)

Start Time:

1.	Loca	te ARP 5 and SOP 6.	
STANDAR	<u>RD</u> :	ARP 5 and SOP 6, Attachment 1 located.	S/U
2.	Stop	all rod motion.	
STANDAR	<u>RD</u> :	All rod motion stopped as part of IC.	N/A
3.		k Primary Rod position on control board or 'syncho' on to identify cause of alarm.	
STANDAR	<u>RD</u> :	Check rod positions on PPC page.	S/U
*4.	Chec	k that 78.5" to 81.5" exists between groups being moved.	
STANDAR	<u>RD</u> :	Identify that > 81.5" exists between Group 3 and 4.	S/U
5.	all po	Rod Selector Switch for Groups out of sequence through ositions and compare Primary & Secondary Rod position ations on PPC display 412.	
<u>STANDAR</u>	<u>RD</u> :	Rod Selector Switch for groups out of sequence rotated and PPC displays checked.	S/U
6.	Com	pare indicated positions from Primary and Secondary.	
<u>STANDAR</u>	<u>RD</u> :	Compare indicated positions using rod positions from Primary and Secondary. Verify Primary and Secondary agree.	S/U
*7.	Ident	ify cause of out of sequence condition.	
STANDAR	<u>RD</u> :	Operator identifies failure of PIP node sequencers as the cause of the problem.	S/U

[CUE:	The Control Room Supervisor directs you to continue with SOP- 6.]	
[CUE: [Note:	If asked Recommend inserting Group 3 in Manual.] Based on ARP-5, candidate may use manual individual to re- align control rods or he/she may use manual group to re-align control rods per SOP-6.]	
*8.	Return Rod Groups to their proper sequence to clear alarm.	
<u>STANDA</u>	<u>RD</u> : Insert Group 3 in manual group to at least 84".	S/U
9.	Make necessary log entries.	
<u>STANDAI</u>	<u>RD</u> : Loss of sequencing logged.	S/U
10.	Notify CRS.	
STANDA	<u>RD</u> : CRS notified.	S/U
Stop Time:	·	

S3

2.1 **OPERATOR PERFORMANCE**

~ Satisfactory ~ Unsatisfactory

JPM was performed in _____ minutes.

COMMENTS

3.0 GENERAL REFERENCES

SOP 6, rev 23 ARP 5 rev 66

1.0 <u>DIRECTIONS</u>

Please read 1.1, 1.2 and 1.3. Repeat back same. If correct, then I will tell you to continue.

1.1 TASK STANDARDS

Performance Time Limit = NONE

Task Conditions

- A. Reactor Startup was in progress using Control Rods in "Manual Sequential".
- B. EK-09 Alarm 16 'Control Rods out of Sequence' alarm is in.
- C. All rod motion is currently stopped.

INITIATING CUE

During performance of a Reactor Startup using Control Rods, the Control Room Supervisor directs you to identify the cause of, and to take actions to clear the 'Control Rods Out of Sequence' alarm.